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ABSTRACT

Tampere University of Technology
Bachelor’s Degree Programme in Information Technology
Major: Signal Processing
Examiner: Heikki Huttunen
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There are many object tracking algorithms using optical flow methods. Existing literature
in flow estimation are abundant, however, there is not any method found to extract perfect
flow data. So making an optimal choice of the methods that is suitable for moving object
tracking applications remains an open problem. The purpose of this Thesis is to provide
a survey of existing optical flow techniques for object tracking applications. We experi-
mented state of the art flow methods using several video clips of a static camera including
indoor and outdoor scenes. Furthermore, we present a novel object tracking system for
sparse and dense flow extraction methods by using inverse flow optimization technique.
Sparse algorithm process only some pixels from whole image, which are easy to follow
and dense optical flow algorithm can process all pixels in image.

The both flow methods have some hard parameters in their implementations. In hard pa-
rameter coding the source code, have to be changed any time the input data or desired
format changes. It means users have to carefully test and forethought the system code
performance. The best way to set the hard parameters is cross validation over user desire
dataset. In order to show the performance of the proposed tracking algorithm, some ex-
periments have been performed under higher frame per second video clips. The results
show that selection and cross validation of hard parameters for flow extraction methods
are vital to get the best results.

Tampere, 25.8.2017
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1 INTRODUCTION

Over the last decades computer vision has been widely used in our daily life. Humans use
their visual system to see and analyze the world surrounding them and computer vision
automates these tasks for them. The role of computer vision is to analyze, process, under-
stand and extract the useful information of data captured by different types of sensors
such as cameras, laser devices etc. There are many computer vision applications such as
autonomous driving, face recognition, object segmentation and classification, object
tracking etc [4]. Among them, moving object detection and tracking is one of the most
significant ones. As it can be applied in various application areas such as traffic monitor-
ing, people tracking and video surveillance.

Object detection and segmentation is one of the important application in computer vision,
and its goal is to separate and label every object to various classes. Every object has its
own shape and features. Thereby it is possible to use these special features to detect ob-
jects, which belongs to same class [9]. After object detection, it is possible also to track
them in consecutive video frames. This method has its own advantages and disad-
vantages. It can be used for accurate and specific objects (such as pedestrians) in the
scene. However, it’s slow because it needs to firstly classify whole objects in the scene
and then find the corresponding in adjacent frames.

Another approach is to track just moving objects in the frame sequences. In this method,
which is faster, the purpose is to find moving objects over time by discovering their po-
sition in every frame of the video [13].  There are different tracking techniques such as
temporal differencing, background subtraction and optical flow method etc [15]. For this
reason, dense and accurate motion detection is one of the most significant ones, which
might be done statically or using moving cameras.

Motion is a significant feature of frame sequences; it shows the dynamics of frames by
relating spatial features to temporal changes in images. Optical flow estimation is the
presentation of motion information from an image sequence; Optical flow is a 2D motion
map, which shows the scene’s 3D motion into the image plane. Note that optical flow
module also could be used for extracting parallax in static stereoscopic vision if camera
pose parameters are provided. Optical flow works on assumptions that pixel intensities
do not change over time and neighboring pixels have similar motion [12].

Here we focus on the two well-known flow extractor methods, which are used widely in
different computer vision applications and we try to know, which one has the best accu-
racy for object tracking application. In Section 2 we review, optical flow theory in more
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details. Two selected flow extraction methods (Farneback and Lucas-Kanade) are pre-
sented and compared in subsection 2.2 and 2.3. We have made extensive experiments on
large datasets, and moreover, optimal parameter settings are cross-validated against la-
belled datasets.

Optical flow methods are classified into global and local methods. In local methods we
only need to process some pixels from the whole image, while global/dense methods pro-
cess all pixels in image. For having more flow data in sparse/global flow extraction meth-
ods we proposed a novel method to estimate more object displacements using inverse
flow. The results are presented and illustrated in Section 4. Note that in this thesis we just
evaluate optical flow methods based on their accuracy, not timing nor subjective evalua-
tion. As both mentioned models are quite fast and would be near real time using powerful
machine equipped with GPUs, but the accuracy of these methods is still challenging.
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2 THEORY

In this chapter, we review the concept and theory of optical flow techniques. There are
lots  of  ways  and  methods  represented  for  this  purpose  [11].  Among them we selected
Farneback and Lukas-Kanade which are reviewed in subsection 2.2 and 2.3.

2.1 Optical flow

Optical flow is the distribution of apparent velocities of movement in captured imagery
data. This apparent motions are extracted using comparing between two images, which
might be considered between two images captured in two different times (temporal) or
two images captured in exactly same time but using two cameras with known camera
parameters (static optical flow). Generally, optical flow is a 2D vector where each vector
is a displacement vector showing the movement of pixels from first frame to second in
the perpendicular image axes [12].  In Figure1, the movement of pixels in two consecutive
frames is shown, which are captured in different times	ݐ and	ݐ + The arrows shows .ݐ∆
the displacement of the pixels from first frame to next frame.

,࢞)ࡵ ,࢟ (࢚ ࢞)ࡵ					 + ,࢞ࢊ ࢟ + ,࢟ࢊ ࢚ + (࢚ࢊ

Figure 1. Pixels displacement in two consecutive images. Red pixels and blue pixels are
corresponding to Image at time and ࢚ ࢚	 + respectivily ࢚ࢊ	

Consider a pixel ,ݔ)ܫ ,ݕ in first (ݐ  frame, it  moves to the next frame by taking .time ݐ݀
The  pixel  displacement  from first  frame to  next  frame is ,ݔ݀)  and since the image (ݕ݀
intensity and pixels are the same, we can say [12]:

,ݔ)ܫ ,ݕ (ݐ = ݔ)ܫ + ,ݔ∆ ݕ + ,ݕ∆ ݐ + .(ݐ∆ (2.1)

To find pixels displacement we use differential method since they use partial derivatives
with respect to the spatial and temporal coordinates. Assuming the displacement small,
we take local Taylor series approximation of the image signal and we get:
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ݔ)ܫ + ,ݔ∆ ݕ + ,ݕ∆ ݐ + (ݐ∆

= ݔ)ܫ + ݕ + (ݐ +
ܫ߲
ݔ߲ ݔ∆ +

ܫ߲
ݕ߲ ݕ∆ +

ܫ߲
ݐ߲ ݐ∆ + ܿ.

(2.2)

Where ݔ)ܫ + ݕ + is the assumed pixel at location (ݐ ,ݔ) ,ݕ ,ݔ∆, (ݐ ,ݕ∆	 -are the move ݐ∆	
ment between the two frames and c is a real valued constant number. From these equa-
tions, we get the flowing equation:

ܫ߲
ݔ߲ ݔ∆ +

ܫ߲
ݕ߲ ݕ∆ +

ܫ߲
ݐ߲ ݐ∆ = 0,

(2.3)

which result in

ܫ߲
ݔ߲ ௑ܸ +

ܫ߲
ݕ߲ ௬ܸ +

ܫ߲
ݐ߲ = 0,

(2.4)

where ௑ܸ =	 ௗ௫
ௗ௧
		and	 ௬ܸ = ௗ௬

ௗ௧
		are the velocity or optical flow of ݔ)ܫ + ݕ + డூ		and (ݐ

డ௫
	,

డூ
డ௬
		and డூ

డ௧
	 are image gradients at	(ݔ, ,ݕ The above equation .(ݐ ௑ܸ  and ௬ܸ  are unknown

and cannot be solved with two unknown variables. So several differential methods are
provided to solve this problem [11, 12]. Farneback and Lukas-Kanade are two of them,
which we can classify into global and local methods, respectively [3].

In local/sparse methods, we only need to process some pixels from the whole image. In
the other word, we only look for features (corners, ridges, edges and blobs). As we do not
have per pixels flow data, if flow parameters have not been selected accurately, we might
lose some small objects movements. For this reason, we proposed to use inverse flow in
some special conditions to compensate this as much as possible.

While global/dense methods process all pixels in image [14], Local method are more ef-
ficient to compute robustly under the noise but dense techniques are more accurate in cost
of more timing. The next subsections, we will review Lucas-Kanade and Farneback in
more details. In this case, the high quality optical flow map should meet the following
requirements:

1. Smoothness: flow field should be smooth over the interior of objects in the
scene.

2. Sharpness: Flow should be sharp at object boundaries.
3. Flow map should be well aligned with object boundaries
4. Stability: It should be temporally stable over frame sequences. [2]
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2.2 Farneback method

The Farneback method is a two-frame motion estimation algorithm that uses polynomial
expansion, where a neighborhood of each image pixel is approximated by polynomial.
Here we are only interested on quadratic polynomials, which give us the local signal
model represented in a local coordinate system [5],

ݔܣ்ݔ	~	(ݔ)݂ + ݔ்ܾ + ܿଵ, (2.5)

In this case the vector is a ݔ 1 × 2  vector containing the running variables and ݔ and ݕ

is a symmetric	ଵܣ 2 × 2	symmetric matrix of unknowns, which captures information

about the even part of the signal, ܾଵ is  about  odd  part  of  signal  and  a 2 × 1 vector of

unknowns and ܿଵ is a unknown scalar. Writing it in terms of tensors gives equation 2.6,

where the unknown coefficients is defined by the symbol	ݎ௜.

ݔ]	~		(࢞)ࢌ 	[ݕ ൦
ସݎ

଺ݎ
2

଺ݎ
2 ହݎ

൪ ቂ
ݔ
ቃݕ + [ଷݎ			ଵݎ] ቂ

ݔ
ቃݕ + ଵݎ

(2.6)

By computing the neighborhood polynomials on two subsequent images, one can obtain

directly the displacement d in case of ideal translation. In Figure 2, the image ଵ݂(ݔ) is

taken at time and ݐ ଶ݂(ݔ)	at time(ݐ + Note that .(ݐ݀ in 2.1 is ݔ 1 × 2 vector but in Figure

2, to simplify we just show one dimension of	ݔ.

Figure 2. Neighborhood polynomials on two .quent images. d is the displacement݁ݏܾݑݏ

Therefore, if we can measure ଵ݂ and	 ଶ݂, may find	݀ = [݀ଵ, 	݀ଶ], which is the 2D displace-
ment and hence the flow of the image pixel. In equations (2.7), we see how the polynomial

d

x
Intensity of Image ଵ݂(ݔ)

Image at ݐ
Intensity of Image ଶ݂(ݔ)

Image 2 at ݐ + ݐ݀
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coefficients of the second frame are connected to the ones from the first frame and to the
displacement d.

ଶ݂(ݔ) = ଵ݂	(ݔ	 − 	݀) 	= 	ݔ) − 	݀)் 	ݔ)ଵܣ	 − 	݀) 	+	ܾଵ் 	ݔ)		 − 	݀) 	+	ܿଵ	

												= 	 	ݔ	ଵܣ்ݔ + 	(ܾଵ 	− ்(ଵ݀ܣ	2	 	ݔ	 + –	ଵ݀ܣ	்	݀	 	ܾଵ் 		݀	 + ܿଵ		

												= 		 	ݔଶܣ்ݔ +	ܾଶ் 	ݔ	 + 	ܿଶ

(2.7)

By assuming that the brightness is constant in two-sequence image, we can equating
coefficients in the two polynomials.

= 2ܣ ,1ܣ
ܾ2 = ܾ1 − ,1݀ܣ2
ܿ2 = + ଵ்ܾ݀– 1݀ܣ்݀ ܿଵ

 (2.8)

By taking advantage of the equation for ܾଶ	in (2.8), one can solve for	݀, as shown in
equation (2.9).

݀ = − ଵ
ଶ
ଵିଵ(ܾଶܣ	 − ܾଵ) (2.9)

It is also stated in [5] that equation 2.7 is for the ideal case and it could be more realistic
approximation when the − ଵ

ଶ
(ܾଶ − ܾଵ) term in equation 2.9 be changed to ∆ܾ. In this case:

∆ܾ	 = 	−
1
2	(ܾଶ(ݔ) − ܾଵ(ݔ))	 (2.10)

(ݔ)ܣ = 	
(ݔ)ଵܣ + (ݔ)ଶܣ

2
       (2.11)

This changes equation 2.9 into equation 2.12

(ݔ)݀(ݔ)ܣ = (ݔ)ܾ∆	 (2.12)

In principle, equation (2.12) can be solved pointwise, but the results turn out to be too
noisy. We assume all pixels in a small window -behave the same. If we can meas ܫ
ure	ܣଵ,	ܾଵ and ܿଵ from ଵ݂ for each pixel in ଶ ,ܾଶ andܣ	and ܫ ܿଶ from ଶ݂ we can calculate
݀.
Thus, we try to find satisfying (2.12) as well as possible over a neighborhood (ݔ)݀ ,ݔ	of	ܫ
or more formally minimizing
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෍(ݔ∆)ݓ	‖	ݔ)ܣ + (ݔ)݀(ݔ∆ − ݔ)ܾ∆ + ଶ‖(ݔ∆
∆௫∈ூ

(2.13)

Where we let be a weight function for the points in the neighborhood. Where solving ݓ
for ;ݔ)݀ in equation 2.13 gives equation 2.14 (ݕ	

(ݔ)݀ = ቀ෍ݓ	ܣ்ܣቁ
ିଵ
෍்ܣݓ∆	ܾ

(2.14)

2.3 Pyramidal Lucas-Kanade method

Lucas-Kanade-Tomasi (KLT) is a two-frame motion estimation that uses minimization
to solve the basic optical flow equation. Algorithm is widely used and developed by Bruce
D. Lucas and Takeo Kanade [12]. The nature of Lucas-Kanade method is to compute flow
only for certain points (feature) and it tracks very small changes or motions across frames.
However, sometimes we have big motion or high speed and if we want to catch them
across frames we have to use large window and it may breaks the coherent motion as-
sumption . To circumvent this problem we use Lucas-Kanade in a pyramid. Following
Figure describes Pyramid for optical flow computation [2].

coarse

fine

Level 3

Level 2

Level 1

Level 0

Figure 4. Image pyramid with four levels. At each level, the image is downsized. Optical
flow computation starts at the top of the pyramid (level 4) and ends at the bottom (level
0) [10].
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Figure 4 shows an image pyramid with four pyramid levels. In this case, the motion esti-

mation starts at the top level of pyramid and it continue going down until we reach to the

bottom level. Window size keeps the same over all levels. Thus, it is possible to detect

large motions as they will be detected in the coarser levels of pyramid. In next subsection,

we will discuss about the theory behind the Lukas-Kanade [2].

Theory of  Lukas-Kanade

In the end of Section 2.1 we end up to an equation with two unknown variables ( ௑ܸ , ௬ܸ)

and solving an equation with two unknowns is not possible, therefore Lucas-Kanade use

Spatial coherence assumption to solve this problem. Therefore, the method uses neigh-

boring pixels to have more equations for example the 5-by-5 neighborhood around the

current pixel give us 25 equations as follows.

ζ

<




























v

y

x

A

yx

yx

yx

V
V

pIpI

pIpI
pIpI

333 2333 10

ΛΛ

)()(

)()(
)()(

2525

22

11

-

32310

Λ

b

t

t

t

pI

pI
pI



















)(

)(
)(

25

2

1
(2.15)

Where ,(௜݌)௫ܫ ,(௜݌)௬ܫ in position ܫ	are spatial derivative of the image (௜݌)௧ܫ ,ݔ) and (ݕ
over time	ݐ, and ,ଵ݌ ,ଶ݌ … , ଶହ݌  are the pixels inside the window. In this case, A is a 25 ×
2 matrix	ݒ is a local image flow 2 × 1	vector and b is a 25 × 1	vector. To simplify equa-
tion we write it in this form	ݒܣ = ܾ.  This system contains more equations than unknowns
and therefore it is an over-constrained system. To solve for this system least square min-
imization is found by multiplying the equation by and, it solves the்ܣ 2 × 2 system.

ζ ζ
221222

)(
≥≥≥

< bAvAA TT

210
(2.16)

Where TA is the transpose matrix of A. from this relation we obtain equation (2.17),
where the first matrix in equation 2.17 is an invertible matrix and the sums are from ݅ =
1 to n.

൦
෍ ଶ(௜݌)௫ܫ

௜
෍ (௜݌)௬ܫ(௜݌)௫ܫ

௜

෍ (௜݌)௫ܫ(௜݌)௬ܫ
௜

෍ ଶ(௜݌)௫ܫ
௜

൪

ିଵ	

ቂ
௫ݒ
௬ቃݒ = ൦

−෍ (௜݌)௧ܫ(௜݌)௫ܫ
௜

−෍ (௜݌)௧ܫ(௜݌)௬ܫ
௜

൪

(2.17)

The solution to this equation is then:
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்ܾܣଵି(ܣ்ܣ) = ቂ
௫ݒ
௬ቃݒ

(2.18)

Equation 2.18 can be solved when ,ଵߣ) s eigenvalues’(ܣ்ܣ)	is invertible or (ܣ்ܣ) ଶ) areߣ

large enough and have the same magnitude [17]
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3 IMPELIMENTATION

The following chapter will describe the actual implementation process. It describes what
kind of test materials, what methods and what environment were used in this thesis and
it also includes comparisons of two algorithms Lucas-Kanade and Farneback. We com-
pered the tracking accuracy of two-mentioned algorithm by isolating a moving object in
video sequence. Different test video sequences were used and different parameters were
examined for each algorithm to visualize, which algorithm and parameters are suitable
for each video sequence. In next sections, before we go into the technical details the tools
required and development process will be described.

3.1 Test data and ground-truth

The test data were downloaded from the Visual Tracker Benchmark website [6]. Tested
data included video, which were constructed from consecutive JPEG-image files and the
ground-truth file, which was formed from rows. In this case, ground truth-values isolate
the location of moving object in each sequence. The location details for tracking object
were given as a rectangle box, bounding the object. In ground-truth file each row repre-
sented x, y, box-width and box-height of the bounding box of the target in that frame. In
used sequences, the first row belongs to the first frame and the last row to the last frame.

Figure 5. Bounding box around the target.
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In Figure 5 we see red rectangle, which is the bounding box around the moving object
and the location for the bounding box provided by ground-truth values. By restricting a
region of an image, we compute the flow only for that area and we compare different
algorithms accuracy only for that areas. Table 3 represents the bounding box tracker lo-
cation and dimension used in our experiment. The x and y represent the corner of the
tracker-bounding box and w and h represent the width and height of the bounding box
respectively.

X Y W H

306 5 95 65

313 15 98 70

318 40 95 66

326 74 96 58

Table 3. An example of ground truth file. In above table, the values of ground-truth are
presented only for four frames.

To have a better quality measurements we selected two datasets, which are different in
terms of temporal and spatial features. The first dataset includes 71 frames for outdoor
scene objects, with high-speed object movements and the frame rate is higher. As a con-
sequence some of the frames are blurred and should be harder to flow system to work
perfectly. In the second dataset, the performance of flow estimator systems are measured
in indoor environment, in the different lighting condition with slower object displace-
ments.

Figure 6. Left hand side image is an image example of outdoor sequence and right hand
side image is indoor image sequence.
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3.2 Software implementation

The solution is experimented in Python (release 2.7) while this language delivers the per-
formance needed and we used computer vision library OpenCV, which orders a good
possibility to have easier access to image processing functions. In this thesis, we imple-
mented both dense and sparse optical flow functions. In next subsection we will explain
the processing step in more detail.

3.3 Farneback code

Now we will discuss about dense optical flow method, function calcOpticalFlow-
Farneback()and its parameters. The function has many inputs we will briefly explain
them here but also we have done some modification in code, which will be explained in
experimental Section 4. The following code block describes the default parameters of
OpenCV function calcOpticalFlowFarneback()implemented  in python, which
we used in this thesis :

Code Block 1: Prototype for calcOpticalFlowFarneback()algorithm in
OpenCV [10]

Parameters of cv2.calcOpticalFlowFarneback()

prev Previous gray frame captured at	ݐ time.

next Current gray frame captured in ݐ) + 1)	time

Pyr_scale Image pyramid or simple image scale. This parameter specify the
image scale (<1) to build pyramids for each image.

Levels: The number of pyramid layers. If level = 1 mean that flow is cal-
culated only from previous image and no extra layers are created.

Winsize Flow  is  computed  over  the  window.  If  the  value  of  window  is
larger the algorithm robustness to image noise increase, detection
is faster but produce more blurred motion field.

Iterations Number of iterations the algorithm does at each pyramid level.

Poly_n Size of the pixel neighborhood used to find polynomial expansion
in each pixel in other word kit is polynomial degree expansion and
recommended values are 5 or 7.

cv2.calcOpticalFlowFarneback(
prev, next, pyr_scale, levels,winsize,it-
erations, poly_n, poly_sigma, flags)
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Parameters of cv2.calcOpticalFlowFarneback()

Poly_sigma Standard deviation used to smooth derivatives used as a basis for
polynomial expansion. Recommended values are from 1.1-1.5.

flags Sets the input flow as an initial flow approximation or use a
Gaussian averaging  filter with size winSize * winSize instead of
a box filter, which usually gives more accurate flow at the cost of
speed.	

Table 1. function parameters of  farneback for calculating optical flow by using
OpenCV [10].

3.4 Pyramidal Lucas-Kanade code

Now we will discuss about the pyramidal Lucas-Kanade method, calcOpticalFlow-
PyrLK()and its parameters. The function has many inputs we will briefly explain them
here but also we have done some modification in code, for example, this function uses
‘good features to track’ function, which determines strong corners on image and when
the algorithm finds good points, function is able to compute flow for those points.

In this case, it is Lucas-Kanade’s parameter prevPts, which is Vector of 2D points for,
which the flow needs to be found. In this experiment we did not use this function and
instead of it we chose every 40 pixel in image in x and y direction.

Code Block 2: Prototype for calcOpticalFlowPyrLK()algorithm in OpenCV
[10].

Parameters of cv2.calcOpticalFlowPyrLK ()

prevImg Previous gray frame captured at t time or pyramid constructed by cv2.cal-
cOpticalFlowPyrLK.

next Current gray frame captured in ݐ) + 1) time or pyramid, which is the
same size and same type as prevImg.

prevPts Vector of 2D points for, which the flow needs to be found; point coordi-
nates must be single-precision floating-point numbers.

cv2.calcOpticalFlowPyrLK( prevImg,

next, prevPts, nextPts , status, err,

winSize, maxLevel, criteria, flags- )



14

Parameters of cv2.calcOpticalFlowPyrLK ()

nextPts: output vector of 2D points (with single-precision floating-point coordi-
nates) containing the calculated new positions of input features in the sec-
ond frame; when OPTFLOW_USE_INITIAL_FLOW flag is passed, the
vector must have the same size as in the input.

status Output status vector (of unsigned chars); each element of the vector is set
to 1 if the flow for the corresponding features has been found, otherwise,
it is set to 0.

err output vector of errors; each element of the vector is set to an error for the
corresponding feature, type of the error measure can be set in flags pa-
rameter; if the flow wasn’t found then the error is not defined (use the sta-
tus parameter to find such cases).

winSize Size of the search window in each pyramid level.

maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used
(single level), if set to 1, two levels are used, and so on; if pyramids are
passed to input then algorithm will use as many levels as pyramids have
but no more than maxLevel.

criteria parameter, specifying the termination criteria of the iterative search algo-
rithm (after the specified maximum number of iterations criteria.max-
Count or when the search window moves by less than criteria.epsilon.

flags – lags allow for some control of the routine's internal Bookkeeping; It may
Be set to any or all (using bitwise OR) of the following.

Table 2. function parameters of  Lucas-kanade for calculating optical flow by using
OpenCV[10].

3.5 Processing step

In this section, we will explain the steps of experiment in more details. Figure 7 also helps
to follow the steps better.  The first step was to load first and next frames (step 1), then
the OpenCV function computed flow for the first and next frame inside the bounding box
(step  2).  The  main  challenges  we  encountered  was  that  in  some  frames  or  inside  the
bounding box the function was not able to find any good points to calculate flows, thus
we got a none value for flow and the calculation of mean for each feature as flow accuracy
was not possible. This problem happened when we used Lucas-Kanade and the reason is
that this function is a sparse function, it means that  the function does not compute flow
for all  pixels,  but only for some areas where it  find good points to track. To solve the
problem we firstly checked if there is any frames or bounding box, where the algorithm
cannot find any flow then we set the overall flow for that frames to zero (step 3 & 4).
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Figure 7. Processing steps of implementation.

The next step (step 5) was comparing the Euclidean distance between ground-truth and
function computed flow. In last step (step 6), we computed the mean distances for each
feature as flow accuracy measurement. The same process repeated for images until we
got the last image.

Figure 8 represents first data set with modification. The target to track is inside the blue
bounding box and red arrows illustrate the pixels displacement from previous frame to
next frame. We are interested in flows, which are inside the bounding box and as we can
see in Figure 8 in right hand side frame, we do not have any flows inside the bounding
box. To solve the problem we calculate the inverse flow and used it for flow estimation.
Because in case of perfect flow extraction, the flow and inverse flow components should
be equal but with inverse sign. It means that we estimate the flow that goes from frame at
time ݐ + 1 to frame at time t. As can be seen in Table 6 the accuracy of the systems with
inverse flow will be increased. Note that it’s not good idea to always calculate the both
flow, because of time consuming, and we just did it when we could not find any flow in
our region of interest. If direct and inverse flow do not have any flow value in the inter-
ested area, so in this case we assumed the overall flow for tracker is equal to zero.
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Figure 8. Tracking object results using optical flow. The blue rectangle is the region of
interest and red arrows are pixels displacements. Left image: the flow estimator method
find some features in interested area. Right Image: Flow is not dense in interested area
and we assume the displacement is zero
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4 EXPERIMENTAL RESULTS

In this chapter, we discuss about experimental results of the proposed object tracking
algorithms.  The accuracy of Lucas-Kanade and Farneback are represented for different
parameter values and image sequences to have a better idea of algorithms accuracy when
we change frame sequences or parameters of algorithm. Thus, reader have to keep in mind
that these results are only for test data we used in this thesis and it might be changed if
we use another dataset. In subsection 4.1 we will try different parameter values for Far-
neback and in subsection 4.2 we will repeat the same process for Lucas-Kanade algo-
rithm. In the end of each subsection, we will represent the optimal values for each func-
tion.

4.1.1 Optimal parameters for Farneback (First dataset)

Figure 9 shows part of first image sequences we used in this thesis with some modifica-
tions.

Figure 9. Part of deer images used in test sequence.

Next four values stayed the same over the implementation process pyr_scale = 0.5, levels
= 3, iterations = 3 and flags = 0 and. Table 3 presents the different values we tried for
each parameter and we see can see that first accuracy was equal to 4.596  and we improved
it to 4.079 by choosing the best value for each parameter.

Image 1 Image 2 Image 3
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Trying different values for window
size:

∂ Poly_n = 5
∂ Poly_sigma = 1.2
∂ Winsize = 2 - 16
∂ best accuracy = 4.596 when

window size is equal to 8

Trying different values for standard
deviation of Gaussian:

∂ Poly_n = 5
∂ Window size = 8
∂ Poly_sigma = 1 - 1.6
∂ best accuracy = 4.079 when

poly_sigma = 1.46

Trying different values for polyno-
mial neighborhood pixels:

∂ poly_sigma = 1.46
∂ Window size = 8
∂ Poly_n = 2 - 9
∂ best accuracy = 4.079 when

poly_n = 4

Table 3. Left hand side shows Average distances between the transformed rectangle
and ground truth and right hand side are values used for each parameters in Farneback
first test data set.
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4.1.2 Optimal parameters for Farneback (Second dataset)

Figure 13 shows part of image sequences from second dataset. In this dataset the fps is
lower compared to first dataset and the moving object is isolated well from background.
As can be seen in Table 4, by changing the hard parameters the accuracy slowly improved
from 2.345 to 2.341.

Figure 10. Part of Coke images used in Farneback test.

Trying different values for window
size:

∂ Poly_n = 5
∂ Poly_sigma = 1.2
∂ Winsize = 2 - 26
∂ best accuracy = 2.345 when

window size is equal to 24

Trying different values for standard
deviation of Gaussian:

∂ Poly_n = 5
∂ Window size = 24
∂ Poly_sigma = 1 - 1.6
∂ best accuracy = 2.342 when

poly_sigma = 1.133

Image 1 Image 2 Image 3
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Trying different values for polyno-
mial neighborhood pixels:

∂ poly_sigma = 1.133
∂ Window size = 24
∂ Poly_n = 2 - 9
∂ best accuracy = 2.341 when

poly_n = 3

Table 4. Left hand side shows Average distances between the transformed rectangle
and ground truth and right hand side are values used for each parameters in Farne-

back first test data set.

In this experiment, the accuracy did not change too much. One probable reason might be
that, moving object is clear to follow and the speed of movement is slow.

4.2.1 Optimal parameters for Lucas-Kanade (First dataset)

In this subsection, we change some parameters of Lucas-Kanade function and determine
which values reach the best accuracy. Here also the number of frames was 71 for each
data set. The parameters we chose to test were number of levels (maxLevel) and window
size (win_size) and other values stayed the same over the implementation process. Figure
11 shows first test data. In Lukas-Kanade algorithm, the resolution of image is very im-
portant. In some cases algorithm could not find any flow for image because the resolution
of image was low. In table 5 we see that the accuracy improve from 5.98 to 4.97 when
we try different values for chosen parameters.

Figure 11. Part of deer images used Lucas-Kanede test.

Image 1 Image 2 Image 3
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Trying different values for number
of level:

∂ Levels = 0 - 14
∂ Win_size = 15 x 15
∂ best accuracy = 5.98 when

number of levels = 3

Trying different values for window
size :

∂ Level = 3
∂ Win_size = 3 - 26
∂ best accuracy = 4.97 when

number of win_size = 13x13

Table 5. Left hand side shows Average distances between the transformed rectangle and
ground truth and right hand side are values used for each parameters in Lucas-Kanade
first test data set.

4.2.2 Optimal parameters for Lucas-Kanade (second dataset)

Figure 12 represents the results from second dataset with some modifications. As can be
seen, the flow map is dense enough and the flow method could easily extract flow from
the scene.
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Figure 12. Part of Coke images used in Lucas-Kanade test.

Trying different values for number
of level:

∂ Levels = 0 - 14
∂ Win_size = 13 x 13
∂ best accuracy = 3.0212 when

number of levels = 4

Trying different values for window
size :

∂ Level = 3
∂ Win_size = 3 - 26
∂ best accuracy = 3.0212 when

number of win_size = 13x13

Table 5. Average distances between the transformed rectangle and ground truth. Best
accuracy and parameters on the right hand side of the table.

Image 1 Image 2 Image 3
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5 CONCLUTION

In this thesis, we evaluate two state of the art optical flow estimation methods for moving
object tracking in static video sequence. We experimented the quality of flow extraction
methods using several video clips including objects indoor and outdoor scenes. None of
the methods described in this thesis are absolute and in fact, should be questioned and
brought to more studies. The results showed that selection and cross validation of hard
parameters for flow extraction methods are vital to get the best results.
The best performance of each flow systems are summarized in Table 6. Based on our
results Farneback model is more accurate evaluated on both datasets. However, it suffers
of inaccuracy in outdoor scene.

There are some reasons for inaccuracy of these two models:

1. To have a better quality measurement we selected two datasets, which are
different in terms of temporal and spatial features. The first dataset in-
cludes the outdoor scene objects, with high-speed object movements and
the frame rate is higher. Therefore, some of the frames are blurred and
should be harder to flow system to work perfectly. In the second dataset,
the performance of flow estimator systems are measured in indoor envi-
ronment, in the different lighting condition with slower object displace-
ments.

2. The Lucas-Kanade is sparse flow estimator, and do not estimate flow for
whole image pairs pixels.

3. As both systems are tested on the same datasets, and the hard parameters
are cross validated. One of the reasons reflects the difference between Far-
neback and Lucas-Kanade methods accuracy is most probably related to
nature designing of their algorithm.

Mean distance meas-
urements

Farneback Lucas-Kanade Lucas-Kanade + inverse
flow

First dataset  (outdoor) 4.07 4.97 4.84

Second dataset (indoor) 2.34 3.02 2.88

Table 6. Quantitively evaluation of flow methods.
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In the Lucas-Kanade method evaluation the main challenges we encountered was that in
some frames or inside the bounding box the function was not able to find any good points
to calculate flows. We presented a novel object tracking system for sparse flow extraction
methods by using inverse flow optimization. By using our proposed method, the tracking
accuracy has been increase around 10 percent.
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