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ABSTRACT

Nannan Zou: Text Analytics Methods for Sentence-level Sentiment Analysis
Master of Science thesis
Tampere University
Degree Programme in Electrical Engineering
May 2019

Opinions have important effects on the process of decision making. With the explosion of
text information on networks, sentiment analysis, which aims at predicting the opinions of people
about specific entities, has become a popular tool to make sense of countless text information.
There are multiple approaches for sentence-level sentiment analysis, including machine-learning
methods and lexicon-based methods. In this MSc thesis we studied two typical sentiment analysis
techniques – AFINN and RNTN, which are also the representation of lexicon-based and machine-
learning methods, respectively.

The assumption of a lexicon-based method is that the sum of sentiment orientation of each
word or phrase predicts the contextual sentiment polarity. AFINN is a word list with sentiment
strength ranging from −5 to +5, which is constructed with the inclusion of Internet slang and
obscene words. With AFINN, we extract sentiment words from sentences and sentiment scores
are then assigned to these words. The sentiment of a sentence is aggregated as the sum of
scores from all its words.

The Stanford Sentiment Treebank is a corpus with labeled parse trees, which provides the
community with the possibility to train compositional models based on supervised machine learn-
ing techniques. The labels of Stanford Sentiment Treebank involve 5 categories: negative, some-
what negative, neutral, somewhat positive and positive. Compared to the standard recursive
neural network (RNN) and Matrix-Vector RNN, Recursive Neural Tensor Network (RNTN) is a
more powerful composition model to compute compositional vector representations for input sen-
tences. Dependent on the Stanford Sentiment Treebank, RNTN can predict the sentiment of input
sentences by its computed vector representations.

With the benchmark datasets that cover diverse data sources, we carry out a thorough com-
parison between AFINN and RNTN. Our results highlight that although RNTN is much more com-
plicated than AFINN, the performance of RNTN is not better than that of AFINN. To some extent,
AFINN is more simple, more generic and takes less computation resources than RNTN in senti-
ment analysis.

Keywords: text mining, sentiment analysis, machine-learning methods, lexicon-based methods,
AFINN, RNTN, performance assessment, hypothesis test, bootstrap, cross-validation
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1 INTRODUCTION

Opinions from ordinary people and experts always have significant influences on the pro-
cess of decision making. Finding out "What others think" forms an important part for most
of us to gather information. Even before the World Wide Web, we always asked friends
to explain their opinions about political events, requested colleagues for recommendation
letters, or consulted a shopping-guide to determine what dishwasher to purchase [47].
As the Internet and the Web became more and more widespread, it is now possible for
people to search for various views. For instance, in two surveys of more than 2000 Amer-
ican adults, 32% have posted ratings regarding a product or service, and more than 73%
report that online comments had important effects on their purchase [47]. Similarly, ac-
cording to another survey of over 2500 American adults, approximate 30% have the need
for political information [47]. However, the problem of overwhelming and confusing on-
line information leads to a rapidly increasing demand for better information-understanding
system.

Data science is a novel discipline that emphasizes on extracting implicit, nontrivial and
potentially meaningful information from data [14]. The basic motivation behind data sci-
ence is that valuable information is contained in these large databases but concealed
within the mass of uninteresting data. Data science combines techniques and theories
drawn from many fields like statistics, mathematics, and computer science. Primarily,
predictive causal analytics, prescriptive analytics and machine learning are used to make
decisions and predictions in data science [25].

Mining information from large databases has been recognized as an important topic in
research, and it also provides a great opportunity of revenues for many industrial com-
panies. The applications of extracted information consist of decision making, information
management, process control, query processing and etc. Moreover, some emerging ap-
plications in information delivery services, such as online services, also use a variety of
information mining approaches to improve their work [8].

Text mining is known as information extraction from textual database [27]. It is the ex-
traction of novel and interesting knowledge from diverse written resources. However, text
mining is different from what users usually do in web search [24]. In web search, the pur-
pose is to look for something that is already aware of and has been written by someone
else. The only difficulty is to select what you need and push aside all the materials that
are not relevant. In text mining, user are trying to discover something that is non-trivial
and so could not have been yet written down [24].
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Due to such a fact, sentiment analysis, which aims at predicting the opinions of authors
about specific entities, is a currently hot research area in text mining. Explosive social
media sites, such as Twitter, Facebook, blogs, user forums and message boards, provide
an extremely convenient way for individuals and organizations to monitor their reputation
and get real-time feedback [19]. Nevertheless, since privately and publicly available in-
formation is constantly growing over Internet, it is tricky for a human reader to identify
relevant sites and accurately summarize the opinions within them [36]. Furthermore, it is
difficult for people to produce consistent results with a large amount of information, due to
their physical and mental limitations [36]. Thus, sentiment analysis has become a popular
tool to make sense of countless text information.

Nowadays, there is a considerable number of applications of sentiment analysis. Over
7,000 articles have been written about such a technique, and various startups are de-
veloping solutions and packages to analyze and monitor sentiments on social networks
[19]. Many online merchants enable their customers to review the products they have
purchased, and keep track customer opinions with the analysis of their reviews [28]. In
finance, financial investors make use of sentiment analysis to discover public moods on
the market and indicate analytical perspective [5, 43]. Another successful application
is in politics, where the analysis of political sentiment closely relates to the candidates’
political positions [66]. In some ways, it can reflect the election result.

Sentiment analysis can be categorized into three specific groups: document-level senti-
ment analysis, sentence-level sentiment analysis, and aspect-based sentiment analysis
[19]. Document-level sentiment analysis is the simplest form of sentiment analysis and
its assumption is that the author expresses an opinion on one major object in this docu-
ment. A document can be segmented into multiple sentences; therefore, sentence-level
sentiment analysis means obtaining the sentiment of an individual sentence. Neverthe-
less, not all the sentences contain opinions and present sentiment polarity [69]. Because
objective sentences have no help to infer the polarity, only subjective sentences deserves
further analyzing. In other words, sentence-level sentiment analysis is also known as po-
larity classification. One entity usually have numerous attributes and people often have
different opinions about each of these attributes. Thus, aspect-based sentiment analysis
provides the possibility to detect all the sentiments within the given entity. Due to the
particular short sentences that people prefer to use on social networks, in this thesis we
mainly focus on the sentence-level sentiment analysis [19].

In recent years, a huge amount of approaches have been proposed for sentence-level
sentiment analysis. To achieve state-of-the-art performance, recent methods mostly
adopt machine learning algorithms or lexical-based algorithms. With advances in com-
puter technology, machine learning is an application of artificial intelligence (AI) which
is undergoing intense development. It denotes methods which provide computers with
the ability to learn and improve automatically without human intervention or assistance
[1]. Machine learning techniques usually include two categories: supervised learning and
unsupervised learning [1].
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Supervised learning, where the desired outputs have been labeled, aims to learn a func-
tion that best approximates the relationship between inputs and outputs. In contrast, the
goal of unsupervised learning, without labeled outputs, is to automatically identify the
natural structure in data. Machine learning has been applied successfully on many fields,
for instance, it has demonstrated outstanding performance in bioinformatics [4], natural
language processing [10], computer vision [55], and data mining [67]. Moreover, machine
learning methods are currently active and showing significant performances on sentiment
analysis tasks. These techniques are completely prior-knowledge-free, and they attempt
to learn an end-to-end mapping between sentences and sentiment polarities. The most
common machine learning methods in sentiment analysis include Neural Networks, Naive
Bayes classification, Support Vector Machines and Maximum Entropy classification [46].

However, lexicon-based methods need strong prior information. The lexicon-based meth-
ods use a predefined dictionary in which each word corresponds to a specific sentiment.
The sentiment dictionary plays a key role in sentiment analysis tasks. Mostly, subjective
sentences can be separated into sentiment terms (words or phrases) which convey pos-
itive or negative sentiment polarities [50]. The identification of polarities for such terms
would help in better inferring sentiment of the whole sentence. Nevertheless, these ap-
proaches require diverse predefined dictionaries to adapt to varying contexts. For exam-
ple, PANAS-t was proposed to analyze sentiments based on a well-established psycho-
metric scale [23], whereas Linguistic Inquiry and Word Count (LIWC) was proposed to
measure more formal psychological words [63].

Since the state-of-the-art performance has not been clearly confirmed, any popular ma-
chine learning or lexicon-based approaches are acceptable by the research community
to measure sentiments. Nevertheless, we are aware of little about relative efficiency and
performance of the two different approaches. In other words, many recently proposed
techniques are widely deployed for developing applications without deeper comparing
their efficiency in distinct contexts with each other [19]. Therefore, it is necessary to con-
duct a thorough comparison of machine learning and lexicon-based sentiment analysis
approaches across multiple datasets.

In this thesis, we introduce various approaches for sentence-level sentiment analysis,
including machine-learning methods and lexicon-based methods. Additionally, we study
two typical sentiment analysis techniques: AFINN and RNTN. With the benchmark datasets
that cover diverse data sources, we also carry out a thorough comparison between AFINN
and RNTN.

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review the-
oretical background. In Chapter 3, we describe the software and hardware resources,
sentiment analysis techniques that we compared, datasets and performance assess-
ment approaches. Chapter 4 summarizes our results and analysis. Finally, Chapter 5
concludes the thesis and presents direction for future work.
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2 THEORETICAL BACKGROUND

In this chapter, we shall first discuss natural language processing, text mining and text en-
coding that forms the basic components of sentiment analysis. Furthermore, background
and existing related work on sentence-level sentiment analysis are briefly reviewed.

2.1 Natural language processing

Natural Language Processing (NLP) focuses on the field that aids computers to under-
stand and manipulate the human’s natural language. NLP researchers are interested in
exploring how humans understand and communicate with natural language, and then the
computer systems can use these techniques to manipulate natural languages to solve
target problems. NLP combines the fields of linguistics, electrical and electronic engi-
neering, robotics, statistics, psychology, artificial intelligence, and computer sciences [9].
NLP can perform outstanding in a number of common applications, such as language
translation (e.g. Google Translate), Interactive Voice Response (IVR), personal assistant
(e.g. Siri), and speech recognition.

The core idea behind NLP is natural language understanding. For computers, there are
three principal problems in understanding humans’ natural languages: thought proce-
dures, the representation and meaning of the linguistic input, and the world knowledge
[9]. When a text has been provided, the NLP program will utilize algorithms to decide the
morphological structure and nature at the word level. Then, it will try to extract mean-
ing associated with the whole sentence and collect the essential information. Finally, the
program will consider the context or the overall domain of the given text. Sometimes, the
NLP program may fail to correctly understand the meaning of a sentence, since the given
context has a significant effect on the connotation of words or sentences.

A program that actually "understands" natural language is difficult to be determined in
the NLP research. All we can actually test is whether a program appears to understand
humans’ language by successfully completing its task. The Turing test (q.v.), proposed
by Turing, has been the classical model [9]. In this test, the NLP program has to be undis-
tinguishable from a human when both answer arbitrary interrogation by a human over a
terminal. A growing concern in NLP is developing more sensitive models of evaluation
that can measure progress. The common method is to carry out evaluation tests within
restricted domains to examine specific capabilities. For instance, statistical measures
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can be computed relied on the set of human-generated questions collected in protocols
(q.v.) that use another human to simulate the program.

Actually, the pervasive ambiguity is the major problem in processing natural language.
Several common ambiguity are introduced in the following:

• Simple lexical ambiguity. For example, "bank" can be a noun (the financial insti-
tution) or a verb (to tip laterally).

• Structural or syntactic ambiguity. For example, in the sentence "Jack helped the
woman with a wheelchair", the wheelchair might be utilized for the help or might be
used by the woman being helped.

• Semantic ambiguity. For example, the word "make" has more than 10 different
meanings in any dictionary.

• Pragmatic ambiguity. For example, "Could you pass the water to me?" may be a
request to pass the water or a yes/no question.

• Referential ambiguity. For example, "Jorge talked with Frank in Starbucks. He
looked bad . . . ," it is not clear who looks bad, even the remainder of the sentence
might suggest a correct answer.

The history of NLP could be divided into four phases [30] with different concerns and
styles. The first phase emerged from the need of Machine Translation in the 1940s [30].
Initially, machine translation mainly focused on English and Russian. Gradually, other
languages such as Chinese also became popular in the 1960s. However, machine trans-
lation had little development during 1966 as the research of this field almost died at that
time [56].

Since the need of Artificial Intelligence (AI) emerged, NLP acquired a new life in the
1980s [30]. This phase focused on meaning representation and gave more attention to
world knowledge. LUNAR, developed by W.A woods in 1978, is a pioneering work of
the question-answering systems influenced by AI [56]. The Yale group early recognized
the need to explore the humans’ goals if the NLP techniques wanted to completely un-
derstand the natural language. Thus, this phase also emphasized on both surface and
underlying meanings of the language.

In the period of 1990s, NLP started to grow quickly. This trend was stimulated by the
development of grammars, tools and practical resources [30]. For example, word sense
disambiguation and statistically colored NLP had become the most striking feature of this
decade. Additionally, NLP techniques of this phase involved other essential topics, such
as semantic classification, information extraction, statistical language processing, and
automatic summarizing [56].

Currently, everyone expects the machine to think and talk like humans, and the Natural
Language Processing is the only method which can help us to achieve this goal. Many
talking machines named Chatbot, such as Alexa developed by Amazon, can manage
complicated interactions with human beings and process the streamlined business [56].
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Particularly, the integration with Machine Learning and Deep Learning greatly expands
the capabilities of NLP technology. Nowadays NLP techniques can be used to handle
many different areas, such as health care, sentiment analysis, cognitive analytics, spam
detection, human resources and conversational framework.

Text mining is the process to discover and extract useful and nontrivial information from
unstructured text. This process involves the disciplines of information retrieval, text classi-
fication and clustering, and event extraction. NLP is the technique that attempts to explore
the patterns to represent a full meaning of the unstructured text. NLP typically utilizes
syntax techniques such as lemmatization, morphological segmentation, word segmenta-
tion, part-of-speech tagging, parsing, sentence breaking and stemming; semantics such
as named entity recognition, word sense disambiguation and natural language genera-
tion; grammatical structure such as noun phrase, prepositional phrase, and dependency
relations [31].

Modern NLP includes machine learning, machine translation, speech recognition, and
machine text reading. Combining these branches together means that AI has the ability
to acquire real knowledge from the world, not just learning the experience from humans.
In the future, computers will have the capability of gaining information online and learn
from it. With the continuous research, NLP will reach at a human level of understanding
and awareness [35].

2.2 Text mining

Text mining is a young subject which focuses on detecting useful patterns from large
database [3]. It combines the fields of information retrieval, data mining, machine learn-
ing, statistics and computational linguistics together, and extracts new pieces of knowl-
edge from textual data. Although the sources of new knowledge are diverse, unstructured
texts, such as webpages, e-mail messages, and many business documents etc., are still
the largest readily accessible source of discovery [27]. Thus, the obvious distinction be-
tween text mining and regular data mining is that the patterns of data mining are extracted
from structured database of facts [26].

With electronic files becoming the main method of sorting, storing and accessing written
information, managing electronic information is changing the world greatly. Many other
fields, like manufacturing, education, business, health care and government, can ben-
efit from text-mining techniques. As a result, text mining technology and solutions are
considered to have a high potential worth.

The main problem of text mining is machine intelligence [17]. It is easy for humans
to identify and employ linguistic patterns to text and overcome obstacles like spelling
variations, a slang and contextual meaning, while computers cannot manage them easily.
On the other hand, humans are not able to handle texts in large volumes or at high
speeds [17], though they are capable of comprehending unstructured data. Therefore,
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creating a technique with both a computer’s speed and accuracy and a human’s linguistic
capabilities is the key to text mining.

Figure 2.1. A simple procedure of Text Mining [17].

Figure 2.1 exhibits a simple example of the text mining procedure. It starts with a group
of documents, and then checks the format and word lists of the retrieved particular doc-
ument. After that, it implements text analysis, repeating a combinations of techniques,
such as information extraction, clustering and summarization, to extract the targeted in-
formation. Finally, the management information system can process the resulting infor-
mation to generate knowledge for its users.

In order to narrow the gap between humans and computers, various technologies that
teach computers to analyze and understand natural languages have been produced.
They consist of topic tracking, categorization, information extraction, information visu-
alization, summarization, question answering, clustering, and concept linkage [17]. With
these techniques, text mining has been demonstrated to be helpful in telecommunica-
tions, biomedical engineering, climate data, and geospatial data sets.

2.3 Text encoding

Preprocessing the text files and storing the contents in a data structure is a necessary
step for text mining, which is convenient for further processing. Although exploring the
syntactic structure and semantics is a key point in some methods, many text mining
techniques rely on the concept that a set of words can describe a text document (bag-
of-words representation). Due to the importance of bag-of-words representation, we will
briefly describe how it can be obtained in the following.

2.3.1 Tokenization

The tokenization step is necessary to obtain all contained words for a given sentence.
A token is a unit of text that is meaningful for analysis, such as a phrase or a word.
Tokenization removes all punctuation marks and replaces other characters with white
spaces, and then splits a text document into tokens. For text mining, it is easier and more
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effective to use the specific tidy text format which is defined as a table with one-token-per-
row [60]. In this one-token-per-row structure, the token can be a single word, an n-gram,
a sentence or a paragraph. This tidy-text structure is then used for further processing.

For example, we have a sentence "Because I could not stop for Death". The process
of tokenization needs to break the text into individual tokens "because", "i", "could", "not",
"stop", "for", "death". For another example, the phrases "new york university", right
direction, and green gas can also be considered as tokens.

2.3.2 Filtering

Filtering approaches can filter words from the tidy text structure and thereby from the text
document. A well known filtering approach is the removal of stop words [57]. Stop words,
such as articles, conjunctions, prepositions etc., represent the items bearing little or no
information of the contents. Moreover, words occurring extremely often are likely to bear-
ing little knowledge, and also words occurring very seldom can be said to be no statistical
relevance. Thus, all of these words belong to stop words. Stop-word filtering relies on
the concept that removing non-discriminative words decreases the feature space of the
classifier and assists them to generate more correct results [61]. For this reason, a stop
dictionary includes the words that should be removed in the bag-of-words representation
procedure. Although a set of general words, like and and or, can be seen as stop words
in almost all cases, words of the stop dictionary are dependent in languages and tasks.

2.3.3 Lemmatization

For many applications of text mining, lemmatization is a significant preprocessing step. It
is also extensively applied in NLP and other domains related to linguistics [49]. Lemma-
tization attempts to replace nouns with the singular form and verb forms with the infinite
tense. In other words, lemmatization always looks for a transformation which can be ap-
plied to a word to obtain its normalized form. The lemmatization methods are similar to
word stemming, except that lemmatization only requires to find the normalized form of a
word but not to generate the word stem [49].

For example, the normalized form of the words working, works, worked is work; and the
word stem of them is also work. In this context, lemmatization is equal to word stemming.
However, sometimes the normalized form is different with the stem of the word [49]. For
instance, the words computes, computing, computed would change to the normalized
form compute standing for the infinitive, but their stem word is comput.
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2.3.4 Stemming

Generally, the morphological variants of words express the similar semantic meaning, and
it consumes much time if each word form is considered different. Hence, it is essential
to distinguish every word form with its basic form [29]. Stemming is also a preprocessing
step in text-mining applications. It attempts to retrieve the base forms of words, i.e. re-
move the ’s’ from nouns, the ’ed’ from verbs, or other affixes. In a word, stemming means
a process to normalize all words that have the same stem to a basic form [37].
Stemming:
introduction, introducing, introduces – introduc

walked, walking, walks – walk

As explained in Lemmatization part, lemmatization requires to find the normalized form of
a word (examples are showed in Lemmatization part). But stemming works by cutting off
the common prefixes and suffixes of the word. This indiscriminate cutting offers limitations
in some occasions. For example, the stem word of studies would be studi which is not
so meaningful for our analysis. However, a lemma word is always the base form of all its
inflectional forms. For the same example studies, its lemma word is study.

2.3.5 Linguistic processing

In addition to basic text-mining preprocessing, usually linguistic processing methods are
also utilized to explore more information about text. For this reason, some frequently
applied approaches are introduced in the following.

Part of speech (POS) is the conventional term that classifies words in a language [58].
The grammatical property of a word is the primary criteria for part-of-speech classifica-
tion. In text mining, POS tagging is usually used to determine the part-of-speech tag,
such as verb, noun, and adjective, for each item.

The textual unit of adjacent tokens is named as chunk [18], and text chunking means
grouping an unstructured sequence of adjacent text units in a piece of text. Each chunk
includes a set of adjacent words which are mutually linked through dependency chains of
some specifiable kinds [18].

Human language is ambiguous and many words bear different interpretation based on
the context. Word sense disambiguation (WSD) is a technique that attempts to recognize
the interpretation of single word or phrase in the context [41]. For example, the word
bank clearly denotes meanings: a financial institution that accepts deposits or the slope
beside a body of water. Although WSD causes a more complex dictionary, the core idea
of considering many semantics of a term is close to human comprehension.

Parsing, also known as syntactic analysis, refers to the procedure that analyzes sentence
structure and generates a full parse tree of a sentence [38]. With parsing, the relation
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between every word and all the others can be easily explored.

2.4 Machine learning classifiers

In this section, we briefly review six machine-learning classifiers [11, 21, 34, 51, 54, 59]
which are extensively applied in the field of sentiment analysis.

2.4.1 Naive Bayes classifier

The Naive Bayes classifier is dependent on the Bayes theorem with an assumption of
independent predictors [54]. Despite its simplicity, Naive Bayes classifier works well on
sentiment analysis. With Bayesian theorem, we can calculate posterior probability P (c|X)

from P (c), P (X) and P (X|c) [54]:

P (c|x) = P (x|c)P (c)

P (x)
(2.1)

P (c|X) = P (x1|c)× P (x2|c)× · · · × P (xn|c)× P (c) (2.2)

where P (X) is the prior probability of predictor, P (X|c) is the probability of predictor given
class, and P (c) is the prior probability of class [54].

Naive Bayes classifier is simple and fast to classify the target data and it also performs
outstanding in multiclass classification. Especially, Naive Bayes classifier needs less
training data and performs better compared to other classifiers when holding independent
assumption. However, its assumption also gives an obvious limitation, where indepen-
dent predictors are almost impossible in real life.

2.4.2 Nearest Neighbor classifier

In text mining, the sentiment of the given sentence may be predicted from the sentiments
of other similar sentences. Thus, this method is called as nearest neighbor classifier,
where k-nearest neighbor classification (kNN) is the most frequently useful one [11]. kNN
includes a training dataset of both positive and negative classes, and a target sentence
is classified by computing the distance to the k nearest points and assigning the label of
the majority [11]. To find out the best k, a cross validation method is often carried out.
We generally create a list of k varying among some range and then the testing accuracy
is given based on the validation set. Finally, a graph k vs accuracy is plotted, and we can
determine the best k among the range using the plot.

Nearest Neighbor classifier is quite simple and easy to implement. Its drawback is the
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computational effort during classification. In another term, it is not practical enough and
takes much time to test the data, where we tend to have fast testing to have real-time
results.

2.4.3 Maximum Entropy

Maximum Entropy (MaxEnt) principle arises in statistical mechanics. Unlike Naive Bayes,
MaxEnt has no assumptions of independence for its attributes. To model a given data set,
it indicates that the most appropriate distribution is the one with highest entropy among
all those satisfying the constrains of prior knowledge [21]. Because maximizing entropy
minimizes the amount of prior information built into the distribution. The MaxEnt can be
represented as the following:

PME(c|d, λ) =
exp[

∑
i λifi(c, d)]∑

c exp[
∑

i λifi(c, d)]
(2.3)

Here c means the class, d describes the sentence, and λ indicates a weight vector. The
weight vectors are optimized by numerical optimization of λ to maximize the conditional
probability [21].

In text mining practice, the features to model MaxEnt are linguistically simple, but yet
outperform many of learning algorithms under similar circumstances. The major disad-
vantage is that the exact maximum entropy solution does not exist in some cases, where
the probability distribution may lead to poor testing accuracy [52].

2.4.4 Decision trees

Decision tree classifier, which involves decision nodes and leaf nodes, yields a final deci-
sion by repetitively dividing a dataset into gradually smaller subsets [51]. A decision node
includes two or more branches, while a leaf node states a decision. Once the decision
tree has been constructed, classifying a sentence is straightforward. Hence, constructing
an optimal decision tree is the key aspect in the decision tree classifier. Let Dt be the
training dataset and the attribute ti is selected. Then Dt is split into two subsets. The
subset Dt+i contains the sentences including ti, and the subset Dt−i includes the sen-
tences without ti. This process is recursively applied to Dt+i and Dt−i until all sentences
in a subset are classified as the same class.

Decision trees can easily handle irrelevant attributes and missing data, and they are also
quite fast at testing time [51]. Nevertheless, the disadvantage is that the final decision
is determined only on relatively few features in sentiment analysis. And also, sometimes
they may not find the best tree in real world.
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2.4.5 Support Vector Machines

The Support Vector Machine (SVM) means a discriminative classifier which attempts to
find a separating hyperplane that distinctly classifies the data points in an n-dimensional
space [59]. In other terms, SVMs output an optimal decision surface that categorizes new
samples dependent on labeled training data. In sentiment analysis, the SVM classifier
decides a hyperplane that is settled between the positive and negative categories of the
dataset, where the margin is particularly maximized.

The learning of SVMs is almost regardless of the dimensionality of its feature space.
Because feature selection is rarely required in SVM, SVM classifier is particularly suitable
for text classification which usually involves a large amount of features. In addition, the
kernel function does not have an important effect on the performance of text classification,
since kernels are subject to overfitting [27].

2.4.6 Deep learning

In representation learning, the raw data is fed into a computer and the computer would au-
tomatically explore the needed representations for classification or detection [34]. Deep
learning classifiers belong to representation learning approaches, which involve multiple
levels of representation. As the non-linear modules of deep learning transform the repre-
sentation between different levels, the classifier will learn quite complex functions during
this process. For sentiment classification in text, the features that are significant for iden-
tification are amplified and the irrelevant parameters are suppressed by deeper layers of
representation. Particularly, deep learning can use their purposed learning process to
learn these layers of features, instead of designed by human engineers [34].

In recent years, deep learning has demonstrated outstanding performance in solving
problems. It shows great capability in discovering intricate patterns for high-dimensional
data, and it has been widely used in science, business and government [34]. However,
there are a few challenges that have to be tackled to develop it. First, large amounts of
data are required to train deep learning algorithms – as they learn progressively. More-
over, data availability for some sectors may be sparse and thus hamper deep learning
in practice. Additionally, the high performing graphics processing units of deep learning
require and consume a lot of power and are thereby a costly affair.

2.5 Lexicon-based methods

In this part, we briefly introduce six Lexicon-based approaches [7, 12, 16, 22, 63, 65] that
are widely applied in the field of sentiment analysis.
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2.5.1 Emoticons

Recently, Emoticons have become increasingly popular. Detecting the emoticons con-
tained in the sentences is the simplest way for sentiment classification [22]. Because
emoticons can represent happy or sad feelings, a set of common emoticons are utilized
to extract polarity, such as exhibited in Table 2.1. This table consists of most popular
emoticons and also their variations, which express positive, negative, and neutral polar-
ities. If some sentences have more than one emoticon, then the polarity is determined
with the first appeared emoticon in the text [22]. However, compared to total subjective
sentences, the rate of online-social-network texts which contained at least one emoti-
con is less than 10% [22]. Hence, emoticons are usually used in combination with other
methods for sentiment analysis.

Table 2.1. Sample emoticons and their variations [22].

Polarity Positive Negative Neutral

Symbols

:) :] :} :o) :o] :o}

:-] :-) :-} =) =] =}

=^] =^) =^} :B :-D :-B

:^D :^B =B =^B =^D :’)

:’] :’} =’) =’] =’} <3

^.^^-^^_^^^:* =*

:-* ;) ;] ;} :-p :-P

:-b :^p :^P :^b =P

=p \o\/o/ :P :p :b =b

=^p =^P =^b \o/

D: D= D-: D^: D^= :( :[

:{ :o( :o[ :^( :^[ :^{

=^( =^{ >=( >=[ >={ >=(

>:-{ >:-[ >:-( >=^[ >:-(

:-[ :-( =( =[ ={ =^[

>:-=( >=[ >=^( :’( :’[

:’{ =’{ =’( =’[ =\:\

=/ :/ o.O O_o Oo =$

:$ :-{ >:-{ >=^{ :o{

:| =| :-| >.<><>_<:o

:0 =O :@ =@ :^o :^@ -.-

-.-’ -_- -_-’ :x =X :#

=# :-x :-@ :-# :^x :^#

2.5.2 LIWC

LIWC is a dictionary-based analysis tool, evaluating emotional, cognitive, and structural
items of a given sentence [63]. Besides negative and positive categories, LIWC also
detects other classes of sentiment. For instance, the term "agree" can be categorized
into six word groups: affective, assent, positive feeling, positive emotion, and cognitive
process. The LIWC2007 version contains labels for 100 word categories and more than
4500 English words, and Table 2.2 lists a simple example of LIWC2007 lexicon [63].

Currently, LIWC provides a commercial software and optimization option which allows
users to create customized dictionaries rather than the standard ones. The LIWC soft-
ware is accessible at http://www.liwc.net/.

http://www.liwc.net/
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Table 2.2. A simple example of LIWC2007 lexicon [63].

Category Affective process Cognitive process Perceptual process

Examples

happy, cried, abandon,

love, nice, sweet,

hurt, ugly, nasty,

worried, fearful, nervous,

hate, kill, annoyed,

crying, grief, sad

cause, know, ought,

think, know, consider,

because, effect, hence

observing, heard, feeling,

view, saw, seen,

listen, hearing,

feels, touch

2.5.3 SentiStrength

The core idea of SentiStrength depends on the list of words from the LIWC lexicon. The
authors added some new features, including a set of positive and negative words, the
words to weaken (e.g., "a bit") or strengthen (e.g., "too") sentiments, emoticons, and re-
peated punctuation (e.g., "Good!!!!") to strengthen sentiments, to expand the baseline for
the online-social-network context [65]. In the experiments, the authors evaluated six dif-
ferent datasets from Web 2.0: MySpace, BBC Forum, Twitter, Digg, YouTube Comments,
and Runners World Forum [65]. Now, the authors also provides a useful tool to produce
almost state-of-the-art results. Table 2.3 illustrates some sample words from the lexicon
of SentiStrength.

Table 2.3. Sample words from the lexicon of SentiStrength [65].

List Name Sentiment word list Booster word list Idiom list Negation word list Emoticon word list

Sample Word

and Score

Awful (-4)

Blissful (+5)

Slightly (-1)

Extremely (+2)

Shocker horror (-2)

Whats good (+2)

Cant (-)

Never (-)

:’( (-1)

:-D (+1)

2.5.4 SentiWordNet

SentiWordNet relies on an English lexicon named WordNet. WordNet classifies nouns,
verbs, adjectives and other grammatical groups into synsets [16]. The SentiWordNet
using three values with synsets to state the polarity of the sentence: negative, positive,
and neutral. The values are in the range of [0, 1] and the total sum is 1 [16]. For example,
we have a given synset s = [bad, wicked, terrible], and then SentiWordNet will score
negative sentiment with 0.850, positive sentiment with 0.0, and neutral sentiment with
0.150, respectively.

Generally, scores from neutral sentiment have no effect on final sentiment decision. If the
average positive score of all associated synsets of a target sentence is higher than that
of the negative score, the polarity would be considered to be positive. Table 2.4 lists the
5 top-ranked positive and negative synsets in SentiWordNet 3.0.
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Table 2.4. The 5 top-ranked positive and negative synsets in SentiWordNet 3.0 [16].

Rank 1 2 3 4 5

Positive good#n#2

goodness#n#2

better_off#a#1 divine#a#6

elysian#a#2

inspired#a#1

good_enough#a#1 solid#a#1

Negative abject#a#2 deplorable#a#1

distressing#a#2

lamentable#a#1

pitiful#a#2

sad#a#3

sorry#a#2

bad#a#10

unfit#a#3

unsound#a#5

scrimy#a#1 cheapjack#a#1

shoddy#a#1

tawdry#a#2

2.5.5 SenticNet

SenticNet is a tool extensively utilized in opinion mining, and its goal is to infer the polarity
at a semantic level instead of the syntactic level [7]. SenticNet utilizes NLP approaches
to create a polarity for almost 14000 concepts [7] which are defined as common sense –
obvious things we normally know and usually leave unstated . For example, suppose that
a given sentence "Great, it is Friday evening" is ready for sentiment classification, Sen-
ticNet first identifies concepts, which are "great" and "Friday evening" in this task. Then it
produces sentiment score, between the values of -1 and 1, to every concept. In this task,
"great" gets +0.383 and "Friday evening" gets +0.228, thereby the final sentiment score
+0.3055 which is the average of the total values.

The authors of SenticNet evaluated it with the data of patients’ opinions about the National
Health Service in England and posts with over 130 moods from LiveJournal blogs [7].
Table 2.5 exhibits some sample concepts with sentiment scores in SenticNet.

Table 2.5. Sample concepts with sentiment scores in SenticNet [7].

Concept Sentiment Score Concept Sentiment Score

Want degree 0.020 A lot +0.970

Child play 0.023 A way of +0.303

Grow up 0.290 Abandon -0.858

Birthday cake 0.292 Abash -0.130

Enough food 0.580 Abhor -0.376

Wood spoon -0.023 Able use +0.941

Death row -0.290 Abhorrent -0.396

Break arm -0.580 Mess up -0.581
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2.5.6 Happiness Index

The method of Happiness Index bases on the Affective Norms for English Words (ANEW)
[12]. ANEW involves a list of 1034 unique words which are widely associated with their
valence (ranging from pleasant to unpleasant), arousal (ranging from calm to excited)),
and dominance [6]. Osgood’s [44] seminal work indicates that these three dimensions
can account for the variance in emotional assessments. Happiness Index indicating the
quantity of happiness present in the message by giving scores for given terms between
the values of 1 and 9. To increase the accuracy, the authors computed the appearing
frequency of ANEW words in the sentences and calculated a weighted valence. When
the weighted valence is evaluated on the song titles, song lyrics, and micro-blogs, the
authors explored that the happiness value had decreased from 1961 to 2007 for song
lyrics, while the value for blogs had increased during the same time [12].

To adapt this method for polarity classification, sentence that is categorized with Happi-
ness Index in the spanning of [1, 5) is considered to be negative and in the spanning of
[5, 9] is considered to be positive [12]. Table 2.6 presents some sample words from the
lexicon of Happiness Index.

Table 2.6. Sample words from the lexicon of Happiness Index [6].

Words Valence Arousal Dominance

Abduction 2.76 5.53 3.49

Bench 4.61 3.59 4.68

Carcass 3.34 4.83 4.90

Dawn 6.16 4.39 5.16

Ecstasy 7.98 7.38 6.68

False 3.27 3.43 4.10

Game 6.98 5.89 5.70

Happy 8.21 6.49 6.63

Illness 2.48 4.71 3.21



17

3 RESEARCH METHODOLOGY AND MATERIALS

The software and hardware resources, sentiment analysis techniques, datasets and per-
formance assessment approaches are introduced in this section.

3.1 Software and hardware

All calculations were carried out in R. The R library tidytext (version 0.2.0) [64] provided
the text mining methods, i.e. word processing and sentiment analysis.

To accelerate parallel computing, we used the local grid computing resources (TUTGrid)
provided by Tampere Center for Scientific Computing (TCSC), since the bootstrap and
cross-validation parts could be evaluated independently at the same time.

3.2 A Lexicon-based method for sentiment analysis (AFINN)

The assumption of a lexicon-based method is that the sum of sentiment orientation of
each word or phrase predicts the contextual sentiment orientation [68]. This approach
creates a sentiment lexicon and rates the sentence according to the function that evalu-
ates how the words and phrases of the sentence matches the lexicon. Sentiment analy-
sis on web messages is challenging, which needs to process emoticons, informal words,
word shortening, and spelling variation.

In different lexicon-based approaches, e.g., ANEW, SentiWordNet, and SentiStrength,
the word dictionaries differ by the words they contain. Some word lists do not contain
Internet slang acronyms and strong obscene words, such as "ROFL" and "WTF" [42].
However, such terms could play an important role in reaching outstanding performance
while working with short informal texts from social networks. Another significant differ-
ence between word lists is that some word lists are scored with sentiment strength (e.g.
specific scores) and the others are rated with positive/negative polarity (e.g. negative,
positive or very positive) [42].
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3.2.1 Construction of AFINN

Many lexicons have been developed for sentiment analysis, such as ANEW, SenticNet,
and SentiWordNet. To analyze the sentiment of microblogs (e.g. Twitter), the need for
novel word lists has obtained lots of attention. A New ANEW, which is termed as AFINN,
is one of the simplest sentiment analysis methods [42]. AFINN is a word list with senti-
ment strength, which was constructed with the inclusion of Internet slang and obscene
words. Initially, it was built up for sentiment analysis of tweets in relation to the United
Nation Climate Conference in 2009 [42]. Since then AFINN has been gradually devel-
oped for various activities. The version named AFINN-96 is consist of 1468 different
words, including a few phrases (i.e. right direction and not working). The improved
version named AFINN-111 includes 2477 unique words, including 15 phrases (i.e. does

not work, dont like, green washing, and not good). Currently, the size of AFINN has been
extended into 3383 English words [42].

AFINN initiates from a set of obscene words as well as a few positive words. Gradually, it
was expanded with tweets collected for the United Nation Climate Conference, the public
dictionary Original Balanced Affective Word List by Greg Siegle, Internet slang acronyms
such as WTF, LOL and ROFL, and the word list The Compass DeRose Guide to Emotion
Words by Steven J. DeRose [42]. The author determined in which contexts the word
appeared by using Twitter, and he also discovered relevant words by using the Microsoft
Web n-gram similarity Web service. To avoid ambiguities, the author excluded words
like power, firm, patient, mean and frank. And also the words with high arousal but with
variable sentiment, such as "surprise", were excluded from AFINN.

Like SentiStrength [65] rating range from −5 to +5, the author also scored AFINN from
−5 to +5 for ease of labeling. Figure 3.1 exhibits the histogram of sentiment scores for
AFINN. As illustrated in Figure 3.1, the majority of the negative words were labeled by
−2 and most of the positive words by +2 in AFINN. But some strong obscene words
were scored with either −4 or −5, such as asshole (−4), bastard (−5), bitch (−5), and
bullshit (−4). Compared to the number of positive words (878), AFINN has a bias towards
negative words (1598), which also occurs similarly in the OpinionFinder sentiment lexicon
(2718 positive and 4911 negative words) [42].

Table 3.1 shows a simple example of AFINN lexicon. Definitely, AFINN is one of the
most popular word lists that could be utilized widely for sentiment analysis. Although
AFINN was initially constructed for sentiment analysis on Twitter, we can get a good idea
of general sentiment statistics across different text categories with it. The author has
also created nice wrapper libraries in both R and Python, which could be used directly for
analysis. All versions of this lexicon can be found at the author’s official GitHub repository.
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Table 3.1. An example of AFINN lexicon [42].

Scores -5 -4 -3 -2 -1 1 2 3 4 5

Words bastard

bitch

cock

cunt

prick

bullshit

catastrophic

damn

dick

fraud

fuck

jackass

motherfucker

nigger

abhor

abuse

acrimonious

agonize

anger

angry

anguish

bad

betray

disastrous

disgusted

distrust

douche

dreadful

abandon

abduction

accident

accusation

accuse

ache

admonish

afraid

aggravate

aggression

aghast

alarm

degrade

distort

embarrass

emergency

absentee

admit

affected

afflicted

affronted

alas

alert

ambivalent

apology

empty

envy

escape

eviction

aboard

absorbed

accept

achievable

active

adequate

adopt

advanced

agree

backs

ability

absolve

accomplish

acquit

advantage

adventure

agog

agreeable

amaze

ambitious

defender

admire

adorable

affection

amuse

astound

audacious

award

beautiful

best

amazing

awesome

brilliant

ecstatic

overjoyed

breathtaking

hurrah

outstanding
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Figure 3.1. Histogram of sentiment scores for AFINN [42].

3.2.2 Sentiment prediction

A typical sentence includes word variations, emoticons, hashtags etc. Therefore, we
need the preprocessing steps to normalize the sentence before sentiment prediction.

• POS Tagging: POS tagging indicates the procedure of identifying a particular part
of speech of a word, given both its definition and context. The process is compli-
cated because a single word possibly has an unique part of speech tag in different
sentences given different contexts. POS Tagger could give part-of-speech tag as-
sociated with words.
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• Stemming: As explained in previous part, stemming means a process to normalize
all words that have the same stem to a basic form. And this process could help the
computer to match the word in the sentence to the lexicon.

• Exaggerated word shortening: AFINN lexicon contains normal English words
only. Thus, if words have same letter more than twice but not existing in AFINN,
the words will be simplified to the word with the repeating letter just once [68]. For
instance, the exaggerated word "Yessssss" is reduced to "Yes".

• Hashtag detection: Hashtag is a phrase which starts with # with no space between
them. If a sentence contains a hashtag, the hashtag will be a topic or a keyword of
the sentence. Hashtags could provide important information for sentiment analysis.

Sentiment prediction indicates the aggregation of the sentiment bearing words of the
sentence. We extract sentiment words from sentences and sentiment scores are then
assigned to these words. The final polarity of a sentence bases on the sum of scores
from all its words. Algorithm 1 shows the sentiment prediction algorithm.

Algorithm 1 Sentiment Prediction

Require: Preprocessed sentences
Ensure: Results: Positive, Negative, Neutral

Build up the table of sentiment words SentiWords;
SentiScore = 0;
for each word in the SentiWords do
SentiScore = SentiScore + sentiment of word;

end for
if Hashtag is existing then

Extract all the sentiment words in hashtag and add them to SentiWords
end if
SentiClass = "Neutral";
if SentiScore > 0 then
SentiClass = "Positive";

end if
if SentiScore < 0 then
SentiClass = "Negative";

end if
return SentiClass

3.3 Stanford Recursive Neural Tensor Network (RNTN)

Although semantic vector spaces have been used widely to represent single words, they
cannot represent longer phrases appropriately. The problem is that capturing such pat-
tern in the sentences requires powerful models and large training resources. To remedy
this, the Stanford Sentiment Treebank and the Recursive Neural Tensor Network (RNTN)
[62] are used to predict the compositional semantic effects. Figure 3.2 shows one ex-
ample of RNTN with clear compositional structure. In Figure 3.2, RNTN can capture the
negation and its scope in the sentence and predict 5 sentiment classes (−−, −, 0, +,
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++) at each node of a parse tree.

Figure 3.2. An example of RNTN [62].

3.3.1 Stanford Sentiment Treebank

The Stanford Sentiment Treebank is a corpus with labeled parse trees, which allowing
us to analyze completely the sentiment in a language [62]. The original dataset of movie
reviews, including 10,662 single sentences, was initially collected by Pang and Lee [45].
Moreover, half sentences of this dataset were considered negative and the other half
positive. All these sentences were parsed with the Stanford Parser [32], thereby result-
ing 215,154 unique phrases from these parse trees [62]. These phrases are labeled
with Amazon Mechanical Turk, forming the corpus of Stanford Sentiment Treebank. This
new corpus provides the community with the possibility to train compositional models by
machine learning techniques [62].

Figure 3.3. The normalized histogram of sentiment labels at each n-gram length [62].
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Figure 3.3 illustrates the normalized histogram of sentiment labels at each n-gram length.
The authors noticed that longer phrases often represented stronger sentiment and the
majority of the shorter phrases were neutral [62]. Since the extreme values were quite
rare, the labels of the Stanford Sentiment Treebank only covered 5 classes: negative,
somewhat negative, neutral, somewhat positive and positive [62].

Figure 3.4. Approach of computing compositional vector representations for phrases
[62].

3.3.2 Recursive Neural Models

Figure 3.4 displays the approach of computing compositional vector representations for
phrases. When an n-gram is given as an input, a binary tree is built up by parsing the
input into separate words which are corresponding to each leaf node. The recursive
neutral model will then use various functions g to compute parent vectors in a bottom up
fashion. And the parent vectors will work as features for classification.

A d-dimensional vector is utilized to represent each word. And the word vector is initialized
by randomly sampling from a uniform distribution: U(−r, r), where r = 0.0001 [62]. The
embedding matrix L ∈ ℜd×|V | stacks all the word vectors, and |V | indicates the size of
the vocabulary. Moreover, the word vectors can work as features and also parameters to
optimize a softmax classifier [62]. For five-class classification, the posterior probability
with labels is computed based on the word vector:

ya = softmax (Wsa) (3.1)

where Ws ∈ ℜ5×d is the sentiment classification matrix. Similarly, we can get the posterior
probability for the vectors b and c in Figure 3.4 using the same step.

The standard recursive neural network (RNN) is one of the most popular techniques for
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text mining. The Equations 3.2 represent that how RNNs compute the parent vectors:

p1 = f

⎛⎝W

⎡⎣ b

c

⎤⎦⎞⎠ , p2 = f

⎛⎝W

⎡⎣ a

p1

⎤⎦⎞⎠ (3.2)

where f = tanh denotes a standard element-wise nonlinearity, W ∈ ℜd×2d indicates the
main parameters, and the bias is omitted for simplicity. The parent vectors must have
the same dimensionality and each parent vector pi uses the same softmax function of
Equation 3.1 to compute its label probability.

Most parameters of Matrix-Vector RNN (MV-RNN) are associated with words. The MV-
RNN uses both a vector and a matrix to represent each word or phrase in a parse tree
[62]. The matrix of every word is initialized as a d× d identity matrix with a minor number
of Gaussian noise. For the parse tree containing vector and matrix nodes, the MV-RNN
computes the first parent vector and its matrix:

p1 = f

⎛⎝W

⎡⎣ Cb

Bc

⎤⎦⎞⎠ , P1 = f

⎛⎝WM

⎡⎣ B

C

⎤⎦⎞⎠ (3.3)

where WM ∈ ℜd×2d is a d× d matrix. Similarly, we can compute the second parent node
using the previous (vector, matrix) pair (p1, P1).

3.3.3 Recursive Neural Tensor Network

However, both RNN and MV-RNN have their own problems. The problem of RNN is that
the input vectors only implicitly interact through the non-linearity function, and the number
of parameters in MV-RNN is too large for processing. In order to address these problems,
the authors proposed a more powerful single composition model: the Recursive Neural
Tensor Network (RNTN). For all nodes in the parse tree, RNTN attempts to use the same
and tensor-based composition function, which is also the core idea of RNTN [62].

For each slice V [i] ∈ ℜd×d, the output of a tensor product h ∈ ℜd is defined as:

h =

⎡⎣ b

c

⎤⎦T

V [1:d]

⎡⎣ b

c

⎤⎦ ;hi =

⎡⎣ b

c

⎤⎦T

V [i]

⎡⎣ b

c

⎤⎦ (3.4)

where V [1:d] ∈ ℜ2d×2d×d is the tensor that defines multiple bi-linear forms.
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The RNTN uses this definition to compute p1:

p1 = f

⎛⎜⎝
⎡⎣ b

c

⎤⎦T

V [1:d]

⎡⎣ b

c

⎤⎦+W

⎡⎣ b

c

⎤⎦
⎞⎟⎠ (3.5)

where W is the same with that defined in the previous models. The same weights can be
used to compute the next parent vector p2 in Figure 3.4:

p2 = f

⎛⎜⎝
⎡⎣ a

p1

⎤⎦T

V [1:d]

⎡⎣ a

p1

⎤⎦+W

⎡⎣ a

p1

⎤⎦
⎞⎟⎠ (3.6)

The following part describes the training step for the RNTN model. As explained above,
each node predicts the target vector t via a softmax classifier which is trained on its
vector representation. It is assumed that the target distribution vector at each node has
a 0-1 encoding [62]. If there are C classes, the assumption is that the target vector has
length C and all other entries are 0 except a 1 at the correct label.

The error function of the RNTN parameters θ = (V,W,Ws, L) for a sentence is:

E(θ) =
∑
i

∑
j

tijlogy
i
j + λ||θ||2 (3.7)

xi denotes the vector at node i. Each node back-propagates its error to the recursively
used weights V , W . Then δi,s ∈ ℜd×1 will be the softmax error vector at node i:

δi,s =
(
W T

s

(
yi − ti

))
⊗ f

′ (
xi
)

(3.8)

where ⊗ is the Hadamard product between the two vectors. f
′
is the element-wise deriva-

tive of f = tanh.

For the derivative of each slice k = 1, . . . , d:

∂Ep2

∂V [k]
= δp2,comk

⎡⎣ a

p1

⎤⎦⎡⎣ a

p1

⎤⎦T

(3.9)

where δp2,comk is the k’th element. Next, the error message for the two children of p2 can
be computed:

δp2,down =
(
W T δp2,com + S

)
⊗ f

′

⎛⎝⎡⎣ a

p1

⎤⎦⎞⎠ (3.10)
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where

S =
d∑

k=1

δp2,comk

(
V [k] +

(
v[k]

)T
)⎡⎣ a

p1

⎤⎦ (3.11)

The complete δ comes from two parts. One is that the children of p2 each take half of this
vector and the other is their own softmax error message [62]. Then we have:

δp1,com = δp1,s + δp2,down[d+ 1 : 2d] (3.12)

where p1 is the right child of p2 and hence takes the 2nd half of the error of p2.

For the tri-gram tree in Figure 3.4, the full derivative for slice V [k] is calculated:

∂E

∂V [k]
=

Ep2

∂V [k]
+ δp1,comk

⎡⎣ b

c

⎤⎦⎡⎣ b

c

⎤⎦T

(3.13)

and similarly for W .

3.4 Data

Using gold standard labeled datasets is a key aspect in comparing sentiment analysis
methods. Table 3.2 presents the main characteristics of seven datasets covering a wide
range of sources. For example, the number of messages, the number of messages in
each sentiment class, and the average number of words per message are summarized
in Table 3.2. "#Pos" indicates the positive class, "#Neg" means the negative class, and
"#Neu" states the neutral class. Additionally, Table 3.2 also states the methodology ap-
plied in the sentiment classification. Labeling with Amazon Mechanical Turk (AMT) was
carried out in three out of the seven datasets, while the left datasets use volunteers and
other strategies which contain non-expert annotators. Generally, an agreement strategy,
such as majority voting, ensures that each sentence has an agreed-upon polarity in each
dataset. Table 3.2 also shows the number of evaluators who labeled the datasets.

The New York Times (NYT) is an American newspaper which has significant worldwide
influence and readership. The NYT provides its readers with different sections on various
topics, such as sports, arts, science, home, and travel. Comments_NYT includes 5190
sentence-level snippets from 500 New York Times opinion editorials [20]. This dataset
was labeled with AMT, and there are 2204 positive messages, 2742 negative messages
and 244 neutral messages.

TED (www.ted.com) is a popular media organization which posts public talks and user-
contributed material (favorites, comments) [48]. It is an online repository that includes

www.ted.com
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talks on many political, scientific, academic, and cultural topics under a Creative Com-
mons license. The authors of Comments_TED crawled the TED website in September
2012, and they collected sentences from 74,760 users and 1,203 talks, with 134,533
favorites and 209,566 comments [48]. Comments_TED, including 839 comments, is a
subset of original dataset with 839 positive sentences, 318 negative sentences and 409
neutral sentences.

YouTube is a popular American video-sharing website, allowing its users to watch, share,
and comment on videos. YouTube provides a wide range of contents, such as movie
trailers, music videos, documentary films, and TV shows. Comments_YTB includes 3407
text comments posted to videos on the YouTube website [65]. In Comments_YTB, there
are 1665 positive comments, 767 negative comments and 975 neutral comments.

Myspace is a social networking website, offering an interactive network of friends, blogs,
photos, personal profiles, groups, videos, and music. Myspace was the most common so-
cial networking from 2005 to 2009 in the world [65]. In this thesis, Myspace is a corpus of
1041 comments from the social network site MySpace, including 702 positive comments,
132 negative comments and 207 neutral comments [65].

Twitter is a microblogging site in the Web. Furthermore, we usually gather tweets which
express sentiment on popular topics from Twitter. Tweets_Semeval is the dataset used in
SemEval-2013 task 2, and the authors first used a Twitter-tuned NER system to extract
name entities from millions of tweets, which they gathered over a one-year period ranging
from January 2012 to January 2013 [39]. Here, Tweets_Semeval is just a subset of the
original dataset with 6087 tweets, including 2223 positive tweets, 837 negative tweets
and 3027 neutral tweets.

Tweets_RND_I comes from Thewall’s study that attempted to explore the representative
patterns of sentiment changes in an event. In addition, the data was used to determine
whether sentiment changes could indicate the amount of interest in an event during the
early stages of its evolution [65]. The raw dataset is consist of 35 million tweets spanning
from February 9, 2010 to March 9, 2010 [65]. Here, Tweets_RND_I only includes 4242
tweets, where 1340 tweets are positive, 949 tweets are negative and 1953 tweets are
neutral.

Tweets_RND_III is a training dataset of 3771 tweets. Tweets were collected from time-
lines of randomly selected Twitter users [40]. In Tweets_RND_III, 739 tweets are positive,
488 tweets are negative and 2536 tweets are neutral.

Cohen’s Kappa is a common metric to compute inter-annotator agreement [53]. In Table
3.2, this approach is used to calculate column CK, exhibiting the level of agreement of
each dataset. The given sentences with mixed polarity could be the possible reasons for
the disagreement with the evaluations. Indeed, some of them are quite tricky to anno-
tate because they are strongly related to original context. Landis and Koch suggest that
Kappa values mean moderate agreement if they amid 0.4 and 0.6, and values between
0.6 and 0.8 indicate substantial agreements [33].
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Table 3.2. Overview of our datasets for sentiment analysis.

Dataset # Msgs # Pos # Neg #Neu
Average #

of phrases

Average #

of words

Annotators

expertise

# of

annotators
CK

Comments_NYT 5190 2204 2742 244 1.01 17.76 AMT 20 0.628

Comments_TED 839 318 409 112 1 16.95 Non expert 6 0.617

Comments_YTB 3407 1665 767 975 1.78 17.68 Non expert 3 0.724

Myspace 1041 702 132 207 2.22 21.12 Non expert 3 0.647

Tweets_RND_I 4242 1340 949 1953 1.77 15.81 Non expert 3 0.683

Tweets_RND_III 3771 739 488 2536 1.54 14.32 AMT 3 0.824

Tweets_Semeval 6087 2223 837 3027 1.86 20.05 AMT 5 0.617

3.5 Performance assessment

To provide a more thorough comparison among AFINN and Stanford RNTN, two tests
are performed in this thesis. In the first test, we consider 3-class (positive, negative and
neutral) identification of these two methods. In the second test, we remove the neural
messages firstly and then only consider two classes: positive and negative class. All
these experiments were carried out with the datasets described in Table 3.2.

Table 3.3 exhibits a 3 × 3 confusion matrix for the possible classification outcomes.

Table 3.3. A 3 × 3 confusion matrix for 3-class classification [53].

Predicted class

True class

Positive Neutral Negative

Positive a b c

Neutral d e f

Negative g h i

In Table 3.3, each letter describes the number of samples. The recall R of a class is the
fraction of the known elements that are correctly classified in the classification. Precision
P of a class is the ratio of the number of instances classified correctly to the total class
with same label in prediction [53]. For instance, the precision of the negative class is:

P (neg) =
i

c+ f + i
(3.14)

its recall:

R(neg) =
i

g + h+ i
(3.15)

F1 score [53] is the harmonic average of precision P and recall R:

F1(neg) =
2P (neg)×R(neg)

P (neg) +R(neg)
(3.16)
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The overall accuracy A is computed as:

A =
a+ e+ i

a+ b+ c+ d+ e+ f + g + h+ i
(3.17)

The correct prediction of each sentence is considered equally important in the overall
accuracy A. And it also generally measures the ability of the approach to produce the
correct result. Macro−F1 scores are calculated by first computing F1 scores for each
class independently, and then averaging over all classes [53].

Macro−F1 =
F1(pos) + F1(neg) + F1(neu)

3
(3.18)

Accuracy A and Macro−F1 can offer complementary evaluation of the classification ef-
fectiveness. Macro−F1 is especially significant to verify the ability of the approach to
perform well in very skewed classes [53].

Table 3.4 presents a 2 × 2 confusion matrix for the possible classification outputs. For
example, the precision P of positive class is calculated as:

P (pos) =
a

a+ c
(3.19)

its recall:

R(pos) =
a

a+ b
(3.20)

while its F1 score is:

F1(pos) =
2P (pos)×R(pos)

P (pos) +R(pos)
(3.21)

Table 3.4. A 2 × 2 confusion matrix for 2-class classification [15].

Predicted class

True class
Positive Negative

Positive a b

Negative c d

3.5.1 Cross validation

Cross validation is a popular methodology to assess how well the classifier generalizes.
The core idea of cross validation is to divide dataset, once or several times, into subsets.
And every subset (the validation samples) is then used for testing, while the remaining
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subsets (the training samples) are used for training the classifier. Let’s assume our data
set named D, and the dataset D would be randomly divided into k disjoint subsets D1,
D2, · · ·, Dk in k-fold cross-validation. If |D| = n, then the size of each subset is n/k.
Then the classifier is trained and tested k times; each time it is trained on k − 1 subsets
and tested on the remaining one subset [2]. The accuracy Acv of the cross validation is
the mean of the accuracy derived in all the k cases of cross validation:

Acv =
1

k

k∑
i=1

A
′
i (3.22)

where Ai
i is the ith accuracy. The estimated error Ecv is then the average of the k errors:

Ecv =
1

k

k∑
i=1

E
′
i (3.23)

where E
′
i is the ith error.

Leave-one-out cross validation (LOOCV) is the specific case of k-fold cross validation,
where k = n [2]. That means each subset only contains a single sample. Especially,
LOOCV is usually used in the tasks where the samples are less than one hundred with
very small number of features.

3.5.2 Bootstrap

Bootstrap is a recently developed non-parametric technique for making certain kinds of
statistical inferences [13]. For our dataset D (|D| = n), sampling n elements uniformly
from the dataset with replacement builds a proper bootstrap set. Since the sampling
process is performed with replacement, the probability of any element being chosen after
n times is 1− (1− 1/n)n ≈ 1− e−1 ≈ 0.632. The accuracy Aboot is obtained by using the
bootstrap set for training and the rest of the original dataset for testing.

Although the training datasets and the testing datasets are the same, some models are
not entirely stable in some cases. In addition, the result is most likely to change if we
randomly balance the dataset before training. Thus, we have to calculate the standard
error to better compare the resulting performance statistics. For instance, the standard
error of a sample mean x is

SE(x) =
s√
n

(3.24)

where s is the standard deviation of the sample mean.
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4 RESULTS AND DISCUSSION

This chapter contains the results of the computational research conducted in this the-
sis. We have classified each dataset with the help of two different sentiment analysis
approaches namely AFINN and Stanford Recursive Neural Tensor Network (RNTN). The
results of 2-class and 3-class comparisons could provide a more thorough comparison
among AFINN and RNTN. Then the discussions on our results are also presented.

To make more robust comparison among AFINN and RNTN, the hypothesis test is needed
in each experiment. Table 4.1 shows the null hypothesis H0 and alternative hypothesis
H1 of the hypothesis test. If p-value > 0.05, we cannot reject H0; if p-value < 0.05, we
can reject H0 and accept H1.

Table 4.1. The hypothesis test in each experiment.

Test Hypothesis

1
H0: The LS regression line has the same performance with the diagonal line for representing our datasets.

H1: The LS regression line does not have the same performance with the diagonal line for representing our datasets.

4.1 2-Class comparisons

In 2-class comparisons, there are no results of the neutral class because they can only
detect the positivity or negativity of a sentence. Additionally, the comparisons include all
datasets namely Comments_NYT, Comments_TED, Comments_YTB, Myspace, Tweets
_RND_I, Tweets_RND_III and Tweets_Semeval but excluding the neutral sentences. In
the following section, the results of bootstrap and cross-validation tests are separately
illustrated.

4.1.1 Bootstrap

Table 4.2 shows the fundamental errors and their corresponding standard errors (SE) for
AFINN, and Table 4.3 presents the fundamental errors and their corresponding standard
errors for RNTN.

The diagonal model denotes a model with slope = 1 and intercept = 0, which means
RNTN and AFINN have the same performance under the evaluated metric. The Least
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Table 4.2. The fundamental errors of 2-class bootstrap with seven datasets for sentiment
analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 41.03 ± 0.64 40.14 ± 1.32 65.98 ± 0.81 78.33 ± 1.6 54.5 ± 1.58 56.83 ± 1.72 68.07 ± 0.93

TNR (%) 16.2 ± 0.52 15.89 ± 1.37 11.27 ± 0.78 7.5 ± 0.81 14.85 ± 0.73 19.43 ± 1.66 11.34 ± 0.36

FPR (%) 39.33 ± 0.78 40.96 ± 2.01 20.04 ± 0.61 8.81 ± 1.04 27.42 ± 1.05 20.98 ± 0.99 16.7 ± 0.62

FNR (%) 3.43 ± 0.2 3.01 ± 0.45 2.7 ± 0.31 5.36 ± 0.57 3.23 ± 0.36 2.76 ± 0.52 3.89 ± 0.26

Table 4.3. The fundamental errors of 2-class bootstrap with seven datasets for sentiment
analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 17.9 ± 0.51 27.67 ± 1.19 44.92 ± 1.1 41.07 ± 1.69 18.25 ± 0.64 32.28 ± 1.36 20.07 ± 0.64

TNR (%) 43.37 ± 0.61 38.9 ± 1.64 22.09 ± 0.59 11.67 ± 0.94 35.72 ± 1.19 34.23 ± 1.89 24.64 ± 0.85

FPR (%) 12.16 ± 0.37 17.95 ± 1.53 9.22 ± 0.74 4.64 ± 0.9 6.55 ± 0.54 6.18 ± 0.64 3.4 ± 0.22

FNR (%) 26.57 ± 0.66 15.48 ± 1.23 23.77 ± 1.04 42.62 ± 1.66 39.48 ± 1.22 27.32 ± 0.84 51.9 ± 0.92

Squares (LS) regression model and the diagonal model for the standard errors of funda-
mental errors of AFINN and RNTN are exhibited in Figure 4.1, and Figure 4.2 exhibits the
LS regression model and the diagonal model for the fundamental errors of AFINN and
RNTN.

Table 4.4 provides the hypothesis testing results for Figure 4.1 and Table 4.5 shows the
hypothesis testing results for Figure 4.2. The p-value (Comparison) indicate the results
of our hypothesis test in Table 4.1.

Table 4.4. The hypothesis testing results for Figure 4.1.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_TPR 0.2761 0.5816 0.6043 0.1568 0.3567 0.2976

SE_TNR 0.2456 0.3184 0.9616 0.0078 0.7859 0.4007

SE_FPR -0.0935 0.6767 0.7879 0.0091 0.7729 0.2054

SE_FNR 0.4658 0.1994 1.6141 0.0945 0.4589 0

By analyzing the p-value (Comparison) in Table 4.4, we can conclude that: H0 cannot
be rejected for (a) AFINN-RNTN SE of TPR in Figure 4.1; H0 cannot be rejected for (b)
AFINN-RNTN SE of TNR in Figure 4.1; H0 cannot be rejected for (c) AFINN-RNTN SE
of FPR in Figure 4.1; H0 can be rejected for (d) AFINN-RNTN SE of FNR in Figure 4.1.

By analyzing the p-value (Comparison) in Table 4.5, we can conclude that: H0 can be
rejected for (a) AFINN-RNTN TPR in Figure 4.2; H0 can be rejected for (b) AFINN-RNTN
TNR in Figure 4.2; H0 can be rejected for (c) AFINN-RNTN FPR in Figure 4.2; H0 can be
rejected for (d) AFINN-RNTN FNR in Figure 4.2.

Table 4.6 and Table 4.7 indicate the overall performance assessment results for AFINN
and RNTN, respectively.
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Figure 4.1. The LS regression model (the red line) and the diagonal model (the black line)
for the standard errors of fundamental errors of AFINN and RNTN in 2-class bootstrap.

Table 4.5. The hypothesis testing results for Figure 4.2

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

TPR 3.3916 0.8504 0.4407 0.1866 0.3189 0.001

TNR -3.1402 0.7374 2.4109 0.0116 0.751 0.0032

FPR -0.6027 0.8277 0.3691 0.0124 0.7447 0.0097

FNR 2.4413 0.8915 8.6157 0.1291 0.3974 1e-04
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Figure 4.2. The LS regression model (the red line) and the diagonal model (the black
line) for the fundamental errors of AFINN and RNTN in 2-class bootstrap.

Table 4.6. The performance assessment results of 2-class bootstrap with seven datasets
for sentiment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 57.23 ± 0.72 56.03 ± 2.14 77.25 ± 0.47 85.83 ± 1.38 69.34 ± 1.2 76.26 ± 0.78 79.41 ± 0.69

Precision_Pos (%) 51.07 ± 0.81 49.65 ± 1.89 76.7 ± 0.68 89.85 ± 1.22 66.45 ± 1.43 73.03 ± 1.17 80.28 ± 0.79

Recall_Pos (%) 92.27 ± 0.46 92.94 ± 1.09 96.09 ± 0.42 93.56 ± 0.7 94.33 ± 0.72 95.33 ± 0.87 94.59 ± 0.36

F1_Pos (%) 65.71 ± 0.69 64.57 ± 1.76 85.28 ± 0.35 91.64 ± 0.88 77.92 ± 1.14 82.62 ± 0.74 86.83 ± 0.53

Precision_Neg (%) 82.55 ± 0.75 83.82 ± 2.47 80.37 ± 2.17 58.04 ± 4.23 82.17 ± 1.68 87.72 ± 1.97 74.47 ± 1.58

Recall_Neg (%) 29.2 ± 0.99 28.16 ± 2.58 35.81 ± 1.7 46.46 ± 3.56 35.07 ± 1.27 47.51 ± 2.86 20.49 ± 0.67

F1_Neg (%) 43.05 ± 1.08 41.71 ± 3 49.33 ± 1.86 51.25 ± 3.64 49.05 ± 1.38 61.09 ± 2.42 52.41 ± 0.8

Macro_F1 (%) 54.38 ± 0.76 53.14 ± 2.27 67.31 ± 0.97 71.44 ± 2.13 63.48 ± 0.98 71.86 ± 1.21 69.62 ± 0.56

Absolute Error 4232 642 1110 238 1404 584 1260
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Table 4.7. The performance assessment results of 2-class bootstrap with seven datasets
for sentiment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 61.27 ± 0.71 66.58 ± 1.93 67.01 ± 1.03 52.74 ± 1.58 53.97 ± 0.89 66.5 ± 0.82 44.71 ± 0.87

Precision_Pos (%) 59.51 ± 1.15 61.02 ± 2.49 82.98 ± 1.29 89.94 ± 1.78 73.72 ± 1.57 84.14 ± 1.16 85.47 ± 0.92

Recall_Pos (%) 40.28 ± 1.11 64.26 ± 2.46 65.41 ± 1.37 49.07 ± 1.77 31.65 ± 0.94 54.04 ± 1.29 27.89 ± 0.86

F1_Pos (%) 47.99 ± 1.05 62.31 ± 2 73.05 ± 1.07 63.29 ± 1.54 44.15 ± 0.89 65.67 ± 0.88 42 ± 1.01

Precision_Neg (%) 62.03 ± 0.84 71.57 ± 2.08 48.3 ± 1.37 21.52 ± 1.6 47.51 ± 1.48 55.33 ± 1.75 32.19 ± 1.08

Recall_Neg (%) 78.1 ± 0.61 68.47 ± 2.6 70.81 ± 1.7 72.54 ± 3.82 84.58 ± 0.99 84.38 ± 1.79 87.86 ± 0.7

F1_Neg (%) 69.12 ± 0.64 69.77 ± 1.98 57.25 ± 1.08 32.83 ± 2.01 60.68 ± 1.26 66.71 ± 1.65 47.03 ± 1.18

Macro_F1 (%) 58.55 ± 0.76 66.04 ± 1.89 65.1 ± 0.97 48.06 ± 1.41 52.41 ± 0.77 66.19 ± 0.79 44.52 ± 0.87

Absolute Error 3834 488 1610 794 2108 824 3384

Figure 4.3 shows the LS regression model and the diagonal model for the standard errors
of performance assessment results, and Table 4.8 provides the hypothesis testing results
for Figure 4.3. Figure 4.4 exhibits the same models for the absolute values of performance
assessment results, and Table 4.9 provides the hypothesis testing results for Figure 4.4.

Table 4.8. The hypothesis testing results for Figure 4.3.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_Accuracy 0.3904 0.1218 0.6907 0.0116 0.7512 0.8116

SE_Precision (Pos) 0.2414 0.4862 1.0852 0.0095 0.7692 0.1813

SE_Recall (Pos) 0.3875 0.4303 1.5341 0.0623 0.5335 0.0022

SE_F1 (Pos) 0.6488 0.0602 0.6402 0.0683 0.5177 0.1385

SE_Precision (Neg) 0.9969 0.03 0.2169 0.186 0.3195 0.1577

SE_Recall (Neg) -0.1945 0.6464 0.9957 0.0028 0.8563 0.729

SE_F1 (Neg) 0.5404 0.0643 0.4243 0.0087 0.7767 0.1824

SE_Macro_F1 0.3342 0.1176 0.5766 0.0058 0.8088 0.5032

Absolute Error 2.4327 0.1892 0.7069 0.0284 0.6507 0.332

By analyzing the p-value (Comparison) in Table 4.8, these conclusions can be obtained:
H0 cannot be rejected for (a) AFINN-RNTN SE of Accuracy in Figure 4.3; H0 cannot be
rejected for (b) AFINN-RNTN SE of Macro_F1 in Figure 4.3; H0 cannot be rejected for
(c) AFINN-RNTN SE of Precision_Pos in Figure 4.3; H0 can be rejected for (d) AFINN-
RNTN SE of Recall_Pos in Figure 4.3; H0 cannot be rejected for (e) AFINN-RNTN SE of
F1_Pos in Figure 4.3; H0 cannot be rejected for (f) AFINN-RNTN SE of Precision_Neg in
Figure 4.3; H0 cannot be rejected for (g) AFINN-RNTN SE of Recall_Neg in Figure 4.3;
H0 cannot be rejected for (h) AFINN-RNTN SE of F1_Neg in Figure 4.3; H0 cannot be
rejected for (i) AFINN-RNTN SE of Absolute Error in Figure 4.3.

By analyzing the p-value (Comparison) in Table 4.9, these conclusions can be obtained:
H0 can be rejected for (a) AFINN-RNTN Accuracy in Figure 4.4; H0 cannot be rejected
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Figure 4.3. The LS regression model (the red line) and the diagonal model (the black
line) for the standard errors of performance assessment results of AFINN and RNTN in
2-class bootstrap.

for (b) AFINN-RNTN Macro_F1 in Figure 4.4; H0 cannot be rejected for (c) AFINN-RNTN
Precision_Pos in Figure 4.4; H0 can be rejected for (d) AFINN-RNTN Recall_Pos in Fig-
ure 4.4; H0 can be rejected for (e) AFINN-RNTN F1_Pos in Figure 4.4; H0 can be rejected
for (f) AFINN-RNTN Precision_Neg in Figure 4.4; H0 can be rejected for (g) AFINN-RNTN
Recall_Neg in Figure 4.4; H0 can be rejected for (h) AFINN-RNTN F1_Neg in Figure 4.4;
H0 cannot be rejected for (i) AFINN-RNTN Absolute Error in Figure 4.4.

4.1.2 Cross validation

Table 4.10 shows the fundamental errors and their corresponding standard errors for
AFINN, and Table 4.11 presents the fundamental errors and their corresponding standard
errors for RNTN.

Figure 4.5 and Figure 4.6 exhibit the LS regression model and the diagonal model for
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Figure 4.4. The LS regression model (the red line) and the diagonal model (the black
line) for the performance assessment results of AFINN and RNTN in 2-class bootstrap.

Table 4.9. The hypothesis testing results for Figure 4.4.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

Accuracy 83.0927 0.0135 -0.3368 0.3231 0.1937 0.0253

Precision_Pos 20.8898 0.0108 0.8019 1e-04 0.9586 0.3461

Recall_Pos -157.4075 0.7465 2.1763 0.675 0.0381 0

F1_Pos 38.7351 0.3797 0.2296 0.6678 0.0399 0.0011

Precision_Neg -66.8825 0.0971 1.4689 0.0167 0.7142 9e-04

Recall_Neg 64.4688 0.0098 0.3634 0.4224 0.1323 0

F1_Neg 85.4698 0.1185 -0.5602 0.5639 0.0709 0.0184

Macro_F1 83.3123 0.045 -0.4039 0.4414 0.1225 0.0551

Absolute Error 2.4327 0.1892 0.7069 0.0284 0.6507 0.332
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Table 4.10. The fundamental errors of 2-class cross-validation with seven datasets for
sentiment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 42.02 ± 0.37 41.64 ± 1.6 66.6 ± 0.98 80.24 ± 1.17 55.28 ± 1 55.37 ± 1.21 67.84 ± 0.47

TNR (%) 16.51 ± 0.44 12.88 ± 1.57 11.23 ± 0.73 7.26 ± 0.67 15.24 ± 0.74 19.92 ± 0.63 11.9 ± 0.73

FPR (%) 38.12 ± 0.37 42.47 ± 2.03 19.51 ± 0.69 8.45 ± 0.9 25.76 ± 0.58 21.71 ± 1.13 16.86 ± 0.57

FNR (%) 3.35 ± 0.28 3.01 ± 0.79 2.66 ± 0.25 4.05 ± 0.85 3.71 ± 0.36 3.01 ± 0.44 3.4 ± 0.4

Table 4.11. The fundamental errors of 2-class cross-validation with seven datasets for
sentiment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 17.72 ± 0.58 26.99 ± 1.6 44.8 ± 0.95 40.48 ± 1.36 19.3 ± 0.68 30.24 ± 1.12 18.95 ± 0.85

TNR (%) 41.49 ± 0.51 38.9 ± 1.29 21.72 ± 1.04 12.38 ± 1.11 35.59 ± 1.21 35.12 ± 1.14 25.29 ± 0.57

FPR (%) 13.13 ± 0.25 16.44 ± 1.14 9.02 ± 0.42 3.33 ± 0.73 5.41 ± 0.73 6.5 ± 0.61 3.46 ± 0.22

FNR (%) 27.66 ± 0.51 17.67 ± 1.16 24.47 ± 0.9 43.81 ± 0.98 39.69 ± 0.46 28.13 ± 1.11 52.29 ± 1.06

the standard errors and absolute values of fundamental errors of AFINN and RNTN,
respectively.

Table 4.12 provides the hypothesis testing results for Figure 4.5 and Table 4.13 shows
the hypothesis testing results for Figure 4.6.

Table 4.12. The hypothesis testing results for Figure 4.5.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_TPR 0.321 0.1962 0.7196 0.0171 0.7111 0.8125

SE_TNR 0.6036 0.0797 0.48 0.1961 0.3078 0.2323

SE_FPR 0.1445 0.3487 0.4926 0.0149 0.7263 0.2205

SE_FNR 0.5788 0.0587 0.6316 0.217 0.2851 0.0038

By analyzing the p-value (Comparison) in Table 4.12, we can conclude that: H0 cannot
be rejected for (a) AFINN-RNTN SE of TPR in Figure 4.5; H0 cannot be rejected for (b)
AFINN-RNTN SE of TNR in Figure 4.5; H0 cannot be rejected for (c) AFINN-RNTN SE
of FPR in Figure 4.5; H0 can be rejected for (d) AFINN-RNTN SE of FNR in Figure 4.5.

By analyzing the p-value (Comparison) in Table 4.13, we can conclude that: H0 can be
rejected for (a) AFINN-RNTN TPR in Figure 4.6; H0 can be rejected for (b) AFINN-RNTN
TNR in Figure 4.6; H0 can be rejected for (c) AFINN-RNTN FPR in Figure 4.6; H0 can be
rejected for (d) AFINN-RNTN FNR in Figure 4.6.

Table 4.14 and Table 4.15 indicate the performance assessment results for AFINN and
RNTN, respectively.

Figure 4.7 shows the LS regression model and the diagonal model for the standard er-
rors of performance assessment results, and Table 4.16 provides the hypothesis testing
results for Figure 4.7. Figure 4.8 exhibits the same models for the absolute values of
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Figure 4.5. The LS regression model (the red line) and the diagonal model (the black
line) for the standard errors of fundamental errors of AFINN and RNTN in 2-class cross-
validation.

Table 4.13. The hypothesis testing results for Figure 4.6.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

TPR 2.5561 0.8849 0.4415 0.1761 0.3316 8e-04

TNR 1.9585 0.8482 2.0727 0.03 0.6433 0.0014

FPR -1.2168 0.584 0.3807 0.0043 0.8307 0.0097

FNR -26.3414 0.3901 18.0297 0.0841 0.4806 1e-04
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Figure 4.6. The LS regression model (the red line) and the diagonal model (the black
line) for the fundamental errors of AFINN and RNTN in 2-class cross-validation.

Table 4.14. The performance assessment results of 2-class cross-validation with seven
datasets for sentiment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 58.53 ± 0.4 54.52 ± 2.31 77.83 ± 0.56 87.5 ± 1.15 70.52 ± 0.78 75.28 ± 1.14 79.74 ± 0.6

Precision_Pos (%) 52.43 ± 0.36 49.62 ± 1.99 77.33 ± 0.83 90.49 ± 0.98 68.18 ± 0.78 71.85 ± 1.41 80.12 ± 0.57

Recall_Pos (%) 92.63 ± 0.59 93.29 ± 1.79 96.18 ± 0.33 95.21 ± 0.99 93.67 ± 0.66 94.83 ± 0.77 95.26 ± 0.5

F1_Pos (%) 66.95 ± 0.34 64.59 ± 1.87 85.7 ± 0.46 92.74 ± 0.7 78.91 ± 0.7 81.68 ± 0.99 87.01 ± 0.35

Precision_Neg (%) 83.16 ± 1.32 79.75 ± 5.81 80.41 ± 2.03 65.79 ± 4.45 80.42 ± 1.55 87.27 ± 1.79 77.5 ± 2.46

Recall_Neg (%) 30.2 ± 0.69 23.34 ± 2.86 36.35 ± 1.55 47.03 ± 4.16 37.07 ± 1.34 48.06 ± 1.71 41.22 ± 2

F1_Neg (%) 44.26 ± 0.83 35.61 ± 3.84 49.92 ± 1.66 53.7 ± 3.82 50.65 ± 1.44 61.73 ± 1.38 53.62 ± 2.15

Macro_F1 (%) 55.61 ± 0.49 50.1 ± 2.62 67.81 ± 0.85 73.22 ± 2.19 64.78 ± 0.88 71.71 ± 1.11 70.32 ± 1.21

Absolute Error 4106 664 1082 210 1350 608 1240
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Table 4.15. The performance assessment results of 2-class cross-validation with seven
datasets for sentiment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 59.21 ± 0.59 65.89 ± 1.79 66.52 ± 0.82 52.86 ± 1.58 54.89 ± 0.86 65.37 ± 1.25 44.25 ± 1.05

Precision_Pos (%) 57.34 ± 0.91 61.92 ± 2.74 83.24 ± 0.73 92.31 ± 1.68 78.64 ± 2.11 82.31 ± 1.62 84.33 ± 1.32

Recall_Pos (%) 39.02 ± 1.14 60.27 ± 2.61 64.7 ± 1.04 47.97 ± 1.28 32.65 ± 0.82 51.82 ± 1.58 26.62 ± 1.23

F1_Pos (%) 46.41 ± 1.05 60.93 ± 2.44 72.75 ± 0.72 63.09 ± 1.44 46.02 ± 0.9 63.49 ± 1.43 40.37 ± 1.51

Precision_Neg (%) 60.01 ± 0.6 68.8 ± 1.95 46.95 ± 1.72 21.91 ± 1.71 47.17 ± 0.99 55.53 ± 1.5 32.65 ± 0.86

Recall_Neg (%) 75.94 ± 0.51 70.39 ± 1.73 70.5 ± 1.36 78.85 ± 4.71 86.68 ± 1.84 84.35 ± 1.41 87.99 ± 0.68

F1_Neg (%) 67.04 ± 0.51 69.48 ± 1.58 56.24 ± 1.5 34.15 ± 2.38 61.06 ± 1.21 66.87 ± 1.33 47.56 ± 0.93

Macro_F1 (%) 56.72 ± 0.68 65.2 ± 1.86 64.5 ± 0.93 48.62 ± 1.64 53.54 ± 0.73 65.18 ± 1.24 43.97 ± 1.09

Absolute Error 4038 498 1634 792 2066 852 3412

performance assessment results, and Table 4.17 provides the hypothesis testing results
for Figure 4.8.

Table 4.16. The hypothesis testing results for Figure 4.7.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_Accuracy 0.5437 0.0171 0.5957 0.0067 0.7988 0.6274

SE_Precision (Pos) 0.6462 0.1747 0.9518 0.0488 0.573 0.0594

SE_Recall (Pos) 0.5037 0.0707 1.0967 0.0059 0.8078 0.0526

SE_F1 (Pos) 0.6844 0.0385 0.8686 0.0226 0.679 0.0511

SE_Precision (Neg) 0.7405 0.0596 0.2136 0.0761 0.4988 0.0667

SE_Recall (Neg) -0.3965 0.5671 1.0493 0.0136 0.7356 0.6451

SE_F1 (Neg) 0.5416 0.1653 0.3736 0.0416 0.5973 0.1357

SE_Macro_F1 0.4211 0.0077 0.5585 3e-04 0.9375 0.627

Absolute Error 2.6057 0.1693 0.6862 0.0332 0.6295 0.2954

By analyzing the p-value (Comparison) in Table 4.16, these conclusions can be obtained:
H0 cannot be rejected for (a) AFINN-RNTN SE of Accuracy in Figure 4.7; H0 cannot be
rejected for (b) AFINN-RNTN SE of Macro_F1 in Figure 4.7; H0 cannot be rejected for
(c) AFINN-RNTN SE of Precision_Pos in Figure 4.7; H0 can be rejected for (d) AFINN-
RNTN SE of Recall_Pos in Figure 4.7; H0 cannot be rejected for (e) AFINN-RNTN SE of
F1_Pos in Figure 4.7; H0 cannot be rejected for (f) AFINN-RNTN SE of Precision_Neg in
Figure 4.7; H0 cannot be rejected for (g) AFINN-RNTN SE of Recall_Neg in Figure 4.7;
H0 cannot be rejected for (h) AFINN-RNTN SE of F1_Neg in Figure 4.7; H0 cannot be
rejected for (i) AFINN-RNTN SE of Absolute Error in Figure 4.7.

By analyzing the p-value (Comparison) in Table 4.17, these conclusions can be obtained:
H0 can be rejected for (a) AFINN-RNTN Accuracy in Figure 4.8; H0 cannot be rejected
for (b) AFINN-RNTN Macro_F1 in Figure 4.8; H0 cannot be rejected for (c) AFINN-RNTN
Precision_Pos in Figure 4.8; H0 can be rejected for (d) AFINN-RNTN Recall_Pos in Fig-
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Figure 4.7. The LS regression model (the red line) and the diagonal model (the black
line) for the standard errors of performance assessment results of AFINN and RNTN in
2-class cross-validation.

ure 4.8; H0 can be rejected for (e) AFINN-RNTN F1_Pos in Figure 4.8; H0 can be rejected
for (f) AFINN-RNTN Precision_Neg in Figure 4.8; H0 can be rejected for (g) AFINN-RNTN
Recall_Neg in Figure 4.8; H0 can be rejected for (h) AFINN-RNTN F1_Neg in Figure 4.8;
H0 cannot be rejected for (i) AFINN-RNTN Absolute Error in Figure 4.8.
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Figure 4.8. The LS regression model (the red line) and the diagonal model (the black line)
for the performance assessment results of AFINN and RNTN in 2-class cross-validation.

Table 4.17. The hypothesis testing results for Figure 4.8.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

Accuracy 81.0252 0.0109 -0.3139 0.3167 0.1983 0.0223

Precision_Pos 18.5929 0.0386 0.8366 3e-04 0.9412 0.3453

Recall_Pos -217.8393 0.6523 2.7954 0.5869 0.0631 0

F1_Pos 37.999 0.3855 0.2279 0.6666 0.0402 8e-04

Precision_Neg -98.8787 0.1317 1.8495 0.0441 0.5886 2e-04

Recall_Neg 60.1702 0.0031 0.5071 0.1442 0.3744 0

F1_Neg 86.743 0.0447 -0.586 0.4052 0.1418 0.0629

Macro_F1 82.4256 0.0257 -0.3952 0.3707 0.162 0.0558

Absolute Error 2.6057 0.1693 0.6862 0.0332 0.6295 0.2954
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4.2 3-Class comparisons

Different from 2-class comparisons, the datasets used in the 3-class comparisons contain
a considerable number of neutral messages. In a word, the results of 3-class compar-
isons include neutral outputs. Therefore, the comparisons involve all sentences from the
datasets namely Comments_NYT, Comments_TED, Comments_YTB, Myspace, Tweets
_RND_I, Tweets_RND_III and Tweets_Semeval.

4.2.1 Bootstrap

Table 4.18 shows the fundamental errors and their corresponding standard errors for
AFINN, and Table 4.19 presents the fundamental errors and their corresponding standard
errors for RNTN.

Table 4.18. The fundamental errors of 3-class bootstrap with seven datasets for senti-
ment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 14.3 ± 0.42 24.4 ± 1.75 28.04 ± 0.99 41.71 ± 1.5 18.78 ± 0.7 11.9 ± 0.34 22.69 ± 0.84

TNR (%) 15.14 ± 0.3 14.76 ± 1.59 7.6 ± 0.48 4.1 ± 0.7 7.95 ± 0.43 6.59 ± 0.27 5.91 ± 0.22

TNeR (%) 3.7 ± 0.25 8.45 ± 1.17 17.21 ± 0.49 12.19 ± 0.53 29.62 ± 0.63 45.85 ± 0.83 31.87 ± 0.9

FPR (%) 8.54 ± 0.44 15.24 ± 1.09 14.34 ± 0.69 6.86 ± 0.6 16.49 ± 0.59 19.68 ± 0.75 14.43 ± 0.57

FNR (%) 4.07 ± 0.22 4.64 ± 0.52 5.07 ± 0.36 6.19 ± 0.84 6.38 ± 0.39 5.77 ± 0.38 7.36 ± 0.46

FNeR (%) 54.26 ± 0.56 32.5 ± 1.11 27.74 ± 0.74 28.95 ± 1.04 20.78 ± 0.59 10.21 ± 0.44 17.73 ± 0.56

Table 4.19. The fundamental errors of 3-class bootstrap with seven datasets for senti-
ment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 8.73 ± 0.46 18.81 ± 1.74 21.58 ± 0.6 19.14 ± 0.87 7.44 ± 0.33 7.28 ± 0.48 6.03 ± 0.21

TNR (%) 40.12 ± 1.02 37.62 ± 1.97 15.92 ± 0.77 9.62 ± 1.29 20.02 ± 0.74 10.53 ± 0.52 12.22 ± 0.33

TNeR (%) 1.87 ± 0.22 2.5 ± 0.72 7.8 ± 0.4 6.48 ± 0.85 3.44 ± 0.3 14.07 ± 0.68 3.32 ± 0.27

FPR (%) 3.22 ± 0.3 4.76 ± 0.89 5.13 ± 0.4 2.19 ± 0.45 4.21 ± 0.37 4.07 ± 0.21 2.68 ± 0.15

FNR (%) 28.34 ± 0.76 22.38 ± 1.45 33.96 ± 0.82 47.24 ± 1.85 60.56 ± 0.92 59.5 ± 1.06 71.4 ± 0.46

FNeR (%) 17.73 ± 0.59 13.93 ± 0.97 15.6 ± 0.68 15.33 ± 1.02 4.33 ± 0.31 4.55 ± 0.36 4.37 ± 0.35

Figure 4.9 and Figure 4.10 exhibit the LS regression model and the diagonal model for
the standard errors and absolute values of fundamental errors of AFINN and RNTN,
respectively.

Table 4.20 provides the hypothesis testing results for Figure 4.9 and Table 4.21 shows
the hypothesis testing results for Figure 4.10.

Considering the p-value (Comparison) in Table 4.20, we can conclude that: H0 cannot
be rejected for (a) AFINN-RNTN SE of TPR in Figure 4.9; H0 cannot be rejected for (b)
AFINN-RNTN SE of TNR in Figure 4.9; H0 cannot be rejected for (c) AFINN-RNTN SE
of TNeR in Figure 4.9; H0 can be rejected for (d) AFINN-RNTN SE of FPR in Figure 4.9;
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Figure 4.9. The LS regression model (the red line) and the diagonal model (the black line)
for the standard errors of fundamental errors of AFINN and RNTN in 3-class bootstrap.



45

Table 4.20. The hypothesis testing results for Figure 4.9.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_TPR -0.0718 0.8002 0.794 0.0266 0.6592 0.3208

SE_TNR 0.3424 0.0579 1.0634 0.0027 0.8578 0.1767

SE_TNeR 0.268 0.3385 0.3259 0.384 0.1539 0.1511

SE_FPR -0.2288 0.3565 0.9242 0.0345 0.6241 0.0222

SE_FNR 0.1888 0.5817 1.8923 0.0348 0.6231 0.0043

SE_FNeR -0.1541 0.3241 1.0633 0.0023 0.8676 0.4615

H0 can be rejected for (e) AFINN-RNTN SE of FNR in Figure 4.9; H0 cannot be rejected
for (f) AFINN-RNTN SE of FNeR in Figure 4.9.

Table 4.21. The hypothesis testing results for Figure 4.10.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

TPR 1.3249 0.8097 0.4927 0.0656 0.5246 0.0357

TNR -4.9245 0.0674 2.9093 0 0.9729 0.0473

TNeR 1.657 0.529 0.1873 0.1097 0.4301 0.0332

FPR 1.6781 0.2242 0.1518 0.1334 0.3906 0.001

FNR -39.0549 0.0643 15.1156 0.0033 0.8465 7e-04

FNeR 1.012 0.7752 0.3578 0.023 0.677 0.0198

Considering the p-value (Comparison) in Table 4.21, we can conclude that: H0 can be
rejected for (a) AFINN-RNTN TPR in Figure 4.10; H0 can be rejected for (b) AFINN-
RNTN TNR in Figure 4.10; H0 can be rejected for (c) AFINN-RNTN TNeR in Figure 4.10;
H0 can be rejected for (d) AFINN-RNTN FPR in Figure 4.10; H0 can be rejected for
(e) AFINN-RNTN FNR in Figure 4.10; H0 can be rejected for (f) AFINN-RNTN FNeR in
Figure 4.10.

Table 4.22 and Table 4.23 indicate the performance assessment results for AFINN and
RNTN, respectively.

Figure 4.11 shows the LS regression model and the diagonal model for the standard
errors of performance assessment results, and Table 4.24 provides the hypothesis testing
results for Figure 4.11. Figure 4.12 exhibits the same models for the absolute values of
performance assessment results, and Table 4.25 provides the hypothesis testing results
for Figure 4.12.

Considering the p-value (Comparison) in Table 4.24, these conclusions can be obtained:
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Figure 4.10. The LS regression model (the red line) and the diagonal model (the black
line) for the fundamental errors of AFINN and RNTN in 3-class bootstrap.
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Figure 4.11. The LS regression model (the red line) and the diagonal model (the black
line) for the standard errors of performance assessment results of AFINN and RNTN in
3-class bootstrap.
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Table 4.22. The performance assessment results of 3-class bootstrap with seven
datasets for sentiment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 33.14 ± 0.72 47.62 ± 1.45 52.84 ± 1 58 ± 0.96 56.35 ± 0.8 64.34 ± 0.98 60.48 ± 0.83

Precision_Pos (%) 62.65 ± 1.83 61.32 ± 2.1 66.11 ± 1.54 85.74 ± 1.33 53.19 ± 1.64 37.85 ± 1.41 61.06 ± 1.41

Recall_Pos (%) 33.32 ± 0.78 67.63 ± 1.82 59.13 ± 1.49 61 ± 1.23 61.54 ± 1.02 63.93 ± 1.2 60.96 ± 1.13

F1_Pos (%) 43.42 ± 0.92 64.2 ± 1.76 62.35 ± 1.36 71.22 ± 1.09 56.98 ± 1.24 47.45 ± 1.3 60.96 ± 1.13

Precision_Neg (%) 78.86 ± 1.03 73.78 ± 4.98 59.77 ± 2.79 38.55 ± 3.54 55.49 ± 2.61 53.55 ± 2.39 44.9 ± 1.57

Recall_Neg (%) 29.01 ± 0.89 29.19 ± 2.74 32.53 ± 1.77 32.67 ± 4.53 34.42 ± 1.51 52.04 ± 2.27 42.97 ± 1.91

F1_Neg (%) 42.35 ± 0.99 41.64 ± 3.62 41.93 ± 1.99 34.04 ± 3.81 42.38 ± 1.75 52.52 ± 1.9 43.73 ± 1.5

Precision_Neu (%) 6.4 ± 0.45 20.21 ± 2.2 38.3 ± 0.67 29.66 ± 0.94 58.79 ± 0.99 81.76 ± 0.82 64.22 ± 0.97

Recall_Neu (%) 79.82 ± 2.23 59.59 ± 5.44 58.9 ± 1.84 63.49 ± 2.17 63.87 ± 0.83 66.83 ± 1.04 64.97 ± 1.17

F1_Neu (%) 11.82 ± 0.79 30.05 ± 3.08 46.33 ± 0.88 40.27 ± 1.03 61.16 ± 0.64 73.51 ± 0.83 64.55 ± 0.93

Macro_F1 (%) 32.53 ± 0.73 45.3 ± 1.94 50.2 ± 1.01 48.51 ± 1.31 53.51 ± 1.01 57.83 ± 1.03 56.41 ± 0.9

Absolute Error 4076 562 1858 504 2113 1450 2689

Table 4.23. The performance assessment results of 3-class bootstrap with seven
datasets for sentiment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 50.71 ± 0.66 58.93 ± 1.88 45.31 ± 0.85 35.24 ± 1.39 30.89 ± 0.64 31.88 ± 1.07 21.56 ± 0.38

Precision_Pos (%) 73.11 ± 2.01 79.78 ± 2.64 80.83 ± 1.35 90.31 ± 1.83 64.17 ± 2.37 63.68 ± 1.73 69.3 ± 1.13

Recall_Pos (%) 20.27 ± 0.86 52.16 ± 3.41 45.53 ± 0.82 28.03 ± 1.11 24.4 ± 0.87 38.99 ± 2.41 16.24 ± 0.43

F1_Pos (%) 31.67 ± 1.16 62.48 ± 3.02 58.2 ± 0.83 42.6 ± 1.21 35.23 ± 1.06 48.14 ± 2.28 26.28 ± 0.6

Precision_Neg (%) 58.57 ± 1.11 62.56 ± 2.36 31.88 ± 1.36 16.95 ± 2.36 24.84 ± 0.87 15.06 ± 0.8 14.61 ± 0.38

Recall_Neg (%) 76.48 ± 0.96 75.04 ± 2.23 68.26 ± 2.74 74.03 ± 7 86.56 ± 1.08 82.29 ± 1.09 88.33 ± 1.4

F1_Neg (%) 66.28 ± 0.87 68.06 ± 2.06 43.34 ± 1.62 27.24 ± 3.46 38.55 ± 1.1 25.4 ± 1.15 25.05 ± 0.59

Precision_Neu (%) 9.59 ± 1.11 14.4 ± 3.62 33.38 ± 1.46 29.54 ± 3.3 44.08 ± 2.39 75.4 ± 1.91 43.39 ± 3.4

Recall_Neu (%) 40.36 ± 3.62 17.2 ± 4.53 26.73 ± 1.51 33.52 ± 3.86 7.43 ± 0.67 20.54 ± 1.03 6.75 ± 0.51

F1_Neu (%) 15.39 ± 1.67 0 29.56 ± 1.37 31.18 ± 3.43 12.65 ± 1.04 32.21 ± 1.39 11.66 ± 0.87

Macro_F1 (%) 37.78 ± 0.59 0 43.7 ± 0.87 33.68 ± 1.66 28.81 ± 0.52 35.25 ± 1.16 21 ± 0.33

Absolute Error 4053 478 2465 1065 3863 2917 6504

H0 cannot be rejected for (a) AFINN-RNTN SE of Accuracy in Figure 4.11; H0 cannot be
rejected for (b) AFINN-RNTN SE of Macro_F1 in Figure 4.11; H0 cannot be rejected for (c)
AFINN-RNTN SE of Precision_Pos in Figure 4.11; H0 cannot be rejected for (d) AFINN-
RNTN SE of Recall_Pos in Figure 4.11; H0 cannot be rejected for (e) AFINN-RNTN SE
of F1_Pos in Figure 4.11; H0 can be rejected for (f) AFINN-RNTN SE of Precision_Neg
in Figure 4.11; H0 cannot be rejected for (g) AFINN-RNTN SE of Recall_Neg in Figure
4.11; H0 cannot be rejected for (h) AFINN-RNTN SE of F1_Neg in Figure 4.11; H0 can
be rejected for (i) AFINN-RNTN SE of Precision_Neu in Figure 4.11; H0 cannot be re-
jected for (j) AFINN-RNTN SE of Recall_Neu in Figure 4.11; H0 cannot be rejected for (k)
AFINN-RNTN SE of F1_Neu in Figure 4.11; H0 cannot be rejected for (l) AFINN-RNTN
SE of Absolute Error in Figure 4.11.

Considering the p-value (Comparison) in Table 4.25, these conclusions can be obtained:
H0 can be rejected for (a) AFINN-RNTN Accuracy in Figure 4.12; H0 can be rejected for
(b) AFINN-RNTN Macro_F1 in Figure 4.12; H0 cannot be rejected for (c) AFINN-RNTN
Precision_Pos in Figure 4.12; H0 can be rejected for (d) AFINN-RNTN Recall_Pos in
Figure 4.12; H0 can be rejected for (e) AFINN-RNTN F1_Pos in Figure 4.12; H0 can be



49

Table 4.24. The hypothesis testing results for Figure 4.11.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_Accuracy -0.8387 0.1228 1.8904 0.0091 0.7733 0.9254

SE_Precision (Pos) -0.4321 0.6698 1.4285 0.0589 0.5429 0.1838

SE_Recall (Pos) -1.2636 0.3971 2.1632 0.099 0.4502 0.5723

SE_F1 (Pos) -1.5595 0.2787 2.3951 0.0624 0.5332 0.4772

SE_Precision (Neg) 0.017 0.972 0.4823 0.0268 0.6579 0.0327

SE_Recall (Neg) -1.3216 0.209 1.6486 0.0067 0.799 0.8855

SE_F1 (Neg) -0.2558 0.5833 0.8124 0.0062 0.8041 0.2227

SE_Precision (Neu) 1.1317 0.1254 1.3165 0.0601 0.5396 0.0016

SE_Recall (Neu) 0.4035 0.5974 0.8767 0.0259 0.6624 0.8583

SE_F1 (Neu) -2.0669 0.4289 4.3474 0.1875 0.3866 0.2419

SE_Macro_F1 -1.2491 0.1731 2.1076 0.0473 0.667 0.9874

Absolute Error 0.2721 0.8786 1.0223 0.0068 0.7978 0.3224

Table 4.25. The hypothesis testing results for Figure 4.12.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

Accuracy 88.7165 0.0072 -0.9295 0.0559 0.5514 0.0222

Precision_Pos 37.2278 0.0068 0.609 0.0062 0.8044 0.0627

Recall_Pos -2.2141 0.9389 0.5917 0.2587 0.2451 4e-04

F1_Pos 17.7759 0.6314 0.4431 0.488 0.1007 0.0063

Precision_Neg -43.5029 0.0266 1.3065 0.0026 0.86 0.0153

Recall_Neg 61.4001 0.0035 0.4793 0.1945 0.3097 0

F1_Neg 63.6817 0.3744 -0.5086 0.7517 0.0219 0.7771

Precision_Neu 1.8747 0.7247 0.7906 6e-04 0.9233 0.592

Recall_Neu -37.8446 0.4487 0.9125 0.25 0.2529 0

F1_Neu 19.6662 0.1714 0.0492 0.8343 0.0123 0.0224

Macro_F1 51.7927 0.0549 -0.3697 0.3876 0.19 0.0022

Absolute Error 0.2721 0.8786 1.0223 0.0068 0.7978 0.3224
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Figure 4.12. The LS regression model (the red line) and the diagonal model (the black
line) for the performance assessment results of AFINN and RNTN in 3-class bootstrap.
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rejected for (f) AFINN-RNTN Precision_Neg in Figure 4.12; H0 can be rejected for (g)
AFINN-RNTN Recall_Neg in Figure 4.12; H0 cannot be rejected for (h) AFINN-RNTN
F1_Neg in Figure 4.12; H0 cannot be rejected for (i) AFINN-RNTN Precision_Neu in
Figure 4.12; H0 can be rejected for (j) AFINN-RNTN Recall_Neu in Figure 4.12; H0 can
be rejected for (k) AFINN-RNTN F1_Neu in Figure 4.12; H0 cannot be rejected for (l)
AFINN-RNTN Absolute Error in Figure 4.12.

4.2.2 Cross validation

Table 4.26 shows the fundamental errors and their corresponding standard errors for
AFINN, and Table 4.27 presents the fundamental errors and their corresponding standard
errors for RNTN.

Table 4.26. The fundamental errors of 3-class cross-validation with seven datasets for
sentiment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 14.3 ± 0.42 24.4 ± 1.75 28.04 ± 0.99 41.71 ± 1.5 18.78 ± 0.7 11.9 ± 0.34 22.69 ± 0.84

TNR (%) 15.14 ± 0.3 14.76 ± 1.59 7.6 ± 0.48 4.1 ± 0.7 7.95 ± 0.43 6.59 ± 0.27 5.91 ± 0.22

TNeR (%) 3.7 ± 0.25 8.45 ± 1.17 17.21 ± 0.49 12.19 ± 0.53 29.62 ± 0.63 45.85 ± 0.83 31.87 ± 0.9

FPR (%) 8.54 ± 0.44 15.24 ± 1.09 14.34 ± 0.69 6.86 ± 0.6 16.49 ± 0.59 19.68 ± 0.75 14.43 ± 0.57

FNR (%) 4.07 ± 0.22 4.64 ± 0.52 5.07 ± 0.36 6.19 ± 0.84 6.38 ± 0.39 5.77 ± 0.38 7.36 ± 0.46

FNeR (%) 54.26 ± 0.56 32.5 ± 1.11 27.74 ± 0.74 28.95 ± 1.04 20.78 ± 0.59 10.21 ± 0.44 17.73 ± 0.56

Table 4.27. The fundamental errors of 3-class cross-validation with seven datasets for
sentiment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

TPR (%) 8.98 ± 0.37 19.22 ± 0.85 23.07 ± 0.53 19.19 ± 1.17 7.42 ± 0.62 7.54 ± 0.71 6.64 ± 0.39

TNR (%) 40.91 ± 0.57 34.08 ± 1.22 15.37 ± 1.02 9.62 ± 0.69 19.23 ± 1.22 10.77 ± 0.64 12.07 ± 0.83

TNeR (%) 1.79 ± 0.25 2.12 ± 0.74 8.14 ± 0.6 6.84 ± 0.73 4.03 ± 0.39 13.39 ± 0.51 3.54 ± 0.28

FPR (%) 3.25 ± 0.24 6.02 ± 0.55 5.12 ± 0.29 2.18 ± 0.42 3.9 ± 0.25 4.18 ± 0.19 2.56 ± 0.29

FNR (%) 27.95 ± 0.73 22.99 ± 1.43 32.93 ± 0.75 47.54 ± 0.84 60.91 ± 0.89 59.55 ± 0.86 70.85 ± 1.09

FNeR (%) 17.12 ± 0.56 15.57 ± 0.99 15.37 ± 0.51 14.64 ± 1.26 4.51 ± 0.45 4.58 ± 0.28 4.33 ± 0.26

Figure 4.13 and Figure 4.14 exhibit the LS regression model and the diagonal model
for the standard errors and absolute values of fundamental errors of AFINN and RNTN,
respectively.

Table 4.28 provides the hypothesis testing results for Figure 4.13 and Table 4.29 shows
the hypothesis testing results for Figure 4.14.

Considering the p-value (Comparison) in Table 4.28, we can conclude that: H0 cannot
be rejected for (a) AFINN-RNTN SE of TPR in Figure 4.13; H0 cannot be rejected for (b)
AFINN-RNTN SE of TNR in Figure 4.13; H0 cannot be rejected for (c) AFINN-RNTN SE
of TNeR in Figure 4.13; H0 can be rejected for (d) AFINN-RNTN SE of FPR in Figure
4.13; H0 can be rejected for (e) AFINN-RNTN SE of FNR in Figure 4.13; H0 cannot be
rejected for (f) AFINN-RNTN SE of FNeR in Figure 4.13.
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Figure 4.13. The LS regression model (the red line) and the diagonal model (the black
line) for the standard errors of fundamental errors of AFINN and RNTN in 3-class cross-
validation.
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Figure 4.14. The LS regression model (the red line) and the diagonal model (the black
line) for the fundamental errors of AFINN and RNTN in 3-class cross-validation.
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Table 4.28. The hypothesis testing results for Figure 4.13.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_TPR 0.3325 0.1371 0.3536 0.1041 0.4404 0.2377

SE_TNR 0.7033 0.0057 0.3175 0.1926 0.3119 0.14

SE_TNeR 0.3396 0.1587 0.2338 0.4366 0.125 0.1625

SE_FPR 0.041 0.7782 0.4108 0.0904 0.4673 0.0029

SE_FNR 0.8 0.0302 0.3124 0.593 0.0611 4e-04

SE_FNeR -0.3375 0.1442 1.3239 0.0036 0.8413 0.5332

Table 4.29. The hypothesis testing results for Figure 4.14.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

TPR 1.6246 0.7817 0.4986 0.0759 0.4994 0.0424

TNR -4.3526 0.1444 2.7803 1e-04 0.9585 0.0481

TNeR 1.8324 0.4679 0.1815 0.1049 0.4389 0.0336

FPR 1.6326 0.3656 0.1651 0.2107 0.2918 0.0011

FNR -39.2039 0.0619 15.1253 0.0032 0.8491 7e-04

FNeR 1.2958 0.7193 0.3489 0.0265 0.6593 0.02

Considering the p-value (Comparison) in Table 4.29, we can conclude that: H0 can be
rejected for (a) AFINN-RNTN TPR in Figure 4.14; H0 can be rejected for (b) AFINN-
RNTN TNR in Figure 4.14; H0 can be rejected for (c) AFINN-RNTN TNeR in Figure 4.14;
H0 can be rejected for (d) AFINN-RNTN FPR in Figure 4.14; H0 can be rejected for
(e) AFINN-RNTN FNR in Figure 4.14; H0 can be rejected for (f) AFINN-RNTN FNeR in
Figure 4.14.

Table 4.30 and Table 4.31 indicate the performance assessment results for AFINN and
RNTN, respectively.

Figure 4.15 shows the LS regression model and the diagonal model for the standard
errors of performance assessment results, and Table 4.32 provides the hypothesis testing
results for Figure 4.15. Figure 4.16 exhibits the same models for the absolute values of
performance assessment results, and Table 4.33 provides the hypothesis testing results
for Figure 4.16.

Considering the p-value (Comparison) in Table 4.32, these conclusions can be obtained:
H0 cannot be rejected for (a) AFINN-RNTN SE of Accuracy in Figure 4.15; H0 cannot be
rejected for (b) AFINN-RNTN SE of Macro_F1 in Figure 4.15; H0 cannot be rejected for (c)
AFINN-RNTN SE of Precision_Pos in Figure 4.15; H0 cannot be rejected for (d) AFINN-
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Figure 4.15. The LS regression model (the red line) and the diagonal model (the black
line) for the standard errors of performance assessment results of AFINN and RNTN in
3-class cross-validation.
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Table 4.30. The performance assessment results of 3-class cross-validation with seven
datasets for sentiment analysis, classifier = AFINN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 34.56 ± 0.67 44.92 ± 1.22 54.01 ± 0.64 58.21 ± 1.26 55.17 ± 0.78 64.1 ± 0.79 60.02 ± 0.81

Precision_Pos (%) 62.63 ± 2.14 58.05 ± 2.99 68.58 ± 0.84 85.86 ± 1.03 52.49 ± 1.5 40.44 ± 1.08 60.09 ± 1.83

Recall_Pos (%) 35.04 ± 1.23 65.26 ± 2.56 60.81 ± 1.05 60.31 ± 1.59 59.17 ± 1.18 65.07 ± 2.12 61.35 ± 1.29

F1_Pos (%) 44.91 ± 1.53 60.8 ± 2 64.4 ± 0.73 70.77 ± 1.27 55.51 ± 1.14 49.82 ± 1.33 60.42 ± 0.69

Precision_Neg (%) 80.66 ± 0.98 74.04 ± 3.61 59.76 ± 2.81 41.77 ± 4.13 54.3 ± 2.85 48.54 ± 2.62 42.92 ± 1.61

Recall_Neg (%) 29.88 ± 0.99 27.22 ± 1.8 34.28 ± 1.22 37.65 ± 3.39 34.25 ± 1.14 47.32 ± 1.79 40.55 ± 1.6

F1_Neg (%) 43.54 ± 1.14 39.38 ± 1.97 43.26 ± 1.25 39.12 ± 3.36 41.7 ± 1.36 47.75 ± 2.03 41.59 ± 1.44

Precision_Neu (%) 6.76 ± 0.46 17.84 ± 3.56 38.05 ± 1.51 30.25 ± 2.07 57.33 ± 1.39 80.78 ± 0.97 64.24 ± 2.34

Recall_Neu (%) 81.28 ± 2.13 59.05 ± 5.44 58.29 ± 1.43 63.04 ± 3.75 62.69 ± 1.35 66.99 ± 0.52 64.67 ± 0.88

F1_Neu (%) 12.46 ± 0.79 24.96 ± 4.09 45.8 ± 1.08 40.71 ± 2.54 59.76 ± 0.99 73.23 ± 0.65 64.25 ± 1.32

Macro_F1 (%) 33.64 ± 0.55 41.71 ± 1.44 51.15 ± 0.56 50.2 ± 1.59 52.32 ± 0.73 56.93 ± 1.13 55.42 ± 0.62

Absolute Error 4012 603 1807 504 2167 1466 2717

Table 4.31. The performance assessment results of 3-class cross-validation with seven
datasets for sentiment analysis, classifier = RNTN.

Metrics Comments_NYT Comments_TED Comments_YTB Myspace Tweets_RND_I Tweets_RND_III Tweets_Semeval

Accuracy (%) 51.68 ± 0.49 55.42 ± 1.71 46.57 ± 1.13 35.65 ± 1.18 30.68 ± 0.88 31.69 ± 0.75 22.26 ± 1.14

Precision_Pos (%) 73.46 ± 1.89 76.11 ± 2.13 81.8 ± 1.02 90.33 ± 1.75 64.78 ± 2.41 63.44 ± 1.97 72.35 ± 2.63

Recall_Pos (%) 21.14 ± 0.81 52.49 ± 3.3 47.16 ± 1.08 28.57 ± 1.92 23.54 ± 1.93 38.29 ± 3.12 18.23 ± 0.83

F1_Pos (%) 32.76 ± 1.07 61.49 ± 2.49 59.77 ± 1.03 42.99 ± 2.29 34.29 ± 2.35 47.43 ± 2.97 28.98 ± 1.11

Precision_Neg (%) 59.44 ± 0.74 59.81 ± 2.29 31.68 ± 1.84 16.84 ± 1.22 23.92 ± 1.35 15.32 ± 0.92 14.57 ± 1.02

Recall_Neg (%) 77.5 ± 0.83 70.38 ± 1.91 67.86 ± 1.53 76.16 ± 3.34 85.96 ± 0.78 83.01 ± 1.89 87.68 ± 1.46

F1_Neg (%) 67.24 ± 0.58 64.38 ± 1.59 43.05 ± 2.01 27.35 ± 1.65 37.25 ± 1.66 25.77 ± 1.33 24.88 ± 1.53

Precision_Neu (%) 9.45 ± 1.21 11.85 ± 4.01 34.48 ± 2.3 32.44 ± 3.68 47.28 ± 4.06 74.55 ± 1.24 44.92 ± 2.93

Recall_Neu (%) 37.09 ± 3.45 10.84 ± 3.58 28.48 ± 1.88 34.34 ± 2.27 8.67 ± 0.68 19.85 ± 0.7 7.16 ± 0.58

F1_Neu (%) 14.99 ± 1.8 0 31.12 ± 1.99 32.72 ± 2.71 14.61 ± 1.14 31.29 ± 0.91 12.31 ± 0.93

Macro_F1 (%) 38.33 ± 0.8 0 44.64 ± 1.21 34.35 ± 1.11 28.72 ± 0.88 34.83 ± 1.02 22.05 ± 0.99

Absolute Error 3982 528 2428 1063 3915 2948 6398

RNTN SE of Recall_Pos in Figure 4.15; H0 cannot be rejected for (e) AFINN-RNTN SE
of F1_Pos in Figure 4.15; H0 can be rejected for (f) AFINN-RNTN SE of Precision_Neg
in Figure 4.15; H0 cannot be rejected for (g) AFINN-RNTN SE of Recall_Neg in Figure
4.15; H0 cannot be rejected for (h) AFINN-RNTN SE of F1_Neg in Figure 4.15; H0 can
be rejected for (i) AFINN-RNTN SE of Precision_Neu in Figure 4.15; H0 cannot be re-
jected for (j) AFINN-RNTN SE of Recall_Neu in Figure 4.15; H0 cannot be rejected for (k)
AFINN-RNTN SE of F1_Neu in Figure 4.15; H0 cannot be rejected for (l) AFINN-RNTN
SE of Absolute Error in Figure 4.15.

Considering the p-value (Comparison) in Table 4.33, these conclusions can be obtained:
H0 can be rejected for (a) AFINN-RNTN Accuracy in Figure 4.16; H0 can be rejected for
(b) AFINN-RNTN Macro_F1 in Figure 4.16; H0 cannot be rejected for (c) AFINN-RNTN
Precision_Pos in Figure 4.16; H0 can be rejected for (d) AFINN-RNTN Recall_Pos in
Figure 4.16; H0 can be rejected for (e) AFINN-RNTN F1_Pos in Figure 4.16; H0 can be
rejected for (f) AFINN-RNTN Precision_Neg in Figure 4.16; H0 can be rejected for (g)
AFINN-RNTN Recall_Neg in Figure 4.16; H0 cannot be rejected for (h) AFINN-RNTN
F1_Neg in Figure 4.16; H0 cannot be rejected for (i) AFINN-RNTN Precision_Neu in



57

Table 4.32. The hypothesis testing results for Figure 4.15.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

SE_Accuracy 0.1006 0.8309 1.0658 0.0816 0.4862 0.2791

SE_Precision (Pos) 1.4361 0.0294 0.3284 0.2749 0.231 0.2938

SE_Recall (Pos) -0.7499 0.2658 1.6551 0.0059 0.8077 0.5095

SE_F1Pos 0.7543 0.4347 0.9241 0.2309 0.271 0.0156

SE_Precision (Neg) 0.5239 0.3527 0.307 0.1488 0.3678 0.0175

SE_Recall (Neg) -0.0777 0.7437 1.0297 4e-04 0.9356 0.9517

SE_F1 (Neg) 1.2507 0.0497 0.1271 0.6348 0.0486 0.3252

SE_Precision (Neu) 1.218 0.1577 0.8865 0.0609 0.5372 0.0707

SE_Recall (Neu) 0.6133 0.3249 0.5708 0.0381 0.6102 0.6713

SE_F1 (Neu) 0.6551 0.2611 0.753 0.1072 0.5173 0.6794

SE_Macro_F1 0.8994 0.0049 0.1185 0.5217 0.1095 0.7067

Absolute Error 0.3968 0.8219 1.0053 0.0069 0.7965 0.309

Table 4.33. The hypothesis testing results for Figure 4.16.

Metrics Intercept p-value Slope p-value R2 p-value

(%) (Intercept) (%) (Slope) (Comparison)

Accuracy 90.6004 0.0036 -0.9711 0.0311 0.6386 0.0229

Precision_Pos 35.5954 0.0014 0.6379 9e-04 0.9098 0.0579

Recall_Pos -4.5178 0.8832 0.6414 0.2525 0.2506 3e-04

F1_Pos 13.2964 0.7291 0.5278 0.4326 0.127 0.0043

Precision_Neg -42.4655 0.0033 1.2907 2e-04 0.9467 0.0179

Recall_Neg 55.7439 0.0146 0.6305 0.1918 0.3127 0

F1_Neg 90.3971 0.4633 -1.157 0.6844 0.0358 0.5988

Precision_Neu 2.0542 0.6819 0.8149 4e-04 0.934 0.6643

Recall_Neu -29.3892 0.5127 0.7723 0.2794 0.2273 0

F1_Neu 20.0225 0.1677 0.0571 0.8112 0.016 0.0305

Macro_F1 52.2569 0.0721 -0.3692 0.435 0.1581 0.0027

Absolute Error 0.3968 0.8219 1.0053 0.0069 0.7965 0.309
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Figure 4.16. The LS regression model (the red line) and the diagonal model (the black
line) for the performance assessment results of AFINN and RNTN in 3-class cross-
validation.
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Figure 4.16; H0 can be rejected for (j) AFINN-RNTN Recall_Neu in Figure 4.16; H0 can
be rejected for (k) AFINN-RNTN F1_Neu in Figure 4.16; H0 cannot be rejected for (l)
AFINN-RNTN Absolute Error in Figure 4.16.

4.3 Discussion

We start the discussions of our experiments by comparing all previous results. Because
bootstrap test and cross-validation test have almost the same results for both 2-class and
3-class comparisons, we focus on the analysis of the bootstrap test in this part.

Let’s consider 2-class comparisons firstly. For the fundamental errors, AFINN does not
have same performance with RNTN across all datasets considering both standard errors
and absolute values. By analyzing the p-value (Comparison) in Table 4.4, we cannot
reject H0 for the standard error of TPR, TNR, and FPR in Figure 4.1, but we can reject H0

for the standard error of FNR in Figure 4.1. However, based on the p-value (Comparison)
in Table 4.5, we can reject H0 for the absolute value of TPR, TNR, FPR, and FNR in
Figure 4.2. Therefore, whether considering both standard errors and absolute values
or considering only absolute values of the fundamental errors, AFINN does not perform
identically with RNTN for all datasets.

According to the p-value (Comparison) in Table 4.8, we cannot reject H0 for the stan-
dard error of Accuracy, Precision_Pos, F1_Pos, Precision_Neg, Recall_Neg, F1_Neg,
Macro_F1, and Absolute Error in Figure 4.3, but we can reject H0 for the standard er-
ror of Recall_Pos in Figure 4.3. By analyzing the p-value (Comparison) in Table 4.9, we
cannot reject H0 for the absolute value of Macro_F1, Precision_Pos and Absolute Er-
ror in Figure 4.4, but we can reject H0 for the absolute value of Accuracy, Recall_Pos,
F1_Pos, Precision_Neg, Recall_Neg, and F1_Neg in Figure 4.4. If we consider both
standard errors and absolute values of the overall performance assessment results, we
can conclude that AFINN does not perform identically with RNTN for all datasets on Ac-
curacy, Recall_Pos, F1_Pos, Precision_Neg, Recall_Neg, and F1_Neg; however, AFINN
has identical performance with RNTN for all datasets on Macro_F1, Precision_Pos and
Absolute Error. If only absolute values of the overall performance assessment results are
taken into account, we can conclude that AFINN does not have same performance with
RNTN for all datasets on Accuracy, Recall_Pos, F1_Pos, Precision_Neg, Recall_Neg,
and F1_Neg; however, AFINN has identical performance with RNTN for all datasets on
Macro_F1, Precision_Pos and Absolute Error.

Next is the 3-class comparisons. In terms of the p-value (Comparison) in Table 4.20,
we cannot reject H0 for the standard error of TPR, TNR, TNeR and FNeR in Figure
4.9, but we can reject H0 for the standard error of FPR and FNR in Figure 4.9. Based
on the p-value (Comparison) in Table 4.21, we can reject H0 for the absolute value of
TPR, TNR, TNeR, FPR, FNR and FNeR in Figure 4.10. Thus, AFINN does not have
identical performance with RNTN across all datasets considering both standard errors
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and absolute values of the fundamental errors. If we do not consider standard errors of
the fundamental errors, we can conclude that AFINN does not have same performance
with RNTN for all datasets, either.

By analyzing the p-value (Comparison) in Table 4.24, we can reject H0 for the stan-
dard error of Precision_Neg and Precision_Neu in Figure 4.11, but we cannot reject
H0 for the standard error of Accuracy, Precision_Pos, Recall_Pos, F1_Pos, Recall_Neg,
F1_Neg, Recall_Neu, F1_Neu, Macro_F1 and Absolute Error in Figure 4.11. Accord-
ing to the p-value (Comparison) in Table 4.25, we can reject H0 for the absolute value
of Accuracy, Recall_Pos, F1_Pos, Precision_Neg, Recall_Neg, Recall_Neu, F1_Neu and
Macro_F1 in Figure 4.12, but we cannot reject H0 for the absolute value of Precision_Pos,
F1_Neg, Precision_Neu and Absolute Error in Figure 4.12. If we consider both standard
errors and absolute values of the overall performance assessment results, we can con-
clude that AFINN does not perform identically with RNTN for all datasets on Accuracy,
Recall_Pos, F1_Pos, Precision_Neg, Recall_Neg, Precision_Neu, Recall_Neu, F1_Neu
and Macro_F1; however, AFINN has identical performance with RNTN for all datasets
on Precision_Pos, F1_Neg and Absolute Error. If only absolute values of the overall
performance assessment results are taken into account, we can conclude that AFINN
does not have same performance with RNTN for all datasets on Accuracy, Recall_Pos,
F1_Pos, Precision_Neg, Recall_Neg, Recall_Neu, F1_Neu and Macro_F1; however,
AFINN has identical performance with RNTN for all datasets on Precision_Pos, F1_Neg,
Precision_Neu and Absolute Error.

From the overall performance assessment results, we can easily note that AFINN and
RNTN yield with large variations across the different datasets. By analyzing accuracy
and Macro-F1 in Table 4.6 and Table 4.7, AFINN obtains better performance in Com-
ments_YTB, Myspace, Tweets_RND_I, Tweets_RND_III, and Tweets _Semeval; RNTN
acquires better performance in Comments_NYT and Comment_TED. It statistically states
that no single method (AFINN or RNTN) can always achieve the best prediction perfor-
mance across all datasets in terms of accuracy and Macro-F1. And the same situation
also exists in 3-class comparisons.

The seven datasets can be divided into two specific contexts: Social Networks (Mys-
pace, Tweets_RND_I, Tweets_RND_III, and Tweets _Semeval) and Comments (Com-
ments_NYT, Comment_TED, and Comments_YTB). AFINN performs much better in the
context of Social Network than RNTN. One possible reason is the difference in average
number of phrases of the dataset. By observing Table 3.2, the data of Social Network
and Comments_YTB have higher average number of phrases than Comments_NYT and
Comments_TED. Another possible reason can be that there are more complicated topics
and opinions in the context of comments, such as science and culture. However, people
express more straightforward opinions on economy, products and politics in the context
of Social Network. In our comparisons, AFINN also performs better in Comments_YTB,
which more or less indicates that AFINN has wider application contexts than RNTN.

In 3-class comparisons, F1_Neu and Macro_F1 scores are 0 in Table 4.23 and Table 4.31.
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However, F1_Neu and Macro_F1 scores exist in Table 4.22 and Table 4.30. Moreover,
this situation does not occur in 2-class comparisons. It states that RNTN is more biased
towards classes which contain more messages, given neutral class is quite smaller com-
pared to positive and negative classes. Therefore, AFINN could have more predication
effectiveness on skewed classes.

Dependent on the above analysis, we can note RNTN is more specialized and AFINN
is more generic in sentence-level sentiment analysis. For example, AFINN can achieve
44.92% accuracy for Comments_TED and 60.02% accuracy for Tweets_Semeval in Ta-
ble 4.30; RNTN can achieve 55.42% accuracy for Comments_TED and 22.26% accuracy
for Tweets_Semeval in Table 4.31. Even RNTN performs better than AFINN for Com-
ments_TED, the difference is only 10.5%. However, the accuracy of AFINN is 37.76%
higher than that of RNTN for Tweets_Semeval.

Another important metric is the computation time. Because AFINN belongs to the lexicon-
based methods, the training time is quite short and can be omitted. However, RNTN is
basically a deep learning approach, thus, it needs 3 – 5 hours to train a proper model.
In addition, AFINN only needs about 0.05s to predict one novel sentence, while RNTN
takes approximately 0.25s.
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5 CONCLUSION

Various sentiment analysis methods have been adopted to analyze moods of unstruc-
tured sentences in online networks, including lexicon-based and machine-learning meth-
ods. To obtain better performance, many natural language processing techniques are
widely used in sentiment analysis, such as tokenization, filtering, lemmatization, stem-
ming, linguistic processing, and etc.

In this thesis, we have compared two different sentiment analysis techniques: one sim-
ple lexicon-based method namely AFINN and one more complicated machine-learning
method namely RNTN. We present a thorough comparison between AFINN and RNTN
using seven labeled datasets that cover different types of data sources. Our effort quanti-
fies the prediction performance of AFINN and RNTN across all datasets. To obtain more
robust conclusions, we use bootstrap and cross validation to assess their performance,
respectively.

In 2-class and 3-class comparisons, AFINN and RNTN do not have identical performance
across all datasets whether considering both standard errors and absolute values or con-
sidering only absolute values of the fundamental errors. In 2-class comparisons, if con-
sidering both standard errors and absolute values of the overall performance assessment
results, AFINN does not perform identically with RNTN for all datasets on Accuracy, Re-
call_Pos, F1_Pos, Precision_Neg, Recall_Neg, and F1_Neg; however, AFINN has iden-
tical performance with RNTN for all datasets on Macro_F1, Precision_Pos and Absolute
Error. If only absolute values of the overall performance assessment results are taken into
account in 2-class comparisons, AFINN does not have same performance with RNTN for
all datasets on Accuracy, Recall_Pos, F1_Pos, Precision_Neg, Recall_Neg, and F1_Neg;
however, AFINN has identical performance with RNTN for all datasets on Macro_F1, Pre-
cision_Pos and Absolute Error. In 3-class comparisons, if we consider both standard
errors and absolute values of the overall performance assessment results, AFINN does
not perform identically with RNTN for all datasets on Accuracy, Recall_Pos, F1_Pos, Pre-
cision_Neg, Recall_Neg, Precision_Neu, Recall_Neu, F1_Neu and Macro_F1; however,
AFINN has identical performance with RNTN for all datasets on Precision_Pos, F1_Neg
and Absolute Error. If only absolute values of the overall performance assessment re-
sults are taken into account in 3-class comparisons, AFINN does not have same per-
formance with RNTN for all datasets on Accuracy, Recall_Pos, F1_Pos, Precision_Neg,
Recall_Neg, Recall_Neu, F1_Neu and Macro_F1; however, AFINN has identical perfor-
mance with RNTN for all datasets on Precision_Pos, F1_Neg, Precision_Neu and Abso-
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lute Error.

Furthermore, we highlight that the prediction performance of AFINN and RNTN varies
considerably from one dataset to another. AFINN performs better on Comments_YTB,
Myspace, Tweets_RND_I, Tweets_RND_III, and Tweets _Semeval, while RNTN obtains
better performance on Comments_TED and Comments_NYT. This suggests that sen-
timent analysis methods cannot be used as "off-the-shelf" methods for novel datasets.
More important, we state that the performance of AFINN and RNTN is different in spe-
cific contexts. RNTN has much worse performance in the context of Social Network; to
some extent, AFINN has wider sentiment analysis contexts than RNTN. Therefore, it is
important that researchers and companies carry out context analysis before applying a
sentiment analysis method.

Among many findings, we also show that AFINN could have more prediction effective-
ness on skewed classes while RNTN is more biased toward classes which contain more
sentences. Additionally, RNTN takes much more computation time in sentiment predic-
tion. For example, 3 – 5 hours are needed for RNTN to train a proper model and it takes
about 5 times the average testing time of AFINN to predict single sentence. Our findings
suggest that AFINN is more simple, more generic and takes less computation resources
than RNTN in sentiment analysis.

The datasets we used in this thesis cover a wide range of sources with three classes
(positive, negative and neutral), including the contexts of Social Network and Comments.
Additionally, they are labeled by human or Amazon Mechanical Turk (AMT) with relative
high level of agreement. Thus, the seven datasets can be built as a representative stan-
dard benchmark not only for sentiment analysis but also for other text mining tasks, such
as text summarization, topic modelling and document clustering. To better understand
the performance of methods in types of data, we can also extend the benchmark with
datasets of another specific context – Reviews in the future.

In the future, we would focus on further improving our comparisons. We can extend our
experiments with more evaluated metrics, such as the overall performance ranking and
Friedman’s Test which allows us to verify whether the methods present similar perfor-
mance across different datasets. Moreover, we can explore whether the methods have
biases toward the polarity. Since prediction performance varies considerably from one
dataset to another, a more generic sentiment analysis method is needed. In our opin-
ion, it is not necessary to use one complicated method to complete the specific task if a
simple approach can also achieve the same performance. Recent efforts have provided
many sentiment analysis methods which are widely used in their knowledge fields. In this
thesis, we only carry out a comparison between AFINN and RNTN which are the typical
representation of lexicon-based methods and machine-learning methods, respectively.
However, we could continue to search for the simplest sentiment analysis technique but
with the best performance.
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