
SALUM ABDUL-RAHMAN
The Effects of Open Source License Properties
on Software Architecture
Master of Science Thesis

Examiner: Tommi Mikkonen
Examiners and topic approved by the
Council of the Faculty of Computing
and Electrical Engineering
9th of April 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250164749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
Abdul-Rahman, Salum: Avoimen lähdekoodin lisenssien ominaisuuksien vaiku-
tukset ohjelmistoarkkitehtuuriin
Diplomityö, 67 sivua, 5 liitesivua
Elokuu 2014
Pääaine: Ohjelmistotuotanto
Tarkastaja: Tommi Mikkonen
Avainsanat: avoin lähdekoodi, avoimen lähdekoodin lisenssit, ohjelmistotuotanto,
ohjelmistoarkkitehtuuri, tekijänoikeusrikkomus

Avoimen lähdekoodin lisenssien avulla ohjelmistokehittäjät voivat yhteistyössä toisil-

leen tuntemattomien kehittäjien kanssa jatkokehittää ja levittää ohjelmistoja maksamatta

erillistä rahallista korvausta. Avoimen lähdekoodin lisenssit voivat kuitenkin olla vaikea-

selkoisia ja haitata ohjelmiston hyödyntämistä kaupallisesti sekä eri lisenssien ominai-

suudet voivat olla ristiriidassa keskenään. Nykyiset lisenssien hallintamenetelmät eivät

ota huomioon kaikkia avoimen lähdekoodin lisenssien ominaisuuksia ja komponenttien

todellisen tekijänoikeuksien varmistaminen voi olla vaikeaa. Kaikki ohjelmistokehittäjät

eivät uskalla käyttää avointa lähdekoodia, koska eivät ymmärrä avoimen lähdekoodin li-

senssien ominaisuuksia tai niiden hallintamenetelmiä.

OSSLI-tukimusprojektissa kerättiin systemaattisen kirjallisuuskatsauksen avulla tietoa

tieteellisen tutkimuksen nykyisestä käsityksestä avoimen lähdekoodin lisenssien vaiku-

tuksista ohjelmistotuotantoon. Tämä diplomityö muodostaa kirjallisuuskatsauksen löy-

dösten, ontologioiden ja yleisen systeemisteorian avulla kehyksen, jolla hahmotetaan

avoimen lähdekoodin lisenssien ominaisuuksien vaikutuksista ohjelmistoarkkiehtuuriin.

Tämä OSSLI-kehys rakentuu abstraktista ja sovelletusta laista, ohjelmistoarkkiehtuurista,

ohjelmistokehityksestä, liiketoiminnasta ja sosiaalisesta verkostosta sekä huomioi myös

lisenssien ominaisuudet.

Diplomityössä arvioidaan OSSLI-kehyksen avulla avoimien lähdekoodien lisenssien

riskien hallintaan käytettyjen työkaluja ja menetelmiä sekä kuvataan miten tutkimus-

projektissa kehystä käytettiin uuden ohjelmistoarkkitehtuuritason lisenssienhallintatyöka-

lun kehittämiseen. OSSLI-kehys osoitti hyödyllisyytensä avoimen lähdekoodin lisenssien

ominaisuuksien vaikutusten ymmärtämiseen.

III

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
Abdul-Rahman, Salum: The Effects of Open Source License Properties on
Software Architecture
Master of Science Thesis, 67 pages, 5 Appendix pages
August 2014
Major: Software Engineering
Examiner: Tommi Mikkonen
Keywords: Open source, open source licenses, software engineering, software
architecture, copyright violation

Open source licenses enable software developers to co-operate with unknown devel-

opers to modify and redistribute software without direct financial costs to themselves.

Detecting the actual licenses and copyright holders of open source components can be

difficult and open source licenses can conflict with each other and can make profiting

from open source difficult. Current license compliance methods do not take into account

all open source license properties. Some developers are afraid to use open source, because

they do not understand open source license properties or license management methods.

In the OSSLI project current understanding of the different effects of open source

license properties on software engineering was gathered by a systematic literature review.

This thesis uses the results of the literature review, ontologies and general system theory to

construct a framework to show how the properties of open source licenses affect software

architecture. This OSSLI framework consists of the abstract legal system, procedural

legal system, software architecture system, software engineering system, business system

and social system.

This thesis uses the OSSLI framework to evaluate current methods and tools to manage

open source license issues and shows how the OSSLI framework was used in the research

project to design a new tool to manage open source license compliance through software

architecture. The OSSLI framework showed its utility in understanding the effects of

open source license properties.

IV

PREFACE

”Think lightly of yourself and think deeply of the world.”

-Miyamoto Mushashi

I would like to thank Adjunct Professor Imed Hammouda for giving me the opportunity

and guidance to participate in academic open source license research. A big thank you

is also extended to the other members of the TUT Open Source Research Group, Antti

Luoto, Alexander Lokhman and Terhi Kilamo, for their comradeship and feedback in

our pursuit of knowledge and wisdom. Thank you to Professor Tommi Mikkonen for

helping me finish what I started. Thanks to Henri Tanskanen for his legal expertise. I will

also express my gratitude towards Tampere University of Technology, Aalto University,

Tekes, Validos, HH Partners, Symbio, Tekla, and Wapice for supporting the OSSLI

project that enabled the research that led to this thesis.

Thank you Virve for everything.

Salum Abdul-Rahman
In Tampere on the 23rd of June 2014

V

CONTENTS

1. Introduction . 1

1.1. Motivation . 1

1.2. Objectives . 2

1.3. Structure . 3

2. Research Background and Methodology . 5

2.1. Background . 5

2.1.1. Open Source Licenses . 6

2.1.2. Software Architecture . 7

2.2. Research Questions and Methods . 9

2.2.1. Systematic Literature Review . 9

2.2.2. General System Theory . 10

2.2.3. Ontologies . 12

3. Abstract Legal and Software Architecture Systems 24

3.1. Abstract Legal System . 24

3.1.1. Copyright and Related Rights . 25

3.1.2. Patents and Trade Secrets . 27

3.1.3. Design Rights and Trademarks . 28

3.1.4. Open Source Licenses . 28

3.2. Software Architecture System . 31

4. Connecting Software Architecture and Open Source Licenses 33

4.1. Procedural Legal System . 33

4.1.1. National Legal Systems . 35

4.1.2. Federal Legal Systems . 35

4.1.3. International Processes . 36

4.2. Business Process System . 36

4.3. Software Engineering System . 38

4.4. Social System . 40

5. Methods for Software Architecture Development with Open Source Licenses . . 42

5.1. The OSSLI Framework . 42

VI

5.2. License Management . 45

5.3. Licenses and Software Architecture . 48

5.3.1. License requirement for architecture 50

5.3.2. Architecture decision for License Management 50

5.4. License Management in Software Engineering 51

5.4.1. Methods . 51

5.4.2. Tools . 54

5.4.3. Review . 55

5.5. License Management in Software Production 56

5.5.1. Legal Proceedings . 56

5.5.2. License Management in Business . 56

5.5.3. OS-communities and Social Effects of Licenses 57

6. OSSLI tool . 58

6.1. Tool Design . 58

6.2. CCREL and Copyleft Management . 59

7. Discussion and Evaluation . 63

7.1. Methodology . 63

7.2. OSSLI Framework . 64

7.3. Usefulness of Findings . 64

8. Conclusions . 66

Bibliography . 68

A.Reviewed Articles . 74

VII

ABBREVIATIONS AND TERMINOLOGY

Abbreviations

ACTA Anti-Counterfeiting Trade Agreement

AGPL Affero Gnu Public License

ASLA Automated Software License Analyzer

ccREL Creative Commons Rights Expression Language

DCT Dependency Checker Tool

FLOSS Free and open source software

FSF Free Software Foundation

FUD Fear, Uncertainty & Doubt

GPL Gnu Public License

GST General system theory

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual property

IPR Intellectual property rights

ISO International Organization for Standardization

JSON JavaScript Object Notation

KIF Knowledge Interchange Format

KRO Knowledge Representation Ontology

LKIF Legal Knowledge Interchange Format

LOC line(s) of code

ODRL Open Digital Rights Language

OSI Open Source Initiative

OSL Open source license

OSSLI Advanced Tools and Practices for Managing Open Source

Software Licenses project

RDF Resource Description Framework

SEI The Carnegie Mellon Software Engineering Institute

VIII

SEO Software Engineering Ontology

SPDX Software Package Data Exchange

SWEBOK Software Engineering Body of Knowledge

TRIPS Agreement on Trade Related Aspects of Intellectual Prop-

erty Rights

WIPO World Intellectual Property Organization

WTO World Trade Organization

W3C World Wide Web Community and Business Groups

XML Extensible Markup Language

Terminology

attitude (legal) Describes the mental relationship of a legal person with a

norm or action or between norms

copyleft a clause in license that prevents licensed software being

combined with licenses with additional requirements

epistemology A theory of what knowledge is

expression (legal) Is a conveyance of a proposition in medium

mereology The study of what constitutes a whole an its parts

norm A rule that defines whether something is allowed, required

or prohibited

open source license A software license that allows modification and redistribu-

tion of the source code for free

open source software Software licensed with an open source license

proposition A claim which may be true or false

qualification A judgement on whether a norms or claims are true or false

or contradictory

reciprocal license An open source license with a copyleft clause

1

1. INTRODUCTION

Anakin: ”What has that got to do with anything?”

Yoda: ”Everything! Fear is the path to the dark side. Fear leads to anger.

Anger leads to hate. Hate leads to suffering. I sense much fear in you.” [1]

This thesis shows how we can understand open source license properties and manage

risks related to open source licenses using software architecture design. This introduction

explains what the perceived benefits and risks of open source licenses are and why soft-

ware architecture is a possible tool for helping to manage them. The goals of this thesis

are discussed along with its structure.

1.1. Motivation

There are numerous benefits to be gained from using open source software components

in software development. These benefits vary from the availability of free high quality

components to the open bazaar model of development [2]. Although there are no direct

financial costs of using open source components, there are financial risks stemming from

the possibility intellectual property rights violations and risk of loss of trade secrets by

being forced to publicly release source code. Both these fears and and benefits are direct

results of the terms of open source licenses.

Software architecture is used to help design, build, and evaluate software systems.

There are many definitions for the term software architecture varying from the abstract

split of a system into various functional components to the documentation describing

these relationships. This thesis uses the definition offered by the ISO/IEC/IEEE standard

42010-2011 [3] which defines the architecture as the “fundamental concepts or properties

of a system in its environment embodied in its elements, relationships, and in the prin-

ciples of its design and evolution.“ Open source software licenses can be linked to soft-

ware components which appear in software architecture as concepts. These open source

1. Introduction 2

components can be found on multiple levels of software architecture, so it is possible to

analyze the effects of open source license on the software architecture level through these

concepts, properties and relationships in different environments.

Current research in open source licenses and software architecture does not cover their

relationships completely. By reviewing current peer reviewed literature covering these

subjects we can gather a holistic view of the interactions between open source licenses

and software architecture.

The benefits of using open are shrouded by fear of being forced to divulge all source

code linked to open source. Raymond [4] claims that this is due to a Microsoft FUD (Fear,

Uncertainty, Doubt), a marketing strategy designed to confuse the copyleft clause of the

GNU General Public License (GPL) and GNU Lesser General Public License (LGPL)

with all open source licenses. All open source licenses do not have a copyleft clause.

Since anybody can create a new open source license the exact terms vary by license and

can lead to the copyleft terms being worded in many ways and being activated in differ-

ent conditions. Because of this variance in the conditions and license, uncertainty over

whether an open source license contains a copyleft clause and how copyleft clauses work,

fear of open source licenses persists

This research has been conducted in the scope of the “OSSLI - Advanced Tools and

Practices for Managing Open Source Software Licenses” project. The research goals

of the OSSLI project were to develop a better understanding of open source licensing

concerns, study the best practices for open source license compliance and identify well

known solutions to open source licensing problems. Based on this knowledge the project’s

goal was to develop a new tool for license compliance for software design and architecture

evaluation.

1.2. Objectives

The goal of this thesis is to systematically describe the interaction between open source

licenses and software architecture based on current research. This description will be

formulated by classifying concepts using General system theory and ontologies. The

Ontologies used will be John F. Sowas’ Knowledge Representation Ontology [5], the

LKIF-ontology [6], and the Software Engineering Ontology by Wongthongtham et al [7].

1. Introduction 3

The formally described system will be used to evaluate how tools and methodologies

for managing open source license concerns are used in software architecture development.

By evaluating how current practices take in to account different interactions between open

source licenses and software architecture, we can show how well risks and benefits related

to using open source licenses can be considered during software design. The evaluation

can help to identify relationships between open source licenses and software architecture

that create value or risk. We attempt to identify tools possible risks and benefits that

are not taken into account in current tools and methodology. This thesis shows how the

framework was used to develop tools in the OSSLI project in order to understand how

they can help during the software engineering process.

These findings can be used to evaluate the benefits and risks of using open source

components and help prevent unintended license breaches and encourage the use of open

source components when beneficial. By collecting the current understanding of open

source licenses the overcome the fear, uncertainty and doubt related to the complexity of

open source license and software development.

1.3. Structure

Chapter 2 presents the background of open source licenses and software architecture and

their roles in software engineering. In addition Chapter 2 presents the research method-

ology applied in this thesis. Chapter 3 presents the framework into which the findings

of the literature review concerning the current understanding of open source license and

software architecture is mapped. Chapter 4 attempts to define the connections between

open source licensed and the abstract legal domain to software architecture and software

engineering based on the findings of the literature review. Chapter 5 presents The OSSLI

framework that is developed based on the findings of chapters 3 and 4. Current tools

and methods used to manage open source licenses reduce the risk of intellectual property

rights violations are presented and the OSSLI framework is used to evaluate their role

in the software engineering process. Chapter 6 shows how the framework was used to

design the OSSLI tool developed during the OSSLI research project for open source li-

cense analysis. Chapter 7 presents an evaluation of the framework and benefits of using

it to evaluate tools and methods of license management. Also the methodology applied

1. Introduction 4

is evaluated and potential weaknesses and improvements are identified. Chapter 8 draws

conclusions based on the findings presented in the earlier chapters, evaluates the benefits

of these findings to research, and identifies further possible areas of research.

5

2. RESEARCH BACKGROUND AND

METHODOLOGY

“The Way of the carpenter is to become proficient is the use of his tools, first

to lay his plans with a true measure and then to perform his work according

to plan.” [8]

This chapter presents the background of open source licenses and software architecture

and how the research questions of this thesis were defined. Then the chapter describes

how the research methods, Systematic Literature Review, General System Theory and

Ontologies, are used to answer gather and organize information to answer the research

questions.

2.1. Background

According to ISO, IEC and IEEE [9] the term software engineering has two definitions:

“1. the systematic application of scientific and technological knowledge,

methods, and experience to the design, implementation, testing, and docu-

mentation of software.”

“2. the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application

of engineering to software.”

There are many benefits to be gained by using open source in software development,

but there are also risks involved. Software engineering means taking systematic and quan-

tifiable approach to these issues. This section presents some of the expected risks and

benefits of using open source software components in software development and defines

open source licenses and software architecture. These expected risks and benefits form

2. Research Background and Methodology 6

the basis for the motivation and the research methodology used in this thesis and the

hypothesis that software architecture can be used manage license concerns.

The obvious benefit of using open source components is that there are no direct fi-

nancial costs [10, 11, 12]. Open source components are often developed with reusability

in mind making them easy to integrate [12, 13, 14]. Some research has also shown that

open source components can exceed and are often of comparable quality to proprietary

components when it comes to security and the number and nature of defects [10, 11, 13].

The accessible nature of open source components can make finding developers familiar

with the components in question easier [13].

Bahn [15] identifies three risks associated with using open source components: 1) up-

stream intellectual property concerns, 2) viral software issues, and 3) non-infringement

warranties or intellectual property (IP) indemnity issues. Upstream intellectual property

issues refer to cases where an open source component contains code that has been in-

cluded without respecting the rights of the copyright holders. Viral software issue refers

to the fear that a company would be forced to release its software as open source if it

contains a component with an open source. Lack of warranties and indemnity issues refer

to the fact that using contrary to traditional business models open source users are not

protected by the the basic warranties related to standard business practice. If there is a

problem or lawsuit the open source user will have to defend themselves and can not rely on

the software provider for help. McGowan [16] also states that the enforceability of open

source licenses is arguable especially depending on jurisdiction. Both McGowan [16] and

Bahn [15] state that the risks are hard to evaluate due to lack of case law related to open

source licenses.

2.1.1. Open Source Licenses

Rosen [17] defines a license as the legal way a copyright and patent owner grants per-

mission to others to use his intellectual property and an open source license as the way a

copyright and patent owner grants permission to others to use his intellectual property in

such a way that software freedom is protected for all. An another way of defining an open

source license is using the Open Source Definition(OSD) defined by the Open Source

Initiative (OSI) [18]. OSI is an non-profit organization that maintains the Open Source

2. Research Background and Methodology 7

Definition and evaluates whether a license fulfils the requirements of the OSD [17]. The

open source definition has 10 clauses, but Perens [18] identifies three rights that OSD is

designed to ensure [18]:

• The right to make copies of the program, and distribute those copies.

• The right to have access to the software’s source code, a necessary pre-

liminary before you can change it.

• The right to make improvements to the program

These three rights are the software freedoms referred to by Rosen [17].

Open source license have been traditionally organized into reciprocal licenses and aca-

demic licenses [17]. Reciprocal licenses contain a copyleft clause that is designed to

ensure that the covered software is only used in open source software systems. Due to the

basic rights granted by open source licenses, they in practice also contain a patent grant

to the implementation in the software. Some licenses like the Apache Public License 2.0

(APL) make this grant explicit [19]. There are also patent licenses and content licenses

that imitate open source software licenses in their attempt to make their covered content

free and modifiable. [17]

2.1.2. Software Architecture

The Software Engineering Body of Knowledge [20] (SWEBOK) places software archi-

tecture as a part of software design as described in Figure 2.1 SWEBOK divides the

software design process into architectural design and detailed design. SWEBOK identi-

fies that there are multiple definitions of software architecture some relating to the way a

software system is organized and descriptions of this organization. [20]

ISO/IEC/IEEE standard 42010-2011 defines the architecture of a system as the funda-

mental concepts or properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution [3]. This makes the archi-

tecture and abstract entity on its own that is related to its system. Fowler [21] defines

software architecture as making design decisions. This fits nicely in with SWEBOK as-

sociating software architecture with design, but is more closely related to ISO/IEC/IEEE

standard 42010-2011 definition of architecting. The Software Engineering Institute at

2. Research Background and Methodology 8

Figure 2.1: Breakdown of topics in Software Design knowledge area. [20]

Carnegie Mellon (SEI) describes software architecture as: “The software architecture of

a program or computing system is a depiction of the system that aids in the understanding

of how the system will behave [22].” This description corresponds with ISO/IEC/IEEE

standard 42010-2011 definition of architecture description.

SWEBOK allows all three possible definitions and all views equate to a knowledge of

the software system. Hislop [23] presents two epistemologies: the objectivist and practice

based view. The objectivist believes knowledge is an entity of itself whereas the practice

based view holds that knowledge is only apparent in the way it affects the actions of a

person or a an organization. Fowler’s view on architecture makes his view of architecture

a member of the practice-based epistemology. The SEI and ISO/IEC/IEEE definitions

fall firmly in the realm of the objectivist epistemology though distinction between them

is clear. The SEI definition finds knowledge only exist when it is codified in the architec-

ture description while ISO/IEC/IEEE definition allows the the knowledge of the system

defined as the architecture to exist as abstract entity. Since Fowler’s and SEI’s defini-

tions match the terms defined by ISO/IEC/IEEE standard 42010-2011 this thesis uses the

ISO/IEC/IEEE terminology.

Licensing issues with software do not limit themselves to the software architecture

level. However licensing issues related to open source licenses do not usually extend

to the software system level where interconnections between software components are

2. Research Background and Methodology 9

handled by the operating system or network services. When analyzing open source license

violations at a level more detailed than software architecture, we enter into territory of

code duplicates and copied code. Detecting copied code is beyond the scope of this thesis

due to it being complex enough to warrant its own research, but we do take into account

the methods that can be used on an architectural level to evaluate license violations once

licensed code is found.

2.2. Research Questions and Methods

The research questions this thesis answers are threefold. First: What are the relationships

through which open source licenses affect software architecture? Based on this the second

research question is: How do the tools and methods used to manage open source licenses

affect the relationships between software architecture and open source licenses? The

third question is: Can this knowledge be used design tools to help manage license issues

in architecture.

In order to show that software licenses affect software development at an architectural

level it is necessary to show how exactly this interaction manifests itself. In order to

develop an understanding of the extent of interaction between software architecture and

software licensing we need to gather data on the issue and then present this data in a

scientific model. This research data has been collected in the form a literature review of

peer-reviewed sources. An attempt is made to place the findings of the literature review

into a hierarchical system complex based on the General System Theory and by identify-

ing the components and relationships of this system in an ontology. This system can be

analyzed for deficiencies or extended by including information from non peer-reviewed

sources in order to develop further research questions into the nature of interactions be-

tween the fields software engineering and law as well as software business and intellectual

capital.

2.2.1. Systematic Literature Review

We performed a literature review based on the methodology presented by Brereton et

al [24]. We developed a review protocol that was used to find peer reviewed sources on

open source licenses and legal or intellectual property right related issues.

2. Research Background and Methodology 10

Based on the protocol we developed a Boolean structured query to represent our inter-

ests:

(" Open Source " OR OSS OR FOSS OR FLOSS OR " Free S o f t w a r e ")

AND

(L i c e n s e OR L i c e n s e s OR " Lega l I s s u e s " OR C o p y l e f t

OR " I m m a t e r i a l R i g h t s " OR " I n t e l l e c t u a l P r o p e r t y "

OR " S o f t w a r e P a t e n t s ")

We then inputted this query into several academic databases and tried to find publications

that dealt with the issue of open source licenses. The databases searched are listed as

follows:

ACM D i g i t a l L i b r a r y , h t t p : / / d l . acm . org /

IEEExplore , h t t p : / / i e e e x p l o r e . i e e e . o rg /

JSTOR , h t t p : / / www. j s t o r . o rg /

Wiley On l i ne L i b r a r y , h t t p : / / o n l i n e l i b r a r y . w i l e y . com /

We selected those articles that seemed relevant based on their abstracts and that had

been cited at least three times or were published during or after 2010. The criteria of

relevance was that the abstract suggests a link between the legal aspects of open source

software licenses and the software engineering domain. The citation count was based on

the number of citations given to the considered articles by Google Scholar. We included

the newer publications without need for citation, because we wanted to include a view

of current research and considered requiring citations from newer articles could exclude

relevant sources. In addition we selected all articles from one peer reviewed journal, the

“International Free and Open Source Software Law Review”, because it was the only

journal that specializes in issues of open source law. By definition all articles are relevant

for the study and because it is the only journal it is also the leading journal. These findings

were classified using the presented ontologies and organized in relation to each other to

form the system models.

2.2.2. General System Theory

According to Skyttner [25] one of the core concepts of General System Theory (GST)

is hierarchy. Hierarchy in general system theory refers to the concept that systems are

made up of subsystems. Skyttner [25] also presents George Klirs mathematical model for

2. Research Background and Methodology 11

system in which a system is group of things and their relations. According to von Berta-

lanffy [26] a system consists of components and relationships between components that

form a definable whole. These components and relationships can themselves be analyzed

as systems thus becoming the subsystems that make up a lower level of the hierarchy.

Klirs model is so abstract that it can to applied to almost any phenomena [25]. The com-

Figure 2.2: The General System Theory in UML-notation

bination of being able to include multiple levels of phenomena from different domains

as long there is some interconnection means that General System Theory can be used to

describe multidisciplinary phenomena and according to von Bertalanffy [26] the need for

this kind of flexibility in scientific research was a motivator in the development of General

System Theory. Due to the fact that software engineering as a science has no direct con-

nection to legal sciences, a multidisciplinary approach is needed in order to understand

the connection between software architecture and software licenses. Defining what makes

a component or relationship a part of a system or subsystem is dependent on whether the

system in question can be considered a whole with or without the component [26].

Skyttner defines a conceptual system as an organization of ideas expressed in sym-

bolic form [25]. Software architecture is a conceptual representation of a software system

usually expressed in documentation. Software architecture can thus be considered as a

conceptual system. A software license is a document defining what kind of interaction is

necessary between the licensor and licensee in order for the licensee to perform some ac-

tions on or with the software. Thus a software license can also be considered a conceptual

system.

According to Skyttner conceptual systems consist of abstract concepts, but they can

affect physical actions [25]. In this sense both legal documents and software architecture

2. Research Background and Methodology 12

documentations represent conceptual systems. They both describe abstractions and affect

how people operate.

The connection between a software system and a software license is straightforward,

but complexity ensues when a software system is made up of multiple components with

different licenses. Licenses operate within the scope of a legal system, whereas software

architecture is developed in a software development system. Software development hap-

pens in an organization like a university or software company and by individuals who

in turn are governed by a legal system. The purpose of the software development is to

produce a program or software system that in turn serves multiple functions; usually to

provide some benefit to the developers in the form of automation or help with some sort

of task or perhaps enjoyment or fiscal or social benefit. All of these factors have to be

able to be taken into account in the system model.

These interconnections seem straightforward, but they are split among multiple levels

of system hierarchy and represent multiple levels of ontological concepts. It is therefore

necessary define what are the actual concepts in these system are and what is the nature of

their relationships and what is the hierarchy of the systems. In addition to systems mod-

elling it is therefore necessary classify each component in the different systems according

to an ontology.

2.2.3. Ontologies

Gruber [27] states that “A conceptualization is an abstract, simplified view of the world

that we wish to represent for some purpose.” and that “An ontology is an explicit speci-

fication of a conceptualization.” In order to be able to express the different components

in a system we need to have some way to define these components. By using an ontology

to describe the components we can be sure that concepts are not confused. Natural lan-

guages can be imprecise as words can have multiple meanings and different terms can be

used to refer to the same concept. In order to avoid semantic confusion it is necessary to

define all the concepts and their relations ontologically.

Ontologies can be divided into top level ontologies and domain specific ontologies.

Top level ontologies are broad attempts to define structure of ontological concepts from

a broad point of view or to provide tools to merge other ontologies [28]. As we attempt

2. Research Background and Methodology 13

to analyze subjects that are different fields of study it is useful to use domain specific

ontologies to identify the concepts used. A top level ontology is also required to map

show similarities and dissimilarities between concepts in the different ontologies as well

the findings of literature review. In this case we chose Sowa’s Knowledge Representation

Ontology as the top level ontology and LKIF as the legal ontology and the Software

Engineering ontology by Wongthongtham et al [7] for software engineering.

Noy and Hafner [28] split top level ontologies according to their top level taxonomies

as either hierarchical division into more exact components or distinction approach which

several dimensions are simultaneously used to define the properties of a concept. Sowa’s

Knowledge Representation ontology belongs to the latter type, with the top level concepts

drawn from classification along the axes of Physical and Abstract into Continuant and

Occurrent classes and on a third axis of Independent, Relative and Mediating classes [5].

Both LKIF and the Software engineering ontology belong to the hierarchical approach

in which more general components are divided into more detailed instances on each de-

scending level [6, 7]. By using a different system of taxonomy at the top level than in

the domain specific ontologies we attempt to avoid possible incongruencies and conflicts

between disjoint rigid hierarchies as well as providing a more holistic understanding of

the domain, by providing additional perspective to the classification system.

Table 2.1: Matrix of Sowa’s Ontologies three axis and central categories. [5]
Physical Abstract

Continuant Occurent Continuant Occurent
Independent Object Process Schema Script

Relative Juncture Participation Description History
Mediating Structure Situation Reason Purpose

LKIF is an extension of of the Knowledge Interchange Format ontology (KIF) and

therefore shares the same top level ontology as KIF. KIF is a top level ontologyand was

considered as anoption for our top level ontology. This would have been simpler, but us-

ing John F. Sowa’s Knowledge Representation Ontology or KRO, an ontology based on

distinction approach as defined by Noy & Hafner [28], as top level ontology would pro-

vide more perspective for research. It would additionally provide a chance of mediation

if the concepts from SEO would not map to the LKIF and KIF.

2. Research Background and Methodology 14

Knowledge Representation Ontology

The top level of the KRO consists of three axes. One axis is is divided into physical and

abstract. Physical objects or processes must have mass or energy. They have to either

exist as physical objects or impact physical objects directly. Abstract concepts are ideas

or processes that are not perceivable outside human thought process; examples include

platonic forms and human constructs like friendship and freedom. On the temporal axis

concepts are divided between occurrent and continuant. Continuant concepts are the same

over a subjective time interval whereas occurrent concepts can defined by their time in-

terval. On the relational axis concepts are either independent, relative or or mediating.

Independent concepts are self defined, they exist in and of themselves. Relative concepts

relate two or more concepts to each other. Mediating concepts bring other concepts into

relationships with each other. Whereas a person is an independent concept, a marriage

is a relationship between two people, yet a family is mediating concept that can include

multiple people with multiple mediating relationships to each other.[5]

The second level of the KRO consists of concepts that are intersections of concepts

from the relational axis and the abstract-physical axis. This creates group of six concepts

each concept inherits the all of the properties of both their parent concepts. The final top

level of KRO consist of concepts that are subclasses of concepts from the second level

and temporal axis [5]. A second level concept could therefore be a Nexus which has the

properties of both Physical and Mediating, something concrete which is defined by being

a groups of concrete concepts like a forest is defined as grouping of trees. On third level

a Nexus is divided into a Structure and a Situation depending on the temporal axis. A

Occurrent Nexus is is Situation like a cab ride consisting of passengers and driver and

vehicle but existing only for a finite amount of time. Structure being Continuant could be

a crossroad that connects multiple roads, and this defining property does not change over

the applied time period. All seven top level concepts, six second level concepts, and 12

third level concepts and their hierarchy are shown in Figure 2.3.

LKIF

The top level of the LKIF-core ontology consist of Mental Concept, Occurence, Physical

Concept and Abstract Concept. LKIF-core is split into multiple modules that cover differ-

2. Research Background and Methodology 15

Figure 2.3: Sowa’s hierarchy of top-level categories. [29]

ent aspects. In addition to the top module there are other modules that cover very general

concepts: Place, Mereology, Time, Change, Actions, Agents, Organizations, Roles. Of

particular interest are the modules that cover specific legal concepts. These modules are

Propositions, Attitudes, Expressions, Qualifications and Norms. The top levels of the

LKIF-core taxonomy are displayed in Figure 2.4 [6].

The top level concepts of LKIF map mainly to the top level elements of Sowa’s ontol-

ogy. LKIF is designed as an extension of KIF which is a top level ontology. Because both

KIF and the KRO are top level ontologies many higher level concepts appear in both. The

detailed relationships are described in Table 2.2

By studying Figure 2.5 we can see that all of the top level categories have a top class

from the the highest levels of Sowa’s hierarchy except for physical objects. At this level

LKIF is very abstract. Due to its nature of concentrating on legal issues, which are often

abstractions, this abstraction persists to most of the ontology.

Software Engineering Ontology

The hierarchy of top classes of SEO are described in Figure 2.6. For some reason, the core

of the ontology has been grouped under the Software Engineering Domain class. This

2. Research Background and Methodology 16

Figure 2.4: Taxonomy of LKIF-core ontology.

2. Research Background and Methodology 17

Table 2.2: Top level concepts in LKIF ontology and their superclasses in Sowa’s ontology

Parent class in Subclass in
Sowas ontology LKIF-core ontology Description

Abstract
Abstract_Entity All abstract entities are Abstract.
Mental_Entity A mental entity has no physical

from so it is an abstract entity.
Continuant Interval An interval defines a time interval

an continuant concept is defined by
its time interval.

Independent Atom An Atom is indivisible and can de-
fined by itself

Intention Qualified Being qualified by a qualification is
an abstract mediating relationship

Juncture Relative_Place A juncture is a connection in space
and Relative_Place is defined by
it’s connection to another physical
place

Mediating

Change Achange is defined by the different
states that are part of the change.

Plan A plan is defined byt the subplans
or actions it consists of.

Composition A Composition is defined by its
multiple parts.

Oganization An Organiaztion is defined by its
multiple individuals.

Object
Natural_Person A natural person is a physically ex-

isting human being.
Absolute_Place Absolute_Place is defined by its

physical location in space.
Person A person is physically existing hu-

man being, equivalent class of Nat-
ural_Person.

Occurrent
Natural_Person Natural_Persons only exist for a

period of time.
Occurence An occurence is has an temporal

beginnning and an end.

Physical
Place Place has a location wich is a phys-

ical property.
Spatio_Temporal_Occurrence A Spatio_Temporal_Occurrence

has physical properties.
Physical_Entity Physical entities are physical.

Relative

Subjective_Entity Subjective entity is defined in rela-
tion to to an other entity.

Medium Mediums bear expressions and are
defined by their relationship to the
message as well as senders and re-
ceivers.

Qualified A qualified entity is defined by its
relation to a qualification.

Agent Agent relates and entity to a role.

2. Research Background and Methodology 18

Figure 2.5: LKIF top level classes mapped as subclasses to Sowa’s hierarchy of top-level cate-
gories.

choice is understandable due to the narrow nature of the SEO, but it would be extremely

difficult to use Sowa’s top classes consistently or accurately if one were to assigned as a

top class for the Software Engineering Domain. The Software Engineering Domain class

is ignored and we assign top classes for its subclasses from Sowa’s ontology. The sub-

classes of the software Engineering domain are Software Design, Software Construction,

Software Tools, Software Testing and Software Requirements. How the subclasses of The

Software Engineering domain and the other top level classes of SEO, Reputation, People

and software engineering project map to KRO is described in Table 2.3

From Figure 2.7 we can see that the top level classes of the SEO map to lower classes

of the KRO than the the classes of LKIF in Figure 2.5. The narrower scope of SEO allows

using lower level top classes which helps to keep the system more exact.

2. Research Background and Methodology 19

Figure 2.6: Taxonomy of SE-ontology top level.

2. Research Background and Methodology 20

Table 2.3: Top level concepts in software engineering ontology and their superclasses in Sowa’s
ontology

Parent class in Subclass in
Sowas ontology SE ontology Description
History Reputation A reputation is description of pre-

vious behaviour.
Object People People are have a physical form

and exhibit firstness and have a
temporal beginning and end

Description Software_Design Software design is the process of
making design decisions of soft-
ware, these decisions manifest as
documentation or direct imple-
mentation.

Physical
Software_Construction Producing and compiling th

source code an installation and
integration are physical acts.

Software_Tools Software tools are physical tools
even if they exist as programs in-
side a computer.

Prehension Software_Testing Software testing relates to the
physical code to the software re-
quirements.

Proposition Software_Requirements Software requirements define the
relationship between the software
and its function, this relationship
is abstract as it can exist before the
software is created.

Situation Software_Engineering_Project Software engineering project me-
diates the members of the team
and their tools and the software
being worked on.

2. Research Background and Methodology 21

Figure 2.7: SEO top level classes mapped as subclasses to Sowa’s hierarchy of top-level cate-
gories.

The weakness of the SEO becomes apparent when trying map lower level concepts

to the KRO. In the SEO Software Design is defined as a process and has subclasses.

Software Architecture, Software Design Notations, and Software Design Strategies and

Methods. In this context Software Architecture is described as static documentation and

the Notations cannot be considered as a process. The relationship here is clearly more of

"is a part of" not "is a subclass of." This is a common problem faced when designing an

ontology, therefore it not use full to define the KRO superclasses we impose on the top

level classes as hereditary, but rather to apply them to lower level classes in the proper

context when we encounter them in the research data.

Merged Ontology

From Figure 2.8 we can see that most top level classes of SEO find a superclass in LKIF.

That is to be expected because the legal domain is more general than the software en-

gineering domain. The exception of course is the natural person to people equivalence,

legal matters and software engineering both need people to be meaningful.

Figure 2.9 combines the top level of the LKIF and the SEO with their superclasses in

the KRO into one view.

2. Research Background and Methodology 22

Figure 2.8: Relations between concepts in LKIF and Software Engineering Ontology.

2. Research Background and Methodology 23

Figure 2.9: Merged top level of ontologies of KRO, SEO and LKIF. Unused classes of KRO are
hidden.

24

3. ABSTRACT LEGAL AND SOFTWARE

ARCHITECTURE SYSTEMS

“What is called the spirit of the void is where there is nothing. It is not

included in man’s knowledge. Of course the void is nothingness. By knowing

things that exist, you can know that which does not exist. That is the void.”

[8]

The premise of the research is formed by the software architecture system and the ab-

stract legal system. Software architecture forms its own abstract system. Open sources

licenses are part of the abstract legal systems. By defining these systems in terms of the

ontologies we form a basis from which can explore the links between the software archi-

tecture system and open source licenses using the findings of the systematic literature.

3.1. Abstract Legal System

This section contains a description of the concepts related to the abstract legal system and

their relationship to the taxonomies generated using ontologies. In legal terms a quali-

fication expresses a judgement about something. All qualifications are relative to some

expression. An evaluative qualification qualifies something as good or bad, desirable, or

undesirable. Normative qualifications or norms qualify something as allowed or not al-

lowed. Norms can be divided into absolute norms, which make something mandatory, or

prohibited and rights which someone can choose to exercise like copyright. A Proposition

is a legal term for an expression which can be evaluated in a legal context. Claiming that

a person has a copyright over some work is a proposition. Proposition can be divided into

legal expressions and evaluative propositions. Evaluative propositions are evaluatively

qualified, which means that they express some qualification about the proposition. Al-

most any action or state that can be considered in legal terms is a a legal expression and

as such a subclass of proposition. When considering the abstract legal world we have to

3. Abstract Legal and Software Architecture Systems 25

take into account attitudes. Legal attitudes affect how people evaluate propositions. If

you infringe on exclusive rights granted to the copyright holder unintentionally and can

show that you have been intentionally mislead about the copyright situation as opposed

to being negligent in regard to the copyright, your attitude toward the action of infringing

on copyright is different and can affect the legal evaluation of the situation.

German & Hassan [30] say that there are 6 legal structures that can affect software: 1)

copyright, 2) related rights, 3) patents 4) trade secrets, 5) design rights and 6) trademarks.

Trademarks can cover, in particular logos and names of companies and products. Trade

secrets cover information that a company takes reasonable steps to protect. Patents, trade-

marks and design rights are publicly applied and declared. All software is protected by

copyright, but particularly in the United States patents are used to protect software more

often than in the rest of the world [31].

3.1.1. Copyright and Related Rights

Copyright is occurrent and relative to an artefact. Copyright is an obligative right which

means that the copyright holder has the right to prevent other people to utilize his work.

Copyright is automatically created when a novel artefact is created. It is unclear where

the line goes when defining a novel work when it comes to source code. Copying a few

lines of the web maybe accepted practice but German & Hassan [30] state that copying

less than 100 LOC could create a derivative work meaning that the original author would

have a copyright claim. In the scope of this thesis any component that is considered on

the software architecture level will be assumed to be original and complete enough to

warrant copyright. In cases where a component contains sections of code copied from

other sources in an scope that warrants copyright, all requirements of all licenses that

cover copyrighted code must be met in order to not commit copyright infringement.

When it comes to open source licenses the concepts of collective work and derivative

work are important. According to Välimäki [32] the use of these terms stems from United

States copyright legislation and they are used in several Open source licenses. Open

source software is mainly built by many contributors and projects use components and

libraries from various sources. Also the popular GPL family of licenses differentiates its

terms depending on whether work is collective or not [33]. A derivative work is something

3. Abstract Legal and Software Architecture Systems 26

which is directly based on other work [33]. A collective work is more loosely coupled but

is still distributed with foreign components that are required for it be meaningful [33]. A

derivative work is directly based on other component, but if the component could easily

switched to another one it could be argued that the complete work is collective and not

derivative. According to Forbes [34] a database or dataset containing source code can

be considered a derivative or collective work. In this case the dataset collector may have

related rights to the dataset, such as sui generis database rights under EU law, but not a

copyright.

A work in the public domain has no copyright holder and anybody can use it freely.

A copyright holder can declare his work to be in the public domain or a work can enter

the public domain because 70 years of the death of the creator have elapsed and therefore

copy right ends. Originally a lot of software in the 1960’s and 1970’s were considered

public domain, due to the hacker culture [2]. Richard Stallman developed the original

GPL, because he felt that public domain did not ensure the freedom of his software as

mentioned in subsection 2.1.1. by Rosen. In some cases it is very hard to trace the

copyright holder of source code available on the internet, but this does not mean that the

source code belongs to the public domain [31]. Public domain is more used in common

law context. In Finland it is impossible for the content creator to fully place his work into

the public domain until his copyright expires.

Copyright only applies in its legal domain. In Europe local legislations create the

rules for copyright, but across Europe copyright is legislated according to EU law which

states how local legislation affects actions in other countries. Across legal domains the

mechanism defining how copyright is legislated in the form trade agreements: The Bern

Convention of 1974, The Universal Copyright Convention of 1971, The Convention Es-

tablishing the World Intellectual Property Organization (WIPO) of 1967 , the Agreement

on Trade Related Aspects of Intellectual Property Rights (TRIPS) of 1994 and the WIPO

Copyright treaty of 1996 [31]. These treaties apply only to members of the signatories

of the treaties, so there is no legal recourse for Europeans to uphold their copyright in

North Korea. TRIPS sets the baseline of legal mechanisms, but other trade agreements

such as the now unlikely Anti-Counterfeiting Trade Agreement (ACTA) could refine the

international copyright protection mechanisms.

3. Abstract Legal and Software Architecture Systems 27

3.1.2. Patents and Trade Secrets

A software patent describes a certain programmatically implemented novel mechanism.

This mechanism cannot be used commercially without license from the patent holder.

Patents are public and it is the responsibility of users not to infringe on patent. Trade

secrets can contain suitably protected ways of implementing or composing a program or

a part of a program. Both mechanism are used to profit from a program and preventing

others from profiting from same mechanism, but they take contradictory approaches. A

patent claims I did this program this way and no one else may do so whereas trade secret

is hiding said program so that others cannot copy the implementation. [32]

The core issue between open source and patents is that while most open source licenses

imply or outright state they grant a patent license to all implementations contained in the

licensed code, there is no way to make sure that the source code does not contain code that

infringes on a patent held by a third party. When using a traditional proprietary licensed

software the distributor has a vested interest in ensuring that the software doesn’t infringe

on third party patents. In most jurisdictions open source software doesn’t infringe on a

patent until it is used commercially and in practice the chance of discovery of a software

patent infringement in privately used software is practically non-existent.

Trade secrets can affect software architecture, but are more likely to affect implemen-

tations such as algorithms. They are hardly relevant in the scope of open source since

code that contains a trade secret is stolen, not licensed. In the case where an open source

developer independently comes up with similar implementation as the trade secret, then

this is not an infringement. If an employee of a company has not signed a confidentiality

contract and publishes a program containing a trade secret with an open source licenses

then the trade secret is void, because the company has not taken reasonable steps to protect

the trade secret.

While software patents and trade secrets could affect open source, they offer no mech-

anism by which to evaluate or manage these on a software architecture level. Software

covered by trade secrets have no public architecture to evaluate. If software patents were

to require a architecture description of a program it could be used to evaluate whether

another program with a sufficiently similar architecture infringes the patent or not. How-

ever if you consider architecture a documentation of design decisions instead of a design

3. Abstract Legal and Software Architecture Systems 28

contract then such an evaluation is not relevant. Software design patterns which are not

considered patentable can be used to produce an architecture and as such a software archi-

tecture could hardly be patentable, or used to evaluate the infringement of a patent. Only

in case where a program is in the same domain and perform the same function could the

similarity of software architecture be used to evaluate patent infringement.

3.1.3. Design Rights and Trademarks

The function of the trademark is to help consumers to differentiate between companies

and products. This allows companies to gain value by developing a brand and prevents

competitors from benefiting or hurting each others. While the software and its compo-

nents can be trademarked these trademarks are unaffected by the compositions or content

of the software and thus do not are not affected by nor do they affect software architecture.

Design rights consist of visually defined forms and actions. [32] While design rights can

cover some parts of a software systems user interface, a design right covers just the de-

sign, and not the implementation of the design so the design right can not extend beyond

the user interface of the system. This means that design rights do not affect the rest of the

software architecture. Design rights and trademarks do cover software but are irrelevant

when considering software architecture, except in cases where the design of the program

are inseparable from the implementations. This small subset of programs could be consid-

ered old or very small programs like demos and compositions or old or simple computer

games. In these cases you either infringe or don’t but without a system architecture there

are no options to use on the architecture level to evaluate or avoid the infringement.

3.1.4. Open Source Licenses

Open Source Licenses are seen as having properties of both contracts and bare licenses.

This has led to a lot of legal confusion on the enforceability of open source licenses as bare

licenses and contracts are covered by different legislation [17]. Traditionally open source

licenses have been classified as academic licenses and copyleft licenses, but according to

our literature review newer research approaches analyze licenses on a more detailed level.

Rosen [17] describes the properties of bare licenses through two examples. One is the

classical case in property law, from which term originates, where a bare license is the

3. Abstract Legal and Software Architecture Systems 29

license granted by a shopkeeper to customers to enter his store in order to do business

without fear of trespassing. The other example is the drivers license which a government

issues, but it does not cause the government to be in any way beholden to for the recipients

actions while driving [17]. This is interesting since the bare license expressed in the case

of property law is not a part of formal law but can be considered to be an expression of

Customary Law as it is defined in LKIF. Customary law is not formal, but it is considered

legally relevant as actions that are customary or generally expected to be performed or

avoided can not be considered illegal unless exceptionally forbidden or required by law.

The example concerning the driver license is more in line with open ource license as

it includes a formal declaration of a right that is not normally extended to all citizens

similar to. In both cases the nature of the license is such that it places no requirements on

the licensor. In the informal case of the shopkeeper, he can revoke his license by declaring

the shop close or that the custom of the person in the shop is not desired, with some legal

caveats such as discrimination. In the formal case laws or statutes have been defined for

cases which lead to the revoking of a drivers license. In the case of the proprietary bare

license, the recipients right to expect the license are limited by custom and in the case of

the drivers license by any statutes defined.

Contracts on the other hand have clearly defined parties, the licensee and the licensor

are both clearly stated as parties to the contract and every detail is hammered out. There

are cultural differences in the interpretation of contracts. Northern European and North

American contracts are usually interpreted to the letter, whereas Mediterranean and Chi-

nese contracts contracts can be interpreted in the scope of relationship of the participants,

whereas Japanese might be inclined to uphold the spirit of the contract over its details.

Originally open source licenses were analyzed taxonomically [17], but modern re-

searchers have deconstructed open source licenses into components to be analyzed on a

component level as well as through the composition of the components [35, 30, 36]. This

analysis of license can be interpreted in the terms of GST [25]

German & Hassan [30] develop a metamodel for open source license as displayed in

Figure 3.1. The license is a subclass of a Legal Document of LKIF [6] and the Medi-

ating class from the KRO [5] because it combines the Grants in the model. Grants and

Requirements are LKIF [6] Norms. Each grant is Qualified [6] by a Condition which

3. Abstract Legal and Software Architecture Systems 30

Mediates [5] the requirements for the Grant. The Grants are Norms which declare rights

for the licensee and the requirements are norms that the licensee must uphold in other to

keep the grants.

Figure 3.1: Metamodel of open source license according to German & Hassan [30].

Alspaugh et al [35] extend and modify the metamodel by German & Hassan [30] by

renaming the Grant to Right and Requirement to Obligation and linking them directly to

each other. As can be seen in Figure 3.2 Alspaugh et al [35] change the Condition to a

Tuple which can link a number of Qualifications [6] to the Norms [6] of rights and obli-

gations. The types of qualifications listed are the Actors, Modalities, Copyright Actions,

Objects like the code covered or other works or specific other licenses [35]. An exam-

ple of qualification by license reference is the MySQL FOSS License Exception, which

allows JDBC drivers licensed with GPL to be used with static linking in FOSS projects

as long as the license used in the project appears on a MYSQL maintained license list.

Modalities can be modifiers of the domain or date or whether the right. Copyright actions

are covered earlier in this subsection. Objects can be the covered code or can reference

a class of code such as derivative or collective works covered created with the licensed

3. Abstract Legal and Software Architecture Systems 31

code.

Figure 3.2: Image of meta model of open source license according to Alspaugh et al [35].

License norms can conflict, with the most obvious conflict being combining a copyleft

license with a proprietary component [30, 17]. The Copyleft norm conflicts with the pro-

prietary requirement of payment in order too use and modify code. Lesser well known

is the conflict between open source licenses terms. The GPLv2 requirement of "no ad-

ditional requirements" conflicts with the 4-clause BSD advertising requirement and the

Apache License 2.0 patent and indemnity requirements. The composition of the license

mismatch problem is presented in Figure 3.3, but it is good to note that the components

and their interconnection types are concepts from the software engineering and software

architecture systems.

Figure 3.3: The components of the license mismatch problem.

3. Abstract Legal and Software Architecture Systems 32

3.2. Software Architecture System

In Section 2.1.2. we defined the three views of software architecture, and stated that

we use the ISO/IEC/IEEE standard 42010-2011 [3] definition, which describes the soft-

ware architecture as abstract representation of the software component organization. Re-

gardless of interpretation software architecture is used in the design of software systems.

Software architecture as a design tool affects the construction part of the software de-

velopment process. According to SWEBOK [20] architecture affects high level design

decisions. An architectural decision would not be which algorithm is implemented a in

section of code, but how the software could be implemented so that any on member of a

family of algorithms could be implemented into that section of code. The abstract com-

ponents and compositions expressed in a software architecture are only relevant if they

are actually implemented in the corresponding way in the actual software system.

Software architecture documentation is a symbolic representation of that abstract sys-

tem which is software architecture. Software architecture documentation is a by product

of the software architecting process. It can be argued that the the architecture documen-

tation is the end product of the software architecting process, this view corresponds to

the SEI view of architecture [22]. The software architecture documentation can also be

viewed as a tool for communicating between the designers when designing the software

architecture and as as a tool for communicating the design for those not involved in the

software architecting process. The software architecture documentation along with the

social interactions of the architects make it possible to communicate the abstract view of

the software architecture to developers, testers, clients and others involved in the soft-

ware development process. By spreading this view of the abstract architecture system the

parties involved are affected by the software architecture.

33

4. CONNECTING SOFTWARE ARCHITECTURE

AND OPEN SOURCE LICENSES

“The thing the ecologically illiterate don’t realize about an ecosystem is that

it’s a system. A system! A system maintains a certain fluid stability that can

be destroyed by a misstep in just one niche. A system has order, a flowing

from point to point. If something dams the flow, order collapses. The un-

trained might miss that collapse until it was too late. That’s why the highest

function of ecology is the understanding of consequences.” [37]

Our classification and system modelling efforts have lead us to come up with four levels

of systems that connect the software architecture system and the abstract legal system

based on the findings of the literature review. These systems have components that ap-

pear in multiple systems and perform different roles, but these broad conceptual levels

help in organizing our approach. The four levels are: 1) procedural legal level, 2) busi-

ness process level, 3) software engineering level, and the 4) social level. The procedural

legal level consists of the legal system which applies these abstract legal concepts to the

actual persons and companies as well as the political frameworks that lead to the creation

of laws and contracts. The business process level consists of the organizations that put to-

gether software engineering teams and the clients and complementary organizations that

buy, use or redistribute the software. The software engineering level consists of software

developers and their tools and resources. The social level is linked within all three pre-

viously mentioned levels and consist of all people involved and their relationships and

communication.

4.1. Procedural Legal System

In modern societies the procedural legal system consists of two separate systems. The leg-

islative system creates laws which are basically complex systems of norms. The judicial

4. Connecting Software Architecture and Open Source Licenses 34

system is then charged to evaluate whether suspect actions by members of society conflict

with these norms and in cases where such conflict is found to assign punishment accord-

ing to laws. If a criminal violation is suspected this suspicions along with any evidence

are presented to the representative of the procedural legal system, like a police officer or

prosecutor. The representative then gathers and evaluates the information available with

an option to gather more information based on her own evaluation of the situation. Based

on the evaluation of this information the conflict is either discarded or presented to the

next level of system until it reaches a level where the final judgement can be made. At

many points people involved in the dispute can file complaints which are then evaluated

and can affect the process.

According to Välimäki [32] license conflicts are processed in civil legal process in

which the proof of non compliance or compliance is up to the parties involved. Such

cases begin by notification of violation to the suspected offending party by the copyright

holder and are usually decided by guided negotiations instead of official judgement. Only

copyright infringement that is premeditated or due to gross negligence or which performs

a great harm on the copyright holder will be processed in a criminal process [32].

Public accusations of infringement may even be illegal [32]. Just the act of public

suspecting a copyright violation can affect the business, software engineering and social

systems, due to fear of repercussions or just hurt feelings. Legal procedures can affect

the software engineering system mainly by requiring time from developers who could

be working on the program instead of presenting it in court or to investigators, but pro-

ceedings can also negatively affect developer motivation and concentration. The direct

effects of the legal process affect the business level in the form of damages assigned and

the amount of labour and finances required in the proceedings. The outcome can affect

the software engineering process if the judgement includes a choice to either uphold the

copyleft requirement of a license or desist use of the licensed software, which may force

software developers to change components in the system, if for some reason they are

unwilling to comply with the license. These relationships are depicted in Figure 4.1.

4. Connecting Software Architecture and Open Source Licenses 35

Figure 4.1: The procedural legal system in case of copyright violation and how it relates to the
software engineering and business systems.

4.1.1. National Legal Systems

National legislative systems create and update national copyright legislation. They should

follow the norms set by their corresponding federal legislation and ratified international

copyright treaties. National legislatures are subject to lobbying as well as expert opinion

when formulating copyright legislation. National judicial systems interpret national law

and custom when evaluating copyright conflicts. Evaluation by national judicial systems

will be affected by federal legislation or international treaties if they conflict with national

legislation. Decisions made on national level can be appealed to federal jurisdiction.

4.1.2. Federal Legal Systems

Federal legislative systems like the European Parliament and Commission and the United

States Congress and Senate make and update federal copyright law. Federal law is usually

held as the highest source of norms. European legislature can be considered quasi fed-

eral as directives are used to harmonize national legislation, but not necessarily as legal

norms [38].

Some federations like Germany have a federal judiciary, but it functions as a national

judiciary. In the EU federal courts only handle cases that have been processed by national

legislature and are appealed to to the federal court. Decisions made in the federal courts

4. Connecting Software Architecture and Open Source Licenses 36

can directly affect the legislation and judicial system on a national level. National leg-

islatures have to follow federal interpretations of law, because in practice not following

federal interpretations would lead to an automatic appeal to the federal level system. [38]

In North America and Britain, evaluation is based on case law which means that eval-

uating copyright infringement is based on law and to decisions made by previous judges

on similar cases. In continental Europe evaluation is based on common law which means

that the prime sources for evaluation is the law as written and the current situation as well

as the judicial’s own evaluation.

4.1.3. International Processes

International treaties form a framework according to which national legislature should be

harmonized [38, 39]. In practice this means that if copyright infringement is performed in

a different jurisdiction than in which the copyright holder operates, the copyright holder

has the right to make a claim for his copyright in the judicial system which governs the

place where the copyright infringement took place [39]. There are of course problems that

arise from going through legal proceedings in foreign country. Basic differences such as

language, culture and lack of social standing or network can form insurmountable or very

expensive obstacles. In case of violations GPL family licenses the local Free Software

Foundation affiliate (if existent) will probably try to help licensors from foreign countries

trying to uphold their rights [40].

4.2. Business Process System

Software is usually developed in organizations. Formal organizations such as open source

foundations, universities and companies develop a lot of software. This requires resources

such as developers, access to computers and networks, physical space and supporting

roles for the organizations. A lot of open source software is developed mainly by indi-

viduals. Himanen [41] identifies the role of large organizations as providing the required

stability for large projects. Even Linux was developed originally in the shelter of Helsinki

University, but it is now supported by The Linux Foundation [41]. While software is also

developed by individuals with their personal tools, particularly open source components,

it is important to identify that software often requires various resources to develop. These

4. Connecting Software Architecture and Open Source Licenses 37

resources are traditionally classified as financial or tangible resource or capital and im-

material resources referred to as intellectual capital. Intellectual capital is particularly

important in software development as the value of software correlates with how compli-

cated the software is. A complicated software program can be used to reduce the how

complicated the related human work is. Thus the usefulness and business value of the

program corresponds with how complicated the program is. Producing complicated soft-

ware is a complex task and requires not only skilled individuals but allowing the skilled

developers to interact in productive way. This framework for interaction is a part of the

organizational capital [23]. The resources needed for software development in an organi-

zation and their relationships with each other are shown in Figure 4.2.

Figure 4.2: The business system of an organization developing software for a client.

Businesses using open source software benefit from community contributions to open

source software projects. The form of community contributions, can be tangible such as

code or immaterial capital such as a good reputation among prospective employees and

clients due to association with popular software [42]. In particular using and contributing

to projects with reciprocal licenses can be seen as altruistic and attract customers and co-

developers [43]. On the other hand some customers fear reciprocal licenses which may

4. Connecting Software Architecture and Open Source Licenses 38

lead to a negative reputation among those clients [43]. Some communities view academic

licenses as more altruistic, so when starting a new open source project the type of license

and community must be considered carefully.

When dealing with open source components, not all business models are appropri-

ate. By taking into account the business model used for the software many problems of

open source license can be mitigated [43, 13]. Some companies merely incorporate open

source components into their software and either sell them with a proprietary license or

offer them as a service [44, 45]. The open source version may lack features of the propri-

etary version. Some companies offer the core of their product as open source, but offer

proprietary plugins or services to support the product [44, 45]. Open source mobile appli-

cations are sold by Google and Apple services, probably because the majority of Android

and iPhone users lack the technical skill to compile and install the software themselves.

Many software based services use open source components because they have used them

to gather other valuable assets that combined with their software they can provide a dif-

ferentiated service. Hardware developers also use open source since their business value

is generated from the hardware and the software complements it [44]. Competitors can

use their open source components in embedded systems, but the customizations required

are of such complexity that the direct benefit to competitors is not large enough compared

to direct benefits for the company.

4.3. Software Engineering System

As presented in Section 2.2.3. the software engineering domain divided into five sub

domains: software requirements, software testing, software construction, software tools

and the people developing the software. Their interactions are displayed in Figure 4.3

Software tools are used in software construction but can also be used in software test-

ing. Software tools do not usually affect the license issues of the produced software or

used components. Our research encountered academic speculation on effects of tools on

component licensing, but the literature review did not find evidence of this.

Software Requirements are based on business requirements of the software. Software

requirements define where the software is going operate and what it is going to do. Soft-

4. Connecting Software Architecture and Open Source Licenses 39

Figure 4.3: Relationships between Software Engineering systems components and Procedural and
Abstract legal systems and Business System.

ware testing provides information about the system in relationship to the requirements.

It is up to the developers how this information is used, usually the information is used

in Software Construction but feedback can also affect design. Static and runtime analy-

sis methods can provide information on program composition that can relate to licenses

requirements.

Software design tries to answer the question how the software is constructed so that

it fulfils the software requirements. Software architecture is a subset of software design.

The developers use the software design to guide them in constructing the software.

Software developers are the people who actually develop the software, as such they

are the people who perform all the actions in the software engineering domain. Usually

they are divided into groups by function of different areas of the developed software being

produced, but this is not necessary. In open source projects a developer can participate

in any way she wants from just submitting a single line of code, bug report or feature

request, or develop the whole program themselves. The business system affects who

the developers are and what resources are available. Through the business system the

procedural legal system can affect these resources. The abstract legal system affect the

software components directly in the form of the software licenses. By doing software

construction the developers perform actions that are considered copyright actions which

can be evaluated by the procedural legal system.

How the license mismatch problem presented in Subsection 3.1. affects the software

4. Connecting Software Architecture and Open Source Licenses 40

engineering process is shown by the ontology tool for license compliance by as described

Gordon [36]. Gordon uses the LKIF and describes not only the metamodel of the open

source license, but also the application domain. In the QUALPSO project it was shown

that license models can be used with the Carneadas system to detect license conflicts in

between licenses modelled. With the application domain including system architecture,

with the types on links between software components, the LKIF based OWL model can

be analyzed whether the license conflicts found would affect the modelled software sys-

tem [36]. The extended model can be found in Figure 4.4. This model shows how open

source license properties appear in the software engineering system.

Figure 4.4: Metamodel of open source license and domain according to the Qualipso project [36]

4.4. Social System

The social system consists of the social interactions between people involved in making

software happen. This includes everyone from the developers to the customers to the

cafeteria staff. Software development is knowledge intensive work and as such motiva-

tion and human interaction strongly affect performance [23]. While the social system is

4. Connecting Software Architecture and Open Source Licenses 41

based on personal interactions it is beyond the scope of this work to consider individual

relationships, so instead we consider the social interactions related to groups and organi-

zations.

The relationship capital of the business system is also part social system of software

producing organizations. By interacting with the open source community, organizations

can affect how the open source software is developed and therefore receive greater benefits

from using open source software. It is important to understand what kind of open source

license is used as it affects how to interact with the community [43]. Most JavaScript is

developed with permissive licenses and it could be hard to attract developers to work on a

reciprocal JavaScript component. GPL developers consider DRM software anathema and

as such an open source DRM implementation would probably not interest people willing

to work with a GPL family license.

On the negative side problems with license conflicts can lead to bad reputation to the

software producing organization. License conflict can affect the motivation and focus of

the software development team. A reputation of misuse of licenses could lead to dis-

trust by potential recruits and potential clients. Unmanaged license issues lead to fear,

uncertainty, and doubt in the social system.

42

5. METHODS FOR SOFTWARE ARCHITECTURE

DEVELOPMENT WITH OPEN SOURCE LICENSES

“Enact strategy broadly, correctly and openly. Then you will come to think of

things in a wide sense and, taking the void as the Way, you will see the Way

as void. In the void is virtue, and no evil.” [8]

This chapter covers the evaluation of known tools and methods for software engineer-

ing used to detect and resolve conflicts caused by open source license properties. Based on

the interaction of open source licenses and software architecture we developed the OSSLI

framework which covers the abstract legal, software architecture, procedural legal, soft-

ware engineering business and social systems. The interaction between these systems is

highlighted in Figure 5.1 which shows how software component integration links software

architecture and open source license conflicts. Social system affects software engineering,

procedural legal and business systems directly and was excluded from the figure for clar-

ity. In order to better evaluate the mechanisms for managing these conflicts we present the

the OSSLI framework in Section 5.1.. Using the OSSLI framework we evaluate license

level management in Section 5.2., architecture level management in Section 5.3. and soft-

ware engineering tools and methods in Section 5.4.. In the final section (Section 5.5.) we

briefly evaluate the usage of the OSSLI Framework for software producing organizations

beyond the license, software architecture and software engineering levels.

5.1. The OSSLI Framework

The OSSLI framework for Open Source License Management with Software Architec-

ture is presented a series of questions covering the Abstract Legal, Software Architecture,

Procedural Legal, Business, Software Engineering, Architecture, and Social Systems in

Table 5.1.. If a tool or method can be used to answer these questions allows for the eval-

uation of how a tool or method helps manage license risk. The answers to the questions

5. Methods for Software Architecture Development with Open Source Licenses 43

Figure 5.1: Overview of open source license effects on software development.

can also be used to evaluate the coverage of a software producing organizations license

compliance methodology.

From Table 5.1. we can see that in order to evaluate the effects of open source license

properties on software architecture we need only apply the questions in the abstract le-

gal, software architecture and software engineering systems. We will use the questions

in these three domains the evaluate the methods and tool used for open source license

compliance in software engineering.

Table 5.1: The OSSLI framework

System Questions

Abstract Legal AL-0) What is the license?

(AL) AL-1) Is the jurisdiction defined in the license?

AL-2) What are the requirements of the license?

AL-3) What are the rights granted by the license?

AL-4) How are the requirements related to the right granted?

AL-5) How are the licensors identified?

AL-6) Can conflicts between licenses be identified?

5. Methods for Software Architecture Development with Open Source Licenses 44

Table 5.1: The OSSLI framework

System Questions

AL-7) Can conflicts between licenses be resolved?

Software SA-0) Are the licenses of components identified?

Architecture SA-1) Can the architecture be used to evaluate which licenses con-

flict with other license due to composition or connection?

(SA) SA-2) Can the architecture be used to evaluate which licenses con-

flict in the different usage domains?

SA-3) Can the architecture be used to resolve license conflicts?

SA-4) Can the architecture be used to prevent license conflicts?

Procedural PL-0) In what jurisdiction will copyright infringement be processed?

Legal (PL) PL-1) How does the jurisdiction consider open licenses?

PL-2) How does the jurisdiction consider the terms of licenses?

PL-3) What are the resources needed to mange legislation related to

copyright infringement?

PL-4) Are potential license violations or licensors from different ju-

risdictions?

PL-5) How will the jurisdiction take into account cultural norms?

Business (Bu) Bu-0) Is our business model compliant with open source license re-

quirements?

Bu-1) How do open source license properties affect our intellectual

capital?

Bu-2) Does our use of open source components affect our business

relationships?

Bu-3) What resources are needed to manage open source licenses?

Bu-4) What resources are needed to manage an infringement allega-

tion or lawsuit?

Software SE-0) Does the implementation match the software architecture?

Engineering SE-1) Are all of the licenses of components identified?

(SE) SE-2) Can license conflicts be detected by the software developers?

SE-3) Can license conflicts be resolved by the software developers?

5. Methods for Software Architecture Development with Open Source Licenses 45

Table 5.1: The OSSLI framework

System Questions

Social (So) So-0) How will the license terms affect clients?

So-1) How will the license terms affect potential recruits?

So-2)How will the license terms affect the relationship with the de-

velopment community?

So-3 How would the software license term affect the the software

engineering team ?

So-4) How would infringement allegation or lawsuit customer rela-

tions?

So-5) How would infringement allegation or lawsuit affect employee

or potential employee relations?

So-6) How would infringement allegation or lawsuit affect commu-

nity relations?

So-7) How would infringement allegation or lawsuit affect the soft-

ware engineering team?

5.2. License Management

License modelling is not just an academic way of studying complex license texts and

transforming them into more easily understandable and presentable components. Present-

ing licenses in structured license notation is used in industry to understand, document, and

automatically process and reason about license terms, not only in conjunction with open

source licenses.

We revisit the approaches of German & Hassan [30] and Alspaugh et al [35] presented

in Subsection 3.1. and present two formal license modelling methods: Creative Com-

mons Rights Expression Language (ccREL) and Open Digital Rights Language (ODRL).

ccREL is developed by the the Creative Commons community and is based on RDF.

ODRL is developed within the W3C and can be expressed in XML, RDF and JSON.

XML (Extensible Markup Language) and JSON (JavaScript object notation) are human

readable languages for representing structured data in machine readable form. RDF (Re-

5. Methods for Software Architecture Development with Open Source Licenses 46

source Description Framework) is an dialect of XML that allows network representation

of concepts. Modelling licenses and understanding their interactions allows for the devel-

opment of license compliance patterns. Patterns document how to detect certain compli-

ance conflicts and how to resolve the conflicts.

Table 5.2: Tools for managing license on abstract legal level according to the OSSLI-framework .
Abstract legal

0) 1) 2) 3) 4) 5) 6) 7)
Modelling x x x x x

ccREL x x x x
ODRL x x x x x x
Patterns x x

Academic license models as presented German & Hassan [30] and Alspaugh et al [35]

in Subsection 3.1. can be used to identify the rights and requirements of the license.

The information gained by modelling licenses can be applied to wider use such as in the

Qualipso project presented Section 4.3.. According to German & Hassan [30] the process

of modelling license develops the modellers understanding of the license thus helping

them detect license conflicts. The Qualipso project used the Carneades logic engine to

automatically detect conflicts between modelled licenses based on the license properties.

ccREL is a rather simple extension of RDF. The main concepts and their relationships

are presented in Figure 5.2. The model is straightforward, a work has a license and the

license has properties. It is good to note that the licensor or copyright holder is identified

by their relationship with the work and not the license. The ccREL model assumes that in

order to receive any of the permits, the licensor must uphold all requirements and refrain

from all prohibited actions, but this is not actually correct for all licenses. Such inaccu-

racy is can be problematic, but since the actual legal text is always going to be the primary

source when evaluating more complex issue, ccREL can be useful as a lightweight no-

tation mixing machine and human readability. It is comparatively easy to compare a

representation of GPL and original BSD license in ccREL and note that original BSD has

the attribution clause that does not exist in GPL and therefore conflicts with the copyleft

clause. But this is not a problem if the program is not distributed so the conflict does not

exist in all cases. Also the ccREL, language has only two requirements for copyleft which

cover the GPL and LGPL terms of copyleft, but not Mozilla or AGPL.

The core of the ODRL model as present in Figure 5.3 shows that the complexity of

5. Methods for Software Architecture Development with Open Source Licenses 47

Figure 5.2: ccREL metamodel.

ODRL starts being a challenge for human readability. ODRL allows for linking require-

ments directly to permissions thus allowing for more detailed expression like the academic

models. Gangadharan et al [46] show that ODRL can be used to model open source li-

censes, and that those models can be used to detect license conflicts. The expressivity and

complicated nature of ODRL would make it more suitable for automated license analysis

than ccREL. The core of ODRL does not take into account copyright holder relationships,

but it can be extended to better describe the software development domain. Both ODRL

and ccREL are suited for transferring information about licenses, storing them digitally

and identifying the license and copyright holder of the work, but they should be used in

conjunction with the full text of the license.

There are other license expression languages, like LicenseScript, and other legal ex-

pression languages beyond LKIF, that could be used in similar way to model open source

licenses. However we found no references of them being applied to the open source do-

main.

According to German & Hassan [30] and Hammouda et al [48] patterns can be used

5. Methods for Software Architecture Development with Open Source Licenses 48

Figure 5.3: Complete version 2.0 ODRL Core Model [47].

to solve license compliance issues on the legal level. Design patterns are clearly defined

solutions to common problems in a given domain. In the legal domain they are human

implementable algorithms that that consist of a description of a problem and the steps

required to solve the problem. The pattern presented are listed in Table 5.3. In the original

sources the patterns are divided into more exact problems and more detailed solutions, as

well as whether they are performed by licensor or licensee, but here they are presented

in a more general sense. Licence patterns require legal domain knowledge to use, but are

presented in terms that a software developer should be able to understand. The ability of

the user to use a pattern to detect and resolve license compliance issues on the legal level

requires that the licenses are identified and the user has suitable skill to match the license

conflict to the problem description of the pattern.

5. Methods for Software Architecture Development with Open Source Licenses 49

Table 5.3: Patterns for the abstract legal level.
Pattern Problem Description Sources

Clarification
Licence terms
unclear

The licencor can issue a clarification to a
norm in the license or the licensor can ask
for a clarification.

[30]

Exception
Licence terms
incompatible

The licensor can issue an exception to a
norm in the license or the licensee can ask
for a exception.

[30]

Relicensing
Licence terms
incompatible

The licensor can release the software under
multiple licenses, the licensee can ask for
different license and some licenses allow the
licensee to republish under a different
license.

[30, 48]

5.3. Licenses and Software Architecture

Software architecture can be used to detect license conflicts, but it is also important to

understand how the license and software architecture relate to the business requirements

of the software. In the OSSLI framework we identify software architecture level issues

for license compliance are repeated in Figure 5.3.

Table 5.4: The abstract legal level of the OSSLI framework
System Questions
Abstract SA-0) Are the licenses of components identified?
Legal SA-1) Can the architecture be used to evaluate which licenses con-

flict with other license due to composition or connection?
SA-2) Can the architecture be used to evaluate which licenses con-
flict in the different usage domain
SA-3) Can the architecture be used to resolve license conflicts?
SA-3) Can the architecture be used to prevent license conflicts?

We evaluate the benefit of deriving rules for software components used in product

architecture based on license and business analysis. Other Architecture mechanism for

license compliance is adding IPR annotation to software architecture descriptions and

using design patterns to detect and resolve compliance issues before implementation. An

overview of their functionality is presented in Table 5.5

5.3.1. License requirement for architecture

By understanding the interaction between open source licenses, software developers can

define architecture level rules to prevent license conflicts. The most common approach

5. Methods for Software Architecture Development with Open Source Licenses 50

Table 5.5: Methods for managing license on the software legal level according to the OSSLI-
framework .

Software Architecture
8) 9) 10) 11) 12)

Business requirements x x
Consistency requirements x

Architecture IPR annotation x x x x x
Patterns x x x

to using open source software is to limit the use of components to a selected group of

licenses. The Eclipse foundation only accepts components licensed under the Eclipse

Public License. A more mature approach is to analyse the business level requirements of

the software and define the list suitable licenses based on those requirements while at the

same time making sure the license are all compatible with each other.

There are various lists available that show which license are non-compliant with each

other. By choosing a primary license for a project it is easy to compile a list of which

license are compliant with the main license, but whenever a new license is added to the

list it must be checked form compliance with all previously added license as well the

primary license. This leads to an increasing workload for each added license.

5.3.2. Architecture decision for License Management

Adding software license information to software architecture description allows more ma-

ture evaluation of possible licenses conflicts, but this dependent on skills of the architect.

This approach helps detect possible conflicts between license in by providing a visual-

ization of their interactions. The Qualipso project uses OWL to model the architecture

and IPR information [36]. Alspaugh et al [35] used Arch studio software which uses

xADL architecture description language. UML is the most commonly used language to

formally describe software architecture, and it can be extended by profiles to include IPR

information like license and copyright holder.

Similarly to the legal domain, patterns can be used to identify and resolve license

compliance conflict in the architecture system. An overview of identified patterns are

given in Table 5.6. The patterns are described in more detail in the sources.

Using pattern requires some expertise in the legal as well as the software engineering

domains. Most patterns require that a license incompatibility is already detected. The

5. Methods for Software Architecture Development with Open Source Licenses 51

Table 5.6: Patterns for the software architecture legal level.
Pattern Problem Description Sources

User
integration

Composition
conflict

The conflicting components are
distributed separately and the user
integrates them as patch or plugin.

[30, 48]

Change
interaction

Interaction
Conflict

The type of interaction between
components changed to a more loosely
coupled level.

[48]

Offer as
service

Composition
conflict

Only one component of the conflict is
distributed the other functionality is
offered as service.

[48]

Tier
component

Interaction
Conflict

A component with a compliant license
regarding to the original conflicting
components is used to integrate the
components.

[30, 48]

pattern helps detect the how the license mismatch can be found in the architecture. Using

the patterns to resolve license issues can lead to difficulties in other areas of the program

such as usability, maintainability or performance. It is important to be able to evaluate

such trade-offs holistically in order to justify inclusion of the conflicting components.

5.4. License Management in Software Engineering

In a software engineering project the most likely tools to be used for license compliance

are on the abstract legal, software architecture and software engineering levels. The ab-

stract legal, software architecture and software engineering levels architecture levels are

revisited in Table 5.7. Fist we present the software engineering methods for license com-

pliance in Subsection 5.4.1. Those methods are presented int the context of the OSSLI

framework in Table 5.8. Software engineering tools for license compliance are reviewed

in Subsection 5.4.2. and presented in the context of the OSSLI framework in Table 5.8.

5.4.1. Methods

We identified three methods used to ensure open source license compliance in software

engineering. These were educating the developers on the properties of open source li-

censes and the risk involved, reviewing open source source code for IPR information, and

the application of legal and software architecture patterns during the software engineering

process.

5. Methods for Software Architecture Development with Open Source Licenses 52

Table 5.7: The abstract legal, software architecture and software engineering levels of th OSSLI
framework

System Questions
Abstract Legal AL-0) What is the license?
(AL) AL-1) Is the jurisdiction defined in the license?

AL-2) What are the requirements of the license?
AL-3) What are the rights granted by the license?
AL-4) How are the requirements related to the right granted?
AL-5) How are the licensors identified?
AL-6) Can conflicts between licenses be identified?
AL-7) Can conflicts between licenses be resolved?

Software SA-0) Are the licenses of components identified?
Architecture SA-1) Can the architecture be used to evaluate which licenses con-

flict with other license due to composition or connection?
(SA) SA-2) Can the architecture be used to evaluate which licenses con-

flict in the different usage domains?
SA-3) Can the architecture be used to resolve license conflicts?
SA-4) Can the architecture be used to prevent license conflicts?

Software SE-0) Does the implementation match the software architecture?
Engineering SE-1) Are all of the licenses of components identified?
(SE) SE-2) Can license conflicts be detected by the software developers?

SE-3) Can license conflicts be resolved by the software developers?

The most versatile method to manage risk on open source licenses is education of

developers on licensing issues. Being aware of license conflict possibilities and reper-

cussions will help developers stay aware of license terms. Being able to identify licenses

forms the basis of being able to detect license conflicts and resolve them. Our review did

not find any specific methods or metrics for education on opens source license. The Linux

foundation has developed a guide for implementing an open source license compliance

program for a software producing organization, which could be used as a basis of what a

licenses compliance education program could contain.

Package review is the process of reviewing the source code of software packages and

documenting all license texts and copyright notices found within. This is very useful as

not all open source components are licensed with the same license that they are distributed

with. If the package contains licenses tat conflict with each or the distribution license it

can not be used without copyright infringement. It is possible to infringe on an undoc-

umented license that is contained in the component. Von Willebrand & Partanen [49]

consider package review as a necessary part of any license compliance program. The

result of the audit can be included into the software architecture.

5. Methods for Software Architecture Development with Open Source Licenses 53

Ta
bl

e
5.

8:
M

et
ho

ds
fo

rm
an

ag
in

g
lic

en
se

on
so

ft
w

ar
e

en
gi

ne
er

in
g

le
ve

la
cc

or
di

ng
to

th
e

O
SS

L
I-

fr
am

ew
or

k.
A

bs
tr

ac
tl

eg
al

So
ft

w
ar

e
ar

ch
ite

ct
ur

e
So

ft
w

ar
e

en
gi

ne
er

in
g

0)
1)

2)
3)

4)
5)

6)
7)

0)
1)

2)
3)

4)
0)

1)
2)

3)
R

ev
ie

w
x

x
x

x
x

x
E

du
ca

tio
n

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Pa
tte

rn
s

x
x

x
x

x
x

x

Ta
bl

e
5.

9:
To

ol
s

fo
rm

an
ag

in
g

lic
en

se
on

so
ft

w
ar

e
en

gi
ne

er
in

g
le

ve
la

cc
or

di
ng

to
th

e
O

SS
L

I-
fr

am
ew

or
k

.
A

bs
tr

ac
tl

eg
al

So
ft

w
ar

e
ar

ch
ite

ct
ur

e
So

ft
w

ar
e

en
gi

ne
er

in
g

0)
1)

2)
3)

4)
5)

6)
0)

1)
2)

3)
4)

5)
0)

1)
2)

3)
A

nt
ep

ed
ia

x
A

SL
A

x
x

x
x

x
x

x
D

C
T

x
x

x
x

x
x

x
Fo

ss
ol

og
y

x
x

H
U

T
O

SL
C

x
x

x
x

x
L

ch
ec

ke
r

x
x

x
x

N
in

ka
x

x
Q

ua
lip

so
C

ar
ne

ad
es

x
x

x
x

x
Q

ua
lip

so
O

SL
C

x
x

O
SS

L
I-

to
ol

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

5. Methods for Software Architecture Development with Open Source Licenses 54

Software architecture and abstract legal and software architecture license conflict res-

olution patterns have already been covered in their own corresponding sections, but they

can also be used during the software engineering process. In order to properly implement

a patterns in practice software engineering, legal or social skills may be required.

5.4.2. Tools

We attempted to find a representative sample of open source license compliance tools.

We preferred programs that were open source or documented in peer reviewed sources.

While the sample size is small it represents the mainstream of approaches these issues

and the resources needed to map every program that can be used to detect a license text

or extend a software architecture description with IPR information were unavailable.

Antepedia is a web service which can be used to search for license documentation

of open source components programs, such as license and copyright information (AL-

0). It includes information not only of published license but also licenses of internal

components. [50]

ASLA (Automated Software License Analyzer) is developed by Realtor and it uses

static analysis to detect license and copyright information of files (AL-0, SA-0, SE-0,

SE-1). ASLA reverse engineers the program architecture based on compiler output to

detect dynamic and static links between licenses and analyze the composition for possible

license conflict based on a predefined ruleset (SA-1, SE-2). [51]

The DCT (Dependency Checker Tool) developed by the Linux Foundation analyses

links between binaries and uses license information from package manager to detect po-

tentially conflicting linkage types between license (AL-0, SA-0, SA-1, SE-0, SE-1, SE-2).

The rules for license and link conflicts are developed by the Linux Foundation (Al-6). [52]

FOSSology searches files and packages for copyright and license information. It can

be used to build a database of file and package copyright information using a notation

such as SPDX or another defined schema (AL-0, AL-5). It is an open source project that

has many large industrial users.[53]

HUT OSLC is a source code analysis tool, and there are a couple of different versions

available of this Open source License Checker that were developed at Helsinki University

of Technology, whose properties vary a bit. The HUT OSLC identifies license and copy-

5. Methods for Software Architecture Development with Open Source Licenses 55

right information from static analysis of source files(AL-0, AL-5, SA-0, SE-1). It uses a

predefined compatibility table of licenses to detect license conflicts(AL-6, SE-2).[54]

Lchecker detects open source code in source code by matching it to Google code

search(SE-1). If matches are found it provides the license based on information in Google

code search(AL-0).[55]

Ninka detects licenses and copied code from source code files (AL-0, SE-1). Ninka

needs an open source repository to match the code to. Code duplicates resembling pub-

lished open source are reported. [56]

Qualipso Carneades is used to reason about license conflicts based in a software

architecture based on license models(AL-2, AL-3, AL-4). The license models are de-

scribed in LKIF-OWL and the architecture descriptions are transformed from UML to

OWL (SA-0, SA-1). These OWL models processed by the Carneades logic engine using

a compliance ruleset described in OWL to detect conflicts (SE-2).[36]

Qualipso OSLC detects licenses from source code files and sends them to a web ser-

vice for conflict checking (SA-0, SE-0). The conflict detections mechanism used at the

web service are not described (SE-2).[57]

The OSSLI tool is mentioned here for completeness and comparison. The OSSLI-tool

was developed with the help of the OSSLI Framework is covered in detail Chapter 6.

Binary Analysis Tool developed by the Linux foundation is used to by license com-

pliance investigators to detect open source licensed code in compiled software packages

by similarity metrics. This is not really an architecture or license property tool, but it

is mentioned since it is the primary tool, in addition to tip-offs, for license compliance

investigators.

There a numerous companies that provide proprietary tools an services for open source

license compliance. Due to their proprietary nature they are not reviewed in the scope of

this thesis.

5.4.3. Review

While there are other tools available, based on our review there are five main functions

for compliance tools: detecting code and licenses, identifying IPR information, analyzing

the composition, detecting license conflicts and resolving conflicts. There is clear dif-

5. Methods for Software Architecture Development with Open Source Licenses 56

ferentiation between analysis tools and design tools and only the OSSLI-tool supported

conflict resolution. This differentiation can be seen in Table 5.10 In order to ensure

license compliance a mixture of tools and methods should be used.

Table 5.10: Comparing roles license compliance tools.
Tool Detection Identification Analyzing Conflict Resolution
Asla yes yes yes yes no

Fossology yes yes no no no
HUT OSLC yes yes no yes no
LChecker yes yes no no no

Qaalipso Carneades no no yes yes no
OSSLI no no yes yes yes

5.5. License Management in Software Production

In order for an organization to benefit from using open source and be free of the fear

of license non-compliance in software development legal, architecture and software engi-

neering tools are not enough. These tools and methods must be supported from procedural

legal, business and social levels.

5.5.1. Legal Proceedings

It is suggested that software producing organizations prepare themselves for the risks in-

volved in IPR litigation. The resources needed for proceedings include legal skills and

official representation, but its is also necessary to understand legal customs. The defi-

nition of due diligence may vary by jurisdiction and it is necessary to be able to show

reasonable attempt at license compliance. This will require both software engineering

and legal expertise and organization should be aware of where it could get these resources

if faced with litigation. Including architecture level methods of license compliance will

in many cases support the claim of due diligence. The definition of reasonable will vary

by jurisdiction as no definition of due diligence has been recorded for open source license

compliance.

5. Methods for Software Architecture Development with Open Source Licenses 57

5.5.2. License Management in Business

Education on open source licenses on a business level is useful, since by choosing a

suitable business model for the software products usage domain many license conflicts

can be avoided. Some of the resolution mechanism, like purchasing a proprietary license

for an open source product or hosting a part of the product as a service will affect the

software business functionality. Education on licensing issues also allows risk evaluation

by the business level of the organization and their vigilance on the issues will support the

developers attention to license compliance.

Ziemr [42] suggests that clearly differentiating and recording proprietary and non pro-

prietary resources on a business level helps in preventing license conflicts in software

development. By having a clear separation, accidentally mixing open and closed source

is prevented.

Managing open source licensing can create other benefits such as resource of devel-

oper skilled with working with same tools as the organization or an increased supply of

complimentary businesses. Using and contributing to open source can offer other benefits

such as increase social capital.

5.5.3. OS-communities and Social Effects of Licenses

Maintaining a relationship with open source communities will allow a software producing

organization to develop their understanding of license interpretation customs. Positive

community relations will also help in recruitment efforts. A positive reputation among the

development community will allow greater leverage in influencing open source projects

development. This leverage cannot be used without complying with and understanding

licenses and the community.

58

6. OSSLI TOOL

“Once men turned their thinking over to machines in the hope that this would

set them free. But that only permitted other men with machines to enslave

them.” [37]

In the course of the OSSLI project the OSSLI tool was developed in tandem with

our research. The OSSLI tool reflects the understanding of open source license property

and software architecture interaction that was formalized into the OSSLI framework. The

OSSLI tool is based on extending software architecture descriptions with IPR information

which can then be used to manage license issues before or during software development.

The tool is developed as an Eclipse plugin for the Papyrus UML editor. The OSSLI tool

and the UML profiles are documented in detail by Luoto [58].

6.1. Tool Design

The OSSLI tool is based on a open architecture in which the core communicates with

UML model in Papyrus. There are nine types of plugin that implement the actual li-

cense compliance support: Conflict Detection, Problem resolution, Package Database,

Risk View, License Model, Logger, Reporting, Profile and Help. The plugin architecture

is shown Figure 6.1 and the functions of the plugins are described in Table 6.1

Table 6.2 restates the the OSSLI-framework for the abstract legal, software architecture

and software engineering levels. Table 6.3 shows how the roles of the different plugins

map to the OSSLI framework.

The OSSLI tool is mainly a framework for showing how to integrate different ap-

proaches to open source license compliance into one tool. For example we implemented

both package review based profile and ccREL based profile. The package review based

profile was used by different plugins to reason whether a package is safe for certain us-

age domain. The ccREL was profile could be used by different plugins to reason about

6. OSSLI tool 59

Figure 6.1: The architecture of the OSSLI tool.

copyleft conflicts based on linking or composition of components. A plugin could be

developed combining the information from these different plugins to support even more

refined reasoning on license risks.

The OSSLI tool represents the holistic approach to license compliance advocated by

the OSSLI framework. It is a tool to be used during software requirements and architec-

ture engineering. As such it lacks the source code level license and copyright information

procurement tools. If the Papyrus tools architecture reverse engineering tools are at some

point mature enough they could be extended to include the IPR detection functionality

found in other license compliance tools. The nature of reverse engineering tools is that

they are applied after the fact, whereas the OSSLI framework and OSSLI tool are about

preemptive action to ensure license compliance. Therefore no plugin was developed to

OSSLI framework question SE-0.

6.2. CCREL and Copyleft Management

Based on the ccREL license models plugins where developed that could be used to detect

cofnlicts with LGPL or GPL and other licenses. All the plugins named here are in the

org.eclipse.papyrus.ossli namespace. The ccrelprofile plugin adds IPR information based

6. OSSLI tool 60

Table 6.1: Description of the functions of the OSSLI plugins according to Luoto[58].
Component Description
Core Handles interactions between the application model, licensing in-

formation and the user.
License Profile An UML extension to include license information.
License Model It describes in computable format the clauses, restrictions, rights

and the interdependencies of a license.
Package
Database

A repository containing a list of packages with license, copyright
and other IPR related information

Risk View Assess legal risks related to use of component for variable pur-
poses re-licensing, sale, internal use etc.

Conflict Detec-
tion

Analysis whether license terms of different licenses conflict when
linked or interconnected with another way into the same software.

Problem Resolu-
tion

Suggests operations that can be performed to remove license con-
flicts from model.

Learning Agent Records user actions so that they can be later used to improve
program performance.

Reporting The analysis results from the different components can be output
in different formats.

Documentation Provides a way to linking to internal and external documentation
on open source licensing concerns.

on the ccREL standard to UML-models, it also adds a possibility to define associations

between components in terms relevant to copyleft compliance. ccrelicenses is a license

model plugin that expresses ccREL license models in java. Ccrelcopyleftconflicts is a

conflict detection plugin that associates the can perform analysis based on the UML-

model based on the information in the profiled UML-model and the license.

The algorithm of the Ccrelcopyleftconflicts plugin is based on the OSSLI framework.

Based on the terms of the GPL and LGPL copyleft requirements we defined rules for

Copyleft and Lesser Copyleft range based on customs as defined in the "Linking Docu-

ment." [59] For both Lesser Copyleft and Copyleft components in the same compilation

unit or package will be in range of copyleft. Also a component linked statically to a

component within copyleft range will be in copyleft range for both Copyleft and Lesser

Copyleft, but dynamically linked components will be in copyleft range of only Copyleft

but not Lesser Coptyleft. For each component with Copyleft or Lesser Copylef require-

ment in their license a full spannign tree for copylef range is calculated. For each compo-

nent in copyleft range the licence model is checked for requirements that do not appear in

the original license. If such requirement are found then then a copyleft conflict is found

6. OSSLI tool 61

Ta
bl

e
6.

2:
T

he
ab

st
ra

ct
le

ga
l,

so
ft

w
ar

e
ar

ch
ite

ct
ur

e
an

d
so

ft
w

ar
e

en
gi

ne
er

in
g

le
ve

ls
of

th
O

SS
L

If
ra

m
ew

or
k

A
bs

tr
ac

tL
eg

al
So

ft
w

ar
e

A
rc

hi
te

ct
ur

e
So

ft
w

ar
e

E
ng

in
ee

ri
ng

A
L

-0
)W

ha
ti

s
th

e
lic

en
se

?
A

L
-1

)I
s

th
e

ju
ri

sd
ic

tio
n

de
fin

ed
in

th
e

li-
ce

ns
e?

A
L

-2
)

W
ha

t
ar

e
th

e
re

qu
ir

em
en

ts
of

th
e

lic
en

se
?

A
L

-3
)

W
ha

ta
re

th
e

ri
gh

ts
gr

an
te

d
by

th
e

lic
en

se
?

A
L

-4
)

H
ow

ar
e

th
e

re
qu

ir
em

en
ts

re
la

te
d

to
th

e
ri

gh
tg

ra
nt

ed
?

A
L

-5
)H

ow
ar

e
th

e
lic

en
so

rs
id

en
tifi

ed
?

A
L

-6
)

C
an

co
nfl

ic
ts

be
tw

ee
n

lic
en

se
s

be
id

en
tifi

ed
?

A
L

-7
)

C
an

co
nfl

ic
ts

be
tw

ee
n

lic
en

se
s

be
re

so
lv

ed
?

SA
-0

)
A

re
th

e
lic

en
se

s
of

co
m

po
ne

nt
s

id
en

tifi
ed

?
SA

-1
)

C
an

th
e

ar
ch

ite
ct

ur
e

be
us

ed
to

ev
al

ua
te

w
hi

ch
lic

en
se

s
co

nfl
ic

t
w

ith
ot

he
r

lic
en

se
du

e
to

co
m

po
si

tio
n

or
co

nn
ec

tio
n?

SA
-2

)
C

an
th

e
ar

ch
ite

ct
ur

e
be

us
ed

to
ev

al
ua

te
w

hi
ch

lic
en

se
s

co
nfl

ic
ti

n
th

e
di

ff
er

en
tu

sa
ge

do
m

ai
ns

?
SA

-3
)

C
an

th
e

ar
ch

ite
ct

ur
e

be
us

ed
to

re
so

lv
e

lic
en

se
co

nfl
ic

ts
?

SA
-4

)
C

an
th

e
ar

ch
ite

ct
ur

e
be

us
ed

to
pr

ev
en

tl
ic

en
se

co
nfl

ic
ts

?

SE
-0

)
D

oe
s

th
e

im
pl

em
en

ta
tio

n
m

at
ch

th
e

so
ft

w
ar

e
ar

ch
ite

ct
ur

e?
SE

-1
)A

re
al

lo
ft

he
lic

en
se

so
fc

om
po

-
ne

nt
s

id
en

tifi
ed

?
SE

-2
)C

an
lic

en
se

co
nfl

ic
ts

be
de

te
ct

ed
by

th
e

so
ft

w
ar

e
de

ve
lo

pe
rs

?
SE

-3
)C

an
lic

en
se

co
nfl

ic
ts

be
re

so
lv

ed
by

th
e

so
ft

w
ar

e
de

ve
lo

pe
rs

?

Ta
bl

e
6.

3:
T

he
fu

nc
tio

ns
of

th
e

O
SS

L
I-

to
ol

pl
ug

in
s

m
ap

pe
d

to
th

e
O

SS
L

If
ra

m
ew

or
k.

A
bs

tr
ac

tl
eg

al
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

So
ft

w
ar

e
en

gi
ne

er
in

g
0)

1)
2)

3)
4)

5)
6)

7)
0)

1)
2)

3)
4)

0)
1)

2)
3)

L
ic

en
se

Pr
ofi

le
x

x
x

x
x

L
ic

en
se

M
od

el
x

x
x

x
x

x
Pa

ck
ag

e
D

at
ab

as
e

x
x

x
x

x
R

is
k

V
ie

w
x

C
on

fli
ct

D
et

ec
tio

n
x

x
x

x
x

Pr
ob

le
m

R
es

ol
ut

io
n

x
x

x
x

L
ea

rn
in

g
A

ge
nt

x
x

R
ep

or
tin

g
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

6. OSSLI tool 62

and the relationship between components and conflicting licenses are added to and array

which the plugin returns.

The ccrelcopyleftconflictsanalysis plugin visualizes the conflicts found by the Ccrel-

copyleftconflicts plugin in a table that shows all relationships on one axis and the con-

flict path on another. The user can then select which component relationships should

be changed to resolve the copyleft conflict or conflicts. These selected relationships and

conflicting license are returned by the plugin.

The ccrelcopyleftconflictresolver plugin takes out put of the ccrelcopyleftconflictsanal-

ysis plugin and based on the type of conflict and relationship suggests actions that can be

taken to resolve the conflict. These actions are based on the open source compliance

patterns of German & Hassan [30]] and Hammouda et al [48]. Possible options include

moving a conflicting component out of the compilation package and changing the type of

the relationship between components.

The creation of the ccREL copyleft management process is a simple constructive ap-

plication of the OSSLI framework. While the tools use requires an understanding of

both legal and software aspects of open source the tools, it shows the value of the OSSLI

framework by bringing abstract legal, procedural legal and software architecture concerns

together.

63

7. DISCUSSION AND EVALUATION

“Do nothing which is of no use.” [8]

In this chapter we evaluate the methodologies used in the research and as well as the

whether of the application of the OSSLI framework to evaluate license compliance tools

and methods or develop the OSSLI tool provided meaningful information on the accuracy

or usefulness off the OSSLI framework. We also consider the practical applications of the

results of this research.

7.1. Methodology

There were numerous problems with the implementation of the methodologies chosen.

But the choice of theoretical basis in General System Theory and ontologies provided a

well rounded approach to the problem. The General System Theory and Sowa’s KRO

mesh well, and provide a suitably abstract point of view that helped clarify a lot of the

complexity. In particular merging the ontologies was difficult. LKIF and KRO were

loosely at the same abstraction level, so there were some inconsistencies due to the dif-

ferent approaches. The software engineering ontology was not rigorous in its subclass

definitions, many of which should have been "is a part of" relationships instead. This

made merging it with other ontologies difficult.

Literature review was problematic. Our database selection criteria were flawed. The

different search options between databases made inputting the searches problematic but

the quantity of results allays fears that these problems would affect the validity of the

material gathered. Because the ACM and IEEE work together in with their libraries, all

results found in the ACM digital library were duplicates. In the future only one of these

databases should be chosen.

There were some problems with license selection. We realized that the citation counts

given by the different databases were not comparable so we chose to gather them inde-

7. Discussion and Evaluation 64

pendently instead using Google Scholar. Google Scholar does not differentiate between

chapter and book citations, so the citation counts between book chapters and journal ar-

ticles or conference papers were not comparable. This was resolved by disregarding all

book chapter from the literature review results. The final and biggest problem was the low

quality abstracts of software engineering papers in general. An abstract should present re-

search methods and findings, but many papers lacked either one or both leaving only the

subject of research in the abstract. If relevant articles were disregarded from the literature

review based on the poor quality of their abstracts maybe their content would have been

similar quality, so the loss is not great.

7.2. OSSLI Framework

The OSSLI framework on its own works as a check list for developing open source license

compliance on a more nuanced level than most approaches. It is based on a solid theoret-

ical framework that connects the gaps between previous research. The evaluation of tools

and methods in relation to the OSSLI framework shows that a majority of tools only serve

small function and that holistic approaches like educating developers on licensing issues

and lawyers on software engineering as well as understanding open source are necessary

for licenses.

The OSSLI framework shows how complex the issues that lead to license conflicts

with open source license are. Due to this complexity automated analysis tools as well as

visualization tools for architecture and licenses are necessary.

7.3. Usefulness of Findings

Based on the evaluation of the OSSLI tool it could be used to support open source license

compliance in a software engineering organization, but practical use experience and feed-

back would be needed to better evaluate whether such use is actually practical.

Based on the tools and methods evaluation tools could be grouped so that an orga-

nization could choose the best tool for each function based on their particular situation.

The evaluation results could also be used to ensure that the organizations license compli-

ance process uses a suitably varied approach in order to comprehensively guard against

inadvertent copyright infringement.

7. Discussion and Evaluation 65

All findings in this research have been qualitative in nature and as such may not be

practically applicable in every situation. The framework does provide a basis for further

quantitative research in the subject.

66

8. CONCLUSIONS

“I must not fear. Fear is the mind-killer. Fear is the little-death that brings

total obliteration. I will face my fear. I will permit it to pass over me and

through me. And when it has gone past I will turn the inner eye to see its

path. Where the fear has gone there will be nothing. Only I will remain.”

[37]

In conclusion it is necessary to focus on what has been learned by developing the

OSSLI framework and what applications this research suggest for the future.

Licence conflict risk is a complex issue but it can be managed. The same proper-

ties which make open source license catalysts for software development also lead to the

risk of compliance issues. Open source development practices also increase the risk of

unidentified components in source code.

The OSSLI framework helps ensure that license compliance is covered from all the

necessary angles and not just by legal and software engineering methods. The research

also shows that architecture level evaluations of IPR issues can be used to reduce the risk.

In order to properly evaluate the costs and benefits of managing open source license

the integration of tools and methods to the software engineering process needs to be re-

searched and evaluated in practice. This means usability research and quantitative re-

search on tool and method efficiency.

On the other hand the benefits open source use need to researched quantitatively in

order to contrast them with the results of quantitative research on license risk that is also

needed. There are limited opportunity to research license non-compliance and it effects,

due to a lack of legal precedents. Research on applying software copyright internationally

would also help to evaluate the risk.

Fear of the unknown is also fear of the open source community. Research on effects

of community integration on the risks and benefits of using open source is needed, both

8. Conclusions 67

quantitative and qualitative studies would help. Showing the benefits and methods of

community integrations, and the community integration itself, would clearly help a lot

when facing the uncertainty related to open source licenses. Holistic research covering

license properties and software engineering process and software business would help

place this research in a context to bring more clarity to those who still fear the open

source licenses.

68

BIBLIOGRAPHY

[1] George Lucas. Star Wars: Episode I - The Phantom Menace, 1999.

[2] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,

12(3):23–49, 1999.

[3] Systems and software engineering – architecture description. ISO/IEC/IEEE

42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pages

1–46, 2011.

[4] E.S. Raymond. Why Microsoft smears-and fears-open source. Spectrum, IEEE,

38(8):14–15, 2001.

[5] John F. Sowa. Knowledge Representation: Logical, Philosophical and Computa-

tional Foundations. Brooks/Cole, 2000.

[6] R. Hoekstra, J. Breuker, M. Di Bello, and A Boer. The LKIF Core Ontology of Basic

Legal Concepts. In Proceedings of the Workshop on Legal Ontologies and Artificial

Intelligence Techniques, 2007.

[7] Pornpit Wongthongtham, Elizabeth Chang, Tharam Dillon, and Ian Sommerville.

Development of a Software Engineering Ontology for Multisite Software Develop-

ment. IEEE Trans. on Knowl. and Data Eng., 21(8):1205–1217, August 2009.

[8] Musashi Miyamoto. Go Rin No Sho: A Book of Five Rings. 1645.

[9] IEEE Systems and software engineering – Vocabulary. ISO/IEC/IEEE 24765-

2010(E), pages 1 – 418, 2010.

[10] Samuel A. Ajila and Di Wu. Empirical study of the effects of open source adoption

on software development economics. Journal of Systems and Software, 80(9):1517

– 1529, 2007.

[11] Diomidis Spinellis and Clemens Szyperski. How is open source affecting software

development? IEEE Software, 21(1):28–33, 2004.

BIBLIOGRAPHY 69

[12] Weibing Chen, Jingyue Li, Jianqiang Ma, Reidar Conradi, Junzhong Ji, and Chun-

nian Liu. An empirical study on software development with open source components

in the chinese software industry. Software Process: Improvement and Practice,

13(1):89–100, 2008.

[13] C. Ruffin and C. Ebert. Using open source software in product development: a

primer. Software, IEEE, 21(1):82–86, 2004.

[14] Christof Ebert. Open Source Drives Innovation. Software, IEEE, 24(3):105–109,

2007.

[15] D. Bahn and D. Dressel. Liability and Control Risks with Open Source Software.

In Information Technology: Research and Education, 2006. ITRE ’06. International

Conference on, pages 242–245, 2006.

[16] David McGowan. Legal implications of open-source software. U. Ill. L. Rev., page

241, 2001.

[17] Lawrence Rosen. Open Source Licensing: Software Freedom and Intellectual Prop-

erty Law. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[18] Bruce Perens et al. The open source definition. Open sources: voices from the open

source revolution, pages 171–85, 1999.

[19] Andrew Sinclair. Licence profile: Apache license, version 2.0. International Free

and Open Source Software Law Review, 2(2), 2011.

[20] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and Leonard L.

Tripp. Guide to the Software Engineering Body of Knowledge - SWEBOK. IEEE

Press, Piscataway, NJ, USA, 2004 version edition, 2004.

[21] M. Fowler. Design - Who needs an architect? Software, IEEE, 20(5):11–13, 2003.

[22] David Garlan. Software architecture: a roadmap. In Proceedings of the Conference

on The Future of Software Engineering, ICSE ’00, pages 91–101, New York, NY,

USA, 2000. ACM.

BIBLIOGRAPHY 70

[23] Donald Hislop. Knowledge management in organizations: a critical introduction.

Oxford University Press, USA, 2005.

[24] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed

Khalil. Lessons from applying the systematic literature review process within the

software engineering domain. J. Syst. Softw., 80(4):571–583, April 2007.

[25] Lars Skyttner. General Systems Theory: Ideas & Applications. World Scientific

Publishing Co. Pte. Ltd., Singapore, 2001.

[26] Ludvig von Bertalanffy. General System Theory: Foundations, Development, Ap-

plications. George Braziller, Inc., New York, third printing edition, 1968.

[27] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowlegde Acquisition, 5(2):199–220, June 1993.

[28] Natalya Fridman Noy and Carole D. Hafner. The state of the art in ontology design:

A survey and comparative review. AI Magazine, 18(3):53–74, 1997.

[29] John F. Sowa. Ontology. http://www.jfsowa.com/ontology/, 2010. Ac-

cessed: 17.4.2013.

[30] D.M. German and A.E. Hassan. License integration patterns: Addressing license

mismatches in component-based development. In Software Engineering, 2009. ICSE

2009. IEEE 31st International Conference on, pages 188–198, 2009.

[31] F.P. Gomez and K.S. Quinones. Legal Issues Concerning Composite Software. In

Composition-Based Software Systems, 2008. ICCBSS 2008. Seventh International

Conference on, pages 204–214, 2008.

[32] Mikko Välimäki. Oikeudet tietokoneohjelmistoihin. Talentum. Helsinki, 2009.

[33] Malcolm Bain. Software Interactions and the GNU General Public License. Inter-

national Free and Open Source Software Law Review, 2(2):165–179, 2010.

[34] C. Forbes, I. Keivanloo, and J. Rilling. When open source turns cold on innovation

- the challenges of navigating licensing complexities in new research domains. In

http://www.jfsowa.com/ontology/

BIBLIOGRAPHY 71

Software Engineering (ICSE), 2012 34th International Conference on, pages 1447–

1448, 2012.

[35] Thomas A Alspaugh, Hazeline U Asuncion, and Walt Scacchi. Intellectual property

rights requirements for heterogeneously-licensed systems. In Requirements Engi-

neering Conference, 2009. RE’09. 17th IEEE International, pages 24–33. IEEE,

2009.

[36] Thomas F. Gordon. Analyzing Open Source License Compatibility Issues with

Carneades. In Proceedings of the 13th International Conference on Artificial In-

telligence and Law, ICAIL ’11, pages 51–55, New York, NY, USA, 2011. ACM.

[37] Frank Herbert. Dune. Chilton Books, USA, 1965.

[38] Elspeth Berry, Matthew J Homewood, and Barbara Bogusz. Complete EU Law:

Text, Cases, and Materials. Oxford University Press, 2013.

[39] Christopher May. Escaping the TRIPs’ trap: The political economy of free and open

source software in Africa. Political Studies, 54(1):123–146, 2006.

[40] Jyh-An Lee. Not to profit from open source: The role of nonprofit organizations

in open source software development. In Professional Communication Conference,

2008. IPCC 2008. IEEE International, pages 1–9, July 2008.

[41] Pekka Himanen. The hacker ethic. Random House, 2001.

[42] S. Ziemer. On the adoption of open source software in aeronautics. In Aerospace

Conference, 2012 IEEE, pages 1–10, 2012.

[43] J. Lindman, A. Paajanen, and M. Rossi. Choosing an open source software license

in commercial context: A managerial perspective. In Software Engineering and Ad-

vanced Applications (SEAA), 2010 36th EUROMICRO Conference on, pages 237–

244, 2010.

[44] Bhasker Mukerji, Bharat Maheshwari, Vinod Kumar, and Uma Kumar. A review of

dominant open source software business models. In ASAC, volume 29, 2008.

BIBLIOGRAPHY 72

[45] Carlo Daffara. Business models in floss-based companies. In Workshop presenta-

tioon at the 3rd Conference on Open Source Systems (OSS 2007), 2007.

[46] G.R. Gangadharan, Vincenzo DÁndrea, Stefano Paoli, and Michael Weiss. Manag-

ing license compliance in free and open source software development. Information

Systems Frontiers, 14(2):143–154, 2012.

[47] Renato Iannella, Susanne Guth, Daniel Pähler, and Andreas Kasten. ODRL version

2.0 core model. Specification. http://www.w3.org/community/odrl/

two/model/, Apr 2012. Accessed: 4.5.2014.

[48] Imed Hammouda, Tommi Mikkonen, Ville Oksanen, and Ari Jaaksi. Open Source

Legality Patterns: Architectural Design Decisions Motivated by Legal Concerns. In

Proceedings of the 14th International Academic MindTrek Conference: Envisioning

Future Media Environments, MindTrek ’10, pages 207–214, New York, NY, USA,

2010. ACM.

[49] Martin von Willebrand and MikkoPekka Partanen. Package review as a part of free

and open source software compliance. 2010.

[50] Antelink. Antepedia. http://www.antepedia.com/pages/more, 2012.

Accessed: 17.5.2014.

[51] T. Tuunanen, J. Koskinen, and T. Karkkainen. Asla: reverse engineering approach

for software license information retrieval. In Software Maintenance and Reengineer-

ing, 2006. CSMR 2006. Proceedings of the 10th European Conference on, pages 4

pp.–294, March 2006.

[52] Jeff Licquia Stew Benedict. Dependency Checker Tool: Overview and Dis-

cussion. http://www.linuxfoundation.org/sites/main/files/

publications/lf_foss_compliance_dct.pdf. Accessed: 17.5.2014.

[53] Robert Gobeille. The fossology project. In Proceedings of the 2008 International

Working Conference on Mining Software Repositories, MSR ’08, pages 47–50, New

York, NY, USA, 2008. ACM.

http://www.w3.org/community/odrl/two/model/
http://www.w3.org/community/odrl/two/model/
http://www.antepedia.com/pages/more
http://www.linuxfoundation.org/sites/main/files/publications/lf_foss_compliance_dct.pdf
http://www.linuxfoundation.org/sites/main/files/publications/lf_foss_compliance_dct.pdf

BIBLIOGRAPHY 73

[54] Yuan Yuan Mika Rajanen Xie Xiaolei Lauri Koponen Veli-Jussi Raitila

Jussi Sipoma Jing Jing-Helles, Sakari Kääriäinen. Open Source License Checker

2.0 ReadMe. http://www.soberit.hut.fi/T-76.4115/06-07/

projects/groups/14/i2/readme.html, 2007. Accessed: 17.5.2014.

[55] Hongyu Zhang, Bei Shi, and Lu Zhang. Automatic checking of license compliance.

In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages

1–3, Sept 2010.

[56] Daniel M. German, Yuki Manabe, and Katsuro Inoue. A sentence-matching method

for automatic license identification of source code files. In Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, ASE ’10,

pages 437–446, New York, NY, USA, 2010. ACM.

[57] HongBo Xu, HuiHui Yang, Dan Wan, and Jiangping Wan. The design and imple-

ment of open source license tracking system. In Computational Intelligence and

Software Engineering (CiSE), 2010 International Conference on, pages 1–4, Dec

2010.

[58] Antti Luoto. A UML Profile Approach to Managing Open Source Software Licens-

ing. Masters thesis, Tampere University of Technology, 2013.

[59] European Legal Network. Working Paper on the legal implication of certain forms

of Software Interactions (a.k.a linking).

http://www.soberit.hut.fi/T-76.4115/06-07/projects/groups/14/i2/readme.html
http://www.soberit.hut.fi/T-76.4115/06-07/projects/groups/14/i2/readme.html

74

A. REVIEWED ARTICLES

Reference Type Authors, Primary Title Primary Periodical Full Pub Year
Vol-

ume
Issue Cited

Journal Article Graham,L. Legal implications of operating systems Software, IEEE 1999 16 1 6

Journal Article Coleman,E. Gabriella High-Tech Guilds in the Era of Global Capital Anthropology of Work Review 2001 22 1 12

Journal Article Ming-Wei Wu; Ying-Dar Lin Open source software development: an overview Computer 2001 34 6 84

Journal Article Gallivan,Michael J.
Striking a balance between trust and control in a virtual organization: a

content analysis of open source software case studies
Information Systems Journal 2001 11 4 220

Journal Article Johnson,Justin Pappas Open Source Software: Private Provision of a Public Good Journal of Economics & Management Strategy 2002 11 4 219

Conference

Proceedings
Egyedi,T. M.; van Wendel de Joode,R. Standards and coordination in open source software

Standardization and Innovation in Information Technology,

2003. The 3rd Conference on
2003 7

Journal Article Ruffin,C.; Ebert,C. Using open source software in product development: a primer Software, IEEE 2004 21 1 78

Journal Article
GRAHAM,STUART J. H.; MOWERY,DAVID

C.

The Use of USPTO ?Continuation? Applications in the Patenting of

Software: Implications for Free and Open Source*
Law & Policy 2005 27 1 10

Conference

Proceedings
Stewart,K. J.; Ammeter,A. P.;Maruping,L. M.

A Preliminary Analysis of the Influences of Licensing and

Organizational Sponsorship on Success in Open Source Projects

System Sciences, 2005. HICSS ’05. Proceedings of the

38th Annual Hawaii International Conference on
2005 25

Conference

Proceedings
Parker,G.; Van Alstyne,M.

Mechanism Design to Promote Free Market and Open Source

Software Innovation

System Sciences, 2005. HICSS ’05. Proceedings of the

38th Annual Hawaii International Conference on
2005 12

Journal Article
MacCormack,Alan; Rusnak,John;

Baldwin,Carliss Y.

Exploring the Structure of Complex Software Designs: An Empirical

Study of Open Source and Proprietary Code
Management Science 2006 52 7 384

Journal Article
Bonaccorsi,Andrea; Giannangeli,Silvia;

Rossi,Cristina

Entry Strategies under Competing Standards: Hybrid Business Models

in the Open Source Software Industry
Management Science 2006 52 7 245

Journal Article Stewart,Katherine J.; Gosain,Sanjay
The Impact of Ideology on Effectiveness in Open Source Software

Development Teams
MIS Quarterly 2006 30 2 300

Journal Article Cook,Ian; Horobin,Gavin
Implementing eGovernment without promoting dependence: open

source software in developing countries in Southeast Asia
Public Administration and Development 2006 26 4 12

A
.

R
eview

ed
A

rticles
75

Reference Type Authors, Primary Title Primary Periodical Full Pub Year
Vol-

ume
Issue Cited

Conference

Proceedings
Turner,A. J.

The development and use of open-source spacecraft simulation and

control software for education and research

Space Mission Challenges for Information Technology,

2006. SMC-IT 2006. Second IEEE International

Conference on

2006 4

Journal Article Lerner,Josh; Pathak,Parag A.; Tirole,Jean The Dynamics of Open-Source Contributors The American Economic Review 2006 96 2 66

Journal Article Burk,Dan L. Intellectual Property in the Context of e-Science Journal of Computer-Mediated Communication 2007 12 2 20

Journal Article C?mara,Gilberto; Fonseca,Frederico Information policies and open source software in developing countries
Journal of the American Society for Information Science

and Technology
2007 58 1 70

Journal Article Murray,Fiona; O’Mahony,Siobh?n
Exploring the Foundations of Cumulative Innovation: Implications for

Organization Science
Organization Science 2007 18 6 91

Conference

Proceedings
West,J. Value Capture and Value Networks in Open Source Vendor Strategies

System Sciences, 2007. HICSS 2007. 40th Annual Hawaii

International Conference on
2007 41

Conference

Proceedings
Sarkinen,J. An open source(d) controller

Telecommunications Energy Conference, 2007. INTELEC

2007. 29th International
2007 3

Journal Article Polanski,Arnold Is the General Public Licence a Rational Choice? The Journal of Industrial Economics 2007 55 4 19

Journal Article
Garzarelli,Giampaolo; Limam,Yasmina Reem;

Thomassen,Bj?rn

Open source software and economic growth: A classical division of

labor perspective
Information Technology for Development 2008 14 2 12

Conference

Proceedings
Raasch,C.; Herstatt,C.; Abdelkafi,N. Creating Open Source Innovation: Outside the software industry

Management of Engineering & Technology, 2008.

PICMET 2008. Portland International Conference on
2008 6

Journal Article Aoki,Reiko; Schiff,Aaron
Promoting access to intellectual property: patent pools, copyright

collectives, and clearinghouses
R&D Management 2008 38 2 29

Journal Article
Chen,Weibing; Li,Jingyue; Ma,Jianqiang;C

onradi,Reidar; Ji,Junzhong; Liu,Chunnian

An empirical study on software development with open source

components in the chinese software industry
Software Process: Improvement and Practice 2008 13 1 26

Journal Article COLEMAN,GABRIELLA
CODE IS SPEECH: Legal Tinkering, Expertise, and Protest among

Free and Open Source Software Developers
Cultural Anthropology 2009 24 3 52

Conference

Proceedings
Alspaugh,T. A.; Asuncion,H. U.; Scacchi,W. Analyzing software licenses in open architecture software systems

Emerging Trends in Free/Libre/Open Source Software

Research and Development, 2009. FLOSS ’09. ICSE

Workshop on

2009 23

Journal Article Coughlan, S., Katz,A. Introducing The Risk Grid International Free and Open Source Software Law Review 2009 1 1

Journal Article Henley,M.
Jacobsen v Katzer and Kamind Associates . an English legal

perspective
International Free and Open Source Software Law Review 2009 1 1

Journal Article Kemp,R.
Towards Free/Libre Open Source Software (.FLOSS.) Governance in

the Organisation
International Free and Open Source Software Law Review 2009 1 2

Journal Article Rosen,L. Bad Facts Make Good Law: The Jacobsen Case and Open Source International Free and Open Source Software Law Review 2009 1 1

Journal Article Sheppard,S.
Balancing Free with IP: If Open Source Solutions Become De Facto

Standards Could Competition Law Start To Bite?
International Free and Open Source Software Law Review 2009 1 2

Journal Article Van den Brande,Y.
The Fiduciary Licence Agreement: Appointing legal guardians for

Free Software Projects
International Free and Open Source Software Law Review 2009 1 1

A
.

R
eview

ed
A

rticles
76

Reference Type Authors, Primary Title Primary Periodical Full Pub Year
Vol-

ume
Issue Cited

Journal Article Wong, C., Kreps,J.
Collaborative Approach: Peer-to-Patent and the Open Source

Movement
International Free and Open Source Software Law Review 2009 1 1

Journal Article Colazo,Jorge; Fang,Yulin
Impact of license choice on Open Source Software development

activity

Journal of the American Society for Information Science

and Technology
2009 60 5 43

Conference

Proceedings
Alspaugh,T. A.; Asuncion,H. U.; Scacchi,W.

Intellectual Property Rights Requirements for

Heterogeneously-Licensed Systems

Requirements Engineering Conference, 2009. RE ’09.

17th IEEE International
2009 29

Conference

Proceedings
Di Penta,M.; German,D. M. Who are Source Code Contributors and How do they Change?

Reverse Engineering, 2009. WCRE ’09. 16th Working

Conference on
2009 11

Conference

Proceedings
German,D. M.; Hassan,A. E.

License integration patterns: Addressing license mismatches in

component-based development

Software Engineering, 2009. ICSE 2009. IEEE 31st

International Conference on
2009 55

Conference

Proceedings

HongBo Xu; HuiHui Yang; Dan Wan;

Jiangping Wan
The Design and Implement of Open Source License Tracking System

Computational Intelligence and Software Engineering

(CiSE), 2010 International Conference on
2010 0

Conference

Proceedings
Perry,M.; Margoni,T. FLOSS for the Canadian Public Sector: Open Democracy

Digital Society, 2010. ICDS ’10. Fourth International

Conference on
2010 1

Journal Article Lundell,Bj?rn; Lings,Brian; Lindqvist,Edvin Open source in Swedish companies: where are we? Information Systems Journal 2010 20 6 14

Journal Article Anderson, H., Dare,T.
Passport Without A Visa: Open Source Software Licensing and

Trademarks
International Free and Open Source Software Law Review 2010 1 2

Journal Article Mitchell QC,I.
Back To The Future: Hinton v Donaldson, Wood and Meurose (Court

of Session, Scotland, 28th July, 1773)
International Free and Open Source Software Law Review 2010 1 2

Journal Article von Willebrand,M. A look at EDU 4 v. AFPA, also known as the .Paris GPL-case. International Free and Open Source Software Law Review 2010 1 2

Journal Article Webbink,M. Packaging Open Source International Free and Open Source Software Law Review 2010 1 2

Journal Article Brown,N.
GNU GPL 2.0 and 3.0: obligations to include license text, and provide

source code
International Free and Open Source Software Law Review 2010 2 1

Journal Article Johnny, O., Miller, M., Webbink,M. Copyright in Open Source Software - Understanding the Boundaries International Free and Open Source Software Law Review 2010 2 1

Journal Article Piana,C. Italian Constitutional Court gives way to Free-Software friendly laws International Free and Open Source Software Law Review 2010 2 1

Journal Article Sinclair,A. Licence Profile: BSD International Free and Open Source Software Law Review 2010 2 1

Journal Article von Willebrand, M., Partanen,M.
Package Review as a Part of Free and Open Source Software

Compliance
International Free and Open Source Software Law Review 2010 2 1

Conference

Proceedings
Di Penta,M.; German,D. M.; Antoniol,G. Identifying licensing of jar archives using a code-search approach

Mining Software Repositories (MSR), 2010 7th IEEE

Working Conference on
2010 11

Conference

Proceedings
German,D. M.; Di Penta,M.; Davies,J.

Understanding and Auditing the Licensing of Open Source Software

Distributions

Program Comprehension (ICPC), 2010 IEEE 18th

International Conference on
2010 15

Conference

Proceedings
Lindman,J.; Paajanen,A.; Rossi,M.

Choosing an Open Source Software License in Commercial Context:

A Managerial Perspective

Software Engineering and Advanced Applications

(SEAA), 2010 36th EUROMICRO Conference on
2010 4

Conference

Proceedings

Di Penta,M.; German,D. M.; Gueheneuc,Y. -G;

Antoniol,G.
An exploratory study of the evolution of software licensing

Software Engineering, 2010 ACM/IEEE 32nd

International Conference on
2010 1 25

A
.

R
eview

ed
A

rticles
77

Reference Type Authors, Primary Title Primary Periodical Full Pub Year
Vol-

ume
Issue Cited

Conference

Proceedings
Hongyu Zhang; Bei Shi; Lu Zhang Automatic checking of license compliance

Software Maintenance (ICSM), 2010 IEEE International

Conference on
2010 1

Journal Article Scotchmer,Suzanne Openness, Open Source, and the Veil of Ignorance The American Economic Review 2010 100 2 6

Conference

Proceedings
Yamakami,T.

A two-dimensional classification model of OSS: Towards successful

management of the evolution of OSS

Advanced Communication Technology (ICACT), 2011

13th International Conference on
2011 0

Journal Article Fitzgerald,B. Open Source Software: Lessons from and for Software Engineering Computer 2011 44 10 2

Conference

Proceedings
Khanjani,A.; Sulaiman,Riza

The process of quality assurance under open source software

development

Computers & Informatics (ISCI), 2011 IEEE Symposium

on
2011 1

Journal Article Bain,M. Software Interactions and the GPL International Free and Open Source Software Law Review 2011 2 2

Journal Article Brock,A. Project Harmony: Inbound transfer of rights in FOSS Projects International Free and Open Source Software Law Review 2011 2 2

Journal Article Dolmans, M., Piana,C. A Tale of Two Tragedies . A plea for open standards International Free and Open Source Software Law Review 2011 2 2

Journal Article Paapst,M. Affirmative action in procurement for open standards and FLOSS International Free and Open Source Software Law Review 2011 2 2

Journal Article Shemtov,N.
Software Patents and Open Source Models in Europe: Does the FOSS

community need to worry about current attitudes at the EPO?
International Free and Open Source Software Law Review 2011 2 2

Journal Article Sinclair,A. Licence Profile: Apache License, Version 2.0 International Free and Open Source Software Law Review 2011 2 2

Journal Article Aliprandi,S. Interoperability and open standards: the key to a real openness International Free and Open Source Software Law Review 2011 3 1

Journal Article Engelfriet,A. Open source licensing notices in Web applications International Free and Open Source Software Law Review 2011 3 1

Journal Article Freeman,A. Patentable Subject Matter: The View from Europe International Free and Open Source Software Law Review 2011 3 1

Journal Article Mitchell QC, I., Mason,S.
Compatibility Of The Licensing Of Embedded Patents With Open

Source Licensing Terms
International Free and Open Source Software Law Review 2011 3 1

Journal Article Lichtenthaler,Ulrich
The evolution of technology licensing management: identifying five

strategic approaches
R&D Management 2011 41 2 15

Conference

Proceedings
Nakagawa,E. Y.; Maldonado,J. C. Towards the Open Source Reference Architectures

Software Components, Architectures and Reuse

(SBCARS), 2011 Fifth Brazilian Symposium on
2011 0

Journal Article Lindman,J.; Rossi,M.; Puustell,A.
Matching Open Source Software Licenses with Corresponding

Business Models
Software, IEEE 2011 28 4 10

Journal Article
Monden,A.; Okahara,S.; Manabe,Y.;

Matsumoto,K. -i

Guilty or Not Guilty: Using Clone Metrics to Determine Open Source

Licensing Violations
Software, IEEE 2011 28 2 7

Conference

Proceedings
Kuang-Yuan Huang; Namjoo Choi

Relating and Clustering Free/Libre Open Source Software Projects and

Developers: A Social Network Perspective

System Sciences (HICSS), 2011 44th Hawaii International

Conference on
2011 2

Journal Article Corbett,Susan
Creative Commons Licences, the Copyright Regime and the Online

Community: Is there a Fatal Disconnect?
The Modern Law Review 2011 74 4 2

Conference

Proceedings
Ziemer,S. On the adoption of open source software in aeronautics Aerospace Conference, 2012 IEEE 2012 0

Journal Article Gaff,B. M.; Ploussios,G. J. Open Source Software Computer 2012 45 6 0

Journal Article Aliprandi,S. Open licensing and databases International Free and Open Source Software Law Review 2012 4 1

A
.

R
eview

ed
A

rticles
78

Reference Type Authors, Primary Title Primary Periodical Full Pub Year
Vol-

ume
Issue Cited

Journal Article Greenbaum,E. The GPL .Liberty or Death!. Clause: An Israeli Case Study International Free and Open Source Software Law Review 2012 4 1

Journal Article Katz,A. Towards a Functional Licence for Open Hardware International Free and Open Source Software Law Review 2012 4 1

Journal Article Meeker,H.
The Gift that Keeps on Giving . Distribution and Copyleft in Open

Source Software License
International Free and Open Source Software Law Review 2012 4 1

Journal Article Tiller,R. Initial thoughts on Mayo v. Prometheus and software patents International Free and Open Source Software Law Review 2012 4 1

Conference

Proceedings
Alspaugh,T. A.; Scacchi,W.; Kawai,R. Software licenses, coverage, and subsumption

Requirements Engineering and Law (RELAW), 2012 Fifth

International Workshop on
2012 0

Conference

Proceedings
Tatsubori,M.; Gangadharan,G. R.

Service Commons – Serve and Serve Alike: Applying the Creative

Commons Spirit to Web Services

Services Computing (SCC), 2012 IEEE Ninth International

Conference on
2012 0

Conference

Proceedings
Forbes,C.; Keivanloo,I.; Rilling,J.

When open source turns cold on innovation . The challenges of

navigating licensing complexities in new research domains

Software Engineering (ICSE), 2012 34th International

Conference on
2012 1

Conference

Proceedings

Mathur,Arunesh; Choudhary,Harshal;

Vashist,Priyank; Thies,William;

Thilagam,Santhi

An Empirical Study of License Violations in Open Source Projects
Software Engineering Workshop (SEW), 2012 35th

Annual IEEE
2012 0

Journal Article German,D. M.; Di Penta,M. A Method for Open Source License Compliance of Java Applications Software, IEEE 2012 29 3 2

Journal Article van Holst,W. Copyleft, -right and the case law on APIs on both sides of the Atlantic International Free and Open Source Software Law Review 2013 5 1

Conference

Proceedings

Lokhman,Alexander; Mikkonen,Tommi;

Hammouda,Imed; Kazman,Rick;

Chen,Hong-Mei

A Core-Periphery-Legality Architectural Style for Open Source

System Development

System Sciences (HICSS), 2013 46th Hawaii International

Conference on
2013 0

Journal Article Vasudeva,Vikrant Narayan
A Relook at Sui Generis Software Protection Through the Prism of

Multi?Licensing
The Journal of World Intellectual Property 2013 16 1-2 0

	Introduction
	Motivation
	Objectives
	Structure

	Research Background and Methodology
	Background
	Open Source Licenses
	Software Architecture

	Research Questions and Methods
	Systematic Literature Review
	General System Theory
	Ontologies

	Abstract Legal and Software Architecture Systems
	Abstract Legal System
	Copyright and Related Rights
	Patents and Trade Secrets
	Design Rights and Trademarks
	Open Source Licenses

	Software Architecture System

	Connecting Software Architecture and Open Source Licenses
	Procedural Legal System
	National Legal Systems
	Federal Legal Systems
	International Processes

	Business Process System
	Software Engineering System
	Social System

	Methods for Software Architecture Development with Open Source Licenses
	The OSSLI Framework
	License Management
	Licenses and Software Architecture
	License requirement for architecture
	Architecture decision for License Management

	License Management in Software Engineering
	Methods
	Tools
	Review

	License Management in Software Production
	Legal Proceedings
	License Management in Business
	OS-communities and Social Effects of Licenses

	OSSLI tool
	Tool Design
	CCREL and Copyleft Management

	Discussion and Evaluation
	Methodology
	OSSLI Framework
	Usefulness of Findings

	Conclusions
	Bibliography
	Reviewed Articles

