

Teemu Soininen

SUSPICIOUS TRANSACTION DETEC-
TION WITH STATISTICAL LEARNING

METHODS
Master of science thesis

Faculty of engineering and natural sciences

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250165894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

TEEMU SOININEN: Suspicious transaction detection with statistical learning meth-
ods
Tampere University
Master of science thesis, 54 pages
May 2019
Faculty of science and engineering
Major: Theoretical Computer Science
Examiners: prof. Tapio Elomaa and prof. Ari Visa

Keywords: outlier detection, novelty detection, unsupervised learning, transac-
tions

In this thesis the aim was to find a more efficient way for detecting suspicious transactions
from banking data. The chosen approach was to utilize outlier detection methods.

The methods were first chosen based on a theoretical review but then narrowed down to
those that have stable implementations in Python. The banking transaction data was then
preprocessed and fed to the methods. For clustering methods we reviewed the running
time and the CH index and for outlier detection the comparison was made from running
time and visual exploration of the results.

Finally it was found that GMM and iForest were the best performing methods. They
were able to perform outlier detection on the large datasets in just minutes and should
scale to a dataset of any size. They also have existing implementations in SKlearn and
could be implemented as a part of a detection system.

ii

TIIVISTELMÄ

TEEMU SOININEN: Epäilyttävien pankkitapahtumien tunnistaminen oppivien ti-
lastollisten menetelmien avulla
Tampereen yliopisto
Diplomityö, 54 sivua
Toukokuu 2019
Teknis-luonnontieteellinen koulutusohjelma
Pääaine: Teoreettinen ohjelmistotiede
Tarkastajat: prof. Tapio Elomaa ja prof. Ari Visa

Avainsanat: Poikkeamien tunnistus, ohjaamaton oppiminen, pankkitapahtumat

Tämän diplomityön tavoitteena oli löytää tehokkaampi tapa tunnistaa poikkeavia pankki-
tapahtumia. Läthökohdaksi valittiin poikkeamien tunnistusmenetelmät.

Alustavat menetelmät valittiin teoreettisen tarkastelun pohjalta, mutta näistä karsittiin
pois ne, joilla ei ollut vakaata toteutusta Pythonissa. Pankkitapahtumatiedot esikäsitel-
tiin ja syötettiin metodeille, jonka jälkeen eri metodien tuloksia tarkasteltiin. Ryhmittely
menetelmien osalta tarkasteltiin ajoaikaa ja CH-indeksiä. Poikkeamien tunnistuksessa tar-
kasteltiin ajoaikaa ja tuloksia käytiin läpi visualisointien avulla.

Työssä löydettiin kaksi hyvin toimivaa menetelmää: GMM ja iForest. Ne pystyivät suo-
rittamaan poikkeamien tunnistusta suurille tietomäärille vain minuuteissa ja niiden pitäisi
skaalautua minkä kokoiseen tietomäärään vain. Niistä on myöskin olemassa olevat toteu-
tukset SKlearnissa, joten ne voitaisiin toteuttaa osaksi tunnistusjärjestelmää.

iii

ALKUSANAT

Tämä diplomityö on toteutettu yhteistyössä pohjoismaisen pankin kanssa, joka on toimit-
tanut tarvittavat ympäristöt ja pääsyn tarvittaviin historiatietoihin. Ilman tätä yhteistyötä
ei tämä työ olisi ollut mahdollinen.

Kiitos myös kaikille, jotka auttoivat aiheen löytämisessä. Lisäksi myös kiitos pankin
henkilöille, jotka auttoivat aineiston käsittelyssä ja sen ymmärtämisessä.

Viimeisenä tahdon kiittää tarkastajia Tapio Elomaata ja Ari Visaa arvokkaista kommenteista
ja parannusehdotuksista.

Tampereella, 2.4.2019

Teemu Soininen

iv

CONTENTS

1. INTRODUCTION ... 1

2. BACKGROUND.. 3
2.1 Transactions .. 3
2.2 Outlier detection.. 4
2.3 Cluster analysis ... 6

2.3.1 Partitional clustering ... 6
2.3.2 Hierarchical clustering.. 9
2.3.3 Clustering metrics... 10

2.4 Classification... 11
2.4.1 Linear methods ... 11
2.4.2 Non-linear methods .. 12
2.4.3 Classification metrics.. 12

2.5 Dimensionality Reduction .. 14
2.5.1 Supervised dimensionality reduction.. 14
2.5.2 Unsupervised dimensionality reduction 15

3. OUTLIER DETECTION METHODS... 17
3.1 Probabilistic methods.. 17

3.1.1 Gaussian mixture model ... 17
3.1.2 Dirichlet process mixture model... 18

3.2 Distance based methods.. 19
3.2.1 Nearest-neighbour distance .. 19
3.2.2 Clustering based distance ... 19

3.3 Neural network based methods ... 20
3.3.1 Grow When Required network ... 20

3.4 Domain based methods ... 20
3.4.1 One-class support vector machine .. 21

3.5 Other methods... 21
3.5.1 Isolation Forest ... 21

3.6 Suitability for suspicious transaction detection .. 22

4. TOOLS AND ENVIRONMENT... 23
4.1 AWS .. 23

4.1.1 Snowflake.. 23
4.1.2 Amazon Sagemaker .. 24

4.2 Development environment .. 29
4.3 Data processing tools .. 30

4.3.1 Backbone .. 30
4.3.2 Data exploration.. 30
4.3.3 Data analysis... 31

5. IMPLEMENTATION .. 32

v

5.1 Architecture and data-flow.. 32
5.1.1 Architecture of the high level system ... 32
5.1.2 AWS Implementation architecture.. 34
5.1.3 Model training .. 35
5.1.4 Outlier detection rule .. 36

5.2 Dataset... 38
5.2.1 Available information ... 38
5.2.2 Feature engineering .. 38
5.2.3 Feature encoding... 40

5.3 Creating the model.. 40
5.3.1 Preprocessing.. 40
5.3.2 Training... 41
5.3.3 Evaluation ... 42

6. RESULTS .. 46
6.1 Clustering.. 46
6.2 Outlier detection.. 47
6.3 Credit card fraud detection.. 48

7. CONCLUSION.. 51

REFERENCES .. 52

vi

LIST OF FIGURES

Figure 1. Examples of outliers in 1D-distributions. Static: y = 0.5, linear:
y = x/2, periodic: x = sin2(x), random: 0 ≤ x ≤ 5. Artificially
modified points painted with red. ... 4

Figure 2. Example of clustering using k-means and k = 3 (Landman 2016). 6
Figure 3. An example of the hierarchical nature of animal taxinomy. (Open-

Stax 2012)... 9
Figure 4. The division between correctly and falsely classified positive and

negative samples. .. 13
Figure 5. An overview of the architecture of the high level system........................ 33
Figure 6. An overview of the AWS architecture and SageMaker. 34
Figure 7. An overview of the model training process .. 35
Figure 8. An overview of the implementation for the transaction flagging in-

terface provided by the outlier detection rule. 37
Figure 9. Plot of transaction amounts and the corresponding DeltaAmount

feature. The means are u1 for customer 1 and u2 for customer 2. 39
Figure 10. Plot of k-means clustering with 3 cluster centers. 45
Figure 11. Plot of IsolationForest outlier detection results. Outliers are shown

as red and normal points as blue. ... 45
Figure 12. A scatter plot of detection results for iForest on the credit card fraud

dataset. .. 48
Figure 13. A scatter plot of detection results for GMM on the credit card fraud

dataset. .. 49
Figure 14. A scatter plot of actual frauds in the credit card fraud dataset. 49
Figure 15. The precision-recall curve for iForest on the credit card fraud dataset.

.. 50
Figure 16. The precision-recall curve for GMM on the credit card fraud dataset.

.. 50

vii

ACRONYMS

API Application Programming Interface. 24, 27, 28, 41

AUC Area Under Curve. 11, 13, 14, 22

AWS Amazon Web Services. 23–25, 29, 34, 35, 46

BST Binary Search Tree. 22

CH Calinski-Harabasz. 10, 11, 46, 47

CNN Convolutional Neural Network. 12

DPGMM Dirichlet Process Gaussian Mixture Model. 18, 19, 46, 47, 51

DPMM Dirichlet Process Mixture Model. 18

DR Dimensionality Reduction. 14, 15, 36

DW Data Warehouse. 24

EC2 Elastic Compute Cloud. 23

EM Expectation-Maximization. 18

FCM Fuzzy C-means. 7, 8

FN False Negatives. 12

FP False Positives. 12

FPR False Positive Rate. 13

GMM Gaussian Mixture Model. 17–19, 46–48, 50, 51

GWR Grow-When-Required network. 20, 22, 51

IAM Identity and Access Management. 24, 25

iForest Isolation Forest. 21, 22, 42, 44, 47, 48, 50, 51

IG Information Gain. 14

iTree Isolation Tree. 22

k-nn k-nearest neighbour. 12, 19

LDA Linear Discrimant Analysis. 14, 15

LOF Local outlier factor. 19, 47, 51

MLE Maximum Likelihood Estimation. 18

NN Neural Network. 12

viii

OSVM One-Class Support Vector Machine. 21, 47, 51

PCA Principal Component Analysis. 14, 15

PDF Propability Density Function. 18

PR Precision-Recall. 14

ROC Receiver Operating Charasteristics. 13, 14, 22

S3 Simple Storage Service. 23

SDK Software Development Kit. 24, 25, 51

SOD Subspace outlier detection. 19, 21, 22, 51

SOM Self Organising Maps. 14–16, 20

SQL Structured Query Language. 24, 30, 36

SVM Support Vector Machine. 12, 21

TN True Negatives. 12

TP True Positives. 12

TPR True Positive Rate. 13

URI Uniform Resource Identifier. 25

1

1. INTRODUCTION

Banking institutions have an obligation to monitor the transactions that pass through their
systems. Currently most used approaches apply static rule based methods to achieve this
monitoring. This, however, responds poorly to changes in the data and such rules are hard
to optimize. A more powerful and optimizable method would therefore be preferred.

Creating a model that can accurately predict suspicious transactions would allow banks
to respond to them faster and more cost effectively. For example credit card frauds and
illegitimate transfers could be identified earlier and with greater precision. Overall the
model would decrease the need for manual labour and lower the chances of suspicious
activities going undetected.

The goal of this thesis is to provide a preliminary filtering and implementation of avail-
able methods and approaches for creating and utilizing such a model. This filtering will
be done based on a literature survey and an empirical data analysis. Finally the created
models will be implemented and tested so that they could be used in a complete system.

The final model should be able to run as a part of the complete system. This means
that all parts of the model building process and utilization will have to be automatic. The
models themselves can always be improved and they should be built in a way that makes
this possible.

There are multiple research papers in the same area as this thesis. However, none of
them covers the whole process from theory to application. Some of the important ones
on detecting illegitimate transfers are by Chen et al. (2018) and Zhang & Trubey (2018).
Surveys of the outlier detection methods are more common and the most recent is by
Domingues et al. (2018). Also the Kaggle competition on Credit Card Fraud Detection
by MachineLearningGroup-ULB (2018) has entries that utilize machine learning for de-
tecting credit card fraud.

This thesis starts by providing basic information on transactions and outlier detection. In
addition it covers the basic concepts and theory regarding machine learning and provides
the needed tools for understanding the outlier detection methods. After the basics are cov-
ered the thesis takes a more in depth look at some detection methods and explains some
key differences between them.

After explaining how the models work the thesis switches to considering how to cre-
ate and use them. This starts by going through the tools and environments needed for

2

implementing them. Once the tools are familiar the thesis goes through the architecture
plan for the system and explains the role of the model as a part of the whole.

Finally this thesis focuses on the data available and the transformations done to it. This
is followed by implementation details about the model training and evaluation. After the
implementation details the thesis moves on to the results. In Chapter 6 empirical results
based on comparing the models are provided.

3

2. BACKGROUND

This chapter covers the basic concepts needed for understanding this thesis. It aspires to
provide a more general view about transactions and outlier detection than the subsequent
chapters that are more focused on the specific task at hand.

The first concept being explained is transactions. Specifically it is explained how transac-
tions are usually modelled in banking systems and how they should be treated in statistical
approaches. This section also covers the peculiarities in the type of data a transaction can
hold.

The following section deals with outlier detection. It provides a definition for what makes
a data item an outlier as well as describes the more general solutions for detecting them.

Finally we have two sections on different methods suitable for solving parts of the outlier
detection problem. These sections form a basis for comparing different models. This is
then used to explain why the specific methods discussed in Chapter 3 have been chosen.

2.1 Transactions

A financial transaction as such is defined as an agreement between two parties to exchange
goods, services or financial instruments (Investopedia 2018). In this thesis we focus only
on the money transfer part of this.

One problem with dealing with transactions in real banking systems is the amount of data.
A transaction is generated for each transfer of money and this means that the amount of
daily transactions can easily be in the millions. This causes restrictions on the applicable
methods.

Each transaction has a set of attributes attached to it, among these are of course the
timestamp, sender, receiver, and amount transferred. This, single transaction, is the basic
building block and it is possible to deduce additional information from it. We can, for
example, try to model chains of transactions or calculate frequent receivers for a certain
sender (Chen et al. 2018). Overall it is useful to gather aggregate information regarding
the senders and receivers. It is often also possible to enrich the information about senders
and receivers from outside sources.

All clients have their own behaviour that can be considered normal. This leads to the
fact that labelling suspicious transactions is strongly dependent on the context. For exam-

4

ple someone could send a monthly bank transfer of 700C and have multiple 0-50C card
purchases weekly. Determining a suspicious transaction could be as simple as denoting
all card purchases over 50C as suspicious. However, if you then have an actual person
perform a check based on that it gets expensive really fast. Also it would completely miss
cases where a possible thief would use the card for a large amount of small purchases in
a very short time frame. Such a limit should also be chosen for each client individually.

With suspicious transactions we wish to catch most, if not all, true positives while keeping
the amount of false positives as low as possible. False positives both cost money as well
as take resources from investigating the actual cases. This is an important feature to keep
in mind when choosing the algorithm.

2.2 Outlier detection

Outlier detection is a problem that has been called by many different names, including
anomaly and novelty detection. There seems to be no formal definition for what an out-
lier is. This is probably because what we wish to consider abnormal is dependent on the
problem we are trying to solve. However, the problem and proposed solutions are similar
in each of these variations.

Figure 1. Examples of outliers in 1D-distributions. Static: y = 0.5, linear: y = x/2,
periodic: x = sin2(x), random: 0 ≤ x ≤ 5. Artificially modified points painted with red.

Some definitions have been given and for example one is: "An outlying observation,
or "outlier," is one that appears to deviate markedly from other members of the sample in
which it occurs." - (Grubbs 1969)

5

Very simple examples of outliers in 1D are shown in Figure 1. In cases 1-3 the distri-
butions are based on an underlying model. The easiest way to spot outliers in these is to
just fit the data to a model and look for points that differ from the predicted value of the
model. The model for both static and linear distributions can be solved by fitting a line
with the least squares method. If we used the same linear model for the periodic distri-
bution we could not distinguish the outlying point. In that case we need to find the right
periodic model. In case 4 the point is in fact indistinguishable. In real world situations
the process of finding the right model is not so simple and different types of solutions are
discussed next.

Outlier detection problems have a variety of starting conditions, but the solutions are
somewhat similar and can in general be divided into three categories (Hodge & Austin
2004).

The first option is attempt to solve the problem with no prior knowledge of the data. It
can be attempted with unsupervised clustering, which can be considered a good starting
point for analysing existing data but is computationally expensive. With rapidly changing
and large data the luxury of running the analysis for extended periods of time is not there.
However the knowledge gained from such clustering can be utilized in training future
models.

The second option is to solve the problem using data that has been labelled as normal
or abnormal. For this approach one can use supervised classification methods. These
methods tend to do well if one has enough samples of both normal and abnormal data.
However when looking for outliers it is common to have an uneven distribution of the
samples and this can lead to decline in the classification accuracy.

The third option is to have an algorithm model the normal data only. The suitable al-
gorithms for such a problem utilize semi-supervised learning, which is especially useful
when one has a large amount of unlabelled data compared to labelled. One way to apply
semi-supervised learning is to attempt to achieve low-density separation. (Chapelle et al.
2006)

The methods for outlier detection will be discussed in detail in Chapter 3. These methods
utilize various machine learning techniques, which will be discussed next.

One should note that machine learning can be divided into three categories. Those cate-
gories are very similar to those described above and are as follows: unsupervised learning,
supervised learning and reinforcement learning. In the next sections we will take a closer
look at unsupervised and supervised learning.

6

2.3 Cluster analysis

The basic idea of clustering is to group similar data points together. These groups of
points are then called clusters. This grouping is not definitive and multiple valid solutions
can exist. However, by doing this we gain insight on the data we are analysing. Cluster-
ing methods are utilized in several distance based outlier detection methods discussed in
Section 3.2.

In general clustering algorithms can be divided into two categories: partitional and hi-
erarchical clustering. Both of these approaches provide a grouping but the representation
is fundamentally different. These categories will be further discussed in the following
subsections.

2.3.1 Partitional clustering

The idea of partitional clustering is to, simply, partition the n-dimensional space to differ-
ent sections. The section boundaries can be either hard or soft. A hard boundary means
that a point can only belong to a single cluster at a time. If we move the point across a
boundary it changes cluster. A soft boundary means that a point can belong to multiple
clusters at once. The ownership of the point by clusters can then be described by a value.
For example, ownership percentage of a cluster rises when we move the point closer to
the cluster centroid and when the cluster with the highest value changes we can say that
the point has changed cluster.

Figure 2. Example of clustering using k-means and k = 3 (Landman 2016).

An example of partitional clustering can be seen in Figure 2. The clustering was made
with the k-means algorithm and choice of 3 clusters. The hard cluster boundaries are evi-
dent from this example even though they have not been drawn explicitly.

Next we will shortly consider two variants of the k-means algorithm. The first one is
the classic k-means with a hard boundary and the second is Fuzzy C-means which uti-
lizes a soft boundary.

7

k-means

k-means is one of the most common choices for a partitional clustering algorithm. It is a
good starting point because of its simplicity. It was first introduced by MacQueen (1967)
and it has many variants which allows its use in various tasks. Next we will shortly go
through the basic working principle of the algorithm.

Let Γ be a set of k disjoint clusters {C1, ...,Ck}. In k-means we wish to minimize the
distance between each data point and the cluster centroids. The cluster centroids are
β = {µ1, ...,µk}. And they can be calculated from the cluster points with

µc =
∑xi∈Cc

xi

|Cc|
, (1)

which basically just takes the average of all the points in the cluster as the centroid.

We can take the distance ||xi −uc|| to be the error and then minimize the sum-of-squared
error (SSE) (Greene et al. 2008). For SSE we then have

SSE(Γ) =
k

∑
c=1

∑
xi∈Cc

||xi −uc||2. (2)

Now that the problem has been formulated we can take a look at the algorithm itself. The
k-means is a greedy algorithm that makes locally optimal choices in hope of yielding a
globally optimal solution. This leads to the fact that the results depend on the choice of
initial cluster centroids.

One variant of k-means is the Batch k-means that is described in Algorithm 1. It is an
offline version of the algorithm, which means that it needs the whole data, or batch, to be
available at start time.

The description leaves room for modification in a few crucial places. First is the step
Create− Initial −Cluster−Centroids, which can be done by choosing random centroid
positions. The second step to complete is the choice of the termination condition. Termi-
nation condition is the condition that defines when the algorithm is finished. A few good
choices are for example: when the cluster centroids move less than δd , when number of
points changing cluster is less than δc and when the running time exceeds a threshold.

Fuzzy C-means (FCM)

The idea of FCM is very similar to that of k-means with the difference that it treats data
point ownerships as probabilities. The probabilities of ownerships are stored in the ma-
trix V . From the definition of probabilities we get ∑ j Vi j = 1. This simply means that the

8

Algorithm 1 Batch k-means
Create-Initial-Cluster-Centroids
while Termination condition is not fulfilled do
Compute and update the closest centroid for each point

for xi ∈ X do
Find min(||Xi −µc||) for 1 <= c <= k
Update xi to to closest centroid

end for
Update cluster centroids

for c = 1 : k do
µc =

∑xi∈Cc xi

|Cc|
end for

end while

probability that a point xi belongs in the clusters is 1.

The cluster centroids are then affected by both the locations and probabilities of the data
points and thus we should account for both in the equation. According to Cannon et al.
(1986) Equation 1 then becomes

µ j =
∑

n
i=1V m

i j xi

∑
n
i=1V m

i j
, (3)

which is similar to a probability weighted average. The effect of probabilities, or fuzzi-
ness, of the solution can be controlled by the exponent m > 1.

The probabilities should also affect the error function we are trying to minimize. This
leads to the fuzzy criterion function (Greene et al. 2008):

F(Γ,V) =
n

∑
i=1

k

∑
j=1

V m
i j ||xi −u j||2. (4)

The equation for updating the ownerships is still needed to adapt the k-means algorithm.
This equation is given by Cannon et al. (1986) and is as follows

Vi j =
1

∑
k
c=1

(︂
||xi−u j||
||xi−uc||

)︂ 2
m−1

. (5)

The actual FCM-algorithm solving this minimisation problem is described in Algorithm
2 and is very similar to the simple k-means. The main difference is just the equations used
for updating cluster centroids and ownership.

9

Algorithm 2 Batch fuzzy c-means
Create-Initial-Cluster-Centroids
while Termination condition is not fulfilled do
Compute and update the ownership of each cluster for each point

for vi j ∈V do
Update vi j according to Equation 5

end for
Update cluster centroids, k is the number of clusters

for c = 1 : k do
Update µc according to Equation 3

end for
end while

2.3.2 Hierarchical clustering

Hierarchical clustering attempts to form a tree structure of nested clusters (Greene et al.
2008). The idea is that some data might naturally be divided into hierarchies. Finding this
structure can help in understanding the data better.

One example of data that would work well with hierarchical clustering is animals. First
up one has the highest level: invertebrates, fish, birds, mammals and reptiles. The second
level that one could choose is the species and under that one could have breed and finally
the single animal. The actual hierarchy is larger and has been simplified for this example.
A slightly more comprehensive example is shown in Figure 3.

Figure 3. An example of the hierarchical nature of animal taxinomy. (OpenStax 2012)

The original clustering of animals has been made with years of work from biologists.

10

However, one does not usually have years to spend when doing data-analysis and a faster
way would be preferred. One would therefore wish to do this computationally and that is
what hierarchical clustering is for.

The algorithms implementing hierarchical clustering have two ways of solving the prob-
lem. First we have the agglomerative (bottom up) approach that starts with each data
point in its own cluster and then works to combine together. The second approach is divi-
sive (top down) which starts with all the points in a single cluster and works to divide the
cluster to several smaller clusters.

2.3.3 Clustering metrics

With clustering it is not obvious how one should asses the performance or accuracy of the
algorithms. One has to choose among different methods and use the appropriate metric
for the specific problem.

The methods can be divided into three general categories (Greene et al. 2008). First,
in internal validation the clustering methods are analysed by an evaluation function that
is given just the data points and the chosen clusters. Second, in external validation the
clustering methods are compared to a predefined reference result. The last category is the
stability-based methods where the idea is to measure the difference in results with multi-
ple executions of the algorithm.

Most of the evaluation functions used in internal validation use metrics that attempt to
maximize intra-cluster similarity and minimize inter-cluster similarity. A simple way to
start modelling this is to model these two separately.

For intra-cluster similarity we have the metric W (within-cluster sum of squares). The
equation for W is as follows

W =
k

∑
c=1

∑
xi∈Cc

d(xi,µc)
2, (6)

where d is the chosen distance metric and Cc is the c:th cluster. Then for the inter-cluster
similarity we have B (between-cluster sum of squares). The equation for B is as follows

B =
k

∑
c=1

|Cc|d(µc, µ̂)
2, µ̂ =

1
n

n

∑
i=1

xi, (7)

where µ̂ is the centroid of the entire dataset.

As the end result one wishes to obtain a single metric modelling both of these. One
way to combine them is the Calinski-Harabasz (CH) index (Calinski & Harabasz 1974)

11

where both of the metrics are normalized and then combined. For CH we have

CH =
B/(k−1)
W/(n− k)

, (8)

where a higher value corresponds to a better defined clustering.

One major advantages of the CH index is that it is relatively easy to understand – dense
and well separated clusters provide better results. Other advantages include that it is com-
putationally inexpensive.

2.4 Classification

In classification one has an input sample and wishes to assign a label to it. There are
numerous methods for classification and this section only covers a small subset of these
methods. Specifically methods which are related to outlier detection are preferred. This
is because some methods approach outlier detection by formulating it as a one-class clas-
sification problem.

Classification methods can be divided into two main groups. These groups are linear and
non-linear methods. The main difference between the groups is the form of the decision
boundary. Linear methods try to find a hyperplane that separates the classes. Non-linear
methods can form more complex decision boundary shapes and can be especially useful
when the dataset is not linearly separable.

One important section of classification is the ability to compare results from different
models to choose which one is the most suitable for our purposes. Metrics range from
simple ones like accuracy to more complex ones like Area Under Curve (AUC).

2.4.1 Linear methods

Linear methods attempt to find a solution that can separate classes by a hyperplane. All
linear classifiers do this, but the way in which they approximate weights for the plane can
vary.

After finding the hyperplane one can calculate the distance from a point to the plane
by

g(x) = w′x+w0, (9)

where x is the point, w is the weight vector and w0 is the bias (Duda et al. 2000). From
this metric it is simple to form a 2-class classifier. For such a classifier we have

f (x) =

{︄
1, w′x > T

0, otherwise
, (10)

12

where T is the threshold between the classes.

There are numerous ways to extend this to n-class problems. One of these is to train
n-classifiers and choose the class according to the classifier that has the highest value us-
ing Equation 9.

Some examples of linear methods are Logistic Regression and Support Vector Machine
(SVM). SVM is an interesting method as it can be made non-linear with the kernel trick.

2.4.2 Non-linear methods

Non-linear methods choose a different approach to the problem and do not need linear
separability. In these methods the decision boundary can take more complex shapes and
therefore, in theory, model the data more accurately. The downside is that this complex
shape can lead to problems with over-fitting.

An interesting example of a non-linear method is the k-nearest neighbour (k-nn) clas-
sifier. It simply classifies data points according to k of their nearest neighbours. It is
probably the simplest classifier one could use, but still the decision surface ends up being
non-linear.

When discussing non-linear one should not overlook deep learning methods such as Neu-
ral Network (NN) and Convolutional Neural Network (CNN), which have lately been un-
der a lot of attention. They are prime examples of non-linear methods and can represent
almost any form of decision surface possible and learn it if enough data is available.

2.4.3 Classification metrics

Classifiers are almost never perfect and the choosing between them is not easy. Therefore
one needs to understand the metrics available to make the correct choice. These metrics
are also important when choosing threshold values for the classifier.

The basic building blocks are the classified True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). These are shown in Figure 4. All posi-
tives is P = T P+FN and all negatives is N = T N +FP. These are then combined to get
scores like accuracy, precision, and recall. Each of these values is calculated with a set
threshold value T and is representative of that special case. (Fawcett 2006)

For accuracy we have the following

accuracy =
T P+T N

P+N
. (11)

13

Figure 4. The division between correctly and falsely classified positive and negative
samples.

Precision is a similar metric and the equation is as follows

precision =
T P

T P+FP
. (12)

Finally the equation for recall is

recall =
T P

T P+FN
. (13)

Other common metrics include True Positive Rate (TPR), which is identical to recall and
False Positive Rate (FPR). For FPR we have

FPR =
FP
N

. (14)

Receiver Operating Charasteristics (ROC) and AUC

When one needs to compare classifiers, or thresholds, it would be useful to have a graphi-
cal representation for the performance. One way to do this is to use the ROC curve. ROC
plots TPR with respect to FPR. (Fawcett 2006)

The ROC-curve makes it possible to determine the dependency between T and T PR
FPR . In

the case of suspicious transactions this allows us to find a optimal choice for T that max-
imizes TPR while keeping FPR as small as possible.

While ROC considers specific thresholds and classifiers it would be useful to have a single

14

metric to describe how good a certain classifier is for a problem irrespective of the chosen
T . That is where the AUC comes in. AUC is just the integral of the ROC-curve.

ROC is a very common metric for classifier quality. However, in the case of outlier de-
tection it suffers from the problem that the dataset is very imbalanced and the amount of
negatives is much larger than the positives. In this case it is advisable to use the Precision-
Recall (PR) curve and PR-AUC. (Davis & Goadrich 2006)

2.5 Dimensionality Reduction

The idea of Dimensionality Reduction (DR) is to prune away undesired attributes or di-
mensions to acquire better accuracy or performance (Greene et al. 2008).

DR methods can be divided into supervised and unsupervised. Also the methods can
either perform transformations on the features or simply choose an existing subset. Com-
mon approaches include Principal Component Analysis (PCA), Linear Discrimant Anal-
ysis (LDA), Self Organising Maps (SOM), and Information Gain (IG), which will be
discussed further in the coming subsections.

2.5.1 Supervised dimensionality reduction

Supervised DR is similar to supervised classification in that it uses the class labels to
make decisions. The difference comes from the fact that with DR one searches for the
dimensions that are most important for the classification.

Perhaps the simplest DR method is the IG. It is defined as expected reduction in en-
tropy when grouping the data in the selected dimension. A higher reduction in entropy
corresponds to a more important feature. This can then be used as the basis for feature
selection.

LDA uses feature transformation to achieve dimensionality reduction. The transforma-
tion performed is linear and can be expressed by the equation

x′i = Wk×pxi, (15)

where p is the number of features in the original data xi and k is the reduced number
of features in x′i and W is the linear transformation. In LDA the transformation matrix
W is calculated by maximizing between-class separation and minimizing within-class
separation. (Greene et al. 2008)

15

2.5.2 Unsupervised dimensionality reduction

Unsupervised DR is a very popular method for preprocessing datasets. It does not utilize
the class labels so the methods have to find other ways to assess how important certain
dimensions are. These methods are especially useful in outlier detection because class
labels are often hard or expensive to obtain.

PCA can be thought of as the unsupervised equivalent of LDA. It uses linear transfor-
mation as described in Equation 15. However, unlike LDA, it uses the variance of the
data to determine importance and chooses the dimensions with the largest variance. This
leads to a different solution for the transformation matrix W. (Greene et al. 2008)

Self Organising Map

Another way to do unsupervised DR is SOM. It is a variation of competitive learning,
which is unsupervised learning for artificial neural networks where nodes compete to rep-
resent the data. The advantage of SOM is the ability to produce a lower dimensional
layout of high dimensional data. This is especially useful for visualization in the case of
2D and 3D layouts. It was introduced by Kohonen (1998).

The basic idea is that one chooses the amount of neurons, or cluster centroids and the
underlying lattice structure. The neurons are then updated one data point at a time. The
neuron that is the most similar to the data point is updated the most and the update is
applied with a distance based damping factor to the surrounding neurons. This leads to
closely related clusters being physically close to each other in the lattice.

The most similar node is selected according to

c(xi) = argmin
j

(d(xi,m j)), (16)

where m j is the prototype vectors of the neurons and d() is the chosen distance metric,
often Euclidean. Updating the neurons is done by the following equation

m′
i = mi +αhic[x−mi], (17)

where mi is the node being updated, α is the learning rate and hic is the neighbourhood
function.

The neighbourhood function decreases the learning applied to the nodes away from the
selected node c. The decrease is calculated from the distance between the node being
updated i and the selected node c in the projection space. The equation is as follows

hci = exp

(︄
||ri − rc||2

2σ

)︄
, (18)

16

where σ is the dampening factor. It is often decreased with each iteration to obtain better
fine tuned results.

The algorithm for training SOM is described in Algorithm 3, where k is the number of
neurons chosen. Note that the neurons are effectively cluster centroids.

Algorithm 3 Self Organising Maps
Create-Initial-Lattice-And-Neurons
while Termination condition is not fulfilled do
Update the neurons for each point in data

for xk ∈ X do
Choose the most similar neruon c according to Equation 16
for i = 1 : k do

Update mi according to Equation 17
end for

end for
end while

17

3. OUTLIER DETECTION METHODS

This chapter provides more in depth descriptions of the candidate clustering and classifi-
cation algorithms.

Outlier detection is a broad subject and there are numerous methods available for solving
it. Each of these methods seems to also have an almost unlimited amount of variations. In
this chapter the idea is to explore some of the more commonly used methods and method
types. The methods will be discussed with regard to the specific properties of transaction
data.

As the name of outlier detection is not standard so is the case with the types of methods.
Different authors propose different divisions. Here we have used some of the method
types proposed by Domingues et al. (2018) and Pimentel et al. (2014). These types will
be discussed in the following sections.

There are many different methods but some concepts are shared between them. One of
these is the idea to formulate the outlier detection problem as one-class classification. In
this approach the data point x is not mapped to [−1,1] and is instead assigned z(x) ∈ IR.
This z-score is then used as a measure of outlierness and a threshold k is assigned as the
decision boundary between normal and abnormal data.

3.1 Probabilistic methods

Most probabilistic methods attempt to derive a density estimation for the normal class.
This estimate can then be used to define the probability of a data point belonging to it and
thus allowing us to get a value for the z-score. This can be achieved by determining the
probability that the sample was drawn from the learned density.

3.1.1 Gaussian mixture model

Mixture model is a model where the samples are assumed to be drawn from a mixture
of underlying densities. Gaussian Mixture Model (GMM) is a special case of mixture
models where the underlying densities are assumed gaussian. The idea of using GMMs
for outlier detection is not new and was already proposed by Aitkin & Wilson (1980).

18

Propability Density Function (PDF) for mixture models (Duda et al. 2000) is as follows

p(x|θ) =
c

∑
j=1

p(x|w j,θj)P(w j), (19)

where θ = {θ1, ...,θc} are the unknown parameters for the mixture density, x the data
point, c the number of classes and w j the state of the environment. The choice of c has
large influence over the reliability of the model and should be done with care.

Now when one chooses the underlying function as multivariate gaussian the set of param-
eters comes known and θi = {µi,Σi}. For the multivariate gaussian distribution (Reynolds
2009) one has the following

g(x|µ i,Σi) =
1

(2π)D/2|Σi|1/2 exp
(︂
−1

2
(x−µ i)

′
Σ
−1
i (x−µ i)

)︂
. (20)

This form poses one problem. It does not have an analytical solution for Maximum Like-
lihood Estimation (MLE). However, it is possible to look for a good solution iteratively
and this can be done with Expectation-Maximization (EM). In EM the idea is to form a
base model θi and use that to approximate θi+1.θi+1 is then used as the base model and
the process is repeated until some stopping criterion is met.

After the model is fitted it is possible to calculate z-score for a new data point xtest using
Equation 19. Then comparing this with k we can determine whether to point is generated
from the same distributions or not.

One downside of GMM is that it can only model data that is representable by Gaussian
distributions, the number of clusters needs to be known in advance and it does not work
with categorical data. However it is reasonably simple and the results can be understood.
It also provides reasonable outlier detection accuracy even with one-hot encoded cate-
gorical variables. Other features include that it has good training/prediction time, suffers
only moderately from dimensionality and the method is robust. (Domingues et al. 2018).

3.1.2 Dirichlet process mixture model

The Dirichlet Process Mixture Model (DPMM) is a non-parametric Bayesian mixture
model. The major benefits of it being non-parametric is that the number of clusters does
not have to be predefined. It utilizes the Dirichlet process, which is a generalized version
of a dirichlet distribution that has infinite dimensions.

In theory a DPMM could use any underlying distribution G0, but a Gaussian distribu-
tion is often chosen for simplicity. This variation is called the Dirichlet Process Gaussian
Mixture Model (DPGMM). The non-parametric nature and infinite dimensionality make
parameter estimation difficult, but Blei & Jordan (2006) propose a variational estimation
for the paramaters.

19

When using DPGMM the end result is similar to GMM but the number of clusters does
not have to be predefined. Overall the tranining/prediction time for DPGMM is low, it
handles the amount of features reasonably well and is robust (Domingues et al. 2018).

3.2 Distance based methods

Distance based methods use the assumption that outliers should, in fact, be located away
from the majority of the data. Some of the most common methods measure distances
between neighbours and derive the z-score from that. Another approach is to measure
distance to cluster centroids and use that to derive the z-score.

3.2.1 Nearest-neighbour distance

k-nn distance is perhaps the simplest possible way to detect outliers. The parameters that
one has to choose is the amount of neighbours to use, k and the distance-metric. The sim-
ple Euclidean distance is a good choice for many situations (Pimentel et al. 2014). The
z-score is calculated as the summed distance from x to k of its nearest neighbours.

Other similar methods use either the average, median or some other combination of the
k-nearest neighbours. All of these methods are, however, susceptible to the problem of
dimensionality and their performance drops when the dimensionality of the data is high.
This problem with dimensionality can be addressed with the methods described in Section
2.5.

Some algorithms implementing nearest-neighbour distance are described next.

Local outlier factor (LOF) uses the distance between the data point and the kth closest
neighbour. It is a simple method with high training/prediction time but seems to perform
well on real-world datasets (Domingues et al. 2018).

Subspace outlier detection (SOD) is a variation of nearest-neighbour methods that finds
shared points between the data point and its neighbours and utilizes subspaces to find the
outlier score z. In the study by Domingues et al. (2018) SOD was found to be the best
performing nearest-neighbour approach.

3.2.2 Clustering based distance

Clustering based distance methods utilize clustering as a sort of preprocessing step to
reduce the amount of comparisons between data points. After this it is possible to consider
just the distance between x and the cluster centroids.

20

3.3 Neural network based methods

Neural network based methods use the regression capability of neural networks. The net-
work is trained so that it can reconstruct a feature from the rest. This predicted feature is
then compared with the actual value and the error is used as a measure of the z-score.

3.3.1 Grow When Required network

Grow-When-Required network (GWR) is based on the SOM-network decribed in Sub-
section 2.5.2. GWR itself was first introduced by Marsland et al. (2002). It produces a
mapping from high dimensional input space to a lower dimensional output space. The
main benefit when compared with SOM is that the network can add new nodes when a
data point does not match any existing node with high enough accuracy.

The network consists of nodes with weight vectors and edges that connect nodes together.
The edges are created so that similar nodes are joined and form neighbourhoods. Both
nodes and edges can be added and removed during the training phase. A node is removed
if it has no edges.

New edges are formed between the node that best matches the input and the second best.
Each edge is associated with a age parameter that starts from zero. When a new input is
compared then the age of the edge between the best and second best nodes is set to zero
and for the other edges that are connected to the best node the age is increased by one.
Edges are removed when their age is over a threshold amax.

New nodes are added when the activity of the best matching node is under the thresh-
old at and the best matching node is not new. Deciding whether a node is new or not is
done by assigning a variable counter fc that decreases exponentially from 1 to 0 when the
node is updated. This variable can then be compared to a predefined threshold ht . The
way fc works gives the GWR a natural ability for novelty detection – if the best matching
node has a high fc then the input can be considered novel.

GWR has decent training/prediction time and resistance to dimensionality. However, it is
not robust to noisy data and has one of the worst outlier detection accuracies in the study
by Domingues et al. (2018). Despite these drawbacks one can find some use for GWR in
that it helps in understanding the data.

3.4 Domain based methods

Domain based methods try to produce a model that labels certain partitions of the feature
space as normal. When a data point is inside such a partition it is considered normal.

21

3.4.1 One-class support vector machine

One-Class Support Vector Machine (OSVM) is a special case of SVMt where the func-
tion y is trained to predict +1 in a region around the training points and −1 everywhere
else. Like other SVM methods OSVM is a linear method. However, it is possible to map
the data points xi ∈ X to a higher dimensional feature space Fi = Φ(xi) using the function
Φ. Calculating this function directly is not needed and the kernel trick can be used to
calculate the mapping.

The equation for the function y is

y(x,w) =

{︄
1, wT Φ(x)−ρ ≥ 0

−1, otherwise
, (21)

where w is the weight vector and ρ is the offset.

OSVM tries to find w and ρ that separate the training data from origin with the maxi-
mum margin. The optimization problem is as follows

min
w̸=0,ρ

=
1
2

wT w−ρ +
1

νN

N

∑
i=1

εi,

wT
Φxi ≥ ρ − εi, εi ≥ 0 ∀i = 1, ..,N,

(22)

where εi are the slack variables and ν ∈ (0,1] is the parameter acts as the upper bound for
the fraction of outliers and as the lower bound for the fraction of support vectors.
(Khan et al. 2014)

One of the key strengths of OSVM is that it performs well without significant tuning and
works well with datasets that contain only a few outliers. It has high training/prediction
time, but can cope with a large amount of features. However, it can be outperformed by
SOD in many real-world data sets (Domingues et al. 2018).

3.5 Other methods

Outlier detection is not limited only to the previously mentioned types. Also the division
of the types is constantly evolving and varies from one author to the next. This section
describes those methods that do not fit any of the preceding types.

3.5.1 Isolation Forest

Isolation Forest (iForest) is a unique way of doing outlier detection that was introduced
by Liu et al. (2008). It differs from the other methods described here in the way that it

22

does not produce a model for the normal class. Instead it assumes that outliers are few
and different. This assumption yields the property that outliers should be easier to isolate
than other points.

The iForest is an ensemble of slightly different Isolation Treet (iTreet). An iTree is a
Binary Search Tree (BST) structure with one test added to each internal node. The test
attribute q and split point p are chosen at random and the test is simply q < p.

The outlier score z is proportional to the average of the path length h(x) from the top
of the tree to the matching leaf node in each tree. This average E(h(x)) is then normal-
ized to obtain the final result. The normalization is done by using the average path length
for an unsuccessful BST search and is given by

c(n) = 2H(n−1)− (2(n−1)/n), (23)

where H() is the harmonic number and n is the number of data points. The anomaly score
is then

z(x,n) = 2−
E(h(x))

c(n) . (24)

The training and prediction of iForest are both good. The training complexity is O(tψlogψ),
where t is the number of trees and ψ is the subsampling size. The prediction complexity
is O(nt logψ), where n is the size of the dataset. (Liu et al. 2008)

The outlier detection ability of iForest is also among the best in the study by Domingues
et al. (2018). iForest had the best Precision-Recall AUC score and the second best ROC
AUC score.

3.6 Suitability for suspicious transaction detection

When implementing suspicious transaction detection there are a few crucial metrics to
consider. The algorithm should be both fast and use a small amount of memory. Having
a fast and memory efficient algorithm saves a lot of trouble in the implementation phase
as it can be executed without distributed computing.

Another important factor in the case of this thesis is that the methods should have tested
and proven implementations, preferably, in Sklearn. This limits the use of some algo-
rithms but is necessary to produce a stable implementation. From the methods described
in this chapter this prunes away GWR and SOD.

23

4. TOOLS AND ENVIRONMENT

This chapter contains a description of the tools and environments used in the empirical
phase. The tools are discussed in different levels of detail corresponding to their signifi-
cance.

In particular the tools used for data exploration and model development, deployment and
evaluation are described. In addition some tools regarding application development are
also discussed. The choice of tools is limited by the environment in which the data resides
and connected applications are running. Security demands limit the use of data outside
protected environments, which forces certain choices about development.

In addition to the tools used this chapter also covers the environment in which the anal-
ysis is done. In this case the data source containing the transaction data as well as the
final production environment both reside in Amazon Web Services (AWS). This cloud
environment is a logical choice for such data as the data flows are large and the required
computation power can vary. Using a cloud based environment enables scaling and or
extending the services to fit our needs.

4.1 AWS

AWS is a cloud service provider that allows users to create scalable services. The pos-
sible uses include web servers, storage, analytics, large-scale processing and so on. The
available services range from serverless applications to full on virtual servers. AWS is
comprised of smaller services at various abstraction levels. In this thesis we limit our
discussion to the components that are essential for our problem. (Amazon 2019c)

AWS has a few core components that the rest of the services utilize. The first impor-
tant for this thesis is Simple Storage Service (S3). S3 is a cloud based storage service
that can be used to store and access files (Amazon 2019b). The second common compo-
nent is the Elastic Compute Cloud (EC2). EC2 is used to create and use cloud computing
resources directly (Amazon 2019a).

4.1.1 Snowflake

Snowflake, while not an AWS service, can run on top of AWS. Snowflake is a distributed
data warehouse designed for the cloud. In this thesis it serves as the data source for train-
ing data. (Snowflake 2019)

24

Snowflake has a built-in web console that can be used to preview the data and execute
Structured Query Language (SQL) queries. This is an useful property for early data ex-
ploration.

One of the main features of the architecture of Snowflake is the separation of storage
from processing units. This allows for a large amount of concurrent users and allows the
choice of different processing power for different user levels.

Overall Snowflake helps in managing the huge amounts of data generated by banking
transactions. The Data Warehouse (DW) it provides is essential for this thesis to be possi-
ble. All of the data from different underlying systems can be aggregated in one place and
then easily accessed from anywhere.

4.1.2 Amazon Sagemaker

Amazon Sagemaker is a machine learning service provided by AWS. Its main use is to
help build, train and deploy models to hosted environments. It provides some ready made
algorithms that have been optimised for distributed systems. It also features a Jupyter
notebook service that enables the use of an integrated Jupyter notebook without the need
for additional servers. (Amazon 2019d)

Training and deploying models in python can be done using SageMaker Python SDK
(Software Development Kit (SDK)). The SDK provides abstractions for Amazon Sage-
Maker which simplifies the use of normal machine learning libraries in order to provide
a simple Application Programming Interface (API) for all of them. The abstractions in-
clude estimators, models, predictors, and session. Session can be used to fetch the re-
quired AWS Identity and Access Management (IAM) execution role from the SageMaker
instance to perform AWS operations. The other abstractions will be explained in the fol-
lowing subsections. (Amazon 2019e)

SageMaker Python SDK uses Docker containers to run the user provided python scripts.
It is possible to build your own containers but often it is simpler to use the existing ones.
This, however, limits the user to the following additional libraries:

• sklearn

• sagemaker

• sagemaker-containers

• numpy

• pandas

• Pillow

• Python (2.7 or 3.5)

25

For most applications this set of libraries is enough. Next we will look further into using
SageMaker Python SDK to train and deploy Sklearn models.

Training

Estimators provide an abstraction for training. There exists an estimator for Sklearn in
the SDK that simplifies training of Sklearn models. The Sklearn estimator is given as
parameters a python script, an AWS EC2 instance type and an AWS IAM role. It is also
possible to define hyper-parameters and other optional arguments.

After initializing the estimator one can call fit with the training and test data as parame-
ters to start the training process. The training and test data should be provided as a dict
of Uniform Resource Identifiert (URIt) to S3. The training data can be gathered to S3
separately from the training script before calling fit. Using the SDK call to fit will make
the data available to the training script. After training the provided script should save the
trained model as output to S3. A simplified example is shown in Listing 1.

import numpy as np

import sklearn

import argparse

import os

if __name__ ==’__main__’:

Parse the arguments

parser = argparse.ArgumentParser()

hyperparameters sent by the client are passed

as command−line arguments to the script.
parser.add_argument(’−−exampleHyperParameter’, type=int, default=50)
parser.add_argument(’−−modelname’, type=str, default="model")
Data, model, and output directories

parser.add_argument(’−−output−data−dir’, type=str,
default=os.environ.get(’SM_OUTPUT_DATA_DIR’))

parser.add_argument(’−−model−dir’, type=str,
default=os.environ.get(’SM_MODEL_DIR’))

parser.add_argument(’−−train’, type=str,
default=os.environ.get(’SM_CHANNEL_TRAIN’))

args, _ = parser.parse_known_args()

modelname= args.modelname

26

Load the data

Find the files

train_file_paths = [

os.path.join.(args.train, file) for file in os.listdir(args.train)

]

Read the files and convert to features and labels

train_x = ... #features

train_y = ... #labels

Train the classifier

clf = KNeighborsClassifier()

clf.fit(train_x, train_y)

##Save the model

joblib.dump(clf, os.path.join(args.model_dir ,

"{}.joblib".format(modelname)))

Listing 1. A simple training script. Modified from Amazon (2019e) examples.

Model deployment

After training one can use deploy on the estimator to load and deploy the model to a
SageMaker Scikit-learn Model Server. Two components of the server are customizable:
Model loading and Model serving. (Amazon 2019f)

Model loading implementation should be provided in a python script and must contain
a definition for the function model_ f n(model_dir). The function should deserialize the
saved Sklearn model and return a ready-to-use one. An example implementation is pro-
vided in Listing 2.

from sklearn.externals import joblib

import os

def model_fn(model_dir):

clf = joblib.load(os.path.join(model_dir , "model.joblib"))

return clf

Listing 2. Loading the model. Sample from Amazon (2019f).

Model server

The next part is model serving. The serving is a three part process which consists of input
processing, prediction and output processing. Each of these functions should be provided

27

in the python script.

Input processing handles the input received by the SageMaker InvokeEndpoint API. The
idea is to deserialize the input to a form the prediction phase can understand. The function
input_ f n(request_body,request_content_type) receives request_body as a byte buffer
and request_content_type as a python string. The default implementation of input_ f n
for Scikit-learn model server can handle JSON, CSV and NPY encoded data and trans-
form them to NumPy arrays. A simplified version for this function is described in Listing
3.

import numpy as np

Input processing , return a numpy array

def input_fn(request_body , request_content_type):

if(request_content_type == ’application/X’):

Deserialize depends on the actual type

data=deserialize(request_body)

Load the data

array = np.load(data)

return array

else:

In case the request_content_type is

unrecognized

pass

Listing 3. Simplified version for input processing.

Prediction phase and the prediction function predict_ f n(input_ob ject,model) is given
as input the output of input_ f n and the model from model_ f n. It then uses the model to
calculate the required attributes and returns them to the next phase. A simplified version
for this function is described in Listing 4.

import numpy as np

import sklearn

Handle the actual prediction

receives the array from input_fn

and model from model_load

def predict_fn(input_object , model):

pred = model.predict(input_object)

return np.array(pred)

Listing 4. Simplified version for predicting with Sklearn model.

28

Output processing out put_ f n(prediction,content_type) receives the output of predict_ f n
and the requested content type from the InvokeEndpoint API. It should then provide the
implementation for serializing the prediction to the requested type and return the byte ar-
ray. Default implementation exists for JSON,CSV and NPY. A simplified version for this
function is described in Listing 5.

import numpy as np

Handle serialization of prediction to the

requested type

def output_fn(prediction , content_type):

if(content_type == ’application/X’):

Seriliaze depends on the actual type

byte_array=serialize(prediction)

return byte_array

else:

In case the content_type is

unrecognized

pass

Listing 5. Simplified version for output processing.

Using the model

Sagemaker provides two main ways of using models. These are an online API endpoint
and a batch transform job.

The online API endpoint can handle requests and respond in almost real time. This is
useful for cases where you have for example a mobile application that sends in pictures
for classification. This option is usually always waiting for new requests.

The other option is creating a batch transform job that takes a large amount of data at
once, processes it, and submits the output in, for example, S3. It utilizes the API end-
points in doing this but starts and deletes them automatically.

A sample code for both of these is provided in Listing 6, this also provides the sample for
creating the estimator.

from sagemaker.sklearn import SKLearn

Train my estimator

sklearn_estimator = SKLearn(entry_point=’train_and_deploy.py’,

train_instance_type=’ml.m4.xlarge’,

framework_version=’0.20.0’)

29

sklearn_estimator.fit(’s3://my_bucket/my_training_data/’)

1. Create an API endpoint

Deploy my estimator to a SageMaker Endpoint and get a Predictor

predictor = sklearn_estimator.deploy(instance_type=’ml.m4.xlarge’,

initial_instance_count=1)

Data should be a type supported by input_fn

Response should be supported by output_fn

response = predictor.predict(data)

Shutdown the endpoint container and delete the configuration

predictor.delete_endpoint()

Delete the model

predictor.delete_model()

2. Create a batch transform

Create the transformer from the estimator

Transformer also handles creating and closing endpoints

transformer = sklearn_estimator.transformer(instance_count=1,

instance_type=’ml.m4.xlarge’)

Apply the transform

transformer.transform(’s3://my−bucket/batch−transform−input’)
The transform output will be saved to s3

Listing 6. Sample code for creating an API endpoint or batch transform job for an
sklearn model. The sample is modified from Amazon (2019e) examples.

4.2 Development environment

Due to security concerns about the data it can not be brought to the local development
environment. However, it is possible to explore and use the data directly in the AWS en-
vironment. This is made possible by Amazon Sagemaker and Jupyter notebook.

This means that all the model development is done directly in AWS and only very limited
local development is possible. Jupyter notebook can connect directly to Snowflake and
fetch the necessary training data. This scripting environment is then used to visualize and
analyze the data.

Jupyter notebook also contains a git integration so some common software development
methods like feature branches and pull requests can be utilized.

30

The upside of this sort of a development environment is the relatively easy transfer to
production use. The same models that have been developed in Jupyter Notebook with
numpy and Sklearn can be transferred to production use with the help of Amazon Sage-
Maker as described in Section 4.1.2.

4.3 Data processing tools

Data processing consists of a few things. One of these is data exploration. Simple pre-
views and visualizations of the data, random samples and whatever possible to get to
know the data in question. This is usually good a starting step before starting the num-
ber crunching. The number crunching is where most of the value of data-analysis comes
from, but it is significantly harder without understanding the data. Both of these have
their own tools and next we will go through some of them.

4.3.1 Backbone

As said before the chosen environment was Jupyter Notebook in AWS. Furthermore the
choice of kernel was Anaconda and Python3. Now some justification for these choices as
they determine further tools that can be used.

Python is the programming language of choice for many data scientists as it is easy to use
and has comprehensive libraries available for almost anything. It can handle the dataflow
process from start to finish. It can also be used to create the actual application using the
models. This makes it an ideal starting candidate for data processing.

Jupyter notebook contains a set of pre installed tools. These include most of the required
libraries but it is also possible to download and install additional libraries using pip. It is
also easy to use and allows for simple workflow. Using Jupyter notebook in AWS is also
simple because it is provided as a service by SageMaker.

4.3.2 Data exploration

In the case of this thesis there are a few different aspects of data exploration. The data can
be gone through in detail using Snowflake web-console and SQL-queries. This method is
great for early exploration and can give a general idea of the data structure and an idea of
scope. However, as there is little to no visualization, it is almost impossible to find trends
or distributions in the data.

31

Also the possibility to go through the data with business specialists was available. This
helps give understanding about certain attributes and how they could be transformed to
more suitable types, mostly from categorical to numeric. Also specialists can usually
point to attributes that might be worth spending time on. This, while not a computer pro-
gram, can be considered one of the most valuable tools when doing data exploration.

Finally we come to visualization. Visualization is crucial in data exploration and model
development as it gives insight to the trends and distributions in the data. Visualization
is also useful in evaluation as it should often be possible to find a visualization where the
output of the algorithm can be seen to make sense.

One of the tools used for visualization is pandas as it is already existing in SageMaker and
thus can be used to plot graphs when training and deploying the final model. Pandas has
functionality beyond just visualization and the DataFrame it provides is an useful tool in
data handling.

Other visualization tools include the matplotlib-library. Many visualization tools in python
are built on top of matplotlib and aim to either expand it or make it easier and faster to
use. As an example the Figure 9 is made using matplotlib.

4.3.3 Data analysis

Sklearn is perhaps the most important and most used machine learning library when one
is not dealing with deep learning. All the algorithms chosen for further exploration have
existing implementations in Sklearn. It is the basic building block for most machine learn-
ing applications.

Numpy is a math library for python that allows for example fast vector calculations and
matrix operations. It is especially useful in the preprocessing step and possible post pro-
cessing. It is the go-to toolbox when modifying data. It also provides a way to calculate
statistics from the data.

Pandas is used for both visualization and data analysis. For data analysis the DataFrame
object is used. It provides functionality to explore, modify, and transform data. It provides
easy statistics from the data and allows the user to perform group and join operations on
the data.

32

5. IMPLEMENTATION

This chapter provides an overview of the system architecture and data-flow pipeline. After
these have been covered the chapter goes into more detail about the used dataset and its
features. These are followed by discussion about the preprocessing and normalization
steps done to the data. The training section focuses on the training of multiple models
and hyper parameter search. The final section describes how the model evaluation has
been implemented.

5.1 Architecture and data-flow

This section provides an overall view of the different parts and subsystems that make
up the whole. The system is divided into two parts: model experimentation and model
deployment. The architecture for model experimentation is relatively straightforward so
most of the discussion will be on the actual model deployment.

5.1.1 Architecture of the high level system

This system, as most systems, is not meant to be operating independently and so has
dependencies on other systems. In fact, what is created in this thesis is just one small
component for a larger system.

The high level system is called the main program. A very simplified version of this main
program is provided in Figure 5.

The part that is being created is just a single rule that takes in transactions and outputs
whether they are suspicious or not. The main program runs multiple rules to produce a
matrix of k× n, where k is the number of transactions and n the number of rules. Some
further actions are taken based on this matrix but they will be omitted in this thesis.

All the rules have to implement a single interface, here called the transaction flagging
interface. This makes it simple to iterate over them in the main program. Using this
interface also makes it easy to add and remove rules when necessary.

33

Figure 5. An overview of the architecture of the high level system.

34

5.1.2 AWS Implementation architecture

In addition to the dependency on the larger system this system will be built on AWS.
This gives us the opportunity to use SageMaker for model deployment, but also slightly
restricts architecture choices. The AWS architecture is described in Figure 6.

Figure 6. An overview of the AWS architecture and SageMaker.

Basically the process of training and deploying a model consists of three parts:

1. Fetch the data from Snowflake in Jupyter notebook and upload it to S3.

2. Create and train an estimator using SageMaker

3. Deploy the estimator and receive the predictor from SageMaker

35

SageMaker creates the Amazon EC2 instances and provides the parameters and data to
the user provided training script. The training script is then run on the EC2 instance. The
script loads the data and actually performs the necessary steps to train and save the model.

When deploying SageMaker again creates Amazon EC2 instances and loads the model.
The model can then be run as a batch job, saving the results to S3, or a predictor can be
created that can be accessed for online use.

5.1.3 Model training

Model training is visible in the AWS architecture description. However, as it is essential
for the performance of the program it is explained in further detail here. Also the AWS
subsection focuses more on the components and moving data between them.

Figure 7. An overview of the model training process

Model training is the process of taking a machine learning model and adapting it to do
inference based on a set of training data. This process is described in Figure 7.

36

The starting point of training is fetching the data. In this case it means fetching the
data from Snowflake using an SQL query. The first part of data-processing is writing a
query that returns all the useful columns as well as joins the tables containing necessary
information. The data can be in either one dataset or multiple ones.

After fetching the data might not be in a format that is suitable for training. Most ma-
chine learning models do not allow for nested data and this has to be taken into account.
This nesting has to be unravelled and this can be done by using additional statistics like
averages on the nested values. Also the data format has to be changed to be compatible
with the used models. This process is described as data transformation.

Now that the data is in a format that can be modified using conventional tools like Numpy
and Sklearn we can start preprocessing the data. This process handles further improve-
ments on the data quality. Features are normalized and depending on the model the cate-
gorized features can be one-hot encoded. Also it is possible to use DR algorithms. This
step should also clean the data, if possible, so that null and empty or faulty values are
handled before training.

The actual training phase is often rather simple. The chosen model is trained using the
supplied training algorithm and chosen hyper-parameters. Changing between models is
often simple and iteration is needed to choose the right model and parameters.

The model evaluation phase is useful when we are iterating over a number of models
and wish to compare their results. We evaluate the performance of our model with sepa-
rately provided data and possibly save plots and metrics from each model. It is possible
to create a condition that if the trained model does not perform better than the previous
best one then the model is not saved.

The last phase is saving the trained model so that it can be accessed later.

5.1.4 Outlier detection rule

The end result of this thesis should be a component that implements the transaction flag-
ging interface. The flagging process should be done using machine learning approaches.
The architecture for this component is described here and can be seen in Figure 8.

Most notably it is divided into three parts: scheduled model training, the saved model and
the outlier detection rule. The process for model training was described in Subsection
5.1.3 and all that has been added is a scheduler to run the training at regular intervals. The
saved model is saved to and loaded from S3 as described in Subsection 5.1.2 and it is the
only dependency between the training and utilization.

Here the architecture for the outlier detection rule is drawn as being online. However

37

Figure 8. An overview of the implementation for the transaction flagging interface
provided by the outlier detection rule.

the final implementation details may differ from this. The steps needed for outlier detec-
tion are similar to model training. In this case the preprocessing means modifying the
input data so that it undergoes all the same transformations as the training data. This may
require saving additional models for label encoding and other transformations.

This same rule architecture is meant to be used with different models. This means that the
prediction result is not always directly comparable to the outlier score. An additional step
is then needed to extract the outlier score from the model, normalize it to be comparable
to other models and then apply a threshold to decide whether to flag the input.

38

5.2 Dataset

This section covers the dataset used and the transformations and preprocessing steps
made. Some details about the data and the chosen features are confidential and will not
be described here.

The dataset consists of a pre-sampled set of transactions that has been gathered over a
period of time. The data used is from a production environment of a Nordic bank. The
amount of rows in the dataset is in the millions.

5.2.1 Available information

The set consists of two data-tables. These are the customer and transaction tables. The
relationship between them is one-to-many.

The data descriptions provided here will use the following definitions for type. A link
type feature is used to combine multiple tables or in grouping operations. A categorical
type feature is a feature that can only take values from a discrete set of pre-defined val-
ues. The numeric type features are features that can take numeric values, continuous or
discrete, and that preferably has the ability that similarity is relational to |x−x′|.

The features in customer table are described in Table 1. This table can be linked to
the transactions table via the CustomerId field. By joining the two tables we are able to
provide additional background information for the transactions.

Name Datatype Type
CustomerId Varchar Link
Nationality Varchar Categorical

Date Date Numeric
...

Table 1. Subset of features from customer table

The second table is the transaction table, which is described in Table 2. This is where
most of the information regarding the transactions are stored. It is quite natural to group
these transactions using the CustomerId-field and calculate customer specific statistics to
use as additional features. More detailed description of these statistics will be provided in
the following subsections.

5.2.2 Feature engineering

Feature engineering is the process of deriving new features from combinations of exist-
ing ones. In some applications of machine learning it can be considered to be the most

39

Name Datatype Type
CustomerId Varchar Link

Country Varchar Categorical
Date Date Numeric

Amount Float Numeric
Type Varchar Categorical

...

Table 2. Subset of features from transaction table

important factor in the performance of the model.

One approach to doing this is using statistics. In this case one can group the transac-
tions by the CustomerId and calculate for example the mean, standard deviation, and per-
centiles of different features. One could then use the following as a feature DeltaAmount =
Amount −µ(Amount)customer. An example of this is shown in Figure 9.

Figure 9. Plot of transaction amounts and the corresponding DeltaAmount feature. The
means are u1 for customer 1 and u2 for customer 2.

Similar procedure can be used for other features. It would be possible to calculate the
average frequency of transactions for a customer. This could be then compared to the
time between the current transaction and the last one.

Feature engineering is not limited to using statistics and some problems and models
might benefit from using different combinations of the features. In general these com-
binations could be of any form. However, for example one could use the equation Vi =

(∑ind∈C Vind)
n , where C is the set of features being combined, Vi is the new feature, and

n is chosen freely.

In suspicious transaction detection it is paramount to spend enough effort in feature engi-

40

neering. The initial information known of transactions is not enough for algorithms to be
able differentiate between them. It is a time consuming process of trial and error that is
hard to automatize.

When doing feature engineering for suspicious transaction detection one can start with
the question: "Is this transaction somehow unique with regard to other transactions of this
customer, other transactions of this customer and type, other transactions of this type and
all other transactions?". This question is what inspired many of the features used in this
thesis.

5.2.3 Feature encoding

Most machine learning models can only work with numerical data. However, in real
world data it is very common to have features that are not numerical or their numeric
values should not be directly compared. In order to take advantage of the information in
these features they have to be encoded to a more suitable format.

One-hot-encoding is perhaps the most commonly used way to encode categorical vari-
ables. The idea behind it is simple. The categorical variable is encoded as a 1×n-vector
where n is the number of values the categorical variable can take. Each point in the vector
corresponds to a different value. To represent a value the vector is filled with zeros but
the component corresponding to the value is assigned 1.

5.3 Creating the model

This section covers the application of the candidate models to the available dataset. The
first subsection covers the common preprocessing steps made to the data. The second
subsection explains how this preprocessed data is then fed to a selection of models. These
models include clustering and outlier detection methods. The third subsection provides
insight into evaluating the model predictions.

5.3.1 Preprocessing

To simplify the process all models are fed the same data. This allows us to write a single
preprocessing script that can be run once. The processed data can then be fed to the mod-
els.

The main tools for preprocessing were pandas and numpy. These are described in more
detail in Subsection 4.3.3. The preprocessing steps done are shown in Listing 7.

import pandas as pd

import numpy as np

41

The data is loaded from Snowflake/S3 to a pandas dataframe

unprocessed_data=pd.DataFrame(data=raw_data)

Only certain features are selected

data=unprocessed_data[[’AMOUNT’,’V1’,...’VN’]]

Some feature engineering can be done here

data=data.assign(AMOUNT_DELTA=0)

Amount mean has to be calculated before this

data[’AMOUNT_DELTA’]=data[’AMOUNT’]−data[’AMOUNT_MEAN’]

Use pandas to one−hot encode categoricals
data_dummies=pd.get_dummies(data)

Fill the missing values with 0

data_dummies=data_dummies.fillna(0)

Normalize certain columns

normalize_cols=[’AMOUNT’,’AMOUNT_DELTA’,’V1’,...,’VN’]

for col in normalize_cols:

col_data=data_dummies[col]

mean_col_data=np.mean(col_data)

max_col_data=np.max(col_data)

min_col_data=np.min(col_data)

data_dummies[col]=col_data.apply(

lambda x: (x − mean_col_data) / (max_col_data − min_col_data)

)

Listing 7. Preprocessing steps done to the data using numpy and Pandas.

5.3.2 Training

Training the models is relatively straightforward and is mostly handled by Sklearn. The
model constructor is given the hyper-parameters and then method fit is called.

Sklearn provides an unified API for clustering and outlier detection models that makes
it possible to iterate over models in a for-loop. While the API tries to be general there are
differences between the models and not all information is available on every model.

When doing clustering with Sklearn the end result is a vector that has the index of the
cluster centroid as the value for each data point. Some models also allow the extraction
of the centroid locations. Clustering with k-means is shown in Listing 8.

42

from sklearn.cluster import KMeans

kmeans=KMeans(n_clusters=3,random_state=0).fit(data_dummies)

k_pred=kmeans.predict(data_dummies)

Listing 8. Using k-means with 3 cluster centroids to cluster the data.

With outlier detection we are often interested in two values. The prediction, outlier or
normal, and the outlier score z. Not all outlier detection models provide z. With Sklearn
the predict call returns a vector with -1 for outliers and 1 for normal points. In Sklearn
0.20 it is possible to get the z-scores using score samples. Outlier detection with iForest
and Sklearn is shown in Listing 9.

from sklearn.ensemble import IsolationForest

model = IsolationForest(contamination=0.01, random_state=2019)

model.fit(data_dummies)

pred = model.predict(data_dummies)

This can be changed to model.score_samples() in Sklearn 0.20

score = model.decision_function(data_dummies)

Listing 9. Using IsolationForest with 1% of outliers to predict and score outliers.

The models are trained with unsupervised methods and this poses another problem. It
is hard to validate the results and compare the models. This makes additional training
optimizations like hyper-parameter search hard to implement.

5.3.3 Evaluation

Model evaluation in unsupervised training is not simple and definitive evaluation might
be impossible. However, some estimation should be possible. Also it is possible to look
for cases that are certainly wrong or that should be right.

In suspicious transaction detection we have approximate knowledge of how many data
points should be labelled as outliers. Also there exists some knowledge about the trans-
actions that has been withheld from the training algorithms.

When combining this prior knowledge with visualization one can check how the points
in the vicinity of data with prior knowledge behave. Also certain features in the data are
more important than others and plotting the results with regard to those features can tell
whether the model is on the right track.

43

Visualization script for clusters is provided in Listing 10.

import matplotlib.pyplot as plt

Scatter plot of k−means clustering
different clusters with different color

fig, ax = plt.subplots()

for i in range(0,3):

if(i==0):

color=’red’

elif(i==1):

color=’blue’

else:

color=’green’

inds=k_pred==i

x=data[’V_’][inds]

y=data[’V_’][inds]

ax.scatter(x, y, c=color, label=color,

alpha=0.3, edgecolors=’none’)

ax.legend()

ax.grid(True)

plt.savefig("cluster.jpg")

plt.show()

Listing 10. Plotting script for clustering with 3 cluster centers.

The visualization results for k-means clustering on the transaction data are shown in Fig-
ure 10.

Visualization script for outlier detection is shown in Listing 11.

import matplotlib.pyplot as plt

Scatter plot of the outliers vs normal points

Outliers are displayed as red

fig, ax = plt.subplots()

for i in [−1,1]:
if(i==−1):

44

color=’red’

elif(i==1):

color=’blue’

inds=pred==i

x=data[’V_’][inds]

y=data[’V_’][inds]

ax.scatter(x, y, c=color, label=color,

alpha=0.3, edgecolors=’none’)

ax.legend()

ax.grid(True)

plt.savefig("outlier.jpg")

plt.show()

Listing 11. Plotting script for outlier detection.

The corresponding visualization for iForest applied to transaction data is shown in Figure
11.

45

Figure 10. Plot of k-means clustering with 3 cluster centers.

Figure 11. Plot of IsolationForest outlier detection results. Outliers are shown as red
and normal points as blue.

46

6. RESULTS

This chapter covers the most important results from different methods. Clustering results
are considered separately from outlier detection.

As described in Subsection 5.3.3 the evaluation of unsupervised learning methods is not
straightforward. In the case of unlabelled transactions we just have to focus on the at-
tributes that we can compare. These include running time with different amount of sam-
ples, CH-index for clustering, and visual comparison of plots.

Additional information, like amount of outliers classified per model, are available but
will be withheld. Also based on the results described here some predictions will be se-
lected for expert review and labelled. After this labelling it will be possible to produce
more meaningful comparison between the algorithms. However, such a review is time
consuming and the findings confidential. Furthermore it is worth noting that a globally
optimal solution for this problem does not exist and the choice of the final model is a
business decision.

The clustering and outlier detection methods were run on AWS hosted EC2 instance of
type ml.t2.xlarge with 16gb ram and 4 vCPU:s. Using this instance type limits some ap-
proaches due to the algorithms running out of memory. However the dataset was also
sampled to make it easier to work with. This scaling was done so that when using a larger
instance then the whole dataset should compute in a decent time and have no memory
problems.

6.1 Clustering

The results provided in this section have been calculated using multiple different sampling
parameters to provide insight on how the methods scale.

Name CH-Index / N Running time
k-means 4,41 1min 3s
GMM 1,23 1min 7s

DPGMM 1,08 10min 10s

Table 3. Clustering results for different methods at a smaller amount of samples. The
amount of samples was N ≈1 000 000 and features f = 10.

The results for the initial clustering with a lower amount of samples are shown in Table
3. In this case the DPGMM ran for 10 minutes and ended with the warning that it did not
converge. Both k-means and GMM had no issues in performance.

47

Name CH index / N Running time
k-means 4,54 1min 47s
GMM 1,24 3min

DPGMM 0,78 23min 8s

Table 4. Clustering results for different methods at a moderate amount of samples. The
amount of samples was N ≈2 000 000 and features f = 10.

When increasing the amount of samples k-means starts to differentiate as the fastest one
of the three. At this point GMM is starting to slow down, but it is still fast enough to be us-
able. DPGMM was still not converging at 20 minutes. These results are shown in Table 4.

k-means was the best performing method with both sampling parameters and had both
the fastest time and the best CH index. Results for GMM and DPGMM could be im-
proved with better parameter tuning. However, with these results we can conclude that it
is enough to perform outlier detection only on GMM instead of both GMM and DPGMM.
This is because GMM outperformed DPGMM in both running time and CH index.

6.2 Outlier detection

In the case of outlier detection without a test set of labelled samples it is difficult to
provide a good estimate for the accuracy of the methods. This is why this thesis focuses
on comparing the running time and only limited exploratory comparison is made. The
running times for the algorithms are provided in Table 5.

Name Running time
iForest 2min 1s
OSVM -
LOF 4h 21min

GMM 1min 37s

Table 5. Outlier detection running time for different methods. The amount of samples
was N ≈1 000 000 and features f = 10.

From these results it is evident that even the downsampled size of N is too much for some
of the algorithms. These include LOF which after parameter tuning to reduce training
and prediction time ended up with a running time of over 4 hours. The other method that
suffered from the large amount of samples was OSVM. With the given setup it failed to
complete at all.

Both iForest and GMM provide a fast running time regardless of the data size. This makes
them ideal for suspicious transaction detection. iForest has less room for parameter tuning
but from exploration and visualizations the results seem good. GMM is a method that is
really dependent on choosing the right parameters, but when the parameters are found it
provides good and explainable results.

48

6.3 Credit card fraud detection

The open dataset in Kaggle by MachineLearningGroup-ULB (2018) makes it possible to
further test the capabilities of the chosen algorithms with labelled credit card transaction
data. This, however, is not directly comparable with the results from the different features
and data used in other parts of this thesis. Despite of this shortcoming it can be used
to obtain useful metrics for the models. These metrics should provide insight into the
methods and also determine whether outlier detection is a suitable method for identifying
fraud.

The methods chosen for this experiment were GMM and iForest based on their perfor-
mance in the previous sections. Both of them are unsupervised and their thresholds were
not optimized with regard to precision or PR AUC to test whether it would be possible
to choose an appropriate threshold T based on the known percentage of frauds. In this
dataset it was 0.172%.

The dataset was trimmed down and only two features: V14 and V17 were used. The
scatter plots for the detection results are shown Figure 12 and Figure 13. When comparing
these to Figure 14, which has the actual frauds, it is possible to see that the methods have
found the majority of the fraudulent cases.

Figure 12. A scatter plot of detection results for iForest on the credit card fraud dataset.

49

Figure 13. A scatter plot of detection results for GMM on the credit card fraud dataset.

Figure 14. A scatter plot of actual frauds in the credit card fraud dataset.

50

Name Precision (fraud) Recall (fraud) PR AUC
iForest 0.60 0.60 0.57
GMM 0.70 0.66 0.66

Table 6. Results from classifying credit card frauds with outlier detection methods.

The labelled datasets made it possible to calculate more meaningful metrics for the meth-
ods. These results are shown in Table 6. The precision on both of the methods is promis-
ingly high as the methods had no prior knowledge of the transactions being fraudulent.
The recall is less than would be ideal, but it can be increased by adjusting the threshold
values. The dependency between precision and recall is shown in Figure 15 and Figure
16. This can be used to guide the business decision of choosing the threshold.

Figure 15. The precision-recall curve for iForest on the credit card fraud dataset.

Figure 16. The precision-recall curve for GMM on the credit card fraud dataset.

Overall both GMM and iForest perform well in credit card fraud detection and outlier
detection can therefore be considered a good solution to this problem. The difference
between the quality of the methods is small but in favour of GMM.

51

7. CONCLUSION

The goal of thesis was to find and test suitable outlier detection methods for suspicious
transaction detection. At first the thesis approached the subject from a more theoretical
viewpoint. Suitable machine learning techniques and metrics were discussed and finally
a set of plausible outlier detection methods were presented.

These theoretical methods were narrowed down by the fact that we required the algo-
rithms to have stable implementations in Python. Finally these algorithms were run on
Jupyter Notebook in AWS and their results and running times could be compared.

Name Implementation Running time Not redundant PR AUC (fraud)
GWR N - - -
SOD N - - -

OSVM Y N - -
LOF Y N - -

DPGMM Y Y N -
GMM Y Y Y 0.66
iForest Y Y Y 0.57

Table 7. Comparing and filtering the potential detection methods using the checks
provided in the columns. N= The check did not pass, Y= The check passed, and -= The

check was not run.

The progressive filtering of the methods is shown in Table 7. The point of the column not
redundant is to remove methods that are very similar to other possible methods but have
worse performance.

The final result was that only two of the methods, GMM and iForest, were chosen as
prime candidates for outlier detection on datasets of the required size. Both of them are
implemented in Sklearn so they can be used with the SageMaker Python SDK to be used
as a part of the complete system. Of these candidates GMM had a higher PR AUC on
the credit card fraud dataset used for testing the performance and could therefore be pre-
ferred. However, the difference is small enough that changes in the features could change
it the other way around.

Further research is needed to determine the optimal parameters for both of the models
and to check the validity of the detection results. Also expanding the plausible algorithms
outside those having stable implementations in python could bring new possibilities.

52

REFERENCES

Aitkin, M. & Wilson, G.T. (1980). Mixture Models, Outliers, and the EM Algorithm.
Technometrics, Vol. 22(3), pp. 325–331.

Amazon (2019a). Amazon Elastic Compute Cloud. Available: https://docs.aws.amazon.
com/ec2/?id=docs_gateway

Amazon (2019b). Amazon Simple Storage Service. Available: https://docs.aws.amazon.
com/s3/?id=docs_gateway

Amazon (2019c). Amazon Web Services. Available: https://aws.amazon.com/

Amazon (2019d). AWS Sage Maker what is. Available: https://docs.aws.amazon.com/
sagemaker/latest/dg/whatis.html

Amazon (2019e). SageMaker Python SDK. Available: https://github.com/aws/
sagemaker-python-sdk

Amazon (2019f). Scikit-learn SageMaker Estimators and Models. Available: https:
//github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/sklearn

Blei, D.M. & Jordan, M.I. (2006). Variational inference for Dirichlet process mixtures.
Bayesian Analysis, Vol. 1(1), pp. 121–143.

Calinski, T. & Harabasz, J. (1974). A Dendrite Method for Cluster Analysis, Vol. 3.

Cannon, R.L., Dave, J.V. & Bezdek, J.C. (1986). Efficient Implementation of the Fuzzy
c-Means Clustering Algorithms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-8(2), pp. 248–255.

Chapelle, O., Schölkopf, B. & Zien, A. (2006). Semi-supervised learning. MIT Press,
Cambridge, Mass. Available: https://mitpress.mit.edu/books/semi-supervised-learning

Chen, Z., Khoa, L.D.V., Teoh, E.N., Nazir, A., Karuppiah, E.K. & Lam, K.S. (2018).
Machine learning techniques for anti-money laundering (AML) solutions in suspicious
transaction detection: a review. Knowledge and Information Systems, Vol. 57(2), pp.
245–285.

Davis, J. & Goadrich, M. (2006). The relationship between Precision-Recall and ROC
curves. ACM, pp. 233–240.

https://docs.aws.amazon.com/ec2/?id=docs_gateway
https://docs.aws.amazon.com/ec2/?id=docs_gateway
https://docs.aws.amazon.com/s3/?id=docs_gateway
https://docs.aws.amazon.com/s3/?id=docs_gateway
https://aws.amazon.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/sklearn
https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/sklearn
https://mitpress.mit.edu/books/semi-supervised-learning

53

Domingues, R., Filippone, M., Michiardi, P. & Zouaoui, J. (2018). A comparative eval-
uation of outlier detection algorithms: Experiments and analyses. Pattern Recognition,
Vol. 74, pp. 406–421.

Duda, R.O., Hart, P.E. & Stork, D.G. (2000). Pattern Classification. John Wiley and
Sons, Incorporated, Somerset. Available: http://ebookcentral.proquest.com/lib/tut/detail.
action?docID=699526

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,
Vol. 27(8), pp. 861–874.

Greene, D., Cunningham, P. & Mayer, R. (2008). Unsupervised Learning and Clustering.
Springer Berlin Heidelberg, Machine Learning Techniques for Multimedia: Case Studies
on Organization and Retrieval, Berlin, Heidelberg. Available: https://doi.org/10.1007/
978-3-540-75171-7_3

Grubbs, F.E. (1969). Procedures for Detecting Outlying Observations in Samples. Tech-
nometrics, Vol. 11, pp. 1–21.

Hodge, V. & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial
Intelligence Review, Vol. 22(2), pp. 85–126.

Investopedia (2018). Transaction. Available: https://www.investopedia.com/terms/t/
transaction.asp

Khan, N.M., Ksantini, R., Ahmad, I.S. & Guan, L. (2014). Covariance-guided One-
Class Support Vector Machine. Available: http://www.sciencedirect.com.libproxy.tuni.
fi/science/article/pii/S0031320314000077

Kohonen, T. (1998). The self-organizing map. Neurocomputing, Vol. 21(1), pp. 1–6.

Landman, Pang, W. (2016). k-means clustering. Available: https://brilliant.org/wiki/
k-means-clustering/

Liu, F.T., Ting, K.M. & Zhou, Z. (2008). Isolation Forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, 2008. , pp. 413–422.

MachineLearningGroup-ULB (2018). Credit Card Fraud Detection. Available: https:
//www.kaggle.com/mlg-ulb/creditcardfraud

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-
servations. Proc.Fifth Berkeley Symp.on Math.Statist.and Prob., (Univ.of Calif.Press),
Vol. 1, pp. 281–297.

Marsland, S., Shapiro, J. & Nehmzow, U. (2002). A self-organising network that grows
when required. Neural Networks, Vol. 15(8), pp. 1041–1058.

http://ebookcentral.proquest.com/lib/tut/detail.action?docID=699526
http://ebookcentral.proquest.com/lib/tut/detail.action?docID=699526
https://doi.org/10.1007/978-3-540-75171-7_3
https://doi.org/10.1007/978-3-540-75171-7_3
https://www.investopedia.com/terms/t/transaction.asp
https://www.investopedia.com/terms/t/transaction.asp
http://www.sciencedirect.com.libproxy.tuni.fi/science/article/pii/S0031320314000077
http://www.sciencedirect.com.libproxy.tuni.fi/science/article/pii/S0031320314000077
https://brilliant.org/wiki/k-means-clustering/
https://brilliant.org/wiki/k-means-clustering/
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

54

OpenStax (2012). Biology, 10.8 ed. OpenStax Cnx Biology.

Pimentel, M.A.F., Clifton, D.A., Clifton, L. & Tarassenko, L. (2014). A review of novelty
detection. Signal Processing, Vol. 99, pp. 215–249.

Reynolds, D. (2009). Gaussian Mixture Models. Springer US, Encyclopedia of Biomet-
rics, Boston, MA, pp. 659–663. Available: https://doi.org/10.1007/978-0-387-73003-5_
196

Snowflake (2019). Snowflake. Available: https://www.snowflake.com/product/

Zhang, Y. & Trubey, P. (2018). Machine Learning and Sampling Scheme: An Em-
pirical Study of Money Laundering Detection. Available: https://doi.org/10.1007/
s10614-018-9864-z

https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
https://www.snowflake.com/product/
https://doi.org/10.1007/s10614-018-9864-z
https://doi.org/10.1007/s10614-018-9864-z

	Abstract
	Tiivistelmä
	Alkusanat
	Contents
	List of Figures
	1. Introduction
	2. Background
	2.1 Transactions
	2.2 Outlier detection
	2.3 Cluster analysis
	2.3.1 Partitional clustering
	2.3.2 Hierarchical clustering
	2.3.3 Clustering metrics

	2.4 Classification
	2.4.1 Linear methods
	2.4.2 Non-linear methods
	2.4.3 Classification metrics

	2.5 Dimensionality Reduction
	2.5.1 Supervised dimensionality reduction
	2.5.2 Unsupervised dimensionality reduction

	3. Outlier detection methods
	3.1 Probabilistic methods
	3.1.1 Gaussian mixture model
	3.1.2 Dirichlet process mixture model

	3.2 Distance based methods
	3.2.1 Nearest-neighbour distance
	3.2.2 Clustering based distance

	3.3 Neural network based methods
	3.3.1 Grow When Required network

	3.4 Domain based methods
	3.4.1 One-class support vector machine

	3.5 Other methods
	3.5.1 Isolation Forest

	3.6 Suitability for suspicious transaction detection

	4. Tools and Environment
	4.1 AWS
	4.1.1 Snowflake
	4.1.2 Amazon Sagemaker

	4.2 Development environment
	4.3 Data processing tools
	4.3.1 Backbone
	4.3.2 Data exploration
	4.3.3 Data analysis

	5. Implementation
	5.1 Architecture and data-flow
	5.1.1 Architecture of the high level system
	5.1.2 AWS Implementation architecture
	5.1.3 Model training
	5.1.4 Outlier detection rule

	5.2 Dataset
	5.2.1 Available information
	5.2.2 Feature engineering
	5.2.3 Feature encoding

	5.3 Creating the model
	5.3.1 Preprocessing
	5.3.2 Training
	5.3.3 Evaluation

	6. Results
	6.1 Clustering
	6.2 Outlier detection
	6.3 Credit card fraud detection

	7. Conclusion
	References

