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Ohjelmistokehityksen rooli nykyaikaisten liikkuvien työkoneiden ohjausjärjestelmä-

kehityksessä on suuri. Tästä johtuen on ohjelmistokehitysprosessia tavoitteellista

pyrkiä tehostamaan. Mallinnus- ja simulointityökalujen avulla voidaan ohjausjärjes-

telmän osia suunnitella ja testata. Mallipohjainen suunnittelu on kehitysmenetel-

mä, jossa mallinnustyökalulla kehitettyjä malleja käytetään keskeisenä osana kehi-

tysprosessia. Tämä opinnäytetyö tutkii mahdollisuuksia hyödyntää mallipohjaisen

suunnittelun menetelmiä ohjausjärjestelmäkehityksessä. Erityisesti työssä tarkastel-

laan automaattista koodingenerointia, menetelmää jossa suunnittelumalleista voi-

daan automaattisesti tuottaa ohjelmakoodia.

Mallipohjainen suunnittelu on hyvin työkaluriippuvaista, joten tässä opinnäytetyös-

sä esitellään markkinoilla olevia työkaluja sekä tutkitaan niiden ominaisuuksia suun-

nitteluesimerkin kautta. Käsiteltäviä työkaluja ovat Simulink ja OpenModelica. Työs-

sä esitellään mallipohjaisten suunnittelumenetelmien hyötyjä ja haasteita ohjelmis-

tokehitysprosessiin liittyen, sekä tutkitaan työkaluja ja menetelmiä näiden hyötyjen

saavuttamiseksi ja haasteiden ratkaisemiseksi.

Työkaluista Simulinkin todettiin olevan soveltuva mallipohjaisuun suunnitteluun ja

mahdollistavan automaattisen koodingeneroinnin. OpenModelican mallinnus- ja si-

mulointiympäristö todettiin keskeneräiseksi ja koodingenerointiominaisuus puuttu-

vaksi. Mallinnustyön tueksi suunniteltiin pohja mallinnuksen tyylisääntökokoelmal-

le sekä hierarkiselle mallirakenteelle Simulinkiä käytettäessä. Lisäksi esiteltiin mah-

dollisuuksia jäljitettävyyden toteuttamiseen ja mallien dokumentointiin. Viimeisenä

tutkittiin Simulinkin koodigeneraattorin luotettavuutta ja suorituskykyä. Olemas-

saolevien tutkimustulosten perusteella todettiin koodingeneraattorin olevan luotet-

tava ja toimivan ennustettavasti. Koodigeneraattorin tuottaman ohjelmakoodin suo-

rituskyvyn todettiin olevan verrattavissa ohjelmoijan tuottamaan koodiin.
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Software development represents a signi�cant portion of the total work e�ort in

control system development, which is why improving the e�ciency of the software

development process is important. Modeling and simulation tools can be used for

design and veri�cation of parts of the control system. Model-based design is a deve-

lopment methodology, that presents models as a central concept in the development

process. This thesis explores the opportunities model-based design presents for im-

proving the e�ciency of the control system development process. Speci�cally, the

possibility of using automatic production code generation to generate program code

representations of design models is of interest.

This thesis presents a selection of the tools available for model-based design and

explores their capabilities through a design example. The tools presented are Si-

mulink and OpenModelica. The bene�ts and challenges of model-based design are

discussed with regards to the software development process. Tools and methods for

achieving the bene�ts and addressing the challenges are explored.

Analysis of the tools concluded that Simulink is suitable for model-based design

and enables automatic program code generation. OpenModelica was used for basic

modeling and simulation work, but the development environment was not mature

enough for production use and the tool lacked production code generation capa-

bilities. Methods for supporting the use of modeling practices in control system

development were presesented. A draft of a modeling guidelines collection was crea-

ted and a template for the hierarchical structure of Simulink models was speci�ed.

Methods for implementing traceability and documenting models are also presented.

Lastly, the reliability and performance of the Simulink code generator was addres-

sed. Based on existing research, it could be deduced that the code generator was

reliable and predictable. In terms of performance, the program code generated by

the code generator was found to be comparable to code written by a programmer.
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1. INTRODUCTION

The trend in technical industries is towards a shorter time-to-market and a more

iterative design and development process. This allows companies to react to market

realities and to meet the demands set by the growth of feature sets and increa-

sed complexity of systems. Reducing time-to-market requires improved e�ciency

and productivity. In the mechanical industry, the increasing amount of software in

control systems enables companies to rapidly develop new machine functions using

e�cient software development methodologies without the need to undertake tradi-

tional, time-consuming mechanical engineering tasks.

This thesis explores the incorporation of modeling and simulation techniques to

control system software development practices. In General, modeling and simulation

can be understood as developing a model which represents the target system and

using simulation practices to solve a speci�c problem related to that system [4,

p. 3]. Model-based design is a software development methodology that emphasizes

the use of models as a means of de�nition and communication. Model-based design

enables techniques such as concept validation, early design veri�cation, functional

veri�cation through simulation and automatic production code generation, which is

of speci�c interest.

This thesis is done in co-operation with Sandvik Mining and Construction Oy,

where there is interest for the model-based design approach and some pilot projects

have been carried out. The thesis also continues the research presented in a previous

M.Sc. thesis covering model-based design and rapid prototyping in control system

design [24]. The goal is to investigate the current technologies in modeling and simu-

lation and explore possibilities for their usage in control system development using

existing tools. The tools covered in this thesis are Simulink and OpenModelica. The

topics of speci�c interest are controller design and automatic code generation as well

as the challenges they present in terms of modeling and the software development

process.

The theoretical information covering software development and modeling and si-

mulation is found in literature, which is plentiful. For the purposes of this thesis,

generic software development theory is applicable to control system software deve-

lopment. For model-based design, existing research results along with some industry

show cases will be used to establish an understanding of the state of the technology
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and the applications of the methodology that exist in the industry and the results

that have been achieved.

The second chapter introduces the concepts of control systems and control sys-

tem software development. It also introduces modeling and simulation and explains

the principles behind model-based design. Chapter 3 gives an overview of the state

of the art in model-based design. It covers use cases from the industry, the current

situation at Sandvik and the tools available on the market. Chapter 4 discusses the

actualities of adopting model-based design practices in an existing software deve-

lopment process and outlines a process that incorporates model-based design and

the challenges it presents. Chapter 5 presents an analysis of the capabilities of Si-

mulink and OpenModelica through an example design problem with a summary at

the end. Chapter 6 addresses the challenges related to using model-based design in

control system software development that were identi�ed in Chapter 4. Chapter 7

concludes the thesis by giving and overview of the results and speci�es the need for

future work.
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2. CONTROL SYSTEM DEVELOPMENT AND

MODELING AND SIMULATION

This chapter presents the principles of control system design, modeling, simulation

and software development. The latter part of this chapter describes a method of

integrating modeling and simulation practices into the control system software de-

velopment process in the form of model-based design.

2.1 Control Systems

A system can be thought of as an entity that exhibits a cause-e�ect relationship

between a provided stimulus and the observable response. The stimuli provided to a

system are called inputs, and the observable responses are called outputs. A control

system is a group of components, interconnected for the purpose of controlling the

behavior of a system. A simple closed-loop feedback control system consists of a

controller, an actuator, the target system and a sensor. In the context of a control

system, the system whose behavior is being controlled is usually referred to as the

process or the plant. The purpose of the control system is to regulate the outputs

of the target system by controlling the inputs. The desired output response of the

target system is given as an input to the control system, this input is called a

set point. The controller uses an algorithm suitable for the characteristics of the

target system to generate a control signal, which the actuator converts into a system

stimulus. The response of the target system is measured by a sensor, which generates

a measurement signal that can be compared to the desired output value, allowing

the controller to react to the actual behavior of the system through a feedback

connection. A block diagram of such a control system is presented in Figure 2.1. [9,

pp. 2-3]

2.2 Digital control

In a digital control system, the controller is a digital computer. In its most basic

form, a closed-loop digital control system di�ers from an analog closed-loop control

system by having a digital controller and analog-to-digital (A/D) and digital-to-

analog (D/A) converters for feedback input and control signal output. The digital
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Figure 2.1: The block-diagram presentation of a closed-loop feedback control system, con-
sisting of a controller, an actuator, a process and a sensor. [9, p. 3]

controller is programmed to execute a control algorithm periodically. The block dia-

gram representation of a closed-loop digital control system is shown in Figure 2.2.

A basic digital control computer contains a general purpose processor capable of

executing program code and some form of memory for storing program code. It

usually also contains A/D and D/A converters for connecting input and output

signals and may o�er connectivity to device communication buses such as CAN,

Pro�bus or Ethernet that can be used for communication in distributed control sys-

tems. Depending on the intended application, a digital controller may also contain

specialized signal processing units for performing certain types of calculations. Di-

gital control is bene�cial because a digital computer can be e�ciently programmed

to execute a variety of control algorithms and its operation can be adapted to dif-

ferent applications through parameterization, making it possible to conform with

tight design-time requirements. The processing capabilities of digital controllers are

also good and constantly improving due to advances in computer and digital sys-

tems technology. [12, pp. 1-3] A distributed control system is one where the control

algorithm is executed on di�erent physical control units.

The digital control computer processes digital signals, which are discrete and

quantized. The value of a discrete signal is only updated once in a given sample

period and is held constant for the rest of the period. A typical A/D converter

samples a continuous signal at the beginning of each sample period and holds the

output at that value through a zero-order hold circuit until it is updated again to

create a discrete signal. [12, pp. 3-5] The value of a digital signal is also quantized

to �t in a �nite number of bits. The precision of quantized values is de�ned by the

control computer's maximum operand size. While higher end digital controllers are

able to perform calculations for 64-bit values, cheaper devices may be limited to 32,

16 or even 8 bits. Quantization introduces round-o� errors which may cause noise

in the control output and even instability in some cases, although these e�ects are

mostly negligible for 64 or 32-bit controllers. [12, p. 425]
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Figure 2.2: The block diagram representation of a closed-loop digital control system. [19,
p. 12]

2.3 Modeling and Simulation

The purpose of a model is to act as a surrogate of an actual system in experimental

studies. A model describes the behavior of the actual system. This description can

be expressed in natural language, mathematical formalisms, rule-based formalisms

or symbolically. The main reason for using models in experimental studies instead

of actual systems, is the fact that behavioral data is usually much easier to acquire

from models. Models may also be used for proof-of-concept studies where the system

does not actually exist yet. Using models instead of actual systems can also allow

the study to be carried out faster and with less of a �nancial or safety risk. In some

cases, the use of a model instead of the actual system may even be mandatory due

to the gravity of the aforementioned risk factors.

The model should accurately describe the behavior of the actual system on a

level of detail that is adequate for the problem at hand. Developing the model with

a su�cient level of detail ensures that it can provide the data necessary for analysis

and problem solving. On the other hand the model should not be more detailed than

is necessary to manage model complexity. This puts an emphasis on forming a clear

understanding of the purpose of the model before undertaking any modeling work.

Models can be either dynamic or static, the di�erence being that the behavior of

a dynamic model changes with respect to time where the behavior of a static model

does not. Most models based on physical systems are dynamic. Models of physical

processes are often based on mathematical equations, which in turn are based on

the physical properties of the process. The behavior of a linear dynamic system can

be described by a group of di�erential equations [12, p. 12].

In the context of an experimental study concerned with the behavior of a certain
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system, the term simulation means exercising the model by driving its inputs and

observing its behavior by monitoring its outputs. A dynamic system represented as

a group of equations can be simulated using numerical methods [12, p. 11]. The

basis for simulation activities is the speci�cation for the model. The knowledge of

how the model should behave when exercised in certain ways is extracted from the

speci�cation for the model. [4, p. 47] A simulation model is a model that has been

implemented as a computer program or as a description that can be compiled into

a computer program and executed in a simulation environment. [4, p. 7]

2.4 Software development

In digital control system development, the development of the control logic and

control algorithms can be done using software development methologies. The deve-

lopment concepts and methods presented in this chapter are mostly based on [15,

pp. 35-58, 91-98].

2.4.1 Software life cycle

The meaning of the term software life cycle is the time between when the software

development project is started and when the software is no longer used. The life cycle

can be divided into phases. Each phase has explicitly stated goals which need to be

ful�lled and deliverables which need to be produced. Quality assurance procedures

such as deliverable reviews and testing are also included in each of the phases.

2.4.2 Preliminary analysis

Preliminary analysis is a phase that precedes actual software development prac-

tices, but is essential to establishing the goals of the software project. Its goal is

to collect system level requirements that describe the core purpose of the software

system. Requirements collected in the preliminary analysis phase are often called

customer requirements or business requirements, because their purpose is to captu-

re the clients' needs. The goal of preliminary analysis is to present an assessment

of the viability of the software project and to successfully capture the customer

requirements of the software system.

2.4.3 Requirements analysis

In the requirements analysis phase the goal is to re�ne the customer requirements

of the software system into functional requirements, which de�ne the functionali-

ty of the system. Based on the functional requirements of the system, one or more
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function is designed such that together they satisfy the functional requirements. Sys-

tem functions are individual points of functionality in the system. The granularity

and level of detail of the function descriptions should be such that each function

can ideally be individually implemented. With each function point, it should be

explicitly stated which functional requirements it satis�es. The function descrip-

tion also usually includes user interface drafts and descriptions of connections to

other software systems. Along with the actual functionality, the functional speci�ca-

tion also de�nes any non-functional requirements, which the system should comply

with. Such non-functional requirements can be restricting factors such as timing

constraints or usability requirements. Functional requirements and system function

points are collected into a functional speci�cation document, which describes the

functionality of the software system.

2.4.4 Design

The design phase includes architectural design and detailed module design. The

goal of the design phase is to describe the implementation of the software system

by de�ning the technical requirements of the software system. Architectural design

is concerned with dividing the functionality of the software into individual softwa-

re modules. A software module is an independent, logically separable part of the

software system. Key points of concern for architectural design are module granula-

rity, module interface simplicity and correspondence to individual system functions.

The results of architectural design are captured in a document containing a descrip-

tion of each module and their interfaces and which function points they implement.

The architectural design document also describes the main operative sequences of

the software system. Detailed module design describes the internal implementation

details of each module. This includes descriptions of interface function behavior, al-

gorithm descriptions and de�nitions of implementation techniques such as languages

or databases. A module should be speci�ed to such a level of detail that it can be

implemented by a programmer. Detailed module speci�cations are collected into a

module design document.

2.4.5 Implementation

The implementation phase consists of the actual programming work of implemen-

ting the modules. Each module is implemented based on the module speci�cation

and the software system is constructed by integrating the modules through a fra-

mework, platform or a control module. The deliverable of the implementation phase

is a working implementation of the module speci�cations compiled successfully, inte-

grated according to the architecture speci�cation and committed to version control.
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As a method of quality control, the source code is subject to static and dynamic

checks and source code reviews to ensure the quality of the source code.

2.4.6 Testing, veri�cation and validation

Testing activities in a software project can be divided into phases, each correspon-

ding to a level of speci�cation. This is called the testing V-model and it consists

of module testing, integration testing, system testing and acceptance testing. The-

se testing phases correspond to the module speci�cation, architecture speci�cation,

functional requirement speci�cation and customer requirement speci�cation respec-

tively. The �ow of testing according to the V-model is shown in Figure 2.3. The

V-model approach is advantageous, because it facilitates �nding errors on the �ner

granularity levels of the system, making it faster to correct them. Module, integra-

tion and system testing can be considered veri�cation activities, where the goal is to

ensure that the software has been implemented according to its speci�cation. Accep-

tance testing can be considered a validation activity, where the goal is to make sure

that the software requirements actually ful�ll the needs of the customer. Testing in

general can be thought of as the activity of carrying out the veri�cation or validation

work.

Figure 2.3: The testing V-model commonly used in software development. [15, p. 289]

Cyclomatic Complexity

The cyclomatic complexity measure called McCabe's complexity number was deve-

loped to aid in the management of the testability and maintainability of software

modules. It denotes the control structure complexity of a program and describes the
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amount of di�erent paths the execution of the program can take. The cyclomatic

complexity number v(G) is de�ned using graph theory notation as follows:

v(G) = e− n+ 2p, (2.1)

where the directed graph G consists of n vertices, e edges and p connected com-

ponents. The control structures in a program can be expressed using the graph

notation. McCabe's cyclomatic complexity number provides a way of analysing ma-

naging the complexity of software modules. It has been proposed that to ensure the

testability and maintainability of a software module, it should have a cyclomatic

complexity number of 10 at the maximum. [27]

2.4.7 Maintenance

The maintenance phase of the software life cycle covers the life of the software after

it has been designed, implemented, veri�ed and delivered to the customer. Mainte-

nance activities can be divided into three general categories: corrective, adaptive and

perfective maintenance. Corrective maintenance includes �xing issues found in the

software. Adaptive maintenance means changing the software to adapt to changes in

its environment, such as operating system version updates. Perfective maintenance

covers adding or changing features of the software system by request or through

feedback.

2.4.8 Iterative and Incremental software development

In incremental software development, rather than developing the entire system in

one long iteration (waterfall model), the development is divided into multiple smaller

iterations. Functionality is added to the software and a working system is the result

in each iteration. A key concept of incremental development is that of a core system,

which is a simple, working implementation of the software system with minimal

functionality. The core system makes it possible to incrementally add functionality to

the software system in following iterations, each iteration yielding a tested, working

software product. Although there is some overhead from the added requirement for

expansibility in the software architecture, those architectural decisions can mostly be

validated through the implementation of the core system.[15, pp. 45-47] The ability

to present the customer with a working prototype at the end of each iteration greatly

improves possibilities for customer interaction and thus, the amount and quality of

customer feedback during development [1, 9-13].

In incremental development, the feedback loop is relatively short. This makes it

much faster and cheaper to �x speci�cation and design errors and allows for faster

veri�cation of critical design decisions. Shorter iterations also make it possible to



2. Control System Development and Modeling and Simulation 10

react to customer feedback and market developments by steering and prioritizing

development e�ort. It is possible to give more accurate predictions of the cost and

delivery date of a project when there is less possibility of a dramatic under or

over allocation of resources.[15, pp. 45-47] Schedule planning is based around the

idea of delivery milestones, each of which has a goal for what functionality should

be included in the milestone release. The development team initially commits to

delivering this content by the milestone date, but understands that the goals for

the milestone may change on the way. This is called adaptive planning and it is

a key concept in so-called agile software development methodologies, which are the

focused around the idea of having a software development process capable of reacting

to changing customer requirements, environments and market realities.[22, pp. 253-

254]

2.4.9 Product management

A software product can be understood as a group of individual, interconnected

software modules and the documentation detailing their development, veri�cation

and usage [15, p. 52]. A system con�guration is the set of versioned modules that

make up a speci�c version of the software system and their documentation. When a

module is included in a system delivery, that version of the module should always be

available. The version of a software module is typically identi�ed using a unique ver-

sion number for each consecutive version of the same module. Product management

is a software development support process concerned with storing and maintaining

di�erent versions of software modules so that di�erent product con�gurations can

be developed and maintained.

A version control system is a storage system, where di�erent versions of software

modules and con�gurations can be stored simultaneously. When a module has been

completed, or a completed module has been modi�ed, a new version of that module

is added to the version control system. Multiple developers may be simultaneously

working on di�erent versions of a module without interfering with each other's work.

2.4.10 Requirements management

Correctly understanding the requirements of a software system and then designing it

so that it meets its intended goals is essential to a successful software project. Even

when requirements are carefully collected in the beginning of the project, it cannot

be guaranteed that the intentions of the customer were understood completely. It is

also never certain that requirements will stay static during design and implementa-

tion. Requirements management is a software development support process whose

responsibility it is to collect and maintain the requirements. [15, pp. 91-92]
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In the initial requirements collection phase, requirements management is respon-

sible for collecting customer requirements and through an evaluation and analysis

process it accepts or denies those requirements with the goal of collecting a set of

requirements which together describe a software system that meets the customers'

needs and is competitive in the market. The requirements that have been accepted

will be further speci�ed and later designed in detail and implemented in a develop-

ment iteration and included in a software release. Usually, only after the functionali-

ty ful�lling a certain requirement has been implemented is it possible to verify that

the requirement has been understood as the customer meant it to be. If it is found

that a requirement has been misunderstood, a change request will be issued by the

customer and processed in requirements management. If the change is approved,

the work to carry out that change will be included in one of the future iterations.

Customers or other stakeholders may also introduce request for new requirements

during the project due to changes in the market or operating environment of the

software system. Change requests may also be issued by designers or developers if

it is found that a requirement as it has been described is not viable to implement.

Figure 2.4 shows an iterative development process where the requirements mana-

gement process is responsible for the requirements of the software system. [15, pp.

92-94]

Figure 2.4: An iterative and incremental software development process and a continuous
requirements management support process.

It is very likely that changes to the software requirements are needed after they

are initially collected, when some of the functionality that implements those require-

ments may already have been implemented. This puts an emphasis on being able to
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e�ectively analyze the e�ect that changing a speci�c requirement has on the overall

system and which individual system functions are a�ected. Requirements tracea-

bility means the ability to identify which system functions implement a speci�c

requirement and further, which software modules or functions implement a speci�c

piece of functionality. When doing speci�cation and design work, traceability can

be implemented by always explicitly identifying which higher level speci�cation or

design artifact or requirement it is related to. Implementing requirement tracea-

bility enables impact analysis when analyzing the e�ect of adding or changing a

requirement. [15, p. 97]

2.5 Control System Design Process

Control system design begins by establishing the goals of the system by de�ning

the intended purpose of the system. When written out, these goals should be able

to express its intended behavior. The second phase of the process is to identify the

system's output variables that need to be controlled to achieve the de�ned goals. For

most systems, identifying the system variables which should be treated as system

outputs is somewhat trivial. In some cases, however, if the characteristics of the

target system are not well known or if the system is known to be very complex,

identifying the outputs that should be controlled to achieve the desired control

goals may present a challenge. The quantity and nature of the output variables of

the control system a�ect the complexity and thus the amount of e�ort required to

design and implement the control system, which should be taken into account if

the target system is complex and output variable identi�cation is not a trivial task.

Based on the purpose and operating environment of the control system, the required

accuracy and performance for controlling the outputs is speci�ed. [9, pp. 17-18]

When the purpose of the control system, its outputs and their control requi-

rements have been established, the con�guration of the control system can be es-

tablished. Out of the components seen in Figure 2.1, the target system is the only

�xed component. As such, we must choose an actuator, a sensor and a controller

to complete the control system con�guration. An actuator capable of controlling

the behavior of each desired output must be chosen such that it ful�lls the perfor-

mance requirements of the control system. A sensor must be chosen to generate the

feedback signal of the closed-loop control system. When choosing the sensor, the

control accuracy requirements must be taken into account. The choice of the cont-

roller is entirely dependent on the nature and characteristics of the target system.

The controller must be capable of executing a control algorithm such that the feed-

back signal can be read from the sensors and the control signal for the actuator can

be generated such that the accuracy and performance requirements are met. The

processing capabilities of the digital controller should be considered when choosing



2. Control System Development and Modeling and Simulation 13

the controller hardware. The complexity of the control algorithm and control accu-

racy requirements determine what type of controller is best suited for the control

system.

Control system design is an iterative process, where the design is re�ned through

several iterations. Initially, the goal is to design a system con�guration that meets the

primary functional goals of the control system. The design can then be further re�ned

to meet its accuracy and performance requirements by using a di�erent sensor or a

di�erent actuator or by changing the control algorithm or its parameters. Ultimately

the goal is to have a control system that is feasible to implement and where each

component suits their purpose.

Modeling and simulation methods can be used for analysis and veri�cation of

the control system. Modeling the process allows the designer to analyze its behavior

in di�erent situations and provides information which can be used when selecting

the sensors and actuators to be used in the control system. It also allows for the

veri�cation of the design when the initial con�guration has been chosen.

2.5.1 Distributed embedded control system development

An embedded control system project di�ers from a pure software project because it

has both software and hardware components. The hardware in an embedded cont-

rol application may include general processing units, specialized calculation units,

digital-analog converters and sensors. The group of hardware components in the

embedded system form the hardware con�guration. In such a project, the division

of responsibility between software and hardware and the mapping of software func-

tionality onto hardware processors is described in a system architecture document.

System architecture is also concerned with de�ning the means for hardware ab-

straction in software. The system architecture design process may by facilitated by

the use of hardware and software platforms. A hardware platform in this context

means a device family, where a selection of supported con�gurations is available.

This simpli�es the system architecture design process by limiting the number of

variables. A software platform can be thought of as a an environment that applica-

tions can be built on. Software platforms may include hardware abstraction, resource

management and inter-process communication services, for example.

After the system architecture has been speci�ed, the software and hardware parts

of the system are developed, sometimes in parallel. Co-operation and communication

between the software and hardware development teams is required to make sure

system as a whole is functional and can be integrated. Integration of software and

hardware is done in parts. When the �nal hardware is not available during software

development, partial or temporary hardware (such as FPGA prototypes or hardware

simulators) can be used to verify that certain parts of the software can be executed
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on the actual hardware. It is also possible to use models as representations of the

hardware in software development.

2.6 Modeling and Simulation in control system development

In digital control system design, the use of modeling and simulation practices has

extensive bene�ts. Process modeling allows the control system to be developed in-

dependently, disconnected from the actual physical system, whether it exists or not.

Modeling the process in such a way that it can be executed and its behavior can

be observed in a simulation environment provides a basis for control system deve-

lopment. An executable process model is an essential part of developing the control

system as a part of an iterative software development process.

In terms of control design, the process model can be used to enable control design

methods such as frequency response and root locus analysis. Transfer function and

state-space representations are used to represent the controller in the control design

phase. Open and closed-loop simulations with the process model can be used to

determine desirable values of control parameters. These control parameter values

can be used as requirements for detailed controller design.

In the scope of digital control system development, models are usually understood

as descriptions of control system elements written using a modeling language. A

modeling language provides the constructs for creating system models and describing

concepts such as time and data �ow [21, p. 1]. Specialized, domain-speci�c libraries

further facilitate the modeling of systems in a given application domain by providing

o�-the-shelf components for describing system structure and behavior. The modeling

languages used in this thesis are Mathworks' Simulink, a commercial, graphical

modeling environment and Modelica, an acausal modeling language with an open

speci�cation. Most modeling languages have a speci�c tool chain for model de�nition

and simulation.

Simulation is the process of executing a model written in an executable mode-

ling language and generating the results of the execution as its output. Simulation

requires a simulation environment, which understands the modeling language desc-

ription of the model and has the means of performing the necessary calculations

and displaying the results of the simulation. Dynamic systems are simulated step-

by-step with respect to time, so that the simulation results show the evolution of

the systems outputs as time progresses. Simulation is a scenario-based activity in

the sense that system behavior is triggered by controlling the inputs of the model,

then performing the calculations that determine the outputs and �nally updating

the outputs with the calculated values for each time step. The behavior of a dyna-

mic system model during simulation is determined from the system's characteristics

captured in the model de�nition, the system's inputs and the system's internal state
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de�ned by input values on previous time steps [12, p. 101].

Capturing the behavioral properties of a system in a model is usually based on

understanding the physical rules that a�ect the behavior of the system. The goal is to

create a representation of the system using physical equations. One way of achieving

this is by analyzing the system speci�cation and deriving a set of equations that

represents the physical properties of the system. The parameters for these equations

can then be derived from the system speci�cation or acquired through experimental

methods. An example of such a modeling process for a mechanical system containing

two rigid bodies joined together through a joint would include �rst formulating an

inertial equation to describe the behavior of the system and then calculating the

parameters such as length and moment of inertia for each of the components. In the

mechanical industry, product development is an iterative process where most new

designs are based on old, existing products. This often makes it possible to utilize

data from the development of previous products as a basis for a new product being

developed.

2.6.1 The Model-based design process

Model-based design is a design methodology which is built around the idea of using

models for speci�cation, prototyping, development, veri�cation and communication

in an embedded product development project [10, p. 1]. By de�nition model-based

design emphasizes the use of models throughout the development cycle. The inten-

tion is to treat models as intellectual property, which is developed and maintained

[43, p. 4]. The bene�ts of model-based design come from increased productivity,

improved communication between interest groups and the emphasis on early veri-

�cation and �nding and addressing issues as early as possible [43, p. 2].

It should be noted that the concept of model-based design presented in this thesis

is based on MathWorks' idea of its meaning. It takes some of its concepts from the

broader model-based software engineering (MBSE) methodology, but its notion of

models and their use is di�erent. In MBSE, the goal is to describe the structure

and behavior of a system using formal modeling constructs. The models in MBSE

can be divided into product models and process models. A product model contains

descriptions of the aspects, concepts and relations to build a product in a given

application area. A process model can be build using the de�nitions contained in

the product model to describe an actual product. [41, p. 3] Modeling languages such

as SysML can be used for systems engineering in MBSE. [17, p. 10]

The central concept of model-based design is an executable speci�cation. It con-

tains the design documentation, executable model and a veri�cation environment for

that model. The design documentation includes the textual requirements, describing

the functionality which should be implemented by the model, while the executable
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model describes the implementation of that speci�ed functionality. The veri�cation

environment ensures that the model correctly implements the functionality described

in the textual requirements and serves as a reference of how the model is supposed to

work. Compared to textual requirements, speci�cations can describe implementation

details through mathematical and behavioral representations. During the develop-

ment of an executable speci�cation, an executable model is developed to describe

the internal structure of the component that is being de�ned. This internal structure

can include de�nitions of operational states, data �ow as well as division of functio-

nality and de�nitions of atomic subsystems that are to be implemented. Executable

speci�cations are a natural way of representing core functional design details such

as algorithms, this way the executable model serves as an extension of the textual

requirement. [40, pp. 4-5] Compared to the phase division in the iterative softwa-

re development approach, the functional speci�cation and design phases overlap in

model-based design. Figure 2.5 illustrates the scope of the executable speci�cation

as it is presented in this thesis.

Figure 2.5: The work �ow for a generic model-based design process. [3, p. 17]

An executable system model enables continuous veri�cation and validation acti-

vities during the development cycle. Initially, the system model can be a high-level

description of the features of the target system or process, such as a �nite-state

machine model. In the requirement speci�cation phase requirements can be valida-

ted by creating executable, high-level speci�cations based on these requirements and

executing them with the system model to see if the target system behaves correctly.

For a control system, these high-level executable speci�cations can be rudimentary

implementations of the features of the controller, exercising the high-level system

model by toggling certain control signals and observing the behavior. This kind of

early validation of requirements gives valuable feedback in an early design phase.

These high-level models also serve as a base for elaboration in later phases, when

more detailed simulation is required for design veri�cation.
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In model-based design, the executable model created for the purpose of describing

functionality often also contains initial implementations of some system components

[40, p. 5]. This blurs the division between the design and implementation phases. In

the implementation phase, implementations of atomic subsystems are created and

re�ned. Any required non-functional aspects such as interfaces compliant with actual

hardware and timing details are also implemented. The goal of the implementation

phase is to automatically generate program code from the executable model. The

executable system model is also elaborated and expanded to a level of detail that

is su�cient for detailed behavioral analysis. The design of control system functions

is greatly facilitated by simulation against a model of the target system. Design

evaluation through simulation can give critical feedback on the viability of design

decisions on a short feedback loop. It should be noted that the level of detail of the

models used for each phase should be carefully evaluated and it should be elabo-

rated if needed. The usefulness of simulation results relies on a su�ciently detailed

implementation of the models being executed.

Another part of the product development process is the development of new tech-

nologies and algorithms. Especially in the machine industry, where product lines are

often iterative, this is also often a separate process. The purpose of algorithm deve-

lopment is to develop prototypes of new functionality based on concepts extracted

from business requirements. The model-based design approach enables algorithm

development to be more tightly integrated with development process and makes the

results more easily applicable to future product development projects. Algorithm de-

velopment utilizes executable process models and real-time prototyping platforms to

analyze and verify control algorithm behavior. The iterative nature of the products

in the machine industry has the added bene�t of often already having a process

model or an existing system available for prototyping. Rapid prototyping of control

algorithms has been found to speed up the product development process [24]. The

models developed in algorithm development can be used when creating executable

speci�cations for product development projects.

The development and maintenance of models throughout the development process

and treating models as actual design entities facilitates communication within the

project and to stakeholders outside of the project. A uniform way of storing designs

and documenting them reduces the e�ort required to transfer information between

engineers of di�erent backgrounds. Hierarchically developed models where a single

model entity contains the speci�cation, design and implementation of a requirement

automatically maintains traceability from requirements to implementation. A hie-

rarchical structure also allows for information to be communicated on an appropriate

level of abstraction, depending on the situation. It is also possible to automatical-

ly generate documentation from models, which alleviates the risk of documentation
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getting outdated.

2.6.2 Veri�cation and Testing

Software module tests can be implemented and executed in the modeling and si-

mulation environment. Veri�cation activities in model-based design can be roughly

divided into design veri�cation and code veri�cation. Design veri�cation focuses on

verifying that the design captured in executable models correctly implements the

speci�cation. This supports the principle of early veri�cation, since testing is done

on the model level, instead of the source code level. A test suite developed along

with the design and expanded as the design evolves can be repeatedly executed in

regression testing to make sure the integrity of the design is not a�ected when it is

changed. Such a test suite for the design model can be used to test the operation of

the design in varying conditions, much more easily and faster than in traditional mo-

dule testing. [31, pp. 2-3] In module testing, utilization of the system model allows

for the development of descriptive and natural test cases for control applications.

Code veri�cation through various levels of integration with the real target system

provide the means to verify the viability and performance of the controller design.

Common levels of integration used in code veri�cation are Software-in-the-Loop

(SIL), Processor-in-the-Loop (PIL) and Hardware-in-the-loop (HIL) simulation and

testing. In SIL testing, program code is generated from the controller model and that

program code is compiled and executed in parallel with the model, in the modeling

environment. This is the �rst step to ensuring that program code generated from

the model is functionally equal to the original model. When the functional equality

of the generated code has been veri�ed on the host PC, the same can be done on

the target embedded processor, which will often have more limits on its processing

capabilities and use a di�erent instruction set from the host PC running the modeling

and simulation tools. In PIL testing, the program code is compiled for the target

processor architecture and downloaded. The controller algorithm is then executed in

parallel with the original model so that the same test vectors are passed to both, the

model and the controller software running on the embedded processor. The outputs

of the controller from the embedded processor are then communicated back to the

modeling and simulation environment, where the functional equality of the model

and the compiled controller software can be veri�ed. The �nal step in verifying that

the controller works in its intended hardware and software environment is running it

in real-time, connected to a hardware simulator. The level of detail on the hardware

simulator should be su�cient to allow for veri�cation of the functional and non-

functional aspects, such as hardware interfaces and timing, of the controller. It is

possible to obtain the software for the hardware simulator by generating a program

code representation of the system model and executing it on a real-time prototyping
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platform. HIL testing done on a hardware simulator makes it possible to verify

important safety features before connecting the controller to an actual hardware

prototype. The test suite initially created for verifying the controller design model

can be used to execute the same test scenarios in SIL, PIL and HIL testing, making

the results of each of the testing phases comparable and making it possible to identify

errors in translating the model to program code. [31, pp. 2-3] [10, pp. 3-4]

2.6.3 Production Code Generation

One of the biggest individual, measurable bene�ts of the model-based design ap-

proach is automatic production code generation from the designs produced in the

detailed design phase. Through the use of the automatic code generation functiona-

lity provided by the modeling and simulation tool, a design artifact can be converted

from a modeling language description into computer program code, such as C code,

that can be compiled and executed on the actual controller hardware. Eliminating

the separate implementation phase normally involving manual programming, the

implementation and design of a software module are always synchronized, meaning

that any changes made to the design are always re�ected on the implementation.

This enables the approach where models are the focal point of development, which

is integral to the idea of considering models as the intellectual property of the orga-

nization, not the program code [43, p. 4]. Figure 2.6 presents the general work �ow of

implementing a software module through modeling and automatic code generation.

This functionality relies on the fact that the code generator understands the mo-

deling language and knows how to translate certain modeling constructs and com-

ponents into program code, which makes it tool speci�c. When the program code

is automatically generated, its characteristics and quality are de�ned by the code

generator. A versatile code generator will allow qualitative aspects of the program

code, such as performance, readability and maintainability, to be con�gured. As

such, it is the con�guration of the code generator that is responsible for the quality

of the program code, as opposed to the programmer in the conventional approach.

Figure 2.6: The general work �ow for implementing a controller through modeling and code
generation.
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This makes the reliability and quality of the code generator a major concern. The

granularity of design artifacts for which code generation can be used varies from

individual algorithms to entire controller designs. In an ideal situation, the entire

controller design produced in the detailed design phase can be automatically con-

verted to program code, compiled into an executable program and integrated as a

part of the control system implementation.

The ability to mostly skip the manual programming phase improves quality and

productivity. Productivity is improved when design work is done in the modeling

environment and the actual program code representation is automatically genera-

ted by the code generator. This is in contrast with a process where the design is

translated into program code in a separate implementation phase. Reported produc-

tivity gains in both man hours and calendar time vary between 100 and 300 percent

[63][47]. Although in model-based design, the most signi�cant gains in software qua-

lity are achieved through good modeling practices and veri�cation and validation

in the modeling environment, automatic production code generation does provide

certain immediate bene�ts. The use of automatic code generation also, ideally, elimi-

nates the risks of misinterpretation of the design and technical programming errors

in the implementation phase, inherently improving software quality [35].

The general conception seems to be, that the motivations for using model-based

design methologies are improvement in product quality, advantages in the develop-

ment of high-complexity functions, shorter development times and cost savings [5,

p. 6].
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3. STATE OF THE ART

This chapter presents the state of the art for model-based design in the form is use

cases and tools. This is done to give an impression of what the starting point is and

what is achievable.

3.1 User stories from industry

In the automotive industry, model-based design practices have been adopted, to a

varying degree, by numerous companies [5, pp. 5-7]. Several articles describing the

use cases, adoption processes and achieved results for model-based design in va-

rious industries have been published. Although many of these articles have been

published in collaboration with tool providers, they do document actual use cases

and trends. The scope of model-based design applications varies from the design and

implementation of individual embedded controller functions to entire controllers [47,

p. 4]. Ideal application areas for model-based design are ones where the nature of

developed control applications is inherently complex or where rigorous veri�cation

is required by regulations, such as the aerospace and defense industries [46][11][23,

p. 1]. There is also great interest for model-based design in �elds such as industrial

automation and automotive control, where the goal of developing increasingly in-

telligent control systems is causing a proportional increase in software complexity

[63][61].

The reasons for using model-based design also vary, but the common denomina-

tor seems to be the use of automatic code generation [5, p. 11]. In general, model-

based design is being widely used in the software design and implementation and

to a lesser extent, in requirements engineering and architecture design[5, pp. 6, 17].

Software design and implementation include the development of executable speci-

�cations, implementation models, automatic code generation, veri�cation and vali-

dation. Requirements engineering in model-based design includes describing requi-

rements in the modeling environment as well as techniques such as rapid control

prototyping. Architecture design through modeling enables the analysis of architec-

tural design options and supports veri�cation and reusability.

The tool support for model-based design mostly covers software design and imple-

mentation. The functionality for requirements engineering and architecture modeling

is also there, but these phases of the software development process are not as easi-
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ly isolated and migrated to a new environment as the use of external requirements

management systems and diagramming tools is prominent in the �eld of software

engineering.

3.2 Pilot projects

Sandvik Intelligent Control system Architecture (SICA) is a control system plat-

form. It facilitates and enables control system application development by providing

a software stack and a hardware library along with design guidelines. The goal is

to increase the e�ciency of R&D and to provide a uni�ed end-user experience for

di�erent products and product lines. A machine project using SICA will be able to

take advantage of the supported R&D tools.[38] One such tool is Simulink. SICA

o�ers support for model-based design and automatic code generation by providing

a Simulink code generator con�guration and custom Simulink blocks for interfacing

automatically generated code with the control system platform. This way functio-

nality implemented through modeling and code generation can be integrated into

the control system. Modeling and automatic code generation have been successfully

used in pilot projects.

3.3 Simulink

Simulink is a commercial modeling and simulation tool by The MathWorks and it is

widely used in the industry. It is based on the MathWorks' MATLAB computation

tool that has its own language. Simulink provides a graphical modeling environ-

ment where models can be constructed from a library of modeling elements called

blocks, each performing a speci�c function. Graphical representations of mathema-

tical, causal models describing the relationships between the inputs, outputs and

internal states of a dynamic system can be created and simulated. These dynamic

models can be descriptions of real world systems such as electronic, mechanical or

thermodynamic systems [48, p. 28].

The graphical nature of Simulink models allows for models to naturally contain

notions of internal hierarchy and relationships through the use of subsystems, signals

and buses. Subsystems and buses can be de�ned as either virtual or atomic, de�ning

whether they only exist for the purpose of graphical representation. Subsystems are

generally used to isolate a system function into a separate diagram, which enables

hierarchical model design. A subsystem can either be de�ned within the model where

it is used, or it can be a reference to a subsystem de�ned in another model or library.

A bus is a collection of signals which can be used for the abstraction of connections

of multiple signals between subsystems. [48, p. 29]
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Figure 3.1: A spring-mass-damper system modeled and simulated in Simulink.

In simulation, the states and outputs of a system are being calculated over ti-

me. When a Simulink model is simulated, the model is compiled and linked into an

executable program which can be executed on the simulation PC. The calculations

de�ned in the compiled model are then successively executed at a speci�ed interval.

The di�erence between two successive computations in the simulation loop is cal-

led a time step. The size of the time steps is de�ned by the equation solver which

has been chosen for the simulation. Simulink o�ers a selection of both variable-step

and �xed-step solvers, which are suitable for a variety of di�erent model types. The

length of the simulation is determined by the user at the start of the simulation. Si-

mulink provides a graphical simulation environment where simulation options such

as simulation duration and solver type can be con�gured. The results of the si-

mulation can be viewed in signal viewers called scopes or exported to MATLAB

for further processing. Figure 3.1 shows the model of a simple spring-mass-damper

system being simulated in Simulink. [48, p. 196]

Real-time prototyping platforms can used to test control algorithms and cont-

roller designs. Notable manufacturers of such hardware are dSpace and National

Instruments. Simulink models can be compiled and executed on real-time proto-
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typing hardware that is connected to the actual machine, process or a simulator

thereof. This allows for the behavior of the controller to be veri�ed in a realistic

environment. It is especially useful in algorithm development. The use of real-time

prototyping platforms in control system development is covered in [24] and as such,

is not covered further in this thesis.

While the basic functionality of Simulink enables modeling and simulation ac-

tivities, it is extensible through a number of extensions, called toolboxes. These

toolboxes add functionality and analysis capabilities to Simulink. For the needs of

model-based design, toolboxes are available for production code generation, design

veri�cation, requirements validation and state chart de�nition. The extensibility of

Simulink through purpose-built extensions is one of its selling points. The downside

of this is that it is heavily productized to the extent that each toolbox requires a

separate license.

3.4 Modelica

Modelica is an open modeling language speci�cation developed by the Modelica

Association. It advertises the ability to model complex, multi-domain physical sys-

tems through the use of acausal equations describing the systems' properties. It is

an object-based language with a syntax similar to that of Java and the MATLAB

language, allowing the development and usage of domain-speci�c component libra-

ries. Modelica Standard Library is a free library developed by Modelica Association,

providing components for the modeling of mechanical, electrical, thermal, �uid and

control systems as well as hierarchical state machines. [13]

Modelica is only the speci�cation of a modeling language and, as such, relies on

actual implementations to allow modeling and simulation of systems. Several imple-

mentations of Modelica exist, implementing the language speci�cation to a varying

degree. Both commercial and open source implementations are available. The sel-

ling point of commercial Modelica tools are a graphical modeling and simulation

environment and a plethora of component libraries as well as various other features

including model visualization and connectivity to and compatibility with other tools.

Commercial Modelica tools include Dymola by Dassault Systèmes [6], MapleSim by

Maplesoft [26] and Wolfram SystemModeler by Wolfram [65], among others.

Several projects aiming to o�er an open source implementation of the Modelica

speci�cation are available. One of these is OpenModelica, a modeling and simulation

environment with a graphical user interface. The graphical modeling environment

allows for models to be built from components without necessarily having to have

knowledge of their implementations. The simulation environment allows for models

to be compiled using the provided compiler and executed for the purpose of observing

their behavior. In addition to a conventional graphical plotting tool, OpenModelica
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Figure 3.2: The model of a pendulum in the OpenModelica graphical modeling environment
and a visualization of its simulation results.

provides the ability to create 3-dimensional visualizations of simulation results for a

subset of the available components. Figure 3.2 shows the graphical representation of

the model of a pendulum in OpenModelica's graphical modeling environment and

a visualization of its simulation results in the plotting tool. By default, OpenMode-

lica provides the Modelica Standard Library. It has raised interest in the industrial

and academic communities due to its open source nature, in contrast to most tools

which are often commercialized. [33] Another free Modelica implementation is JMo-

delica.org [30] that provides a compilation and simulation environment, but at the

time of writing does not o�er a graphical modeling tool. Out of this o�ering of tools

OpenModelica is the one that is presented in this thesis as the alternative to Si-

mulink for modeling and simulation. It was chosen because it is open source and it

provides a graphical modeling environment.

3.5 Other tools

3.5.1 LabVIEW

LabVIEW by National Instruments is commercial development environment for data

acquisition, instrument control and industrial automation. It uses National Instru-

ments' G language, which is a graphical data �ow programming language. In the

graphical programming language, programs are de�ned by building block diagrams,

in which data is propagated between function nodes through wire connections. [16,

p.1] Its strength is in its ability to interface with instrumentation such as sensors and

processing units over a variety of buses, allowing for monitoring and data processing.

Another central feature is the ability to construct graphical control panels for data

visualization and parameter control. Connectivity support also extends to models
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developed with other manufacturers' tools. It is possible to visualize data acquired

from a Simulink model, for example. For control design, LabVIEW o�ers a library

of control and a system de�nition components. With these, controller and system

models can be de�ned and then simulated. National Instruments has an extensive

hardware o�ering which is compatible with LabVIEW, including modular embedded

hardware prototyping platforms. [32]
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4. CHALLENGES OF ADOPTING THE

MODEL-BASED DESIGN APPROACH

Trends in the industry indicate that model-based design is being adopted by an

increasing number of companies and to an increasingly integral degree in their deve-

lopment processes [37]. At Sandvik the goal is to integrate modeling into the control

system development process and to move towards model-based design by suppor-

ting the use of Simulink in production projects. Functionality could be designed and

implemented by modeling in Simulink and the automatic code generator could be

used to generate production code capable of being executed as a part of the control

system. The motivations for this are e�ciency gains and improved quality in softwa-

re development as well as a shorter time-to-market for new machine functionality

[43, p. 2]. As modeling and simulation practices are already being used for proof-

of-concept studies and algorithm development and the results of these are being

used as a basis for product development, the use of automatic code generation is

a natural progression. The ability to use modeling for detailed design in product

development projects makes it possible to make use of the actual model assets de-

veloped in research projects. It is also hoped that through the wider adoption of

modeling practices in product development, early functional veri�cation made pos-

sible by simulation will cause design errors to be caught earlier in the development

cycle.

4.1 The work �ow for modeling and production code genera-

tion

The goal is to allow control systems to be developed in such a way that they con-

sist of software modules implemented through both code generation and manual

programming. Figure 4.1 shows a development process where some functionality is

implemented through manual programming and some through modeling and auto-

matic code generation. This process focuses speci�cally on the alternative ways to

implement individual software modules. Architectural design is considered a separa-

te design phase where functionality is divided between software modules and it is not

necessarily captured in models, although models may have an internal hierarchical

structure. Executable speci�cations in this process include the textual requirements
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Figure 4.1: A control system software development process where some modules are imple-
mented by manual programming and some through automatic code generation.

and models containing the design and implementation of a software module which

has been chosen for design and implementation through modeling. This process

includes a manual system integration phase, where the control system is construc-

ted from the individual software modules by connecting them together. System in-

tegration can include logically or physically connecting control system components

together.

The decision on which design and implementation method to use for each indivi-

dual module is made in the architectural design phase. Although it is hard to specify

de�nitive rules how to decide whether a speci�c module should be implemented using

modeling and code generation, certain guidelines can be laid out. Primarily, modules

that implement a mathematical algorithm or a complex state logic are candidates

for implementation through modeling and code generation. In the case of a mathe-

matical algorithm, the ability to iteratively develop and test the algorithm in the

modeling environment is highly bene�cial because of the short feedback loop. For

the development of complex state logic, the ability to visualize the operation of the
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�nite-state machine and analyze it can help to �nd design errors such as incorrectly

de�ned transitions or unreachable states. [8, p. 5]

In the work �ow where a software module is implemented through manual pro-

gramming, the design and implementation phases are often separate. Module design

in this case is described in a module design document consisting of descriptions of

individual functions and sequence diagrams. Sometimes modeling tools such as Si-

mulink can be used in the design phase to verify and re�ne designs. These module

design assets are then used as a basis for the actual implementation as program co-

de. In this work �ow, there is a discontinuity between the design and implementation

phases which results in the possibility of errors being made in translating the design

into program code. It is sometimes also the case that the design and implementation

phases of a software module are carried out by di�erent individuals, leaving room

for misinterpretation of the design. The design and implementation work �ow using

Simulink alleviates these issues by containing the design and implementation phases

within the modeling and simulation environment. The models representing module

design are considered a part of the executable speci�cation for that module.

As such, the implementation phase is reduced to re�ning and optimizing the

design for execution on the target processor and con�guring the code generator.

Arithmetic errors such as quantization errors, tool errors such as an incorrect or

missing code generator con�guration and interface errors such as interface mismatc-

hes between a control algorithm and its software environment have been identi�ed

as common error sources that should be considered in the implementation phase

[45, p. 2]. Automatic generation of program code shifts the emphasis of develop-

ment towards design, which allows the designer to operate on a higher level of ab-

straction, be less concerned with the details of the implementation and to focus on

the creation of intellectual property [8, p. 12]. The lack of a separate implementa-

tion phase allows the design and implementation of a module to be done by a single

individual, eliminating the risk of miscommunication between design and implemen-

tation. The details of the implementation are de�ned partly in the design model and

partly in the code generation con�guration.

4.2 Models as a part of the development process

A key factor in providing an alternative method of implementation is integrating

the method and its characteristic internal work �ow into the existing control system

software development process. Seamless integration requires the inputs and outputs

of the design and implementation phase of a software module to be similar to what

they would be if the module was implemented through manual programming. The

input for the design and implementation phase of a module consists of the tech-

nical requirement specifying the module's intended functionality and architectural
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module description specifying its interface and operation sequences. The output of

the design and implementation phase is a source code module implementing the

speci�ed functionality. Ideally, there is functionally no di�erence between a module

implemented by manual coding and a one implemented through modeling and code

generation if their speci�cations are the same.

When considering a control system implementation that is a hybrid of manually

coded and automatically generated modules, the consistency of module interfaces

becomes an important factor to consider. Automatically generated code is for the

most part not meant to be readable, meaning that the operating logic of a module is

not necessarily very easy to comprehend by studying the source code. This puts an

emphasis on the module having well de�ned and functional interfaces which conform

to their speci�cations to allow integration with the rest of the control system.

The support for design and implementation of individual software modules th-

rough modeling and code generation has to be established on the architectural level.

Such a partial adoption of the model-based design methodology relies on a clear

partitioning of the software modules. The control system software architecture desc-

ribes the division of functionality between and the granularity of individual software

modules. Ideally, this sets clear boundaries for the software modules and makes it

possible to assess potential candidates for design and implementation through mo-

deling and code generation. The decisions made in the architectural design phase

a�ect the size and complexity of models and thus also a�ect qualitative aspects such

as maintainability and re-usability of models. The goal should be to �nd a balance

between well de�ned, manageably sized modules that represent clear functional en-

tities and modules that are �ne grained and over-de�ned, limiting the options in

detailed module design.

In a development process where models are used to capture detailed design of

software modules, the logical way of developing and maintaining software modules

is treating the models as design and implementation artifacts. The reliability of the

code generator and the dependability of the generated code have been identi�ed as

the key points of concern in automatic production code generation [45, p. 1]. A code

generator which has been developed within an established quality management sys-

tem and certi�ed by an independent organization is more likely to be reliable than

one what hasn't [45, p. 2]. The objective reliability of a code generator also impro-

ves when its output provenly conforms to a standard such as MISRA C [45, p. 2].

Con�dence in the quality of automatically generated code can be improved through

the use of modeling guidelines, code reviews, static analysis methods and code veri-

�cation techniques. Modeling guidelines a�ect code quality indirectly, by improving

qualitative aspects of the models. Code reviews and static analysis methods for the

automatically generated code can, on the other hand, be used to initially establish
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a certain level of con�dence in the quality of the generated code. Code veri�cation

techniques such as SIL, PIL and HIL testing can be used to dynamically verify that

the generated program code corresponds to the model. [45, p. 4] When such trust

can be put into the code generation process that the program code it generates can

be assumed to be functionally equal to the model it is based on, models can truly

be thought of as the design and development assets that should be maintained.

For models to be treated as design assets, especially in a process where the mo-

deling and code generation work �ow exists along with the more traditional design

and programming work �ow, it should be possible to implement traceability from

models to the requirements that specify their purpose, the same way traceability is

implemented from requirements to module design and program code. The concept

of an executable speci�cation consisting of both textual requirements and execu-

table models implicitly requires traceability between requirements and models. This

is especially important since models are developed in a proprietary modeling envi-

ronment and a link needs to be established between the modeling environment and

the requirement speci�cation, which exists as a separate document or in a requi-

rements management system. Since the models are also often of a proprietary �le

format speci�c to the modeling environment, it is important that design documenta-

tion can be exported so that it can be displayed and stored outside of the modeling

environment.

While there are clear bene�ts to focusing development e�orts to the modeling en-

vironment, treating models as development assets also imposes certain requirements.

As for source code, it should be possible to store models in version control systems

where they are stored and available during development and maintained after their

development. Storage and maintenance of di�erent versions of the same model is al-

so necessary to support di�erent control system versions and con�gurations. Along

with the actual models, each version of a model should be stored in version control

along with appropriate documentation describing the details of its implementation

and the program code representation generated by the code generator. With deve-

lopment focused around models, the decisions a�ecting the qualitative aspects of

the development assets also have to made on the model level. Qualitative aspects

that the software development process is concerned with are maintainability, rea-

dability and re-usability. Modeling guidelines can be used to enforce these positive

qualitative aspects which are a�ected by the internal structure of the model [45, p.

4].

4.3 Organizational considerations

In addition to the technical considerations concerned with developing models and

using them as a part of the control system software development process, a number



4. Challenges of adopting the Model-Based Design Approach 32

of organizational considerations related to the adoption of model-based design prac-

tices can be identi�ed. The need for organizational change is created by the creation

of new engineering tasks, the emphasizing of design and changes in the development

process[8, p. 2]. The introduction of the modeling work �ow with its speci�c tools

and principles creates a requirement for certain competence in the organization, es-

pecially from the point-of-view of a software project. Competence in the areas of

modeling, simulation and plant model development are required to take advantage of

model-based design. While these skills may be more widely available in the mecha-

nical and hardware engineering disciplines, in control system software development

acquiring this competence through recruitment or training may be necessary. [8, pp.

2-3]

In model-based design, the emphasis of e�ort in the project shifts towards requi-

rements and design [8, p. 3]. From the point-of-view of a software project, especially

with the introduction of automatic code generation, this means that development

e�ort needs to be refocused. The most obvious change is the fact that the e�ort

needed for implementation through manual programming is expected to be reduced

gradually, as modeling and code generation are adopted. The veri�cation of software

modules is also done on model level, eliminating the need to develop module tests on

program code level. The software engineers previously fully occupied with softwa-

re development tasks need to start orientating more towards system architecture

design, system integration and model development [43, p. 5].

The introduction of the modeling work �ow introduces modeling tools and new

ways of work to the software development process on the organizational level. The

process changes need to be de�ned and carried out. The need for new tools in the

development tool chain needs to be mapped out and the tool candidates need to

be evaluated to reach an informed decision on which tools are the most suited for

the purpose. To ensure that the development tools can be used for modeling in pro-

duction projects, a development environment con�guration needs to be established.

The organization needs to support the modeling tools by creating and maintaining

the development environment and making sure it can be obtained by ensuring that

installation �les and license keys are available. Especially with the long life cycle

expectancy of products in the machine industry, tool con�guration management is

critically important to ensure that the software can be changed and re-used in the

future. Another maintainable aspect of the modeling work �ow is the supporting

documentation such as standards, guidelines and manuals. While tool manuals are

most often provided by the tool supplier, any guidelines and standards have to be

de�ned and maintained. [43, p. 4]
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4.4 Summary of goals

The goal of this thesis is to �nd ways to support the control system software deve-

lopment process described in this chapter and the modeling practices that enable

it. This thesis presents an example use case for modeling in the form of a design

problem from the machine industry, through which the capabilities of the tools Si-

mulink and OpenModelica are demonstrated. By analyzing the process of solving the

design problem with each tool individually, an assessment of their suitability for the

modeling and code generation work �ow is presented. With the goal of supporting

this work �ow, the thesis addresses more speci�c concerns of integrating modeling

into the software development process at Sandvik. Traceability, maintainability and

quality of models are covered from the point-of-view of the development process. An

assessment of the reliability and performance of automatically generated code is pre-

sented to support the idea of focusing development e�orts in modeling and raising

the level of abstraction from program code to models. Veri�cation and validation

as a part of the model-based design process are not covered further in this thesis.

Organizational and software architectural concerns are also not addressed further

than they are in this chapter.
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5. TOOL EVALUATION

The purpose of this chapter is to evaluate the capabilities of the two selected tools,

Simulink and OpenModelica, in designing a controller for a physical system with the

goal of using the controller model for automatic code generation. In this chapter �rst

presents the main criteria for analyzing the tools' capabilities. Before presenting the

actual analysis and summarizing its results, the example design problem is presented.

The tool versions used in this thesis are version R2013b of MATLAB and Simulink

and version 1.9.0 of OpenModelica.

5.1 Analysis criteria

The modeling capabilities are the primary criterion for analysis of the tools in this

Chapter. The developer should be able to describe a system in a language that can

be understood by the simulation tool in such a way that its behavior can be observed

in simulation. The modeling environment should allow the developer to create both

time-continuous and time-discrete models. For example, controller models intended

for embedded controller hardware are time-discrete and process models describing

the behavior of a dynamic physical system are time-continuous. These can be used

together to analyze and verify the behavior of the closed-loop control system, where

the outputs of the controller are connected to the process model and the outputs

of the process model are fed back to the controller. The modeling language used by

the modeling environment needs to support the creation of such control systems.

Besides evaluating just the theoretical versatility of the modeling language, for the

speci�c domain of control engineering it is important that the modeling environment

provides modeling language constructs which can be easily understood and used by

engineers familiar with the domain. As a development tool, the usability of the

modeling software is also taken into account.

Besides the modeling environment, the capabilities of the simulation environment

determine the quality and quantity of information that can be acquired through

simulation. A good simulation environment allows simulation properties such as

the solver algorithm, step size and simulation time to be con�gured so that the

simulation results provide adequate information about the system properties under

observation. The simulation environment's ability to visualize simulation results for

analysis and store them for further processing greatly a�ects its value as a design



5. Tool evaluation 35

tool.

As tools that are a part of the product development process, the available docu-

mentation and product support is a factor that needs to be considered. Support

for automatic production code generation is also analyzed, since it is a subject of

interest in this thesis.

5.2 Example model

The control design problem used as a means of demonstrating the tools' capabilities

is based on the M.Sc. thesis by Arto Sirén covering the design of an automatic

leveling controller for a rotary drill rig [42]. It was chosen because it is a design

problem representative of Sandvik's engineering domain and because it is a complete,

public thesis, giving a detailed explanation of the design problem and the means to

solving it. The motivation for the design problem presented in [42] is the need to

automate the process of leveling the hull of the drill rig for the purpose of drill hole

alignment by controlling its four ground jacks. The hull of a drill rig is also called

the carrier. The starting point was, that the leveling was done by manually driving

the ground jacks and leveling through measurement and adjustment. The goal of

[42] was to design the instrumentation setup and control algorithm for implementing

such an automated leveling system. The design approach �rst introduces the drill rig

and presents its key physical properties, after which a physical spring-mass-damper

model for the drill rig is de�ned. This process model is then used in controller design

to analyze the e�ects of di�erent controller designs and control parameter values.

[42, pp. 10-11] The control design problem is closely related to the behavior of the

physical machine, making it bene�cial to use a physical model, which makes it a

good candidate for the model-based design approach. It is also bene�cial to design

and verify the operation of the �nite-state machine logic of the controller through

modeling and simulation.

This thesis uses the physical model description presented in [42] as a basis for

constructing the physical model. Information about machine parameters such as its

dimensions, total weight and weight distribution is used in calculating estimates of

the physical model parameters. The operation logic of the controller designed in

[42] is used as a basis for the controller designed in this thesis with its operation

simpli�ed and some of its requirements omitted.

5.2.1 Physical model

The described drill rig consists of two distinct parts: the hull and the mast. When

the rig is in its drilling position, the mast is raised and the hull is supported on the

ground by four ground jacks, one at each corner. With the mast raised, the highest
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point is at the height of 29 meters. The whole rig weighs 150 tonnes with the hull

weighing 100 tonnes and the mast weighing 50 tonnes. The ground jacks used for

supporting the rig in drilling position are operated by hydraulic cylinders. [42, pp.

10, 12-14]

Figure 5.1: A two dimensional projection of the R110 drill rig with its degrees of freedom
denoted. [42, p. 20].

Interesting aspects of the mechanical characteristics of the rig are the tall and

heavy mast and the heavy and slow hull. When applying forces that cause the heavy

hull and the mast to rotate, even a small increase of the angle between the ground

and the hull causes the top of the mast to shift. The mast is also not completely

rigid and will exhibit a swaying motion when the hull rotates [42, pp. 10-11]. The

dynamics of the 3-dimensional rig can be described in terms of two 2-dimensional

projections with �ve degrees of freedom. They are de�ned as two vertical degrees of

freedom, yv and yo, representing the ground jacks' displacement from ground level

as well as βma, βmk and βmy, representing the bending of the mast. The mast is

divided into three sections for the sake of simplicity [42, pp. 19-20]. One projection

directly from the side of the machine and another from the front at a slight angle

are used. Figure 5.1 shows the angled front projection with the degrees of freedom

denoted. The inertial equation for the projection can be formed in terms of these

degrees of freedom and their �rst and second derivatives [42, p. 26]:
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Aẍ+Bẋ+ Cx = d, (5.1)

where the state variables in vector form ẍ, ẋ and x are de�ned as

x = (yv yo βma βmk βyk)
T (5.2)

ẋ = (ẏv ẏo ˙βma
˙βmk

˙βyk)
T

(5.3)

ẍ = (ÿv ÿo ¨βma
¨βmk β̈yk)

T
. (5.4)

The 5× 5 co-e�cient matrices A, B and C describe the rig's properties, the cor-

relation between the all the freedom degrees in terms of moment of inertia, damping

and spring constant. The vector d contains external forces acting on the system's

axes of freedom [42, p. 26].

Simpli�cations of the physical model

The equations for the physical model are the same for both projections and 3-

dimensional control of the physical model can be achieved through the combination

of the two. Thus, for demonstration purposes it is considered su�cient to only calcu-

late the parameters of the physical model and design the controller for one of the

projections. The purpose of the physical model in this thesis is not to give an accu-

rate representation of the physical properties of the actual mechanical machine, but

to serve as a means of demonstrating the process of solving a design problem with

modeling tools. As such, a number of simpli�cations were made to the model. First-

ly, the model in this thesis does not take the restrictions of actual actuators and

sensors into account. The external forces in vector d are directly used as control in-

puts. In order to realistically describe the physical system, a model of the dynamics

of the hydraulic actuators would have to be developed. These hydraulic actuators

would be controlled by the voltage passed to the hydraulic pump and by the control

voltage passed to a proportional directional control valve. For the purposes of this

thesis it is not necessary to consider the restrictions set by the physical properties

and restrictions of the actuators. We also assume that we are able to measure the

position, velocity and acceleration in terms of each of the degrees of freedom, when

in reality such sensors might not exist or it might not be feasible to install them on

the physical machine.

When considering model simpli�cations, the nature of the design problem and its

requirements should be taken into account. The simpli�ed physical model presented

in this chapter is still more than detailed enough for the design problem at hand.
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In fact, if the basis for the physical model of the R110 machine was not already

available, an even simpler representation of the physical properties of the machine

would have been used. The level of detail of a plant model used in controller design

should be selected such that it is su�cient for verifying the requirements set for the

controller and not more detailed that is necessary.

5.2.2 Controller logic

The system is controlled by exerting external forces on the axes yv and yo. Forces

acting on these axes together can be used to control the height and angle of the rig in

the 2-dimensional projection. Let the components of vector d representing the forces

acting on yv and yo be called dv and do respectively. The logic of the controller can

be simpli�ed to the �nite-state machine (FSM) representation presented in Figure

5.2. In this state logic, the controller starts in the leveled state, regardless of whether

or not the rig is actually level. In the leveled state, adjusting the set point for the

height will cause the controller to transition to the height adjustment state, where

both jacks will be raised until the desired height is reached. When the desired height

is reached, the controller transitions to an intermediate height adjusted state, where

a decision about which jack should be raised to level the rig is made based on

measurement data. The controller proceeds to level the rig by transitioning to one

of the two leveling states. Finally, a transition back to the leveled state happens

when the left and right sides of the rig are at the same height.

Controlling the height of the left and right sides of the rig can be done by cont-

rolling the inputs dv and do and a state logic controller that manages the transition

from one control state to another. The actual control of the axes yv and yo can be

implemented by using a PID controller where the set point and feedback are given

in terms of the axes' positional displacement from ground level. Applying a gain

to the control signal of the PID controller, calculated based on the error term of

the positional displacement value, translates it to a force value proportional to the

control value.

Simpli�cations of the controller logic

Due to simpli�cations made to the physical model, the controller model also does not

take the dynamics of the hydraulic cylinders into account, but rather just controls the

force acting on the axes yv and yo. The controller design presented in this thesis uses

very conservative parameters for PID control since optimization and further analysis

of control parameters is not meaningful given the scope of the thesis. Extensive

stability analysis of the controller is not performed. Originally, strict requirements

regarding maximum safe displacement of the center of mass of the rig due to swaying
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Figure 5.2: A simpli�ed representation of the state logic of the automatic leveling controller
[42, p. 57].

of the mast were included to ensure that the machine does not fall over [42, pp. 46-

53]. These have been omitted to such an extent that the only veri�cation for this is

done by ensuring in basic simulations that the oscillations caused by the swaying of

the mast degrade over time.

5.3 Implementation using MATLAB / Simulink

In accordance with the work�ow of model-based design, the physical model of the

R110 rig was developed �rst. The starting point is Equation 5.1, which describes

the behavior of the physical system as a spring-mass-damper system. The elements

of the matrices A, B and C were calculated based on the data that was available of

the machine's physical properties, such as weight, dimensions and structural details.

The same equations that were originally derived to calculate the element values for

the co-e�cient matrices [42, Appendix 3] were used in this thesis.
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5.3.1 Physical Model in Simulink

The Simulink model to represent the spring-mass-damper equation is formed by

using integrators to represent anti derivatives and gain blocks to represent the matrix

co-e�cients. The input to the system is the vector d, namely its components dv and

do. External forces acting on the axes βma, βmk and βmy are assumed to be zero.

The main output of the system is the positional information for each of the �ve

axes. This can be though of as measurement data that would be acquired through

sensors on the actual machine. Figure 5.3 shows the Simulink block diagram of the

physical model of the R110 drill rig. It should be noted that most Simulink blocks

can scale to vector and matrix form input signals, either automatically or through

a con�guration parameter.

Figure 5.3: Implementation of the 2-dimensional physical model of the R110 drill rig in
Simulink. Matrix co-e�cients A, B and C are used as gain factors.

A subsystem was created from the contents of the physical model and a subsystem

mask was created for it. The mask hides the contents of the subsystem and allows

a custom interface to be created for it. The mask of the physical system de�nes

the physical properties of the rig projection as parameters that can be entered in

the block parameters dialogue. It also contains the de�nition for the matrices A, B

and C. This way, each instance of the physical subsystem (the side and angled front

projections for example) can have its own set of parameters.

5.3.2 Controller Model in Simulink

For discrete controller design, Simulink o�ers a library of blocks that de�ne discrete

states [53]. In addition to this, the sample time of most Simulink blocks can be

selected such that the discrete nature of the controller can be modeled. Finite-state

machines representing controller state logic can be implemented using State�ow, a

MATLAB and Simulink toolbox for de�ning state machines and �ow charts [59].

Structure and hierarchy can be built into Simulink models by using subsystems [55]
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Figure 5.4: Top-level view of the controller for elevation and leveling.

and model references [54].

The controller logic for controlling the elevation and leveling of the R110 drill rig

is divided into two main operational subsystems: The PID controller subsystem for

calculating the control values and the �nite-state machine that determines which

controls should be passed to inputs of the physical system. Figure 5.4 shows the

top-level view of the R110 elevation and leveling controller. The PID controller

subsystem takes �ve inputs. The inputs required by the elevation phase are the set

point for the height of the rig and the feedback signal. In the leveling phase, the

PID controller uses the average value of the two positional measurement signals

to drive the rig upwards to the desired height. For this purpose, a subsystem that

calculates the average value of the two measurement signals (left and right side of

the hull) is used. For the leveling phase, the controller uses the same set point value.

For determining whether the left or right side ground jack should be used to drive

the rig to a position where it is level, the controller uses a measurement of the hull

angle. It also uses measurements of the positions of the left and right sides of the

hull with respect to height from the ground. For the purpose of representing slopes

and bumps in the ground, the values for these measurements are calculated in the

controller model based on the measured extension values of the hydraulic cylinders

and ground level information originating from the test harness. In reality, this could

be implemented by installing dedicated sensors on the drill rig.

The implementation of the PID controller subsystem utilizes two discrete PID

controller blocks, one for the elevation phase and another for the leveling phase.
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Figure 5.5: Detailed structure of the elevation and leveling PID control subsystem.

The operation of the controller in the leveling phase is simple. A feedback signal

calculated from the di�erence between the set point value and the measured, avera-

ged hydraulic cylinder extension value is fed to the elevation PID controller block.

The control signal calculated by the elevation PID controller is fed to the FSM sub-

system. The logic for transitioning from one phase to the other is implemented by

using two event generator subsystems that determine when a signal has settled to

a certain value. This information is passed to the �nite-state machine subsystem

to trigger state transitions. The operation of the controller in the leveling phase

depends on which ground jack is lower, which can be deduced from the hull angle

measurement. The hull angle measurement controls two switch blocks, that pass the

correct signals to the �nite-state machine subsystem in each case. In the leveling

phase, the position of ground jack that is higher is fed directly to the FSM subsys-

tem and the other is fed to the leveling PID controller as the measurement signal.

Figure 5.5 shows the block diagram of the PID controller subsystem.

The �nite-state machine subsystem is implemented using State�ow. The default

state of the state machine is the elevation state where the both of the hydraulic

cylinders are extended identically. In this state, the leveling PID controller input

is connected to both, the left and right ground jack outputs. A state transition is

triggered by an event signal from the PID controller subsystem telling the FSM that

the rig has been raised to the desired height. Upon exit, the value of the elevation

PID controller signal and the measurement value for the position of the higher

ground jack are stored to global data stores. If the hull is not level (which it will

realistically almost never be), the hull angle input is used to decide whether the

FSM transitions to the left or right jack leveling state. In the leveling states, the
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Figure 5.6: The �nite-state machine controlling the elevation and leveling states and out-
puts of the controller.

control signal for the ground jack that was higher is �xed to the control value that

was stored upon exiting the elevation state. The control signal from the leveling PID

controller is passed to the other ground jack. A signal that monitors the settling of

the position of the lower ground jack to its target height triggers the transition to

the �nal state, where the drill rig has been raised and leveled. Figure 5.6 shows the

State�ow chart of the leveling and elevation FSM subsystem.

5.3.3 Simulation in Simulink

Simulink provides a simulation environment that can be used to execute models

and observe their outputs. Simulation data can be displayed using scope blocks or

exported to the MATLAB workspace. The simulation can be controlled by selecting

the simulation time and the solver algorithm to be used for computing the behavior

of the model.

A test harness connecting the controller to the physical model was created for

simulation. It is constructed such that the outputs of the controller are connected

to the inputs of the physical model. As the controller only generates control signals

for the two ground jacks, the inputs for the other three degrees of freedom are zeros.

The test harness utilizes rate transition blocks between the time-discrete controller

and the time-continuous physical model. The feedback connection goes from the



5. Tool evaluation 44

Figure 5.7: The system level view of the test setup for the r110 controller.

physical model's output to the inputs of the controller. Discrete unit delay blocks

are used in the feedback path to simulate sensor delay. The simulation scenario is

de�ned by the elevation set point value, which can be used to set the desired height

to which the rig should be raised as well as the ground level o�set values, which can

be used to simulate scenarios where the ground, on which the rig is standing, is not

level. Figure 5.7 shows the test harness setup.

The �rst step in simulating the test harness is selecting a solver that is suitable for

the model. The test harness model in this case contains both time-discrete and time-

continuous sections, speci�cally the integrator blocks in the physical model have

time-continuous states, so a variable-step continuous solver is required. Initially,

simulating the test harness was really slow. The cause for this was found to be

the way the variable-step solver operated on the physical model, where each of the

elements of the co-e�cient matrices a�ects the output. The co-e�cient matrices'

elements are not equal in magnitude or their e�ect on the overall output of the

physical model. For example, the values for elements of the matrix C representing

spring constants range from the magnitude of 105 to 109. This causes the step-size of

the variable-step solver to get extremely small. The R110 physical model is what can

be called a sti� system, so the variable-step, continuous ode23t solver was selected

based on MathWorks' documentation for solver selection [51] and experimentation.

To further improve simulation performance, the relative tolerance solver option was

changed to allow more error in the states of the system. This was found not to a�ect

the results of the simulation in any signi�cant way, but the time to simulate the test

harness for 60 seconds was reduced from over 2 hours to less than 2 minutes.

Simulations were run to ensure that the controller worked as intended. Sample
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Figure 5.8: Simulation output utilizing the test setup for a scenario where the machine hull
is raised 0.7 meters and the ground level is 0.2 meters higher on the right side. The �gure
also illustrates the state transition from elevation to leveling.

time of the time-discrete blocks was set to 0.1 for the simulations. The parameters

of the PID controllers were selected such that the control was su�ciently fast and

clearly stable in the simple simulation scenarios that were run. The simulation sce-

narios were focused on verifying that the PID control for each of the states worked

correctly and that the FSM subsystem correctly transitioned from one state to the

other. Figure 5.8 shows a simulation scenario where the rig sits on ground where

the right side is 0.2 meters higher than the left side and the elevation set point is

at 0.7 meters. The plotted data sets represent the height of the right and left sides

of the hull. The elevation state of the controller, where both ground jacks are being

given the same control signal, is visible in the plot. The transition to the leveling

state happens at around 18 seconds simulation time. At that time, the control of the

right ground jack is �xed and the left jack is controlled to level the drill rig. While

controlling both of the ground jacks with equal input causes very little oscillation in

the rig, controlling only one jack does cause the mast to sway and oscillation occurs.

The leveling procedure is done when the height of the left side of the rig has settled

within a given margin of the target height.

5.3.4 Code Generation in Simulink

Automatic code generation will be used to generated a program code representation

of the PID controller subsystem. The intention is to generate a program code repre-

sentation of the controller and to compile it in an external development environment.
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The development environment used in this thesis is Microsoft Visual Studio 2012.

The code generation options in Simulink allow the developer to con�gure a num-

ber of parameters related to the code generation process and the characteristics of

the generated code. The Target Selection option can be used to select the system tar-

get �le, a Target Language Compiler con�guration for code generation. The system

target �le speci�es the execution environment of the generated code and its charac-

teristics [49]. Additional parameters for the selected system target can be con�gured

in the sub menus of the code generation con�guration. A default selection for each

of these parameters is de�ned in the system target �le. For code generation of the

controller model, the Embedded Real-time Target con�guration was selected. The

code generator was con�gured to use C++ as the target language and to allow co-

de generation for blocks that use continuous time. Other con�guration options were

left to their default values. As for options that a�ect the process, code generator can

be con�gured to execute model checks before actually performing code generation.

It can also be set to automatically create and display a detailed code generation

report.

Simulink Coder only supports �xed step solvers for code generation [51]. This

is most often feasible, since controllers targeted for embedded controller hardware

should be time-discrete. For code generation, the documentation suggests that the

solver should be changed in the con�guration options. The coge generator was trig-

gered for the PID controller subsystem with and without explicitly changing the

solver type to �xed-step, and in both cases it resulted in the generated code using

a �xed-step discrete solver. For production code generation it is recommended to

explicitly change the solver type.

As a result of the code generation process, Simulink Coder creates a folder con-

taining the multiple header �les and a source �le for the controller. Table 5.1 lists

source and header �les generated in the example case. The structure of the gene-

rated program code module is such that it contains all of the functionality of the

controller in one module. It should be noted that the output of the code genera-

tor can be changed through the con�guration options, mainly the Target Language

Compiler con�guration. The source �les have dependencies to Simulink-speci�c co-

de modules, meaning they either have to set up in the compiler path or copied to

the project directory in Visual Studio.

The basic structure of the generated code module consists of three functions,

initialization, stepping and termination. Initialization is executed before and termi-

nation after executing the model. The step function �rst reads the inputs of the

model, executes the model code for one time step and �nally updates the outputs

and internal states. The actual operation logic of the controller is contained in the

step function. The code in the step function is annotated for traceability to the
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File Name Type Size (kB)
Elevation0.cpp source 17
Elevation0.h header 8
Elevation0_private.h header 2
Elevation0_types.h header 1
rtwtypes.h header 7

Table 5.1: A list of the �les for the C++ program code representation of the controller
model created by the Simulink Coder code generator.

source model. Each annotation denotes which model element it implements.

To test how easily the code generated with Simulink Coder can be integrated

into an external software project, a new C++ software project was created in Vi-

sual Studio. A reference to the Simulink library modules located in the MATLAB

installation directory was added to the project. To test the operation of the cont-

roller, a very simple function representing the process model, consisting of a delay

and a gain, was written. A main function to call the initialization, stepping and ter-

mination functions of the controller module was written. Before the simulation is

executed, the input variables are set to certain constant values to set up the simu-

lation scenario. During the actual simulation, the execution is done in a loop where

the inputs of the controller are updated, a simulation step of the controller is execu-

ted, the inputs of the process model are updated and �nally a step of the process

model function is executed. The length of the simulation is determined by the limit

of iterations of the simulation loop, determined by a constant value.

To analyze the operation of the controller, logging functionality was added to

the simulation program. A matching simulation scenario was set up to be able to

compare the operation of the controller program to that of the controller model. In

this scenario, the elevation height set point was set to 0.7 meters, the ground levels

were set so that the right side was 0.2 meters higher than the left. Simulation time

was set to be su�ciently long, since values could be omitted from the end of the log

if needed. The simulation was executed and the log values were read into MATLAB

and plotted. Figure 5.9 shows this plot. As in the Simulink simulation, the transition

from the elevation state to the leveling state is clearly noticeably, meaning that the

operational modes of the controller are working as they should be. The di�erence in

the forms of the Simulink simulation plot and the simulation program is caused by

the fact that there is no actual physical model in the control loop in the simulation

program.

To ensure that the program code implementation is also numerically correct,

a test setup was created in Simulink. This setup utilizes the Simulink S-function

functionality, that allows program code to be wrapped into a simulink block. An S-
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Figure 5.9: Output values from the simple external simulation program utilizing the cont-
roller source code generated in Simulink plotted in Matlab. The �gure illustrates the correct
operation and state transitions of the controller.

function representation of the controller program module was created. Two parallel

test harness structures were created, where one was identical to the one presented

in Figure 5.7 and the other had the controller model replaced with the controller

S-function block. Scope blocks were connected to show the di�erence between the

outputs of the physical model in each case. Figure 5.10 shows the plot of this di�e-

rence for the extension of the left hydraulic cylinder. The plot shows that the error

in the simulation result for the discrete controller model and the S-function is in the

magnitude of 10−16, which is negligible.

5.4 Implementation using OpenModelica

To demonstrate its strengths, the approach for modeling the physical system with

OpenModelica makes use of the Modelica Standard Library. Speci�cally, the Multi-

body mechanics library [28] was used to model the side projection of the R110 drill

rig. Model parameters such as spring constants and damping factor values for the

side projection were calculated the same way they were for the angled front projec-

tion in the Simulink example. The other alternative would have been to implement

the mathematical spring-mass-damper model as in Simulink, but this would not ha-
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Figure 5.10: Plot of the error between the simulation results for the discrete controller
model and the controller S-function block.

ve been the natural way to represent such a system with OpenModelica given the

available tools.

The modeling tool in OpenModelica is OpenModelica Connection Editor. It pro-

vides a graphical modeling environment for constructing models from library com-

ponents. A component can be added to be model by dragging it from the library

browser onto the model diagram, where its parameters can be edited in the attri-

butes dialogue. Components can be graphically connected together by drawing a

connection line from one connection port to the other.

The hull and mast of the rig are modeled as a rigid body, consisting of three

elements: two body elements making up the hull and the third body element per-

pendicular to the hull representing the mast. The dimensions of the entire structure

are 9 meters in width and 28 meters in height. The hydraulic actuators were modeled

using components that represent a spring and damper connected in parallel. These

take into account the spring and damping e�ects of the hydraulic actuators them-

selves and those of the ground. Fixed grounding points were added to the model

to �x the spring-damper components to given points in space. These �xed coordi-

nates are propagated through connections and positional translation properties of

components. As a result, the positions of each of the components in space can be

calculated. The spring-damper components were connected to the �xed grounding

points and perpendicularly to each end of the hull at their other end. A World com-

ponent was added to represent a world coordinate system and to de�ne the gravity

�eld a�ecting the model. To model the force exerted on the hull by the hydraulic

actuators, two world force components were connected to the connection points at

opposite ends of the hull. Two input ports were added to the model and connec-

ted to the world force components. Two output ports were added to the model and

connected to the vertical position measurements of the left and right sides of the
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Figure 5.11: Graphical representation of the physical model of the R110 drill rig in Open-
Modelica Connection Editor.

hull.

During the modeling of the physical system, an issue was discovered with the

graphical model editor. The force values given to the model as inputs are formatted

vectors that contain the forces acting on the x, y and z axes. Where the compo-

nent speci�cations state that they should be able to operate on vector inputs, the

graphical editor would give an error when a vector format input was connected to

a world force component. Using the text editor, it was possible to explicitly de�ne

the dimensions of the components' connection ports. Using the text editor to add

connections to the model caused an issue with the graphical editor, where it would

not allow any connections to be made until OpenModelica Connection Editor was

restarted. This was such an inconvenience that most of the development after this

point was done in the text editor. Figure 5.11 shows the incomplete graphical repre-

sentation of the physical model of the R110 drill rig in OpenModelica Connection

Editor. The source code listing of the physical model is presented in Appendix A.1.

The controller implementation in OpenModelica was done entirely in the text

editor, due to the problems with the graphical editor. Modelica Standard Library

does not provide su�cient tools to implement a discrete control system. An external

library that contains discrete components, a discrete PID controller for example,
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exists, but was not used in this thesis. The control system was implemented using

time-continuous control components, mainly the PID controller. The intention was

to translate the controller design from the Simulink example to OpenModelica. Mo-

delica Standard Library provides standard signal processing and control compo-

nents. It also provides the StateGraph library for implementing state machines [29].

Modelica Standard library does, however, not directly provide a way of observing

signal settling to control the state transitions of the controller the way it was do-

ne in the Simulink model. It was decided that the leveling controller would not be

implemented in OpenModelica.

The elevation controller takes the measured values for the positions of the left and

right sides of the machine's hull as inputs. The average value of the inputs is passed

as feedback to a PID controller component. The set point of the PID controller

connected to the other input of the PID controller. The output of the controller is

fed through a gain component. The elevation controller controls both ground jacks

equally, so the force vector passed to both outputs is constructed such that the

control signal is assigned to the y axis of the force vector while the x and z axes are

set to zero. A constant force value is added to the Y axis to represent the counter

force the ground exerts on the machine's body due to its mass, so that it does

not fall through the ground. The counter force e�ect was modeled in the controller

model because it was more convenient, logically it would be better to include it in

the physical model. The set point of the controller is de�ned in the controller model

instead of it being an input to the controller. The source code listing of the controller

is presented in Appendix A.2.

A test harness was created to construct the closed-loop control system. The out-

puts of the physical model representing the measured values of the vertical positions

of the left and right sides of the hull were connected to the inputs of the control-

ler. The outputs of the controller representing the control signals for the left and

right ground jack actuators were connected to the inputs of the physical model. The

source code listing of the test harness is presented in Appendix A.3. Figure 5.12

shows the results of the compiled model executed in the OpenModelica simulation

environment and plotted. The plotting tool allows for any property of any of the

components within the model to be plotted, which makes it possible to view and

analyze the internal states of the model during simulation. The Multibody library

in Modelica Standard Library also includes de�tions of visualization properties for

some of its components. OpenModelica o�ers a visualization tool that can be used

to visualize the simulation of a model throught the Modelica3D library [18]. Figure

5.13 shows the 3-dimensional visualization of the machine during the execution of

the test harness model.

The simulation environment in OpenModelica uses OpenModelica Compiler to
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Figure 5.12: The simulation output from the OpenModelica simulation environment for a
scenario where the machine hull is raised 0.7 meters. The machine model is symmetrical
and the ground levels on both sides are equal, resulting in the left and right sides being
raised identically.

Figure 5.13: 3-dimensional visualization of the simulation of the test harness model created
using Modelica3D. The object shown is the machine body consisting of the hull and mast.



5. Tool evaluation 53

compile the Modelica model into executable program code. The possibility of using

the compiler to generate code that could be executed outside of the OpenMode-

lica simulation environment was researched. OpenModelica compiler was executed

from the command line to generate the program code used for simulation. When

inspecting the generated code, the �rst observation was that the �le was extremely

large in size and contained a lot of programmatic annotation related to the simu-

lation process. The other observation was that the code was closely dependent on

the OpenModelica simulation libraries for execution. As a conclusion of its code ge-

neration capabilities, OpenModelica does currently not o�er the ability to generate

program code that could be integrated in to an external software project.

5.5 Analysis and conclusion

The analysis of the tools' suitability for Sandvik's use case can be divided into two

parts. Firstly, the tools capabilities in actual design and implementation work in the

modeling environment presented in this chapter are analyzed. Secondly, the tools'

suitability for adoption and use as a part of the software development tool chain are

assessed. The tools' suitability for control system design is the main requirement.

This includes the ability to de�ne system models and to design and implement cont-

rollers through modeling and automatic code generation. It must also be possible to

test the controller design against the system model. Both Simulink and OpenMode-

lica can be used to develop both system and controller models and to simulate the

behavior of the system model when its inputs are being controlled by the controller

model. A strong point of OpenModelica is its ability to describe physical systems

through the application area speci�c libraries. The physical system models are desc-

riptive for engineers of a speci�c domain, with modeling components representing

actual physical components and their properties, which makes the design process

easier. In Simulink, creating a design often requires the additional step of transla-

ting the design idea into Simulink modeling constructs. For example, in Modelica an

electrical circuit could be modeled using components from the Electrical component

library, inherently describing the electrical properties of the circuit model, where as

in Simulink the electrical properties of the circuit would have to be explicitly de�ned

through model structure and parameters.

For controller design, Simulink o�ers a far superior tool set in terms of its block

library and analysis tools. The block library in Simulink o�ers a large variety of both

time-continuous and time-discrete blocks that integrate with State�ow charts. This

allows the development of algorithmically complex, control systems with state mac-

hine logic. Simulink also supports the development of structured models through

its subsystem and model reference features. OpenModelica o�ers the basic tools for

creating controller models, but lacks the library components for time-discrete cont-



5. Tool evaluation 54

roller design at the time of writing. In addition to simulation result visualization,

Simulink provides the ability to perform further data analysis and visualization in

MATLAB, making it more versatile in terms of analysis. It also o�ers a variety of

tools for veri�cation, validation and testing of designs and implementation models as

separate toolboxes. Simulink models' ability to access the MATLAB work space ma-

kes it possible to import and export simulation data, which can be useful for control

system testing. OpenModelica's tools for analysis in controller design are e�ective-

ly limited to its simulation environment. Lastly, the code generation functionality

that the Simulink Coder and Embedded Coder toolboxes provide in Simulink seems

versatile and e�ective to the point, where not using the code generation option to

some extent seems wasteful. At the time of writing, the option of using the deve-

loped controller models for automatic production code generation does not exist in

OpenModelica.

The other aspects to consider about the modeling tools are related to their via-

bility as software development tools with regards to usability, support and cost. In

usability, Simulink is far ahead of OpenModelica. The graphical editor in OpenMo-

delica seems more like a demo than an actual development tool. During the deve-

lopment, several cases were encountered that required the model to be edited in the

text editor. The graphical editor would also not work together with the text editor

as making changes to the model in the text editor would often put the graphical

editor into a state where it was unusable. Even for the cases where the graphical

editor did work, there were issues with objects sticking to the mouse cursor, selec-

ting objects by clicking, moving objects and opening context menus. Simulink's user

interface is functional and can be used e�ciently once the user gets familiar with it.

The concepts of tool cost and support go hand-in-hand for both Simulink and

OpenModelica. Simulink, being a commercial tool o�ers full product support and

extensive documentation complemented by examples for its features. Its status on

the market also makes it possible to �nd reference designs and answers to speci-

�c problems. Literature covering the use of Simulink for speci�c design problems is

also plentiful. For OpenModelica, the situation is the opposite. The available docu-

mentation is limited to the manual available for the OpenModelica tools, the docu-

mentation and examples provided with Modelica Standard Library and a handful

of publications. Finding answers to speci�c design problems when using Modelica is

challenging.

On the other hand, Simulink is expensive and highly productized. The functiona-

lity that it provides is divided into di�erent toolboxes, each requiring the purchase

of a separate license. For an organization that wants to adopt Simulink as a part of

the development tool chain the cost of adoption will be signi�cant. The licensing of

toolboxes creates additional work, when the decision to purchase Simulink licenses
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is not enough, but the need for speci�c toolboxes needs to be assessed. OpenMode-

lica in this respect is a desirable option, with its open source license it is available

for developers to download and use. Lastly, adopting either tool for use as a part

of the software development process will require commitment to that speci�c tool.

Both tools use a language and work �ow which are proprietary, meaning that models

developed with either tool are not portable.

Based on the experiences of the work carried out in this chapter, Simulink seems

like it is suitable for its intended use of modeling, simulation and code generation. Its

strengths lie in its versatility, support and the competence available on the market,

resulting from its wide-spread use in the industry. OpenModelica, at this point,

cannot be considered a viable alternative. It is not versatile or mature enough for

production use and the missing code generation functionality makes it unsuitable

for the use case presented in this thesis.
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6. SOLUTIONS TO PRACTICAL CHALLENGES

6.1 Model structure and style

Developed models should be structured, have a consistent style and be properly de�-

ned and con�gured. As for the consistency of modeling style, there is value in purely

ensuring that the models developed within a project and across the organization

have a uniform structure and style. Stylistic aspects include both structural and

implementation details which improve model readability. This facilitates develop-

ment when multiple developers may work on the same model and improves maintai-

nability and reusability because it is easier for a developer to form an understanding

of an unfamiliar model.

The other goal of managing model structure, style and con�guration is ensu-

ring compliance with requirements imposed by the intended software and hardware

environments of the controller executable compiled from generated code. The requi-

rements imposed by the software environment are satis�ed partly by the Simulink

Target Language compiler con�guration and partly in the model. Maintaining struc-

ture in the model allows the parts of the model a�ecting its software interface to be

clearly de�ned, checked and maintained. Requirements mandated by the hardware

environment are concerned with the target hardware's program and variable memo-

ry size, processing speed and its supported and optimal data types. The program's

size and execution speed are a�ected by the the con�guration of the code generator,

mainly the optimization options. While the Simulink code generator is capable of

automatically converting the data types used in the model to ones that are suppor-

ted by the target hardware, it is a good practice to use supported data types in the

model. Namely, it is common practice to use �oating-point variables in the develop-

ment phase of a model and then convert them to �xed-point in the implementation

phase, before code generation.

The basis for the use of rules and guidelines is a style guide document, which

speci�es the stylistic and structural rules that models should comply with. The

rules presented in the style guide document should be universal and should, as

such, not a�ect functional aspects of the model. The purpose of the style guide is

to ensure that functional program code can be generated from models developed

according to the style guide and to provide a basis for the uniformity of models

across the organization. Examples should be available of correct interpretations and
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implementations of the design rules. These examples should demonstrate how each

of the rules can be implemented when developing a solution for an actual design

problem. A way of doing this is to have a working reference modeling project, where

implementations of the design rules can be found. Speci�cation and implementation

of the reference modeling project is not covered further in this thesis.

The style guide serves as a basis for communicating design rules. One way of com-

municating the design rules is organized training, where the rules are presented and

rationales behind the rules are explained. Another way of enforcing the developed

models' compliance with the rules speci�ed in the style guide is the use of auto-

matic checks within the development environment. Certain aspects of the model's

structure can be automatically checked and the developer can be noti�ed of any

non-compliant models. This eliminates some of the risk of human error in the deve-

lopment process. The checks that are automatically executed on the model should

be carefully chosen and maintained, since any unnecessary or out-of-date checks on-

ly cause unnecessary error messages and will get ignored by the developers over time.

6.1.1 Sandvik Modeling Guidelines

Rather than start the development of their style guide from scratch, many organiza-

tions have chosen to use the style guide developed by the MathWorks Automotive

Advisory Board (MAAB) as a basis [46, p. 1][39]. To determine whether the MAAB

modeling guideline collection [60] could be used as a basis for Sandvik's modeling

guidelines, an initial analysis of the MAAB guidelines was conducted. The guideli-

nes in the collection are divided into categories, each covering an area of the mode-

ling process. Each guideline is denoted by a title and a unique identi�er label. The

guidelines have been assigned priorities, enumerated as either mandatory, strongly

recommended or recommended. In addition to being under a certain chapter in the

guidelines document, each guideline is also categorized by the rationales behind

its existence. The rationale categories used in the MAAB guidelines document are

readability, work�ow, simulation, veri�cation and validation and code generation.

Based on this content overview, it was chosen that Sandvik's modeling guidelines

collection would be based on the MAAB modeling guidelines.

During initial analysis of the MAAB guidelines, it was determined that each entry

in the guideline collection should be analyzed and an assessment should be made on

whether or not it is suitable and bene�cial for Sandvik's control system development

process. As such, the goal was set to selecting a subset of these guidelines as the

baseline for Sandvik's modeling guidelines. The analysis done as a part of this thesis,

as described in this chapter, serves as a recommendation and a basis for further

analysis.
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The focus of the analysis was to identify suitable guidelines related to model struc-

ture and hierarchy, automatic code generation output and model readability and to

eliminate guidelines which didn't seem suitable or were too speci�c or unclear. So-

me guidelines were excluded because it was apparent that they were only relevant

in an organization employing modeling on a very large scale. Others were excluded

because their purpose wasn't completely clear from the description or because it

seemed that their provided bene�t was signi�cantly less than the e�ort required to

comply with them. During the analysis process, the guidelines in the MAAB collec-

tion were categorized as either suitable, partly suitable or non-suitable for Sandvik's

development process and needs. A comment specifying the reasoning behind the ca-

tegorization of each guideline was also written down for future reference. The results

were stored into a spreadsheet where each guideline was identi�ed by their title and

MAAB identi�er and categorized based on which chapter they appear in as well as

the keywords that are associated to them. With the guidelines speci�c to only Si-

mulink State�ow being omitted from the analysis, Table 6.1 shows the counts for

suitable, partially suitable and non-suitable guidelines respectively. Version 3.0 of

the MAAB modeling guidelines document dated 31.8.2012 was used.

Suitable 48
Partially Suitable 16
Non-Suitable 12

Table 6.1: The results of the MAAB modeling guidelines analysis in the form of counts of
suitable, partially suitable and non-suitable guidelines.

Guidelines covering the software environment for model development and naming

rules for modeling entities were accepted with the exception of the naming rules for

�les and directories, which were deemed too restrictive. The section covering model

architecture presents some good general rules regarding the division of functionality

between Simulink and State�ow and the use of subsystems in Simulink, most of

which were accepted. The J-MAAB controller model architecture presented in the

architecture section was not accepted in the form in which it is presented in the

MAAB guidelines. The controller model is, however, used as a basis for the reference

model architecture presented in the section covering model architecture. The MAAB

guidelines document presents a good number of speci�c, mostly readability focused,

Simulink modeling rules. Only a few of these were rejected due to not being very clear

or bene�cial while most were accepted. The sections covering the use of enumerated

data and MATLAB functions were accepted with minor modi�cations.
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6.1.2 Model checks

Simulink provides the ability to automatically check certain aspects of the model

within the modeling environment. Simulink o�ers a tool called Model Advisor which

allows for models and subsystems to be checked for structural properties, conditions

and con�guration settings that can result in inaccuracy or ine�ciency in simulation

and execution [52]. Model Advisor checks can be run separately, or be con�gured so

that they are automatically run before simulation. By default, the tool o�ers checks

that help the developer to ensure that their model has been properly con�gured

for simulation. In addition to these default checks, MathWorks o�ers purpose-built

compilations of checks for more speci�c purposes as parts of di�erent toolboxes.

The Simulink Veri�cation and Validation toolbox provides a collection of automated

checks, allowing the model to be checked for MAAB guideline compliance. It also

allows for the composition of a custom collection of checks from the MAAB guideline

checks as well as the authoring of new checks.

A subset of the available MAAB guideline checks was chosen based on the results

of the earlier analysis of the MAAB guidelines document. A new Model Advisor

con�guration was created, containing checks for guidelines which were earlier ca-

tegorized as suitable. A total of 24 checks were included in the con�guration. The

newly composed check con�guration was executed against a model from one of the

pilot projects, not developed in accordance to the MAAB guidelines, to see whether

any discrepancies would be found. As a result, 12 checks were passed and 12 returned

warnings about violations of MAAB guidelines. None of the checks returned errors.

This collection of MAAB guideline checks should be re�ned through experiences

from imposing these checks on development models along with further analysis of

the MAAB guidelines.

To demonstrate the ability to author custom checks, a check that veri�es the exis-

tence of custom control system platform interface blocks connected to model inputs

and outputs was written. Model Advisor checks can be written in the MATLAB

language and have the ability to access models through the MATLAB API, which

provides methods for searching subsystems and blocks and reading their properties.

This allows the developer to programmatically navigate the connections between

subsystems to verify aspects of model structure, such as the presence of certain

connected blocks. It is reasonable to assume that the custom check authoring ca-

pabilities o�ered by Simulink are versatile enough to satisfy most needs for custom

checks dealing with structural or con�gurational aspects of a model.

As a part of the Simulink Coder toolbox, a collection of checks for ensuring

that a model or subsystem is technically compatible with the code generator is

provided. These are contained in a separate tool called Code Generation Advisor,
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which allows the user to emphasize certain qualitative aspects of the generated code,

execution e�ciency over program size for example. The selected point of emphasis

a�ects which checks are executed and at which priority. It was decided that the

collection of available Code Generation Advisor checks should be analyzed and that

a prede�ned collection should be selected or a custom collection of checks should

be composed to enforce good practices in modeling with regards to the technical

aspects of code generation compatibility. Detailed analysis of the prede�ned Code

Generation Advisor con�gurations is not included in this thesis.

6.1.3 Hierarchical and structural models

Hierarchical models are partitioned into subsystems in a way that is analogous to the

way functionality is divided into functions in a software module. Each of the subsys-

tems implements a logically separable part of the model's functionality. Generally,

a hierarchical model has a top-level layer, which connects the subsystems together

and contains the interface de�nitions for the whole module, as well as a variable

number of more detailed layers containing the subsystem designs or references.

Hierarchical structuring of models has considerable bene�ts for organizing de-

velopment work during project execution. Hierarchical and structured models are

also more maintainable and reusable. A model which has been partitioned into sub-

systems enables multiple project members to work on di�erent subsystems simul-

taneously. While this is not really a concern when the scope of models is rather

small, it becomes important for larger models. An integral part of an incremental

development process is the ability to store and maintain di�erent versions of the

software modules for the purposes of con�guration management. Models should be

stored into the same version control system as the rest of the project's assets when

possible. With the ability to store di�erent versions of the same model, it beco-

mes possible to create di�erent product con�gurations utilizing these distinguished

versions. The componentization of the entire model as well as the individual subsys-

tems makes it possible to maintain model con�gurations and to reuse components

in future designs.

This section presents an adaptation of the J-MAAB Model Architecture Decom-

position presented in chapter 5 of the MAAB modeling guidelines document [60, p.

32]. The model architecture presented in the MAAB guidelines suggests that a mo-

del should be composed of four distinct layers: a top layer, a trigger layer, a structure

layer and a data �ow layer. The top layer serves the purpose of de�ning the model

interface consisting of its input and output variables. The trigger layer de�nes the

timing and priority of periodical and triggered subsystems or function calls and as

such, serves as a way of managing timing and execution order in the model. The

structure layer presents the logical division of model functionality into subsystems
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as well as the interconnectivity of subsystems and local signals within the model.

Finally, the data �ow layer presents the detailed implementation of each subsystem

in the model.

The top layer is suitable for Sandvik's reference hierarchical model architecture

as is. The de�nition of the inputs and outputs of the model on a dedicated top layer

is a good practice and makes it simple to manage the software interface of the ge-

nerated code. The most signi�cant adjustment to the J-MAAB Model Architecture

Decomposition is the omission of the trigger layer. Sandvik's control system plat-

form is responsible for the periodical execution and timing of tasks, thus it should

not be a concern on the model level. Eliminating the trigger layer simpli�es the mo-

del architecture. The structure layer is also suitable as it is presented in the MAAB

guidelines. A speci�c thing to note about the structure layer is that all of the sub-

systems on the structure layer should be de�ned as atomic subsystems representing

logically separable sections of the control system. While the MAAB guidelines docu-

ment does not discuss the use of State�ow charts in its layered model architecture, it

can be argued that they should be allowed on the structure layer. The nature of the

charts on the structure layer should be such that, with regards to size, complexity

and reasoning for logical division, they are roughly equal to the subsystems de�-

ned on the structure layer. The data �ow layer is also suitable for Sandvik's model

architecture with the addition of allowing subsystems to be used as parts of da-

ta �ow layer de�nitions. The reason for this is that in practical applications, the

diagram representation of the data �ow layer is likely to be very large in size if it

is not allowed to be further split into subsystems and components. When the use

of subsystems is allowed in the data �ow layer, the readability of diagrams can be

maintained. Subsystems on the data �ow layer may be de�ned as atomic. State�ow

charts may also be used on the data �ow layer. The reasoning behind the use of ato-

mic subsystems is discussed in section 6.4.3. Figure 6.1 shows Sandvik's adaptation

of the J-MAAB hierarchical model architecture, consisting of the three layers: top

layer, structure layer and data �ow layer.

6.2 Traceability

The use of executable speci�cations inherently maintains a level of traceability

between functional requirement speci�cations, design and implementation in the

modeling environment. However, traceability between high-level requirements and

the executable speci�cations needs to be created and maintained manually. At Sand-

vik, high-level requirements are stored in a separate web-based application life cycle

management system, Polarion. For implementing traceability between requirements

that exist in Polarion and Simulink models, a Simulink plugin is available. This plu-

gin, called Polarion Connector for MATLAB Simulink, enables developers to link



6. Solutions to practical challenges 62

Figure 6.1: Sandvik's hierarchical model architecture, as adapted from the MAAB modeling
guidelines [60, p. 32].

Simulink models or subsystems to Polarion work items through the Polarion Web-

Service API. When a Simulink model or subsystem is linked to a Polarion require-

ment, it is possible, within Simulink, to see which requirements a speci�c Simulink

asset satis�es. A direct link to view the requirement is also shown to the developer

working within Simulink. From Polarion's point-of-view, the Simulink assets linked

to a speci�c requirement are shown in that requirement's details. If the developer

chooses to do so, it is also possible to publish the block diagram representation of

the model or subsystem so that it is viewable directly in Polarion. [34]

The code generation process also creates a discontinuity in the traceability of

development assets. It is desirable that functionality, which is implemented in au-

tomatically generated program code is traceable to its source model or subsystem

and, further, to its speci�cation and requirements. Traceability through code gene-

ration is implemented by Simulink Coder. The code generator can be con�gured to

automatically include information about the origin of each distinct section of code

as comments in the generated source code. Even though readability of automatical-

ly generated source code is not a major concern, model-code traceability can be
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Figure 6.2: Traceability in Sandvik's control system software development process.

useful when issues arise in system-level veri�cation and it is necessary to trace the

error to its origin in the model. Tracing the source of an issue found during program

execution is also facilitated by consistent, hierarchical model architecture. Figure

6.2 shows the traceability chain, and the points of discontinuity between di�erent

environments.

In practice, the Polarion Connector plugin delivers most of what it promises, yet,

in the most recent version available at the time of writing, it has issues that stand

out. The most obvious problem is with the way that Simulink items are displayed in

Polarion, when they are linked to an existing requirement. The only reference that

is added to the requirement is a hyperlink, which if opened on a machine that has a

Simulink installation, will open the linked Simulink item for viewing. The hyperlinks

are, however, not useful or descriptive for users without Simulink. Another problem

is that while it is possible to publish a screenshot of a Simulink diagram as a new

work item in Polarion, it is not possible to do this so that the screenshot would be

added to an existing work item. The diagram publishing feature also su�ers from

the issue of limited image size, which is described in the following section. The two

main problems coupled together cause the traceability from Polarion to Simulink to

be only partially implemented by the Polarion Connector plugin.
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6.3 Model Documentation

Documenting the design artifacts developed in the modeling and simulation envi-

ronment is necessary in order to enable reuse and maintenance and to allow com-

munication to peers who may not have access to the modeling tools. An example of

this would be when the control logic for a machine has been implemented as a mo-

del and engineers of other disciplines, electrical or hydraulic for example, are taking

part in reviews of the control logic. Model documentation should cover the architec-

ture, implementation and interface of the model. In cases where there are multiple

versions of a model, documentation speci�c for each version should be available. Si-

mulink o�ers the ability to automatically generate documentation of the contents of

a model as a navigable HTML report. This HTML report covers an entire model or

subsystem from the top layer to the data �ow layers containing the implementation,

which can serve users with di�erent interests. The generated HTML report can be

stored in version control along with the models, allowing documentation to be ver-

sioned. Automatically generated documentation puts an emphasis on the descriptive

naming of subsystems, signals and interface ports.

In practice, the HTML report generated by Simulink is functional for smaller

models, where diagrams are not as expansive as in larger models. The problem with

using Simulink's HTML report generator for larger models is that the diagrams used

in the HTML report are stored as images in the Portable Network Graphics (PNG)

format. Although the PNG format is lossless, the HTML report generator appears

to limit the pixel size of the images it renders, making it so that details in larger

diagrams become unreadable. This is especially harmful for signal names which, by

default, use a smaller font. As a result of this, the HTML report is not a su�cient

solution for model documentation.

MathWorks o�ers a separate Simulink toolbox focused on generating model docu-

mentation. The toolbox is called Simulink Report Generator and it o�ers a variety

of con�guration options for the automatic generation of documentation from Simu-

link models. According to the documentation, it o�ers the ability to con�gure the

layout and contents of the generated report in a variety of formats, speci�cally the

Scalable Vector Graphics (SVG) format is available as an output format for rende-

rings of Simulink model diagrams [57]. Its main advantage is direct integration into

Simulink and product support from The MathWorks. The downside is, however, the

fact that it does require the purchase of a separate license only for the purpose of

report generation. Simulink Report Generator was not evaluated as a part of this

thesis, but it is an option which is worth considering in the future.

Another way of satisfying the requirements for model documentation is using an

external, independent model viewer which does not require MATLAB and Simu-
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link licenses so it can be made available throughout the organization. One such tool

is Di�Plug by Di�Plug LLC, which o�ers the ability to view and browse Simulink

models and State�ow charts [7]. The use of an external tool does not have the conve-

nience of a HTML or PDF report, but it does provide a way of viewing proprietary

model �les, giving its users access to design and implementation information contai-

ned within. An external viewer tool also supports the idea of using model assets as

executable speci�cations. It allows model assets to be accessed directly in the ver-

sion control repository, without the additional step of generating the documentation.

Besides its main functionality of viewing Simulink models, Di�Plug can analyze the

model's dependencies on external libraries and track signals through di�erent dia-

gram layers. All of the features described here are included in the free version, which

makes it a desirable option due to not requiring the purchase of any extra licenses.

Di�Plug was tried with the R110 example Simulink model developed in chapter 5

as well as a number of Sandvik's Simulink models. During initial evaluation of the

tool, all of the Simulink models and State�ow charts used in the evaluation process

were displayed correctly. Although this evaluation doesn't provide de�nitive proof

of the correctness of the viewer's interpretation of Simulink models and State�ow

charts, it suggests that Di�Plug is suitable for use as a means of providing visi-

bility into proprietary Simulink model �les as well as communicating design and

implementation information.

6.4 Reliability of the code generator

The central role of the code generator makes its reliability essential to the model-

based development process. Raising the level of abstraction in development relies on

the trustworthiness of the code generator. This trust can be built on results from

trials and research done within the organization as well as research and experiences

from the industry.

6.4.1 Existing Research

Simulink Coder has a long presence on the market [25] and is widely used in the

industry for prototyping and production code generation [37] [47] [63] [61] [46]. This

in itself suggests that it is suitable for larger scale adoption and viable for production

code generation of even safety-related software applications. It has been indicated

that it can produce program code that is functionally equal to and qualitatively

comparable to hand-written code [2, pp. 15-16, 43-47].

Research done on the topic of the quality of automatically generated code shows

that compared to manual programming, programming errors are reduced [14] [44,

p. 5] [35]. With automatic code generation in general, it has been shown that syn-



6. Solutions to practical challenges 66

tactic and data �ow errors are signi�cantly reduced. The nature of the errors found

in automatically generated code is systematic. Typical errors found in automatical-

ly generated code are related to incorrect con�guration of the code generator or

incorrect modeling representations of structures and data in the models [44, pp.

3-4].

The MathWorks claims that using Simulink Coder, the cyclomatic complexity of

the automatically generated code should be in correspondance to that of the source

model, although the measured complexity of the code could be slightly higher than

the indicated cyclomatic complexity of the model due to certain error checks [58].

This is backed by research, which shows that for Simulink Coder, the cyclomatic

complexity measurements are equal between the generated program code and the

source model in the cases that were a part of the study [36, p. 38]. Research conduc-

ted using a competing code generator, TargetLink by dSpace GmbH, show that the

complexity of the generated code could even be lower than that of the model and

that it is highly a�ected by the optimization options of the code generator [44, pp. 5-

7]. While the results of the research conducted using the TargetLink code generator

may not be directly applicable, it gives an indication of the general characteristics

of code generated from Simulink models. Simulink Coder and TargetLink have been

found to be comparable [2, p. 48].

In addition to the the technical support o�ered by the supplier, Simulink Coder

has been certi�ed by TÜV SÜD Automotive GmbH, for use in development of IEC-

61508 part 3 compliant safety-related software systems. This implies that the model-

based design process showcased by MathWorks, utilizing Simulink Coder for code

generation, complies with the traceability and quality requirements imposed by the

standard. Simulink also provides support for development processes compliant with

other standards such as DO-178B and MISRA C. While these are not de�nitive

indicators of quality, they do give an indication of the level of maturity of the code

generator and the level of supplier involvement and support for the development

processes of their customers.

Based on the assessment of existing research and material on the topic of code

generation from Simulink models, it is feasible to assume that Simulink Coder is

reliable enough to warrant a development approach where it is assumed that the

code generator correctly translates the model into program code. Any issues or

inconsistencies found in the software modules should be �xed in the model, not in

the code.

6.4.2 Metrics from projects

To support the assessments made based on existing research, data was collected

from the pilot projects carried out at Sandvik. Both static and dynamic metrics
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for software modules were collected from a few di�erent projects with the purpose

of evaluating the properties of automatically generated software modules to those

of hand-written ones. While a direct comparison, where the same module had been

implemented using both methods, was not available, they do have similar properties.

The modules that were implemented through modeling and code generation are si-

milar in the sense that they implement a mathematically complex algorithm, which

performs an intelligent machine function. The hand-coded modules chosen for com-

parison implement similar pieces of machine functionality. It should be noted that

Module D is responsible for implementing a core part of the machine's functionality

and is generally larger than the others.

The dynamic metric which was chosen for this analysis is application cycle ti-

me. It shows how much time each execution of the cyclical application takes on

the controller hardware. The static metrics collected for this analysis are code size,

McGabe's cyclomatic complexity number and the complexity of the software mo-

dule's interface, described by the number of signals going into and coming out of

each software module. Together these metrics give an idea of the module's size and

complexity. Tables 6.2 and 6.3 present the collected data.

The �rst observation that can be made is the fact that the automatically gene-

rated modules have a signi�cantly higher cyclomatic complexity number than the

hand-written modules do. This can be attributed to three factors, the �rst of which

is the fact that the algorithms they represent are mathematically complex by natu-

re, often resulting in implementations involving nested loop structures. The second

factor which a�ects this is the structure of the software modules. While the hand-

written software modules are often split into multiple �les and functions, the code

generator generates one �le where most of the functionality is contained in a single

function. The third factor which has been found to a�ect the complexity of the ge-

nerated program code are the optimizations carried out by the code generator [44,

p. 5]. While cyclomatic complexity numbers in excess of 10 are generally considered

too high, the model-based design approach justi�es sacri�cing readability for com-

pact and e�cient program code since readability of automatically generated code is

not something that needs to be considered.

The sizes of the automatically generated modules are fairly consistent. Compared

to the hand-coded modules they are generally slightly more compact, taking into

account their relative complexities denoted by the cyclomatic complexity number

and the number of input and output signals, which would also indicate that the

Simulink Coder code generator creates compact code. The measured execution times

are fairly similar for generated and hand-coded applications. Although not directly

comparable or de�nitive, it is reasonable to assume, based on the measured execution

times, that the code generator generally produces acceptably e�cient code.
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Module Cycle
Time (µs)

Lines of
Code

Avg. Cyclomatic
Complexity No.

Signals
In

Signals
Out

Module A 200 7600 18,34 21 10
Module B 1500 5495 13,58 17 9
Module C 450 3330 25,03 26 8

Table 6.2: Metrics for program modules generated from Simulink models.

Module Cycle
Time (µs)

Lines of
Code

Avg. Cyclomatic
Complexity No.

Signals
In

Signals
Out

Module D 600 22300 6,24 58 82
Module E 140 6500 6,82 37 39

Table 6.3: Metrics for hand-coded program modules.

Together, the research done in the industry and the data gathered from in-house

trials indicate that the overall reliability of the Simulink Coder code generator is

good. With this information, the transition to the model-based approach is warran-

ted. This means that the automatically generated program code assets should mainly

be treated as an intermediate representation of the models and as such, should not

be subject to detailed source code reviews or module testing on the program code

level. Omitting these quality assurance activities on source code level means that

they should be carried out on model level.

6.4.3 Resolving performance issues

The model-based approach emphasizes tackling issues on the model level. In practice,

it is likely that certain issues are only discovered when the control algorithm is

executed on the target controller, in its proper hardware and software environment

during system integration or system testing. Traceability between the model and

the automatically generated and then separately compiled source code for software

modules, as stated before, is a key factor in tracking down and �xing these issues.

This is true for both functional and non-functional issues. Tracking a functional

issue from a compiled software module to the speci�c part of its source model which

is causing it is facilitated by consistent, hierarchical system and model architecture.

When the source for the issue has been identi�ed, the part of the model implementing

the misbehaving system functionality can be �xed, the code generator invoked and

the control system executable recompiled.

Locating and �xing issues caused by non-functional aspects of the control system

presents a challenge. One speci�c issue that arises from the discontinuity caused by

the automatic code generation process between the model and the program compi-
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led for the controller hardware is that of performance. While the model may behave

correctly in simulation, it may not be possible to execute it in real-time on the

controller hardware due to a lack of or contention for resources such as memory

or execution time on the processor. The actual execution environment of a softwa-

re module may have other applications running in parallel with it, restricting the

amount of resources a single application can take up for the entire system to be able

to run without real-time deadline violations. While the system architecture should

take into account how software is allocated to computation units, cases where a

software module takes up more execution time than was estimated will arise. These

may by caused by unoptimized algorithms where real-time execution is possible on

the simulation PC, but is too computationally intensive for the embedded controller

or a faulty code generator con�guration, where the characteristics, such as �oating-

point calculation capabilities, of the embedded controller have not been properly

captured. It is therefor important to have the ability to resolve such performance

issues.

The �rst step in identifying the source of a performance issue within a model

is performance pro�ling in the simulation environment. Simulink o�ers a tool cal-

led Simulink Pro�ler for pro�ling model execution during simulation. During the

execution of a simulation scenario, the pro�ler collects data on how much time was

spent executing each atomic block and subsystem in the model. The notion of the

atomic subsystem is important here, because it allows for hierarchical structures to

be de�ned for the simulation. Without de�ning subsystems as atomic, it can be ve-

ry di�cult to see how execution time of the model is divided between the logically

separated sections of the model. The contents of an atomic subsystem are evalua-

ted together, therefor generating a separate entry in the pro�ler report [55]. Each

subsystem whose performance is to be individually analyzed needs to be de�ned as

atomic.

The Simulink Performance Pro�ler report shows the division of accumulated

execution time between the atomic blocks and subsystems in the model. The pseudo

code scheme for how the model is executed during simulation is presented in Listing

6.1. For a time-discrete controller, the main concern should be the Outputs.Major

time, denoting the time it takes to calculate the outputs of a speci�c atomic sub-

system on a major time step [56]. The goal when studying the performance pro�ler

report should be to identify any subsystems which are taking exceedingly long to

execute, possibly indicating a problem with their internal implementation. In situa-

tions where the software module is exhibiting performance issues on the embedded

controller hardware and the performance pro�le doesn't reveal any signi�cant incon-

sistencies in subsystem execution times, it may be the case that the code generator

has not been con�gured properly or the proper con�guration has not been selected.
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Sim ( )

Mod e l I n i t i a l i z e ( ) .

ModelExecute ( )

f o r t = tS ta r t to tEnd

Output ( )

Update ( )

I n t e g r a t e ( )

Compute s t a t e s from de r i v s by repea t ed ly c a l l i n g :

MinorOutput ( )

MinorDeriv ( )

Locate any zero c r o s s i n g s by repea t ed ly c a l l i n g :

MinorOutput ( )

MinorZeroCross ings ( )

EndIntegrate

Set time t = tNew .

EndModelExecute

ModelTerminate

EndSim

Listing 6.1: Pseudocode representation of model execution during simulation in Simulink

[50].
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Figure 6.3: Simulink Pro�ler report for the Tamrock R110 ground jack controller.
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7. CONCLUSIONS

The goal of the thesis was to explore ways to support the use of model-based design,

especially automatic production code generation, in control system software develop-

ment. The work �ow of a development process where functionality could be designed

and implemented by modeling and code generation is outlined and considerations

regarding the use of models as design and development assets are presented.

As modeling and simulation tools, Simulink and OpenModelica were analyzed

through an example design problem. OpenModelica shows promise in the area of

physical systems modeling, but lacks in the areas of controller design, analysis tools,

product support and code generation capability. The design software is also not ma-

ture enough for production use. Simulink supports model-based design through its

core functionality and a selection of toolboxes. A controller was designed in Simu-

link and a program code implementation was created using the code generator. The

program code representation of the controller model was then used as a part of an

external software project to ensure that it is portable and integrateable. While both

tools use proprietary modeling languages and �le formats and as such require com-

mitment, the product support for Simulink as a commercial tool helps to mitigate

the risk.

To support model-based design on the organizational level, establising general

modeling standards is recommended. It was found that the MAAB modeling guide-

lines are a good basis for establishing modeling standards that ensure maintainabi-

lity, readability and reusability of models. Simulink also o�ers automated checks to

enforce the MAAB modeling rules. A reference for building hierarchical and struc-

tured models is also presented in the thesis as an adaptation of the J-MAAB model

architecture decomposition. To ensure that models developed for code generation

comply with requirements set by software integration and their intended hardware

and software environments, custom model checks for essential properties of the mo-

dels are recommended in addition to documentation. Enforcing modeling standards

and rules becomes more important when scope and degree of modeling expand in

the organization.

To bridge the traceability gap between the proprietary modeling environment

and requirement speci�cations, Simulink o�ers the ability to link models to exter-

nal requirements. For implementing traceability between Simulink models and the
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generated program code, the code generator can be con�gured to insert annota-

tions into the source code that denote the model components that sections of the

code originate from. Basic model documentation can be created using the report

generator function included in Simulink. In cases where a simple HTML report is

not su�cient, Di�Plug, a third party viewer program can be used to view Simulink

model �les.

Lastly, the thesis addresses the concern for the reliability and performance of the

code generator. As a part of the thesis, existing research documents and other ma-

terials were analyzed and it was concluded that it can be feasibly assumed that the

the code generator is reliable and consistent. To support the research, metrics from

projects carried out at Sandvik are presented that show no signi�cant di�erences

between hand coded and automatically generated program modules. This warrants

a development approach where it can be assumed that performance issues in gene-

rated program code can be �xed in the models. To support this, the thesis covers

performance analysis of Simulink models to identify model sections that are taking

longer than expected to execute.

7.1 Future Development

To make use of the results of this thesis and to enable further development, respon-

sibilities supporting model-based design e�orts needs to be appointed within the

organization. These individuals need to be responsible for developing and maintai-

ning modeling practices, tools and documentation. The organization also needs to

be concerned with developing or acquiring the required competence in the area of

modeling.

Based on the results, the requirements for the modeling standards should be

further speci�ed and used as a basis for writing the Sandvik modeling guidelines

document and creating a modeling project template. The need for custom model

checks that enforce model properties related to proprietary hardware or software

environment requirements should be mapped out and the check collection should be

created. To support the use of Simulink's code generation functionality, the Code

Generation Advisor tool should be analyzed and taken into use.

While automatic production code generation is considered an immediate bene�t,

it does not realize the full potential of model-based design. After incorporating

automatic code generation, other methods, especially early design veri�cation and

functional veri�cation in simulation should be explored to achieve further gains from

the already model-focused development process.
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A. APPENDICES

A.1 Modelica Physical Model

model r110_phys ica l

annotat ion (Diagram ( ) , Icon ( ) ) ;

i nne r Modelica . Mechanics . MultiBody .World world ;

// Body

Modelica . Mechanics . MultiBody . Parts . BodyBox hu l l 1 (

r = {4 .5 , 0 , 0} , r_shape = {0 ,0 ,0} ,

dens i ty = 500 , l ength = 4 . 5 ,

width = 6 , he ight = 4 ,

l eng thD i r e c t i on = {1 , 0 , 0 } ) ;

Modelica . Mechanics . MultiBody . Parts . BodyBox hu l l 2 (

r = {4 .5 , 0 , 0} , r_shape = {0 ,0 ,0} ,

dens i ty = 500 , l ength = 4 . 5 ,

width = 6 , he ight = 4 ,

l eng thD i r e c t i on = {1 , 0 , 0 } ) ;

Modelica . Mechanics . MultiBody . Parts . BodyBox mast (

r = {0 ,24 ,0} , r_shape = {0 ,0 ,0} ,

dens i ty = 2000 , l ength = 24 ,

width = 1 , he ight = 1 ,

l eng thD i r e c t i on = {0 ,1 ,0} ,

widthDirect ion = {1 , 0 , 0 } ) ;

// Inputs

Modelica . Blocks . I n t e r f a c e s . RealInput input_le f t [ 3 ] ;

Modelica . Blocks . I n t e r f a c e s . RealInput input_right [ 3 ] ;

// Outputs

Modelica . Blocks . I n t e r f a c e s . RealOutput pos_le f t ;

Modelica . Blocks . I n t e r f a c e s . RealOutput pos_right ;

// Spring Damper P a r a l l e l s

Modelica . Mechanics . MultiBody . Forces . Spr ingDamperParal le l SD1(

c = 500000 , s_unstretched = 0 . 0 ,

d = 200000 , numberOfWindings = 50 ,
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animation = f a l s e ) ;

Modelica . Mechanics . MultiBody . Forces . Spr ingDamperParal le l SD2(

c = 500000 , s_unstretched = 0 . 0 ,

d = 200000 , numberOfWindings = 50 ,

animation = f a l s e ) ;

// Actuat ion f o r c e s

Modelica . Mechanics . MultiBody . Forces . WorldForce wor ld fo r c e1 ;

Modelica . Mechanics . MultiBody . Forces . WorldForce f o r c e ;

// Fixed Anchor po in t s

// De fau l t : r = {0 ,0 ,0}

Modelica . Mechanics . MultiBody . Parts . Fixed f i x ed1 ;

Modelica . Mechanics . MultiBody . Parts . Fixed f i x ed2 ( r = {9 , 0 , 0} ) ;

equat ion

// Connect inpu t s

connect ( input_le f t , wor ld fo r ce1 . f o r c e ) ;

connect ( input_right , f o r c e . f o r c e ) ;

// o ther

connect ( f i x ed2 . frame_b , SD2 . frame_a ) ;

connect ( f i x ed1 . frame_b , SD1 . frame_a ) ;

connect ( hu l l 1 . frame_b , hu l l 2 . frame_a ) ;

connect ( hu l l 1 . frame_b , mast . frame_a ) ;

connect ( f o r c e . frame_b , hu l l 1 . frame_a ) ;

connect ( wor ld fo r c e1 . frame_b , hu l l 2 . frame_b ) ;

connect (SD1 . frame_b , hu l l 1 . frame_a ) ;

connect (SD2 . frame_b , hu l l 2 . frame_b ) ;

// Connect ou tpu t s

connect ( hu l l 1 . frame_a . r_0 [ 2 ] , pos_le f t ) ;

connect ( hu l l 2 . frame_b . r_0 [ 2 ] , pos_right ) ;

end r110_phys ica l ;

A.2 Modelica Controller Model

model r 110_cont ro l l e r

annotat ion ( Icon ( ) , Diagram ( ) ) ;

// Constants

Modelica . Blocks . Sources . Constant const [ 3 ] ( k = {0 ,765100 ,0}) ;

Modelica . Blocks . Sources . Constant constant_two (k = 2 . 0 ) ;

Modelica . Blocks . Sources . Constant constant_zero (k = 0 ) ;

Modelica . Blocks . Sources . Constant s e tpo in t1 (k = 0 . 7 ) ;

// Inputs
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Modelica . Blocks . I n t e r f a c e s . RealInput measurement_left ;

Modelica . Blocks . I n t e r f a c e s . RealInput measurement_right ;

// Outputs

Modelica . Blocks . I n t e r f a c e s . RealOutput output_right [ 3 ] ;

Modelica . Blocks . I n t e r f a c e s . RealOutput output_le f t [ 3 ] ;

// Other

Modelica . Blocks .Math .Add add2 [ 3 ] ;

Modelica . Blocks .Math .Add add1 [ 3 ] ;

Modelica . Blocks .Math . Gain gain1 (k = 100000) ;

Modelica . Blocks . Routing . Mult ip lex3 pid1_mux ;

Modelica . Blocks . Continuous . LimPID PID1(

k = 1 . 0 , Ti = 1 . 0 , Td = 1 . 0 ,

yMax = 10 .0 , yMin = 0 . 0 ) ;

Modelica . Blocks .Math .Add add3 ;

Modelica . Blocks .Math . D iv i s i on d i v i s i o n 1 ;

equat ion

// Connect inpu t s and c a l c u l a t e average

connect ( measurement_left , add3 . u1 ) ;

connect (measurement_right , add3 . u2 ) ;

connect ( constant_two . y , d i v i s i o n 1 . u2 ) ;

connect ( add3 . y , d i v i s i o n 1 . u1 ) ;

// Con t r o l l e r input

connect ( d i v i s i o n 1 . y , PID1 .u_m) ;

connect ( s e tpo in t 1 . y , PID1 . u_s ) ;

// Connect cons tant f o r c e to adders

connect ( const . y , add1 . u1 ) ;

connect ( const . y , add2 . u1 ) ;

// Contro l rou t ing

connect (PID1 . y , gain1 . u ) ;

connect ( constant_zero . y , pid1_mux . u1 [ 1 ] ) ;

connect ( constant_zero . y , pid1_mux . u3 [ 1 ] ) ;

connect ( gain1 . y , pid1_mux . u2 [ 1 ] ) ;

// Same con t r o l passed to both ou tpu t s

connect (pid1_mux . y , add1 . u2 ) ;

connect (pid1_mux . y , add2 . u2 ) ;

// Connect adders to ou tpu t s

connect ( add1 . y , output_le f t ) ;

connect ( add2 . y , output_right ) ;

end r110_cont ro l l e r ;
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A.3 Modelica Test Harness

model r110_top

r110_1 . r110_cont ro l l e r c o n t r o l l e r ;

r110_1 . r110_phys ica l p lant ;

equat ion

connect ( c o n t r o l l e r . output_left , p lant . i nput_l e f t ) ;

connect ( c o n t r o l l e r . output_right , p lant . input_right ) ;

connect ( p lant . pos_le f t , c o n t r o l l e r . measurement_left ) ;

connect ( p lant . pos_right , c o n t r o l l e r . measurement_right ) ;

end r110_top ;


