
JUSSI KILPELÄINEN
AUTOMATED FLOW FOR GENERATING HARDWARE
DESCRIPTION OF FILTERS

Master of Science thesis

Examiner: Prof. Timo D. Hämäläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 5th November 2014

i

ABSTRACT

JUSSI KILPELÄINEN: Automated flow for generating hardware
description of filters
Tampere University of Technology
Master of Science thesis, 53 pages, 0 Appendix pages
April 2015
Master’s Degree Programme in Electrical Engineering
Major: embedded systems
Examiner: Prof. Timo D. Hämäläinen
Keywords: filter, generation, fir, rtl

Digital filters are used to process signals in many fields like telecommunications,
image processing and in medical equipment. They are so omnipresent that engineers
are building and verifying those all the time, using a lot of resources.

As the structure of a basic filter is quite simple, savings could be made by autom-
atizing the creation of filters. In this Thesis the requirements of Nokia Networks
are analyzed to build an automatized filter generation flow. Different tools are
evaluated, but finally a custom generator is built. It crafts filters from pieces of
hand-written RTL.

The end result is an automated flow which supports single and multichannel FIR
filters with constant coefficients. The user has to input the coefficients to a Matlab
script with the desired data widths. The filter is then generated and verified by
running the script. The flow supports both ASIC and FPGA technologies.

ii

TIIVISTELMÄ

JUSSI KILPELÄINEN: Automatisoitu vuo suodinten laitteistokuvauksen tuotta-
miseen
Tampereen teknillinen yliopisto
Diplomityö, 53 sivua, 0 liitesivua
huhtikuu 2015
Sähkötekniikan koulutusohjelma
Pääaine: sulautetut järjestelmät
Tarkastaja: Prof. Timo D. Hämäläinen
Avainsanat: suodin, generointi, fir, rtl

Digitaalisia suotimia käytetään signaalien käsittelyyn monilla eri tekniikan alueilla,
kuten telekommunikaatiossa, kuvankäsittelyssä ja lääketieteellisissä laitteissa. Ne
ovat niin yleisiä, että insinöörit käyttävät paljon aikaa ja resursseja niiden toteutta-
miseen ja verifioimiseen.

Koska yleisimpien suotimien rakenne on melko yksinkertainen, niiden luominen voi-
daan automatisoida generaattorin avulla. Tässä diplomityössä Nokia Networksin
vaatimukset kartoitetaan automatisoidun suodinten laitteistokuvauksen tuottamis-
vuon kehittämiseksi. Erilaisia tuottamismenetelmiä vertaillaan, mutta lopulta pää-
dytään kehittämään oma generaattori. Se luo suotimia yhdistelemällä osia käsinkir-
joitetusta RTL:stä.

Lopputuloksena on automatisoitu vuo, joka tukee vakiokertoimilla varustettuja, yh-
den tai useamman kanavan FIR-suotimia. Käyttäjän tulee syöttää kertoimet ja ha-
luttu datanleveys Matlab-skriptiin. Ajettaessa skripti luo suotimen ja verifioi sen.
Vuo tukee sekä ASIC- että FPGA-teknologioita.

iii

PREFACE

The work in this Thesis was carried out at Nokia Networks in Tampere, Finland
between October 2014 and February 2015.

In the words of John Donne, "No man is an island". There were many persons
who helped me do this Thesis. I am very grateful to the supervisor of this Thesis,
Dr Tuomas Järvinen, whose advice and experience were very valuable throughout
the process. I also regard the technical advice given by Juha Nousiainen very highly.
Professor Timo D. Hämäläinen from Tampere University of Technology examined
this Thesis and gave a lot of helpful comments. I also appreciate my line manager
Didier Capiten for giving me the opportunity for doing this Thesis while being
employed. Thanks to you all.

This is the culmination of a long process, which started the day I went to school in
1997. I wish to take this opportunity to thank two teachers who really helped me
develop my thinking: Mikko Pörsti from Valtimon lukio and Seppo Toivanen from
Rautavaaran lukio.

Most of all, thanks to my friends and family for all the support during my studies
and while doing this Thesis.

Tampere, 25.02.2015

Jussi Kilpeläinen
jussi.kilpelainen@iki.fi

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Filter theory . 4

2.1 Basic topologies . 4

2.1.1 Direct FIR filter . 5

2.1.2 Mapping block diagrams to hardware 5

2.1.3 Transposed FIR filter . 6

2.2 Structural optimizations . 7

2.2.1 Folded FIR filter . 7

2.2.2 Half-band filter . 8

2.2.3 Coefficient area . 9

2.2.4 Resource sharing . 9

2.2.5 Multichannel filter . 11

2.3 Multiplier optimizations . 13

2.3.1 Shift and add algorithm . 13

2.3.2 Canonical signed digit . 14

2.3.3 Reduced adder graph . 14

2.4 Current research . 15

3. Requirements . 17

3.1 Constraints . 17

3.2 Existing tools for generating filters 18

3.2.1 Generators by research groups 18

3.2.2 Generators by FPGA vendors . 19

3.2.3 High level synthesis tools . 20

3.2.4 Own implementation . 20

3.3 Verification . 21

3.4 The flow . 21

3.4.1 From Matlab model to RTL . 24

v

3.4.2 Verifying the RTL . 26

4. Filter generator . 29

4.1 Multiplier block test syntheses . 29

4.2 Building a filter by hand . 32

4.3 Automating the generation . 36

4.4 Results . 38

4.4.1 FPGA synthesis . 38

4.4.2 ASIC synthesis . 40

5. Extension to multichannel filters . 42

5.1 Functionality . 42

5.2 Implementation . 46

5.3 Results . 48

6. Conclusions . 49

Bibliography . 51

vi

LIST OF FIGURES

1.1 Sine wave that gets corrupted by noise and is then filtered. 1

1.2 A noisy image (left) that has been filtered (right). 2

1.3 Filtering an electrocardiogram. 2

2.1 A four-tap FIR filter. 5

2.2 A transposed four-tap FIR filter. 6

2.3 A folded four-tap FIR filter. 7

2.4 A folded five-tap FIR filter. 8

2.5 A multiply-accumulate unit (MAC). 10

2.6 Distributed arithmetic filter. 10

2.7 A multichannel filter as described by Ming and Chao [12]. 11

2.8 A multichannel filter as described by Kukkala [8]. 12

2.9 A RAG multiplier block with coefficients 66, 905, 294, 2282 and 5032. 15

3.1 Screenshot of Altera FIR Compiler II 19

3.2 The filter generation flow. 22

3.3 Directory structure used by the flow. 22

3.4 Floating point and fixed-point implementations of a filter. 25

4.1 Eight input binary tree adder (design III). 30

4.2 Maximum operating frequency on an FPGA. 39

4.3 Number of logic elements used on an FPGA. 39

4.4 Number of embedded multiplies used on an FPGA. 40

4.5 Silicon area as a function of the filter length. 41

vii

5.1 Structure of the multichannel filter. 43

5.2 Timing diagram for the multichannel filter. 44

5.3 Delay line register stages sharing the same memories. 45

5.4 Dividing the delay line to different memories. Context switch period
is 8 cycles. 46

5.5 Simplified example of the data flow from memory to the shadow re-
gisters. 47

viii

LIST OF TABLES

3.1 User settings in the Matlab script. 23

4.1 Synthesis results (µm2) . 31

4.2 Hooks in the simple filter template 37

4.3 FPGA synthesis results . 38

4.4 ASIC synthesis results . 40

5.1 Effects of choosing the context switch period. 45

5.2 Memory addresses in context memory. 45

5.3 Multichannel filter synthesis results. Areas in mm2. 48

ix

LIST OF ABBREVIATIONS

ASIC Application specific integrated circuit
CD Compact disc
CSD Canonical signed digit
CSE Common subexpression elimination
DA Distributed arithmetic
DAC Digital to analogue converter
DFE Digital front-end
DUT Device under test
ECG Electrocardiogram
EEG Electroencephalogram
FEC Focused expression coverage
FIR Finite impulse response
FPGA Field-programmable gate array
HDL Hardware description language
HLS High level synthesis
IIR Infinite impulse response
IP Intellectual property
LE Logic element
MAC Multiply and accumulate
PHP PHP: Hypertext Preprocessor (a programming language)
RAG Reduced adder graph
RAM Random access memory
RNS Residue number system
RTL Register-transfer level
UVM Universal verification Methodology
VHDL VHSIC hardware description language
VHSIC Very high speed integrated circuit
VIP Verification intellectual property
XML Extensible markup language

1

1. INTRODUCTION

Filters are used in signal processing to change the spectral content of a signal. Tradi-
tionally they have been implemented in analogue domain using passive components
and operational amplifiers. Figure 1.1 gives an example of a sine wave which gets
corrupted by noise. The noisy signal is then filtered with a low-pass filter, resulting
in the signal in the right side of the figure. The bottom part of the figure shows the
magnitudes of the signals in frequency domain.

t

x(
t)

t

x(
t)

t
x(
t)

|X
(f
)|

f f

|X
(f
)|

f

|X
(f
)|

noise gets
superimposed

low-pass
filtered

Figure 1.1 Sine wave that gets corrupted by noise and is then filtered.

Digital filters are superior to their analogue counterparts in many ways. They are
cheaper and more immune to the tolerance of component values or changes in the
environment. Implementing them is easy in software. They can also be synthesized
to a field-programmable gate array (FPGA) or an application-specific integrated
circuit (ASIC). Some applications, like software defined radios, make use of their
capability of being adjustable on the fly.

Decreased cost is the reason why digital filters are used in many compact disc (CD)
players. A CD player converts the digital information from the disc to an analo-
gue output signal. To prevent signal aliasing, a reconstruction filter is required. A

1. Introduction 2

common trick in the industry is to oversample the audio signal before the digital-to-
analogue converter (DAC). The signal can then be filtered effectively in the digital
domain, and the final analogue filter can be simpler. A very steep analogue filter
would also cause phase changes, worsening the reproduction quality.

Figure 1.2 A noisy image (left) that has been filtered (right).

Besides audio, the same filtering principles can also be applied to image processing.
For example, transmission errors or defects in the image sensor may cause salt and
pepper noise, which can be removed by applying a median filter like shown in figure
1.2.

0 1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (seconds)

am
pl

itu
de

 (
m

V
)

ECG
filtered ECG

Figure 1.3 Filtering an electrocardiogram.

Filters are also used in medical applications. Biosignals like electrocardiograms
(ECG) and electroencephalograms (EEG) are often very weak and susceptible to
all kinds of interference from the environment. Perspiration, respiration and muscle

1. Introduction 3

activity can also have a negative effect in the signal. Getting rid of these unwanted
phenomena requires a lot of filtering. See figure 1.3 for an example.

Telecommunications have a lot of applications for filters as well. When a listener
tunes her radio receiver to a particular station, she changes the center frequency of
the channel filter. The filter removes unwanted signal from the demodulator input,
improving the signal-to-noise ratio. Similar functionality exists in mobile phones and
network base stations, for example.

Given how ubiquitous digital filters are, it is no wonder that implementing them is
routine for many engineers. At Nokia Networks in Finland it was deemed that too
much engineering effort was put in implementing simple filters from scratch over and
over again. Moreover, as there was no generic test bench available, verification took
a long time as well. This Thesis solves this problem by introducing an automated
flow for generating and verifying the VHDL (VHSIC Hardware Definition Language,
where VHSIC stands for Very High Speed Integrated Circuit) descriptions for the
most commonly used digital finite-length filters in telecommunication applications.

The problem is approached by collecting the requirements and evaluating different
filter toolkits. There are lots of pre-existing generators and a lot of research papers
with interesting optimizations, but to keep things as simple as possible, a custom
generator is built. The effort included choosing a suitable filter topology for auto-
matization and performing trial syntheses on arithmetic blocks to get a reasonable
balance between simplicity and efficiency. A Python generator script was written to
combine the pieces of hand-written RTL into a filter. For ease of use, the genera-
tor is placed in a Matlab-driven flow which was developed for this application and
includes an automatically created, self-checking test bench.

Besides documenting how the generator and the flow were created, this Thesis will
also describe how to use them so that it can be used as a user manual. Maybe it
could also help people with a computer engineering background and little experience
in signal processing to get started with turning the requirements into designs. The
focus is kept on filter implementations, not on the filter design.

The structure of this Thesis is as follows: Chapter 2 sets the theoretical background
for the Thesis. The requirements are collected and a the flow described in Chapter
3. Chapter 4 tells about the RTL designs and their test synthesis results. In Chapter
5 the generator is expanded to support multichannel filters. Chapter 6 concludes the
Thesis.

4

2. FILTER THEORY

There are two types of digital filters: finite impulse response (FIR) and infinite
impulse response (IIR) filters. The names are very descriptive: a FIR filter has a
finite impulse response - it will settle to zero in a finite time. On the other hand, IIR
filters perform an infinite sum which does not become zero past a certain instant.
[11, p.165]

Early on, a decision was made to concentrate on FIR filters. They have a lot of
good properties, like inherent stability and the ease of designing a filter with linear
phase [17]. Therefore they are more often used in projects at Nokia. Moreover, their
simplicity makes implementing the automated flow easier. Support for IIR filters
could then be added later if there is a need. Only FIR filters are considered in this
and all subsequent chapters.

2.1 Basic topologies

The output of a FIR filter is a weighted sum of the past and present inputs. The
output does not depend on the previous outputs, 1 making the filter non-recursive.

The relation can be written formally as

y[n] =
M−1∑
k=0

h[k]x[n− k], (2.1)

where y is the output, x the input, h the filter coefficients and M the number of
taps. The number of taps is equal to the number of coefficients. The filter order is
one less than the tap count[14, p.432]. The filter coefficients h are often referred to
as the impulse response of the filter. [9, p.159]

In its most general form without any optimizations a FIR filter has two common
hardware topologies. They are presented in this section.

1With the exception of cascaded integrator-comb filters [11, p.166], which are outside the scope
of this Thesis.

2.1. Basic topologies 5

2.1.1 Direct FIR filter

Figure 2.1 represents the simplest type of the FIR filter, which is called a direct
filter. The input x[n] is fed into a delay line. Each tap of the delay line is multiplied
by a coefficient, and the products are summed together to form the output y[n].
Because of the architecture these filters are sometimes called tapped delay lines [11,
p.166] [14, p.436]. The coefficients may then be referred to as tap weights.

z
-1

 z
-1

 z
-1

Σ

x[n]

y[n]

h0 h1 h2 h3

Figure 2.1 A four-tap FIR filter.

Applying the formula 2.1 for the filter in figure 2.1 results in

y[n] = h0 · x[n] + h1 · x[n− 1] + h2 · x[n− 2] + h3 · x[n− 3]. (2.2)

In literature formula 2.1 is often written using a convolution

y[n] = h[k] ∗ x[n], (2.3)

which corresponds to a multiplication Y (z) = H(z)X(z) in frequency domain. [9, p.
160]

2.1.2 Mapping block diagrams to hardware

Creating a hardware implementation of the block diagram of simple filters is straight-
forward. The delay line can be implemented using a shift register. Addition is na-
turally done by adders. Multiplier components can take care of different weights of
the taps.

2.1. Basic topologies 6

However, things get a bit more difficult if there are strict speed or area restrictions
that the filter must fulfill. Multipliers and adders must then be pipelined to improve
throughput.

Optimizing the multipliers is the key to an efficient design because multiplication is
a much more complex operation than addition [7], resulting in a larger silicon area
or a longer latency. There are also a few methods that can be used in the filter design
phase to decrease the number of mathematical operations required. Moreover, the
multiplications can be optimized further if the coefficients are constant and known
at the time of implementation. In that case the multipliers can be replaced with
implementations that utilize bitshifting. [3, p.131]

2.1.3 Transposed FIR filter

The direct FIR filter can be transposed by turning it around: the input and the
output change places, signal flow direction is changed and forks are replaced with
adders and vice versa. [11, p. 167] The result can be seen in figure 2.2. Input is
multiplied with all the coefficients, and the products are summed in the delay chain
with the output of the previous delay element.

z
-1

 z
-1

h2h3

Σ z
-1

h1

Σ

h0

Σ

x[n]

y[n]

Figure 2.2 A transposed four-tap FIR filter.

It can be argued that this structure is simpler than the direct topology presented be-
fore. The final summation of the direct filter requires a pipelined adder tree whereas
the transposed structure doesn’t [11, p.167]. It also opens up many interesting opti-
mization methods; as all the multipliers have the input as the other operand, there
is possibly a lot of redundancy in the multipliers. On the other hand, the registers it
requires are large because they store the multiplier outputs in full precision instead
of just the delayed input. This is, however, less of a concern in FPGA implementa-
tions where registers are plentiful [11, p. 188]. Moreover, the multiplication results
are often rounded to save logic at the expense of increased noise.

2.2. Structural optimizations 7

2.2 Structural optimizations

The basic structure of a FIR filter was presented in Section 2.1. By designing the
filter carefully, some logic in the basic implementations can be made redundant. It
is also possible to perform optimizations by reusing the same hardware for multiple
filters.

2.2.1 Folded FIR filter

Often it is desired that the group delay of a filter is constant. It means that it takes
the same amount of time for different frequency components to go through the filter
and no phase distortion has been added to the signal.

z
-1

z
-1

Σ

x[n]

y[n]

h0

Σ

h1

z
-1

 Σ

Figure 2.3 A folded four-tap FIR filter.

It can be easily shown that in order to have a linear phase, the FIR coefficients must
be symmetrical h[k] = h[(M − 1)− k] or antisymmetrical h[k] = −h[(M − 1)− k],
where M is the number of taps. [9, p.503][11, p.171][14, p.436][17, p.164] For example,
if the four coefficients in figure 2.1 satisfy the criteria h0 = h3 and h1 = h2, equation
2.2 can be written as

y[n] = h0 · x[n] + h1 · x[n− 1] + h1 · x[n− 2] + h0 · x[n− 3]

= h0(x[n] + x[n− 3]) + h1(x[n− 1] + x[n− 2]).
(2.4)

2.2. Structural optimizations 8

As a result, two of the multiplications can be replaced with summations. Generally
speaking, if there are M taps, the direct topology requires M multipliers whereas
folded topology needs only

⌈
M
2

⌉
. This fits in extremely well with the desire to mini-

mize the number of multipliers in the filter. A block diagram of the folded filter can
be seen in figure 2.3.

If the number of coefficients is odd, the coefficient in the middle will perform as the
symmetry axis and therefore the middlemost tap will have no pair to be summed
with. The middle tap will have to be multiplied alone and added to the final sum.
For an example, see figure 2.4.

z
-1

z
-1

Σ

x[n]

y[n]

h0

Σ

h1

z
-1

Σ

h2

z
-1

Figure 2.4 A folded five-tap FIR filter.

2.2.2 Half-band filter

In non-trivial systems there are likely to be multiple points where the sample rate
is changed in order to interface between different subsystems or to decrease the
computational load. Increasing the sample rate is called interpolation, and it is done
by adding new samples between the existing ones. Reducing the sample rate is called
decimation, and it can be accomplished by discarding samples. [9, p. 381][14, p.50]

There is a type of FIR filter, a half-band filter, that is often used as an image removal
filter when changing the sample rate [9, p.188]. They have been designed so that
their frequency response is symmetrical around the frequency fs/4, where fs is the
sampling frequency. This symmetry causes a very useful phenomenon to occur in

2.2. Structural optimizations 9

time domain: every other filter coefficient becomes zero except for the middlemost
one. [9, p.188][14, p.782]

Half-band filters do have a limitation though: if the number of taps is M, M+1 must
be a multiple of four [9, p.188]. This is however a small downside compared to the
fact that almost half of its coefficients are zeroes. The amount of multipliers required
is therefore also nearly halved.

2.2.3 Coefficient area

As described in formula 2.1, a FIR filter consists of multiplying the delayed input
samples with the coefficients and adding the results together. Given an input bit
width wi and a coefficient width wc, the multiplication output will be of size wr =

wc + wi. Summing M of those together will result in a number of width wr +

dlog2(M)e.

However, these calculations result in the number of bits that is required in order
to not have overflow when the input and the output may have any value within
the range. With fixed coefficient FIR filters a better estimate can be calculated by
taking the magnitudes of the coefficients into account. To find out the maximum
output value of the filter, the input data must be assumed to be the worst case of
xmax, namely the highest value that will fit in the number of bits. Now formula 2.1
can be rewritten to give the maximum output value

ymax =
M−1∑
k=0

|h[k]| · xmax

= α · xmax,

(2.5)

where α is the sum of the absolute values of coefficients. This value is sometimes
called the coefficient area of the filter. [23] In most cases, determining the output
width using the coefficient area will result in a smaller number than the analysis
done by using the number of taps. Accumulator registers can then be made smaller,
and silicon area is saved.

2.2.4 Resource sharing

The direct, folded and transposed filters perform all the calculations in parallel and
are therefore very fast. However, sometimes the speed requirements are not so high

2.2. Structural optimizations 10

and saving silicon area is more important. In those cases it is reasonable to perform
the calculations using less hardware over a longer period of time.

× +

reg

y
x

h

Figure 2.5 A multiply-accumulate unit (MAC).

One way of doing this is by using multiply-accumulate units (MACs) as shown in
figure 2.5. Control logic, which is not drawn in the figure, feeds in the values for h
and x from formula 2.1 for each clock cycle, and the result is accumulated in y. For
a filter with N taps the operations can be done in N cycles with a single MAC unit.
The designer can balance the speed and area costs by using several MAC units in
parallel.

Distributed arithmetic (DA) filters utilize another method of sharing resources by
calculating the outputs in a bit-serial way. Their main idea is to perform the calcu-
lations one bit at a time for all the coefficients and then do a weighted sum as shown
in figure 2.6. The operations are done using bit shifts, lookup tables and an adder.
[10][11, p.189]

N-1 instances of

B-bit shift registers

2^N

word

LUT

parallel-

to-serialB

x(n)

LUT address

sequence

Σ D Q

2
-1

y(n)

Figure 2.6 Distributed arithmetic filter.

The number of clock cycles required to calculate the output for a single input is
dependent on the coefficient bit width. Increasing the filter length does not worsen
the performance, like it does with single MAC filters [11, p.114], but it does increase
the lookup table size. [21]

This architecture is most popular in field-programmable gate array (FPGA) imple-
mentations because it maps well to the architecture [10]. For short filters the internal

2.2. Structural optimizations 11

lookup tables (LUTs) can be used. Longer filters tend to utilize memory blocks, or
use muxing with LUTs. [11, p.192]

A lot of research goes into trying to optimize the memory usage in distributed
arithmetic filters. Meher et al. [10] describe a method of decomposing the operations
in order to be able to use smaller memories.

Uwe Meyer-Bäse has done a comparison of optimized, transposed FIR filters and DA
filters on FPGAs. On average, transposed filters require 71% less logic but have 8%
lower maximum operating frequency. [11, p.208] On the other hand, DA filters offer
a predictable implementation - its cost and performance are not dependent on how
well the coefficient values can be optimized. Switching between different coefficient
banks is also easy as it only requires selecting the appropriate lookup table with a
multiplexer.

2.2.5 Multichannel filter

Distributed element filters presented in Section 2.2.4 offered a simple way of sup-
porting multiple sets of coefficients in a single filter. These kinds of filters are called
multichannel filters, and the different sets of coefficients are often referred to as
coefficient banks. There are also ways of implementing them with direct, folded and
transposed topologies.

Ming and Chao describe [12] a multichannel filter in which the contents of the delay
line are saved to RAM. It is illustrated in figure 2.7.

Figure 2.7 A multichannel filter as described by Ming and Chao [12].

During reset, the internal state of the filter is loaded with zeroes. In normal opera-
tion, the sampled data of channel m is fed into the multiplexer, producing output
ym(n). When changing the channel, the context — the contents of the delay line
xm− 1(n) — is saved to the memory. The context is then loaded when the channel
is being processed the next time. Naturally, this solution requires a lot of control

2.2. Structural optimizations 12

logic related to managing the memory operations and controlling the multiplexer,
none of which is drawn in the figure.

The filter supports any kind of a single-channel FIR filter design. However, support
for multiple coefficient sets is not mentioned in the paper. The multiplier blocks
could be built so that they support choosing the coefficients with a multiplexer or
reading the multipliers from memory alongside the context.

R0 R1

C0 C1

RN/2-1

CN/2-1 CN/2

M0 M1 MN/2-1

RN RN-1 RN/2

MN/2

C2

RN/2-2

RN/2+1

MN/2-2

In

C
R

0 C
R

1 C
R

2 C
R

N/2-1 C
R

N/2

R
W

0 R
R

0 R
W

1 R
R

1 R
W

N/2-2 R
R

N/2-2

R
W

N-1R
R

N-1 R
W

N/2+1R
R

N/2+1 R
W

N/2R
R

N/2

R
W

N/2-1 R
R

N/2-1

Out

memory

memory

Figure 2.8 A multichannel filter as described by Kukkala [8].

A more complex multichannel filter has been developed at Nokia [8]. It has a folded
delay line. When the channel changes, it saves the context to memory much like the
Ming and Chao filter does. The filter also has support for multiple coefficient banks
— the coefficients for each channel are loaded from the memory. The filter with its
memory interfaces is depicted in figure 2.8.

The data path of a conventional FIR is emphasized with red in the figure. The blue
paths are related to the context switching. The bottom part of the figure deals with
the arithmetic operations.

When the channel changes, the contents of the registers R0 ... RN−1 are saved in the
RW registers. The new context is loaded to R1 ... RN from the RR registers. The
data traffic between the memory and the shadow registers RW and RR is handled
over multiple clock cycles during the normal operation of the filter.

2.3. Multiplier optimizations 13

One use case for a multichannel filter is the channel filter of a radio module. The
input data comes from a streaming interface and each sample has a channel ID
associated with it. The samples must be filtered with different coefficients depending
on the carrier type.

The output of a multichannel filter is indistinguishable from the result that is got
from parallel filters. However, a multichannel filter will generally have a smaller area
and lower power consumption because it reuses the multipliers and has a lot of the
registers replaced with memories. On the other hand, a multichannel filter requires
shadow registers and a lot of control logic, and therefore parallel filters may be a
more efficient implementation when the filters are short and there are only a few
coefficient banks.

2.3 Multiplier optimizations

As mentioned before, the arithmetic cost is dominated by the multipliers. It can be
reduced if the coefficients are known beforehand.

2.3.1 Shift and add algorithm

Multiplying a number with a power of two can be performed by bit shifting its binary
representation to the left. This idea can be expanded further: each number can be
represented as a sum of powers of two, so any multiplication can be done as a sum
of bit shifts. For example, multiplying 710 = 1112 with 510 = 1012 can performed as

7 · 5 = (4 + 2 + 1) · 5
= 5 · 22 + 5 · 21 + 5 · 20

= (5 << 2) + (5 << 1) + (5 << 0)

= 20 + 10 + 5

= 35.

(2.6)

Bit shift is often considered as a free operation as it requires just reconfiguring some
of the wiring instead of adding gates. Therefore a shift and add multiplication is
really appealing when compared to a full multiplier.

2.3. Multiplier optimizations 14

2.3.2 Canonical signed digit

The number of additions required in a shift and add multiplier increases as the
number of ’1’-bits in the number increases. However, the number of operations can
be reduced 33% by adding subtractions to the set of operations. [6, p.157] The format
is called canonical signed digit (CSD).

In CSD additions are marked with 1 and subtractions with a 1̄. For example, the
CSD representation of 3110 is 100001̄, which stands for 26 − 20. Compared to the
binary representation 11111 it has three less non-zero digits, and therefore three less
bit shifts to be summed to complete the multiplication.

Converting a binary representation to CSD can be done by looking at patterns in
the bits. Starting from the least significant bit, sequences of ’1’ longer than two are
replaced with 10...01̄, where the number of zeroes is one less than the number of
ones in the pattern. At the same time patterns 1011 must be replaced with 1101̄.
After the first iteration, patterns 101̄ must be replaced with 011, starting from the
most significant bit.[11, p.59]

2.3.3 Reduced adder graph

As mentioned in Chapter 2.1.3, transposed filters make it easy to look for redundant
operations in the multiplications, which is something CSD does not utilize. By using
a method called reduced adder graph (RAG), an improvement of 16 – 26 % can be
done over CSD [4]. To help grasping the subject it is beneficial to think of all the
parallel multipliers as a single block, with the data input of the filter as the input
and all its multiples as the outputs.

Optimization begins by reducing all the coefficients to unique, positive-valued fun-
damentals. Those form the input set. The amount of adders required to implement
each coefficient in the input set is checked from a pre-computed lookup table. Coef-
ficients with an adder cost of zero or one are moved from the input set to the graph
set, where the coefficients that the algorithm has realized are stored.

From there on, the algorithm tries to implement coefficients from the input set by
adding, subtracting and bit shifting the coefficients from the graph set. When all
combinations are exhausted, the algorithm moves more complex coefficients from
the input set to the graph set and tries again. [11, p.183]

2.4. Current research 15

X

<<5
 32x

+
 33x

<<2
 4x

-
 147x

<<9
 512x

+
 37x

<<2
 132x

<<1
 66x

<<2
 148x

<<4
 592x

+
 629x

<<5
 1184x

-
 1037x

<<1
 294x

+
 1141x

<<3
 5032x

<<1
 2282x

-
 905x

Y3Y1 Y2 Y4Y5

Figure 2.9 A RAG multiplier block with coefficients 66, 905, 294, 2282 and 5032.

Figure 2.9 presents a RAG multiplier block generated with SPIRAL multiplier block
generator[15]. X is the input and Y1 through Y5 are the outputs. The block requires
seven adders and has a depth of four.

2.4 Current research

There are endless little details that can be optimized in FIR filters, and they are
therefore still a popular research topic. For example, Mirshekari et al. have expe-
rimented with residue number system (RNS) arithmetics in order to improve the

2.4. Current research 16

speed of arithmetic operations. [13] RNS introduces more parallelism and fewer car-
ry operations than standard arithmetics.

Besides coming up with new or improved filter topologies, there is another popular
branch of research which is automatizing filter generation. Research articles about
this topic are addressed in Section 3.2.1.

17

3. REQUIREMENTS

The automated filter generation flow is meant to be used by Nokia, so the needs of
the company were kept in mind throughout the process. To get a clear view of the
requirements, a look was taken on a digital front-end (DFE) ASIC project to see
what kind of filters are needed.

3.1 Constraints

Most of the filters in the designs are constant coefficient half-band filters used in
decimation and interpolation blocks. Therefore that is the main type of filter that
must be supported. The generated filters will be used with both ASIC and FPGA
technologies. At the moment, most filter designs have a maximum clock speed of
about 500 MHz.

There are no specific area constraints, but naturally the resulting filter shouldn’t
be much larger than the existing designs. Therefore using an existing design as a
benchmark is reasonable.

Simplicity of the resulting VHDL file and of the scripting used is also very important.
Engineers must be able to debug the VHDL and do modifications to make the
filter fit the application. To guarantee a clear and consistent implementation when
integrated into a module, the generated code must follow Nokia’s VHDL guidelines.

It is also possible that maintaining the script will be someone else’s responsibility
in the future, and keeping everything as simple as possible decreases the learning
curve and maintenance effort. Simple code has also most likely fewer bugs. As the
HDL gets simpler and less optimized, the silicon area tends to increase. Managing
this will require some trial synthesis runs.

It is also important that there is a bit-exact Matlab model of the filter. That way the
flow user can be sure that the generated filter is functionally identical to the fixed-
point model, and therefore meets the requirements. However, there is no simple way
of making sure that the fixed-point model matches the original floating-point model.

3.2. Existing tools for generating filters 18

The quantization that has been done may have had a negative effect on stopband
attenuation, and it needs to be checked manually.

The whole purpose of automatization is to save the time of the engineers. Therefore
the flow should be easy to learn and take little time to complete. It also means that
the end user shouldn’t have the need to know everything that’s happening under
the hood. The test bench must be self-checking.

There is a set of options the flow must support. Coefficients and the input and output
widths and their fraction lengths must be freely adjustable. The generator must also
support multichannel filters with fixed coefficients. The amount of subsequent input
samples that need to be related to the same channel must be adjustable. Same
applies to the number of coefficient banks and their lengths.

3.2 Existing tools for generating filters

There is nothing inherently complicated in programming FIR filters, and therefore
building generic libraries or HDL generators has been done many times before. For
example, Savela documents in his Master of Science thesis [18] a library of generic
FIR and IIR filters.

3.2.1 Generators by research groups

Rosa et al. describe a complete flow for generating optimized FIR filters from transfer
function to synthesizable VHDL. The generator uses common subexpression sharing
(CSE), much like the reduced adder graph presented in Section 2.3.3. The tool also
fine-tunes the coefficients to make the hardware implementation as simple as possible
while maintaining the desired design constraints of the filter. [16]

In his Master of Science thesis Howard describes a PHP based VHDL generator for
minimized adder graph optimized filters. The main focus is on FPGA devices, and
a mix of embedded multipliers and common subexpression elimination is proposed
as the most optimal solution. [5]

Verma and Chien introduce a generator, which produces efficient decimating filters.
The logic has been optimized so that no effort is put in calculating values that are
ignored by the decimator. Canonical signed digit (CSD) format is also used to save
silicon area. [20]

3.2. Existing tools for generating filters 19

3.2.2 Generators by FPGA vendors

FIR generators by Xilinx and Altera have been used in numerous Nokia’s FPGA
projects. The experiences have been mixed: while they do create a design that is a
good match for the FPGA platform, the resulting HDL is very difficult to read and
understand.

Both Altera FIR Compiler II and Xilinx FIR Compiler v5.0 were evaluated for this
project to see if they would fit the flow. They both support interpolators, decimators,
half-band filters and resource sharing [1] [22], to name a few. Both generators create
distributed arithmetic filters and therefore support multiple coefficient banks.

Figure 3.1 Screenshot of Altera FIR Compiler II

They gave valuable information about the different parameters that are required to
generate filters and what kind of a experience the user may expect. Figure 3.1 is a
screenshot of the Altera tool.

3.2. Existing tools for generating filters 20

However, it was very difficult to get ideas for implementation as Xilinx VHDL was
encrypted and Altera code was too complex. The core of the reference filter created
with the Altera tool was a single 250 kilobyte VHDL file full of on-chip memories
and similar FPGA-specific intellectual property (IP) blocks. It is simply not suitable
for ASICs.

3.2.3 High level synthesis tools

There are numerous high level synthesis (HLS) tools on the market which can be
used for generating filter HDL. For example, Calypto has Catapult-C, MathWorks
offers HDL Coder and Cadence’s tool is called C-to-silicon. During the course of this
Thesis the tool vendors gave demonstrations of the tools, and it was quickly deemed
that they are quite complex for simple filters.

First of all, it is a lot easier to control the synthesis results by generating VHDL
than it is by generating C code and running it through a high level synthesis tool,
for example. Moreover, if the flow depended on the HLS tool, its updates would
have a high risk of breaking the flow. That could be balanced by decreasing the
level of automation so that more is done in the HLS tool manually. That would be
something that contradicts the usability requirements.

3.2.4 Own implementation

The tools presented before were deemed to be unsuitable for the generator. They
were either too complex or lacking in ASIC support.

Availability of the tools is also something that must be considered. There may be
publications about filter generators, but the generators are still not freely available
or require a special license for commercial usage. From the company point of view,
spending money on licenses is something that must be carefully considered, especially
if the needs are just for simple filters. It is also not enough just to have the licenses
available for the initial design period as a license would be required any time an
engineering change is requested.

For all those reasons it was decided that it would still be better to program an
implementation of our own. Instead of creating very generic VHDL the flow will
utilize a scripting layer to increase the level of automation. For example, the script
can generate the reduced amount of registers for a symmetrical half-band filter
instead of using if-generate statements or a vast library of VHDL files to support
each topology.

3.3. Verification 21

The programming language was chosen to be Python which is a modern language
that a lot of engineers are comfortable with. It’s also well supported in the computer
environment of the company.

3.3 Verification

As mentioned before, all the filters must have a bit-exact Matlab model, which the
RTL can be verified against. MathWorks has a product called HDL Verifier, which
makes it easy to control the DUT (device under test) inputs and outputs from
a Matlab script. It supports Modelsim, Questasim and Incisive as the simulation
engine. Having the verification tool inside the Matlab environment reduces the need
to move data from one program to another.

The benefits of using HDL Verifier are clear when verifying more complex blocks
like multichannel filters. Creating the stimulus for each context and then switching
the context from time to time is tedious to program with VHDL.

The code will also be run through Spyglass. The lint checks are the most interesting
and will help to improve code quality.

3.4 The flow

The generator is placed in an automated flow illustrated in figure 3.2. The flow is
built so that the design information has to be input only once and the information
goes through the flow automatically. To make things easier for the user, all the script
files are the same and used in the same way for both single-channel and multichannel
filters.

The flow will be discussed in more detail later in this section, but in short, the
floating point model of the filter is first converted to fixed point. Data about this
fixed point model is saved into a Extensible Markup Language (XML) file, which is
given to the generator. Using some files from its HDL library, the generator produces
an HDL model. The HDL model is then verified against the original Matlab fixed-
point model in HDL Verifier, which uses Modelsim as the simulation engine. The
stimulus for the verification is generated inside the Matlab environment.

The flow is built around a Matlab script and a Python generator script, which is
presented in the following chapters. The Matlab script covers the entire flow from
the floating point model to verification. It also takes care of calling the generator
script.

3.4. The flow 22

MATLAB

HDL library

fixed point

model

floating point

model

filter generator

script

(Python)
HDL library

HDL library

HDL library
HDL library

HDL model

verification

(Modelsim)

stimulus

XML

Figure 3.2 The filter generation flow.

The intended environment for the flow is one of Nokia’s Unix development servers.
Like with many other scripts in Nokia environment, the first step in using the flow
is setting the environment variable $MODULES_PATH so that the generator can use
absolute paths with ease. It is the parent of the directory fir_gen, which contains
all the files related to the generator. Refer to figure 3.3 for the directory structure.

$MODULES_PATH/fir_gen/ root directory for the generator

designs/

MyDesign/ subdirectory that is created for each user design

hdl/ contains HDL files

sim/ contains test bench, makefile and simulator files

fir_gen.py filter generator script that gets called by Matlab

hdl_lib/

channel_filter/ VHDL templates for multi-channel filters

common/ VHDL templates for both filter types

single_fir/ VHDL templates for single-channel filters

launcher.sh launcher script, startpoint for the flow

Figure 3.3 Directory structure used by the flow.

All the rest of the startup steps are taken care of by a simple startup script called
launcher.sh. The only command line parameter it takes is the name of the filter,
and it is mandatory to specify it. The script loads Matlab, Modelsim and Python into

3.4. The flow 23

the environment, creates the directory structure, copies the Matlab script template
to a subdirectory and opens it in Matlab editor.

After the editor has loaded, it is time to edit the Matlab script. There are a few
properties that the user must change. They are listed in table 3.1.

Table 3.1 User settings in the Matlab script.

name description

CHANNELS Number of channels in filter (1–32). Value of
one creates a single-channel filter, otherwise
a multichannel filter is created.

COEFF_WIDTH Width of the FIR coefficients in bits (4–32).

COEFF_FRACTION_WIDTH Number of fraction bits in the coefficients
(0–COEFF_WIDTH). Determined automa-
tically for single-channel filters when the va-
lue is auto.

CONTEXT_SWITCH_PERIOD Number of clock cycles per context switch
period in a multichannel filter (4–64, only
powers of two).

FILTER_NAME VHDL entity name. Set by the launcher sc-
ript.

INPUT_WIDTH Width of the input samples in bits (4–32).

INPUT_FRACTION_WIDTH Number of fraction bits in the input samples
(0–INPUT_WIDTH).

OUTPUT_WIDTH Width of the output samples in bits (4–32).
Determined automatically from coefficient
area if the value in this field is auto.

OUTPUT_FRACTION_WIDTH Number of fraction bits in the output
samples (0–OUTPUT_WIDTH).

SHOW_RESPONSE Boolean. If set to 1, the frequency response of
the fixed point and floating point designs are
shown. Valid only for a single-channel filter.

STIMULUS_LENGTH Number of stimulus input samples
per channel. Must be a multiple of
CONTEXT_SWITCH_PERIOD.

Algorithm developers have often defined the required data and coefficient widths. If
that is not the case, the coefficient widths can be determined by using the Matlab
function minimizecoeffwl [19].

3.4. The flow 24

3.4.1 From Matlab model to RTL

The filter can be designed in the Matlab environment by using all the design tools
available. For example, to create a low-pass filter with 12 taps, a cut-off frequency
of 10 MHz and a sampling frequency of 50 MHz, a suitable set of commands could
be

d = fdesign.lowpass(’N,Fc’, 11, 10e6, 50e6);
hd = design(d, ’fir’);
b_fp {1} = hd.numerator;

In a typical scenario the coefficients are given to the RTL designer without the need
to touch the filter design tools at all. In that case the coefficients can simply be
placed in the vector:

b_fp {1} = [-66 0 294 0 -905 0 2282 0 -905 0 294 0 -66] ./ 2^15;

For multichannel filters the different coefficient banks must be set in b_fp indices 1
— CHANNELS. After the coefficients have been specified, the script no longer needs
user input. The floating point model is then quantized to the desired bit width using
the Matlab fixed point toolkit:

for n=1: CARRIERS
b_fi{n} = fi(b_fp{n}, 1, COEFF_WIDTH , COEFF_FRACTION_WIDTH);

end

If the filter is of single-channel type and SHOW_RESPONSE was set, the user is
presented with the frequency response of the filter as shown in figure 3.4. This
functionality can be used to observe the negative effects of quantization like reduced
attenuation in the stop band.

At this stage the script stores the filter design into a XML file to be forwarded to
the generator. See program 3.1 for a sample of the format. All the elements in the
sample XML are mandatory, and no other elements are supported at the moment.
However, some data may be unused in the generator, like the information about the
context switch period when generating a single channel filter.

3.4. The flow 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

floating point

fixed point

Figure 3.4 Floating point and fixed-point implementations of a filter.

1 <?xml version="1.0" encoding="utf -8"?>
<filter >

3 <name>sg_filter_test </name>
<fixed -point>

5 <coefficient -set channel="0"> -66 0 294 0 -905 0 2282 0 5032
2282 0 -905 0 294 0 -66</coefficient -set>

7 <settings >
<coefficient -width>25</coefficient -width>

9 <coefficient -fraction -width >24</coefficient -fraction -width>
<input -data -width>24</input -data -width>

11 <input -data -fraction -width >0</input -data -fraction -width>
<output -data -width>24</output -data -width>

13 <output -data -fraction -width >0</output -data -fraction -width>
<context -switch -period >4</context -switch -period >

15 </settings >
</fixed -point>

17 </filter >

Program 3.1 Example of the XML file created by the Matlab script.

The generator is called by using Matlab’s unix command and giving the path to the
XML file as a parameter. The generator output is printed in the Matlab window. If
all goes well, the RTL design of the filter will be created in the hdl/ directory.

3.4. The flow 26

3.4.2 Verifying the RTL

The design is compiled using the makefile the generator has saved in the sim/
directory. After that the simulation object has to be created and the simulator
launched. The object and the launcher script have been initially created using the
cosimWizard in HDL Verifier. In this flow the generator has taken care of copying
them to the sim/ folder, and all that is required is calling them in Matlab:

delete (’vsim.wlf’);
fir_sysobject = hdlcosim_FIR_CHANNEL_FILTER;
launch_hdl_simulator_FIR_CHANNEL_FILTER;
while ex ist (’vsim.wlf’, ’file’) ~= 2

pause(1);
end

There is no handshaking in the connection between Matlab and the simulator. The-
refore the script waits for the simulator files to appear before proceeding so that it
is ready to accept commands from Matlab.

For each channel an input sequence of length STIMULUS_LENGTH is created. It is
fixed point random data which has the properties set with INPUT_DATA_WIDTH and
INPUT_DATA_FRACTION_WIDTH. Matlab filter function is called to create the refe-
rence data to which the RTL output is compared:

for n = 1: CARRIERS
fi_result{n} = f i l t e r (b_fi{n}, 1, x_fi{n});

end

See program 3.2 for the test bench main loop. The simulation is continued for as
long as there are channels with input data. Then a channel is chosen at random,
and its data is fed to the filter under test for one context switch period or more. For
single channel filters there is only one channel with input data, and the context is
therefore never switched.

In some possible use cases any number of subsequent samples may be invalid at any
given point of time. To mimic this behaviour, the test bench randomly marks some
samples as invalid.

The randomizations help to ensure correct functionality in all use cases. Special
cases include having the same channel for two multiple context switch periods, or
having another channel for one period in between periods of one channel. The latter

3.4. The flow 27

situation requires a special case in RTL because the context memory is read before
it is written.

The step function, which advances the simulation, is called on line 20. It takes
the inputs to the filter as a parameter and returns the outputs directly to Matlab
variables.

1 while any(carrier_pointer)
% Randomly choose the next carrier

3 while true
context = randi(CHANNELS , 1);

5 i f carrier_pointer(context) > 0
break;

7 end
end

9

n = 1;
11 while n <= CONTEXT_PERIOD

% Set 1 in 20 samples as invalid
13 valid_in = (randi (20,1,1) ~= 7);

15 % Calculate array index
sample_n = STIMULUS_LENGTH +2* CONTEXT_PERIOD + ...

17 1-carrier_pointer(context)

19 % Advance simulation
[outdata ,outvalid ,outchannel] = step(fir_sysobject , ...

21 fi(x_fi{context }(sample_n), 1, ...
INPUT_DATA_WIDTH , INPUT_DATA_FRACTION_WIDTH), ...

23 fi(context -1, 0, log2(CHANNELS), 0), ...
fi(valid_in , 0, 1, 0));

25

% Update data pointer
27 i f valid_in == 1

carrier_pointer(context) = carrier_pointer(context) - 1;
29 n = n + 1;

end
31

% Append the output
33 i f outvalid == 1

outchannel = outchannel.double;
35 outbuf{outchannel +1} = [outbuf{outchannel +1} outdata];

end
37 end

end

Program 3.2 Test bench main loop.

3.4. The flow 28

The final step is comparing the reference output in fi_result to the DUT output
in outbuf. The last line of output from the script tells whether the RTL matches
the fixed point model.

29

4. FILTER GENERATOR

In the previous chapter the requirements were collected and the flow was introduced.
This chapter describes the script used to generate the VHDL. First a series of test
syntheses is performed to get an idea of the optimization level required, then these
results are utilized to build a filter by hand. Finally the generation is automated
and a series of test syntheses is performed on the generated filters.

4.1 Multiplier block test syntheses

For the multiplier block test syntheses a reference filter was selected from a current
project. It is a 71-tap, folded half-band filter. All the different candidates were
compared to this in terms of area. Code readability was evaluated in weekly meetings.
Transposed filter was chosen as the basis of all the different variants. Its structure is
very simple, yet it has interesting optimization possibilities like using reduced adder
graph. Utilizing coefficient symmetry is just a matter of connecting the multiplier
outputs to two adders. It maps well to both FPGA and ASIC technologies with
easily controllable timing paths.

To shed some light on an appropriate implementation of the multiplier block, four
different candidates were programmed. The resulting filters were then synthesized
using Synopsys DC Ultra with a wireload model.

In the simplest multiplier block the multiplications were implied with a multiplica-
tion sign. This was the most readable option and therefore it was interesting to see
how well the synthesis tool optimizes it. To give an idea of the implementation, pro-
gram 4.1 presents how a few of the multiplications were done. The INPUT_TIMES
vectors had been optimized to minimum width as determined by the input width
and the multiplier value.

INPUT_TIMES_66 <= DATA_IN * 66;
2 INPUT_TIMES_294 <= DATA_IN * 294;
INPUT_TIMES_905 <= DATA_IN * 905;

Program 4.1 Multipliers using multiplication sign (design I).

4.1. Multiplier block test syntheses 30

A bit more advanced approach was to perform the CSD coding in Python and
specify the bit shifts, additions and subtractions in VHDL. Program 4.2 clarifies
this method.

1 INPUT_TIMES_66 <= DATA_IN *64 + DATA_IN *2;
INPUT_TIMES_294 <= DATA_IN *256 + DATA_IN *32 + DATA_IN *4 +

3 DATA_IN *2;
INPUT_TIMES_905 <= DATA_IN *1024 - DATA_IN *128 + DATA_IN *8 +

5 INPUT_TIMES_1;
INPUT_TIMES_2282 <= DATA_IN *2048 + DATA_IN *256 - DATA_IN *32 +

7 DATA_IN *8 + DATA_IN *2;
INPUT_TIMES_5032 <= DATA_IN *4096 + DATA_IN *1024 - DATA_IN *128 +

9 DATA_IN *32 + DATA_IN *8;

Program 4.2 CSD multiplications (design II).

A variant of the CSD method used a binary tree of adders like shown in figure 4.1
instead of implying the operation with an addition sign. The purpose of this was
to be able to break the long combinational paths that may be synthesized with big
adder structures. The coefficients had at most nine bit shifts to be summed so the
binary trees were four levels deep.

+ + + +

+ +

+
y

a1 b1 a2 b2 a3 b3 a4 b4

Figure 4.1 Eight input binary tree adder (design III).

Fourth implementation used a reduced adder graph created by SPIRAL multiplier
block generator [15]. The generator output was a file with information about the
required adders, which was then parsed in Python to generate the VHDL. A part of
the VHDL can be seen in listing 4.3.

4.1. Multiplier block test syntheses 31

1 RAG_COEFF_33 <= DATA_IN *32 + DATA_IN;
RAG_COEFF_37 <= DATA_IN *4 + RAG_COEFF_33;

3 RAG_COEFF_147 <= RAG_COEFF_37 * 4 - DATA_IN;
RAG_COEFF_629 <= RAG_COEFF_37 * 16 + RAG_COEFF_37;

5 RAG_COEFF_1141 <= DATA_IN *512 + RAG_COEFF_629;
RAG_COEFF_3657 <= RAG_COEFF_629 *4 + RAG_COEFF_1141;

7 RAG_COEFF_3620 <= RAG_COEFF_3657 - RAG_COEFF_37;

9 INPUT_TIMES_66 <= RAG_COEFF_33 * 2;
INPUT_TIMES_294 <= RAG_COEFF_147 * 2;

11 INPUT_TIMES_905 <= RAG_COEFF_3620 / 4;
INPUT_TIMES_2282 <= RAG_COEFF_1141 * 2;

13 INPUT_TIMES_5032 <= RAG_COEFF_629 * 8;

Program 4.3 RAG multiplications (design IV).

All the different multiplier block implementations used the same test bench and the
same delay line structure. There was one register stage after the multiplier in each
of the multipliers. The designs had no internal pipeline registers with the exception
of the CSD binary tree variant, which had one extra register stage.

The synthesis results are collected to table 4.1. Multiplier block name is abbreviated
in the first column. The second column states the amount of non-combinational logic
in the design whereas the area of combinational logic is listed in the third one. Fourth
column is the total area reported by the synthesis tool, and calculated in the fourth
column is the relative area compared to the reference.

Table 4.1 Synthesis results (µm2)

design non-comb. comb. area relative

II CSD 15143 11639 32674 -12 %

I MULT 16218 13268 36240 -3 %

REF 18919 11456 37194 0 %

IV RAG 23059 14070 45273 22 %

III CSD_BINTREE 46718 11351 69882 88 %

There turned out to be some benefit in specifying the CSD algorithm in VHDL.
Synopsys documentation hints that the compiler does it automatically with constant
coefficients [24], but for some reason doing it by hand reduced the area by 12%.
Trying to implement the additions by a pipelined adder tree was a bad idea - it

4.2. Building a filter by hand 32

increased the area of the registers dramatically. Moreover, adding extra register
stages inhibits some compiler optimizations.

Surprisingly the reduced adder graph implementation had no problems with achie-
ving timing closure even with eight additions per register stage. However, in terms
of area it performed surprisingly badly given its level of sophistication. Possibly the
structure is too irregular to be efficiently optimized by the compiler.

While there was only one set of coefficients tried, it was deemed that the results were
conclusive enough to give a clear guideline on how to implement the multiplication.
Implying the operation with a multiplication sign is the most readable option and
the compiler does a good job optimizing it.

4.2 Building a filter by hand

The results of the trial syntheses were studied to create a hand-written filter which
was used as the basis of the generation. To support different number formats, a
decision was made to utilize the VHDL 2008 fixed point package [2]. It also has
a compatibility package for VHDL 1993, which was required as none of the tools
supported the new features, with the exception of Modelsim. Even with the compa-
tibility package some issues had to be solved in collaboration with the tool vendors.

Using the fixed point package frees the programmer from the burden of tracking
the place of the binary point manually. The bounds of the results of operations can
be determined by using the sfixed_high and sfixed_low functions. They take the
operand bounds and the type of operation as the parameters and return the output
bounds.[2]

These calculations are done in a package file. This makes it possible to use the calcu-
lated output width in the entity. The package file also contains the filter coefficients
and the bit width of each coefficient. By stating the coefficient width explicitly it is
possible to force the synthesis tool to use a multiplier that is of exactly the right size.
Whereas the smallest multiplier is preferred in ASIC designs, in FPGA designs it
may be desired to use a multiplier size that is supported by the embedded multiplier
blocks.

It was decided that generics are not used as the filter is usually designed to fit in an
existing processing pipeline with frozen parameters. Therefore the parameters are
rarely changed in the integration phase. Coefficient width, number of taps, coefficient
area, filter topology et cetera are automatically calculated in the generator script.
To get an idea of what’s included in the package file, see program 4.4.

4.2. Building a filter by hand 33

1 -- Input data width
constant W_IN_C : positive := 24;

3 -- Place of binary point in the input
constant BP_IN_C : integer := 0;

5 -- Coefficient width
constant W_COEFF_C : positive := 25;

7 -- Coefficient binary point location
constant BP_COEFF_C : integer := -24;

9 -- Number of multiplications needed
constant N_UNIQ_COEFF_C : positive := 19;

11

-- Coefficient area is calculated in Python script
13 -- to be 28079036 >> -24, requiring 26 bits

constant COEFF_AREA_HIGH_C : integer := 26 + BP_COEFF_C - 1;
15 constant COEFF_AREA_LOW_C : integer := BP_COEFF_C;

constant DATA_IN_HIGH_C : integer := W_IN_C + BP_IN_C - 1;
17 constant DATA_IN_LOW_C : integer := BP_IN_C;

19 constant ADDER_HIGH_C : integer := sfixed_high(
DATA_IN_HIGH_C , DATA_IN_LOW_C , ’*’,

21 COEFF_AREA_HIGH_C , COEFF_AREA_LOW_C);
constant ADDER_LOW_C : integer := sfixed_low(

23 DATA_IN_HIGH_C , DATA_IN_LOW_C , ’*’,
COEFF_AREA_HIGH_C , COEFF_AREA_LOW_C);

25

-- Constant coefficients and their widths
27 constant COEFF : T_CONST_COEFF := (

-66 ,294 , -905 ,2282 , -5032 ,10060 , -18633 ,32442 , -53683 ,
29 85171 , -130580 ,194987 , -286134 ,417594 , -617599 ,959358 ,

-1712825 ,5317569 ,8388608);
31 constant COEFF_LEN : T_CONST_LENGTH := (

8,10,11,13,14 ,15 ,16 ,16,17,18,18,19 ,20 ,20 ,21 ,21,22,24,25);

Program 4.4 An incomplete example of a package file.

Even though some of the existing filter implementations round the multiplication
results before summing them, the generator will always use full precision arithmetic.
It was done in order to guarantee bit exactness between Matlab and RTL - modeling
the intermediate roundings in Matlab would be more complex.

Another issue to ensure compatibility was the rounding and saturation behaviour.
It has been set to round nearest and saturate in both Matlab and the filter RTL.
The VHDL-2008 fixed point package provides the rounding routines.

In a single FIR filter there is only one other file besides the package file. That
file contains the fimplementation of the filter. The functionality is divided to three

4.2. Building a filter by hand 34

processes. All the processes require the ENABLE input to be high in order to process
any data. It will also allow the filter to process data that has been decimated by
toggling the enable signal. It also enables automatic clock gating to save power in
situations where there is no meaningful data to be processed. In normal operation
a lot of bits will change at each clock cycle, consuming a lot of power.

The first process registers the input and converts it to fixed point type. The scalb
function is used to perform a bit shift. See program 4.5.

P_REGISTER_INPUT: process (CK , XR)
2 begin

i f (XR = ’0’) then
4 DATA_IN_R <= (others => ’0’);

e l s i f (CK ’event and CK=’1’) then
6 i f (ENABLE = ’1’) then

DATA_IN_R <= scalb(to_sfixed(DATA_IN , W_IN_G -1, 0), BP_IN_C);
8 end i f ;

end i f ;
10 end process P_REGISTER_INPUT;

Program 4.5 First process: registering the input.

Program 4.6 represents the second process which performs the multiplications. As
the coefficients are given as constants in the package file, the synthesis results will
be well-optimized. The multiplier outputs are registered to decrease the length of
the combinational path.

P_INPUT_MULTIPLES: process(CK , XR)
2 begin

i f (XR=’0’) then
4 MULTIPL_OUT <= (others => (others => ’0’));

e l s i f (CK ’event and CK=’1’) then
6 i f (ENABLE = ’1’) then

for I in 0 to MULTIPL_OUT ’length - 1 loop
8 MULTIPL_OUT(I) <= resize(DATA_IN_R * scalb(

to_sfixed(COEFF(I), COEFF_LEN(I)-1, 0), BP_COEFF_C),
10 MULTIPLIER_HIGH_C , MULTIPLIER_LOW_C);

end loop;
12 end i f ;

end i f ;
14 end process P_INPUT_MULTIPLES;

Program 4.6 Second process: performing the multiplications.

4.2. Building a filter by hand 35

The third process advances the delay line and sums the multiplier outputs into
it. The implementation is different for each filter type as some symmetry-based
optimizations are done based on the filter index. For an example see program 4.7,
which is used for symmetrical coefficients. As the bounds of SHIFTREGISTER have
been calculated in the package file to be large enough not to overflow, the resize
functions use truncation and no overflow protection to minimize the amount of
logic.

P_SHIFTREGISTER: process (CK , XR)
2 begin

i f (XR = ’0’) then
4 SHIFTREGISTER <= (others => (others => ’0’));

OUTPUT_R <= (others => ’0’);
6 e l s i f (CK ’event and CK=’1’) then

i f (ENABLE = ’1’) then
8 SHIFTREGISTER (0) <= MULTIPL_OUT (0);

for I in 1 to L_C -1 loop
10 --First half of the filter

i f (I < L_C / 2) then
12 SHIFTREGISTER(I) <= to_slv(

resize(
14 arg => SHIFTREGISTER(I-1) +

MULTIPL_OUT(I),
16 left_index => ADDER_HIGH_C ,

right_index => ADDER_LOW_C ,
18 round_style => fixed_truncate ,

overflow_style => fixed_wrap));
20 --Second half of the filter

e l se
22 SHIFTREGISTER(I) <= to_slv(

resize(
24 arg => PREVIOUS_SR_STAGE +

MULTIPL_OUT(L_C - 1 - I),
26 left_index => ADDER_HIGH_C ,

right_index => ADDER_LOW_C ,
28 round_style => fixed_truncate ,

overflow_style => fixed_wrap));
30 end i f ;

end loop;
32 OUTPUT_R <= resize(SHIFTREGISTER(SHIFTREGISTER ’high),

ADDER_HIGH_C , 0);
34 end i f ;

end i f ;
36 end process P_SHIFTREGISTER;

Program 4.7 Third process: summing the multiplier outputs into the delay chain.

4.3. Automating the generation 36

4.3 Automating the generation

The basis of the generator are two template files as described before. Informa-
tion about the coefficients will be written into the package file. The most optimal
P_SHIFTREGISTER process in the implementation file will also be chosen among the
candidates based on the properties of the coefficients. There are different shift re-
gister processes for non-symmetric, symmetric, antisymmetric and half-band filters.

The system works by having special hooks in the template files, which will be
replaced with the desired contents. For all the hooks in the single channel FIR
template file, see table 4.2. The first column in the table stands for the name of
the hook and the second one is the type of data that is inserted at that point. The
third column is a description, which clarifies the function of each hook.

All this processing is done in the Python script. The script gets the coefficients, input
and coefficient bit widths and their binary point locations from XML generated by
the Matlab script. The data interface between these two scripts is described in more
detail in Section 3.4.

First of all, the scripts checks the coefficients for symmetry. For a half-band filter,
every coefficient with an odd index must be zero with the exception of the middle-
most tap. The number of taps incremented by one must also be divisible with four
as described in Section 2.2.2. Symmetrical and anti-symmetrical properties of the
coefficients are checked by comparing the lists with their reversed counterparts. If a
filter is not a half-band filter and has no symmetry or anti-symmetry, it is deemed
a non-symmetrical filter, for which no optimizations can be made.

The script also calculates the coefficient area of the coefficients using formula 2.5.
The number of taps is the same as the number of coefficients given to the generator.
The amount of bits required to represent these numbers is also calculated.

Depending on the type of filter that was detected, the script determines the number
of multipliers that is needed. For example, a filter with symmetrical coefficients
requires less multipliers than a filter with non-symmetrical coefficients even if they
have the same number of taps. The coefficients for the multipliers are saved into an
array. In case of half-band filters the zeroes are not saved.

The last step of generation is reading the file containing the correct P_SHIFTREGISTER
implementation to the memory. After that it is just a matter of replacing the hooks
in the template files and writing everything to the files.

4.3. Automating the generation 37

Table 4.2 Hooks in the simple filter template

name type description

COEFFICIENT_WIDTH integer width of largest coefficient
in bits

COEFFICIENT_BINARY_POINT integer location of binary point in
coefficients

COEFFICIENT_AREA integer area of coeffiecients

CONSTANT_COEFFICIENTS string coefficients in VHDL array
format

CONSTANT_LENGTHS string coefficient widths in VHDL
array format

ENTITY_NAME string entity name

FILTER_SPECIFIC_CONTENT code implementation-specific
constants in package file

INPUT_DATA_BINARY_POINT integer location of binary point in
input data

INPUT_DATA_WIDTH integer width of filter data input in
bits

LATENCY integer latency of the filter in cycles

LOG2_COEFFICIENT_AREA integer bit width of coefficient area

NUMBER_OF_TAPS integer number of taps

NUM_UNIQUE_COEFFICIENTS integer number of multipliers requi-
red

OUTPUT_DATA_BINARY_POINT integer location of binary point in
output data

OUTPUT_DATA_FRACTION_WIDTH integer fraction width of output da-
ta (additive inverse of bina-
ry point)

OUTPUT_DATA_WIDTH integer width of filter data output
in bits

PACKAGE_NAME string name of the VHDL package
file

REGISTER_ASSIGNMENTS code contents of process
P_SHIFTREGISTER

4.4. Results 38

4.4 Results

Test bench has 100% statement and branch coverage. The only unverified signal
transition in the reports is toggling the reset from ’1’ to ’0’.

To further characterize the properties of the filters, some more syntheses were run. A
symmetric FIR filter with 16-bit wide inputs, outputs and coefficients was generated
with 4, 16, 64 and 128 taps. Both FPGA and ASIC performance was evaluated.

4.4.1 FPGA synthesis

The FPGA syntheses were run using Quartus II v14.0. The destination chip was se-
lected to be Cyclone IV EP4CE115. For reference, the filter designs were implemen-
ted using Altera’s FIR Compiler II as well. The Altera designs include the Avalon
streaming interface, which is automatically bundled with the filter cores. The results
have been collected to table 4.3, and they cover the maximum operating frequency,
the number of logic elements (LEs), used 9-bit embedded multipliers and the size of
the VHDL file containing the filter core.

Table 4.3 FPGA synthesis results

taps fmax (MHz) LEs multipliers file size (kB)

The generator 4 151 191 4 5

16 126 603 16 5

64 134 2322 56 5

128 140 4765 94 5

FIR Compiler II 4 163 314 4 15

16 151 974 6 48

64 154 3934 18 185

128 168 4678 34 375

With all tap counts the FIR Compiler II designs fare better in terms of maximum
operating frequency. This can be seen in figure 4.2. The clock frequency seems to
be independent of the tap count with both generators.

4.4. Results 39

0

20

40

60

80

100

120

140

160

180

0 50 100 150

h
ig

h
e

st
 o

p
e

ra
ti

n
gk

 f
re

q
u

e
n

cy
,

M
H

z

filter length

FIR Compiler II

Generator

Figure 4.2 Maximum operating frequency on an FPGA.

With the generator the number of logic elements used seems to increase propor-
tionally to the filter length. The amount is equal to or lower than the what FIR
Compiler II designs require as can be seen in 4.3.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140

lo
gi

c
e

le
m

e
n

ts

filter length

FIR Compiler II

Generator

Figure 4.3 Number of logic elements used on an FPGA.

However, FIR Compiler II is able to make better use of the embedded 9-bit mul-
tipliers. With both tools the number of block required increases in linearly with the
filter length. See figure 4.4.

4.4. Results 40

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

e
m

b
e

d
d

e
d

 m
u

lt
ip

lie
rs

filter length

FIR Compiler II

Generator

Figure 4.4 Number of embedded multiplies used on an FPGA.

According to the results, the FIR Compiler II is able to generate designs that are
better optimized to the platform. However, as the file sizes suggest, the designs are
much more complex.

The filters created by the generator seem to scale well with the filter length. There is
no significant change in the maximum clock frequency, and the amount of resources
increases proportionally to the filter length.

4.4.2 ASIC synthesis

The same designs were synthesized using the same synthesis environment as in
Section 4.1. All designs achieved timing closure with 500 MHz. The resulting silicon
areas are collected in table 4.4.

Table 4.4 ASIC synthesis results

taps area (µm2)

4 1772

16 8966

64 27587

128 54578

4.4. Results 41

These results are similar to the ones received in FPGA synthesis: the silicon area
grows linearly with the filter length as shown in figure 4.5. Moreover, there is no
significant performance penalty that comes with the increasing tap count.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100 120 140

ar
e

a,
 µ

m
2

filter length

Figure 4.5 Silicon area as a function of the filter length.

42

5. EXTENSION TO MULTICHANNEL FILTERS

Chapter 4 dealt with automating the generation of simple FIR filters with a single
coefficient bank. As the support for multichannel filters was one of the initial requi-
rements, the generator was then expanded to support those kinds of filters as well.
The main idea of multichannel filters was introduced in Section 2.2.5. While the co-
re of the filter is essentially the same as with a single channel filter, a lot of control
logic must be added in order to move data from one place to another.

The Nokia multichannel filter explained in 2.2.5 was used as the basis for the imple-
mentation [8]. Particularly the method of saving the context and loading it back was
replicated very faithfully. However, this was a complete rewriting effort with some
key differences: the previous implementation used a folded topology with a fixed
filter length (64 taps) and a fixed context switch period (8 cycles). In this imple-
mentation the filter has a transposed structure with an adjustable context switch
period and adjustable filter lengths. The previous version also loaded its coefficients
from memory, whereas the newer version has constant coefficients in the banks.

5.1 Functionality

The multichannel filter is illustrated in figure 5.1. The design contains three distinct
parts: the FIR core, the context memories and the state machine that controls the
data flow. The input data samples and the related channel ID are fed into the input,
and filtered data appears at the output. Although not drawn in the figure, the
module also has a channel output, which indicates which channel the output data
belongs to.

A few changes had to be done to the FIR core compared to the single FIR structure
presented in figure 2.2 and Chapter 4. First of all, as there are multiple coefficient
banks, there must be more generic, non-optimized multipliers or a larger amount of
well-optimized, constant coefficient multipliers. Choosing the actual implementation
is left up to the synthesis tool, but for simple implementations it is most likely
more efficient to multiplex the outputs of multiple multipliers which use bit shifting
techniques.

5.1. Functionality 43

memory

FIR core

state machinedata in

channel id

c
h

a
n

n
e

l

id

d
a

ta

a
d

d
re

s
s

c
o

n
te

x
t

lo
a

d

s
h

a
d

o
w

 r
e

g
is

te
r

d
a

ta

data out

REG

W

R

0

1

load

shadow_r

shadow_w

data_in data_out

muxed_data_out
en

RAM 1 RAM 2 RAM n

W
E

z
-1

h2a

x[n]

z
-1

 + +

channelchannelchannel

h2b h1a h1b h0a h0b

Figure 5.1 Structure of the multichannel filter.

As can be seen in the bottom part of figure 5.1, the delay element has also changed.
Instead of being a simple register stage, there is now a total of three registers.
The register marked REG is functionally identical to the register stage in a basic,
transposed filter.

The other two registers are related to the context switching. The W register holds
the data of REG after the context has been changed and while the old context is
being written to the memory. Likewise, the new context is loaded to the R register
so that it is ready to be loaded to the REG register further down in the chain when
the load signal is asserted. The change is done seamlessly so that data is processed
all the time without any wasted clock cycles.

5.1. Functionality 44

The delay elements are connected in the FIR core so that the data_in of each stage
is connected to the muxed_data_out of the previous stage. The signal data_out of
the last delay element is used as the output of the whole filter. A separate output
is needed so that the output value will not be written over by the new context.

Figure 5.2 Timing diagram for the multichannel filter.

The context memories and the state machine are easiest explained with the help of
the timing diagram in figure 5.2. The key parameter in the timing is the number of
subsequent cycles that must be related to the same channel, or the context switch
period.

The context switch period may be changed freely from 4 to 64 in powers of two.
In the timing diagram of figure 5.2 the context switch period has been chosen to
be eight clock cycles. In that scenario writing the previous context to memory and
loading the next one may therefore take at most eight clock cycles. When using
single port memories, there are four clock cycles for reading and four for writing.
Consequently, four delay elements are using the same memory, and the number of
memories is equal to the number of taps divided by four. This has been illustrated
in figure 5.3.

By making the period longer the designer can reduce the memory bandwidth and
the number of memories that is instantiated. This phenomenon is described in table
5.1. Of course, making the period too long may increase the latency of the system
as the system is not able to change the channel at a short notice.

During the first half of the period the new context is loaded from memory, and
the old context is written in the second half. In the middle of the period there is a
time when the output of the memory access done in the previous clock cycle is read

5.1. Functionality 45

z
-1

 Σ

x[n]

z
-1

 Σ z
-1

 Σ z
-1

 Σ z
-1

 Σ z
-1

 Σ z
-1

 Σ z
-1

1 2 3 4 1 2 3 4

1 2

address

memory

Figure 5.3 Delay line register stages sharing the same memories.

simultaneously with writing the memory. The memory addresses are derived from
the channel id and the index of the delay element inside the memory block (0-3) like
shown in table 5.2.

Table 5.1 Effects of choosing the context switch period.

period number of memories relative bandwidth

4 number of taps / 2 1
8 number of taps / 4 0.5
16 number of taps / 8 0.25
32 number of taps / 16 0.125
64 number of taps / 32 0.0625

In order to be able to load the right context before processing data, it is necessary
to buffer the input data for a period of time that is one clock cycle shorter than one
complete context switch period. The data is fed to the filter one clock cycle before
the load signal is asserted so that the multiplication result stored in the register is
ready when load is asserted. The result can then be summed with the new context in
the muxed_data_out signal during the next clock cycle, and the first output related
to the new context is then available at the first cycle of the new context switch
period.

Table 5.2 Memory addresses in context memory.

address content

0x7f channel 31, register 3
0x7e channel 31, register 2
... ...

0x01 channel 0, register 1
0x00 channel 0, register 0

5.2. Implementation 46

5.2 Implementation

All the parameters that are related to context switching, like the number of chan-
nels and the length of the context switching period, were added to the package file
introduced in program 4.4. They are the only new implementation specific things,
and therefore the role of the generator is just to write the FIR core and package
files just like with single filters. The additional VHDL files that contain the state
machine, the delay elements and the memory wrapper are copied to the destination
directory with only the package name changed in them.

context_mem

RAM 1

write

concat read

RAM 2

write

concat read

4×reg_size×num_of_mem

 (=reg_size×num_of_taps)
(as above)

write

read

RAM 3

write

concat read

RAM 4

write

concat read

reg_size

reg_size4×reg_size

Figure 5.4 Dividing the delay line to different memories. Context switch period is 8
cycles.

To avoid problems with verification and synthesis tools, care was taken to use only
std_logic and std_logic_vector signals. Using VHDL-2008 fixed point types and
nested std_logic_vectors would have made things a lot easier especially at the
memory interface where large vectors are sliced to smaller ones, which are then
written to memory.

The memory connections can be seen in figure 5.4. The two buses coming in from
the left are conneted directly to the shadow registers. The write bus is simply all
the W registers of figure 5.1 in one big vector. Similarly, the read bus is connected
to all the inputs of R registers of the same picture.

5.2. Implementation 47

In the picture the size of the delay line registers is referred to as reg_size. The total
number of memories is indicated by num_of_mem, and num_of_taps is equal to the
number of taps. The width of both write and read buses is the same — the number
of taps multiplied by the width of a single accumulator register. If the number of
taps is not a multiple of the number of delay stages that have to share the same
memory, there will be some wasted space in one of the memories. Unused memory
regions are not visible in the interface towards the shadow memories.

Figure 5.5 Simplified example of the data flow from memory to the shadow registers.

The write bus is sliced so that the parts that belong to the same memory are grouped
together. The resulting signal is then further sliced to the signals representing the
different delay stages inside the same memory. These signals are then connected to
a multiplexer which connects them to the memory write bus. The multiplexer is
controlled by the state machine, as is the write enable signal and the address bus.
This is illustrated in figure 5.4.

The read signal is of size reg_size when it comes from the memory read bus. It
represents the contents of a single delay line register stage. It is then concatenated
with itself so that the memory read bus output is connected to the inputs of all
shadow read registers, which are connected to the same memory. In figure 5.4 the
resulting output width is 4 times reg_size, because four delay line stages share the
same memory.

The state machine then toggles the appropriate shadow read register read enable
signals to ensure that the new value is written to the register only when it is what
has been read from the memory. For an example, see figure 5.5.

5.3. Results 48

5.3 Results

The automatically generated test bench has 100% statement and branch coverage.
To make the RTL synthesizable, a few non-achievable conditions had to be added
to the code. Therefore the focused expression coverage (FEC) reaches only 99.0%.
During tests the toggle coverage was above 99%.

To characterize the silicon area, 16- and 32-channel filters were synthesized and
compared to a single channel filter. The filters had 27 bits wide inputs, outputs and
coefficients. There were four different sets of coefficients, each with 64 coefficients.
All filters achieved timing closure at 500 MHz. The results have been collected in
table 5.3.

Table 5.3 Multichannel filter synthesis results. Areas in mm2.

design combinational non-comb. memory area total

single filter 0.025 0.014 0 0.048

channel filter, 16 ch. 0.076 0.037 0.088 0.227

channel filter, 32 ch. 0.076 0.037 0.102 0.241

The results support the claim made in Section 2.2.5. Multichannel filters are more
efficient when the number of channels increases. The 32-channel filter takes only five
times the area of the single channel filter.

The multichannel filters have roughly three times as many registers as there are in
a single channel filter, reflecting the addition of read and write shadow registers.
With an increasing number of channels only the memory size increases. The overall
savings will be even greater if the coefficients would not be constants. In those cases
the filter would also reuse the costly multipliers.

49

6. CONCLUSIONS

This Thesis presented a flow for automated generation and verification of RTL de-
signs for most commonly used FIR filters. According to some experienced designers
it takes approximately two days to design and verify a filter. This flow reduces the
time to a few minutes. A typical DFE project has dozens of filters, so the savings at
project level are in the order of man-months. Therefore this flow will be introduced
to the DFE team in the near future.

Besides the savings in design and verification time, the flow brings with it all the be-
nefits of IP based development. The design is guaranteed to achieve timing closure,
reducing the amount of work required from the backend team. In the documentation
phase less effort needs to be put into describing the design as the filter implementa-
tion is not unique. It is very probable that the flow will save enough time to justify
the four months it took in studies, development and documentation.

During this Thesis the flow has been built up to a point where it fulfills the origi-
nal requirements. They were achieved without depending on any high level synthe-
sis tools, keeping complexity and license costs low. The implementation is generic
enough to be synthesized to both ASIC and FPGA platforms. It supports single and
multichannel filters with adjustable data widths and freely choosable filter lengths
and coefficients. The resulting silicon area is about the same as with existing, hand-
written designs, and increases linearly with the filter length. The required clock
frequency of 500 MHz was achieved in trial syntheses.

Code quality has been monitored with both code reviews and automated lint checks.
The resulting code conforms to Nokia VHDL guidelines and is virtually indistinguis-
hable from handwritten RTL.

However, there is still plenty of room for further development. Applications typical-
ly require some sort of custom logic associated with the filter that the flow doesn’t
currently support. For example, there may be marker signals that must be pas-
sed through the filter with an appropriate latency. The generated filters don’t also
implement decimation or interpolation by themselves.

6. Conclusions 50

Only very simple optimizations are used in the generator, leaving a lot of room for
improvement. Were the generator to support decimation in the future, clever tricks
could be utilized to reduce unnecessary calculations. On another note, in a typical
application the filters are used to filter IQ data where the two branches can share
some logic.

In some applications a folded filter could be preferred instead of a transposed one.
For instance, when applying different sets of coefficients for the same input data, the
arithmetic units can share the same delay line. The smaller register size requirements
when compared to the transposed topology could also mean that a folded multic-
hannel filter would consume less memory. Alternatively, rounding the multiplication
results could be investigated more thoroughly.

The most urgent expansion to the generator will be the support for programmable
coefficients. During discussions it turned out that algorithm developers are wary of
fixing the coefficients as the requirements may change. For example, the product
could be taken to a new geographic location, requiring some adjustments in the
filtering.

From the generator point of view, programmable coefficients are not very interesting.
Supporting them requires full multipliers, and the implementation has to be so
generic that very little optimizations can be made. Coefficient analysis in its current
form is naturally out of the question as the coefficients are not known. VHDL will
have enough expression power for nearly all of the required settings.

Programmable coefficients will also require a test bench that is very different from
the one presented in this Thesis. The coefficients are set via a register bank con-
nected to a system bus, and they must be initialized in the beginning. To make the
transactions easy, an Universal Verification Methodology (UVM) test bench with a
proper verification IP (VIP) for the bus should be used.

With all these ideas about expanding the generator, it is important to be careful
about adding in new features. Doing some exotic optimizations for a specific applica-
tion results in an increased level of complexity for the generator. Automatizing the
generation of something is only worth it if the feature is needed more than a couple
of times.

51

BIBLIOGRAPHY

[1] Altera Corporation, Fir Compiler II IP Core, 2014. [Online]. Available:
http://www.altera.com/literature/ug/ug_fir_compiler_ii.pdf , accessed 2015-
02-24.

[2] D. Bishop, Fixed point package user’s guide. [Online]. Available: http:
//www.eda.org/fphdl/Fixed_ug.pdf , accessed 2015-02-24.

[3] P. P. Chu, RTL hardware design using VHDL : coding for efficiency, portability,
and scalability. Hoboken, NJ: Wiley-Interscience, 2006.

[4] A. G. Dempster and M. D. Macleod, “Constant integer multiplication using
minimum adders,” Circuits, Devices and Systems, IEE Proceedings -, vol. 141,
no. 5, pp. 407–413, 1994.

[5] C. D. Howard, “Minimizing FIR Filter Designs Implemented in FPGAs Utilizing
Minimized Adder Graph Techniques,” Master’s thesis, Tallahassee, 2008.

[6] K. Hwang, Computer arithmetic: principles, architecture, and design. New
York: John Wiley & Sons, 1979.

[7] A. Karatsuba, “The Complexity of Calculations,” in Proceedings of the Steklov
Institute of Mathematics, vol. 211, 1995, pp. 169–183.

[8] P. Kukkala, AXI-Stream FIR reference design study, 2013, Nokia Sharenet
D509623246. Limited availibility.

[9] R. G. Lyons, Understanding digital signal processing, 2nd ed. Upper Saddle
River, NJ: Prentice Hall PIR, 2004.

[10] P. K. Meher, S. Chandrasekaran, and A. Amira, “FPGA Realization of FIR
Filters by Efficient and Flexible Systolization Using Distributed Arithmetic,”
Signal Processing, IEEE Transactions on, vol. 56, no. 7, pp. 3009–3017, 2008.

[11] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Ar-
rays, 3rd ed. Berlin, Germany: Springer Berlin Heidelberg, 2007, 774 p.

[12] L. Ming and Y. Chao, “The Multiplexed Structure of Multi-channel FIR Fil-
ter and its Resources Evaluation,” in Computer Distributed Control and Intelli-
gent Environmental Monitoring (CDCIEM), 2012 International Conference on,
2012, pp. 764–768.

http://www.altera.com/literature/ug/ug_fir_compiler_ii.pdf
http://www.eda.org/fphdl/Fixed_ug.pdf
http://www.eda.org/fphdl/Fixed_ug.pdf

BIBLIOGRAPHY 52

[13] A. Mirshekari and M. Mosleh, “Hardware implementation of a fast FIR filter
with residue number system,” in Industrial Mechatronics and Automation (ICI-
MA), 2010 2nd International Conference on, vol. 2, May 2010, pp. 312–315.

[14] S. K. Mitra, Digital signal processing : a computer based approach, 3rd ed. New
York: McGraw-Hill Higher Education, 2006.

[15] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Sin-
ger, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo, “SPIRAL: Code Generation for DSP Transforms,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[16] V. S. Rosa, F. F. Daitx, E. Costa, and S. Bampi, “Design flow for the generation
of optimized FIR filters,” in Electronics, Circuits, and Systems, 2009. ICECS
2009. 16th IEEE International Conference on, 2009, pp. 1000–1003.

[17] T. Saramäki, “Finite impulse response filter design,” in Handbook for Digital
Signal Processing, S. K. Mitra and J. F. Kaiser, Eds. John Wiley & Sons,
1993, pp. 155–277.

[18] V. Savela, “Comparison of digital filter architectures using synthesizable
VHDL,” Master’s thesis, Tampere University of Technology, Tampere, 1996.

[19] The MathWorks, Inc., Optimized Fixed-Point FIR Fil-
ters. [Online]. Available: http://se.mathworks.com/help/dsp/examples/
optimized-fixed-point-fir-filters.html , accessed 2015-02-24.

[20] V. Verma and C. Chien, “A VHDL based functional compiler for optimum
architecture generation of FIR filters,” in Circuits and Systems, 1996. ISCAS
’96., Connecting the World., 1996 IEEE International Symposium on, vol. 4,
1996, pp. 564–567 vol.4.

[21] Xilinx, Inc., Distributed Arithmetic FIR Filter v9.0, DS240, 2005. [Online].
Available: http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf ,
accessed 2015-02-24.

[22] Xilinx, Inc., IP LogiCORE FIR Compiler v5.0, DS534, 2011. [Online]. Avai-
lable: /http://www.xilinx.com/support/documentation/ip_documentation/
fir_compiler_ds534.pdf , accessed 2015-02-24.

[23] R. Yates, Practical Considerations in Fixed-Point FIR Filter Implementation,
PA5, 2010. [Online]. Available: http://www.digitalsignallabs.com/fir.pdf ,
accessed 2015-02-24.

http://se.mathworks.com/help/dsp/examples/optimized-fixed-point-fir-filters.html
http://se.mathworks.com/help/dsp/examples/optimized-fixed-point-fir-filters.html
http://www.xilinx.com/ipcenter/catalog/logicore/docs/da_fir.pdf
/http://www.xilinx.com/support/documentation/ip_documentation/fir_compiler_ds534.pdf
/http://www.xilinx.com/support/documentation/ip_documentation/fir_compiler_ds534.pdf
http://www.digitalsignallabs.com/fir.pdf

Bibliography 53

[24] R. Zimmermann, “Datapath synthesis for standard-cell design,” in Computer
Arithmetic, 2009. ARITH 2009. 19th IEEE Symposium on, 2009, pp. 207–211.

	Introduction
	Filter theory
	Basic topologies
	Direct FIR filter
	Mapping block diagrams to hardware
	Transposed FIR filter

	Structural optimizations
	Folded FIR filter
	Half-band filter
	Coefficient area
	Resource sharing
	Multichannel filter

	Multiplier optimizations
	Shift and add algorithm
	Canonical signed digit
	Reduced adder graph

	Current research

	Requirements
	Constraints
	Existing tools for generating filters
	Generators by research groups
	Generators by FPGA vendors
	High level synthesis tools
	Own implementation

	Verification
	The flow
	From Matlab model to RTL
	Verifying the RTL

	Filter generator
	Multiplier block test syntheses
	Building a filter by hand
	Automating the generation
	Results
	FPGA synthesis
	ASIC synthesis

	Extension to multichannel filters
	Functionality
	Implementation
	Results

	Conclusions
	Bibliography

