ﬁ TAMPERE UNIVERSITY OF TECHNOLOGY

MIKKO JARVELA
VECTOR OPERATION SUPPORT FOR TRANSPORT
TRIGGERED ARCHITECTURES

Master of Science Thesis

Examiners: Prof. Jarmo Takala and
Pekka Jaaskelainen, Dr. Tech
Examiners and subject approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
October 9th 2013

IT

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’'s Degree Programme in Signal Processing and Communications Engineering
Jarveld, Mikko : Vector Operation Support for Transport Triggered Architec-
tures

Master of Science Thesis, 56 pages

June 2014

Major: Embedded Systems

Examiners: Prof. Jarmo Takala and Pekka Jaaskeldinen, Dr. Tech

Keywords: compiler, DLP, SIMD, transport triggered architecture

High performance and low power consumption requirements usually restrict the
design process of embedded processors. Traditional design solutions do not apply to
the requirements today, but instead demands exploiting varying levels of parallelism.
In order to reduce design time and effort, a powerful toolset is required to design
new parallel processors effectively.

TTA-based Co-design Environment (TCE) is a toolset developed in Tampere
University of Technology for designing customized parallel processors. It is based on
a modular Transport Triggered Architecture (TTA) processor architecture template,
which provides easy customization and allows exploiting instruction-level parallelism
for high performance execution.

Single Instruction, Multiple Data (SIMD) paradigm provides powerful data-level
parallel vector computation for many applications in embedded processing. It is
one of the most common ways to exploit parallelism in today’s processor designs in
order to gain greater execution efficiency and, therefore, to meet the performance
requirements.

This work describes how data-level parallel SIMD support is introduced and in-
tegrated to the TCE design flow for more diverse parallelism support. The support
allows designers to customize and program processors with wide vector operations.
The work presents the required modification points along with the new tools that
were added to the toolset. Much weight is given for the retargetable compiler,
which must be able to adapt to all resources on TTA machines. The added tools
were required to provide as much automatic behavior as possible to maintain ef-
fective design flow. In addition, the thesis presents how the modifications and new

features were verified.

I1I

TIHVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Signaalinkasittelyn ja tietoliikennetekniikan koulutusohjelma

Jarveld, Mikko : Vector Operation Support for Transport Triggered Architec-
tures

Diplomityo, 56 sivua

Kesakuu 2014

Paaaine: Sulautetut Jarjestelmat

Tarkastajat: prof. Jarmo Takala ja TkT Pekka Jaaskelainen

Avainsanat: kaantaja, datarinnakkaisuus, SIMD, siirtoliipaisuarkkitehtuuri

Sulautettuja prosessoreita suunniteltaessa niiden tulee usein kyeté korkeaan lasken-
tasuorituskykyyn mahdollisimman pienelld tehonkulutuksella. Nykyajan korkeisiin
suorituskykyvaatimuksiin ei voida enaé vastata perinteisilla suunnitteluratkaisuilla,
vaan prosessorisuunnittelussa vaaditaan eritasoisten rinnakkaislaskentamenetelmien
hyodyntamista. Jotta uusia rinnakkaisprosessoreita voidaan suunnitella tehokkaasti,
vaaditaan siihen tehokas kehitysymparisto.

TTA-based Co-design Environment (TCE) on Tampereen Teknilliselld Yliopis-
tolla kehitetty tdyden suunnitteluvuon tarjoava kehitysymparisto raatéaloitavien rin-
nakkaisprosessorien suunnitteluun. Se pohjautuu siirtoliipaistuun prosessoriarkki-
tehtuurimalliin (Transport Triggered Architecture, TTA), joka tarjoaa helpon raata-
loitavyyden sekéd mahdollistaa kdskytason rinnakkaisuuden hyodyntamisen korkean
suorituskyvyn saavuttamiseksi.

Single Instruction, Multiple Data (SIMD) on datarinnakkaisen laskennan muoto,
jolla voidaan tehokkaasti suorittaa rinnakkaista vektorilaskentaa useissa sulaute-
tuissa sovelluksissa. Se on erds yleisimmistd tavoista hyodyntda rinnakkaisuutta
nykypéaivin prosessorisuunnittelussa korkeamman laskentatehokkuuden ja sitd myo-
ta suorituskykyvaatimusten saavuttamiseksi.

Tassa tyossa kuvataan kuinka datarinnakkaiset laskentaominaisuudet integroitiin
TCE:n suunnitteluvuohon laajemman rinnakkaisuustuen tarjoamiseksi. Uudet omi-
naisuudet mahdollistavat prosessoreiden réataloinnin ja ohjelmoinnin vektoriope-
raatioilla. Tyossa esitelladn suunnitteluvuohon vaaditut muutokset seka kehitysym-
paristoon lisatyt uudet tyokalut. Painoarvoa annetaan etenkin kohdearkkitehtuurei-
hin mukautuvalle kdantajalle, jonka tulee sailyttda automaattiset mukautumisomi-
naisuutensa kaikkiin laitteistoresursseihin. Kehitysymparistoon lisattyjen tyokalu-
jen vaatimuksena oli liséksi toimia mahdollisimman automaattisesti tehokkaan suun-
nitteluvuon ylldpitdmiseksi. Lisdksi tyossa esitetdan, kuinka muutokset ja datarin-

nakkaisen laskennan toteutuminen on testattu.

IV

PREFACE

The work in this M.Sc. thesis was carried out in the Department of Pervasive Com-
puting at Tampere University of Technology as a part of the Parallel Acceleration
Project (ParallaX) project.

I would like to express my gratitude for Professor Jarmo Takala for giving me an
opportunity to work on this interesting and challenging project and for his improve-
ment ideas for this thesis. I am also the most grateful to Pekka Jéaskeldinen, Dr.
Tech, and Heikki Kultala, M.Sc., for their guidance to improve this thesis and advice
regarding the work on TCE. I would also like to thank my colleagues in the TCE
project and Lasse Lehtonen for creating such a relaxed and interesting atmosphere
at work and giving me a helping hand whenever it was needed. Finally, I would like

to thank my friends and my family for their support throughout my studies and life.

Tampere, May 15th, 2014

Mikko Jarvela

CONTENTS

[l Introductionl. 1
2. Customization of Parallel Processorsl 3
2.1 Parallelisml.« 3
2.1.1 Instruction-Level Parallelism| 3
2.1.2 Data-Level Parallelism|. 6

[2.2 Processor Templates| 8
[2.3 Transport Triggered Architecture| 10
2.4 TTA-Based Co-Design Environment|. 11
[2.5 Compiler Support for Data-Level Parallelism|. 12
2.5.1 Compilers|. 12
2.0.2 Vectorization|o Lo 15

[3. TTA-Based Co-Design Environment| 17
[3.1 Design Flow| 17
3.2 Processor Customization| 18
[3.3 LLVM Compiler Infrastructuref. 22
[3.3.1 Clang Frontend| 22
[3.3.2 Intermediate Representation| 23
.33 Backend. 24

3.4 TCE Compiler| 29
[3.4.1 High-Level Language Support{. 31
[3.4.2 Static and Dynamic Backend Parts| 31
[3.4.3 Dynamic Backend Generation| 32

B5 Simulatod 33
3.6 Processor Generatorl 34

[4. Implementation| 35
4.1 Processor Customization| 35
4.2 Compiler Support|. o 39
[4.2.1 High-Level Language Support|. 39
[4.2.2 Dynamic Backend Generation|. 39

4.3 Hardware Generatorl 46

b, Verificationl 50
[>.1 Behavior Models of Vector Operations| 50
[>.2 Compiler Backend Retargeting|. 51
.3 Vector Function Unit Generator 54
6. Conclusions 55

LIST OF ABBREVIATIONS

ADF

ASIC

ASP

DAG

DLP

DSP

FPGA

GPGPU

GPP

GPU

HDB

HLL

IDF

ILP

IR

LLVM

NVPTX

OSAL

OTA

RTL

SIMD

SIMT

SM

SOC

Architecture Definition File
Application-Specific Integrated Circuit
Application-Specific Processor
Directed Acyclic Graph

Data-Level Parallelism

Digital Signal Processor
Field-Programmable Gate Array
General-Purpose computation on Graphics Processing Unit
General-Purpose Processor
Graphics Processing Unit
Hardware Database

High-Level Language
Implementation Definition File
Instruction-Level Parallelism
Intermediate Representation

Low Level Virtual Machine

Nvidia Parallel Thread Execution
Operation Set Abstraction Layer
Operation-Triggered Architecture
Register-Transfer Level

Single Instruction, Multiple Data
Single Instruction, Multiple Thread
Streaming Multiprocessor

System-On-Chip

VI

SSA

TCE

TPEF

TTA

VLIW

XML

Static Single-Assignment
TTA-based Co-design Environment
TTA Program Exchange Format
Transport Triggered Architecture
Very Long Instruction Word

Extensible Markup Language

VII

1. INTRODUCTION

Embedded processors are commonly designed to implement target application func-
tionality under strict design requirements, such as execution time, power consump-
tion and chip area. Especially in applications that require a great deal of intensive
computation in short time, performance requirements may be high. Pre-designed
“off-the-shelf” General-Purpose Processors (GPPs) are usually too slow in terms of
speed and consume too much power to be a feasible solution. On the other hand,
designing the target application as a fixed function accelerator is time consuming
and lacks programmability.

As target applications usually consist of a limited set of computational tasks,
customizable embedded processors can be used to provide a feasible solution by
tailoring the processor resources optimally for target-specific purposes. These cus-
tomized Application-Specific Processors (ASPs) combine the advantages from both
software flexibility and hardware efficiency, as the basic tasks of the application can
be executed on the main core, while specialized function units can be used to han-
dle the complex and heavy computation. However, customized processors need to
undergo a design process, in which they are tailored with proper resources. This
requires time and effort, and as the continuously tightening design requirements
have to be also taken into account, processors must be often equipped with parallel
computing capabilities.

TTA-based Co-design Environment (TCE) is a toolset developed in Tampere Uni-
versity of Technology for designing and programming processors based on Transport
Triggered Architecture (TTA) processor template. TTA is a modular and easily
customizable processor architecture, which allows exploitation of static Instruction-
Level Parallelism (ILP), and thus, fits well for designing efficient parallel processors
to implement target applications. The toolset aims to provide full and effective
design flow for designing TTA processors with comprehensive and partly automatic
design tools.

For this thesis, Single Instruction, Multiple Data (SIMD) vector operations and
high-level vector programming were introduced to the design flow in order to ex-
tend TCE to support Data-Level Parallelism (DLP) and, therefore, provide more
customization options for this degree of parallelism. This thesis describes the TCE

design flow and the tools that were modified or created in bringing the SIMD capa-

1. Introduction 2

bilities to the toolset. Most of the emphasis is given for the retargetable compiler.
The thesis also presents how the SIMD toolset modifications and new tools were
verified.

The structure of this thesis is divided into the following chapters. Chapter 2
describes typical forms of parallelism and presents the basics of customizable pro-
cessor templates and TTA processors. TCE is also introduced, after which a more
detailed overview is done on compilers, as it is one of the key elements in this thesis.
Chapter 3 describes the main TCE design flow and introduces the most relevant
tools that are influenced by the SIMD extension. The implementation is presented
in Chapter 4. Chapter 5 presents the methods that were used to verify the SIMD
extension functionality in different parts of the toolset. Conclusions and future work

are presented in Chapter 6.

2. CUSTOMIZATION OF PARALLEL
PROCESSORS

2.1 Parallelism

Software programs are defined as a sequence of operations that are executed on the
underlying hardware. Embedded processors often have strict constraints that the fi-
nal product must adhere to, such as power consumption or chip area, while possibly
high requirements for execution performance must also be met. The traditional way
to increase performance by pushing up the clock frequency has lead to issues with
power consumption, and has forced processor designers to exploit other means to
achieve satisfying execution efficiency. Today, one of the common approaches and a
constant research objective is utilizing different levels of parallelism in program exe-
cution. In parallel execution, more than one processor hardware resource is utilized
to compute calculations concurrently. Instruction-level parallelism and data-level

parallelism have been typically used in pursuing higher computing performance [1].

2.1.1 Instruction-Level Parallelism

A common way to utilize processor circuitry better is instruction pipelining, in which
instructions are divided into parts and execution into stages. Different parts from
different instructions can be executed in the pipeline stages, which allows overlapping
of several instructions and having them in execution concurrently. The pipelining
allows increasing the clock frequency, as the instruction parts have smaller latency
than the whole unified instruction. However, the maximum amount of completed
instructions each cycle is one at best, because the pipeline is sequential [2].
Another technique to support ILP is when a processor can explicitly have several
instructions completing from execution in a same cycle. This is achieved by extract-
ing independent instructions from the sequential instruction stream and executing
them on available parallel resources [1]. Processors that combine pipelining and

simultaneous instruction execution are called pipelined multiple-issue processors.

2. Customization of Parallel Processors 4

Executing a group of parallel instructions requires that no data dependencies exist
between the operations. Data dependencies appear when an operation computes a
value that is to be read by another operation [3]. An example of parallelizable
and non-parallelizable instructions is shown below. Both code excerpts have four
different operations, each operation having two registers for input values and an

output register for the result value.

a) b)
ADD R1, R2 ->R3 ADD R1, R2 ->R3
SUB R4, R5 -> R6 SUB R4, R3 -> R6 # uses result R3
MUL R7, R8 -> R9 MUL R7, R6 -> R9 # uses result R6
SHL R10, R11 -> R12 SHL R10, R9 -> R12 # uses result R9

The code excerpt on the left is ideal for exploiting ILP. All operations are indepen-
dent, as none of them use results from the other operations. Since all the operations
have no dependencies between each other, they can be parallelized and executed
concurrently. In the code excerpt on the right, the code does not parallelize at all,
since every operation needs the result value from the previous operation, except for
ADD. This can be seen as the worst case scenario from the point of exploiting ILP,
since the operations need to be executed sequentially from top-down.

Figure gives an abstract view of sequential and parallel instruction execution
on a processor hardware. Only the main pipeline stages are shown, and the rest (such
as write-back) have been left out. The execution on the left shows a fully sequential
program execution on a scalar processor, in which only one explicit instruction can
be put to the instruction pipeline for execution. The execution on the right presents
a Very Long Instruction Word (VLIW) multiple-issue processor that is capable of
executing four explicit instructions per clock cycle.

Sequential Parallel
Instruction Instruction
Stream Stream
Fetch OP 1 Fetch OP 1 OP 2 OP3 OP 4
Y Y
Decode OP2 Decode OP5 OP 6 OoP7 OP 8
Y Y
Execution OP3 Execution OP9 OP 10 OP 11 OP 12

Figure 2.1: Principles of scalar and multiple-issue VLIW execution.

2. Customization of Parallel Processors 5

On the VLIW processor, the code excerpt from the above example on the right
could not be executed any better than on the scalar processor, but the ideal code
exceprt on the left could be parallelized to a single stage in the pipeline. However,
instructions in the instruction stream are rarely in an ideal order from the perspective
of exploiting ILP. Data independent instructions from the instruction stream have to
be rearranged to allow code generation of code that utilizes the machine resources
better [4]. Reordering of instructions improves the execution performance [4], as
it avoids stalls by exploiting the processor pipelining better. Although the initial
execution order of instructions is modified, the original effect of the program must
not change. This compiler optimization is called instruction scheduling, and is used
to improve ILP in program execution by extracting it statically at compile-time
or dynamically at run-time. This divides multiple-issue processors to dynamically
scheduled superscalar processors and statically scheduled processors.

In dynamically scheduled superscalar architecture, the responsibility of rearrang-
ing instructions in the instruction stream is given to the processor hardware. A su-
perscalar processor performs data speculation on a limited-size instruction window
to detect ILP at run-time, and issues independent instructions to parallel execution.
However, as additional logic is required for the run-time functionality, the hardware
complexity is increased and cycle times may become longer when compared to a
scalar processor. [5]

The VLIW, which belongs to statically scheduled architectures, relies on the
compile-time scheduling. In contrast to the run-time scheduling, the responsibility
of exploiting ILP has been moved to the software compiler, which explicitly specifies
the instructions that are executed in parallel [5]. Instructions from a sequential
instruction stream are scheduled to very long instruction words. The very long
instruction words consist of a set of parallel instructions, which utilize processor
resources concurrently. The difference between a sequential and a parallel instruction

stream is visualized in Figure 2.2]

2. Customization of Parallel Processors 6

Scalar Very Long Instruction Word

OP1

OP2

OP3

OP4 OP1 OP2 OP3 OP4

Instruction Instruction

Stream oP5 Stream OP5 OP6 OP7 OP8

OP6

OP7

OP8

]]

Fetch Fetch

% %

Figure 2.2: Difference between a sequential and a parallel instruction stream.

Instructions are laid out sequentially in the case of a scalar processor. If the
processor is a superscalar, an additional hardware unit will be extracting ILP at run-
time by fetching multiple instructions from the instruction stream and scheduling
them to free parallel execution resources. In the case of the VLIW processor, the
instructions have already been scheduled by the compiler to very long instruction
words. In the example, the words consist of four parallel instructions, and they can
be fetched to the pipeline for parallel execution without any additional logic.

In static scheduling the complexity of the compiler software increases due to the
responsibilities in ILP extraction and scheduling logic. On the other hand, the
hardware complexity is reduced, since there is no need for an additional hardware
unit to do any run-time scheduling. In addition, whereas the dynamic scheduling
logic has only a limited knowledge of incoming instructions, in static scheduling the
compiler has global visibility over the whole program and its inner dependencies,

making the instruction window infinite [5].
2.1.2 Data-Level Parallelism

In contrast to ILP, in which multiple operations are executed concurrently on in-
dependent data elements, in DLP the independent data elements are distributed to
multiple similar concurrent processing elements. Modern data parallel processing
techniques are usually referred to as SIMD processing, in which the same operation is
applied to multiple data elements simultaneously. The data elements, or subwords,
are single numerical values of a specific type, such as floating point or integer num-

bers. The elements form wide packed words called vectors. SIMD processing with

2. Customization of Parallel Processors 7

vector operands is widely utilized in today’s processors to bring execution efficiency.
Historically, processors with vector processing hardware were mainly common in su-
percomputers. The following will present an example of a well-known and successful
supercomputer, and another example is presented of a consumer-based processor.

In 1976, Cray-1 supercomputer was introduced with both scalar and vector pro-
cessing capabilities. It contained eight 64-element vector registers (64-bit elements)
and three vector function units dedicated for vector processing. It was effective es-
pecially at computing with short vectors, and implemented a “chaining” technique,
in which intermediate result vectors could be used again without circulating them
through the memory first. [6]

In 1996, Intel introduced the 64-bit MMX SIMD instruction set extension to its
consumer-based X86 processor architecture for performance improvements in mul-
timedia, communications and other numeric-intensive applications [7]. The 64 bits
of packed data supported 8x8b, 4x16b, 2x32b and 1x64b data types, and especially
the parallel operations on small data elements (8b and 16b) were the fundamental
factor behind the performance boost [7]. As of this writing, Intel has scheduled to
include the AVX-512 SIMD extension to its future processors, which extends the
current SIMD support to 512-bit vectors [§].

SIMD fits best in heavy vector math computing, such as scientific or multimedia,
in which great deal of the computation is data parallel. The higher the level of
DLP is in the input program, the greater are the advantages from the SIMD-style
execution. When compared to doing vector math on a SIMD hardware rather than
on a scalar hardware, the execution has several benefits. One of them is the reduced
instruction word overhead and increased computation performance. Only one SIMD
instruction definition is required to execute N operations, rather than define N
separate instructions to do the same amount of calculation on the scalar hardware.
ILP offers more flexibility in exploiting parallelism, but suffers from the additional
instruction overhead as it defines N separate scalar instructions.

By using specific vectorization methods, the amount of dynamic instructions (ex-
ecuted instructions in a program) have been managed to reduce by over 80 % in
multimedia and communications related programs [9]. SIMD execution may also
have significant benefits when it comes to energy savings. Hardware SIMD execu-
tion units consume more energy than scalar units and increase the average power
consumption. However, due to the reductions in execution time and in instructions,
such as energy-intensive memory accesses, the total energy consumption may be
reduced considerably [10]. As a downside, vectors require wide buses for intercon-
nection and wide registers for temporary storage, which leads to bigger die size and

increased chip power consumption.

2. Customization of Parallel Processors 8

R=AopB (R1,R2,R3,R4) = (A1,A2,A3,A4) op (B1,B2,B3,B4)
A A1|A2 | A3 | A4
B B1|B2 B3| B4
R R1|R2|R3 | R4
Scalar Operation Vector Operation (4 x Scalar)

Figure 2.3: Principles of a scalar operation and a vector operation.

Figure [2.3 shows a simple example of a scalar operation and of a corresponding
vector operation. The scalar operation on the left is executed by using the two
scalar input operands, which results to a scalar output operand. The operands in
the vector operation are vectors, which consist of four scalars. The vector operation
is performed by executing the scalar operation on each of the Ax and Bx scalar
pairs, resulting to a four-sized result vector. In other words, the vector operation
performs N parallel operations for the N-sized input vectors.

In addition to embedded parallel processors and general-purpose CPUs, contem-
porary Graphics Processing Units (GPUs) are optimized for SIMD computation [11].
Their high-performance processing units are also increasingly exploited in GPGPU
(General-Purpose computing on Graphics Processing Unit) computation. Single In-
struction, Multiple Thread (SIMT) by Nvidia resembles the SIMD-style execution.
The GPUs consist of Streaming Multiprocessors (SMs), which consist of a num-
ber of scalar processing elements [12]. The scalar processing elements operate on
threads. In SIMT execution, a thread is created for each data element, which are

then distributed for execution on the scalar processing elements [12].

2.2 Processor Templates

Customized processors are designed by tailoring and specializing the processor ar-
chitecture resources to fulfill the application requirements. Flexible processor cus-
tomization is a major factor in pursuit of higher performance, lower power consump-
tion and smaller chip size. Customized processors are used in System-on-Chip (SoC)
circuits to implement functionality of a target application (or part of it), for which a
fixed function accelerator does not provide enough flexibility and a general-purpose
CPU is too slow or consumes too much power [13[14]. They are usually referred
to as application-specific processors, or its variations, but this thesis will be using a

more general naming convention customized processors.

2. Customization of Parallel Processors 9

Modem Multicore Multimedia
Subsystem Subsystem Subsystem
Krait Krait

LTE World cPU CPU Adreno
Modem GPU
VeNum VeNum
L1 Cach L1 Cach io/ Vi
GPS/WIFI/BT/FM acne ache Audio/Video HW
Accelerators

Multi-

Hexagon Hexagon Hexagon N
DSP DSP L2 Cache DSP media

processor

Snapdragon System Fabric

Dual Channel Memory

Snapdragon Adaptive Power Technologies

Figure 2.4: Block diagram of MSM8960 chipset. [16]

Heterogeneous multicores utilize multiple specialized cores to divide the workload
optimally across the processor, for instance, by allocating graphics processing to a
GPU and signal processing to a Digital Signal Processor (DSP). In homogeneous
multicore processors the cores are replicated on the chip, and the processor consists
of identical cores. They are easier to design and to program, as workloads can
be executed on any core. However, as the cores are more generic in nature, the
maximum number of cores is met earlier than with the heterogeneous architecture.

As heterogeneous architectures allow using specialized cores, they have more effi-
ciency in chip area usage and in adapting to different applications [15]. Some of the
cores can also be internally homogeneous, allowing multicore processors to benefit
from both achitecture types. An example of a heterogeneous Qualcomm Snapdragon
S4 multicore SoC (chipset MSM8960) is presented in Figure . In order to pro-
vide a complete mobile platform, it features several heterogeneous components, such
as a multicore CPU, GPU, DSP, modem and multimedia processors, and on-chip
memories.

As a drawback compared to a pre-designed “off-the-shelf” processor, customized
processors need to undergo a design process. In order to minimize time and design
effort to feasible amounts, a co-design toolset is required to design the processor
software and hardware in a simultaneous process. The more automated the toolset
is, the less time and effort is needed in the design process, which improves time-to-
market delivery of the processor.

By using an architecture template, the design exploration space can be restricted
to the reuse of pre-defined modules, which reduces effort in processor design and
modelling [17]. A template defines general attributes of the processor and sets con-

straints on which ones can be customized, along with the amount of parallelism that

2. Customization of Parallel Processors 10

can be influenced. Without an architecture template the whole processor would have
to be designed from scratch, along with the toolset. The design and implementation
of a co-design toolset becomes feasible due to the usage of a template, as it simplifies
significantly the creation of some of the design flow tools, such as the compiler [1§].

The processor design space exploration often starts with designing an initial archi-
tecture. The target software is compiled to the initial design, and then evaluated to
find bottlenecks or low resource utilization. The processor is customized by remov-
ing unnecessary resources and adding in beneficial ones, after which the compilation
and evaluation steps are run again. This sequence is repeated iteratively to enhance
the initial processor design until a satisfying one is found. The final, customized
parallel processor, is an instance of the template, tailored to meet the requirements

of the target application.

2.3 Transport Triggered Architecture

Independent function units are utilized by the very long instruction words in the
VLIW architecture. However, VLIW processors have scalability problems that start
to occur when the number of function units is increased. Adding new function units
grows the interconnection network rapidly, along with the chip area and the power
consumption |19]. This has a negative impact on the achievable cycle time and
causes severe scalability problems. Another issue is related to the bypass circuitry
between function units. The circuitry allows moving a value from a function unit
output port directly to a function unit input port without storing the value in a
register file first. Delays can be reduced between operations due to this register
bypassing, but the circuitry causes another scalability issue by having a complexity
of at least O(n?) [19].

TTA consists of a set of function units (FUs), register files (RFs), buses and
sockets [19]. It is a statically scheduled multiple-issue processor architecture tem-
plate that is able to exploit static ILP by executing multiple operations concur-
rently. TTA is similar to the VLIW architecture, but can overcome the scalability
related issues by requiring less wiring in the interconnection network and less ports
in register files |19]. In TTAs, the datapath is visible to the programmer and they
differ from traditional “Operation-Triggered Architecture” (OTA) in the way they
are programmed [20]. A traditional OTA processor is programmed by specifying
the operations that implicitly utilize the transports between FUs and RFs on the
datapath. TTAs are programmed by explicitly specifying data transports (moves)
between FUs and RFs in the interconnection network [20]. Operations are possibly

triggered as a side effect of these transports [20].

2. Customization of Parallel Processors 11

Data Memory

' {

Load Store Load Store
Unit 1 Unit 2 ALU Complex MUL Input/output
Port —DE_E_E Instruction

il

Interconnection M0 H 0 N A oo 0 o oo o — 1 ¥ -
network . - -:-5{ ol o - [#a->awmn |
° - o o o Il - e | | LSULR -> ALU.IN2.ADD
Transport bus - T - - oy — RF.2 -> LSU2.T.STW
oo il ° Oy o) -
Socket
oy) O) - — N
e o = L L o O O s , LA P . AP
Connection ! g :; !
. . Boolean P " "
FPU Register File Register File Control Unit Immediate Unit

1 1

Instruction Memory

Figure 2.5: Example of a TTA processor.

Figure [2.5] shows an example of a TTA processor with some function units and
register files, connected together by the interconnection network. Operands can
be transferred from place A to place B by using the buses, while sockets provide
connections between the buses and RFs or FUs. The level of ILP is affected by the
number of buses: wide instructions can issue a data transfer for each bus. Socket and
bus connections in the network dictate the possible data moves that programmers
can describe.

Register files provide fast access temporary storage for operands. Function units
contain one or several machine operations, which operate on the operands. In order
to provide an interface for passing operands to buses, FUs and RFs have input
and output ports, which are basically registers to which input and result values are
placed [19]. One of the input ports in FUs is a triggering port, which is used to
indicate that all input operands are ready for execution [19]. After an operand has
been written to the triggering port, an operation is executed and the result written

to the output port after the operation delay in clock cycles has passed.

2.4 TTA-Based Co-Design Environment

TCE is a toolset for designing and programming customized processors based on
the TTA processor template. It is developed in Tampere University of Technology,
aiming to provide full retargetable co-design flow from high-level language (HLL)
programs to register-transfer level (RTL) processor implementations and parallel
program binaries [21]. TCE includes the necessary tools, such as a processor de-
signer, a compiler, a simulator and a processor implementation generator, to provide
a full co-design flow. The customizable architecture components include register

files, function units, and the interconnection network.

2. Customization of Parallel Processors 12

TCE machines are currently always big-endian, in which the most significant byte
of a word is stored to the smallest address and the least significant byte to the largest
address. This requires that all memory access operations on TTA machines must
handle data in the same way.

In order to minimize manual work and optimize the design process, some of the
tools provide fully automatic functionality. In addition, some parts of the toolchain
must also be able to retarget to the processor architecture at runtime to make the
design flow efficient and feasible. The retargetability requires that the toolchain can
describe design flow related information in general data structures that are easily
accessible by other tools. The TCE toolset uses TCE-specific languages and formats
to model the necessary design flow information, such as processor architecture or
implementation details. The toolset and design flow are explained in more detail in
Chapter [3]

2.5 Compiler Support for Data-Level Parallelism

Compilers provide a means to convert human readable source codes to programs that
can be run on target machines. Compiler frameworks provide complete software
modules for designers to build their own compilers, which usually requires some
level of modifications to some of the compiler components. This section presents

the common structure of compilers, and how they support data-level parallelism.

2.5.1 Compilers

Compilers can be generally broken to three main parts: frontend, middle-end, and
backend. The typical structure of a traditional three-phase compiler is presented in
Figure Each of the top level phases consists of a number of sub-phases, and
every sub-phase takes care of a specific task (such as syntactic analysis, optimizing,
or code generation) and transforms the source program from one representation to
another [22].

By dividing the compilation process to individual phases, compilers can be de-
signed as a group of independent modules. Modular design allows attaching and
replacing only the necessary or desired components (such as additional optimiza-
tion phases) for the compilation sequence, helping the reusability, maintainability
and flexibility of the complex compiler software. For instance, to support different
programming languages, the frontend can choose between alternative modules, each
of which implementing the analysis and code parsing for a specific programming
language. Depending on the language of the input program, a suitable frontend

module can be selected for the compilation.

2. Customization of Parallel Processors 13

COMPILER
e
! |
: Frontend Middle-end Backend I
<y ! | Yy
Source Program Source code Transformations Code generation I Target Program
I to intermediate and to target |
I representation optimizations machine |
! I
R S A |

Figure 2.6: Structure of a three-phase compiler.

Intermediate Representation

Most of the time the source program is in the form of a data structure called Inter-
mediate Representation (IR), also called Intermediate Code. Intermediate represen-
tation is the compiler’s general presentation format of the program, which is easier to
analyze, optimize, and transform from one form to another. The program is treated
as a program for an abstract machine, which consists of an abstract instruction set
and an unbounded number of pseudo-registers. Intermediate representation is cre-
ated from the source code in the compiler frontend, and is usually mostly target and
source language independent.

Intermediate representations can be grouped to structural (trees and graphs) and
linear (pseudo-code for abstract machine) representations. Types that are combi-
nations of both also exist. During compilation, compilers might construct one or
more intermediate representations, possibly having varying forms and abstraction
levels. High-level abstract syntax trees may be created for dependence or language
related checking, middle-level language-independent form for optimizations, and al-
most machine-dependent low-level form for optimizations and late compiler phases,
such as instruction selection or register allocation. The IR is usually passed as a
compact in-memory object between compiler phases for performance reasons. [22]

One common form of the IR is a three-address code, which is not a tree struc-
ture, but a sequence of program steps. In three-address code the program is split
to basic blocks, which are sequences of statements that are always executed sequen-
tially without branching [23]. Another, Static Single-Assignment (SSA) form, is a
three-address code variation, which differs from it by assigning each variable only
once [23]. Both forms are exploited in compiler optimizations, and they may be

used in examining different flow analyses of the program.

2. Customization of Parallel Processors 14

Frontend

The frontend is the first part of the compiler, which starts the compilation pro-
cess by performing analysis phase for the source code. Correct syntactic structure
(variables, declarations, statements) and static semantic constraints of the source
program are checked [24]. The source program is broken into pieces and structured
grammatically. If errors are found, the programmer is informed of them [23]. If the
analysis phase is passed, the intermediate representation of the source program is
generated.

Frontends can support various language extensions, which increase expressiveness
of high-level languages. The extended features can allow better maintainability to
programs that are aimed to a specific problem domain, while they potentially also
allow domain-specific optimizations [25].

High-level vector programming can be enabled by using vector extensions in the
source language, if the frontend supports the extension. Vector processing is typi-
cally expressed in the source code by explicitly defining the desired operations from
SIMD instruction sets with built-in intrinsic functions. However, intrinsics are not
architecture independent and weaken the portability of the source code. Vector ex-
tensions allow high-level vector types and programming in a machine-independent

way, which maintains the portability of the source code.

Middle-end

Whereas the frontend is dependent of the source language and the backend is depen-
dent of the target machine, the middle-end is mostly independent of both. During
the middle-end (also called optimizer), the program can be thought of as a program
for an abstract machine and it is run through a series of transformations and op-
timization phases. The number of total transform and optimization phases usually
depends on the given optimization switch: the larger the switch number, the more
phases are run. The optimizations mostly aim at improving the efficiency of the pro-

gram by reducing execution time, memory consumption, or consumed energy [24].

Backend

The middle-end hands the optimized IR over to the backend, which translates it
to target machine specific code. In addition to frontend’s and middle-end’s tar-
get machine independent optimizations, backend usually does final machine-specific
optimizations on the IR. The flexibility of the backend is the key element in retar-
getability. Backend usually consists of at least three primary phases: instruction
selection, register allocation, and instruction scheduling. Figure illustrates the

phases in one of the typical execution orders, but it may also vary between compilers.

2. Customization of Parallel Processors 15

BACKEND
I
| . . :
| Instruction Register Instruction }
— : Selection Allocation Scheduling | —
I ord I
IR Program Replace IR statements Assign values instrt,lrct‘iac;ns I Target Program
I with target-machine to physical efficiently for |
I instructions machine registers Y |
| execution I
! |
e |

Figure 2.7: Primary phases in code generation.

The instruction selection phase maps IR statements to target machine assembly
instructions [26]. For instance, vector instructions in the IR will be mapped to the
machine’s SIMD function units, if possible. If not, vector instructions are usually
split to smaller vector instructions or ultimately to scalar instructions, and executed
on the scalar hardware. The instruction selector has an important role in generating
efficient code, as IR operations can be usually executed in various target machine
instruction sequences, with significand cost differences [23]. Instruction selection
is typically performed for a tree or graph representation, in which parts of the
IR code are replaced with target instructions by using pattern-based instruction
selection [23].

The register allocation phase is responsible for assigning symbolic variables and
intermediate results to physical target machine registers [26]. For instance, vector
variables and results are mapped from virtual registers to physical registers that can
store temporary vectors of specific sizes. Registers are the fastest way to access op-
eration related data, but usually there are not enough of them to store all operands.
Register allocator has to decide which operands should be preserved in registers and
which ones need to be stored (spilled) to memory for optimal execution [23]. In
most environments, a few registers are also reserved for special use, such as stack
pointers [23].

The instruction scheduling phase rearranges the selected instructions for optimal
machine resource usage. For TTAs, the compiler aims to schedule the instructions
into parallel wide instruction words. However, it has to adhere control-dependence,
data-dependence, and resource constraints in order to produce code that retains
the original meaning of the program [23]. As TTAs are statically scheduled, the
scheduler has an important role in producing code that utilizes processor resources
as effectively as possible and minimizes stalls in the pipeline. More about TTA

instruction scheduling can be found in [27].

2. Customization of Parallel Processors 16

2.5.2 Vectorization

Programs usually contain computation on scalars, which could be converted to vec-
tor computation. Vector programming in a high-level language has conventionally
been slow and prone to errors due to explicit usage of embedded inline assembly or
intrinsic functions 28], which require expertise from the programmer. Vector exten-
sions were introduced previously as a solution for machine-independent high-level
vector programming. In addition, modern compilers often include a vectorizer as
part of optimization modules. Vectorizers aim to transform parallel scalar compu-
tation automatically to vector computation.

A vectorizer does analysis for the IR program and replaces scalar computation
with vector operations without changing the original semantics of the program [29].
If the underlying hardware supports SIMD execution, the program execution can
benefit as described in section A typical way to extract DLP is by using
loop-level vectorization, which vectorizes code by running transformations on loops.
Vectorizable loops consist of iterations through array elements from index 0 to N-1,
and in every iteration the elements are used by some statements in the loop. If the
elements do not have dependencies throughout the iterations and there are no other
issues (such as too short iteration count), scalar operations can be merged to vector
operations with reduced loop iteration count.

Vectorization can not be always done in compile-time due to potentially over-
lapping pointer accesses. The problem can be managed by generating both scalar
and vectorized version of the same code segment along with additional logic that
checks if the pointers overlap in run-time. If the pointers do not overlap, there are
no dependencies and execution can be directed to the vectorized code segment.

In addition, although a vectorizer might find several code areas that could be
vectorized, it may not vectorize all of them. Vectorizers use cost models to estimate
if vectorizing the code is eventually worth it [30]. For instance, if a loop algorithm
contains lots of memory accesses that are not in adjacent memory locations (non-
unit stride access), loading the subwords separately may cause so much overhead
that the vectorization would bring very little benefits, or even slows the program
execution down compared to the scalar execution. Another diminishing factor is
the cost of packing scalars to vectors, and possibly unpacking them back to scalars.
The usage of unpacking depends on how the result data is used after computing the

result.

17

3. TTA-BASED CO-DESIGN ENVIRONMENT

3.1 Design Flow

In TCE, processors are designed by using an iterative design space exploration pro-
cess. It aims to discover the best possible set of processor components and their im-
plementations to execute the target application within the design requirements [31].
The exploration process and the whole TCE design flow consist of several steps,
which are visualized in Figure [3.1. The white boxes present the design flow tools,
and the light gray containers present the data that is used in different phases in the
flow.

The requirements for this thesis project consisted of bringing SIMD capabilities
to all essential parts in the TCE design flow. The flow will be explained briefly,
after which a more detailed overview is done for tools and data structures that were
relevant in this thesis. In addition, fundamentals of the LLVM compiler framework
are presented before introducing the TCE compiler. The key areas that required
modification for the SIMD support are pointed out as the design flow is presented
forward.

The co-design flow starts with having the high-level language source codes of
the target application (HLL Program) and the design requirements. An initial
processor architecture is customized by using the processor designer tool (ProDe).
TCE provides an initial architecture with a few components, which can also be
used as the starting point for the customization. Operations can be added to the
processor function units from operation set libraries.

Once the initial processor architecture is ready, the program is compiled for it by
using the TCE compiler (tcecc). The compiler takes the architecture and the source
program as input and produces a software model of a parallel TTA program that
can be run for the processor in TCE simulators [32].

TCE has two simulators: ttasim, which provides a command line interface, and
Prozim, which provides a graphical user interface. The simulators produce simula-
tion statistics, which are utilized to customize the processor again to more enhanced
architecture. Implementation model of the processor defines hardware implementa-
tions for the architecture components, and can be used to estimate the chip area
and power consumption of the architecture. Hardware implementations are stored
to TCE-specific hardware database files.

3. TTA-Based Co-Design Environment 18

S S S
[REEERE Operation Set Library Hardware Database (€~ -« - -
. - USES

CHECKS USES
Desi Processor Retargetable Retargetable Processor Program
gner/ oo — " N N Image
Explorer ———>»C ! ADF Comp P Generator Generator
‘ s -— = (ProDe) - | (tcecc) (ttasim/Proxim) (ProGe) (PIG)

I
]

f I CREATES CREATES CREATES
|
|
|
|

Processor HDL

L Description

Figure 3.1: TCE design flow.

After the architecture has been customized based on the feedback from the sim-
ulation, the program is compiled for the new architecture, simulated and reviewed.
This same iteration is repeated until a satisfactory architecture is found within the
design requirements. In addition to the processor architecture tailoring, the designer
may also be able to make manual adjustments to the source program for more opti-
mal execution on the current architecture. If the designer wants to apply automation
to the exploration process, TCE includes an exploration tool called Ezplorer for this
purpose.

After an acceptable architecture has been found, the design flow can continue
to processor hardware generation. The processor generator (ProGe) creates synthe-
sizable RTL implementations for the processor RFs, FUs, and the interconnection
network. The implementations are generated by using the architecture implementa-
tion model. The compiled program is also converted to actual instruction memory
bit image with the program image generator (PIG) before uploading it to memory.
After the RTL description and the program bit image have been generated, they
can be deployed to a Field-Programmable Gate Array (FPGA) or used to create an
Application-Specific Integrated Circuit (ASIC).

3.2 Processor Customization

ProDe is used for designing the architectural models of processors. Processor com-
ponents that can be customized include register files, function units, buses and sock-
ets. Processor architectures are serialized to XML-based Architecture Definition File
(ADF) description format, which stores only the information that is needed to gen-
erate valid programs for the processor [33]. ADF is the general description format
that is used for forwarding processor architecture information to other TCE tools,

such as the TCE compiler.

3. TTA-Based Co-Design Environment 19

Operation Set Abstraction Layer

Static properties and simulation behavior for operations are defined in an operation
set library called Operation Set Abstraction Layer (OSAL). Operations defined in
OSAL are used in customizing processor functions units, which define the instruction
set of the processor. OSAL libraries can be modified and new ones created with
operation set editor (OSEd) tool.

Static properties of operations are stored into XML-based .opp files. An opera-
tion has several fields to express its properties, such as name, memory access type,
number of input and output operands, and operand attributes. The semantic type
of an operand is defined with type field. Operand definitions can be currently used
to define an operand to be a scalar of some type, which needs to be modified in
order to support vector operands for SIMD operations.

OSAL operations require a behavior model definition, which describes the execu-
tion semantics for an operation. The behavior model is used for imitating operation’s
hardware execution with software simulation. It can be defined in two ways: either
by writing a C++ behavior description to a .cc file, or by describing the behavior
as a directed acyclic graph (DAG) by exploiting other pre-defined OSAL operations.

The DAG-based behavior descriptions can be expressed with one or multiple
trigger-semantics field definitions, which is part of operation’s static properties.
In addition to using the DAG behavior model in simulations, it can also be used
for creating instruction selection patterns for the compiler. DAG descriptions make
describing the behavior model — especially in the case of SIMD operations — easier
for operations that can be built from other operations. It also helps the maintenance
of behavior models: if a fix needs to be done to an operation’s behavior, which is
exploited in a DAG of another operation, the changes are automatically updated to
the other behavior models.

SHL2ADD operation definition from TCE’s base.opp file is shown in Figure It
presents the static properties and the DAG-based behavior description. The prop-
erties define the operation name, description, number of input and output operands,
operand attributes, and the DAG behavior. Operand attributes state an identifier
number and the type of the operand, which is signed integer word in this case.
The operation definition can also have other fields that are not shown here, such as
<writes-memory/> or <reads-memory/> to indicate memory accessing.

SHL2ADD is meant for calculating an index position for arrays with 32-bit el-
ements. The DAG behavior is expressed by using TCE-specific macros between
<trigger-semantics> and </trigger-semantics> fields. For this operation, it is
described as a result of SHL and ADD operations. SimValue is a data structure for
representing any types of values in simulations, and is used in TCE as a wrapper

to contain the bits of operand values. It can be also used as a temporary value

3. TTA-Based Co-Design Environment 20

<operation>
<name>SHL2ADD</name>
<description>Array indexing for 32-bit data types</description>
<inputs>2</inputs>
<outputs>1</outputs>
<in id="1" type="SIntWord"/>
<in id="2" type="SIntWord"/>
<out id="3" type="SIntWord"/>
<trigger-semantics>
SimValue shifted;
EXEC_OPERATION(shl, IO0(1), 2, shifted);
EXEC_OPERATION(add, shifted, I0(2), I0(3));
</trigger-semantics>
</operation>

Figure 3.2: Static properties of the SHL2ADD operation.

storage in DAG descriptions, like the shifted variable. EXEC_OPERATION defines
an operation execution with given input and output operands. I0(id) can be used
to pass input and output operands to other operations in the DAG. The first input
operand is first shifted two bit positions to the left (32-bit indexing), after which
it is added together with the second input operand and the result is written to the
output operand.

C++ behavior models are described by using TCE-specific restricted C++ lan-
guage, which is then compiled to an .opb plugin module file [33]. The behavior de-
scription for the logical left shift SHL operation in base.cc file is shown below. The be-
havior description starts with stating the operation name with OPERATION Copname)
field. The opname is the same OSAL operation name that is defined in the static
properties. The code section between TRIGGER and END_TRIGGER; is used for de-

scribing the actual behavior.

OPERATION (SHL)
TRIGGER
I0(3) = UINT(1) << UINT(2);
END_TRIGGER;
END_OPERATION (SHL)

SHL operation has two input operands and one output operand defined in its
static properties. Input operands can be accessed with INT, UINT, FLT, DBL and
HFLT macros depending on how the bits in the operand should be interpreted. The
macros return the operand bits that are contained in a SimValue object as the

desired type. In SHL, the input operands are accessed with the UINT (id) macro,

3. TTA-Based Co-Design Environment 21

which presents the operands as unsigned integer values. The I0(¢d) macro must be
used when values are assigned to output operands.

As operand attributes and SimValue did not support vector operands, only scalar
values could be used in the C++ and DAG descriptions. Both were extended to
support vector operands and SimValue modified to provide ways to access individual
vector elements of different size. This allowed creating the DAG behavior models
for vector operations by exploiting the scalar counterpart to compute values for
independent vector elements. After these changes, SIMD operations could be defined
to OSAL libraries and added to processor functions units. The width of register
files, ports and buses could be already modified to arbitrary widths, and required

no changes.

OSAL Tester

TCE toolset includes a simple program called testosal for debugging operation be-
havior models [33]. It is used by creating input commands, which state the oper-
ation name and input operand values. The bits of the input values are stored to
SimValue objects, which are used in the behavior semantics. Input values can be
given in different formats, such as integer or hexadecimal numbers. Output value(s)
are calculated by executing the behavior model, after which they are printed. The
type of the printed result values can be set with !'output command. Below is an
example of a command line input for scalar SHL operation, whose behavior model

was introduced previously.

>> loutput hex
>> SHL 0x12345678 0x10
0x56780000

On the first line, testosal is set to print result values from operations in hexadec-
imal format. On the second line, the SHL operation is listed with two hexadecimal
input values. The latter value (integer number 16) defines the number of bit po-
sition shifts to the left for the first value. Two SimValue objects are created and
initialized with the input values. The objects are passed to the behavior model,
which then executes the operation and calculates the output operand value. The
value is printed, and as a result, the bits in value 0x56780000 have been shifted 16
bit positions to the left.

OSAL Tester supported expressing and printing scalar values in the command line
listing. As the OSAL was extended with vector features and new vector operations
were created, their behavior models needed to be tested in testosal. Thus, OSAL

Tester was modified to initialize and print SimValue objects with wide vector values.

3. TTA-Based Co-Design Environment 22

3.3 LLVM Compiler Infrastructure

Low Level Virtual Machine (LLVM) is a compiler infrastructure, which consists of
modular and reusable compiler and toolchain technologies [34]. TCE uses LLVM as
the basis for its tcecc compiler, which is responsible for compiling source programs
for TTA machines. LLVM is a three-phase compiler and the compilation flow at
simplest is the same as presented in Figure 2.6l The compilation flow starts with

compiling the source program to LLVM Intermediate Representation in the frontend.

3.3.1 Clang Frontend

In order to take full advantage of DLP resources on the architecture, programmers
need to be able to explicitly describe vector calculations in the source code. Clang
is a C/C++/Objective-C compiler, which aims to be powerful and comprehensive
frontend for the LLVM compiler [34]. It supports GCC, OpenCL, AltiVec and NEON
vector extensions, which can be exploited to provide high-level language support for
vector programming [34].

OpenCL vector types can be created by type defining a scalar type to a vector
type with Clang ext_vector_type attribute, which sets the desired element count
for the vector type. Below is an example of a four-sized integer vector type def-
inition. The vector type is defined by stating the desired type definition symbol
(int4), which is followed by the __attribute__ keyword and the vector extension

(ext_vector_type(elem. count)) definition inside brackets.
typedef int int4 __attribute__((ext_vector_type(4)));

The vector type definition can then be used to create vector variables and perform
vector computation on them. Below is an example how the vector type is used in a

function implementation to perform multiply-accumulate operation on input vectors

in C.

int4 multiplyAccumulate(int4 a, int4 b, int4 c) {
int4 result = a *x b + c;

return result;

The source code does not basically differ from the same function with scalar
integer operands. The only difference in the code can be seen in the parameter and
return value type declarations, which are of vector type int4 instead of plain int.

The vector types provide an easy way to do vector programming on high level.

3. TTA-Based Co-Design Environment 23

3.3.2 Intermediate Representation

The LLVM IR is used as the common code representation throughout all compila-
tion phases. The IR aims to be light-weight, low-level while being expressive, typed,
and extensible at the same time. It is designed to be used as an in-memory com-
piler IR, as an on-disk bitcode representation, and as a human readable assembly
language representation, allowing the LLVM IR to provide powerful representation
for different compiler optimizations and analysis. [34]

The IR code uses three-address representation and has a strong type system for
values that can be produced by instructions. In the instruction selection phase,
values are assigned to virtual registers. Primitive scalar types are represented as
integer types (il, i8, i16, i32, etc.) or floating point types (half, float, double, etc.).
The IR provides DLP support with vector types, which must be a group of elements
of the same type. A vector element type can be either an integer or a floating
point type, or a pointer to other of the two types [34]. Vector types are defined by
using <’element count’ x ’element type’> notation in the IR code. For instance,
<4 x 132> type defines a four-sized vector with 32-bit integer elements and <16 x
float> a vector with sixteen single-precision floating point elements.

Vector and scalar operations are expressed in the same way in the IR code,
only the operands in the operation statement differ. Operands can be expressed as
constant or temporary values. The operation definition for the LLVM add operation
is presented below. The definition starts with the operation name, after which the
type (<ty>) of the operands must be defined. After the type definition, both input

operands are listed and separated by a comma.
<result> = add <ty> <opl>, <op2>

An example of the addition operation using different vector operands is presented
below. The first line defines an addition between two temporary values, the second
an addition between a constant vector value and a temporary value, and the third

an addition between two constant vectors.

<result> = add <4 x 132> Yvarl, Y%var2
<result> = add <4 x i32> <10, 20, 30, 40>, Yvar
<result> = add <4 x i32> <5, 6, 7, 8>, <4 x i32> <-9, 3, -1, 3>

In all cases the operation results in a new 128-bit wide vector variable with four
sum elements from the executed operation. The compiler could easily optimize the

operation on the third line by pre-calculating the result in compile-time.

3. TTA-Based Co-Design Environment 24

LLVM IR

LLVM Code Generator
e e e e e e e e e e e e e e e e — — — ———— 1
' L4 [
I I
I Instruction 3 Scheduling > Sf/l:é)tzizd > Register N Prolog/Epilog N Late Machine N Code |
I Selection and Formation Code Allocation Code Insertion _Cc_)de_ Emission |
| e Optimizations |
I Optimizations |
! [

Target Code

Figure 3.3: Flow of the LLVM code generator.

3.3.3 Backend

New backends can be built by utilizing the LLVM code generator framework, which
is provided as part of the LLVM tools. It provides a set of reusable components for
converting IR programs to target machine code [34]. Figure presents the main
phases in the code generator.

The flow starts with instruction selection, which converts the IR into a DAG of
target machine instructions. Operation operands are in virtual registers. In the next
phase the DAG instructions are assigned to a new order depending on the different
constraints of the target machine. For example, the scheduler can order instructions
in order to hide instruction latencies. The next phase is optional and performs a
series of machine-code optimizations on the SSA-form of the program. The code is
then converted from using an infinite virtual register file to using concrete registers.
Virtual register references are eliminated and mapped to the target machine’s reg-
ister files. In case the number of physical registers is not enough, spill code is also
generated in this phase to move additional register values to memory. In the next
phase the prolog and the epilog code is generated for functions, and abstract stack
references are resolved to real stack references. Final machine code optimizations,
such as spill code scheduling, may be done before the code emission. [34]

When a new backend is created, several abstract interfaces need to be imple-
mented for the code generator. The most important interface is TargetMachine
base class, which will be derived to a target-specific subclass to provide a backend
for the machine. The subclass implements the virtual methods from the base class,

which provide methods for accessing target-specific information [34].

Instruction Selector LLVM uses a SelectionDAG-based instruction selector, which
translates the LLVM IR code to target machine instructions. The SelectionDAG pro-

vides an abstract directed acyclic graph representation of the IR code. It represents

3. TTA-Based Co-Design Environment 25

the code as nodes, which is well-suited for different phases in the code generation,
such as instruction selection, scheduling, and very-low-level optimizations. [34]

The instruction selector consists of several phases, of which the most important
ones are the legalization of operand types, the legalization of operations, and the ac-
tual instruction selection. The legalization phases convert the DAG to only use types
and operations that are supported natively by the target machine [34]. For example,
unsupported vector operands are split until a supported vector type is found, or all
elements are ultimately converted to scalars. After the legalization, IR operations
are associated with target machine instructions by using pattern matching.

LLVM provides a skeleton base class of the instruction selector, and some parts
of it needs to be implemented separately to make the selector work with the target
machine. Some parts of the instruction selector are implemented automatically by
the LLVM TableGen tool, which generates C++ code implementations from target
descriptor files. However, all instructions can not be expressed with the descriptors,

and some of the method implementations need to be made manually.

Register Allocator The register allocator converts the code from using virtual
register file references to using target machine register files. LLVM provides three
register allocators for different allocation purposes, of which the default “greedy”
allocator aims to minimize the cost of spill code [34]. Register allocators are machine

independent and do not require modifications to work with a target machine.

Target Descriptor Files

LLVM uses target descriptor (.td suffix) files to express a great deal of domain-
specific information of target machines, such as the instruction and register set.
Target descriptor files are processed by TableGen, which converts the descriptor
files to C++ code that is used in code generation in the backend, saving the back-
end designer from a great deal of repetitive work. In order to reduce the amount of
redundant descriptions and make it easier to structure target machine related infor-
mation, TableGen is specifically designed to allow writing flexible domain-specific
descriptions. [34]

TableGen files consist of records, which express the domain-specific information.
Records consist of abstract “classes” and concrete “definitions”. Classes are used to
build abstractions of the domain information, and TableGen syntax allows creating
new and more domain-specific classes by inheriting existing classes. Derived classes
can reduce the amount of redundant duplication considerably. Concrete definitions

that express the domain-specific attributes are created by using the def keyword.

3. TTA-Based Co-Design Environment 26

Register

Target-specific registers are defined by using Register class. The class has the

following attributes:

class Register<string n> {
string Namespace = "";
string AsmName = n;
string Name = n;
int SpillSize = 0;
int SpillAlignment = O;

list<Register> Aliases = [];
list<Register> SubRegs = [];
list<int> DwarfNumbers = [];

The parameter n defines the name of the register. Other attributes, such as sub-
registers, are not specified. More complex classes for registers are usually created
by deriving the Register class. Below is an example of a class definition for X86

registers, which is used as a generic register class.

class X86Reg<

string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
let Namespace = "X86";
let HWEncoding = Enc;
let SubRegs = subregs;

}

The subclass defines two new parameters, encoding bits for the register and an
optional subregister list, which is empty by default. Base class attributes can be
overridden with the let expression in derived classes. New registers can be defined

by using the derived class. Below is a simplified example of a register definition from
X86RegisterInfo.td.

def ZMMO : X86Reg<"zmm0", O, [!cast<X86Reg>("YMMO")]>,
DwarfRegAlias<!cast<X86Reg>("XMMO")>;

ZMM registers are SIMD registers used by AVX-512 instructions. The register uses
the derived X86Reg class, defining the register name as “zmm0”, encoding bits to
0, and YMMO as a subregister. cast<> operator is an assertion check if the given
parameter is not an instance of the desired type. DwarfRegAlias class declares that
a given register uses the same dwarf numbers as the another one, and is useful if
two registers should have the same number. Dwarf numbers are used by debugger

tools to describe where values may be located during execution.

3. TTA-Based Co-Design Environment 27

RegisterClass

RegisterClass classes define a group of registers for a set of value types that can
use the registers. In addition, the class defines the default allocation order of the

registers. The class has four arguments:

1. Name of the namespace,
2. List of LLVM value types the register class uses,
3. Alignment of the registers when stored or loaded to memory, and

4. List of registers that belong to the class. [34]

An example of how the AVX-512 SIMD registers are defined under a RegisterClass
record is shown below. The record name is VR512 and the register class is set under
“X86” namespace. The value type list includes all vector value types that are 512
bits wide, and the alignment is set to the whole vector width. The 512-bit ZMMx reg-
isters are listed in ascending order from index 0 to 31 by using TableGen’s sequence
keyword. Registers can also be listed by writing the individual register names by

hand, each name separated by a comma.

def VR512 : RegisterClass<"X86", [vi6£32, v8f64, v16i32, v8i64],
512, (sequence "ZMM/u", 0, 31)>;

Instruction

Instruction class can be used to define instruction records, though it is commonly
used to create more complex and target-specific instruction subclasses. TableGen
uses instruction descriptors to generate implementations to parts of the instruction

selector. Part of the class structure is shown below.

class Instruction {
string Namespace = "";
dag OutOperandList;
dag InOperandList;
string AsmString = "";
list<dag> Pattern;

Input and output operands are given as a list in DAG format. Operands are

named so that they can be referred to in the instruction assembly string and in the

3. TTA-Based Co-Design Environment 28

pattern definition. The assembly string attribute is used by the assembly printer if
assembly output of the program should be produced. The instruction pattern is used
by the LLVM instruction selector to convert the IR code in a DAG representation
to a new DAG representation, in which the IR instructions are changed to target
instructions. If the instruction pattern matches an instruction that exists in the IR,
the instruction record can be used to replace the IR instruction. An example of a
derived vector instruction class from the NVPTX Vector.td (Nvidia Parallel Thread

Execution) file is shown below.

class NVPTXVeclInst<dag outs, dag ins, string asmstr, list<dag> pattern,
NVPTXInst sInst=NOP> : NVPTXInst<outs, ins, asmstr, pattern> {
NVPTXInst scalarInst=slInst;

b

NVPTXVecInst is an instruction class for vector instructions. It has been de-
rived from the NVPTXInst instruction class, which in turn has been derived from
the Instruction base class. The derived class takes the same parameters as the
NVPTXInst base class, except for the optional scalar instruction parameter, which is
set to no-operation by default if not provided. An example of an instruction record

definition using the derived instruction class is shown below.

def V4i32Extract : NVPTXVecInst<
(outs Int32Regs:$dst),
(ins V4I32Regs:$src, i8imm:$c),
"mov.u32 \t$dst, src{c:vecelem};",
[(set Int32Regs:$dst, (vector_extract
(v4i32 V4I32Regs:$src), imm:$c))], IMOV32rr>;

The record defines an instruction for extracting an i32 element from a v4i32
vector value. Input operands include the v4i32 vector and an immediate integer
number, which indicates the element index that should be extracted from the vec-
tor. The output operand is the extracted 132 element. An assembly string has also
been defined for assembly code generation. The pattern part consists of two pat-
tern fragments. The extract operation for specific operand types is indicated with
vector_extract in the inner node. The outer set matches the whole pattern to a
result of a vector extract with the given operand types. The scalar correspondent
for the vector instruction is defined as the IMOV32rr operation.

More than one instruction record can be created for the same hardware operation.
For example, a memory load operation can have a record, in which both the address
and data operands are register operands. Another record is also usually defined, in

which the address operand is a constant value.

3. TTA-Based Co-Design Environment 29

TableGen allows specifying arbitrary selection patterns, which are replaced with
the desired instructions. Arbitrary selection patterns can be defined by using the

Pat class.
class Pat<dag pattern, dag result> : Pattern<pattern, [result]>;

The first argument is a DAG representation of the pattern that should be re-
placed, and the second argument is the replacement DAG, which consists of existing
instruction records. An example of the Pat usage is shown below. The definition is
from X86InstrAVX512.1d.

def : Pat<(xor VK16:$srcl, (v16il immAllQ0nesV)),
(KNOTWrr VK16:$srcl)>;

The pattern on the left presents an “exclusive or” operation between a v16i1
boolean vector operand ($src1) and an immediate vector operand of the same type,
in which all bits are ones. An “exclusive or” operation, in which the other operand
consists entirely of ones is also a “not” operation, and thus, the result DAG states
that this particular “exclusive or” should be replaced with KNOTWrr. If the pattern

shows up in the IR code, it will replaced with the “not” instruction.

3.4 TCE Compiler

Parallel TTA programs are created by using the automatically retargeting tcecc
compiler. The main phases of the compiler and code generation are presented in
Figure 3.4 The frontend and middle-end consist of the LLVM framework tools,
while TCE is responsible for implementing the code generation in the backend.
Unlike traditional LLVM backends, TCE backend is implemented as a stand-alone
code generator library, which utilizes the LLVM code generation libraries, and thus,
is separate from the LLVM compiler tools [32].

Compilation starts by giving the source program to the frontend. The program
is run through the basic LLVM tools until the IR format is handed over to the TCE
backend from the middle-end as one IR module. In addition to the IR program, the
TCE backend also takes the target machine ADF as input to dynamically retarget
itself to the architecture. The backend is divided into static and dynamic parts.

The dynamic part is required to achieve the flexible retargetability of the compiler.

3. TTA-Based Co-Design Environment 30

TCE COMPILER

A

D ! Clang LLVM | 5

i Frontend l: Middle-end :—>@
|

LLVM Code Generator Framework

Selector Allocator Insertion Conversion Scheduler

|

|

, , , |
Instruction L5 Register L Prolog/Epilog N LLVM/TCE Ly TCE

|

|

|

Figure 3.4: Compilation flow of the TCE compiler (adapted from [32]).

The code generation is divided to two phases. A sequential target machine pro-
gram is first produced by utilizing the LLVM code generator framework (instruc-
tion selector, register allocator, prolog/epilog inserter), after which the sequential
program is scheduled to a parallel program by using the TCE instruction sched-
uler. Before passing the sequential program to scheduler, it is converted from the
LLVM data structure representation to a TCE program object model by LLVM-
POMBuilder, which is implemented as a separate LLVM code generator pass. [32]

The compilation produces a TTA Program Exchange Format (TPEF) file, which
is a binary file format for passing TTA programs in the TCE toolset. TPEF con-
tains the program model in an assembly-level intermediate representation that is
used by some TCE tools, such as ttasim. TPEF files can be disassembled to a hu-
man readable assembly code for a given machine ADF with the TCE Disassembler
(tcedisasm) tool. The disassembled program shows the program as moves between
registers and function units.

As a machine ADF may contain SIMD vector resources, such as vector opera-
tions or wide registers for vector operands, the compiler needs to be able to utilize
them whenever needed. Vector instructions from the IR code should be mapped to
machine vector operations that provide the same functionality on hardware. This
required expressing the SIMD resources from TCE-specific ADF and OSAL formats
to LLVM-specific target descriptors. The new vector-related target descriptions
mainly affect instruction selection and register allocation in the TCE compilation

process.

3. TTA-Based Co-Design Environment 31

3.4.1 High-Level Language Support

In order to provide easier access to high-level (and target independent) vector pro-
gramming, programmers using TCE have to be able to use explicit vector variable
types. Such capability was brought to C and OpenCL C languages by utilizing the
previously mentioned Clang vector extensions. The high-level operations on vector
operands will automatically be converted to vector instructions in the IR code. As
the SIMD resources are described by using the target descriptors, the instruction

selector utilizes the SIMD resources automatically to execute the vector instructions
in the IR.

TCE Intrinsics

A hardware operation can be called directly in the program source code by using
TCE’s operation intrinsics. Intrinsics provide an easy way for calling complex cus-
tom operations, that can not be selected via normal instruction selection in the code

generation. The semantics for an operation intrinsic call is shown below.
_TCE_opname (input operand 1, ..., output operand 1, ...);

The operation intrinsics can be used in source codes by including the tceops.h
header file. This file is automatically generated in every compilation and it lists
operation intrinsics for all OSAL operations. The caller is responsible for making
sure the input and output operands have the correct type, or incorrect results may

occur.

3.4.2 Static and Dynamic Backend Parts

In order to adapt to the dynamic nature of the customizable architecture, the com-
piler backend is divided to static and dynamic parts. TargetMachine interface is
implemented by deriving the TCETargetMachine subclass from the LLVMTarget-
Machine base class. It encapsulates all properties and code generation methods of
target machines behind one interface, which is illustrated in Figure [3.5] The figure
presents an abstracted structure of TCETargetMachine, as many of the backend
related classes are not shown. For a more detailed overview of the TCE backend,
refer to [32].

The static part of the backend contains properties that are common to all TTA
processors derived from the architecture template. Source codes of the static part
need to be compiled only once, after which a recompilation is required only if mod-

ifications are made.

3. TTA-Based Co-Design Environment 32

LLVMTargetMachine TCETargetMachine TCETargetMachinePlugin Generated TCEPIugin

Q<} REALIZES USES ©<% REALIZES |

e

Classes from Classes from
the static 3 the dynamic 3
part of the e ————— part of the
backend backend

Figure 3.5: Structure of TCE Target Machine [32].

The dynamic part of the backend contains the properties that can be altered in
the processor template, such as the instruction set and the register set. TCETar-
getMachine uses the TCETargetMachinePlugin interface to access information that
is related to the dynamic parts of TTA machines. The dynamic part is compiled in
every compilation to a separate plugin, which is then loaded to realize the TCETar-
getMachinePlugin interface. Generated TCEPlugin is the top level class that realizes
the interface and encapsulates all the dynamic properties of TTA machines. The
plugin is the main factor in making the backend retargetable to arbitrary architec-

ture configurations.

3.4.3 Dynamic Backend Generation

The main task in implementing the dynamic backend is converting processor archi-
tecture information that is modeled with TCE-specific ADF and OSAL description
languages to LLVM-specific target descriptors. Dynamic properties of the backend
are generated by a class called TDGen, which is part of the TCE backend. It is

responsible for generating the instruction and register set target descriptor files.

CREATES

Backend.inc

Figure [3.6] illustrates the generation of the target machine plugin.
Target Descriptor Files

Generated
Plugin Code
________ 1
r DYNAMIC

|
|
|
Y !
| > |
Machine ADF TDGen CREATES Genlnstrinfo.td | |y LLVM Native
| | TableGen GCC Compiler
| |
|
- Registers : |
- Operations I S | - ——
| ' L]
_________ -

Figure 3.6: Generation of Target Machine Plugin (abstracted from a figure in [32]).

Plugin Code

3. TTA-Based Co-Design Environment 33

TCE has several static and dynamic target descriptor files included in the compi-
lation process. The static files contain formats and records that are common for all
machines. Dynamic files are generated by T'DGen and used to describe the dynamic
properties of target machines. Only the most relevant target descriptor files for this
thesis are shown in the figure.

TDGen takes the processor ADF as input and examines register files and function
unit operations from the architecture. All register set information is generated to
the GenRegisterInfo.td descriptor file and instruction set information to the Genln-
strinfo.td file. TableGen processes the target descriptor files and generates C++ im-
plementations for several code generator callback functions and data structures [32)].
TDGen also generates some C++ implementations for several helper functions that
are used in the backend.

Once OSAL was extended to support vector operations and operands, the cus-
tomized target machine ADF that is passed to TDGen may contain wide registers
and function units with vector operations. TDGen is able to detect scalar features
of the architecture and handle the descriptor generation for them. In order to sup-
port automatic retargeting to vector resources, modifications were required to the
descriptor generation process.

The byte order also requires some attention. Regardless of the memory access
operation that is used to move vectors between memory and registers, the order
of vector subwords must be preserved. For instance, v4i8 vector should have a
dedicated memory access operation for that specific vector type. However, when
the compiler handles v4i8 vectors, it may optimize value handling by temporarily
interpreting the vector as a 132 value, for which different operations are used for
accessing memory. Thus, the new vector operations that access memory must handle

the data in the same way with the others to maintain byte and subword order.

3.5 Simulator

This brief overview concentrates on the command line-based ttasim simulator. The
simulator takes the machine ADF and compiled TPEF as input and uses them to
build an Ezecutable Instruction Memory structure, which is suitable for simula-
tion [35]. The simulator provides capabilities for debugging, profiling and tracing
data for several TCE tools. For example, it is possible to stop the program execu-
tion to desired breakpoints, examine values from register files, or print data memory

contents. Data memory contents can be printed with the following command.

>> x /n 8 /u w sum

3. TTA-Based Co-Design Environment 34

Character x is the command for printing data from the memory. The parameter
/n is used to indicate how many data words should be printed. Unit size of the
data word is indicated with /u, which can be ’b’, 'h’, or 'w’ for words of 1, 2, or 4
bytes. The last parameter can be an absolute memory address or a global variable
name. The example prints eight 32-bit memory chunks starting from the address of

the sum global variable.

3.6 Processor Generator

Processor Generator ProGe is used to generate synthesizable RTL descriptions of
designed TTA processors [36]. ProGe uses information from the architecture defini-
tion file and from the XML-based Implementation Definition File (IDF) to generate
the hardware description of the processor.

Whereas the ADF defines the architecture components, the IDF defines which
implementations from a Hardware Database (HDB) are mapped to those compo-
nents. Hardware databases contain the HDL definitions and other implementation
related data (like cost data) of architecture components. Components can have mul-
tiple implementations stored in HDBs. HDB files have .hdb suffix, and they can be
created and modified with the hardware database editor (HDB Editor) tool.

HDB Tester

The hardware database tester (HDBTester) is a tool for testing function units and
register file implementations from HDBs. In function unit testing, it utilizes the
FUTestbenchGenerator class, which generates RTL testbench description for the
given function units. It uses the operation behavior models to pre-determine ex-
pected output values, creates HDL testbench code with the FU under test, simulates
it, and compares the values from output ports to the expected values [37].

In order to generate processor RTL for TTA machines with vector function units,
the function units need to have implementations. A new tool was added to the TCE
toolset that is able to create SIMD function units by exploiting existing scalar func-
tion units. The tool automatically creates objects models that define the properties
of SIMD function units and stores the FU object models to HDB files. In addition,
it generates the RTL implementations of the function units.

By exploiting existing scalar function units the tool was made fully automatic, as
its only responsibilities in the VHDL generation are the duplication of scalar FUs
and wiring the subwords from vector operands correctly to the scalar FUs. This way
most of the vector function units with basic vector operations can be created fast
and designers may not have to deal with the RTL code at any point. More complex

vector operations may still have to be described manually in RTL.

35

4. IMPLEMENTATION

4.1 Processor Customization

The first task was to extend the OSAL properties to support vector operands in
TCE. In order to support function unit customization with vector operations, the

operation set library also needed to be populated with vector operations.

Operation Set Abstraction Layer

Previously, the operands in TCE were assumed to be scalars of some type. In
order to express vector operands, two new fields were added to the static properties:
element-width and element-count. The element count defines if the operation is
a vector or a scalar. With element count one the operand is a scalar and its total
width is just the element width, but for a vector operand its total width is the
element width multiplied by the element count.

As the new operand fields were added and vector operands could be described,
the TCE operation set library was extended with various vector versions of scalar
operations. For example, for every basic float operation (addition, subtraction,
etc.) vector versions with different element counts were created. Since this would
have required a great amount of manually made and repetitive OSAL descriptions, a
Python-based generate simd.py script was added to the TCE source tree to generate
the SIMD operations automatically. Figure presents how the script extends the
operation set library with the SIMD operations.

The script creates vector operations for all basic instruction types, and has been
structured so that it is easy to add new vector operations for the automatic gen-
eration. The operation set library was extended with vector operations that can
process vectors of different sizes up to 1024 bits. This number was picked as an
initial target, but the script is generic and can produce vector operations up to any

desired width of the power of two.

4. Implementation 36

OSAL files for

SIMD operations

|

I/ |

simd.opp |
CREATES | _ |EXTENDS <
generate_simd.py |

CREATES [

=]

| |

L e e a

Figure 4.1: The generation script for SIMD operations.

The generated simd.opp file contains the static properties for all vector opera-
tions. Most of the operations have their behavior model defined there in the DAG
format. The rest have their behavior model defined in the simd.cc file. SimValue
was modified to support vector values by defining a wide byte array to its proper-
ties. Vector values are assigned to the array bytes, and they can be easily accessed
subword-wise by returning a pointer to the array with different pointer types.

A generated SIMD ADD operation definition with the element count of four is
shown in Figure 4.2, The naming convention is the following: the number before X
implies the element width, and the number after is the element count. The example
operation takes two signed integer vectors of four elements as input, and outputs
a vector of the same type. The new element-width and element-count fields are
visible as part of the operand attributes.

Since vector operations can be easily built by using scalar operations, the trigger
semantics field can be utilized in most cases. The same simulation behavior pattern
applies to most of the vector operations having a correspondent scalar base oper-
ation: unpack the N-sized input vector operands I0(1) and I0(2) to individual
scalar operands (al, a2, a3, a4, bl, b2, b3, b4), execute the base operation on the
scalars N times, pack the result scalars (ol, 02, 03, 04) back to a vector operand,
and write the vector to the output (I0(3)).

4. Implementation 37

<operation>
<name>ADD32X4</name>
<inputs>2</inputs>
<outputs>1</outputs>
<in id="1" type="SIntWord" element-width="32" element-count="4"/>
<in id="2" type="SIntWord" element-width="32" element-count="4"/>
<out id="3" type="SIntWord" element-width="32" element-count="4"/>
<trigger-semantics>
SimValue al, a2, a3, a4;
SimValue bl, b2, b3, b4;
SimValue ol, 02, 03, o04;
EXEC_OPERATION(UNPACK32X4, I0(1), al, a2, a3, a4);
EXEC_OPERATION(UNPACK32X4, I0(2), bl, b2, b3, b4);
EXEC_OPERATION(ADD, al, bl, ol);
EXEC_OPERATION(ADD, a2, b2, 02);
EXEC_OPERATION(ADD, a3, b3, 03);
EXEC_OPERATION(ADD, a4, b4, o4);
EXEC_OPERATION(PACK32X4, ol, 02, 03, o4, I0(3));
</trigger-semantics>

</operation>

Figure 4.2: Static properties of the ADD32X4 operation.

Some of the vector operations, such as the PACK or UNPACK operations, can not
be expressed by using other OSAL operations. The simulation behavior for the
PACK32X4 operation using a C++ definition is presented below. The packing op-

eration has four scalar inputs, and it outputs a packed vector containing the input

scalars.
OPERATION (PACK32X4)
TRIGGER
SUBWORD32P (5) [0] = UINT(1);
SUBWORD32P(5) [1] = UINT(2);
SUBWORD32P (5) [2] = UINT(3);
SUBWORD32P (5) [3] = UINT(4);

END_TRIGGER;
END_OPERATION (PACK32X4)

4. Implementation 38

As SimValue was modified to support wrapping wide vector values, three new
macros were introduced to access individual vector elements. The SUBWORDS8P (id),
SUBWORD16P (7d) and SUBWORD32P (id) macros return a pointer to the SimValue of
the desired operand, and can be used to access scalar elements. The macros provide
access to subword widths of 8, 16 and 32 bits. The accessed element position is
indicated with the square bracket notation.

The UINT (id) macro returns the desired input operand value as a 32-bit unsigned
integer scalar. The scalar values are stored to appropriate element positions in the
output vector (the fifth operand in the OSAL operand notation) by accessing the
elements with SUBWORD32P.

When vectors are stored to the memory, the scalar element at index 0 is considered
to be the most significant. It is stored to the lowest memory address, whereas the

last subword is stored to the last element address position.

OSAL Tester

As vector capabilities have been introduced to TCE, testosal users need to be able
to define values to vector elements. OSAL Tester was modified so that vector values
can be defined with a long hex string. The user needs to pay attention to the bit size
of a vector element, and set the hex string accordingly to initialize vector elements
with desired values. The example below shows how a four-sized vector with 32-bit
elements can be initialized in testosal. The ADD32X4 operation is the same OSAL
operation that was introduced previously, and all its operands are vectors of four
32-bit elements.

>> loutput hex

>> ADD32X4 0x7ffffcc4000002d47fff££2400000094
0x000002¢3000003dc0000008200000147

Ox7f££££87000006b07ffff£a6000001db

The two input vectors are accessed in the DAG behavior description with the
I0(1) and I0(2) macros, as was shown in the XML-based ADD32X4 operation de-
scription above. With UNPACK32X4 their elements are split to scalar SimValue vari-

ables. All elements from the vector operands are visualized below.

I0(1): 0x7ffffccd 0x000002d4 0x7fffff24 0x00000094
I0(2): 0x000002c3 0x000003dc 0x00000082 0x00000147
I0(3): 0x7fff££87 0x000006b0 Ox7fffffa6 0x000001db

Subwords from same element positions are added together with the scalar ADD
operation, which produces a result scalar. The result scalars are packed back to a
four-sized vector by using the PACK32X4 operation. The result vector is assigned to

the output operand I0(3). Vector operations can now be debugged with testosal.

4. Implementation 39

4.2 Compiler Support

4.2.1 High-Level Language Support

For DLP purposes, TCE allows using vector data types to provide high-level vector
programming. A header file was created to store all the supported vector type
definitions, which can be easily included to source codes. An example of different

vector types with different subword counts and subword types is presented below.

typedef bool booll6 __attribute__((__ext_vector_type__(16)));
typedef char char64 __attribute__((__ext_vector_type__(64)));
typedef int int32 __attribute__((__ext_vector_type__(32)));
typedef float float8 __attribute__((__ext_vector_type__(8)));
typedef half half4 __attribute__((__ext_vector_type__(4)));

Vector data types can be enabled by including the tce wvector.h header file. The
header file contains all the TCE-supported vector type definitions. It extends the
bool, char, unsigned char, short, unsigned short, int, unsigned int, and
float scalar types to various vector types. Subword counts are created in the
power of two for each vector type. The subword count starts from count two until
the maximum vector width is reached. For example, the vector types for the 32-bit
scalar ADD are ADD32X2, ADD32X4, ADD32X8, ADD32X16 and ADD32X32.

TCE-supported vector extensions can be used both in C and OpenCL C source
languages. In addition, half-precision floating point scalar half type can be extended
to vector types and utilized in OpenCL C code. Almost all the basic scalar operators
apply to the vector types. Operators !, && and || are not supported, while other

basic ones, such as +, -, *, /, &, |, » ==, or [], are.
4.2.2 Dynamic Backend Generation

The TDGenSIMD class examines SIMD resources from TTA machines and generates
the target descriptors for them. It utilizes the methods from the TDGen base class
to handle the scalar resources, and guides handling of the vector resources to its
own methods. Figure illustrates the same plugin generation as before, except
that TDGenSIMD is now the dominant generation component.

4. Implementation 40

CREATES [
T

Plugin Code

Generated
Plugin Code

|
|
|
5 !
[—
Machine ADF TDGenSIMD CREATES Genlnstrinfo.td | L, LLVM Native
| | TableGen GCC Compiler
| |
|
- Registers : |
- Operations I @ | —
|
I J

Figure 4.3: Generation of the dynamic Target Machine backend with SIMD capabilities.

In addition, two new classes were added to TCE: TCFEISelLoweringSIMD and
TCEInstrInfoSIMD. They are presented in Figure .4 with darker colour. Both were
derived from existing base classes to separate SIMD and scalar handling. TCFEISel-
LoweringSIMD is responsible for registering the supported vector register classes
to the backend. TCFEInstrinfoSIMD was created to implement copyPhysReg(...)
method for vectors. The method creates an instruction, which copies a vector value

from a register to another.

Register Set Info Generation

All register related information is generated to the GenRegisterinfo.td descriptor
file. TDGen generates register set information for the scalar part of the machine,
whereas TDGenSIMD is responsible for describing all the vector information. All
vector register classes use the TCFEVectorReg base class, which connects the vector

register classes to the T'C'E namespace.

TCETargetMachinePlugin GeneratedTCEPIlugin

|

TCEISelLowering TCElnstrinfo

Rest of the B

classes from
the dynamic ——>»
part of the
backend

Figure 4.4: Two new classes in the plugin structure.

4. Implementation

Table 4.1: Supported vector types for each subword type.

41

Some modifications had to

be made to LLVM so that vector widths could be enabled up to 1024 bits for all vector
element types. The bolded vector types were extended to LLVM, whereas the rest were

originally supported.

il i8 i16 i32 f16 32
v2il v2i8 v2il16 v2i32 v2f16 v2{32
v4il v4i8 v4il6 v4i32 v4f16 v4{32
v&il v8i8 v8il6 v8i32 v&f16 v&f32
v16il v16i8 v16i16 | v16i32 | v16f16 | v16£32
v32il v32i8 v32i16 | v32i32 | v32f16 | v32f32
v64il v64i8 | v64il16 v64f16
v128il | v128i8

Table shows the vector types that are supported in TCE due to this thesis
work. These vector types can be arbitrarily in use in the designed TTA machines
as vector operands for vector instructions. The boolean vector types (vXil) are
required, because vector compare operations produce tightly packed boolean result
vectors. For example, the “greater than” comparison for v4i32 input vectors results
to a v4il result vector.

When TDGenSIMD examines the target machine, all register files are first iter-
ated through and registers are divided into groups by their widths. For example,
the 512-bit register group consists of registers that are gathered from the 512-bit
register files. Then, every operation in the target machine is also iterated through,
and different vector operand types found from the vector operations are gathered
to a vector type list. The vector type list contains all vector types that exist in the
target machine, and they need to be supported by vector register classes.

The SIMD part of the register set descriptor file starts by declaring the wide
registers that are not declared by TDGen. Then, the vector register classes are
created for every vector type existing in the vector type list. By exploiting the
width information, machine registers from the register groups are associated with
those register classes that support a vector type of the same width. Two vector

register class definitions are shown below.

def V16F32Regs : RegisterClass<"TCE", [v16£32], 512,
(add R512 0, R512 1, R1024 0, R1024 1)> ;
: RegisterClass<"TCE", [v64i8], 512,

(add R512 0, R512_1, R1024 0, R1024_1)> ;

def V64I8Regs

Vector register classes define the supported vector type, alignment, and the set
of registers, in which the supported value type can be written to. Although the
alignment value is written to be the full width of the vector type, currently all values

that go to stack are forced to a 4-byte memory alignment by TCE. Both register

4. Implementation 42

classes list four registers that can be used to store vector values. One should note
that R1024_0 and R1024_1 registers are wider than the supported register class
vector type. TCE allows exploiting wider registers to store smaller values, which

increases the number of fast-access temporary register locations for operands.

Instruction Set Info Generation

TCE has its own derived instruction format class InstTCE that is used to define
all instructions. The instruction format class is defined in TCEInstrFormats.td and

has the following structure:

class InstTCE<dag outOps, dag inOps, string asmstr,
list<dag> pattern> : Instruction {

let Namespace = "TCE";

dag InOperandList = inOps;
dag OutOperandlList = outOps;
let AsmString = asmstr;

let Pattern = pattern;

When TCFlInst is used to create an instruction description, output and input
operands are the only required parameters, the other two are optional. The oper-
ation pattern is required, if the operation should be utilized automatically by the
instruction selector in the instruction selection phase. For most of the OSAL vector
operations, a pattern is generated for the instruction record. However, the pattern
field can be left empty, if there is no need for an automatic instruction selection,
or if the instruction pattern can not be described with LLVM-specific pattern frag-
ments. Instructions that do not have the pattern field can be optionally selected in
the custom instruction selection phase, in which complex selection algorithms can
be defined manually by the backend programmer.

TDGen generates instruction records related to scalar operations, and TDGen-
SIMD generates records related to vector instructions. The automatically generated
target machine instruction info is written to Genlnstrinfo.td, and the generation of

the vector instructions is done in the following steps.

4. Implementation 43

1. All function units of the target machine are iterated through, and for every
vector operation an instruction record is written by using the TCElnst in-
struction class. A few notes about writing the instruction records for vector

operations:

e By default, an instruction record with register operands is created for
every vector operation. If any of the operands is a scalar, an additional
instruction record with immediate scalar operands is created. For in-
stance, the input operand of the LDW32X4 operation is a scalar integer

address. It can be defined to be a register operand and a constant value.

e If the vector operation is a bitwise operation (NOT, AND, I0R or XOR), sev-
eral instruction records are written for the same operation with different
vector operands. Bitwise operations do not contain subword-related data,
which means the same operation can be used to implement the operation
for all vector types of the same width. For example, for bitwise operation
AND512; instruction records are created for vector operand types v64i8,
v32i16 and v16i32. The 32-bit scalar operation is used in executing
bitwise operations for boolean vector operands of type v2i1, v4il, v8il,
v16il and v32il.

e Pattern generation is not done for UNPACK, VSHUFFLE, VBCAST, GATHER
and SCATTER vector operations. As of this writing, UNPACK, GATHER, and
SCATTER do not have explicit LLVM instruction, and thus, cannot have a
pattern for the instruction selection. These operations can only be used
by utilizing TCE intrinsics. The instruction selection for VSHUFFLE and
VBCAST is done manually in the custom selector, which allows writing

hand-made optimizations.

e There are no load and store operations defined for the vXi1 boolean vector
operand types in OSAL operations. Scalar load and store operations
are exploited to implement the memory accessing for these vector types.
Boolean v2i1, v4il and v8il vector types access the memory by using
the byte operations LDQ and STQ. The LDH and STH operation are used for
v16il vectors, and the LDW and STW operations for v32i1l vectors. Any
vector load and store instructions of the matching operand widths are
exploited for v64i1 and v128il.

2. A register-to-register move is defined for every vector register class.

3. If the target machine has a vector store and truncate operations for the same
vector type, a truncstore definition is created for that vector type, which is

a combination of the two operations. First, an operand type is truncated

4. Implementation 44

(upper bits cut off) to a smaller type. For example, the v4132 type could be
truncated to the v4i16 type. Right after the truncation, the new truncated

value is stored to the memory.

4. Scalar-to-vector definitions are written by exploiting the VBCAST operation to
output an input scalar as a corresponding output vector by copying the input
scalar to all output vector elements. These definitions are needed, since the
LLVM middle-end might end up using scalar-to-vector conversions in the IR

code.

5. Bit conversions are written between every float vector type and the correspond-
ing integer vector type. For every float-integer pair, bit conversion pattern is
written to both directions. For example, a bit conversion could be written

from the vector type v16i32 to v16£32 and the other way around.

An instruction record definition for a vector OSAL operation is presented below.
Let us assume the target machine has the ADD32X16 OSAL vector operation in one
of the machine’s function units. Let us also assume that the IR code contains the

following vector instruction.
Y%res = add <16 x 132> YvechA, %vecB

The goal is to get the instruction selector to replace the IR instruction with the
target machine-specific ADD32X16 operation. The OSAL operation has two input
and one output vector operands, all having element-width of 32, element-count
of 16, and the signed integer type. This means that the input and output vector
operands will be using the V16I32Regs register class. The pattern for the vector IR
instruction can be described in the target descriptor file with the following pattern
string:

(add V16I32Regs:$opl, V16I32Regs:3$op2)

The two input operands and their types are described by presenting the register
class. The pattern also needs to specify the output operand type, to which the
result from the above pattern is set. The whole instruction selection pattern is the
following:

(set V16I32Regs:$op3, (add V16I32Regs:$opl, V16I32Regs:$op2))

The pattern consists now of an inner pattern node, and of the outer pattern node.
As all parts for the instruction record are known, the complete form of the record

is the following:

4. Implementation 45

def ADD32X16uuu : InstTCE<
(outs V16I32Regs:$op3),
(ins V16I32Regs:$opl,V16I32Regs:$op2),

nn
b

[(set V16I32Regs:$op3, (add V16I32Regs:$opl, V16I32Regs:$op2))]>;

This record tells the instruction selector to select the ADD32X16 OSAL operation
to execute vector additions with v16i32 operands. The same instruction record
generation is done for all instructions, with the exception that the pattern field may
be left empty for some operations. The uuu suffix in the record name states, that
the operation has two input and one output operands, all of type “u”, which stands
for an integer vector operand in TDGenSIMD. Since this operation doesn’t have
any scalar operands, a record version with constant operands is not created. The
instruction record name is added to a helper function in the Backend.inc file, which
maps this instruction record to the target machine’s ADD32X16 operation name.

Previously mentioned truncstore, scalar-to-vector and bit conversion patterns are
defined by exploiting existing instruction records, not by making new ones. Below

is an example of one of each patterns.

def : Pat<(truncstorev16il16 v16i32:$op2, ADDRrr:$opl),
(STH16X16rt ADDRrr:$opl, (TRUNCWH16X16tu V16I32Regs:$op2))>;

def : Pat<(v16i32 (scalar_to_vector i32:8$in)),
(VBCAST32X16ur R32IRegs:$in)>;

def : Pat<(v16£f32 (bitconvert (v16i32 V16I32Regs:$src))),
(v16£32 V16F32Regs:$src)>;

The truncstore instruction is replaced with a pattern, which first executes a 32-
bit subword to 16-bit subword truncation for the vector operand. As the memory
address is specified by the scalar address operand, the truncated vector is then
normally stored to memory location with the corresponding vector store operation.

The scalar-to-vector pattern is replaced with a simple VBCAST instruction, which
copies the scalar to all vector elements. Another way to create the conversion could
be by building the vector with PACK operation.

Bit conversions, or bit casts, change the type of the operand, but do not generate
any actual instructions. Bit conversions may occur between types of the same bit
size, but the conversion does not change any of the original bits. In the example,
v16132 vector type is converted to the vi6£32 type by simply writing a pattern
which places the source operand to the V16F32Regs register class.

4. Implementation 46

Additional Backend Info

TDGen and TDGenSIMD generate various helper functions to the Backend.inc file.
TDGenSIMD writes helper functions that are related to SIMD features. The helper
functions are generated to Backend.inc in compile-time, because the contents of the
functions are dynamic and depend on the target machine architecture.

One important helper function is related to the LLVM TargetLowering class, in
which the registration of all register classes existing in the GenRegisterInfo.td file
is required. TDGenSIMD generates a function implementation, which registers the
vector register classes. The code segment below shows partially how the implemen-
tation is generated for the addVectorRegisterClasses() method, which belongs
to the TCETargetLoweringSIMD subclass.

void TCETargetLoweringSIMD: :addVectorRegisterClasses() {
addRegisterClass(MVT: :v128i8, &TCE::V128I8RegsRegClass);
addRegisterClass(MVT: :v16£32, &TCE::V16F32RegsRegClass);
addRegisterClass(MVT::v16i32, &TCE::V16I32RegsRegClass);

A register class is added to the backend by calling the addRegisterClass func-
tion. An enumeration of the vector register class in the TCE namespace, and the

vector type it supports are passed as parameters.

4.3 Hardware Generator

The SIMD function unit generator is an automatic tool for creating vector function
unit implementations. A vector function unit is created by exploiting an existing
scalar function unit: the scalar F'U is duplicated as many times as there are subwords
in the vector FU. Port widths are set according to the expected input and output
vectors, and wiring to the duplicated scalar FUs is done automatically. Abstract

structure of a generated vector function unit is shown in Figure (.5

4. Implementation 47

Vector A Vector B

| |
| |
| Input Wiring Logic |
| |
| a0 b0 ail b1 an bn |
: v v v v \ 2 I
| Scalar Scalar Scalar I
I FU FU e FU I
| |
: c0 cl cn :
| Y Y Y |
| Output Wiring Logic |
| |
| |

Vector C

Figure 4.5: Structure of a vector function unit.

In the example, a scalar FU has two inputs and one output. This means the
vector FU has two vector inputs and one vector output. Due to the abstraction,
some of the inputs have been left out of the image, such as the clk, rst, opcode and
input operand load signals. Vector elements are directed to individual scalar FUs,
along with the opcode and load signals.

When there is change in the input operands or in the operation code, input vectors
are broken to subwords in the input wiring logic and directed to the scalar FUs to
calculate the result subwords according to the current operation code. The result
subwords are then correctly wired back to a packed result vector. After the result
vector has been written to the output, the output port remains in the same state
unless there is a new change in the function unit inputs.

The varying result vector types in vector operations cause problems when in-
put subwords are wired to scalar FUs and result subwords are wired back to a
packed output vector. For instance, if the vector FU has the operations ADD32X4
and EQ32X4, the result vector types of these two operations are v4i32 and v4ii,
respectively. Since the v4i32 vector type matches the output, result scalars from
scalar F'Us can be packed normally back together. However, the v4il result vector
is a tightly packed boolean vector, and should overwrite only the four lowest bits of
the output port. This requires additional logic to select only the lowest bits (boolean

values) from every scalar FU result port, and then direct them to the output port.

4. Implementation 48

output_control: process (rldata_s)

begin
case pipelined_opcode_delay2 r is
when "1" => -- EQ32X4
ridata(0 downto 0) <= rildata_s(0 downto 0);
ridata(l downto 1) <= rldata_s(32 downto 32);
ridata(2 downto 2) <= rldata_s(64 downto 64);
ridata(3 downto 3) <= rldata_s(96 downto 96);
when others => -- Direct connections
ridata <= rldata_s;
end case;

end process output_control;
Figure 4.6: Output wiring control process.

In order to know how the wiring of the result subwords should be done, the
input opcode is pipelined according to the latency of the scalar function unit. When
the scalar results are calculated, the correct wiring is decided depending on the
pipelined opcode, which tells what was the operation that was put to execution N
cycles ago. The same convention is applied to the input wiring control logic, only
there the wiring decision is done directly based on the input opcode port without
the pipelining.

A VHDL example of the output wiring control is presented in Figure 4.6 The
output control process is part of the vector function unit. rldata_ s is a 128-bit logic
vector and contains all four result subwords from the scalar FU outputs. ridata is
the output port of the vector FU, to which the result vector will be written to.
pipelined__opcode__delay2 r contains the opcode that was in the opcode input port
two clock cycles ago. Opcode “1”7 is reserved to represent EQ32X4 operation, and
“0” for ADD32X4. Operations, whose result subwords do not need special wiring (like
ADD32X4) are directed to when others case where the result signal is connected
directly with the output port. Operations in need of special wiring have their own
when OPCODE case, where the correct wiring is performed. For EQ32X4, the boolean
result values are picked separately from the result subwords and directed to the
output to form a tightly packed boolean result vector. There is also a similar process
called input_control to do the input wiring, with the exception that the case
argument is the non-pipelined opcode input port. The opcode is pipelined in a
third opcode_pipeline_control process, which is sensitive to the clk signal.

As input, the generator requires the scalar FU (source HDB and entry ID) that
will be converted to a vector FU, the desired subword count, and the target HDB

file to which it is registered. When executed, the generator

4. Implementation 49

1. Creates an HDB function unit entry for the new vector FU.
2. Registers the new entry to the target HDB file.

3. Generates a VHDL implementation for the vector FU. The implementation
file is placed to “simd” directory, which is created to the same directory where
the target HDB file is.

4. Tests correct functionality of the implementation with the HDB tester.
Usage
The generator executable is called generatesimdfu and is used as follows:
generatesimdfu <options> sourceHdb entryld elementCount targetHdb

sourceHdb and targetHdb are either absolute paths or relative paths to the HDB

file. Accepted command line options are:

Short Long Name Description

Name

d leave-dirty Do not delete created testbench files.

s simulator HDL simulator used to simulate and test the vector
function unit. Accepted values are ’ghdl’” and 'model-
sim’. Default is ghdl. Simulator executable must be
found from PATH.

v verbose Enable verbose output. Prints information of the FU

generation.

Example: create a vector FU of the “add” scalar FU (entry ID 4) from
asic__130nm__1.5V.hdb. Wanted subword count is 16, and target HDB is simd.hdb
under TCE’s HDB directory.

generatesimdfu /path/to/tce/hdb/asic_130nm_1.5V.hdb 4 16
/path/to/tce/hdb/simd.hdb

This results to a new FU entry in simd.hdb, and a VHDL implementation file for
the vector FU is created under /path/to/tce/hdb/simd/ directory with file name
fu__add__always 1 _v16.vhdl.

20

5. VERIFICATION

5.1 Behavior Models of Vector Operations

As presented in Figure[5.1] generate__simd.py is used to generate test inputs for each
SIMD operation, which are then given as input for testosal. The X OPNAME.txt
file includes the SIMD operations that are executed in testosal. The X _output.tat
file includes the expected results from the SIMD operations in the same order in
which they are listed in X OPNAME.tzt. The behavior model tests for SIMD
operations are located under testsuite/systemtest/codesign/osal/SimdOperations/ in
TCE environment. In all tests, the 'output hex command is given in the beginning
to ensure all printed result values are in hexadecimal format.

An example of the 18 ADD.txt contents is shown below. The input file lists
all ADD vector operations with test input vectors. Vector operands are given as

hexadecimal strings, which define the values for vector subwords.

loutput hex

ADD8X2 0x4454 0x435c

ADD8X4 0x44542414 0x435c0247

ADD8X8 0x44542414205c086¢c 0x435c02472£72594f

As the input file is given to testosal, it uses the behavior model to calculate result

values. The expected result value contents from 18 output.txt is shown below.

0x87b0
0x87b0265b
0x87b0265b4fceb61bb

The result hex string values are compared to expected hex string result values,
which generate simd.py has generated before the input files are run in testosal.
These simple test cases verify that correct bits are produced to result values from
every OSAL SIMD operation.

5. Verification 51

Testosal test files for
OSAL SIMD operations

TESTED
CREATES 18 ADD.ixt | BYUSING | osAL Tester
enerate_simd. 4"
g _simd.py 18 output ixt 19 output ixt (testosal)

Figure 5.1: Test files used in OSAL Tester tests.

5.2 Compiler Backend Retargeting

This section presents briefly the retargeting tests for the compiler. In addition, the
simulator is used to verify that the compiled code behaves correctly in the simulator
environment. The compiler retargeting tests verify that TDGenSIMD generates cor-
rect register classes for vector operands and instruction selection patterns for vector
machine operations. The tests are located under testsuite/systemtest/bintools/Com-

piler/SimdOperations, and they are executed in the following steps:

1. Customize a processor architecture with SIMD operations and wide registers.

2. Create a source program that explicitly performs vector computation that

matches the SIMD operations in the machine.
3. Compile the source program for the machine without optimizations.

4. Examine the generated machine code in assembly form and check that instruc-

tion selector has selected the vector machine operations.

5. Run the target machine program in the TCE simulator and verify that result

vector variables have correct values in the simulator memory.

Since generate_simd.py has common knowledge of all SIMD operations and vec-
tor types in TCE, it is used to generate the steps one and two automatically to
minimize manual work. In step one, the script starts with generating the minimal
architecture requirements, after which the SIMD resources are added. All SIMD
OSAL operations are contained into functions units and, some wide registers are
created for the vector operands. Figure presents the compiler test files that are
generated by generate _simd.py.

5. Verification 52

—
clang_tests.c
CREATES Retargetable

> Retargetable
generate_simd.py Compiler program.tpef Simulator

CREATES - (tcecc) (ttasim)
W A

CREATES Q

Figure 5.2: Test files used in compiler tests.

Two separate source code files are generated for compiler tests in step two. The
clang _tests.c file contains most of the integer and single-precision floating point op-
eration tests written in C. It has the main() function definition, and thus, acts as
the master file. The ir_tests.ll file and its contents are written in LLVM IR, and it
contains tests for operations with half-precision floating point operands. In addition,
it contains tests for the rest of the vector operations that can not be explicitly ex-
pressed in C, such as the vector shuffle operation. The reason why the half-precision
floating point tests are not in clang tests.c is because as of this writing Clang C
frontend has issues with the 16-bit floating point vectors in the IR generation. In
ir_tests.ll those operations can be described directly as LLVM IR operations, re-
leasing the operations from possible issues with the frontend functionality.

Figure [5.3| presents some of the contents from both test files. On the left, are the
vector operation definitions in C language. On the right, are the vector operation
definitions directly in LLVM IR. All result vector variables are defined as global
variables in both files to get access to their memory locations in the TCE simulator.
The memory location access is required so that result values of SIMD operations

can be read from the simulator memory and compared to the expected result values.

clang_tests.c | CALLS I ir_tests.ll
________________ —_ —_—

-

#include "tce_vector.h" | @truncwh16x2_output0 = global <2 x 116> zeroinitializer

volatile short2 add16x2_output0 = 0; | @vshuffle8x2_output0 = global <2 x i8> zeroinitializer

volatile float2 mulf32x2_output0 = 0; : @insertelem32x2_output0 = global <2 x i32> zeroinitializer

: ;d”efine void @irTests() {

|nt main(void) {

%29 = trunc <2 x i32> <i32 2147482820, i32 724> to <2 x 16>

|

|

|

|

|

|

|
short2 add16x2_input0 = {31940, 724}; |
store volatile <2 x 116> %29, <2 x i16>* @truncwh16x2_output0 :
|

|

|

|

|

|

|

| |
| |
| |
| |
| |
| |
| |
| | |

| short2 add16x2_input1 = {707, 988}; | |

| add16x2_output0 = add16x2_input0 + add16x2_input1; | | -

| | | %147 = shufflevector <2 x i8> <i8 68, i8 84>,

| float2 mulf32x2_input0 = {-414.00, 362.00}; | | <2 x i8> <i8 67, i8 92>, <2 x i32> <i32 1, i32 2>
| float2 mulf32x2_input1 = {353.50, 494.00}; | 1

| mulf32x2_output0 = mulf32x2_input0 * mulf32x2_input1; | |

I ol

I o

| | |

store volatile <2 x i8> %147, <2 x i8>* @vshuffle8x2_output0

%178 = insertelement <2 x i32> <i32 2147482820, i32 724>, i32 707, i32 0
store volatile <2 x i32> %178, <2 x i32>* @insertelem32x2_output0

irTests();
return 0;

Figure 5.3: Test files used in compiler tests.

5. Verification 53

The C test file begins with including the tce_wvector.h file to enable the vec-
tor types in the language. The result vector variable names are declared in the
global area of the code and the variable values are initialized to zero. In the int
main(void) function body, input vector operands are created just before the actual
vector operation is executed. The operation results are directed to the global result
vector variables. The irTests() function is called at the end of the file to execute
the operations defined in ir_tests.ll.

The structure of the ir_tests.ll file is quite the same with clang tests.c. The
global result variables are declared first, after which the vector operations are defined
in the irTests() function body. For the sake of an easier example, the input
operands are given as constant vectors in the IR code. Some of the (non-visible)
input operands are defined as temporary variables, which require loading the value
from a memory location. The results are first assigned to temporary result variables,
which are then stored to the result variable’s memory location.

In order to make sure none of the SIMD operations are optimized out in step
three, the compiler is instructed not to optimize the IR code. If an operation in
the IR code was optimized out, the instruction selection and, therefore, retargeting
for that operation would fail. The compilation process produces a .tpef binary file
that can be run in the simulator for the processor architecture.

In step four, the binary file is first converted to a human readable assembly
format with the tcedisasm tool to check that the instruction selector has selected the
correct SIMD OSAL operations to the target machine code. The SIMD operations
are verified from the assembly code by using the grep Unix tool to check that the
operations exist in the code. If a SIMD operation can not be found from the file,
the instruction pattern generation in TDGenSIMD is likely to be incorrect for that
specific operation.

In step five, the .tpef binary program and the .adf architecture description file
are used to run the program in the TCE simulator ttasim. After the program has
been run, the vector operations have been executed and their results have been stored
to the result variable locations in the simulator memory. The generate simd.py
creates a ttasim.in file that contains commands for printing all vector result values
from the memory. This way they can be checked against the expected vector values,
which are also generated by the script. A few lines from the ttasim.in contents are

shown below.

x /n 128 /u b add8x128_output0
X /n 2 /u h add16x2_outputO
X /n 4 /u h add16x4_outputO

5. Verification 54

The bold line shows the result variable name that was used in the C code exam-
ple in Figure [5.3] The line prints the memory contents starting from the address
add16x2_outputO in chunks of 2 bytes (subword width for 116 vector element) two
times. The printed hex string is 0x7£87 0x06b0, which is compared to the expected
hex string. The same comparison is done for all result variables. The expected hex
strings are generated to a single text file under simd_operations directory in the
same order as ttasim.in file makes the simulator to print the vector variables from

the memory.

5.3 Vector Function Unit Generator

The vector function unit generator tests are located in testsuite/systemtest/bin-
tools/SIMDF UGenerator. The test script run_simd__fu__generator _test.sh uses the
generatesimdfu tool to generate several vector FUs from scalar FUs. Below is a code
snippet how the Bash script generates vector ALUs with different element count sizes
in a for loop. The vector ALUs are created by exploiting a scalar ALU function
unit from asic_130nm_1.5V.hdb.

BINARY=../../../../tce/src/bintools/SIMDFUGenerator/generatesimdfu
SCALAR_HDB_FILE=../../../../tce/hdb/asic_130nm_1.5V.hdb
SIMD HDB=simd.hdb

for ELEM COUNT in 2 4 8 16 32
do

ENTRY_ID=376 # Minimal requirements ALU with delay 1.
./generatesimdfu $SCALAR_HDB_FILE $ENTRY_ID $ELEM_COUNT $SIMD_HDB

done

The scalar ALU contains the minimal operation requirements for any TTA pro-
cessor. Vector versions are generated with element count of 2, 4, 8, 16 and 32 and
stored to a temporary test database file (simd.hdb). The generatesimdfu tool uses
HDBTester to create an RTL testbench for all generated SIMD function units and

runs it automatically with ghdl.

95

6. CONCLUSIONS

In the master’s project described in this thesis, TCE toolset was extended with
SIMD capabilities. The implemented SIMD support covers the whole TCE design
flow, starting from the high-level vector programming in the source code all the way
down to the hardware description generation of vector function units. Most of the
work was done on top of existing tools and data structures in the toolset.

This thesis gave an overview of instruction-level and data-level parallelism and
customized processor templates. In addition, a short introduction to the TCE toolset
was given, followed by a description of compiler concepts. The TCE toolset, the
design flow and the most relevant data structures were presented. Parts that required
modification for the SIMD extension were pointed out.

Several tools had to be modified to make them recognize and support the SIMD
extension. The most important part was to preserve the retargetability of the TCE
compiler, as the new SIMD features were introduced to the environment. The com-
piler backend had to automatically recognize the SIMD resources from customized
processor architectures and use them in the program execution. New tools that
were created as part of the toolset were made as automatic as possible to minimize
manual effort and keep the design flow effective.

The SIMD extension was tested and verified in various points of the design flow.
The OSAL tests successfully verified the behavior model for all SIMD OSAL oper-
ations. The compiler tests verified the retargetability of the compiler for the new
vector operations, and the correct layout of the vectors in the simulator memory. Fi-
nally, the automatic generation of SIMD function unit RTL descriptions was verified
with the HDB tester.

The goals of this thesis were reached, as processor designers using TCE are now
able to take DLP requirements into account in target applications. In case even
wider OSAL vector operations should be introduced to TCE in future, the fully
automatic SIMD generation script should minimize most of the manual work.

There is still room for improvements and future development. Currently, vectors
of any width are forced to a 4-byte address location when they are stored to the
memory. The backend should be modified to align vectors to the memory by using
the full vector width. For example, a 512-bit vector should be stored to a memory

address that is divisible by 64. This would reduce the complexity of the load and

6. Conclusions 56

store vector operations on hardware.

Vector types can not be currently defined as function parameters or return val-
ues. In addition, larger vector machine operations could be exploited to execute
smaller vector operations if there are no matching machine operations for them. For
example, if the machine supports additions between v8132 types, and the IR code
contains non-supported v4i32 vector additions, the wider machine operation could
be exploited to execute the smaller operation.

In case the IR code contains multiple sequential “insert element” operations to
build a vector, and a correct-sized PACK operation exists in the machine, the vector
building might be more cost-efficient by exploiting the packing operation. The same
scheme applies to multiple sequential “extract element” operations with a matching
machine UNPACK operation. Truncation for vector elements could also be made by
unpacking a vector to independent elements, after which they could be packed back
to a vector with a packing operation that inputs independent elements with smaller
element width.

o7

REFERENCES

1]

2]

[10]

[11]

[12]

Espasa, R. and Valero, M., “Exploiting Instruction- and Data-Level Paral-
lelism,” IEEE Micro, vol. 17, no. 5, pp. 20-27, 1997.

Murakami, K. and Irie, N. and Tomita, S., “SIMP (Single Instruction Stream /-
Multiple Instruction Pipelining): A Novel High-speed Single-processor Archi-

tecture,” in Proceedings of the 16th Annual International Symposium on Com-
puter Architecture, ISCA 89, pp. 78-85, 1989.

Gonzélez, J. and Gonzalez, A., “The Potential of Data Value Speculation to
Boost ILP,” in Proceedings of the 12th International Conference on Supercom-
puting, ICS "98, pp. 21-28, 1998.

Bernstein, D. and Rodeh, M., “Global Instruction Scheduling for Superscalar
Machines,” SIGPLAN Not., vol. 26, pp. 241-255, May 1991.

Smith, M. and Lam, M. and Horowitz, M., “Boosting Beyond Static Scheduling
in a Superscalar Processor,” SIGARCH Comput. Archit. News, vol. 18, pp. 344—
354, May 1990.

Russell, R., “The CRAY-1 Computer System,” Commun. ACM, vol. 21, pp. 63—
72, Jan. 1978.

Peleg, A. and Wilkie, S. and Weiser, U., “Intel MMX for Multimedia PCs,”
Commun. ACM, vol. 40, pp. 24-38, Jan. 1997.

Intel Corporation, Intel® Architecture Instruction Set Extensions Programming
Reference, December 2013.

Pai, S. and Govindarajan, R. and Thazhuthaveetil, M., “Limits of Data-Level
Parallelism,” in 14th Annual IEEE International Conference on High Perfor-
mance Computing, 2007.

Lorenz, M. and Marwedel, P. and Drager, T. and Fettweis, G. and Leupers, R.,
“Compiler Based Exploration of DSP Energy Savings by SIMD Operations,” in
Proceedings of the 2004 Asia and South Pacific Design Automation Conference,
ASP-DAC ’04, pp. 838-841, 2004.

Langdon, W. and Banzhaf, W., “A SIMD Interpreter for Genetic Programming
on GPU Graphics Cards,” in Proceedings of the 11th European Conference on
Genetic Programming, EuroGP’08, pp. 73-85, 2008.

Balfour, J., “CUDA Threads and Atomics,” 2011. http://mec.stanford.edu/cgi-
bin/images/3/34/Darve__cme343 cuda_ 3.pdf, referenced: 13.05.2014.

REFERENCES o8

[13]

[14]

[16]

[17]

[19]

Yu, P. and Mitra, T., “Scalable Custom Instructions Identification for
Instruction-set Extensible Processors,” in Proceedings of the 2004 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES ’04, pp. 69-78, 2004.

Bonzini, P. and Harmanci, D. and Pozzi, L., “A Study of Energy Saving in Cus-

)

tomizable Processors,” in Embedded Computer Systems: Architectures, Model-

ing, and Simulation, vol. 4599, pp. 304-312, 2007.

Kumar, R. and Tullsen, D. and Ranganathan, P. and Jouppi, N. and Farkas, K.,
“Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Work-
load Performance,” SIGARCH Comput. Archit. News, vol. 32, pp. 64—, Mar.
2004.

Qualcomm, “Snapdragon S4 Processors: System on Chip Solutions for a New
Mobile Age.” White Paper, 2011.

Nieuwland, A. and Kang, J. and Gangwal, O. and Sethuraman, R. and Busa,
N. and Goossens, K. and Peset Llopis, R. and Lippens, P., “C-HEAP: A Het-
erogeneous Multi-Processor Architecture Template and Scalable and Flexible
Protocol for the Design of Embedded Signal Processing Systems,” Design Au-
tomation for Embedded Systems, vol. 7, no. 3, pp. 233-270, 2002.

Pozzi, L. and Paulin, P.G., “A Future of Customizable Processors: Are We
There Yet?,” in Design, Automation Test in Furope Conference Ezhibition,
2007. DATE 07, pp. 1-2, April 2007.

J. Hoogerbrugge and H. Corporaal, “Register File Port Requirements of Trans-
port Triggered Architectures,” in Proceedings of Annual International Sympo-

stum on Microarchitecture, pp. 191-195, November-December 1994.

Hoogerbrugge, J. and Corporaal, H., “Comparing Software Pipelining for an
Operation-Triggered and a Transport-Triggered Architecture,” in In Lecture

Notes in Computer Science 641, Compiler Construction, pp. 219-228, 1992.

“TCE: TTA-Based Codesign Environment.” Web page: http://tce.cs.tut.fi,
referenced: 15.04.2014.

Muchnick, S., Advanced Compiler Design and Implementation. 1997.

Aho, A. and Lam, M. and Sethi, R. and Ullman, J., Compilers: Principles,
Techniques, and Tools (2Nd Edition). 2006.

[24] Wilhelm, R. and Seidl, H. and Hack, S., Compiler Design: Syntactic and Se-

mantic Analysis. 2013.

REFERENCES 99

[25]

[26]

[27]

[28]

[31]

[32]

Kats, L., “Supporting Language Extension and Separate Compilation by Mix-
ing Java and Bytecode,” Master’s thesis, Utrecht University, The Netherlands,
August 2007.

Leupers, R., “Compiler Design Issues for Embedded Processors,” Design Test
of Computers, IEEE, vol. 19, pp. 51-58, Jul 2002.

A. Metsédhalme, “Instruction Scheduler Framework for Transport Triggered Ar-
chitectures,” Master’s thesis, Tampere University of Technology, Finland, Apr
2008.

Eichenberger, A. and Wu, P. and O’Brien, K., “Vectorization for SIMD Archi-
tectures with Alignment Constraints,” in Proceedings of the ACM SIGPLAN

2004 Conference on Programming Language Design and Implementation, PLDI
‘04, pp. 82-93, 2004.

Sreraman, N. and Govindarajan, R., “A Vectorizing Compiler for Multimedia
Extensions,” Int. J. Parallel Program., vol. 28, pp. 363400, Aug. 2000.

Maleki, S. and Gao, Y. and Garzaran, M.J. and Wong, T. and Padua, D.A., “An
Evaluation of Vectorizing Compilers,” in Parallel Architectures and Compilation
Techniques (PACT), pp. 372-382, Oct 2011.

J. Méntyneva, “Automated Design Space Exploration of Transport Triggered
Architectures,” Master’s thesis, Tampere University of Technology, Finland,
July 2009.

V. Jaéskeldinen, “Retargetable Compiler Backend for Transport Triggered Ar-
chitectures,” Master’s thesis, Tampere University of Technology, Finland, Feb
2010.

Tampere University of Technology, “TTA Codesign Environment v2.0 User
Manual,” 2008.

The LLVM Team, “The LLVM Compiler Infrastructure Project.”
http://llvm.org, referenced: 15.04.2014.

Jaaskeldinen, P., “Instruction Set Simulator for Transport Triggered Architec-

tures,” Master’s thesis, Tampere University of Technology, Finland, Sep 2005.

L. Laasonen, “Program Image and Processor Generator for Transport Triggered
Architectures,” Master’s thesis, Tampere Univ. Tech., Finland, 2007.

O. Esko, “ASIP Integration and Verification Flow,” Master’s thesis, Tampere
University of Technology, Finland, June 2011.

	Introduction
	Customization of Parallel Processors
	Parallelism
	Instruction-Level Parallelism
	Data-Level Parallelism

	Processor Templates
	Transport Triggered Architecture
	TTA-Based Co-Design Environment
	Compiler Support for Data-Level Parallelism
	Compilers
	Vectorization

	TTA-Based Co-Design Environment
	Design Flow
	Processor Customization
	LLVM Compiler Infrastructure
	Clang Frontend
	Intermediate Representation
	Backend

	TCE Compiler
	High-Level Language Support
	Static and Dynamic Backend Parts
	Dynamic Backend Generation

	Simulator
	Processor Generator

	Implementation
	Processor Customization
	Compiler Support
	High-Level Language Support
	Dynamic Backend Generation

	Hardware Generator

	Verification
	Behavior Models of Vector Operations
	Compiler Backend Retargeting
	Vector Function Unit Generator

	Conclusions
	References

