
Luong Dang Hai

THE ETHEREUM BLOCKCHAIN: USE
CASES FOR SOCIAL FINANCE

APPLICATIONS

Faculty of Information Technology and Communication Sciences
Bachelor of Science Thesis

April 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250165594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Luong Dang Hai: The Ethereum blockchain: Use cases for social finance applications
Bachelor of Science Thesis
Tampere University
International Degree of Science and Engineering (B.Sc)
April 2019

Centralized network solution have been around for a long time, despite having a considerable
issue of trust, in which users need to rely on the implementation of the system. During unfortunate
incidents such as centralized server hacking attacks, users’ data can be stolen and distorted, as
well as not available while requested. Blockchain is discovered and believed to be a distributed
network solution which can mitigate the above issue.

This bachelor’s thesis studies how blockchain network can be integrated into a social financial
mobile application. The research is completed by developing a smart contract and connect it with
the mobile application. The smart contract is written in the Solidity programming language and
run on the Ethereum network.

Keywords: blockchain, smart contract, solidity, ethereum, finance

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

I would like to thank my employer Bankify Oy for suggesting this bachelor thesis and
making this thesis possible. I want to also thank to my supervisor, Dr. Marko Helenius
and my English teacher, Mrs Sarina Lewis for the aid I was given to improve this thesis
and making it possible.

In Tampere, Finland, 1st April 2019

Luong Dang Hai

iii

CONTENTS

1 Introduction . 1

2 Related Work . 3

3 Background . 4

3.1 Blockchain Definitions . 4
3.1.1 Content creation on the blockchain 4
3.1.2 Blockchain’s capabilities . 5
3.1.3 Transparency and democracy . 5

3.2 Smart contracts . 6
3.2.1 Comparison between smart and traditional contracts 6
3.2.2 Supported platforms for smart contracts 6

3.3 The Ethereum Blockchain . 7
3.3.1 Smart contract execution on Ethereum 8

4 Smart contract development . 9

4.1 Contracts . 9

4.2 Addresses . 11

4.3 Function modifiers . 11

4.4 Events . 11

5 Application Design and Requirements . 15

5.1 System overview . 15

5.2 Application use cases . 16

5.3 REST API . 16

5.4 Requirements . 16
5.4.1 Generating data slot on smart contract 17
5.4.2 Provide a data-retrieval interface for user 17

5.5 Asymptotic Notation . 17

6 Implementation . 18

6.1 Smart contract data structure . 18

6.2 Smart contract functions . 19

6.3 Web3 Framework . 20

6.4 Error handling . 22

7 Smart contract evaluation . 24

7.1 Security . 24

7.2 Privacy . 24

7.3 Latency . 25

8 Conclusion . 26

References . 27

iv

LIST OF FIGURES

3.1 Ethereum Transaction [3] . 7

5.1 Blinky system architecture . 15

6.1 Blinky’s Cost-Split Smart contract data structure [3] 18

v

LIST OF TABLES

3.1 Popular Smart contract-enabled platforms and comparisons. 7

vi

LIST OF PROGRAMS AND ALGORITHMS

4.1 A simple contract in Solidity. 10
4.2 Simple function modifier in a contract [28]. 12
4.3 Contract with Event derived from [28]. 13
4.4 Listening to Event from web applications [28]. 13
6.1 Skeleton implementation of function appendEvent. 19
6.2 Calling Web3 functions and making transactions on the Ethereum blockchain,

with explanations [28]. 21
6.3 Using require function to validate input data 23

vii

LIST OF SYMBOLS AND ABBREVIATIONS

Θ Asymtotic Notation Theta

API Application Programming Interface

Blinky A finance mobile application owned by the Bankify company which
helps users to split shared costs and develop saving target.

Cost-Split The term used in the Blinky application to define the shared cost
between a user group (buying food, items together)

ETH Ether, the currency of the Ethereum blockchain

JSON Javascript Object Notation

JWT JSON Web Token

Pony-fill A term used in the Javascript language which means providing the
missing functionality in the standard library of the host run-time
environment.

Programmable Blockchain Blockchains which can run smart contracts, developed by one or
more programming languages.

REST Representational State Transfer

TX Transaction

URL Uniform Resource Locator

World computer An alternative name for the Ethereum network, denoting its feature
to run computer programs in the global scale.

1

1 INTRODUCTION

Developing Internet-based applications, which send and receive data over the Internet,
can be developed by making a client which users will interact, and a server to manage
the application’s data (for example, facts, scientific knowledge, personal information and
even legal proof). Any organizations which need to serve data online are required to
set up this client and server system. Hence, there is a huge trust being placed onto the
systems which will be responsible for making sure the data is available and reliable. Most
of the time, those systems do not fail everyone’s trust, until there are unexpected, either
objective or subjective incidents, such as unauthorized access by a hacking group, or by
malicious people trying to gain their advantages from the data. Such examples can be
found even on big corporations: Facebook and Google failed to protect their customer’s
data [15], [39].

Finance has played an important role to the human society since the early ages. After the
Internet was invented, finance, among other industries, was given a huge enhancement
on how the services can be delivered to customers. There are many companies which
are offering such financial services such as PayPal [18], Visa [19], etc. Those services
also rely heavily on the setup stated above, which generates a risk when the trusted
system fail to protect customer’s data. Those who can bypass the system’s security can
compromise a large amount of money from the customer[31]. Therefore, there is a need
for a better system that will protect data from the mentioned issue. Luckily, one such
solution was discovered which is called "blockchain". Blockchain leverages the power of
the majority where everyone can have a chance of governing the data over the Internet,
which makes it extremely hard to execute a malicious attack. Blockchain also embraces
the good sides of backing up data since everyone can, and is responsible for keeping one
copy of the data.

By learning about the concept of blockchain, how it can achieve to solve the above men-
tioned problems, the research problem of this thesis is to develop a solution based on
blockchain for a social finance mobile application, featuring a new way for users to split
the cost between friends and handle the payment without directly interact with the pay-
ment methods. The objective is to show what is the solution, how the solution can be
developed and then integrated to the system of the mentioned mobile application. After
that, the solution will be evaluated objectively with key requirements of a financial appli-
cation.

Chapter 3 presents the brief theoretical definition of blockchain, the advantages of using

2

blockchain, a special feature of it called smart contracts and, then introduces a blockchain
network that will be used to develop and deploy the smart contract to integrate to the
mobile application system mentioned in later chapters. Chapter 4 will describe the nec-
essary concepts while developing a smart contract, which involves explaining the special
features of smart contract’s development programming language called Solidity. Chapter
5 describes the current Blinky application system and the requirement needed for the
new solution with blockchain. After that, the description about implementing the solution
is explained in Chapter 6, and then being evaluated in the Chapter 7. Chapter 8 con-
cludes the results presented in Chapter 6 and 7, and then propose the usefulness and
possibility to bring the solution to mass-usage.

3

2 RELATED WORK

Even though blockchain is a new technology, its benefits have been discovered and
proved in many industries, such as health care [11], supply chains management [35],
insurance [42], the Internet of Things [33] and especially finance industry with banking
[14]. Thus, blockchain has become a compelling topic for new theses. For example, Jutila
et al. suggested blockchain’s advantage for financial services and provided applications
in the conceptual level [20]. However, there was not a specific application implementation
for an example financial service. Therefore, this thesis is intended to provide such infor-
mation: implementing a smart contract for a social financial application, which records
the event happened in a social cost split event.

Blockchain’s main structure is a permanent database and collects new records continu-
ously. Victoria et al. also based on this idea and explored using this new technology as
a way to reliably manage important records [22]. The author presented an example of
maintaining a land registry system on a blockchain network and evaluated using various
standards on preserving digital records. Even though there are some limitations on us-
ing blockchain as a long-term data store, this new technology is suitable for a short-term
need provided that the system is properly secured and managed. However, the research
only stops at a conceptual level, and the need for reliably keeping digital data can also
benefit other use cases, for example, between friends and families as a small history log.
This thesis got the motivation from the mentioned paper to execute a practical solution
with a financial mobile application.

The support for developing smart contracts on blockchain is not fully accessible at the
time of writing. The blockchain systems do provide their frameworks, programming lan-
guages, semantics, etc. However, there are not many comprehensive and beginner-
friendly tutorials to get started with developing applications on the blockchain. One of
the accessible and beginner-friendly guides provides a tutorial where the reader can de-
velop a smart contract as a back-end service for a web application [9]. The book chose
Ethereum blockchain as the platform to make the tutorial, as the platform is the second-
largest blockchain network while supports a Turing-complete programming language to
produce full-featured computer programs. The book took a noticeable effort in explaining
the concepts and required steps to maintain a smart contract service without relying on
the skill level of the reader in terms of front-end development. This thesis aims to sup-
plement a practical example of applying the guide on the book and make a small smart
contract acting as a database server.

4

3 BACKGROUND

This chapter explains the key concepts of a blockchain, a new blockchain feature called
smart contract and introduces a platform that provides the capability to develop one which
is the Ethereum blockchain. Understanding the key ideas is the prerequisite to under-
stand: i) the revolutional idea of blockchain; ii) the solutions proposed in later chapters.

3.1 Blockchain Definitions

A blockchain is a structure to store data in a continuously growing list of records, which are
also referred to as "blocks" [32]. These "blocks" are linked and secured by cryptography.
The whole chain containing the "blocks" is protected and maintained by a network of
computers, which is also called a node network, through a consensus mechanism.

A blockchain can be compared to a self-organizing book which can add pages to itself
infinitely. Each block is similar to a page, which contains a page number to identify itself.
All pages are linked to each other by the book spine, and each page number implies that
the next page is certainly the current page number plus one. With this setup, the reader
can easily jump to the page as needed, and navigate between pages. A blockchain
is constructed in a similar way as that book while the page numbers are replaced by
unique identifiers such as a hash value, the book spine is removed and instead each
page contains the identifier for the previous page [12].

3.1.1 Content creation on the blockchain

Content addition to the blockchain is similar to new content addition to a book. For ex-
ample, anyone can get a digital version of a thesis, write edit and annotate. There has
to be a solution to validate which printed out versions of that thesis is the original one.
One such solution is comparing all copies of the same book. If the same page is showing
different content between versions, the majority which hold the same content will be cor-
rect. To the blockchain context, everyone will have the same copy of data and have the
right to add new content to it. Each time content is added there will be a broadcast event
to everyone, each of whom can verify the data and after the successful verification, the
next set of data will be added to a new block [24].

5

Blockchains improve the content creation by allowing more complex content which can be
added into itself. These contents can be transactions data, messages, texts, conditions
and even computer programs, or scripts which run when the conditions are met.

3.1.2 Blockchain’s capabilities

From the definition and the mechanism of content creation mentioned above, it is derived
that a blockchain is able to:

• Transfer values, such as electronic cash [24].

• Exchange message to each others as a form of signed message (to which the
receiver is able to verify the sender) [5]

• Store records of data such as company shares, bonds, ... [34]

• Run optional scripts each time a condition is met [3, s. 20]

For the purpose of this thesis, finding use cases for a social finance application, only
the data storing and script executing will be discussed. This is due to the nature of a
computer application: i) Running business logic, and ii) Storing users’ data.

3.1.3 Transparency and democracy

These capabilities mentioned in Sub-Chapter 3.1.2 can be found in current blockchains.
For example, the records of company shares are saved in that company, legal authority.
Those middlemans make sure that all shareholders’s stakes are recorded correctly. Each
time one needs to transfer the shares, all those middlemans need to be notified and then
they will verify and execute the transfer. Those outlined steps might be broken if a chain
is corrupted or a human error occured.

A blockchain prevents these issues with the reliability of data existence, automatic agree-
ment bindings and no authority in control. All participants in a blockchain will keep a
record of that company’s shares and share transfer will be handled by a smart contract
automatically [4]. Anyone with access to the Internet can safely make an agreement to
each other without actually meet or know beforehand, since the rules and execution of
a smart contract are automated. Each time new data is requested to record, the whole
network will verify it with cryptography. Later, the data will be immutable, extremely hard
to temper with [24][5]. Furthermore, no one owns the system. Instead, it is maintained,
verified and controlled by everyone who joins the network.

6

3.2 Smart contracts

Running smart contracts is a new feature of a blockchain [41], is a "computerized trans-
action protocol that executes the terms of a contract" [37]. As mentioned in Sub-Chapter
3.1.1, any request to run the smart contract codes will be sent with a set of conditions.
When the predefined conditions are met, the codes from the smart contract will be exe-
cuted [3].

3.2.1 Comparison between smart and traditional contracts

In a traditional contract, each party will hold a copy. The judges and the legal system will
enforce and make sure that the contract terms will be respected and followed. Manual
work in traditional legal systems are not required in smart contracts. Since they are
computer programs, all the execution rules are automated and enforced by computer
logic.

A whole new possibility has been able to be realized since more complex rules and logic
can be applied thanks to smart contracts. Running smart contracts on blockchain can
also be understood as running computer programs in a world computer, since the contract
will be executed anywhere in the world, which ensures the availability of the contract (zero
downtime). Furthermore, since the contract execution will be made by every node joining
the network, "an extreme level of fault tolerant" can be achieved [7].

With a smart contract, two people on the blockchain, for example Anna and Bob can
agree to certain terms and conditions without actually meet and know each other before
hand. They do not need to spend time and money from different third party entities to
formalize and legalize the contract. Instead, what is required from them is only running
the smart contract, and all the rules will be automated according to the rules defined in
the contract itself.

3.2.2 Supported platforms for smart contracts

Since running smart contracts is a new feature in blockchain, not all blockchain networks
have the full support for this feature, including the bitcoin network [23]. However, there
are 3 most developed blockchain networks that support this new feature: NEO [30], EOS
[25] and Ethereum [26].

Table 3.1 showed 3 most popular smart-contract-supported blockchains with some past
metrics [10][8][36]. EOS blockchain has the largest recent developer commits, however,
its maturity is merely 1.5 years comparing to Ethereum’s 5 years. That leads to lots of
Projects have been built on Ethereum, which confirms its reliability to work with as a smart
contract platform. With the mentioned analysis, it is clear that Ethereum will be chosen

7

as the platform for developing a smart contract in this thesis.

Criteria NEO EOS Ethereum

Maturity 3.5 years 1.5 years 5 years

Developer Activity 155 commits 4795 commits 973 commits

past 12 months

Number of Projects <50 93 2133

Supported C#, VB.Net C++ Solidity

Programming Languages F#Java, Kotlin, Python

Table 3.1. Popular Smart contract-enabled platforms and comparisons.

3.3 The Ethereum Blockchain

After the successful release of the first blockchain platform called bitcoin, the financial
industry has shown gradual increase in the adoption of blockchain technology [16]. How-
ever, the problem that bitcoin solved was only sending electronic money between peers,
and the community demands a next generation of blockchain that can achieve more, for
example, running computer programs with consensus-backed security. That was the rea-
son for the born of Ethereum blockchain to become a programmable blockchain in the
year 2014 [6]. Ethereum took a different approach to blockchain by allowing everyone to
add their own operations and complexity rather than just a money transaction [3]. There-
fore, Ethereum is suitable to realizing complex business logic [38].

Figure 3.1. Ethereum Transaction [3]

The design of Ethereum is similar to a state machine [38][3][40]. Every time one wants to
change the data on Ethereum, a transaction is created. The transactions will be collected
and processed incrementally, each of which will describe how the data will transform from
the current state to the next one, as in Figure 3.1

There are currently two Ethereum networks running: Ethereum Classic (ETC) [29] and
Ethereum (ETH) [26]. In this thesis, the Ethereum ETH will be used to discuss and

8

implement the smart contract due to the speculation that the later Ethereum is more
popular, advanced and actively maintained. The currency from Ethereum will be refered
as "Ether" after this.

3.3.1 Smart contract execution on Ethereum

In Ethereum, each smart contract has its own address after being released to the network.
To run one, an user with another Ethereum address will need to initiate a transaction to the
contract, which optionally contains the amount of Ether to transfer, the message to invoke
some function on the smart contract, and amount of fee (GAS) to be paid for the miners.
The transaction will be verified by the network which consumes GAS gradually and if the
transaction is invalid, the remaining fee will be refunded to the sender. Otherwise, the
amount of Ether specified will be transfer and the code invocation will be activated on the
transaction, which will run a specified function on the smart contract.

9

4 SMART CONTRACT DEVELOPMENT

Smart contracts are simply programs which run on top of a blockchain network. Hence,
they can be developed similarly as normal computer programs, by using programming
languages to compile the logic of the software, which then after that being compiled to
machine instruction in order to execute. In the Ethereum blockchain, Solidity is intro-
duced to be one of the programming languages which have the support to compile smart
contract code [28].

Solidity is a modern language inspired by many predecessors such as C++, Python and
JavaScript [28]. It is built with the support for Ethereum Virtual Machine (EVM), which
is the platform to execute smart contracts, hence becomes a contract-oriented program-
ming language [28]. Together with any other modern counterparts, Solidity features in-
heritance, statically typed and libraries to ease the development process. To understand
later code examples shown in later chapters, the language’s features which are contracts,
function modifiers, addresses will be described in details

4.1 Contracts

Contracts can be known as the soul of Solidity, and a contract’s design reassembles to
that of classes in other object-oriented programming languages, with the appearance of
state variables equivalent to class properties, functions to class methods. For example,
Program 4.1 shows a basic contract.

Program 4.1 shows a contract IntegerStorage which contains a state variable of type
uint. This contract also provides two functions, first of which is getInt() which returns
the value of the state variable storedInt, and the second is setInt(uint newInt) which
receives a parameter of type uint and will set that parameter’s value into the state vari-
able.

10

1 pragma solidity ^0.4.0;
2
3 contract IntegerStorage {
4 uint storedInt; // This is the state variable
5
6 function getInt () public returns uint {
7 return storedInt;
8 }
9

10 function setInt(uint newInt) public {
11 storedInt = newInt
12 }
13 }

Listing 4.1. A simple contract in Solidity.

11

4.2 Addresses

Address is a value type in the Solidity language to denote the Ethereum address, each
of which contains a 20-byte value equalling to the size of an Ethereum address [28]. The
address can be from a real person holding an Ethereum wallet, or another contract, since
contracts also own an Ethereum address. This type address includes some members,
which is identical to methods and property of an object in other object-oriented program-
ming languages, such as balance and transfer. By having this special value type, it is
possible to programmatically send and receive money inside an Ethereum smart contract.

4.3 Function modifiers

Functions in Solidity contracts can have modifier to change the behavior of its own [28].
With function modifiers, methods can be protected by checking a precondition before
executing. Program 4.2 shows a contract which includes a simple function modifier.

In Program 4.2, the contract owned is assigned an Ethereum address coming from the
caller of the constructor function, which is included in msg variable, as the owner when
being created. During the lifetime of the contract, the function close() can only be effec-
tively executed if the caller’s address is equal to the owner’s address.

4.4 Events

In order to get the best out of smart contracts, there has to be a method to communicate
with them from the applications, website, etc. Thus, events are designed as a contract
feature in Solidity. Each event contains the data denoted from the time which its contract
is created. When being called, the transaction’s logs will store the event. Program 4.3
and 4.4 demonstrates a simple interaction from a web application with a smart contract.

12

1 pragma solidity ^0.4.0;
2
3 contract OwnedWithModifier {
4 function OwnedWithModifier () public { owner = msg.sender; }
5 address owner;
6
7 // This contract defines a modifier and it will
8 // use it in function close()
9 // The function body is inserted where the special symbol

10 // ‘;‘ in the definition of a modifier appears.
11 // This function modifier ensures that only the
12 // owner of this smart contract can execute the close()
13 // function and in other cases, an exception will
14 // be thrown
15 modifier onlyOwner {
16 require(
17 msg.sender == owner ,
18 "You need to be the owner to call this function"
19);
20 _;
21 }
22
23 // This function can only execute if the owner
24 // is calling it
25 function close () public onlyOwner {
26 // Do something inside this function
27 }
28 }

Listing 4.2. Simple function modifier in a contract [28].

13

1 pragma solidity ^0.4.0;
2
3 contract DepositOrderReceiver {
4 event DepositOrderReceiver(
5 address indexed _from ,
6 bytes32 indexed _id ,
7 uint _value
8);
9

10 function deposit(bytes32 _id) public payable {
11 // Events are emitted using ‘emit‘, followed by
12 // the name of the event and the arguments
13 // (if any) in parentheses. Any such invocation
14 // (even deeply nested) can be detected from
15 // the JavaScript API by filtering for ‘Deposit‘.
16 emit Deposit(msg.sender , _id , msg.value);
17 }
18 }

Listing 4.3. Contract with Event derived from [28].

1 var abi = /* abi as generated by the compiler */;
2 var DepositOrderReceiver = web3.eth.contract(abi);
3 var depositReceipt = DepositOrderReceiver.at("0x1234 ... ab67" /* address */)

;
4
5 // Pass a callback to start watching immediately
6 var event = depositReceipt.Deposit(function(error , result) {
7 if (!error)
8 console.log(result);
9 });

Listing 4.4. Listening to Event from web applications [28].

14

In Program 4.3, contract DepositOrderReceiver contains a function deposit which emit
event Deposit when successfully executed. The event contains the Ethereum address
of the sender, the identifier _id and the amount of deposit value. After being compiled
and deployed to the Ethereum network, an identifier called as abi is generated, which
can be used from outside of the Ethereum network to specify the contract. In a webpage
which embed the JavaScript program 4.4, the web3 variable is to denote the web3 web
framework, which is used to interact with Ethereum network, which then specify to interact
with the contract DepositOrderReceiver. The reference to the event Deposit is stored in
event variable and then a callback function is passed into which will be invoked everytime
the event is emitted.

15

5 APPLICATION DESIGN AND REQUIREMENTS

This chapter will describe the current system of the Blinky mobile application and im-
portant technical terms. These include: i) System overview; ii) the use cases of the
application; iii) REST API; iv) the upcoming new feature requirements and v) asymptotic
notation. Figures are also included to provide a visualized approach.

5.1 System overview

The Blinky mobile application is a cross-platform client written in React Native [17], a
framework to develop mobile applications using the JavaScript programming language.
The usage of the application enables users to register, create a Cost-Split event that
happened after he/she paid for one event for everyone and need to split the cost equally
and get the part of the money which others owe.

Figure 5.1. Blinky system architecture

Users of the Blinky Application can also generate a web URL to share that split cost
to friends or relatives. The URL acts as an interface that non-Blinky users can also
interact with the services even though they do not have an account. The URL leads to
a web application written in React library, which helps building user interface. To provide

16

visualized aid, Figure 5.1 represents the system powering Blinky and where those system
are deployed to.

5.2 Application use cases

The Blinky application’s main goal was to help its users to calculate the shares between
friends after someone has paid beforehand, to ensure a fair and equal split. The ap-
plication also tries to free users from sticking to one particular payment solution, which
allows users to register their preferred payment solution details and later they can share
with the calculation details to their friends. After that, users are expected to arrange the
payments and communication in their own preferred channel. From here until the end of
this thesis, each of this series of actions from user will be referred as a "Cost-Split" event,
as described in the glossary.

5.3 REST API

The clients, which include a mobile and a web version, can communicate with the back-
end service with a Representational State Transfer (REST) Application Programming
Interface (API) [13]. Data is represented and sent through Javascript Object Notation
(JSON).

Users in the mobile application will be granted access right determined by a JSON Web
Token (JWT) which can be used in the header of every request to the back-end ser-
vice. The token contains the user’s information which can easily be used to identify and
authenticate them.

The Blinky RestAPI Service will provide an interface for the mobile application so that
users can create, edit and delete Cost-Splits, and then invite participants, add expenses
to split. Each time a Cost-Split, participant or expense is created on the server, an unique
identifier will be generated as an integer and attached to that object. The identifier is then
also be used to refer to that object in later actions of its lifetime as well as to delete.

5.4 Requirements

The requirements for integration with the Ethereum smart contract include:

• Generate a new data slot on the smart contract state when a new Cost-Split is
created on the application

• Increment the data slot with new data each time a Cost-Split is edited with a new
user’s action such as changing expenses’ detail, participants in the Cost-Split, gen-
erate an URL, or someone interacted with that URL

17

The requirements are chosen because they depict the common scenarios of transparency
between small Cost-Split of a party, such as how much each has to pay, who did declare
to have paid.

5.4.1 Generating data slot on smart contract

The desired smart contract will hold a map which contains each Cost-Split’s happened
event. Each Cost-Split will have its own memory space to store events in a chronological
order. Whenever a new event is dispatched on the client mobile application, a function
inside the smart contract should be called provided with the content of the event such as
the description, time stamp, user’s identifier. The function will then process the provided
data and append it into that Cost-Split’s memory space.

5.4.2 Provide a data-retrieval interface for user

Users of the Blinky application also have the right to request their data in a readable
manner. This means that the application will need to provide a function that will represent
user and request the data about the user-desired Cost-Split saved on the smart contract.
The requested data should also be formatted into a readable form that they can also use
as a mean of proof for the action taken by the Cost-Split owner or anyone interacted with
the shared Cost-Split.

5.5 Asymptotic Notation

In order to measure the performance of an algorithm or a computer operation, asymp-
totic notation is used [2]. In general terms, it is a theoretical framework to measure an
algorithm’s operation taken to complete the task given a number of inputs. For example,
if there is n inputs and the algorithm needs to do n operations on each input, the total
number of operations needed to complete the task is n * n, which means it will be ex-
ponentially proportional to the number of inputs. In asymptotic notation, only the highest
order of operations is taken. From the last example, if the number of operations needed
is n * n + 2n then the asymptotic notation is still n * n since it carries order of 2.

18

6 IMPLEMENTATION

This chapter will describe the proposed solution for implementing a smart contract in this
thesis reflecting the requirements outlined in the previous chapter. This will include ex-
plaining: 1) The chosen data structure for the smart contract; 2) The necessary functions
for the smart contract; 3) Installing the Web3 framework which is used to connect the
smart contract to the Blinky application and 4) The solutions to handle potential error
during the lifetime of the smart contract.

6.1 Smart contract data structure

In order to write and read Cost-Split data (as described in Section 5.4), the data structure
of the smart contract will need to be defined. Figure 6.1 provides a visualized data struc-
ture plan. Since each Cost-Split should have its own space to store its event data, one
such option for organizing Cost-Splits could be using a mapping [27].

Figure 6.1. Blinky’s Cost-Split Smart contract data structure [3]

Each Cost-Split will be identified from the key obtained from the Blinky API server, as
described in Section 5.3. This will make Cost-Split fetching as quick and efficient because
to find an element in a mapping data structure knowing the key (in this case, the Cost-

19

Split’s identifier) only need an asymtotic performance of Θ(1).

Each event of a Cost-Split will need to carry a description, timestamp and the identifier
of the person who initiates the event. Hence, struct data type is the only candidate for
defining the data structure of a Cost-Split event. This struct will contain a string type
for the description and another string type for the time stamp in the ISO 8601 format
[21] (such as 2018-11-12T19:26:47.858Z) since this format is compatible with various
programming languages. The struct will also contain an uint field for storing the user’s
identifier from Blinky API Service. After this passage, the struct will be refered to as the
CostSplitEvent type.

Furthermore, after being able to access the data of a Cost-Split using its key, each event
should be sorted chronologically. Therefore, the smart contract will need to store the
Cost-Split data as an Array of CostSplitEvent. Since each event will be recorded chron-
ically by nature, no sorting operation is necessary on the array.

6.2 Smart contract functions

Since the smart contract will need to be able to create a new data slot for a Cost-Split,
a function is needed, which can be named as createCostSplit. This function should
accept the identifier of the Cost-Split as a parameter and should return a boolean type to
indicate if the creation is successful or not, either true or false.

1
2 contract BlinkyCostSplit {
3 ...
4 function appendEvent(
5 uint costSplitId ,
6 uint userId ,
7 string timestamp ,
8 string eventDescription) returns (bool) {
9 // The function’s implementation

10 return true;
11 }
12 ...
13 }

Listing 6.1. Skeleton implementation of function appendEvent.

After a Cost-Split is created, users will then began to interact with it in the Blinky Appli-
cation, which will incur events. Therefore, a new function is needed to start to add new
events into a Cost-Split. This function can be called appendEvent. In order to identify
the Cost-Split and to write the necessary data field of the event as specified in Section
6.1, the function will need to receive the identifier of the Cost-Split, the identifier of the
Blinky user who initialized the event, the event’s time stamp and the event description
as the parameter. This function should also denote if the action completes successfully
or not so it should return a boolean type like createCostSplit. Figure 6.1 outlined the

20

function’s signature as described above for the purpose of demonstration.

In a normal data management software, there should be functions for creating, reading,
updating and deleting data. However, in this particular smart contract, data should not be
updated or deleted, since the aim of the smart contract is to embrace the transparency,
which means data should be as it is from the moment of being created. Users’ will to
update or delete Cost-Split’s events should, therefore, be added to the event list as a new
event with the description provided by the user.

6.3 Web3 Framework

After defining the data structure (mentioned in Section 6.1) and the functions needed
for the smart contract (as mentioned in 6.2), knowing a tool for communicating with
the smart contract from the outside Internet is necessary. The Web3 Framework exists
in order to solve the needs stated above. The advantage of this framework that it is
written in the Javascript programming language, which is also used in the React Native
framework in the Blinky mobile application. Hence, this enables fast and easy integration
of the framework to both the web page and the mobile application of Blinky. In order to
install and configure the Web3 Framework, the following steps are required [1]:

• React Native projects’s dependencies can be managed using the npm package man-
ager. Therefore, the content of the Web3 Framework can be downloaded from npm

• Choose a suitable Framework version that is compatible with React Native. There
are two newest versions: 1.0 and 0.20.x during this time of writing this thesis. Ver-
sion 1.0’s content is generated dynamically, which is not compatible with React
Native due to the nature of a mobile application (the code inside the app will be
static after being built). Therefore, version 0.22.x is chosen to be installed.

• Pony-fill some APIs of Javascript that React Native does not support, such as the
crypto API to perform encryption and hashing. Those can be solved by installing
package node-libs-react-native

After following the above mentioned steps and conducting other smaller tweaks as pre-
sented in the link above, The web3 framwework can be invoked in React Native as an
example in Program 6.2. First, an instance of the web3 framework is instantiated, with
the default provider bundled within the framework. Then the contract address contract ad-
dress and it’s Application Binary Interface (ABI) is specified in line 3, 4 and then passed
to the initialization function that creates an instance of web3.eth.contract in line 34,
which represents an Ethereum smart contract. After that, the program can start calling
the functions on the smart contract by calling function methods.myMethod on the contract
instance as presented in line 36 to 38.

21

1
2 \\ Create a new web3 instance
3 const web3 = new Web3(Web3.givenProvider);
4
5 \\ The ethereum address of the contract needs to be provided
6 \\ in order to locate and interact in the blockchain
7 const contractAddress = "0x1a5c29c94D03C4c8f7414564CBD57295d61e898f";
8
9 \\ This is the metadata of the contract provided after the

10 \\ compilation.
11 const contractAbi = [
12 {
13 "constant": false ,
14 "inputs": [
15 {
16 "name": "x",
17 "type": "uint256"
18 }
19],
20 "name": "set",
21 "outputs": [],
22 "payable": false ,
23 "stateMutability": "nonpayable",
24 "type": "function"
25 },
26 {
27 "constant": true ,
28 "inputs": [],
29 "name": "get",
30 "outputs": [
31 {
32 "name": "",
33 "type": "uint256"
34 }
35],
36 "payable": false ,
37 "stateMutability": "view",
38 "type": "function"
39 }
40];
41
42 \\ Connect to the contract by providing the metadata
43 const myContract = web3.eth.contract(contractAbi);
44
45 \\ Example of initiating a transaction request and handling
46 \\ success callback in .then() and failure callback in .catch()
47 myContract.methods.myMethod("set")
48 .send({from: ’0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe ’})
49 .then(function(receipt){})
50 .catch(function (error) {});

Listing 6.2. Calling Web3 functions and making transactions on the Ethereum
blockchain, with explanations [28].

22

6.4 Error handling

Error handling is one of the most important aspects to consider when developing a soft-
ware product, to ensure that the software works as expected and maintains a high-quality
user experience. In this case of implementing the smart contract for storing Cost-Split
event, there are cases which may confuse the smart contract and therefore handling the
errors while developing the smart contract is a vital step.

Errors that can happen are when the smart contract tries to add an event to a non-
existing Cost-Split, or in other words, the function appendEvent is given an invalid Cost-
Split identifier. In solidity, this function invocation will result in throwing an Exception, all
the changes to smart contract during that function call will be reverted and the failure will
be notified to the caller (in this case, the Blinky Application). However, this kind of error
without being handled will degrade user experience since they may not be aware of how
the Blinky Application handles the event sending. Thus, a proposed solution is stated
below.

The smart contract’s function will use require function as a way to verify the validity of
the data (in this case, checking the Cost-Split’s identifier if it exists in the smart contract’s
state). If the assertion does not satisfy, the function will throw an early Exception to tell
that the identifier is not valid. The Blinky Application can catch this Exception and display
an appropiate dialog to notify user. An example of this error handling is presented in
Program 6.3. From the Program, it is noted that in Solidity, the default value for a variable
is 0 if it has not been set to any value yet. Hence, it is possible to check for the existence
of a Cost-Split in the smart contract’s state by trying to access its value inside mapping

costSplitMap, then compare it to 0. The error message "Cost Split does not exist in the
smart contract" will be thrown if the assertion fails.

23

1 contract BlinkyCostSplit {
2
3 struct CostSplitEvent {
4 uint userId;
5 string description;
6 string timestamp
7 }
8
9 mapping(uint => CostSplitEvent) costSplitMap;

10
11 function appendEvent(
12 uint costSplitId ,
13 uint userId ,
14 string timestamp ,
15 string eventDescription) returns (bool) {
16 // The function’s implementation should be in here
17
18 require(
19 // In solidity, if a value in a mapping (hash table) does
20 // not exist with the provided key, the query will return 0
21 costSplitMap[costSplitId] != 0,
22 "Cost Split does not exist in the smart contract"
23);
24 // ... Remaining implementation for this function
25 return true;
26 }
27 ...
28 }

Listing 6.3. Using require function to validate input data

24

7 SMART CONTRACT EVALUATION

This chapter will concentrate on evaluating the smart contract’s performance with the
mentioned requirement in Chapter 5.4. The evaluation consists of security, privacy, la-
tency and troubleshooting.

7.1 Security

Since smart contract is public to the whole blockchain network, there has to be an option
to define a rule to execute a function inside a smart contract. Such an option exist in the
Solidity language called function modifier as mentioned in Section 4.3 and a ready-made
example in Program 4.2. This means that the smart contract needs to define a modifier
that verifies that the function caller is exactly the smart contract owner. To identify who
is the owner, the smart contract’s constructor need to save the Ethereum address of the
caller to one of its own property for later retrieval. This solution provided by Solidity is
adequate to protect the smart contract’s functions from being called by the unauthorized.

7.2 Privacy

Privacy was not the goal of Ethereum network since every block made in the past can
be verified and looked up by the whole network. Therefore, storing the plain data coming
from the Blinky application do not provide privacy for user. In order to achieve privacy,
the data being sent to smart contract will need to be encrypted. However, a new issue
comes up which is who will keep the encryption key. If user is responsible for holding
the key, it will require a considerable amount of technical knowledge in order to send and
retrieve encrypted data correctly, which will go against the aim of the Blinky application as
it tries to provide user the most user-friendly solution. If Blinky application is responsible
for holding the encryption key, the aim of decentralized blockchain is also lost since the
trust is now given to the Blinky server that it will keep the encryption key secure.

25

7.3 Latency

The Ethereum network is currently running with the Proof of Work consensus mechanism
[24], which can only process 15 transactions per second on the whole network, according
to the time of writing this thesis. This leads to the unavoided high latency for every time
the smart contract is invoked and data is sent. Therefore, interacting with smart contract
at this time will not guarantee fast transaction time.

26

8 CONCLUSION

Smart contract can be utilized in social finance application such as the Blinky application
which involves in creating and storing event data inside the application. In this work,
the Solidity programming language was used to develop a smart contract which acts
as a data store for events which happens when user’s Cost-Splits incur a new action
as mentioned in Sub-Chapter 5.4. The language’s documentation is well-written and
therefore the smart contract was implemented in a short time interval. Since all the
transactions happen inside the Ethereum blockchain and with the necessary security
action as mentioned in Sub-Chapter 7.1, it ensures that the data will maintain its integrity,
which will be a basis for a potential legal proof in the future.

By implementing a smart contract and connecting it to the Blinky application, advantages
and disadvantages of blockchain can be realized. It is shown that the data state inside the
smart contract can be directly requested and appended without going through the Blinky
server. This improves the availability and democracy when updating data. Furthermore,
it is also shown that the data update to smart contract has to pass the conditions provided
in the smart contract’s code in order to be accepted. The conditions are verified in every
nodes joining the Ethereum network as explained in Sub-Chapter 3.1.1. However, as
mentioned in Chapter 7, every transaction or data appending request has to wait for
the Ethereum network until it is verified and processed. This is a potential issue that
affects user experience since waiting a long time for a small transaction is discouraged.
In addition, data on the blockchain does not provide users with privacy (in other words,
everyone can request and access data on the blockchain). This also requires users to
understand and accept that their data on the blockchain will not be private, unless there
are additional encryption methods are applied.

With the advantages and disadvantages of a blockchain-based application, users need to
understand what they can take advantage with what drawbacks they have to accept. For
some users, this is acceptable. Therefore, it is concluded that this feature of using smart
contract in a Blinky’s Cost Split should not be used by default. The application should
guide user of the feature and its benefits as well as drawbacks.

27

REFERENCES

[1] Abe. How To: React Native with Web3 + 0xjs + 0xConnect. URL: https://medium.
com / @generalpiston / how - to - react - native - w - web3 - 0x - js - 0xconnect -

39b3d6a4dca (visited on 01/04/2019).
[2] D. Baldwin, G. Scragg and I. Books24x7. Algorithms and Data Structures : The

Science of Computing. English. 1st. Hingham: Charles River Media, 2004. ISBN:
9781584502500;1584502509;

[3] I. Bashir. Mastering Blockchain. English. 1st ed. GB: Packt Publishing, 2017. ISBN:
9781787125445. URL: https://ebookcentral.proquest.com/lib/tut/detail.
action?docID=4826445.

[4] M. Benchoufi, R. Porcher and P. Ravaud. Blockchain protocols in clinical trials:
Transparency and traceability of consent. English. F1000Research 6 (2017), 66.
DOI: 10.12688/f1000research.10531.4. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5676196/.

[5] V. Buterin. Ethereum: A next-generation smart contract and decentralised appli-
cation platform. URL: https://github.com/ethereum/wiki/wiki/White-Paper
(visited on 01/04/2019).

[6] E. Community. A Next Generation Blockchain. URL: http://ethdocs.org/en/
latest/introduction/what-is-ethereum.html#a-next-generation-blockchain

(visited on 01/04/2019).
[7] E. community. Ethereum Virtual Machine. URL: http://ethdocs.org/en/latest/

introduction/what-is-ethereum.html#ethereum-virtual-machine (visited on
01/04/2019).

[8] Crypto Commits (Past 12 months). URL: https://cryptomiso.com/ (visited on
12/01/2018).

[9] C. Dannen. Introducing Ethereum and Solidity. English. DE: Apress, 2017. ISBN:
9781484225349;1484225341;

[10] S. of the ÐApps. State of DApps. URL: https://www.stateofthedapps.com (visited
on 01/04/2019).

[11] S. Demarinis. US Health Care Companies Exploring Blockchain Technologies. EX-
PLORE 14.6 (2018), 400–401. ISSN: 1550-8307. DOI: https : / / doi . org / 10 .
1016/j.explore.2018.10.006. URL: http://www.sciencedirect.com/science/
article/pii/S1550830718304208.

[12] D. Drescher. Blockchain Basics. English. DE: Apress, 2017. ISBN: 1484226038.
URL: http://www.books24x7.com/marc.asp?bookid=128141.

[13] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis. URL: https : / / www . ics . uci . edu / ~fielding / pubs /

dissertation/rest_arch_style.htm.

https://medium.com/@generalpiston/how-to-react-native-w-web3-0x-js-0xconnect-39b3d6a4dca
https://medium.com/@generalpiston/how-to-react-native-w-web3-0x-js-0xconnect-39b3d6a4dca
https://medium.com/@generalpiston/how-to-react-native-w-web3-0x-js-0xconnect-39b3d6a4dca
https://ebookcentral.proquest.com/lib/tut/detail.action?docID=4826445
https://ebookcentral.proquest.com/lib/tut/detail.action?docID=4826445
https://doi.org/10.12688/f1000research.10531.4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676196/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676196/
https://github.com/ethereum/wiki/wiki/White-Paper
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#a-next-generation-blockchain
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#a-next-generation-blockchain
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine
https://cryptomiso.com/
https://www.stateofthedapps.com
https://doi.org/https://doi.org/10.1016/j.explore.2018.10.006
https://doi.org/https://doi.org/10.1016/j.explore.2018.10.006
http://www.sciencedirect.com/science/article/pii/S1550830718304208
http://www.sciencedirect.com/science/article/pii/S1550830718304208
http://www.books24x7.com/marc.asp?bookid=128141
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

28

[14] Y. Guo and C. Liang. Blockchain application and outlook in the banking industry.
Financial Innovation 2.1 (Dec. 2016), 24. ISSN: 2199-4730. DOI: 10.1186/s40854-
016-0034-9. URL: https://doi.org/10.1186/s40854-016-0034-9.

[15] D. Heaven. Massive Facebook data breach left 50 million accounts exposed. URL:
https://www.newscientist.com/article/2181099-massive-facebook-data-

breach-left-50-million-accounts-exposed/ (visited on 01/01/2019).
[16] M. Iansiti and K. R. Lakhani. The Truth About Blockchain. Harvard Business Review

(). URL: https://hbr.org/2017/01/the-truth-about-blockchain (visited on
01/03/2019).

[17] F. Inc. React Native. URL: https://facebook.github.io/react-native/ (visited
on 01/04/2019).

[18] P. Inc. Paypal Homepage. URL: https://www.paypal.com/us/home (visited on
01/01/2019).

[19] V. Inc. Visa Homepage. URL: https://www.visa.com (visited on 01/01/2019).
[20] L. Jutila. The blockchain technology and its applications in the financial sector. MA

thesis. 2017. URL: https://aaltodoc.aalto.fi/bitstream/handle/123456789/
27209/bachelor_Jutila_Laura_2017.pdf.

[21] M. Kuhn. A summary of the international standard date and time notation. URL:
https://www.cl.cam.ac.uk/~mgk25/iso-time.html (visited on 01/04/2019).

[22] V. L. Lemieux. Trusting records: is Blockchain technology the answer?: Records
Management Journal 26.2 (2016), 110–139. DOI: 10.1108/RMJ-12-2015-0042.
eprint: https://doi.org/10.1108/RMJ-12-2015-0042. URL: https://doi.org/
10.1108/RMJ-12-2015-0042.

[23] M. Morgado. RSK: Bitcoin smart contracts (EN). URL: https : / / medium . com /

coinmonks/rsk-bitcoin-smart-contracts-en-5b474ce87cd6 (visited on 01/03/2019).
[24] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. URL: https:

//bitcoin.org/bitcoin.pdf (visited on 01/04/2019).
[25] E. Organization. Eos blockchain website. URL: https://eos.io (visited on 01/04/2019).
[26] E. Organization. Ethereum Website. URL: https : / / ethereum . org (visited on

01/04/2019).
[27] E. Organization. Mapping Type, Solidity. URL: https://solidity.readthedocs.

io/en/v0.4.25/types.html#mappings (visited on 01/04/2019).
[28] E. Organization. Solidity Documentation. URL: https://solidity.readthedocs.

io/ (visited on 01/04/2019).
[29] E. C. Organization. Ethereum Classic Website. URL: https://ethereumclassic.

org (visited on 01/04/2019).
[30] N. Organization. Neo - An Open Network For Smart Economy. URL: https://neo.

org (visited on 01/04/2019).
[31] A. Peyton. India’s Cosmos Bank stars in $13.5m hacking drama. URL: https :

//www.bankingtech.com/2018/08/indias- cosmos- bank- stars- in- 13- 5m-

hacking-drama/ (visited on 01/01/2019).

https://doi.org/10.1186/s40854-016-0034-9
https://doi.org/10.1186/s40854-016-0034-9
https://doi.org/10.1186/s40854-016-0034-9
https://www.newscientist.com/article/2181099-massive-facebook-data-breach-left-50-million-accounts-exposed/
https://www.newscientist.com/article/2181099-massive-facebook-data-breach-left-50-million-accounts-exposed/
https://hbr.org/2017/01/the-truth-about-blockchain
https://facebook.github.io/react-native/
https://www.paypal.com/us/home
https://www.visa.com
https://aaltodoc.aalto.fi/bitstream/handle/123456789/27209/bachelor_Jutila_Laura_2017.pdf
https://aaltodoc.aalto.fi/bitstream/handle/123456789/27209/bachelor_Jutila_Laura_2017.pdf
https://www.cl.cam.ac.uk/~mgk25/iso-time.html
https://doi.org/10.1108/RMJ-12-2015-0042
https://doi.org/10.1108/RMJ-12-2015-0042
https://doi.org/10.1108/RMJ-12-2015-0042
https://doi.org/10.1108/RMJ-12-2015-0042
https://medium.com/coinmonks/rsk-bitcoin-smart-contracts-en-5b474ce87cd6
https://medium.com/coinmonks/rsk-bitcoin-smart-contracts-en-5b474ce87cd6
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://eos.io
https://ethereum.org
https://solidity.readthedocs.io/en/v0.4.25/types.html#mappings
https://solidity.readthedocs.io/en/v0.4.25/types.html#mappings
https://solidity.readthedocs.io/
https://solidity.readthedocs.io/
https://ethereumclassic.org
https://ethereumclassic.org
https://neo.org
https://neo.org
https://www.bankingtech.com/2018/08/indias-cosmos-bank-stars-in-13-5m-hacking-drama/
https://www.bankingtech.com/2018/08/indias-cosmos-bank-stars-in-13-5m-hacking-drama/
https://www.bankingtech.com/2018/08/indias-cosmos-bank-stars-in-13-5m-hacking-drama/

29

[32] J. Rakheja. What is blockchain? The difference between public and private blockchain.
English. PCQuest (Aug. 2018). Copyright - Copyright 2018 Cyber Media (India)
Ltd., distributed by Contify.com; Last updated - 2018-08-31. URL: https://search.
proquest.com/docview/2097567733?accountid=27303.

[33] A. Reyna, C. Martín, J. Chen, E. Soler and M. Díaz. On blockchain and its integra-
tion with IoT. Challenges and opportunities. Future Generation Computer Systems
88 (2018), 173–190. ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.
2018.05.046. URL: http://www.sciencedirect.com/science/article/pii/
S0167739X17329205.

[34] R. Ryan and M. Donohue. Securities on Blockchain. English. Business Lawyer 73.1
(2017), 85–108. URL: https://libproxy.tuni.fi/login?url=https://search-
proquest-com.libproxy.tut.fi/docview/2049988285?accountid=14242.

[35] S. Saberi, M. Kouhizadeh, J. Sarkis and L. Shen. Blockchain technology and its re-
lationships to sustainable supply chain management. International Journal of Pro-
duction Research 0.0 (2018), 1–19. DOI: 10.1080/00207543.2018.1533261. eprint:
https://doi.org/10.1080/00207543.2018.1533261. URL: https://doi.org/10.
1080/00207543.2018.1533261.

[36] N. Singh. NEO dApps Ecosystem: Complete List of NEO Decentralized Blockchain
Applications. URL: https://101blockchains.com/neo-dapps-ecosystem/ (visited
on 01/04/2019).

[37] N. Szabo. Smart Contracts. (1994). URL: http://www.fon.hum.uva.nl/rob/
Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.

best.vwh.net/smart.contracts.html.
[38] S. Tikhomirov. Ethereum: State of Knowledge and Research Perspectives. Foun-

dations and Practice of Security. Ed. by A. Imine, J. M. Fernandez, J.-Y. Marion, L.
Logrippo and J. Garcia-Alfaro. ID: 10.1007/978-3-319-75650-914. Cham: Springer
International Publishing, 2018, 206–221. ISBN: 9783-319756509.

[39] P. Wagenseil. Google to Kill Google Plus Due to Possible Data Breach. URL: https:
//www.tomsguide.com/us/google-plus-data-leak-shutdown,news-28259.html

(visited on 01/01/2019).
[40] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper 151 (2014), 1–32. URL: https://gavwood.com/paper.pdf.
[41] J. Wu and N. Tran. Application of Blockchain Technology in Sustainable Energy

Systems: An Overview. English. Sustainability 10.9 (2018), 3067. DOI: 10.3390/
su10093067. URL: https://doaj.org/article/f9337e93a561416abec4fa0d8345efe7.

[42] L. Zhou, L. Wang and Y. Sun. MIStore: a Blockchain-Based Medical Insurance
Storage System. Journal of Medical Systems 42.8 (July 2018), 149. ISSN: 1573-
689X. DOI: 10.1007/s10916- 018- 0996- 4. URL: https://doi.org/10.1007/
s10916-018-0996-4.

https://search.proquest.com/docview/2097567733?accountid=27303
https://search.proquest.com/docview/2097567733?accountid=27303
https://doi.org/https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/https://doi.org/10.1016/j.future.2018.05.046
http://www.sciencedirect.com/science/article/pii/S0167739X17329205
http://www.sciencedirect.com/science/article/pii/S0167739X17329205
https://libproxy.tuni.fi/login?url=https://search-proquest-com.libproxy.tut.fi/docview/2049988285?accountid=14242
https://libproxy.tuni.fi/login?url=https://search-proquest-com.libproxy.tut.fi/docview/2049988285?accountid=14242
https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1080/00207543.2018.1533261
https://101blockchains.com/neo-dapps-ecosystem/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.tomsguide.com/us/google-plus-data-leak-shutdown,news-28259.html
https://www.tomsguide.com/us/google-plus-data-leak-shutdown,news-28259.html
https://gavwood.com/paper.pdf
https://doi.org/10.3390/su10093067
https://doi.org/10.3390/su10093067
https://doaj.org/article/f9337e93a561416abec4fa0d8345efe7
https://doi.org/10.1007/s10916-018-0996-4
https://doi.org/10.1007/s10916-018-0996-4
https://doi.org/10.1007/s10916-018-0996-4

	Introduction
	Related Work
	Background
	Blockchain Definitions
	Content creation on the blockchain
	Blockchain's capabilities
	Transparency and democracy

	Smart contracts
	Comparison between smart and traditional contracts
	Supported platforms for smart contracts

	The Ethereum Blockchain
	Smart contract execution on Ethereum

	Smart contract development
	Contracts
	Addresses
	Function modifiers
	Events

	Application Design and Requirements
	System overview
	Application use cases
	REST API
	Requirements
	Generating data slot on smart contract
	Provide a data-retrieval interface for user

	Asymptotic Notation

	Implementation
	Smart contract data structure
	Smart contract functions
	Web3 Framework
	Error handling

	Smart contract evaluation
	Security
	Privacy
	Latency

	Conclusion
	References

