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Spectrum congestion has become a critical concern in wireless communication systems 

due to the limited availability of frequency spectrum. Hence, efficient utilization of 

spectrum is one of the most important challenges in the evolution of wireless communi-

cation systems and radio devices. Cognitive radio (CR) has been introduced as an effec-

tive solution for spectrum utilization. Spectrum sensing (SS) is one of the key elements 

in the implementation of effective and reliable CR systems. SS algorithms are used to 

obtain awareness about the spectrum usage and existence of primary users in a certain 

spectrum band. Energy detection (ED) based SS is the most common sensing algorithm 

due to its low computation and implementation complexity. On the other hand, ED 

based SS is highly dependent on the precise knowledge of the receiver noise variance. 

Hence, the performance of the ED algorithm is degraded significantly, when there is 

uncertainty in the estimation of the noise variance.   

In this thesis, the wireless microphone (WM) system using the CR concept is in-

troduced and the sensing performance of WM signals using three different algorithms 

are studied. The considered algorithms are based on the ED, namely fast Fourier trans-

form (FFT) based ED, analysis filter bank (AFB) based ED and maximum-minimum 

ED (Max-Min ED) are studied. Following the analytical models and scenarios of energy 

detector based SS algorithms, the sensing algorithms are implemented using National 

Instruments’ (NI) Universal Software Radio Peripheral (USRP) and the NI-LabVIEW 

software platform, together with the necessary toolboxes. This prototype implementa-

tion provides reliable performance evaluation of these spectrum sensing approaches 

using real world receiver implementation and communication signals from a signal gen-

erator, as well as actual WM signals. The results of this study suggest that the perfor-

mance of Max-Min ED is more robust than FFT & AFB based ED under realistic noise 

variance uncertainty. 
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1. INTRODUCTION 

1.1 Motivation and Background 

The usage of wireless communications has increased rapidly, due to the need of mobili-

ty and convenience, in the last decade. The wireless communication technology itself 

has also developed rapidly in recent years in order to fulfil the demand of increasing 

number of users, higher data transmission speed for new applications, as well as better 

mobility and security during the communication. Although there are great improve-

ments in wireless communication’s technical level, there are still a few bottlenecks in 

the development of future wireless communication systems. Among them, the shortage 

of available spectrum is considered as a vital problem. 

Wireless communication system transfers information through electromagnetic 

waveforms. Electromagnetic waveforms with different wavelength λ (frequency f=c/λ, c 

is the speed of light) have different propagation characteristics, and different wireless 

applications use different frequency range (wavelength) for communication according 

to their requirements [1]. The allocation of spectrum for each application is regulated by 

standard bodies, such as Federal Communications Commission (FCC) and International 

Telecommunication Union (ITU). The spectrum can be considered as a scarce resource 

due to the rapidly growing number of users in various wireless communication applica-

tions, especially mobile phones and wireless data communications. [2] 

Due to the shortage of spectrum with feasible characteristics, a more effective way 

of spectrum utilization is needed [3]. As a result of this need, the concept of cognitive 

radio (CR) concept has been introduced [4].  The most distinct characteristic of CR sys-

tems is the ability to identify the presence or absence of unknown deterministic signals, 

and to determine whether a primary licensed user (PU) is active or not, based on the 

identification process. The corresponding secondary unlicensed user (SU) either pro-

ceeds to use the unoccupied spectrum or remains silent according to the decision regard-

ing the availability of the spectrum. By this way, the CR system can determine the spec-

tral holes within a frequency band, allowing the unlicensed users to access those spec-

tral holes opportunistically. This is an effective way of spectrum utilization and a good 

solution for the current scarce spectrum resource problem [5], [6]. 

Spectrum sensing (SS) is the operation of observing spectrum holes within the inter-

esting frequency band, and it is considered as one of the most critical operations in CR 

systems. There are several approaches of SS based on pre-known information of the 

primary users [7]. Among all those SS techniques, energy detection (ED) based spec-

trum sensing algorithms are by far most widely used due to their low computational 
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complexity and simple practical realization [7], [8]. ED based analyses are commonly 

formulated as a Neyman-Pearson binary hypothesis test. Each one of the two hypothe-

sises represents a simplistic scenario: the interesting frequency band under sensing is 

either contains only noise or is occupied by a PU signal together with noise, both having 

constant power spectral density (PSD). 

The main disadvantage of the regular ED algorithm is its dependence on the 

knowledge of the noise variance [3]. The performance of ED decreases significantly due 

to the effect of noise uncertainty. In order to overcome this limitation under noise uncer-

tainty scenarios, several improvements have been developed. One of them uses the in-

formation of maximum and minimum value of the subband energies within the sensing 

band, and it exhibits more robust performance than the regular ED sensing algorithm. 

Several other improvements, such as multi-antenna sensing and cooperative sensing 

also perform well. However, they are impractical for several applications due to the 

drawback of increased hardware complexity and size. There are also many other sensing 

algorithms which are robust to noise uncertainty, such as eigenvalue based algorithms 

[9], [10], [11] and autocorrelation based algorithms [12]. Similarly, these methods have 

much higher computational complexity and cannot reach the performance of ED under 

modest noise uncertainty and PU signal-to-noise ratio (SNR) [9]- [11]. Thus our thesis 

focused on the performance of enhanced ED based spectrum sensing algorithms and 

their implementation. The aim of this thesis is to implement a real-time CR system pro-

totype with different ED based sensing algorithms, namely FFT&AFB based ED, FFT 

and AFB based ED with frequency averaging window, and Max-Min based ED and test 

them under real world environment.  

The study focuses on sensing wireless microphone (WM) signals, which is an exist-

ing CR type application where the available channels of the terrestrial TV networks are 

used locally for WMs. WMs are used, e.g., in lecture halls, theatres, concert halls, and 

in various outdoor productions.  WMs may also be used within the Industrial, Scientific, 

Medical (ISM) band. WMs are allowed to operate in those unlicensed frequencies as a 

CR device according to FCC part 74 rule [2]. We are using the ISM band for transmit-

ting WM signals to test the SS algorithms in a controllable manner. Also the sensing of 

actual WM signals in the TV frequency band has been tested in this work.  

Our test system is divided into two parts, the transmitter and the receiver. The 

transmitter is implemented using a PC, MATLAB script, and Rohde & Schwarz 

SMJ100A Vector Signal Generator. The receiver is implemented using a PC, National 

Instruments (NI) Universal Software Radio Peripheral (USRP)-2932 and the NI Lab-

VIEW software platform. 

1.2 Outline of the Thesis 

In the second chapter, the concept of cognitive radio and its basic properties are intro-

duced. This chapter also includes the details of SS algorithms used in this implementa-
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tion. The sensing algorithms are explained with analytical models and the analytical 

performance of different sensing algorithms is also briefly discussed. 

The third chapter introduces background information related to the real-time imple-

mentation, which provides and explanation of the concept of software defined radio 

system and basic information about NI’s USRP hardware devices and NI LabVIEW 

platform. 

The fourth chapter provides the implementation details of ED based SS. It provides 

the detailed information about how the transmitter and receiver are implemented, with 

graphs and instructions.  

In the fifth chapter, the real-time test results of different sensing algorithms with dif-

ferent channel models are discussed and shown in figures. The measurement results are 

compared with simulation results providing SNR versus detection probability, in order 

to show the detection performance with different SNR values. The effects of different 

channel models are also discussed in the same chapter.  

The last chapter provides a brief conclusion based on the measurements results pro-

vided in Chapter 5, as well as a discussion about possible future improvements of the 

implementation and future research topics. 
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2. COGNITIVE RADIO AND SPECTRUM SENSING 

ALGORITHMS 

The usage of wireless communication and its applications has grown rapidly in last dec-

ade. Although there are great improvements in wireless communication’s technical level, 

the problem of shortage of available spectrum is still a vital bottleneck for future devel-

opment of wireless communication technologies. The allocation of spectrum currently 

used can only reach limited utilization of the spectrum as it uses fixed spectrum alloca-

tion for each application.  In order to make use of the unoccupied spectrum, more crea-

tive and advanced methods are needed so that better spectrum utilization can be reached. 

The concept of CR techniques has been introduced [4] under this demand.  

SS is one of the most important operations of CR devices, it informs the system 

about which part of the specified frequency band are not occupied by licensed primary 

users. Hence, unlicensed SUs may initiate communication using some of the available 

spectral holes. There are various spectrum sensing methods which use different mathe-

matical models for different scenarios. 

The purpose of this chapter is to introduce the general idea of CR systems and the 

SS methods used in this thesis.  

2.1 Cognitive Radio 

In order to solve the problem of spectrum shortage and also increase data transmission 

rate, the concept of CR has been proposed [4]. The definition of CR given by FCC is as 

follows “Cognitive radio: A radio or system that senses its operational electromagnetic 

environment and can dynamically and autonomously adjust its radio operating parame-

ters to modify system operation, such as maximize throughput, mitigate interference, 

facilitate  interoperability,  access  secondary  markets.” [4]. The concept of CR is now 

widely recognized and there is a considerably large amount of studies and research of 

CR systems. There are also several applications of CR, such as IEEE 802.22 Wireless 

Regional Area Network (WRAN) [13]. 

The most distinctive difference of CR system with traditional wireless communica-

tion system is its ability of identifying the presence or absence of unknown determinis-

tic signals, and determines whether a PU is active or not based on the spectrum sensing 

process. The corresponding SU can either proceed to use the unoccupied spectrum or 

remain silent according to the decision regarding spectrum occupancy. By this way, the 

CR system can determine the spectral holes within a frequency band and allowing the 

unlicensed users to access those spectral holes opportunistically. This is an effective 
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way of spectrum utilization and a good solution for the current scarce spectrum resource 

problem [5], [6], [14]. The aim of CR is to achieve dynamic spectrum access instead of 

fixed spectrum allocation and having better spectrum utilization. 

In order to achieve the basic idea of spectral reuse, which gives the unlicensed sec-

ondary user permission to operate over spectrum that is allocated to licensed primary 

user when the specified spectrum is not fully occupied [15], there are several tasks a CR 

device should fulfil. These tasks and operations are usually defined as the basic cogni-

tive cycle, which can be seen in Figure 2.1. There are three basic cognitive tasks as seen 

in the figure [8]. 

1) Radio-scene analysis: The estimation of interface temperature of the radio envi-

ronment and the detection of spectrum holes. 

2) Channel identification: The estimation of channel-state information and the pre-

diction of channel capacity. 

3) Transmit-power control and dynamic spectrum management. 

 

Among these three tasks, tasks 1 and 2 are carried out at the receiver side and task 3 

is performed at the transmitter side. It is apparent from the cognitive cycle that within 

the CR system, the receiver and transmitter must work in harmony [8].  

Correspondingly, there are also three basic operations of CR devices, namely SS, 

spectrum re-allocation and configuration of the transmission system. SS can be consid-

ered as the most important and challenging operation among these three operations, as 

the ability of finding spectral holes depends on spectrum sensing operation. After SS 

Figure 2.1 Basic cognitive cycle [8]. 
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process, the CR system determines the spectral holes which are unoccupied by licensed 

primary users in a certain time and geographical area and allocates these spectral holes 

to unlicensed secondary users. At the final step, the CR adjusts the transmission system 

parameters in order to achieve better performance. In this thesis, the focus is on the SS 

part.  

2.2 Spectrum Sensing  

The main duty of SS operations is to obtain awareness of the spectrum usage of licensed 

PUs in the specified frequency band. Unlicensed secondary users can decide whether 

there are spectral holes available or not based on the information provided by the SS 

operation. The frequency spectrum can be categorized into three different types accord-

ing to the activity on sub-bands, namely white space, grey space and black space [7]. 

Unoccupied bands only contain noise and they are called white space. Partially occu-

pied bands are called grey spaces and bands which are fully occupied are called black 

spaces. SS methods can be used to determine white and grey spaces; hence the unli-

censed secondary users are able to use the specified spectrum if unoccupied.    

The important task of SS operations is to prevent the primary user from being inter-

rupted by secondary users. The PUs have absolute rights to use the assigned frequency 

band. The secondary users using CR technology are able to sense and occupy the spec-

tral holes when the frequency spectrums are not occupied by primary users. It is very 

crucial to keep sensing for the presence of primary users and release the frequency spec-

trum occupied by secondary users immediately after the presence of primary user is 

sensed, hence the interruption can be avoided. The illustration of various aspects of the 

SS operations is shown in Figure 2.2.  

The SS technique is still under developing, and there are several challenges and top-

ics to be researched. Current SS techniques usually make use of time, frequency and 

space domains. In real-world scenario, the primary user signals are expected to be de-

tected under very low SNR case. The mobile channel effects such as multipath fading 

and frequency selectivity can also introduce additional challenges.    

Challenges

Spectrum 
Sensing

Hardware requirments

Hidden PU problem

Spread Spectrum Systems

Sensing Frequency and Duration

Enabling Algorithms

Multi-Dimensional Spectrum 
Sensing

Matched Filtering

Energy Detector

Spectral Correlation

Radio Identification Based Sensing

Waveform Based Sensing

Reactive/Proactive 
Sensing

Standards employ 
sensing

IEEE 802.11k

IEEE 802.22

Bluetooth

Approaches

Internal Sensing

External Sensing

Beacon

Geo-location + Database

Figure 2.2 Various aspects of spectrum sensing for CR [7]. 
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     An effective SS method needs to have a good balance between sensing accuracy, 

sensing time, and the implementation complexity of the method. There are several dif-

ferent sensing methods with different emphasis on the balance of implementation com-

plexity and accuracy. These sensing methods can be classified into three classes, namely 

blind, semi-blind and non-blind sensing methods [7]. Blind sensing methods such, as 

eigenvalue based and covariance based methods, require no information about PU sig-

nal or noise [9], [10], [11], [16]. Semi- blind sensing methods such as energy detector 

require only the information of noise variance (power) [15], [17], [18], [19], [20]. Non-

blind sensing methods need prior information about the PU signal. It is obvious that 

different kind of sensing methods have different implementation complexity and differ-

ent sensing performance. 

Modified ED based spectrum sensing methods such as FFT&AFB based ED and 

Max-Min ED are studied and implemented using NI-LabVIEW and NI-USRP platform 

in this thesis. 

2.3 Energy Detector Based Spectrum Sensing Algorithms 

ED based SS algorithms are the most widely used sensing methods due to their low 

computational and implementation complexity compared to other sensing methods. 

Three different SS algorithms are introduced in this section. 

 Analytical Model of Spectrum Sensing Algorithms 

In the analytical model, spectrum sensing is usually formulated as a binary hypothesis 

testing problem as follows: 

 

0

1

: [ ] [ ]

[ ]

: [ ] [ ] [ ] [ ]

H y n w n

x n

H y n s n h n w n



  

  (1) 

where y[n] is the complex signal observed by the sensing receiver with [ ]s n , [ ]h n  and 

[ ]w n  denoting the primary user signal, the channel impulse response and the zero-mean, 

complex, circularly symmetric, wide-sense stationary additive white Gaussian noise 

(AWGN), respectively [5]. Under hypothesis 0H  the primary user is considered absent, 

and the received signal sample y[n] contains only AGWN. On the contrary, the received 

signal sample y[n] under hypothesis H1 consists of the transmitted signal x[n] after 

channel h[n], together with AWGN w[n]. Based on this binary hypothesis test model, 

the test statistic for ED can be formulated as: 
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    (2) 

where N denotes the length of the observation sequence. 

The test statistic can be modelled by the Gaussian distribution [17]. According to 

this, the following formulation is straightforwardly deduced: 
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where 2

x denotes the variance of the transmitted signal with possible fading and channel 

effects while transmission, 2

n  denotes the variance of AWGN. 2

x and 2

n  are assumed 

to be statistically independent. SNR is denoted as 2 2/x n    .The corresponding false 

alarm probability PFA and detection probability PD can be expressed as: 
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respectively, where ( )Q  denotes the Gaussian Q-function and   is the predefined ener-

gy threshold. The value of   is determined by the assumed noise variance 2

n , targeted 

false alarm probability PFA and observation sequence N length as follows: 

 
1

2 ( )
1 FA

n

Q P

N
 

 
  

 
  (7) 

where 1( )Q   denotes the inverse Gaussian Q-function. 

 

 Fast Fourier Transform and Analysis Filter Bank Based Algorithms 

2.3.2.1 FFT and AFB Basics 

In this section, the basic concept of FFT and AFB are introduced. The purpose of this 

section is to give the basic idea of the functionality of FFT and AFB used in the sensing 

algorithms considered in this thesis. 

Fourier Transform is a mathematical transformation named after Joseph Fourier, it is 

widely used for transforming signals between time domain and frequency domain in the 

context of signal processing. The transformation is reversible and the transformation 

from frequency domain to time domain is called inverse Fourier transform [21]. Analo-

gously, the discrete Fourier transform (DFT) used to convert a finite sequence of equal-

ly spaced samples from its time domain representation to the frequency domain. Fast 

Fourier transform (FFT) is an efficient algorithm to compute the DFT and its inverse is 

called inverse FFT (IFFT). 
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FFT is used to transform equally spaced samples of received signal from time do-

main to frequency domain in the FFT based ED sensing algorithm. The transformed 

samples will be used for further processes within the sensing algorithm. 

In the context of signal processing, filter bank is an array of band-pass filters, it can 

be categorized into two types according to its function. AFB is used to separates the 

input signal samples into multiple sub-bands each carrying different frequency compo-

nents. The other type is called synthesis filter bank (SFB), which means the reconstitu-

tion of a complete signal resulting from the filtering process. The basic block diagrams 

of AFB and SFB can be seen in Figure 2.3. 

x0(n)

x1(n)

x2(n)

xm-1(n)

H0(Z)

H1(Z)

H2(Z)

Hm-1(Z)

x(n)
.
.
.

x0(n)

x1(n)

x2(n)

xm-1(n)

.

.

.

Analysis Filter Banks

G0(Z)

G1(Z)

G2(Z)
.
.
.

Gm-1(Z)

.

.

.

x(n)

Synthesis Filter Banks

 

Figure 2.3 AFB and SFB block diagrams. 

The process of AFB has the same functionality with FFT and the process of SFB has 

the same functionality of IFFT as seen in Figure 2.3. FFT and AFB are used for spec-

trum analysis purposes in the spectrum sensing algorithms. The processed data will be 

then used for further calculations of the sensing algorithms. 

2.3.2.2 Details of the Algorithms 

The basic block diagram of ED with AFB or FFT based spectrum analysis is seen in the 

following figure.  
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Figure 2.4 Block diagram of energy detector with AFB &FFT based spectrum analysis. 

After the receiver front-end, channel filter and analog to digital converter (ADC), ei-

ther FFT or AFB is employed to split the signal into comparatively narrow frequency 

bands as seen in Figure 2.4. The output data blocks can be expressed as Y (m,k), where k 

is the subband index and m is the time index. Normally, it is assumed that the sampling 

rate used in each subband is equal to the ADC sampling rate divided by the number of 
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FFT bins or the number of subchannels used in the filter bank. In the spectrum sensing 

context, the subband signals can be expressed as [18]: 

 
0

1

( , )
( , )

( , ) ( , )k

W m k H
Y m k

S m k H W m k H

 
  

 
  (8) 

where the transmitted PU signal, as seen in subband k of the thm  FFT or AFB pro-

cessed block, is expressed as ( , )S m k ,  and ( , )W m k is the corresponding channel noise 

sample when the signal is absent. 0H  and 1H  illustrate the absent hypothesis and pre-

sent hypothesis of a PU, respectively. When there is only AWGN noise present, it is 

modelled as a zero-mean Gaussian random variable with variance 2 /n FFTN , where 

FFTN  is the number of FFT bins or subchannels, i.e., 2

,( , ) (0, )n kW m k N  the sub-

band noise variances are assumed to be equal, such that  2 2

,/n FFT n kN   [18]. The PU 

signal used in this thesis is simulated wireless microphone signals with the properties 

illustrated in IEEE suggestions [22], [23]. 

In ED based spectrum sensing algorithms, the absolute square of FFT or AFB pro-

cessed data blocks are calculated to obtain the test statistics. The calculated result 
kY  is 

then compared with the pre-calculated threshold  . The threshold value is calculated 

based on the assumed noise variance and the target false alarm probability. The detec-

tion probability DP  is the probability of the scenario that 
kY  is larger than the threshold 

 , which means that the corresponding subband is considered to be occupied by a PU 

signal. The false alarm probability FAP  is the probability of the scenario that 
kY  is larger 

than threshold   but there is no PU signal transmitted. The test statistics, the threshold 

 ,  the detection probability DP  and the false alarm probability FAP   can be expressed 

as follows: 
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1Pr( | )D kP Y H    (11) 

 0Pr( | )FA kP Y H    (12) 

Here the high-rate observed sequence length is FFT tN N N   samples. 

The main advantage of ED based SS algorithm is its low computational and imple-

mentation complexity as seen in the above illustration. In contrast, the main limitation 

of ED based SS algorithm is its high dependence of the knowledge of noise variance. 

Noise variance uncertainty can cause apparent decrease to the sensing performance [24]. 

One possibility offered by the FFT or AFB based sensing method is to tune the sens-

ing process to the expected bandwidths of the primary user signals, while keeping the 
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computational and implementation complexity low. This is achieved by using averaging 

windows both in time and frequency domains. In this thesis, algorithms with frequency 

domain averaging are also used for comparison. The algorithms with frequency domain 

averaging window are illustrated next.  
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Figure 2.5 Block diagram of energy detector with AFB & FFT based spectrum sensing 

with time- & frequency-domain averaging. 

The algorithm with averaging window is similar to the original sensing algorithm, 

the only difference is that an averaging window is employed after calculating the abso-

lute square value of the FFT/AFB processed data blocks as seen in Figure 2.5. The other 

operation remains the same. For this case, the decision statistics at different frequencies 

can be expressed as: 
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     (13) 

where Nf  is the length of frequency averaging window (number of averaging points), 

/t FFTN N N . The threshold  , the false alarm probability FAP  and detection probabil-

ity DP can be expressed as: 

 1 4 2
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     (16) 

It is recalled that Q(∙) denotes the Gaussian Q-function, Q-1(∙) denotes the inverse 

Gaussian Q-function, 
2

,n k  and 2

k  denotes the noise variance and PU signal variance 

respectively. 

 

 Max-Min Energy Based Sensing Algorithm 

Another SS method that has been tested to be robust against the noise uncertainty with 

low SNR is referred as differential Max-Min ED [25], [16]. The decision statistics of 

this sensing method is based on statistics of the differential energy spectral density [25]. 



 12 

In this subsection, a simplified variant of subband energy statistics based spectrum sens-

ing, referred to as Max-Min ED [16] is considered in details.  
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Figure 2.6 Block diagram of Max-Min ED. 

The basic block diagram is illustrated in Figure 2.6, which can be separated into the 

following steps: 

1. Estimating the energies across a number of subbands over the total sensing fre-

quency band. 

2. Observing the maximum and minimum value of the subband energies. 

3. Comparing the processed test statistic with the selected threshold to make deci-

sions. 

The first step of the sensing process is to perform energy spectral density approxi-

mation, the process can be performed using FFT operations on rectangularly windowed 

sets. Same signal model is considered based on (8). 

The energy detector process can be formulated using 2

1

1
| ( , ) |

tN

k

mt

T Y m k
N 

  , where

/t FFTN N N . With the aid of the central limit theorem, the following approximations 

can be made: 
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  (17) 

The second step of the sensing process is to find the maximum and minimum values 

of the subband energies based on their magnitude. 

The last step of the sensing algorithm is the threshold calculation and decision mak-

ing. In this stage, the difference between the maximum value and minimum value is 

compared with the predetermined threshold to make decisions. The threshold can be 

calculated based on the target false alarm probability FAP  using the Neyman-Pearson 

test [25], [26], [16] with zero mean and double variance compared to basic energy de-

tector. In this algorithm, when max minD D   , the primary user signal is assumed to be 

present, on the contrary, when max minD D   , it is assumed to be there is only noise in 

the interested band. 
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Besides the performance under noise variance uncertainty, the computational and 

implementation complexity is also one of the most crucial aspects of SS methods. The 

computational complexity has direct effects on the sensing time, the PU signal can be 

miss-detected if the computational complexity is too high [25]. The main complexity of 

the above sensing algorithm comes due to the following stages:  

 

 NFFT-point DFT introduces ( log( ))FFT FFTO N N operations. 

 The evaluation of maximum and minimum energy values introduces ( )FFTO N

complexity. 
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3. IMPLEMENTATION ENVIRONMENT  

The aim of this thesis is to study the real-time sensing performance of three different 

ED based SS algorithms: FFT/AFB ED without frequency averaging, FFT/AFB ED 

with frequency averaging and Max-Min ED in a WM system working at the 2.4 GHz 

ISM band. In this implementation, the transmitter and receiver are working with real-

time complex signals. In order to fulfil this requirement, Personal Computers (PCs), 

Signal Generator, NI-USRP, NI-LabVIEW and Matlab software platform [27] are used 

for the implementation. 

The NI-USRP software defined radio (SDR) platform, paired with NI-LabVIEW 

software platform can be used as a powerful PC-hosted wireless communication system. 

NI-USRP is a software programmable radio transceiver with the ability to transmit and 

receive radio frequency (RF) signals across a real-time bandwidth up to 40 MHz [28]. 

With the assistance of NI-LabVIEW software platform’s graphical programming envi-

ronment and several built-in toolboxes for NI-USRP, the receiver and the transmitter 

can be implemented easily and work efficiently. 

The main purpose of this chapter is to introduce the hardware and software used in 

the implementation of the SS system. 

3.1 Software Defined Radio 

SDR is the concept which implements radio transmitters and receivers with program-

mable software instead of implementing them completely using hardware [29]. This will 

provide the possibility of reconfiguring and adjusting the RF parameters in the software 

layer, so that the same radio hardware can work for different requirements. 

At the transmitter side of a typical SDR system, the SDR software transforms the 

data into processed digital signals with the user’s preferences and provides the digital 

signal to digital to analog converter (DAC). The DAC transform the digital signal into 

analog waveforms. Afterwards the analog waveform is transmitted through the antenna 

to the radio channel, or through cables for precise testing purposes. At the receiver side 

of the SDR system, the antenna acquires the received analog waveform which is then 

processed by the analog front end and provided to the ADC, which transforms the ana-

log waveform into a digital signal. The digital signal then proceeds to the SDR software 

for further signal processing and recovering the data that has been transmitted. 

The physical layer architecture of a typical current SDR system is seen in Figure 3.1. 

The antennas in this system can also be SDR controlled. When the antennas are SDR 
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controlled, the capability of the system will be increased due to its greater tunability 

[29].  
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Personal
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Figure 3.1 Typical SDR system structure. 

In the above SDR system, the RF front end is in charge of get the signal from de-

sired carrier frequency and transfers it to a specific IF or baseband at the receiver side, 

or shifts the baseband signal to a desired carrier frequency at the transmitter side. 

ADC/DAC is used to make transformations between analog and digital signal, while 

digital signals are used in Field Programmable Gate Array (FPGA) and PCs, analog 

signals are used in RF front end and antennas. FPGAs in the SDR are embedded with 

specific digital signal processing codes that can perform digital baseband and RF pro-

cesses, such as up/down-conversion, channelization filtering and modulation. Main cal-

culations, system monitoring and upper layer application like spectrum analysis, radio 

playback, etc., are performed by the PCs. 

3.2 Universal Software Radio Peripheral 

USRP is a widely used SDR platform which possess various abilities of SDR, such as 

wide range of bandwidth and great tunability. USRP connects real-time RF systems to 

PCs using Universal Serial Bus (USB) or Ethernet connections. USRP was outlined and 

designed by Matt Ettus, who is the founded Ettus Research LLC [30], a National In-

struments’ company. Second generation USRPs are able to work with GNU radio, NI-

Labview and Simulink [31], [32] and [33].  The USRP series under National Instru-

ments’ brand is called NI-USRP and are paired with NI-Labview tool boxes, which is 

used in the implementation of this thesis. 

 NI USRP-2932  

NI USRPs are SDR prototype platforms capable of numerous applications for education 

and research. The combination of NI’s hardware and software offers flexibility and 

functionality for physical layer design, record and playback, signal intelligence, algo-

rithm validation, and more [28] in affordable price.  
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NI-USRP products are categorised into two series, namely NI USRP-292x and NI 

USRP-293x. The NI USRP-293x series are integrated with GPS-Disciplined Clock 

which improves clock precision and enables global device synchronization and position 

[28]. Both 292x and 293x USRPs are connected to PCs using Ethernet connection 

working in pair with NI-Labview and both are able to perform multiple input, multiple 

output (MIMO) functionalities.  In this thesis, the NI USRP-2932 model is used for the 

implementation.  

NI USRP-2932 model is shown in Figure 3.2. There are two SMA signal ports 

RX1/TX1 (which can perform both transmission and reception) and RX2, an Ethernet 

connection port, a MIMO expansion port, and an external reference clock input port, a 

pulse per second reference input port, a power adapter port in the front panel, and a GPS 

antenna connection port at the back. The NI USRP-2932 model has a very wide fre-

quency range from 400 MHz up to 4.4 GHz with an instantaneous Real-Time bandwidth 

of 40 MHz (with 8 bit samples) or 20 MHz (with 16 bit samples). When the USRP 

works as transmitter, the DAC rate is 400 MS/s for 16 bit samples with 2 channels, and 

the DAC Spurious Free Dynamic Range (SFDR) is 80 dB. When it works as receiver, 

the noise figure is around 5 to 7 dB and the ADC rate is 100 MS/s with a SFDR of 88 

dB. The maximum input power at RX is 0 dBm. More detailed information about NI 

USRP specifications is given in Appendix A. 

Figure 3.2 NI USRP-2932 [28]. 



 17 

In terms of hardware structure of NI USRP-2932, as seen in Figure 3.3, the RF 

switches are used to select which port of RX/TX to use. The TX1/RX1 port can work 

for both transmit and receive and the RX2 port can be only used to receive. When it 

works as a receiver, the analog waveform is acquired from the selected RX port and fed 

to low noise amplifier (LNA) and drive amplifier, the amplified signal is then mixed 

with local oscillator (LO) in order to move the signal to baseband or IF from carrier 

frequency. The signals (real parts and imaginary parts) are filtered by low pass filters 

(LPF) with bandwidth of 20 MHz and then converted into digital signal by ADC and 

fed to a programmable digital down converter (DDC) to perform down-conversion, if 

needed, and finally the digital signal is transmitted to PC via 1 Gbit Ethernet for further 

processing.  When working as a transmitter, the processed digital signal is first transmit-

ted from PC to USRP hardware via Ethernet and then feed to digital up converter (DUC) 

for up-conversion, and then the digital signal is converted into analog signal by DAC. 

The analog signals are then filtered by 20 MHz LPF and mixed by local oscillator in 

order to transfer the signal form baseband to a specific carrier frequency and then ampli-

fied according to user’s preferences by the TX amplifier. The last step is to transmit the 

signal through TX1 to antennas or cables (the TX/RX should be correctly selected in the 

setting of USRP otherwise errors will occur). 

 

Figure 3.3 NI USRP-2932 system block diagram [34]. 

 Limitations of NI USRP  

Although NI USRP is a powerful and efficient model of SDR, there are some limita-

tions in the implementation environment. Signal processing except up/down-converting 

and decimation are done by PC, thus a PC with powerful CPU and massive memory is 

required, especially when processing a wide frequency band [35].  
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There are two other major limitations for this model of USRP. While NI USRP-

2932 is claimed to support 20 MHz bandwidth (sampling rate) real-time data acquiring, 

the filter effect is rather obvious when acquiring data at the maximum bandwidth (20 

MHz), as seen in Figure 3.4. When comparing Figure 3.4 and Figure 3.5, it is obvious 

that the filter effects are more flat when the bandwidth decreased. Another major limita-

tion is that this model of USRP working in pair with NI LabVIEW is very sensitive to 

LO Leakage and DC Offset, which introduced a very sharp peak at 0 Hz frequency, as 

seen in Figure 3.4. These two major limitations cause challenges to implement algo-

rithms aimed for finding weak signal in wide frequency range, such as spectrum sensing. 

In order to overcome these limitations, some particular designs are developed, which are 

introduced in the next chapter. 

 
Figure 3.4 Frequency spectrum observed by a USRP receiver with 20 MHz bandwidth 

when no signal is connected to the input. 

      Figure 3.5 Frequency spectrum observed by a USRP receiver with 1 MHz band-

width when no signal is connected to the input. 
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The NI USRP-2932 device has been tested to have a minimum transmission power 

at around -50 dBm, which is not low enough for this thesis’ requirements while target-

ing to test SS algorithms for primary signals with very low SNR. Due to this reason, a 

signal generator R&S 100A has been used as transmitter instead of using a second NI 

USRP device.  

3.3 National Instruments LabVIEW 

NI LabVIEW is a graphical programming platform which is suitable for a variety con-

trol and measurement systems. It offers great integration with existing legacy software 

and hardware, which makes problem-solving and innovations faster and efficient [36]. 

 

 LabVIEW basics 

LabVIEW provides the concept of Virtual Instruments (VIs), every program written in 

LabVIEW appearears as a VI, which contains a front panel and a block diagram, as seen 

in Figure 3.6. 

 

Figure 3.6 Typical LabVIEW VI. 

The front panel of a VI has the same function as actual instrument’s front panel; de-

signers can add inputs like numeric inputs, switches, connections, etc., as well as indica-

tors like graphs. The actual programming is done in the block diagram. When creating a 

user interface component in the front panel, a corresponding icon is also created in the 

block diagram. The design is done by connecting the icons together to have a block dia-

gram of the specific design. There are also a great number of built-in functions and 

toolkits, provided by NI, which can be selected for different purposes, and they are very 

efficient to use while programming. More details of NI LabVIEW can be found on the 

National Instruments Webpage. 
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 Benefits of programming in LabVIEW 

One of LabVIEW’s major differences from other general-purpose programming lan-

guages is its graphical, dataflow programming style. In LabVIEW, programming is per-

formed by wiring together graphical icons on a diagram instead of programming in text, 

and those icons are executed according to the rules of data flow. The benefit of the 

graphical programing is that the users can spent more time on actual system design and 

focus on problem-solving, rather than spend significant time learning the specific text-

based syntax of programming languages. There is a great amount of built-in functions 

for different purpose provided by National Instruments in different toolkits. The codes 

generated by the graphical programing language can run as effective as the traditional C 

codes [37]. 

LabVIEW supports smooth integration with existing software and hardware. Lab-

VIEW contains components like Formula Node, MathScript Node, etc., which provide 

interfaces for C programming (Formula Node) and Matlab Script (MathScript Node). 

This expands the range of use of LabVIEW and saves a plenty of time for users, as there 

is a great number of existing C and Matlab codes for various purposes. 

LabVIEW also provides a number of interactive debugging tools such as probes, 

highlighted execution and dataflow and immediate feedback indicating errors in the 

code. This makes debugging more easily and also provides monitoring methods while 

doing measurements and tests [37]. 

 LabVIEW working with NI USRP 

According to the advantages mentioned above, LabVIEW is used to control the NI 

USRP in our implementation. In order to enable LabVIEW to work with NI USRP, a 

few toolkits and drivers have to be installed, namely NI-USRP 1.2 Driver, LabVIEW 

Modulation Toolkit, LabVIEW MathScript RT Module, and LabVIEW Digital Filter 

Design Toolkit. These toolkits and drivers come with the USRP package and can also 

be found on National Instruments’ websites. And more toolkits and drivers might be 

needed according to designers’ particular requirements. More information about setting 

up the USRP and LabVIEW is given on National Instruments’ webpage. 

The basic control of NI USRP is very simple trough built-in functions as shown in 

Figure 3.7. It can be divided into three steps:  

1. Configure the USRP properties such as sampling rate, carrier frequency, gain, etc., 

according to the designer’s needs. 

2. Start read (receiver) or write (transmitter) process to receive or transmit data 

based on the properties selected in first step. This step normally contains loops to re-

ceive or transmit continuously. 

3. After completing the transmission and/or reception, the USRP connection has to 

be closed. 
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Figure 3.7 Basic steps of controlling USRP via LabVIEW. 

There are eight built-in functions for USRP control in LabVIEW (NI-USRP driver 

needed), which are divided into three categories according to the steps mentioned above.  

The 5 functions in the leftmost column are configure functions used to configure 

and initiate the USRP as seen in Figure 3.8. The two functions in the middle are used to 

read/write data from/to the USRP. Finally, the functions in the right most column are 

used to close the connections between PC and USRP 

Figure 3.8 The eight most-used NI-USRP functions [27]. 

Figure 3.9  Example front panel for USRP receiver. 
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Figure 3.9 shows an example front panel of a single channel USRP receiver and 

Figure 3.10 shows the corresponding block diagram. As shown in Figure 3.9, the user 

has to select the device names, IQ sampling rate, carrier frequency, active antenna, gain 

and number of samples before clicking the start button. There are displays for the base-

band power spectrum graph and IQ signal graph indicating the current receiving situa-

tion. There is also an error output, indicating whether there are errors or not. The selec-

tion of sampling rate and number of samples must be within the limitation of USRP and 

PC in order to avoid errors. The corresponding block diagram shows the actual design 

of the VI, such as how the components in the front panel are connected and the path and 

the data flow. The detailed design of the implementation is given in the next chapter. 

Figure 3.10 Example block diagram for USRP receiver. 
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4. DETAILS OF IMPLEMENTATION 

This chapter covers the details of implementation for testing the SS algorithms used for 

this thesis. The system contains two parts as transmitter and receiver. As shown in Fig-

ure 4.1, the transmitter is implemented using the Rohde & Schwarz SMJ100A vector 

signal generator controlled by PC using MATLAB in order to control the SNR and add 

controllable channel effect to the system. The receiver is implemented using NI USRP-

2932 and PC with LabVIEW and specific toolkits. 

4.1 Transmitter  

 Wireless Microphone  

WMs are classified as licensed secondary users of the TV band. The operations of these 

devices are regulated by the FCC under Part 74 rules [2]. Most of the WM devices use 

frequency modulation (FM). The spectrum of WM signal is highly concentrated in the 

frequency domain. According to various signal models of WMs, the signal bandwidth is 

less than 200 kHz with a maximum transmission power of 50 mW [23].The spectral 

mask of WM is shown in Figure 4.2 which is based on European Telecommunications 

Standards Institute (ETSI) definitions. 

Let ( )m t be the voice signal, then the FM modulated signal ( )s t can be generated ac-

cording to the equation below: 

Figure 4.1 System structure. 
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0
( ) cos 2 2 ( )

t

c c fs t A f t k m d     
                                           (18)  

where 
cA  is the carrier amplitude, term 

cf  is the carrier frequency, and the constant
fk  

is the deviation factor of the modulator [38].  

Three different WM signal models are suggested by IEEE 802.22 WRAN group for 

spectrum sensing algorithm tests [22]. They are categorized as follows: 

1) Silent: 

The user is silent. In this scenario, ( )m t is a 32 kHz sinusoid signal and the FM de-

viation factor
fk  is ±5 kHz. 

2) Soft speaker: 

The carrier of WM have a moderate amount of deviation. In this scenario, ( )m t is a 

3.9 kHz sinusoid signal and the FM deviation factor
fk is ±15 kHz. 

3) Loud speaker: 

The carrier of WM have a deviation near the maximum amount. In this scenario, 

( )m t  is a 13.4 kHz sinusoid signal and the FM deviation factor fk  is ±32.6 kHz. 

 

In this thesis, the soft speaker WM signal model is used while it is the most general 

case of using WM among the three implementation models.  

The WM signal is generated using the Rohde & Schwarz SMJ100A vector signal 

generator controlled by a PC using MATLAB. The MATLAB script is written accord-

ing to the soft speaker model parameters given above.  

Figure 4.2 Wireless microphone signal spectrum with ETSI spectrum mask [22]. 
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Figure 4.3.a and Figure 4.3.b show the generated WM signal with 0 dB SNR  and 

with -20 dB SNR, respectively. In these figures, bandwidth of noise is considered as 8 

MHz which is also a bandwidth of DTV for all sensing bandwidth. The figures are cap-

tured using a Rohde & Schwarz SMJ spectrum analyser connected via cable to the sig-

nal generator. 

It is clear that the spectral mask seen in Figure 4.2 and the practical WM signal as 

seen in Figure 4.3 have the same characteristic. It is also obvious from Figure 4.4 that 

even in very low SNR as -20 dB there are still apparent peaks of the WM signal. 

 

 Transmission Channel Model 

The channel models refer to effects as delay, fading and path-loss caused by the trans-

mission medium between transmitter and receiver. The characteristics of transmitted 

signal changes while propagating through the medium, depending on the distance and 

the path of transmission path’s environment [39]. The mathematical model of the medi-

um effect is called the transmission channel model. 

Channel effects are combined to the original generated WM signal to make the re-

ceived signal model similar to the real-world situation. In this work, three different 

channel models with different frequency selective characteristics are applied in order to 

investigate the SS performance under different selectivity effects. The used channel 

models are Indoor, Stanford University Interim 1 (SUI-1), and vehicular ITU-R Vehicu-

lar A channel models [39]. 

The Indoor channel model is an empirical channel model introduced in [40]. For re-

alistic Indoor channel, the 16-tap channel model with 80 ns root mean square (RMS) 

delay spread as in [40] is used and the channel bandwidth is selected as the European 

terrestrial TV channel bandwidth of 8 MHz . This channel model has medium frequency 

Figure 4.3.b Generated WM Signal Spectrum 

(-20 dB SNR). 

 

Figure 4.3.a Generated WM Signal Spectrum 

(0 dB SNR). 
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selectivity effects among all the three channel models we are considering [9]. Figure 4.4 

shows the frequency spectrum of the WM signal under Indoor channel model.  

The ITU-R channel model are commonly used as an empirical channel models and 

they are specified in ITU-R recommendation M.1225 [39]. In our study we apply the 

Vehicular A channel model with 6 delay taps and a maximum delay spread of about 2.5 

μs. The frequency selectivity effective is the strongest among the three channel models 

[9]. Figure 4.5 shows the signal spectrum of WM signal under ITU-R channel model. 

 

Figure 4.4 WM signal spectrum under Indoor channel model. 

Figure 4.5 WM signal spectrum under ITU-R channel model. 
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SUI channel models consist of a set of 6 channel models with 3 different terrain 

types and a variety of Doppler spreads, delay spread and other channel conditions [39]. 

In this implementation we applied SUI-1 channel model, which has 3 Ricean fading taps 

and 0.9 μs delay spread, and it is the least frequency selective channel among the three 

channel models [9]. Figure 4.6 shows the WM signal spectrum under SUI-1 channel 

model. 

The channel models are generated in a MATLAB script, and the generated WM sig-

nal together with the selected channel model is transmitted to the vector signal generator 

to generate WM for further processing. 

4.2 Receiver 

The receiver part is implemented with NI USRP-2932 connected to a PC with Lab-

VIEW via Ethernet. The programming and design are realized in LabVIEW in order to 

control the USRP hardware. 

As introduced in Chapter 3, a LabVIEW program or VI contain two parts, the front 

panel and the block diagram. The front panel is the user interface, like the front panel of 

a real instrument, and the block diagram is the actual programming part. The details of 

the implementation are given in this section. 

 

 

 

 

Figure 4.6 WM signal spectrum under SUI-1 channel model. 
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 Receiver VI Front Panel 

The front panel of the receiver VI is divided into two parts as seen in Figure 4.7. The 

left half is the configuration part, and the right part is used for monitoring the test states 

and displaying the test results. 

The left part of the front panel contains two main parts, the configuration of USRP 

hardware settings and the configuration of parameters for SS algorithms. As seen in 

Figure 4.8, the USRP hardware configuration block contains the settings such as device 

name, IQ sampling rate, carrier frequency, RX antenna selection and gain, and number 

of samples per catch.  

Figure 4.7 Receiver VI front panel. 

Figure 4.8 USRP hardware configuration block. 



 29 

In this thesis, the bandwidth for spectrum sensing is 8 MHz. In order to avoid the 

LO leakage problem mentioned earlier, in the implementation, a total receiving band-

width is first set to 16 MHz (fLO – 8 MHz to fLO + 8 MHz). Then only the 8 MHz posi-

tive frequency components (fLO to fLO + 8 MHz) is used. The number of samples per 

catch is selected with the same rule which is set to 409600 and only 204800 will be used 

for sensing algorithms. This process is illustrated in Figure 4.9. 

As shown in Figure 4.9, the positive (fLO to fLO + 8 MHz) part of the acquired fre-

quency components are down-converted to baseband (0 LO frequency) and the LO 

leakage peak in the upper graph of Figure 4.7 isfiltered out by a half-band lowpass filter. 

It is also important to point out that these graphs are caught after the received signal 

(only noise is present in this illustration) passed through the whitening filter. Hence, the 

noise floor is observed as flat. The details of the implementation of filters will be dis-

cussed later. 

The rest of USRP hardware settings are straightforward, such as the carrier frequen-

cy and the antenna gain. It is also very crucial to select the correct USRP name and RX 

antenna name and type to obtain correct results.  Balance of precision and sensing speed 

has to be made for the selection of number of samples per catch. 

Figure 4.9 Illustration of LO leakage removal. 
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The other part of the configuration block is the setting block of sensing algorithms, 

which is designed to select the process types to perform in the baseband signal pro-

cessing.  

There are two main categories in this block, the calculation of the noise variance and 

the actual spectrum sensing tests, as seen in Figure 4.10. The selection option of “Calcu-

lating the noise variance” is used for noise variance calculation. When executing the VI 

of this function, the TX should be turned off. Then the program will execute 50 loops 

and record the signal variance. When the execution is finished, the estimated average 

noise variance will be shown in the noise variance indicator and also in dB scale. The 

Figure 4.10 Function selection block. 
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number of loops is changeable from the block VI front panel, and the test results can be 

used as noise variance only if the TX has been turned off. 

The option of “Test” executes the three sensing algorithms considered in this work. 

The FFT and AFB energy detection functions have similar settings, number of subchan-

nels, false alarm probability FAP  and noise variance. The number of subchannels in FFT 

or AFB processsing is define for the sensing algorithms. The FAP  value and noise vari-

ance are used to calculate the thresholds for the sensing algorithms. Another important 

control for FFT and AFB detector is the averaging control; it is a switch button on the 

top of the block. If the averaging function is selected, the FFT and AFB sensing algo-

rithms are performed using averaging window with the length that specified by “points 

of averaging” control.  In Max-Min ED function, a threshold is manually selected in-

stead of calculating from FAP  and noise variance. 

As seen in Figure 4.11 the right half of the VI’s front panel is used for monitoring 

and displaying the results. There are three graphs, indicating the received signal spec-

trum with 16 MHz bandwidth for each loop, the baseband signal spectrum with 8 MHz 

Figure 4.11 Right half of the receiver VI front panel. 
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bandwidth for each loop and the variation of noise variance for the noise variance calcu-

lation function. Other indicators for sample size, threshold and the detection probability 

DP  can also be found in this part of the front panel. 

 Receiver VI Block Diagram 

The actual programming for the receiver implementation is done in the LabVIEW block 

diagram. The idea is to run the algorithms for a large number of loops in order to get 

reliable test results. As there are three different algorithms used in this thesis, a condi-

tion block should also be included. The following Figure 4.12 shows the flow chart of a 

single loop of this implementation. The actual LabVIEW VI block diagram is included 

in Appendix B due to its size. 

As shown in the above Figure 4.12, the whole implementation can be divided into 

four main sub-blocks: 

1. USRP operations and base band signal processing: The receiving parameters 

for USRP are selected, and baseband signal processing such as filtering and 

down-converting is also employed if needed. 

2. Calculations of sensing algorithms and noise: Three different sensing algo-

rithms are implemented in three different sub-blocks, the user can choose 

different algorithm to perform. The process of noise variance calculation can 

also be selected.  When using FFT or AFB based ED sensing, the threshold 

is calculated using the estimated noise variance and target false alarm proba-

bility. When using Max-Min based ED, the threshold is pre-defined. 

3. Decision making: This block is used for making decisions and depends on 

the data from previous blocks and the threshold. 

4. Test results: The final step is to display the test results. 

 

Figure 4.12 Flow chart of a single receiver loop. 
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Sub-blocks are used to make more efficient and simple implementation in this study. 

Complicated functions can be grouped together, forming an icon with several inputs and 

outputs. This is called a sub-VI in LabVIEW, which can make the program more under-

standable and readable. 

In this chapter, most of the figures are screen shots of some particular part of the 

LabVIEW VI’s block diagram to show the details due to the oversize of the actual block 

diagram. 

4.2.2.1 USRP control and baseband signal processing block 

The first step of the whole sensing implementation is to get raw data using NI USRP 

devices. As mentioned earlier, the control of USRP devices using LabVIEW is done by 

employ several built-in sub-VIs from the toolkits. 

Figure 4.14 USRP control block. 

Figure 4.13 Sub-VIs in implementation. 
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The block diagram of USRP control block is shown in Figure 4.14. The upper part is 

an interface between the front panel and the block diagram. It receives the USRP pa-

rameters provided by user from the front panel and sends them to the built-in USRP 

control functions. The lower part shows the built-in USRP control functions and the 

connections in the implementation. The USRP device name is selected and sent to NI-

USRP RX Open Session function (Ⅰ), this function is used to start connections be-

tween LabVIEW VI and the USRP hardware, and this function also creates a handle of 

the USRP device. All the USRP control functions connected with this handle operate 

the same USRP device. Then the user specified USRP parameters are sent to USRP 

Configure Signal function and USRP Initiative function (Ⅱand Ⅲ), these two functions 

are used to initialize the USRP device with the user specified parameters such as carrier 

frequency, I/Q sampling rate, etc. The final function is the USRP RX Fetch function 

(Ⅳ), this function is the function actually fetching data from the receiver antenna. The 

received data is then transmitted as the raw data. It is obvious that the data flow in Lab-

VIEW block diagram is from left to the right, and the functions on the left executes first, 

as seen in Figure 4.14. 

As seen in Figure 4.15, the raw data from NI-USRP RX Fetch function is then sent 

to a series of baseband signal processing blocks (Ⅰ, Ⅱ, Ⅲ, Ⅳ). The first block is whit-

ening filter, as the filter effect from the USRP devices is very significant, as mentioned 

before, a whitening filter (Ⅰ) is employed to make the noise floor flat. The frequency 

response of the designed whitening filter is shown in Figure 4.16 a. The signal is then 

down-converted according to the specified parameters (Ⅱ) in order to overcome the LO 

leakage peak problem mentioned before. The third step is half-band lowpass filter pro-

cess (Ⅲ). As seen from the figure, the first function is a filter design function for half-

band lowpass filter and after that there are two filter processing blocks, one for real part 

of the signal and another one for the imaginary part of the signal. The processed signals 

Figure 4.15 Block diagram of baseband signal processing. 
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are then merged again to form the processed complex signal. The final step in this part 

is down-sampling (Ⅳ), the signal is down sampled by two. The USRP stop and USRP 

close session function are seen in this figure. 

Figure 4.16.a Frequency response of whitening filter. 

Figure 4.16.b Signal spectrum before baseband signal processing. 

Figure 4.16.c Signal spectrum after baseband signal processing. 
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Before baseband signal processing operations, the signal spectrum is shown in Fig-

ure 4.16.b whereas Figure 4.16.c shows the signal spectrum after baseband signal pro-

cessing operations. It is obvious that the signal spectrum is much flatter and the problem 

of LO leakage is solved. 

The calculation of noise variance and threshold are much easier compared to the 

other processes. To calculate the noise variance, it is assumed that there are no PU sig-

nals in the specified spectrum range and the noise variance calculation function simply 

calculates the variance of the data from output of the previous baseband signal pro-

cessing sub-VI. In order to have reliable results, the process is executed for 50 loops 

(changeable) and the average value is calculated for the final result. After the noise var-

iance is estimated, the threshold for FFT and AFB based ED is calculated based on the 

estimated noise variance and target false alarm probability according to equation (10) 

and equation (14) in Chapter 2. As shown in Figure 4.17, a built-in function is used for 

the calculation of inverse Q-function, and a Matlab script block is used for further cal-

culations. There are two different algorithms which can be applied without frequency 

averaging and with frequency averaging. The inputs of this sub-VI are the target false 

alarm probability PFA, number of samples and estimated noise variance. The outputs are 

the calculated threshold without frequency averaging and with frequency averaging.   

The threshold calculation function works in parallel with either FFT or AFB based 

ED sensing sub-VI according to the user’s selection. The implementation of FFT based 

ED sensing algorithm is shown in Figure 4.18. As seen in the figure, it is implemented 

mainly using the LabVIEW built-in functions, and the scaling operation is performed 

using a Matlab script block. The input of this sub-VI is the data sequence provided by 

the previous baseband signal processing block and the output of this sub-VI is FFT 

sensing algorithm processed data for comparison with the threshold. As seen in equation 

(9) in Chapter 2, the algorithm first performs FFT operation to the data and then calcu-

lates the absolute square value of the FFT processed data, and a possible scaling opera-

tion is also needed to make the algorithm working correctly.  

Figure 4.17 Threshold calculation sub-VI. 
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Matlab scripts are used in the implementation of AFB based ED algorithm sub-VI. 

This is because the AFB designed using LabVIEW’s built-in filter bank designer tool 

cannot operate correctly with other parts of the algorithm. Therefore, the AFB is also 

designed using Matlab script and called as a function in the implementation; it is ex-

pected to work better in this way. The block diagram of the AFB process sub-VI is seen 

from Figure 4.19. The input of this sub-vi is also the data from the output of baseband 

signal processing block and the number of AFB points. The output of this sub-VI is 

AFB processed data for comparison with the calculated threshold. 

The implementation of Max-Min ED is shown in Figure 4.20. As described in Chap-

ter 2, the first step is to perform frequency analysis using FFT and the second step is to 

find the maximum and minimum value of the processed data, and the final step is to 

calculate the difference between the maximum value and the minimum value and com-

pare it with the threshold to decide whether there are PU signals in the specified spec-

trum range or not.  

The final step of the whole implementation is to make comparison between the test 

statistics with threshold and display the results. The test statistics are compared with 

Figure 4.18 Block diagram of FFT processing sub-VI. 

Figure 4.19 Block diagram of AFB processing sub-VI. 
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thresholds according to the user’s selection, and result of comparison is recorded. All 

the recorded test results are then combined to calculate the final result.  

In this thesis, four to five tests are performed for each channel model and sensing 

algorithms, the average value of each test is then calculated to be the final result. 50 

loops are applied for each SNR for each test, and the average value of those 50 test re-

sults are calculated as the result for this test. That is, over 250 test results for each SNR 

for each sensing algorithms under different channel models. This makes the implemen-

tation test result reliable.  

 

Figure 4.20 Block diagram of Max-Min process. 
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5. ALGORITHM TESTING RESULTS 

In this chapter, the implementation results of the WM signal in different channel models 

with different sensing algorithms are studied. The results will be presented according to 

their channel models. In order to have more reliable measurement results, each of the 

test results is the average value of over 250 test results under same SNR condition with 

2 dB SNR step. The number of samples per catch at USRP front end is 204800 samples. 

5.1 Noise Variance Uncertainty 

When using ED based SS algorithms, the threshold is calculated using the information 

of the noise variance. Thus, the effect of noise variance uncertainty should be consid-

ered. In this implementation, the noise variance is estimated by measuring the sensing 

frequency band before the sensing process. The noise variance is estimated for 50 times 

and the averaged value of these 50 noise variance estimates is used as the value for 

threshold calculation. 

The lowest noise variance is about 
71.106 10  Watts and the highest value is 

around
71.121 10  Watts as seen in Figure 5.1. According to the concept of noise vari-

ance uncertainty mentioned in [24]: 2 2

max n   and 2 2

min (1/ ) n   ,  can be calculat-

ed as
2

max

2

min

1.007





  . The noise variance uncertainty can be calculated using: 

Figure 5.1 Noise variance of 50 test loops. 
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 10 1010log 10log (1.007) 0.0303dBx      (18) 

The above discussion provides a typical noise uncertainty value of this implementa-

tion environment. The noise variance uncertainty value might be slightly different with 

different USRP devices or measurement environment. For instance, the warm-up time is 

about 3 minutes for NI-USRP 2932 according to [34]. The noise variance uncertainty is  

bigger when the measurement starts right after the USRP is turned on. But the short-

time noise variance uncertainty can be considered to take the value of 0.03 dB. In order 

to have more reliable noise variance uncertainty scenario, the measurements should be 

performed 3 to 5 minutes after the USRP devices are turned on. 

The main interest for WM sensing is in the TV white space (TVWS) application, in 

the terrestrial TV frequency band. However, the following tests were carried out in the 

2.4 MHz ISM frequency band, in order to avoid interferences to actual WM operation or 

TV reception. But the results are valid also for the TVWS application. 

 

5.2 Testing with Indoor Channel Model  

As mentioned in Chapter 4, the Indoor channel model is an empirical channel model 

introduced in [40]. The channel bandwidth is selected as the total interested bandwidth 

of 8 MHz in the terrestrial TV frequency band. 

Figure 5.2 Detection probability of wireless microphone signal using FFT & AFB 

based ED with  and  for 8 MHz sensing bandwidth. 
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In this implementation, the WM signal bandwidth is around 140 kHz and the sens-

ing bandwidth is 8 MHz. The number of FFT and AFB points is 1024. The whole 8 

MHz bandwidth is divided into 1024 sub-channels according to the number of FFT and 

AFB points, each of the 1024 sub-channel covers 8 /1024 7.8MHz kHz bandwidth and 

thus about 18 sub-channels can cover the PU signal bandwidth. In the process of detec-

tion, 18 sub-channels are grouped as a WM channel, thus there are 56 channels in total 

and 56 parallel sensing process are needed to observe the whole 8 MHz band, in order 

to find out which channels are occupied by WM signals. In this measurement, we only 

observe the sensing performance of the sub-channels that contains the WM signal we 

transmit. Sample complexity * 1000t fN N   and target FAP  is chosen as 0.1 in our 

study. Bandwidth of noise is considered as 8 MHz for all sensing band. 

The detection probability ( DP ) performance under different SNR conditions for the 

Indoor channel without frequency averaging (sensing only the subband at DC, i.e., the 

carrier frequency of the WM signal at RF) is shown in Figure 5.2. The solid line shows 

the simulated results for FFT (blue) and AFB (red) sensing algorithms. The dot-dash 

line shows the test result of implementation with FFT (blue) and AFB (red) sensing al-

gorithms. As seen in the Figure 5.2, there is approximately 2 to 3 dB difference between 

the implemented test results and the simulation results. In our implementation, SNR 

wall is obtained as -18.55 dB, which is very well matching with noise uncertainty model 

as seen in Figure 5.3.  

Figure 5.3 Detection probability of wireless microphone signal using FFT & AFB 

based ED with ,  and  for 8 MHz sensing bandwidth. 
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Figure 5.3 illustrates the simulation and the implementation results with FFT and 

AFB based sensing algorithms using 5-points averaging window which is determined as 

optimum value using simulation/implementation results. The solid line shows the simu-

lated results for FFT (blue) and AFB (red) sensing. The dot-dash line shows the test 

result of implementation with FFT (blue) and AFB (red) sensing algorithms.  

Figure 5.4 shows the detection performance using Max-Min ED. The blue solid 

curve and the red dot-dash curve show the simulation and the implementation results, 

respectively. As seen in Figure 5.4, both the implementation and the simulation results 

perform better than traditional FFT and AFB based ED sensing algorithms and the ef-

fects of noise variance uncertainty is smaller than in FFT and AFB based ED, particu-

larly at above 0.7 DP  .  

 

 

 

 

 

Figure 5.4 Detection probability of wireless microphone signal using Max-Min ED 

with  and  for 8 MHz sensing bandwidth. 
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5.3 Testing with ITU-R Vehicular A channel model  

The second channel model used in this thesis is ITU-R Vehicular A channel model, as 

introduced in Chapter 4. This channel model is a commonly used set of empirical chan-

nel models specified in ITU-R recommendation M.1225 [37]. It is the most frequency 

selective channel model among the three channel models used in this thesis. 

Figure 5.5 shows the detection probability DP  under different SNR value for PU 

signal with basic FFT and AFB based ED sensing algorithms. The solid curves repre-

sent simulation results for FFT (blue) and AFB (red) based ED sensing algorithms and 

the dash-dot curves represent the measurement results of implementation of basic FFT 

(blue) and AFB (red) sensing algorithms. 

As seen in Figure 5.5, the effects of noise variance uncertainty is still obvious and 

comparing with the results of Indoor channel model, the performance under ITU-R Ve-

hicular A channel is slightly worse. This is due to the fact that the ITU-R Vehicular A 

channel model is more frequency selective. 

Figure 5.5 Detection probability of wireless microphone signal using FFT & AFB 

based ED with  and  for 8 MHz sensing bandwidth. 
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Figure 5.6 shows the detection probability DP under different SNR value for PU sig-

nal with FFT and AFB based ED sensing algorithms using 5-points frequency averaging. 

The solid curves represent simulation results for FFT (blue) and AFB based ED sensing 

algorithms and the dash-dot curves represent the implementation test results of basic 

FFT (blue) and AFB (red) sensing algorithms. 

Compared with the test result of algorithms without frequency averaging, both the 

simulation result and the implementation results performed about 4 dB better using al-

gorithms with frequency averaging. It is obviously seen the effects of noise uncertainty. 

The simulation and implementation results of Max-Min based ED are shown in Fig-

ure 5.7. As illustrated in the figure, the blue solid curve is the simulation result and the 

dash-dot curve is the implementation test result. Comparing with the graph above, the 

test results with Max-Min ED algorithm performs better than FFT/AFB based ED. And 

the effect of noise uncertainty is less obvious in Max-Min based ED. 

Figure 5.6 Detection probability of wireless microphone signal using FFT & AFB 

based ED with ,  and  for 8 MHz sensing bandwidth. 
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5.4 Testing with Stanford University Interim 1 channel model 

In this test, we applied the SUI-1 channel model which has 3 Ricean fading taps and 0.9 

μs delay spread. This is the least frequency selective channel among the three channel 

models [41]. 

The simulation and the implementation results of FFT and AFB based ED sensing 

algorithms are shown Figure 5.8. The solid curves represent simulation results for FFT 

(blue) and AFB (red) based ED sensing algorithms and the dash-dot curves represent 

the implementation results of FFT (blue) and AFB (red) sensing algorithms. 

As shown in Figure 5.8, there is about 3 to 4 dB difference in the detection perfor-

mance due to the effect of noise uncertainty effect. Comparing with the test results un-

der channel models introduced earlier, the test result under SUI-1 channel model per-

forms slightly better because of that this channel model is the least frequency selective 

one among the channel models used in this thesis. 

Figure 5.7 Detection probability of wireless microphone signal using Max-Min ED 

with  and  for 8 MHz sensing bandwidth. 
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Figure 5.8 Detection probability of wireless microphone signal using FFT & AFB 

based ED with  and  for 8 MHz sensing bandwidth. 

Figure 5.9 Detection probability of wireless microphone signal using FFT & AFB 

based ED with ,  and  for 8 MHz sensing bandwidth. 
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Figure 5.9 shows the simulation and implementation results for FFT and AFB based 

ED using 5-points frequency averaging. Comparing with the test results without fre-

quency averaging, the frequency averaging also improved the detection performance in 

this channel model and the effect of noise uncertainty is also obvious. 

Figure 5.10 shows the detection performance of Max-Min ED under SUI-1 channel 

model. The blue solid curve is the simulation results whereas the dash-dot curve is the 

implementation results. Similar to other channel models, the test results with Max-Min 

ED algorithm performs better than FFT/AFB based ED. The effect of noise uncertainty 

is less obvious in Max-Min ED. 

 

5.5 Testing with Actual Indoor Wireless Environment Chan-

nel 

Besides testing with the above mentioned three commonly used empirical channel mod-

els, a group of measurements using the real indoor environment has also been done in 

this thesis. The measurements are done in our RF laboratory using wireless connections 

between the transmitter and the receiver. The transmission channel is a line-of-sight 

(LOS) wireless channel with typical indoor obstacles such as walls, chairs and desks. 

The distance between the transmission antenna and the receiving antenna is 4.2 meters 

Figure 5.10 Detection probability of wireless microphone signal using Max-Min ED 

with  and  for 8 MHz sensing bandwidth. 
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in our case. The WM signal is transmitted from the signal generator without any chan-

nel model. The received PU signal level is obtained by measuring it at a high SNR case 

and using a fixed attenuator during the actual spectrum sensing test. The rest of the 

measurement setup is the same as used in the empirical channel model tests. 

Figure 5.11 shows the simulation results (solid curves) of basic FFT (blue) and AFB 

(red) under empirical Indoor channel model. The dash-dot curves represent the imple-

mentation result under actual wireless indoor channel. The performance under wireless 

indoor channel is quite similar to other empirical channel models, as shown in the pre-

vious figures. This is because the spectrum sensing process is rather insensitive the fre-

quency selectivity exhibited by the typical indoor channels. . 

Figure 5.12 shows the simulation result (solid curves) of basic FFT (blue) and AFB 

(red) under empirical Indoor channel model using 5-points frequency averaging. The 

dot curves represent the measurement result under wireless Indoor channel using 5-

points frequency averaging. Comparing with the test results without frequency averag-

ing, the performance of algorithms with frequency averaging is better. Comparing with 

the test results of other empirical channel models, the results are similar, too. 

It is also good to point out that comparing the test results of indoor wireless channel 

and other empirical channel models; it can be seen that the detection probability DP  in-

creases slower after 0.97 DP . This is expected to be due to the noise uncertainty effects. 

Figure 5.11 Detection probability of wireless microphone signal using FFT & AFB 

based ED with  and  for 8 MHz sensing bandwidth. 
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Figure 5.12 Detection probability of wireless microphone signal using FFT & AFB 

based ED with ,  and  for 8 MHz sensing bandwidth. 

Figure 5.13 Detection probability of wireless microphone signal using Max-Min ED 

with  and  for 8 MHz sensing bandwidth. 
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Figure 5.13 shows the simulation results under empirical Indoor channel model (sol-

id blue curve) and the implementation results under Indoor wireless channel (dash-dot 

red curve). The measurement results of implementation is also quite similar comparing 

to the simulation results and also the results of other empirical channel models 

5.6 Testing with Different WM Signal Models 

As mentioned in Chapter 4, there are three different WM models provided in [22], and 

the signal model of soft speak is used in above measurement due to its similarity of a 

normally operating wireless microphone. It is important to consider different WM signal 

models in terms of SS performance. 

Figure 5.14 shows the spectra of the other two WM models, the loud speak model in 

the left and the silent model in the right. As seen Figure 5.14, the loud speak model has 

about the same amount of peaks compared to soft speak model but more separated, and 

the silent model only have 5 major peaks. 

The simulation results of different WM signal models using FFT/AFB based spec-

trum sensing algorithm is shown in Figure 5.15. As shown in the figure, the detection 

performance is greatly degraded for silent WM signal as there are only 3 to 5 major 

peaks in this model and they can be attenuated due to the channel effects. 

Figure 5.16 shows the sensing performance of the three different WM signal models 

using Max-Min ED. Both the simulation and the implementation results are considered 

is this figure. On the contrary to the result of FFT/AFB based sensing algorithms, the 

detection performances using Max-Min ED are quite similar for three different WM 

signal models and the measurements of implementation are also quite similar with the 

simulation results, which means better robustness to the noise variance uncertainty. 

Figure 5.14 Loud speak WM model (left) and silent WM model (right). 
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Figure 5.15 Simulated FFT & AFB based ED sensing performance for different WM models. 

Figure 5.16 Max-Min ED sensing performances for different WM models. 
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6. CONCLUSION 

The ultimate aim of this thesis was to implement different kind of ED based SS algo-

rithms using NI USRP hardware devices and NI-LabVIEW platform under different 

transmission channel models. The concept of CR was briefly introduced in the begin-

ning of this thesis, and then the basics FFT & AFB based ED spectrum sensing algo-

rithms with/without frequency averaging and Max-Min ED were provided. Thereafter, 

the basic information about hardware and software used in the implementation envi-

ronment were introduced. This included properties and basics of NI-USRP devices, NI-

LabVIEW properties and how it can work in pair with NI-USRP devices. Then the de-

tails of implementation of SS algorithms using NI-USRP and NI-LabVIEW were ex-

plained. Finally, the implementation results were presented together with Matlab simu-

lation result for the purpose of comparison and evaluating the effect of noise variance 

uncertainty. 

As discussed in Chapter 2, the FFT and AFB based ED SS algorithms are sensitive 

to noise variance uncertainty due to the usage of noise variance in threshold calculations, 

while the Max-Min ED sensing algorithms performs more robustly. In this thesis, WM 

signals were generated using PC controlled vector signal generator and received using 

NI-USRP devices via cable (empirical channel models) or wireless channel (wireless 

Indoor channel) with different SNR levels to investigate the performance of each sens-

ing algorithm. 

According to the implementation test results presented in Chapter 5, the noise vari-

ance uncertainty has a considerable effect on the sensing performance of FFT and AFB 

based energy detector SS algorithms. Optimized selection of the sensing bandwidth is 

critical for the performance of these algorithms. On the contrary, Max-Min ED is shown 

to have more robust performance under noise variance uncertainty scenario. It is also 

important to point out that in the test of the three different WM signal models, Max-Min 

ED is proved to have better performance no matter how narrow the PU signal spectrum 

is. On the contrary, FFT/AFB based ED performances are greatly degraded when the 

PU signal spectrum gets narrower. 

In this implementation, both the FFT/AFB based and Max-Min ED have low com-

putational and implementation complexity, but with good sensing performance. As the 

tested primary user signal is a WM signal and the sensing spectrum range is 50 to 60 

times larger than the PU signal bandwidth, the FFT/AFB sensing algorithms are operat-

ed in a subband-wise structure. This means that the whole 8 MHz interested band is 

divided into 56 WM channels.The WM signal can be prersent at any of those channels. 

The FFT/AFB detector detects the 56 sub-channel in parallel in order to find whether 
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any of those sub-channels were occupied or not. This also increases the false alarm 

probability FAP of the whole system. On the other hand, the Max-Min based ED can 

sensing the whole 8 MHz at one time with better performance. 

The real-time SS implementation prototype provided by this thesis gives a very use-

ful platform for future research on CR and SS. The solution of removing local oscillator 

leakage problem and USRP RF front-end filter effect also provide useful information on 

NI-USRP device properties and implementation guidelines. 

The further study topics will include finding a practical method to test and validate 

the implemented sensing system with real WM using wireless channels. During this 

thesis work, some preliminary tests with actual WM signals in the TV frequency band 

were carried out. However, it turned out to be quite difficult to perform quantitative 

sensing performance measurements with actual WMs. Another possible further study 

could be deriving optimum configuration for sensing of the whole 8 MHz TV channel 

using the Max-Min ED algorithm. This includes optimum number of subbands and 

threshold setting for reaching the target FAP  for the whole sensing process.   
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Appendix A: Detailed Specifications of NI-USRP 

2932 
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Appendix B: LabVIEW VI Block Diagram 
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Appendix C: Matlab Code for Generating WM 

signal With R & S SMJ 100A Vector Signal Gener-

ator 

clc,clear all,close all, 
% device selection 
DeviceContainer         =   createInstruments(); 
FSG                     =   DeviceContainer{1}; 
SMJ100A                 =   DeviceContainer{2}; 
%% 

  
guard_subcs=15; 
params.bw=20e6;          % 5-MHz. 
channel_flag=1; 
channel_vehic=0; 
params.channel_model='INDOOR';    %channel model selection 
%params.channel_model='ITUR-A'; 
%params.channel_model='SUI1'; 
params.rmsds=80e-9; 
params.fft_size=256; 
params.cyclic_prefix=64; 
params.pdp=generate_pdp(params); 
 

%% Signal Generation 

  
noisepower = 1.12e-7; %Estimated Noise power 
noisepowerdb = 10*log10(noisepower);%Estimated Noise power in dB scale 
SNRdB = 0;          % target SNR value 
lossdB = 6;         % Estimated Path loss 

  
SNR=10.^((SNRdB+noisepowerdb + lossdB )./20); 

  
kf=5e3;           % FM deviation factor is ±5 kHz in SILENT mode 
Fm=32e3;          % m(t) is a 32 kHz sinusoid signal in SILENT mode 

  
Fc=100e3;        
Fs=100e3;         
Ts=1/Fs;        % sampling time 

  
%%% vocal signal %%% 

  
t = 0 : Ts :2*(1-Ts);                  % interval 
mt = cos(2*pi*Fm*t);                      % m(t) 

  
%%% FM signals %%%  
attenuation=1; 

  
y = cos(2*pi*(Fc).*t+2*pi.*((kf/Fm).*mt)); 
y=attenuation.*(y/sqrt(sum((abs(y).^2))./length(y))); 

  
%generating channel effects 

  
if channel_flag    
        if channel_vehic ==1 
            ch=veha8(1,1); 
            y=conv(y,ch); 
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            y_ch=y(ind1:ind2); 
            y_ch=y_ch/sqrt(mean(abs(y_ch).^2)); 
        else 
            ch=generate_cir(params); 
            y_ch=filter(ch,1,y); 
            y_ch=y_ch/sqrt(mean(abs(y_ch).^2)); 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%% 
     else 
         y_ch=y;1, 
end 
 signal = SNR * y_ch; % attenuating the generated signal according to 

SNR 

  
signal                 =    signal/max(abs(signal)); 

 
%% Signal Generator parameters  
CenterFrequency         =   2.3054e9; %% Center Frequency 
comm                    =   'QAM'; 
copy                    =   'TTY'; 
path                    =   'c:\'; 
name                    =   'QAM16.wv'; 
play                    =   1; 
plot_figure             =   0; 
Fs                      =   100e3; 
PowerLevel              =   0%-30; 

  
markerlists.one   = [[0 0];[0 0];[0 0];[0 0];[0 0]];   
markerlists.two   = [[0 0];[0 0];[0 0];[0 0];[0 0]];     
markerlists.three = [[0 0];[0 0];[0 0];[0 0];[0 0]];     
markerlists.four  = [[0 0];[0 0];[0 0];[0 0];[0 0]];   

  
PowerLevel              =   SNRdB+noisepowerdb +lossdB %-30; 
Reset(SMJ100A); 
GenerateWaveform-

ForSMJ(SMJ100A,signal,CenterFrequency,PowerLevel,Fs,comm,copy,path,... 
                       name,play,plot_figure,markerlists); 

  
setModulatorStatus(SMJ100A,'ON'); 
setOutputState(SMJ100A,'ON'); 
setFrequency(SMJ100A,CenterFrequency); 
setPowerLevel(SMJ100A, PowerLevel, 'dBm'); 
%setImpairments(SMJ100A,gain_imb,phase_imb,Ileakage,Qleakage,'OFF'); 
setImpairments(SMJ100A, 1, 1, 1, 1, 'OFF') 

  
%% Spectrum Analyzer parameters 

  
RBW                     =   1e3; 
Span                    =   1e6; 
RefLevel                =   -50; 

  
Reset(FSG); 
setFrequency(FSG,1,CenterFrequency); 
setSpan(FSG,1,Span);    
setRefLevel(FSG,1,RefLevel);       
setResBW(FSG,1,RBW); 
setTraceMode(FSG,1,1,'WRIT'); 
dummy(FSG,'DET POS',0); 
dummy(FSG,'INP:ATT 0 DB',0); 


