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ABSTRACT 
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Tampere University of technology 
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Bachelor’s Degree Programme in Automation Engineering 
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Examiner: Professor José L. Martínez Lastra 
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human-machine interface, multimodal interaction, programming by demonstration 

The thesis is a literature review on task level robot programming. It has been researched 

from various point of views, starting from the history of robot programming in general to 

find the underlying motivations for more intuitive and abstract robot programming, which 

is followed by the methods and general structure of a task level programming environ-

ment. A survey on the state of the art is also presented in this paper, where currently 

available commercial robot programming systems and studies in literature are reviewed. 

Task level robot programming makes robot programming more intuitive, faster and re-

quires no programming expertise if done correctly. Small to medium sized enterprises 

with small batch sizes, frequently changing products and possibly underqualified staff 

with regard to programming skills would benefit most from intuitive human-robot inter-

faces by being enabled to access the production efficiency of robotics without program-

ming expertise. Currently there are few commercial process specific robot programming 

systems, where robot programming is automatic and the user inputs only a task specifi-

cation. Addition to the commercial systems, task level programming and intuitive human-

machine interfaces such as multimodal-interaction or teaching by demonstration are 

emerging research topics. 
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1. INTRODUCTION 

Motivation 

The motivation for this thesis stems from the rising sales of robots, widening userbase of 

robots and the trend of mass personalization production coming along with the fourth 

industrial revolution (Wang et al. 2017). According to International Federation of Robot-

ics (IFR), in 2016, industrial robot sales were 294 312 units, professional service robot 

sales were 59 706 units and service robots for personal and domestic use sales were 6,7 

million units. While all robot sales experienced an overall growth in 2016, service robot 

sales grew faster than industrial robot sales, 24% versus 16% compared to 2015. Accord-

ing to the same authority, during 2017 industrial robot sales growth almost doubled to 

31%. The accelerating growth of service robot sales implies that more people outside the 

industrial field are interacting with robots, while simultaneously small to medium sized 

enterprises (SME)  are utilizing robots in their businesses increasingly (International Fed-

eration of Robotics 2018; Brunete et al. 2017). The average robot user is starting to be 

something else than an engineer or other experienced operator. Simultaneously, tradi-

tional players in manufacturing industries need to answer for the demand of individual-

ized and quickly changing products, which requires fast reconfiguration of manufacturing 

equipment (Backhaus & Reinhart 2013). There clearly is a need to raise the level of ab-

straction in robot programming so that even wider audiences have possibilities to interact 

with them and reprogramming becomes more efficient. This has lead for intuitive robot 

interfaces receiving more and more attention in recent years (Ekvall & Kragic 2008). 

Justification 

The ability to make quick changes and reconfigurations to meet constantly changing mar-

ket demands is one of the most important factors for a production system now and it will 

be emphasized even more in near future (Backhaus & Reinhart 2013). Higher level of 

abstraction in the programming of production robots makes teaching new tasks to robots 

faster, easier and requires less programming expertise from the user. High level of ab-

straction allows the robot programmer to be a process specialist without extensive pro-

gramming skills. Task level programming is robot programming at the highest level of 

abstraction and this is the reason why it is researched in this thesis. 

Research questions and scope 

This thesis aims to find motivation for easier robot programming interfaces, to research 

task level programming methods and to review the current state of the art in task level 
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robot programming. The research question could be summarized as “What is task level 

robot programming, why and how has it been developed and what is its state now”. The 

scope of the paper is programming of industrial robotic manipulators one would encoun-

ter in a factory environment. 

Structure of the document 

The thesis consists of five parts. First, some background about robot programming will 

be provided. Next some history about robot programming will be reviewed, which serves 

as motivation towards higher level of abstraction in robot programming and task level 

robot programming. In chapter 4, the generally accepted methods and the basic structure 

of a task level programming environment will be reviewed. This is followed by a survey 

on the current state of the art in task level robot programming and other high-level pro-

gramming methods. In the chapter 4.4, which discusses the state of the art, a lot of infor-

mation regarding commercial products is gained from the manufacturers’ or software pro-

viders’ own material and industry related web-articles, not from peer reviewed scientific 

literature. Finally, conclusions will be assessed. 
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2. BACKGROUND 

Robot programming is about teaching the robot’s controller how its manipulator should 

complete job specific tasks, or more precisely, the motions the manipulator should make 

to complete these tasks. The robot usually has, at least for safety measures, some sensors 

in its work environment and the robot reacts to the sensor inputs according to its program-

ming, e.g. when a person walks into the robot’s working area, the robot stops all move-

ment. 

Programming a work task to a robot manipulator appears relatively simple and straight 

forward at first. The programmer tells the robot a set of desired goal states, defined by the 

location of the end-effector with one of the ways explained in the following subchapters. 

When the program is executed, the robot moves so that the end-effector reaches these 

goal states. 

At first glance, robot program code reminds traditional computer programming code a 

lot, both having familiar for-loops and if-else statements. Robot control programs are 

written in manufacturer dependent programming languages, such as ABB’s RAPID and 

KUKA’s KRL. Even though languages from different manufacturers often look very sim-

ilar to each other, there are semantic differences between them (Hägele et al. 2008). One 

important quality that distinguishes robot programming from traditional computer pro-

gramming is the cyber-physical nature of automation systems; a bug in a program might 

cause serious real-world damage – economic losses or human injury. This and the fact 

that the users of robots are usually shop-floor workers in factories with little programming 

knowledge are the reasons why robot programming methods are a bit different from those 

of conventional computer programming. 

Robot programming methods have been traditionally divided into online and offline pro-

gramming, depending on where the person is during programming. Online programming 

happens at the robot’s work area, with a line of sight and a physical contact with the 

manipulator. Offline programming happens away from the physical robot in a simulated 

environment on a normal PC. With offline programming, the robot system can be pro-

grammed and tested completely independently of the robot itself and the actual produc-

tion line might not even be built at the time of programming. 
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2.1 Online programming 

There are a couple of popular ways to do online programming. Teach-pendant program-

ming and lead-through teaching. When programming with a teach pendant, the user op-

erates the robot with a separate, usually a handheld, device visible in figure 1, which has 

control over each joint individually. The user can jog the manipulator to the desired po-

sitions and orientations and record those points. After necessary points are declared, the 

user replays the cycle created and visually confirms its validity or fixes it if it is unsatis-

factory. (Yong et al. 1985) 

Another way of programming the manipulator online is lead-through teaching. In lead-

through teaching, the robot arm is manually dragged to the desired positions and orienta-

tions. By lead-through teaching it is possible to, instead of teaching points, teach the robot 

exact paths and this makes teaching continuous path motions (figure 2) easier, which are 

necessary for example in welding. The positions of the manipulator are recorded with 

preset intervals to get a digital model of the end-effectors path. (Deisenroth 1985) 

Figure 1.   A teach pendant used in online programming (Motion Control Robotics 2017) 

Figure 2.  The three movement types of the robot’s end effector. (Deisenroth 1985, p. 353) 
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2.2 Offline programming 

In offline robot programming the baseline situation is that the user writes robot control 

code that controls the robot manipulator. Addition to just writing some code, offline pro-

gramming utilizes a lot of 3D-models and simulations for visualizing the robot’s move-

ments and its environment. After coding, the program is verified in a visualization that 

lets the programmer to see how the code actually moves the robot. In most modern offline 

programming environments, such as ABB RobotStudio or Fanuc’s RobotGuide, the ma-

nipulator can be virtually jogged inside the simulation to teach points and trajectories, 

just like in online programming. 

Figure 3.  User Interface (UI) of an offline programming environment Robot-

Studio by ABB (ABB 2017) 
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3. EVOLUTION OF ROBOT PROGRAMMING 

METHODS AND ENVIRONMENTS 

When robots first appeared in industry, the more popular choice of programming methods 

for the first decades was online programming due to its simplicity, intuitiveness, (Yong 

et al. 1985) and the underdeveloped state of offline programming at the time. Online pro-

gramming is often seen the easier option which requires little computer skills, but as the 

task at hand becomes more complex, the time teaching it manually increases. Since online 

programming requires production to be halted for the time of the programming, nowadays 

off-line programming becomes very quickly the more economically feasible choice. Of-

fline programming also removes the operator from the immediate proximity of the pro-

duction machinery, which contributes to personnel safety and allows the programmer to 

be physically anywhere. 

Even in the start of the 90’s offline programming was not yet practical enough and ac-

cording to Fuller (1991, p. 276) programming anything but a cartesian-coordinates robot 

was difficult at best. A 1995 article in “The Industrial Robot; Bedford”-magazine com-

mented on the problems of offline programming stating that since the early days of offline 

programming, 1989 or so [sic], it has not yet delivered quite what has been promised. The 

robots were sold with the promise that they are delivered fully programmed to the pro-

duction line. However, the robot models supplied for simulation did not represent real-

world robots precisely enough and this often resulted in a hybrid solution with offline 

programming and costly online programming to correct manually the offline created pro-

grams to work with the robots on-site. 

At some point at the turn of the millenium, offline programming went past online pro-

gramming as the more popular method as the online programming environments devel-

oped. In 1999 Deisenroth and Krishnan claim that online programming is still the more 

widely used method of robot programming, but in 2008 Hägele et al. claim using online 

programming to be unusual in industry except to verify and fine-tune programs created 

offline. The advances in offline programming are greatly associated with progress in 3D-

simulation technology and personal computer performance (Ahrens 2001). 
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Especially in the early days of offline programming it required advanced programming 

skills to and the programming interfaces were not very user-friendly. Before easier user-

interfaces and simultaneously risen average robot user computer skills, the programming 

method chosen by a robot user followed more or less a rule of thumb that figure 4 illus-

trates. 

3.1 Early robot programming languages 

In 1954 the patent number US2988237A, Programmed Article Transfer, was filed to the 

United States Patent and Trademark Office by George Devol. The patent lead to the first 

robotics company Unimation and the first industrial robot ever, UNIMATE, which was 

installed in 1959 to General Motors die casting plant in Trenton (Robotic Industries As-

sociation 2018a). Unimate was a hydraulically actuated robot (Hägele et al. 2008) and it 

was programmed by recording desired joint positions. When the robot was in action, its 

controller compares current joint positions to the desired values and ran the joint motors 

simultaneously towards the desired values until they were reached. There was no pro-

gramming language and programming was a tedious process. During it the programmer 

would increment each joint with small steps towards the target position with a trajectory 

that was intended and record the joint values of each of these small steps to a program, 

which was stored on a magnetic drum memory. There was no possibility of modifying 

the program afterwards or any debugging features. (Devol 1961; Robotic Industries As-

sociation 2018a) 

Robot programming languages have been under development ever since and in the first 

two decades languages were developed in an ad-hoc manner to suit the needs of a specific 

robot, resulting in practically one language for each robot. In most cases the lifespan of 

these early languages was short. By 1982 only 8 of 22 languages developed in the last 20 

years were used anymore (Poole 1989, p. 250). 

Robot languages are often categorized by the abstraction level of the language and how 

hardware specific the language is. Many authors have drafted their own categorizations 

Figure 4.  Visualization of computer programming skills and shop-floor skills vs. 

preferred programming method. (Glagowski et al. 1992, p. 29) 
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in their textbooks and research papers (Bonner & Shin. 1982, Yong & Bonney 1999, 

Hägele et al. 2008) and they wary depending on the publication time and the trending 

programming methods at the time. As an example, the following is a categorization of 

robot programming language abstraction, which divides the languages based on what 

level of control we have on the robot (Yong & Bonney 1999 citing A. Thangaraj & M. 

Doelfs 1991): 

1. Joint level: We have control only of individual joints, which leads to individual 

programming of each joint necessary. 

2. Manipulator level: We can move the manipulator in terms of world/cartesian co-

ordinates, which indicates that mathematical operations such as inverse kinemat-

ics takes care of individual joint values. 

3. Object level: A task is specified with movements and positions of objects in the 

robot’s workspace. Implies existence of a world model (more on that subject 

later). 

4. Objective level: A task for the robot to complete is specified in the most general 

form, for example “paint that piece red”. Implies the existence of a world model 

and a database with knowledge on how to do the necessary tasks. 

In the next chapter this thesis will take a look at a study, that offers a snapshot of the state 

of the art of robot programming languages in 1982. 

3.2 A comparative study of robot programming languages 

In 1982 Bonner and Shin reviewed 14 robot languages of which some were widely used 

in industry, some were already obsolete, and some were only in experimental state. The 

study named five classes for categorizing robot programming languages abstraction: 

1. Microcomputer/hardware level 

2. Point-to-Point level 

3. Primitive Motion level 

4. Structured Programming level 

5. Task-oriented level 

Most simple methods of robot programming, hardware level languages, were not really 

languages at all, simply systems to read sensor data from the joints and drive the motors 

in the joints according to some recorded value. The values were recorded in some similar 

manner as in the UNIMATE system discussed previously. 

A little more advanced and the most widely used programming method in industry at the 

time was point-to-point programming. It was the most popular choice, because the tech-

nology was simple but powerful enough and it was ready to use. Example robot languages 
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of this class are T3 and Funky. They provided programming methods “similar to a cas-

sette tape recorder”; play, erase, record, reverse, and fast forward. In the programming 

phase the robot was maneuvered around by hand or other means to the desired points and 

the configuration was recorded. T3 system used a joystick for this. After this, the operator 

could step through a recorded program and erase or add points to it. Some system pro-

vided the possibility to have simple functions in the program to be triggered from a signal 

for example a limit switch on the manipulator. However, branching and subroutine capa-

bilities, and interaction with external sensors were very limited or nonexistent. There were 

no possibilities to handle emergency situations and no written programming language. 

Languages like VAL, RCL and RPL are categorized as primitive motion level languages 

by Bonner and Shin. They are written in a human readable form, much like Assembly 

language is compared to machine language. This enables offline programming in theory, 

although it wasn’t probably very practical, at least not when used as the only program-

ming method (Fuller 1991, p. 276). The characteristics of these languages that separate 

them from less abstract languages are the written form of the language, better branching 

and subroutine possibilities often with parameters, multiple manipulators control at the 

same time, and introduction of frame definitions. As an example of a primitive motion 

language let’s examine VAL. It was initially introduced in 1975 and further developed 

for Unimation’s PUMA robots after 1977, was capable of point-to-point motions, joint 

interpolated motions, cartesian motions, simple arithmetic operations, subroutines, if-else 

branching and while-do-loops (Shimano 1979). 

More high-level robot programming languages are structured programming languages. 

These had major improvements in programmability including wider use of control struc-

tures and complex data structures such as arrays, points, vectors and frames. The manip-

ulator control is improved by extensive use of coordinate transformations and frames, 

improvement in sensors, parallel processing and using predefined state variables. State 

Figure 5.  An example VAL program (Shimano 1979, p. 883) 
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variables keep track of the current state of the manipulator during execution time, e.g. 

PAL has a state variable arm which keeps track of the end of the robot arm with respect 

to the world and tol that keeps track of the tip of the tool with respect to the arm. These 

improvements contribute towards better program understandability and task level pro-

gramming. The MCL system had even some primitive capabilities of machine vision; it 

was capable of finding and identifying some objects. 

Task-oriented, or task level, programming in robotics allows the programmer to focus on 

what should be done rather than how the manipulator should move to accomplish the 

results. AUTOPASS was developed by IBM (Lieberman et al. 1977) to meet these terms. 

It conceals sensor management and coordinate transformations from the user and it is 

programmed with a natural English-like language. It provided high-level commands like 

“place object1 on object2”. Commands meant exactly what the user thought them to 

mean, which is something that was not true for most of the languages in that time - most 

of the primitive motion languages had only six characters to describe each command. In 

case of ambiguities, the AUTOPASS system would have checked on the user what he/she 

really meant. Task-oriented programming requires the control system to have extensive 

knowledge about its work environment and the objects in it and the manipulator’s kine-

matic structure. It also needs a lot of sensing abilities, e.g. some way of finding and iden-

tifying the objects around the workspace. AUTOPASS was never fully implemented, but 

it did establish an idea about more abstract level of robot programming. (Poole 1989, pp 

250, 254). 
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4. TASK LEVEL PROGRAMMING 

Even though some high-level languages discussed in the previous chapter seem advanced, 

the industry standard was point-to-point level languages. Programming with them was 

quite slow and tedious. Production needed to be halted during reprogramming and offline 

programming was not feasible to use in industry, which probably lead for reprogramming 

to be avoided as much as possible. For these reasons, there was a serious need to develop 

more efficient ways to program robots. 

Task level programming, also called task-oriented programming or implicit programming 

(Backhaus & Reinhart 2015), has been an idea and a goal for many roboticists for over 

40 years (Bonner & Shin 1982; Lozano-Pérez & Brooks 1985; Backhaus & Reinhart 

2015). It aims to change the established standard and to change the way robot application 

programs are developed. The goal is to ease the job of factory level robot users by utilizing 

artificial intelligence for path planning and decision making. Task level programming 

aims for a situation where the robot operator concentrates on what should be done with 

the work objects to reach a goal, not on how the robot manipulator should move to achieve 

the goal. If we look at the categorization of robot programming abstraction introduced in 

chapter 2.2.1, robot programming has previously been on the manipulator control level 

of abstraction. In task level programming the abstraction level is overlapping object and 

objective level of control in the categorization (Yong & Bonney 1999). 

4.1 A simple example 

Let’s examine a situation illustrated in figure 6 where there is a nicely drawn robot ma-

nipulator with three blocks in its workspace, identified with the letters A, B and C. The 

goal is to stack block A on top of block C. The block A needs to be precisely and firmly 

planted on top of C but at the same time carefully without excessive force so we won’t 

break the blocks or the manipulator. We assume we have some sort of force-feedback 

from the manipulators joints. 

Figure 6.  The example situation illustrated 
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In a traditional online programming setting using a teach pendant, the robot programmer 

would go through at least the following steps with a teach pendant while saving points 

after each step: 

1. Jog the manipulator on top of A 

2. Approach A with the gripper to a grasping position. 

3. Grasp A. 

4. Lift manipulator high enough so that A avoids collision with B. 

5. Move manipulator towards C. 

6. Lower gripper while controlling for the downwards force until A is firmly planted 

on C. 

7. Ungrasp A. 

8. Lift the gripper to a safe height from A to avoid collision. 

9. Return home position. 

In a task level programming environment this could be done simply by typing something 

like “place A on B with force X” in a UI and the environment would deduce the control 

code for the manipulator (Backhaus & Reinhart 2015). 

In the next subchapters this thesis will be looking into the theory behind a task level sys-

tem and how the previous example is possible. 

4.2 Structure of a task level programming environment 

This thesis will be concentrating on a proposition by Lozano-Pérez for task level pro-

gramming environment’s requirements. Initially the theory was defined in his 1983 paper 

“Robot Programming” and in his and R. Brooks’ chapter “Task-level manipulator pro-

gramming” of a 1985 textbook “Handbook of industrial robotics”. The chapter was later 

refined and updated by Yong and Bonney in 1999 in the second edition of the same text 

book. Lozano-Pérez and Brooks (1985) defined task level programming as a process 

where the operator “specifies goals for the positions of objects, rather than the motions of 

the robot needed to achieve those goals. In particular, a task level specification is meant 

to be completely robot independent.” 

Task level programming consists of a world model, task-specifications, and motion plan-

ning. In short, a task level environment has a model of the surrounding world, it takes 

task-specifications in an agreed syntax as inputs and outputs manipulator-level control 

code that the robot executes. This kind of schema for task level programming environ-

ments can be seen in task level environments developed decades later (Shimada & Asa-

kura 1996; Backhaus & Reinhart 2015). The next chapters will be having a look in these 

components. 
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4.2.1 World model 

A central part of a task level environment is the world model. The world model is a model 

about the workspace, the work objects and the manipulator itself. The world model con-

tains geometric information, kinematic models and physical attributes such as masses and 

frictions of the objects in it. 

Geometric information about the objects’ sizes, places and orientations are stored as CAD 

models. Machine vision and 3D-sensors may also be used to gain geometric information 

about poses and geometries of objects (Wasserman et al. 2018). Geometric information 

is used when planning collision-free movements for the manipulator. In the previous ex-

ample of the size of block B is crucial for the path because we need to know how high A 

needs to be lifted to avoid collision. 

The kinematic model of the manipulator describes the length and shape of the links and 

the joints’ ranges, speeds, torques, directions and orientations. The kinematic models of 

the work objects are also essential. They contain information about linkages and con-

straints between the objects in the workspace, for example if we wish to turn a lever with 

the manipulator, we need to know how the lever moves as it is attached from its other 

end. Some of the work objects might be attached to each other initially and likely we will 

be attaching some work objects to each other during the work process that the robot is 

used for. These newly added constraints between the work objects need to be updated in 

their kinematic models as they occur. Similarly, if constraints are destroyed during oper-

ation, meaning some parts become unattached, the kinematic models need to be updated. 

Physical attributes, e.g. weight of the objects determine how fast they can be moved and 

how much force do we need to assert to move them. Information about frictions in the 

various surfaces in the workspace might also be necessary for intelligent object manipu-

lation. 

In addition to a precise world model, sensing the actual work environment is crucial in 

keeping track of the situation and it allows us to use the manipulator more diversely. 

Machine vision provides verification about the position of the work objects. Touch sens-

ing in the hand of the manipulator tells us when contact with another surface is made, 

since the world model might not be totally accurate. Force sensors in the manipulator 

enable precise pressures with the end-effector against other surfaces and torque measure-

ments that are necessary in assembly tasks. 
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4.2.2 The task specification 

Tasks can be defined as sequences of states of the world model. Figure 7 illustrates an 

assembly task defined by five model states. Proceeding from left to right the states of the 

shaft explain the assembly procedure a step at a time. 

A task specification consists from two to any number of model states. In a single model 

state each of the positions of all objects in the environment is described. Lozano-Pérez 

proposes two relevant ways to describe these model states: 

1. Using CAD models. The sequence of states described in figure 7 could very well 

be in CAD format. With information about the sizes, masses and locations of 

every object, a task level system could synthesize the necessary movements for 

the manipulator. 

 

2. Using symbolic expressions to describe the spatial relationships between the ob-

jects in the work environment. For example, let’s describe the position of block 1 

Figure 8.  Configuration of block 1 and block 2 (Lozano-Pérez 1983, p. 826) 

Figure 7.  An example state description of an assembly task (Lozano-Pérez 1983, p. 836) 
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in relation to block 2 illustrated in figure 8 using symbolic expressions: (f3 against 

f l) AND (f4 against f2), where f1, f2, f3 and f4 are faces of the blocks. 

The underdeveloped state of CAD/CAM systems was a major obstacle in the way of task 

level programming in the 1980’s (Lozano-Pérez 1983). However, CAD-technology has 

matured from those times and it is not a problem anymore to model even the most com-

plicated workspaces and objects with good precision.  

The task specification might need some additional information in addition to the geomet-

ric data. Let’s take a situation where we are tightening a bolt as an example: The CAD 

model states or the symbolic state expressions describing the states doesn’t necessarily 

tell us how much force need to be used to tighten the bolt. This needs to be specified 

elsewhere. (Lozano-Pérez 1983) 

Previously task specifications were described as sequences of state models. Alternative 

way of describing the task could be by a sequence of operations. The task specification 

of the assembly from figure 7 could be described as following also (Lozano-Pérez 1983): 

1. PLACE BEARING1 SO (SHAFT FITS BEARING1.HOLE) AND (BEAR-

ING1.BOTTOM AGAINST SHAFT.LIP) 

2. PLACE SPACER SO (SHAFT FITS SPACER.HOLE) AND (SPACER.BOT-

TOM AGAINST BEARING1.TOP) 

3. PLACE BEARING SO (SHAFT FITS BEARING2.HOLE) AND (BEAR-

ING2.BOTTOM AGAINST SPACER.TOP) 

4. PLACE WASHER SO (SHAFT FITS WASHER.HOLE) AND (WASHER.BOT-

TOM AGAINST BEARING2.TOP) 

5. SCREW-IN NUT ON SHAFT TO (TORQUE = t0) 

4.2.3 Interpretation of the task specification 

Before the manipulator movements can be planned, the inputted task specifications need 

to be broken down in to smaller parts, sub-tasks, which represent single manipulator 

movements implicitly on a reference level and these sub-tasks need to be arranged to a 

correct chronological order to complete the task. 

Figure 9. Three templates a, b and c for a sentence that specifies a task. 

(Shimada & Asakura 1996, p. 1229) 
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A very simple way to deconstruct a pick-and-place task specification is illustrated in fig-

ure 9. A sentence is divided in to words, from which sub-tasks such as move or pick are 

recognized. These commands are possibly followed by parameters specifying the com-

mand. The identified sub-tasks are then arranged as a stack for execution. (Shimada & 

Asakura 1996) 

Usually a hierarchical way of constructing a task description is more useful (Nagai et al. 

2007; Knoop et al. 2008; Backhaus & Reinhart 2015). This way allows complicated, scal-

able tasks, which are logically reduced to indivisible sub-tasks. Figure 10 represents a 

pick-and-place task as a hierarchical tree structure. 

A taxonomy for assembly process is presented in Martinéz Lastra’s dissertation “Refer-

ence Mechatronic Architercture for Actor-based Assembly systems” from 2004. He fo-

cuses on the manufacturing process of assembly, but similar logic can be applied to other 

manufacturing processes as well. In figure 11 the deconstruction of an assembly process 

to single operations is illustrated. 

Figure 10.  Singular operations that make up a manipulation task (Knoop et al. 

2008, p. 347) 
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A manufacturing process encapsulates all tasks that are involved in it. A task, assembly 

task in this case, is a task level description of a job. A task is composed from processes 

and a process from operations. Single operations might be for example translation, rota-

tion, force application or torque application, which change only one aspect of the work 

object at hand. 

The task specification can be interpreted to robot code with a task planner. As an example, 

Backhaus and Reinhart created a device independent task planning module for assembly 

systems in their 2015 study. The planning module utilizes a set of knowledge sources 

while planning the task. The input is a task description as an Automation Markup Lan-

guage-file (AML), which is an XML-based data format. The output is vendor specific 

robot code to complete the task. The task planning is an iterative process, adding more 

information about the task on each level. The information of each level is fetched from 

different knowledge sources, which are not defined in full detail in the paper. A 

knowledge source needs to identify what kind of information it provides, specify when 

the knowledge source is triggered and it of course needs to output some sort of an action 

for the situation, for example a piece of code or an algorithm. The knowledge source 

might also be the user in some uncertain cases. Next, some terms that are used later are 

explained similar how Backhaus and Reinhardt define them. 

 Process is an abstract description of an operation. A process always has relations 

to one or more products and is solution-neutral, so they can be executed by one or 

more skills and therefore resources. 

 Product is an object that is handled in an assembly process. 

 Resource is a machine or component which transports or handles sub-products or 

products. A resource might have controllable functions, which are represented as 

skills. 

Figure 11.  Deconstruction of an assembly process (Martinéz Lastra 2004, p. 33) 
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 Skill is an ability to perform an operation. A skill represents an abstract and ven-

dor independent function that are mapped to device (resource) functions depend-

ing on the physical setup. 

The iterative task planning process consists of the following five level hierarchy: 

 Task level (1): Only the joining (primary) processes and the relation to the product 

and product parts are described. 

 Assembly sequence level (2): In addition to the information in the task level the 

sequence of the joining processes is defined.  

 Process level (3): All relevant primary processes are assigned to skills and neces-

sary secondary processes as well as associated skills are identified based on the 

assembly sequence level. 

 Skill level (4): The sequence of all elemental operations is planned based on the 

skills. 

 Code level (5): The code level represents the vendor specific code for all controls 

in the assembly system. 

 

Each time new information is presented to the task description, the robot program of the 

current situation is revised and optimized, bad path decisions are discarded on basis of 

relevant parameters such as cycle time or energy consumption. The main sequence is 

presented in figure 12. 

Figure 12. Task planning process sequence. (Backhaus & Reinhart 2015, p. 548) 



19 

 

4.2.4 Motion planning 

With the implicit sub-tasks, object locations and geometries, as well as manipulator kin-

ematic structure, the movements can be planned explicitly. 

A task often involves various types of movements during its execution. A manipulator 

should move at different velocities and accelerations when the end effector is moving 

large distances and there is no immediate danger of collision compared to when the end-

effector is in immediate proximity or in contact with another surface, like in welding or 

grinding a work piece. Motion planning can be divided into gross motion planning, grasp-

ing planning and fine motion planning (Lozano-Pérez & Brooks 1985). There are several 

path planning and collision avoidance algorithms, which will not be further discussed 

here. 

Gross motions are movements of the manipulator where the only constraint is collision 

avoidance with other objects. The purpose of gross motion planning is to look for the 

most efficient path from the manipulator’s initial orientation to the goal orientation while 

avoiding collisions. 

Grasping planning searches for the optimal way to grasp a work object with a gripper. 

The process plans the grasping orientation according to three principal rules (Yong & 

Bonney 1999): 

1. Safety. The robot must be safe at the initial and final grasp positions. 

2. Reachability. The robot must reach the initial grasping position and with the ob-

ject in hand, find a collision free path to the final position. 

3. Stability. The grasp should be stable and withstand all forces directed against the 

object during transfer movement and possible parts-joining operations at the final 

position. 

Fine motion planning is needed when the manipulator is approaching a surface of an ob-

ject and the accuracy of the world model is not sufficient to rule out the possibility of a 

collision. Another situation when fine motion planning is needed is compliant motion, 

which is when the manipulator is in contact with a surface. Especially in compliant mo-

tion the path planning is special, because we now have a new constraint in the equation; 

to maintain the contact with the surface. 

4.3 Development of task level programming 

Next, a couple of example task level robot systems that have been developed in the past 

will be reviewed briefly. The current state of the industry will be reviewed in the next 

chapter. 
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One of the first early attempts at a task level programming language was the previously 

mentioned task-oriented language AUTOPASS project by IBM in the mid 1970’s. As 

mentioned, it never was fully implemented but it still laid some ground work for later 

attempts (Poole 1989, pp. 250, 254). 

In 1987 and 1989 Lozano-Pérez et al. from MIT published research papers on their task 

level robot system Handey. It was the first or at least one of the first task level systems 

that successfully completed complex tasks. Handey was a task level robot system for 

pick-and-place operations for assembly tasks. Handey required a world model including 

geometric and kinematic models of the part to be manipulated, the objects in the work-

space and the manipulator. With the models and a specified desired position of the work 

object it could pick and place work objects from and to obstructed areas. Handey plans a 

grasping motion to the object, plans a collision free movement to the end position and 

places the object there. If the work object could be grasped at the initial position, but the 

same grasp was not feasible for the desired position, Handey added a re-grasping se-

quence in its task plan, where the work object was grasped at a safe location in a way that 

the work object could be placed to the desired end-position. The 1989 research was con-

ducted with Unimation’s PUMA robot, but Handey-system worked with any robot when 

a manipulator specific model is provided. (Lozano-Pérez et al. 1987; Lozano-Pérez et al. 

1989) 

In 1997 Kawasaki Heavy Industries and Matsuhita Electric Industrial developed a proto-

type task level welding robot system for a Japan Robot Association’s program called 

“Robot programming simplification project”. The UI for the system runs on a PC, which 

is connected via LAN to another, more powerful computer running a 3D-CAD system 

that hosts the world model. The PC is also connected to the robot controller with a serial 

connection. The user would create a task-specification on the PC in a responsive and 

intuitive graphical UI selecting the welding seams on a CAD-model and setting all the 

necessary welding parameters. After that the program is simulated and the user can either 

modify it or confirm it for motion planning, after which it is finally sent to the robot 

controller. (Arai et al. 1997) The testing period of the system proved that teaching times 

can be reduced down to one-sixth compared to some other widely used robot programing 

system of the time (Y. Yong & Bonney 1999).  

In 2002 Rosell et al. developed a task level robot system, for polishing and grinding tasks. 

It takes models of the workcell and work objects as input and outputs an execution file 

for the robot and a 3D-simulation file, which the user can use to verify the created pro-

gram. It followed a CAD based approach, where the user specifies the polishing or grind-

ing task by selecting curves from the surface of the work object’s CAD model to be 

grinded or polished. Different pressures exerted for grinding or polishing can also be se-

lected. The tool plans manipulator movements in a time-optimum and collision free way 

for the task specification. According to the authors, the approach could be easily extended 

to other tasks such as cutting or material dispensing. (Rosell et al. 2002) 
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4.4 State of the art 

By default, industrial robots from major suppliers are programmed with a jogging/lead-

through approach or an offline programming approach. An offline programming environ-

ment, where the user specifies how the robot should perform a task by jogging a 3D-

model of the robot is not quite task-level programming, since the user still does the overall 

planning (Hägele et al. 2008). However, during 2010’s many major industrial robot man-

ufacturers such as ABB, Fanuc and Yaskawa have included some level of automatic path 

planning in their environments, where the environment automatically creates end-effector 

paths along CAD-model edges and/or surfaces. Let’s take Fanuc’s offline programming 

environment RoboGuide as an example. Fanuc’s RoboGuide in its standard form without 

additional modules enables creation of workcell layouts, offline programming with code 

input or a virtual teach pendant and visualizing robot programs in offline environment. 

Fanuc also offers optional software packages to RoboGuide for application specific im-

provements in RoboGuide performance, usability and automated program creation from 

workpiece models. For example, WeldPRO-module automatically creates a program 

from shape data of a workpiece. The user can select an edge in the workpiece model and 

WeldPRO creates an arc welding program for the robot arm, where tool orientation is 

kept at a designated angle relative to the welding path. Other modules for RobotGuide 

include ChamferingPRO for chamfering applications and PaintPRO for painting applica-

tions, from which both of them also provide automated path planning capabilities from 

work piece CAD-data (Fanuc 2017). 

Next, some commercial products and studies that represent the state-of-the-art in ways of 

programming industrial robots with a task-oriented approach in mind will be presented. 

The user of these systems can focus on what should be done to complete a task instead of 

how the robot should work to achieve a task. While searching for commercial task level 

robot programming systems I found a couple of interesting application specific systems, 

which are not from major robot suppliers: RinasWeld by a Dutch company Kranendonk 

and RobotMaster v7 by Hypertherm Inc. 

The latest version of RobotMaster, RobotMaster v7 was launched in 2018. It is an offline 

robot programming system for different industrial applications, such as welding and con-

touring tasks the latter including trimming, cutting and deburring. The future releases of 

the software will include modules for assembly, surfacing, 3D-milling and additive man-

ufacturing. It is advertised to be a very intuitive, easy-to-use, task-based system, which 

can be operated by the process expert without programming or CAD expertise. It supports 

any number of robots, tools, configurations, tasks or processes and manages control of 

external axes, such as linear rails, workpiece positioners and rotary tables. The system 

offers a bi-directional integration with CAD-programs that allows Robotmaster to assess 

the part design and CAD-programs to receive data from Robotmaster. Future releases will 

include criteria-based optimization, which allows the user to choose most desirable crite-

ria used when the system chooses robot paths from all available paths. These criteria can 
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be e.g. to minimize motion of a specific joint, cycle time or robot rigidity. (Robotic In-

dustries Association 2018b; RobotMaster 2018a; CompositeWorld 2018) 

In Robotmaster the user interacts with a graphical user interface unique and modifiable 

to suit the needs of each application. The simulated workcell is configured using CAD-

models of manipulators, work objects, external axes and other objects included in the real 

workcell. When creating robot tasks, the user selects surfaces, edges or other elements of 

the working objects’ CAD-models and depending on the used tool and task the software 

automatically creates a path for the manipulator and controls for the used tool. Robot-

works creates trajectories and deals with reach issues, joint limits, singularities and colli-

sions automatically. After a task has been created the user verifies it feasible and the 

program outputs a robot control program. Robotmaster offers turn-key solutions for most 

major robot brands such as ABB, Fanuc, Kuka and Yaskawa (RobotMaster 2018b). 

Another company, Kranendonk supplies complete production lines for robotic welding, 

cutting and assembly. RinasWeld is their offline programming environment for program-

ming of steel beam assembly and welding tasks and it is developed especially for small 

batch production and continuously changing designs keeping the programming time at 

minimum. Its goal is to automate the robot and welding programming as far as possible 

and require as little as possible input from the user. In RinasWeld the simulated workcell 

is statically hardcoded into the environment for each customer and workcell. The system 

supports multiple robots in the workcell that can either be welding or manipulating the 

work objects. (Larkin et al. 2011, Kranendonk 2015a) 

When creating a new program in RinasWeld, the user first imports a CAD-assembly of 

the desired steel beam assembly to the programming environment. Next, the program 

automatically deduces where the welding seams should be between the components in 

the assembly. After this, the user can edit the welds if necessary and confirm the design. 

After user verification, the program creates a collision-free robot control program in a 

manufacturer specific language depending on the produced welding design and workcell 

configuration completely autonomously without any code input needed from the user. 

The created program controls the welding robots and part manipulating robots as well. 

RinasWeld also finds all the necessary welding parameters necessary for the torch control 

from a database of approved weld parameters. The database can be modified to satisfy 

the user’s needs and used materials. According to a 2011 study by Larkin et al., the data-

base for welding parameters can be easily expanded easily with welding parameters for 

different types of welds and materials. Larkin also says that RinasWeld tolerates errors 

between real-world and simulated environments very well with the use of touch sense 

calibration. (Larkin et al. 2011; Kranendonk 2015a; Kranendonk 2015b) 

Finding intuitive ways of human-robot interaction (HRI) is closely related to robot pro-

gramming on a task level, since a natural way of describing the task to the robotic system 

reduces needed programming skills. Recently there has been rising interest regarding 
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more interactive HRI in literature. The emerging methods for achieving these easier in-

terfaces have been multi-modal interfaces (MMI), programming by demonstration (PbD), 

virtual reality (VR) and augmented reality (AR) (Fang et al. 2014). Next, some studies 

with the topic of programming robots with these methods are reviewed. 

AR can help a robot programmer to interact intuitively with the workspace objects and 

manipulator trajectories by displaying relevant virtual information in the actual working 

environment. Wasserman et al. utilized AR and machine vision in their 2018 study re-

garding intuitive robot programming. They developed an environment perception mod-

ule, an augmented reality simulation module and an automated program verification mod-

ule and integrated them into a pre-existing cloud-based robot control system, which in-

cludes a task-oriented programming interface. The modules enable object recognition in 

a 3D-space and verification of collision free manipulator movements. The workcell is 

monitored with a depth-image camera. All objects that differ from a set base plane, 

marked with a 2D-marker, are recognized and a bounding box is set around them corre-

sponding to the objects size and orientation. This is visible in figure 13. 

With the help of these 3D-boxes collision-free manipulator path verification is possible. 

In the study, the collision avoidance is checked with a simulated robot manipulator before 

sending the program to a real robot. 

Figure 13. Objects in the workspace and their surrounding boxes (Was-

sermann et al. 2018 p. 164) 
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In figure 14 below, the robot’s workspace is filled with arbitrary collision boxes and the 

ones which the simulated robot collides with are colored red. 

MMI in robotics means using natural human interfaces, which can be for example speech 

or gestures, alongside with or instead of conventional programming methods, such as the 

teach pendant or an offline programming environment. For an example, a 2010 study by 

Neto et al. replaced the conventional teaching pendant with motion and speech com-

mands. The study proposes a multimodal robotic system, which uses a Wii remote and a 

Bluetooth headset as the human-machine interface (HMI). From the Wii remote the sys-

tem collects hand gestures and translates them into end-effector movements. Voice com-

mands are collected via the headset and the user can for example build the robot code in 

general language or stop the motors of the manipulator using speech.  

The system was taught to recognize each user’s hand gestures with an artificial neural 

network. The number of learning examples ranged from 20-70 and the recognition rates 

of tested gestures ranged from 70% to 100% depending on training examples count, tested 

gesture, and test person. For the intuitive system to be safe to use for unexperienced users 

some force-feedback is necessary. The system gets force and torque information from all 

three axes from a force/torque sensor positioned in the end-effector. The system alerts the 

user of excessive force against a surface by vibrating the Wii remote. The alert is sent if 

Figure 14. Workspace filled with bounding boxes, the ones that cause  

collision with our manipulator are colored red. 

(Wassermann et al. 2018 p. 165) 
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the force exceeds a set value. If the force continues to grow and exceeds a limit value, the 

robot immediately stops all movement. Force control is also utilized for collision 

avoidance in the system. 

The system by Neto et al. was tested with pick-and-place operations and writing text with 

a pen to a paper. The time spent on teaching the writing task to the system was compared 

to teaching the same task with a manually guided lead through robot with a similar F/T 

sensor. The lead-through robot turned out to be 30% faster to use at the time, but the 

authors were confident that their system could be more or equally practical as the manu-

ally guided system with further development on the hand gesture and posture recognition. 

PbD is a robot programming approach, where the user, or the teacher, shows how a task 

is done and the robot learns it by observing the teacher. The teaching data might be start 

and end situations of the workspace e.g. as images (Ekvall & Kragic 2008) or the actual 

human movements of the teacher (Aleotti & Caselli 2010; Ficuciello et al. 2014). Key 

issues in PdB are the imperfections in the teacher’s demonstrations; the teacher might do 

unnecessary steps when he/she demonstrates a task and there might be a lot of noise in 

the teaching examples, meaning different variations of the task (Fang et al. 2014). An-

other issue is that the initial situation of the task might be different of what has been taught 

and the task is impossible to execute exactly as taught. Answer to this is to have the PbD 

system segment full tasks in to sub-tasks and recognize their relationships (Ekvall & 

Kragic 2008). 

Some PbD applications have been proposed in studies. Aleotti and Caselli proposed a 

PbD way of programming robotic grasps in a VR environment. In their paper, they used 

a virtual reality glove and recorded human hand grasping items in a VR environment. The 

human grasps were then mapped to robot gripper grasps and the robot grasp’s quality was 

assessed with a quality measuring system that was also proposed in the same paper. 

Another PbD related study was done by Ekvall & Kragic, where they presented a PbD 

task learning system in to a pick and place scenario. The system was tested with in a 

Figure 15. Illustration of the HRI. JR3PCI is an ActiveX component used to 

communicate with the F/T sensor (Neto et al. p. 139) 
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virtual simulation and using a real robot. In the scenario a robotic manipulator was sup-

posed to arrange three work objects in the workspace as taught. The initial state of the 

workspace was slightly different in the beginning of each task execution and in real world 

tests the initial state was estimated using a camera. 

Before the task execution the system was trained for the task with three different PbD 

learning techniques in three different test situations; imitation learning, learning in dia-

logue with the teacher and learning with multiple observations. In real world tests the 

training input was pictures of desired end situations. In imitation learning the system is 

given only the end result and it tries to replicate the same result. In learning in dialogue 

with the teacher the task might be shown only once, but the teacher can tell the system 

additional constraints for each step. For example, the robot can be told to place a certain 

object before any other object. In learning with multiple observations, the task is taught 

multiple times, which makes it possible to form a more general model of the task. This is 

done by extracting meaningful constraints from the teaching examples e.g. the sequence 

certain sub-tasks in a larger set of sub-tasks, or by eliminating unnecessary sub-tasks that 

do not occur in all of the teaching examples. In Ekvall and Kragic’s paper the multiple 

examples learning technique was tested by having underlying constraints, such as always 

place a certain object first, or that some object needs to be positioned in relation to another 

object instead of the world frame. 

A more recent PbD study from 2017 was conducted by Papadopoulos et al. They pre-

sented an advanced HRI interface that allows non-expert users to teach assembly tasks 

for a collaborative robot simply by showing to a camera how the assembly is done. In the 

study an ABB irb-14000 (YuMi) collaborative robot was used. The interface uses a 

RGBD-camera and a 3D-simulation of the workspace, which the user can follow the 

teaching of the assembly. 

Using the interface works as following. First, the human creates a task with a name, spec-

ified assembly parts and an assembly type, e.g. insertion. The specified parts appear in 

the 3D-simulation. Then, the parts are detected in the actual work environment with the 

RGBD camera, and the system shows the detected poses of the parts in the 3D-simulation. 

After this, the teacher shows how the assembly is done in front of the RGBD-camera, 

which records a video of the assembly. From the video, the system extracts main frames, 

meaning frames that demonstrate movements of the parts. These frames can be edited by 

the user if they are not satisfying. Additional information can also be added to each frame 

if needed, for example information about two parts aligning with each other. After this 

the assembly (without robot movement) is displayed to the user. Once the assembly is 

taught and verified by the user, the system designs 3D-models for optimal gripper fingers 

to use for the task, which are printed and attached to the robot by the user. Next, the 

system creates manipulator paths and gripping positions for the assembly in the simula-

tion, which the user confirms if feasible after which the robot program can be transferred 

to a real robot. Papadopoulos et al. conducted an experiment with 13 inexperienced users 
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to evaluate the system’s usability on a five-point Likert scale. All of them rated the system 

very positively and felt like they could use the system without any assistance. (Papado-

poulos et al. 2017) 
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5. CONCLUSIONS 

Task level robot programming is the highest level of abstraction in robot programming 

and a way to program a robot at a task level. The user does not teach the robot how to do, 

but instead instructs it by what to do. A task level programming environment normally 

includes a model of the work environment including work objects and machinery, some 

sort of a set template that the user uses when he/she inputs a task description and a way 

to plan the robot program from that task description. The goal of task level programming 

is to relieve the robot operator from the necessity of knowing programming so that the 

operator can be a process expert instead of a programmer. This is desirable since a process 

expert is much more knowledgeable of the actual job, while a programmer without any 

process knowledge just works according to the given specification, which might be in-

complete or have mistakes in them that were not apparent in the time of making the spec-

ification. Personnel with expertise in both the process and programming knowledge might 

be difficult to find and hire. 

Robot programming in the past was tedious and reprogramming required lots of time and 

a robot programming expert on the worksite. This created a need for faster, better ways 

of communicating with the robot. HMIs have become a lot easier and more efficient to 

use over the years, but there still is a lot of work to do for an unskilled person to be able 

to program a robot (P. Neto et al. 2010). Traditional online and offline approaches require 

a good technical understanding of robots and programming and are economically feasible 

only with large batch sizes (P. Neto et al. 2010; Wassermann et al. 2018). SMEs with 

frequently changing products do not necessarily have qualified personnel for the robot 

programming jobs (Wassermann et al. 2018) and their product batch sizes are often times 

small. Higher level of abstraction in robot programming interfaces is needed to enable 

SMEs to really benefit from production efficiency gained from using robots. Previously 

mentioned points serve as motivation for developing task level and other high-level robot 

programming methods. 

Working concepts of task level environments, that actually make the robot programming 

work more efficient have existed for 20 years now (Arai et al. 1997), but still task level 

programming environments are not yet common in industrial scale (Hägele et al. 2016). 

The transition to industry is very much needed, but it is held back by the disadvantages 

of task level programming. It takes a lot of effort to adapt a task level system to the com-

ponents and processes of a production system (Backhaus & Reinhart 2013). However, it 

seems like the situation is changing judging by the latest literature proposing advanced 

robot programming systems and recently emerged commercial task level systems that 

were covered in chapter 4.4. We might see task level robot programming environments 

in wider use in the near future. 



29 

 

To make robot teaching even more natural to non-expert people, there has been a lot of 

task level robot programming research concentrating on natural HRI, such as multimodal 

interaction, augmented-reality, virtual reality and learning by demonstration (Fang et al. 

2014). Even though this thesis has discussed task level programming in the scope of in-

dustrial robotics, task level programming and HRI research has coincidentally advanced 

robot programming over all to a higher level of abstraction. The knowledge that has been 

acquired can be utilized outside the industrial environment in a likely situation in the 

future, where normal people interact with service and professional robots on a regular 

basis in their jobs and free time. 
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