

MUHAMMAD UMAIR HASSAN
MANAGEMENT OF IOT SYSTEMS FOR URBAN SERVICES

Master of Science Thesis

Examiner: Professor José L. Mar-
tinez Lastra
Examiner and topic approved on
07.09.2016

i

ABSTRACT

Muhammad Umair Hassan: Management of IoT Systems for Urban Services.

Tampere University of Technology
Master of Science Thesis, 55 pages
January 2018
Master’s Degree Programme in Automation Technology
Major: Factory Automation and Industrial Informatics
Examiners: Professor José L. Martinez Lastra

Keywords: Arrowhead, Urban City, Internet of Things, Information and Communica-
tion Technology, Service-Oriented Architecture

Urban Cities are growing exponentially and with them the need for efficient manage-
ment of city resources. SOA (Service Oriented Architecture) and IoT (Internet of
Things) provides promising solutions for this issue. SOA brings interoperability, reusa-
bility and dynamic discovery. Whereas, IoT provide next evolution on Internet by al-
lowing physical real-world objects to connect to the internet through unique identifiers.

Arrowhead Project has developed a framework to provide collaborative automation by
enabling embedded devices to interact with each other. This project uses SOA to target
five different domains. These domains include Smart Building and Infrastructure, Energy
Production, Virtual Market of Energy, Production, and Electro-Mobility.

In the thesis, three applications were developed. Light Simulator was developed to
demonstrate the working principle of the IoT enabled Light devices. Meter application
was developed to monitor and manage IoT enabled systems. Finally, Energy Consump-
tion service was developed as a pilot service for Arrowhead Project. This service was
deployed on Arrowhead and it calculates the energy consumed by different real-time
objects. Furthermore, since Arrowhead framework follows all principles of SOA, reusa-
bility of above services can provide composability to develop further applications.

ii

PREFACE

This research was very interesting to me irrespective of the struggle that I had to
face in the entire process. I learned a great deal from this master thesis. This
thesis was done at Factory Automation Systems and Technologies laboratory at
Tampere University of Technology. I want to thank Professor José L. Martinez
Lastra for providing me with this wonderful opportunity and Senior Research Fel-
low Jani Jokinen for helping me in implementation phase. Furthermore, I want to
thank Muhammad Ali, Arsalan and Ahsan for guiding me in successfully finalizing
my research. Lastly but not least I want to acknowledge my family in motivating
me and my wife, Staish, in supporting me at every step.

Tampere,13th January 2018

Muhammad Umair Hassan

iii

CONTENTS

1. INTRODUCTION .. 1

1.1 Problem Statement ... 2

1.2 Work Description ... 2

1.3 Thesis Outline ... 2

2. BACKGROUND AND TECHNOLOGICAL SELECTION 4

2.1 Smart Services for Urban Cities. .. 4

2.2 Internet of Things (IoT) .. 7

2.2.1 Applications of IoT .. 12

2.2.2 Problems associated with IoTs ... 14

2.3 Architectures and Frameworks for implementing IoT management systems 14

2.3.1 Service Oriented Architecture .. 15

2.3.2 Web-Based SOA .. 22

2.3.3 Arrowhead Framework .. 27

3. METHODS AND TOOLS .. 31

3.1 Methods .. 31

3.2 Tools ... 32

3.2.1 Arrowhead Management Tool ... 32

3.2.2 Node JS .. 34

3.2.3 MongoDB... 35

3.2.4 jQuery... 36

3.2.5 Mozilla HTTP Requester ... 36

3.2.6 CanvasJs ... 37

4. IMPLEMENTATION ... 38

4.1 Prototype .. 38

4.2 Deployment .. 41

4.3 Case Example of managing IoT service for Energy Consumption 44

5. RESULTS AND ANALYSIS ... 47

6. CONCLUSION AND FUTURE WORK ... 50

6.1 Future Work ... 51

REFERENCES .. 52

iv

LIST OF FIGURES

Figure 1. Internet of Things [37]. ... 7

Figure 2. IOT Ecosystem [33]. ... 8

Figure 3. IoT Abstract Model [33]. .. 9

Figure 4. SOA for IoT [34]. .. 10

Figure 5. Social IoT architecture [34]. .. 13

Figure 6. Generic illustration of Multi-tier ICT architecture for smart cities [12]. 14

Figure 7. Basic connection between Service Provider and Service Consumer [29]. 15

Figure 8. SOA deployed on off-premises versus on-premises cloud computing
[26]. ... 18

Figure 9. XML message tags [29]. ... 23

Figure 10. RPC-style SOAP [21]. .. 24

Figure 11. Document-Literal SOAP [21]. .. 25

Figure 12. Web Services Basics [29]. .. 26

Figure 13. Message Sequence in Arrowhead Registry Framework [1]. 28

Figure 14. Getting Configuration from Arrowhead Orchestration System [2]. 29

Figure 15. Arrowhead Framework Authorize message sequence diagram [3]. 29

Figure 16. Components of Arrowhead Management Tool [4]. 32

Figure 17. Service Registry Component. .. 33

Figure 18. Orchestration Component. ... 33

Figure 19. Authorisation Component. .. 34

Figure 20. Mozilla Http Requester ... 36

Figure 21. UML Component Diagram representation of Prototype
implementation .. 38

Figure 22. Meter UML Sequence Diagram for prototype implementation. 41

Figure 23. UML Component Diagram for Deployment of services on Arrowhead
Framework. ... 42

Figure 24. UML Meter Sequence Diagram for Deployment. ... 43

Figure 25. User Interface UML Activity Diagram. .. 46

Figure 26. General Overview of User Interface. .. 46

Figure 27. Results of Device Query. ... 47

Figure 28. Cumulative Graph of Energy Consumption. .. 48

Figure 29. Current Reading of Energy Consumption. ... 48

Figure 30. Non-Cumulative Energy Consumption Graph. ... 49

v

LIST OF SYMBOLS AND ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CC Cloud Computing

CSA Cloud Security Alliance

EDA Event Driven Architecture

ESB Enterprise Service Bus

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IoT Internet of Things

JSON JavaScript Object Notation

LoRaWAN Long Range Wide Area Networks

MIT Massachusetts Institute of Technology

NFC Near Field Communication

OECD Organization for Economic Cooperation and Development

QoS Quality of Service

REST Representational State Transfer

RFID Radio Frequency Identification

RPC Remote Procedure Call

SBC Single Board Computers

SC Service Consumer

SD Service Directory

SIoT Social Internet of Things

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SP Service Provider

URI Unified Resource Identifier

WSDL Web Services Description Language.

XML Extensible Markup Language

1

1. INTRODUCTION

The evolution of automation and the industrial internet has brought the possibility of de-
veloping Smart Urban Cities. According to [10], the estimate is an increase in urban cities
population over 2.9 billion in 2050. This rapid increase in urbanization demands efficient
utilization of limited resources and better energy consumption. Smart cities are the key to
satisfying the increasing demands of the urban cities.

Smart Cities is defined by Ferreira and Afonso [10], as a city which can implement clever
solutions for modern cities by bringing both quantitative and qualitative improvements in
productivity. There are three architecture styles that are mentioned to implement Smart
Urban Cities by Anthopoulos and Fitsilis [12]. These architectures are named as Multi-
tier architecture, Event Driven Architecture, and Service Oriented Architecture. Service-
Oriented Architecture is most commonly seen approach when the aim is to have the ser-
vices that form the infrastructure for the implementation of Urban services. SOA, makes
use of composition and reusability, by combining different existing services. This allows
the SOA-based systems to adapt new environments and provide solutions with agility.
Furthermore, services that are developed using this architecture also contains autonomy,
that enables services the freedom from technology restrictions and eliminates compatibil-
ity issues.

Arrowhead Project follows collaborative automation approach and works on the same
principle as Service Oriented Architecture. Collaborative automation in an open-network
environment connecting many embedded devices with the use of SOA [40]. This ap-
proach is an effective approach in providing solutions for increasing energy challenges
[40]. Due to the SOA principles, the arrowhead framework provides interoperability and
reusability. Interoperability allows the services to be developed on a different technolog-
ical platform and still be compatible with each other. Similarly, reusability allows them
to be reused hence, reducing development costs. Arrowhead framework is expected to
have a significant reduction of 75% in designing networked devices [40]. There are five
areas in which Arrowhead project is trying to achieve desired results. These fields include
Smart Buildings and Infrastructures, Production, Electro-Mobility, Energy Production,
and finally Virtual Market of Energy [40].

The Internet of Things (IoT) envisions the future aspect of devices where the physical
objects of daily life can communicate with each other over the internet by using micro-
controllers and transceivers. IoT systems will hence, make the internet more integrated
into everyday life [39]. This development concept has many applications in smart cities

2

that include home automation, industrial automation, medical aids, mobile healthcare,
elderly assistance, intelligent energy management and smart grids, automotive, traffic
management, and many others [39].

1.1 Problem Statement

Urbanization is constantly and exponentially increasing even where overall population
growth is minimum [10]. Increase in population and urbanization brings in the difficulties
in managing city resources since cities are being forced to overstretch their infrastructure
and resource capacities. Implementing smart cities and encapsulating IoT with the help
of Information and Communication Technologies (ICT) is the key to successfully reduce
energy consumption and monitor other city resources.

There are many proposed architectures that are suitable for building smart urban cities.
However, there arise a problem to monitor IoT services in an urban city due to large-scale
applications. Furthermore, it is very complicated to manage the services deployed in ur-
ban cities and process the data which is generated by such services. Therefore, it is very
important to develop an IoT management system that is capable of monitoring and con-
trolling services as well as storing and processing data.

This thesis aims at developing such system by utilizing Arrowhead framework. This
framework can be used to provide an effective system that can demonstrate the monitor-
ing process for different IoT based systems and energy consumption analysis in a city.

1.2 Work Description

This thesis describes the Arrowhead Framework and how different applications can be
developed on this platform. Moreover, the theoretical background presents different ur-
ban cities architectures for developing an effective service management system. The state
of the art focuses on Service Oriented Architecture and Arrowhead framework.

The main task of the thesis was to demonstrate how an IoT management system can be
developed on Arrowhead Framework for monitoring and managing services. A prototype
case was developed to demonstrate light system control and monitoring. Furthermore,
Energy Consumption pilot application was developed at FAST-lab located in Tampere
University of Technology for Arrowhead Project to demonstrate working example of an
energy consumption evaluation system for multiple physical objects in the urban city.

1.3 Thesis Outline

There are six chapters in this thesis. The first chapter provides the introduction. The in-
troduction also contains problem statement and the work description of the thesis. In the

3

second chapter importance of incorporating smart applications in urban cities is dis-
cussed. Furthermore, different architectures and frameworks are discussed. The chapter
further explains the state of the art technologies for developing a system which relates to
the solution of problem statement. It also explains IoT systems and presents some case
examples. A detailed description of Arrowhead framework is also presented in this chap-
ter. The third chapter explains the methods to approach this framework and lastly some
tools which were used in this thesis implementation. The fourth chapter discusses the
implementation which includes prototype implementation and deployment. A case exam-
ple of energy consumption monitoring system was developed and is explained in this
chapter. In the prototype light monitoring and controlling, simulation application is pre-
sented which was developed on the local platform. In the deployment section, the above-
mentioned application and two real-time monitoring systems were developed for coffee
machine and car heating. The fifth chapter contains the results of the implementation.
Finally, the last chapter provides conclusion and future work.

4

2. BACKGROUND AND TECHNOLOGICAL SELEC-
TION

This chapter discusses the state of the art. In the start of the chapter the meaning of smart
cities is explained followed by the discussion on the importance and motives of having
smart cities and smart applications in an urban city for managing city resources. This
chapter gives a detailed description of IoT with some case IoT systems already developed
for urban services. Furthermore, different architecture styles are discussed as proposed
by different authors to implement these cities. In section 2.3.1, background study is car-
ried out on why Service Oriented Architecture is the most important architecture for fu-
ture implementation. The next section explains Web Services and its role in SOA. Section
2.3.3 then focuses on Arrowhead framework, which is the main developing platform used
in the thesis.

2.1 Smart Services for Urban Cities.

Urban cities are the cities that facilitates through infrastructure a very high-density popu-
lation of human beings. According to [10], it is estimated that until 2050 there will be an
increase in population within urban cities by 2.9 billion. Cities are being forced to over-
stretch their infrastructure and resource capacities due to increase in population growth
and urbanization. Urbanization is constantly and exponentially increasing even where
overall population growth is minimal. According to Bélissent [19] growth in population
is expected to be 3% in developed countries whereas urban population growth is expected
to increase 18% between the year 2010 and 2050. This rapid urbanization indicates the
emerging problem of providing more services. One proposed solution is to undertake
smart city solution for providing services. Increasing services demands can be fulfilled
only by using energy efficiently. Information and Communication Technology (ICT),
when encapsulated with smart cities, can undertake this task. The above-mentioned in-
crease in population growth means that the competition for limited resources will also
increase which will give rise to the energy consumption. As Bélissent [19], stated in her
research that according to The Organization for Economic cooperation estimates, non-
OECD countries will consume 84% more energy compared to 14% increase in 33 OECD
countries. Smartness of the city is no longer a superfluity. It is becoming a necessity for
urban areas to adopt efficient infrastructure with smart communication techniques.

Smartness of a city is a highly ambiguous term and different authors have defined it in
distinct perspective in relation to a smart city. According to [17], smart city provides a
new generation of city which has ICT technologies embedded in it to facilitate sustaina-
bility in city resources. Ferreira and Afonso [10] defines the smart city as a city which
can implement clever solutions for modern cities. Hence, bringing both quantitative and

5

qualitative improvements in productivity. Giffinger et al [16] provides a different ap-
proach by defining six different fields in which smart city must perform efficiently. These
fields are categorized as Smart Economy, Smart People, Smart Environment, Smart Mo-
bility, Smart Living and Smart Governance. Furthermore, they also debated in [16] that a
smart city shall be able to provide means in above six fields to solve problems in an urban
city hence, providing better life qualities. Another interesting opinion is by Nam and
Pardo [13] defining the term smart in the smart city as more user-friendly than intelligent,
the smart city needs to adapt itself to user needs. In all the above definitions, the authors
have agreed that smart cities can be designed by incorporating smartness in the applica-
tions which are achievable through solutions provided by ICT.

Initiatives are taken by innovative governments to incorporate smart applications into
cities services so that the increasing demands of urban cities can be fulfilled. Following
some motives for developing smart applications to manage resources in a city are men-
tioned.

• Pressure on global Resources as the population rises: There are limited resources
in the world and the increase in the overall population is a challenge, leading to
scarcity. This pressure can be seen in the rise of demand for water and electricity.
According to Foster [19], 20 countries faced water shortage in 1990 whereas in
1955 there were only seven. In their report, they predicted that this shortage can
rise up to 18% of total world population. As indicated above the rise in energy
demand is also following a steep curve. These situations demand efficient means
of distributing resources which can only be possible by implementing smartness
into urban cities.

• Formation of megacities due to rapid urban concentration: Megacities are the ur-
ban cities with more than million inhabitants. There were only two megacities in
1950, New York and Tokyo. However, today there are more than 11 megacities
in Asia, 2 in Europe, 2 in North America, 4 in Latin America and 2 in Africa [19].
More of these cities are emerging and will be more by 2050. It can be very chal-
lenging to take care of all necessary infrastructure such as public safety, traffic,
education, housing and healthcare without the help of technology.

• Variation in the quality of services due to uneven distribution: With the emergence
of megacities, variation in services are also becoming an issue. Furthermore, the
percentage of the older population is also on the rise which will require more
healthcare facilities in certain parts of the city. Cities with aging markets need
means to attract young citizens in order to cope with the competition of growing
commerce and labor market.

6

Smart IoT based services seems like a promising solution in proper management of city
resources. This approach can optimize utilization of finite resources in the field of trans-
portation, utilities, healthcare, education, public safety, building management and city
management [19].

• Transportation: Transportation can be optimized by real-time monitoring of the
flow of traffic. This will provide the needed data to analyze the need for new lanes
and avoiding possible traffic congestion. One example of smart transportation
technique is mobile payment for parking applied in San Juan Province of North-
west Argentina.

• Utilities: Use of smart energy grid is being initialized to reduce energy waste by
providing only the amount of energy needed by the user. Furthermore, the user is
also notified about the amount of energy they are consuming. Innovative designs
are made to power data centers to establish a use-based energy consumption net-
work through solar energy.

• Healthcare: Records of the patients can be recorded electronically which will fa-
cilitate in sharing information between different clinics and pharmacies. Due to
such an implementation, patients can get faster excess to the medicines and re-
quired services. One such initiative is eHealth taken by Egypt and Saudi Arabia
to meet the healthcare demands at the national level.

• Education: Introduction of information technology into education sector can im-
prove the overall quality of the education in higher institutes. The access to the
study content is increased via the online provision of courses. For example, China
has launched Blue Sky eLearning that focuses on providing a remote excess of
educational facilities to rural areas.

• Public Safety: Public safety is of high priority to government officials. It is polit-
ically beneficial for them to initiate public safety projects. Introduction of IT ser-
vices in such projects will enhance public safety by optimizing emergency ser-
vices response time. Furthermore, it helps in organizing secure mass events by
providing secure administration and surveillance of public places.

• Building management: Urbanization brings in the need of developing a manage-
ment system for buildings. Building sector that includes both commercial and res-
idential buildings consumes about one-fifth of energy consumption in the world.
[14]. This energy is needed for all the facilities provided; such as the power, water,
elevators, lights, heating, and cooling. IT services help in reducing the energy
consumption by providing optimized ventilation and room automation systems.

• City management: Integrating IT systems in city management will provide with
the necessary data that can be analyzed and used to resolve budget issues between
different sectors. It will also provide surveillance reports which can improve over-
all management of city facilities such as security and transportation.

7

2.2 Internet of Things (IoT)

The Internet has been used in past 40 years to provide facilities to people in fields such
as shopping, information recovery, and easy banking etc. Furthermore, it has brought
them together by providing better communications e.g. forums, social media, and emails.
Earlier, the internet was considered as many individual computers connected to form a
network. However, these days internet can be found in all smart devices. Next evolution
of the internet is related to the concept of connecting all the devices together for bringing
unlimited opportunities. This evolutionary phase is being referred as the Internet of
Things (IoT).

The IoT has the potential to impact people way of living in ways greater than internet
alone has done. The Internet has a significant impact on publishing, communication and
entertainment sector until now, but industries in other sectors have not been much af-
fected. The IoT, on the other hand, will embed information and communication technol-
ogies within machines to optimize automation process and bring new opportunities. [31]

IoT however, is a very vast term and its understanding varies on how it is being observed.
Gartner, the technology analyst company, defines it as "The network of physical objects
that contain embedded technology to communicate and sense or interact with their inter-
nal states or the external environment [32]". Similarly, Höller et al. define the IoT as
follows: "The IoT is a widely used term for a set of technologies, systems, and design
principles associated with the emerging wave of Internet-connected things that are based
on the physical environment [37]". The key factor to understand from these definitions is
that IoT is not a single technology but it can be understood as many technologies working
together in a synchronous way to achieve greater objective [31].

Executive director and co-founder of Auto-ID center, Kevin Ashton, at Massachusetts
Institute of Technology (MIT) first introduced the term IoT in 1999 [37]. However, it was
used in relation to Radio Frequency Identification (RFID) at that time [37]. Whereas, now
the term as defined in above definitions, illustrates that all the devices are connected to
the internet.

.

Figure 1. Internet of Things [37].

8

The broader concept of IoT is shown in Figure 1, which explains the concept of many
different smaller services interconnecting to compose IoT solution such as smart cities.
Furthermore, these services are connected to the cloud to enable resource and data shar-
ing. IoT network consists of things that have unique identifiers. In general, the future of
IoT universe will consist of IoT devices, cloud services, and software services that are
owned, administered and operated by independent providers [33]. However, it is very
important for the future IoT applications to manage the discovery, integration, and in-
teroperability of things, cloud services, and third-party applications [33]. There are many
proposed architectures to overcome this problem such as service-based IoT Architecture
proposed by Dimitrios et.al. According to [33], every IoT component is a service which
is integrated in a manner that provides dynamic discovery and composition. IoT Ecosys-
tem is represented in conceptual form as shown in Figure 2.

Figure 2. IOT Ecosystem [33].

The ecosystem can be divided into two planes, first is known as physical plane whereas
the other as a virtual plane. The physical plane consists of all the objects connected to the
IoT system such as humans, cars, devices, and infrastructure. Any change in the status of

9

the object is monitored and updated by the sensors connected to these objects. Physical
world objects are represented in cyber form in the virtual plane. In most of the cases, this
plane exists on the infrastructure hosted through cloud computing infrastructure. Further-
more, a virtual layer can be divided further into the application layer and cyber represen-
tation layer as shown in Figure 2. The virtual entities are modeled in cyber representation
layer. The statuses of the cyber entities are reformed based on the sensor values in the
actual world. Whereas, application layer consists of IoT services which are responsible
for monitoring, controlling, and responding to the state changes.

Dimitrios et.al in [33], presented an example of monitoring and controlling indoor tem-
perature. In order to support interactions between IoT devices in IoT ecosystem, there
must be an association between the virtual layer and physical layer. This association must
contain the data from the sensors which will then be used by the application layer to take
necessary actions.

The new trend seen in the evolution of IoT systems is an integration of IoT into the in-
dustry. In particular, EU is leading a research, known as Industry 4.0, which aims at con-
necting machines and creating an intelligent value chain that can cooperate with each
other to achieve the desired outcome autonomously. However, each industry component
cannot easily be represented as a service and furthermore, implementing interoperability
and integration among services in IoT at such level can be problematic. [33]

The above-mentioned integration problem is addressed by Dimitrios et.al in [33] through
representing an abstract model for IoT.

Figure 3. IoT Abstract Model [33].

10

Abstract model as shown in Figure 3 contain device layer, data layer, and application
layer. These layers are explained in [33] and are discussed individually as follows.

• Device Layer: This layer is responsible for mapping physical world. It contains
all the real hardware devices and focuses mainly on the discovery and integra-
tion of sensors attached to the devices.

• Data layer: Data layer is responsible for handling data that is received from the
sensors. It further provides the data to the applications on their request. This
layer focuses on storage and processing of data. Furthermore, this layer also
checks the compatibility of received data and the requested data.

• Application layer: Incoming data sources are analyzed in this layer to produce
information which is then used by the applications. Application layer focuses on
the services which are being offered.

• Discover-Integrate-Use: Some functions are common to all the layers which pro-
vide the ability to discover, integrate, and use the services offered across the lay-
ers [33].

Another Architecture that is closely related to the work done in this thesis is Service-
Oriented Architecture discussed in [34]. Section 2.3.1 provide with the general descrip-
tion of the tools and problems associated with this architecture. Following the steps in-
volved in implementing SOA architecture in accordance with IoT is discussed. When
implementing SOA in IoT, four layers are to be included as shown in Figure 4.

Figure 4. SOA for IoT [34].

1. Sensing layer: This layer is integrated by using all the available hardware ob-
jects. In other words, it consists of the physical objects which sense the changes
in the physical world. When creating this layer, it is important to analyze the
cost, size and communication method of the objects which are to be included in
the layer. [34].

2. Network layer: Network layer supports the entire infrastructure over wired or
wireless connections that connects things together. It allows the objects to be
aware of their surroundings. The network layer is responsible for addressing the
issues related to the security and privacy as well as the requirements of QoS and
Network energy efficiency. [34]

11

3. Service layer: This layer relies mostly on middleware technologies to create and
manage all the services required by the applications and users. Services running
in this layer retrieves dynamically metadata about services. All the services-ori-
ented activities are performed at this layer. These activities include managing
data, storing data, exchanging data, search engines, communication between ser-
vices, and defining ontologies. [34]

4. Interfaces layer: In an IoT network, there are many different services available
which are provided by multiple and versatile vendors. These services are not al-
ways compatible with each other. Interface layer provides a mechanism that sim-
plifies the interaction between the services. In other words, this layer provides
the users the means to interact with other users and applications [34].

SOA is very useful for the programmers as it ensures the interoperability among the het-
erogeneous devices in multiple ways [34].

There are many common characteristics that are offered by IoT infrastructure irrespective
of the architecture used. These characteristics are mentioned in [36] and include:

1. dealing with heterogeneity;
2. use of resource-constrained devices;
3. applications that require spontaneous interaction;
4. ultra-large-scale networks and a large number of events;
5. dynamic network behavior requirements;
6. context-aware and location-aware applications;
7. the need for distributed intelligence.

Achieving these characteristics are not impossible but can be challenging due to the dis-
tributed and diverse nature of the applications. Typically, IoT applications include many
different technologies interconnected in the desired way to provide the desired solution.
These technologies include Wireless Sensor Networks, RFID, NFC, barcodes, sensors
and wireless communication modules [34]. Large amount of data is produced in IoT in-
frastructure which need to be analyzed properly and quickly to generate required infor-
mation. Furthermore, energy consumption of the devices used in the infrastructure is also
an important criterion in deciding the type of sensors and equipment to be used when
creating a service. One possibility is Raspberry Pi for such applications due to its good
hardware expansion capabilities and it is low-cost hardware with powerful functionalities
[36]. Another alternative is Single-Board Computers (SBC) that provide similar function-
alities to Raspberry Pi, but they are more expensive [36].

As explained earlier that energy consumption is an important factor in creating IoT infra-
structure. Distributed nodes in IoT is battery operated and communication devices con-
sume a lot of battery power. Most commonly used communication protocols are ZigBee
or Bluetooth [36]. In case where it is required for the sensors to be distributed over long

12

distances, there exist propagation problems [36]. There are few emerging technologies
such as LoRa/LoRaWAN (Long Range Wide Area Network), Sigfox or IQRF that aims
at solving this issue [36]. They provide long distance solutions with energy saving possi-
bilities.

2.2.1 Applications of IoT

In this section, few case examples of IoT applications are presented to highlight the im-
plementation of state of the art. IoT has a great impact on society by providing applica-
tions in many fields. IoT has information retrieval applications for users which provide
additional information on various products. Furthermore, increased number of products
which have identification, are being manufactured to help manufacturers. IoT can also
increase the effectiveness of communication techniques within traditional industries by
providing better data and information exchange. [34]

The applications of IoT that are currently available can be categorized into industrial ap-
plications, social IoT, infrastructure and Healthcare applications. In industry business
transactions are improved and smart networking possibilities are provided by using IoT.
This improves the efficiency of processing information in real time. IoT can help the
digital economy in reducing the gap between components due to improved networking.
Moreover, Enterprises that use IoT based solutions can get more profit and can get real-
time generated information that helps in making efficient decisions when making busi-
ness models. Since IoT is connected globally it provides the business partners the oppor-
tunity to integrate enterprise resources in a better way. Table 1shows the industrial appli-
cations of IoT. [34]

Table 1. IoT applications in Industry [34].

Industrial Deployment Applications

Logistics and SCM (Supply Chain)
Management

Goods Position Monitoring;
Theft prevention;
Container monitoring in SC;

SC events monitoring

Access control NCF Access control system;
E-home;
Security infrastructure

Control of industrial processes Intelligent Quality control system;

13

Social IoT known as (SIoT) as mentioned in [34], “is proposed to describe a world where
things around human being can be intelligently sensed and networked.” Scalability and
discovery of the services can be improved through SIoT. Furthermore, implementing the
security and privacy techniques of SIoT can improve overall IoT security. SIoT was en-
couraged by social networks that run on the internet such as Facebook and Twitter. Hence,
it has a great impact on the lives of people. This architecture is represented in Figure 5.

Figure 5. Social IoT architecture [34].

In healthcare IoT helps to improve quality of service and lower costs. There are many
devices in multiple areas of biomedical that utilizes IoT. The driving force of adopting
IoT into healthcare is the advances in sensor technologies. Moreover, IoT can provide
solutions that provide living assistance to elderly people. As an example, wireless bio-
sensors are in use for tracking, monitoring and taking care of elderly people. IoT will in
future help in improving life quality and can prevent health problems. [34]

IoT applications are widely seen in smart cities, home automation and monitoring of en-
vironmental changes. IoT is helping in reducing waste in smart buildings. A case example
is ‘Sensing China’, launched in June 2010 and uses identification tags to broadcast infor-
mation to the internet [34]. This data can be used then to monitor for example the energy
consumption.

14

2.2.2 Problems associated with IoTs

As seen with the other emerging technologies, IoTs also have few drawbacks and prob-
lems associated with them. The two challenges of most concern when it comes to IoT are
security and privacy. There might be RFID tags attacks or data leakages. [34]

Furthermore, there is no fixed topology defined for automated management. Other chal-
lenges include providing diagnostic facilities to reduce malfunctioning of deployed ser-
vices. The open nature of IoT itself raises questions about the security of the information
and privacy since the information generated and circulated among services can contain
very personal information about individuals. To avoid these problems the data must be
encrypted, and a system shall be devised which can provide solutions for proper authen-
tication of the services before the access to confidential data is provided. [38]

2.3 Architectures and Frameworks for implementing IoT man-
agement systems

According to Anthopoulos and Fitsilis [12] research of existing urban cities, many archi-
tectural styles have been developed for the implementation of smart cities. These archi-
tectures can be used to make an effective management system for IoT services. Three
commonly observed architectures are multi-tier, Service Oriented architecture and Even-
Driven architecture. Event Driven Architecture (EDA) [15], is based on the various events
that occur in the smart cities. Events are triggers which are generated by real-world ob-
jects and upon these events a response can be produced. Even though European research
is focusing on this approach, there is no clear existing implementation found in the re-
search done by Anthopoulos and Fitsilis [12]. Service Oriented Architecture, explained
in detail in Section 2.3.1, is emerging and gaining fame in modern Smart City applica-
tions. However, Anthopoulos and Fitsilis [12], concluded that multi-tier is most com-
monly used architecture. Multi-tier architecture is represented in Figure 6.

Figure 6. Generic illustration of Multi-tier ICT architecture for smart cities [12].

15

The above-represented layers in Figure 6 must be present when implementing this archi-
tecture, with the utilization of both soft and hard infrastructure provided by the city. These
layers are explained in [12] as:

• Layer 1: Layer 1 consists of Natural Environment which are concerned about all
the features of environmental issues within the city locality.

• Layer 2: It is for hard infrastructure that does not have ICT induced, provided by
human such as buildings, roads, bridges etc.

• Layer 3: This layer consists of all the hard infrastructures provided by humans and
consists of smart hardware facilities. (i.e., data centers, servers etc.)

• Layer 4: All smart city services organized according to urban key- performance
indicators.

• Layer 5: Individuals and people living in the city, categorizes as soft infrastruc-
ture. It also includes software, data, and smart applications.

2.3.1 Service Oriented Architecture

SOA, Service-oriented architecture utilizes services as the basic block. Different applica-
tions can be developed on different services. These services can complete overall business
process by discovering and utilizing each other. A service according to [55] can be de-
fined as any discrete function that encapsulates reusable business function and can also
be utilized by external consumers. Services are well-defined functions and do not depend
on other services. The service provider provides the services and publishes the location
and endpoint of the service whereas, service consumers are the customers who use these
services after finding the required published service endpoint from the service directory.
Figure 7 shows the basic connection between SP and SC. In the figure, SC on the right
sends a request to SP on the left whereas, SP sends a response message back to SC [29].

Figure 7. Basic connection between Service Provider and Service Consumer [29].

16

SOA can be divided into two components, basic and auxiliary services. Basic services
consist of Service Provider (SP) and Service Consumer (SC) whereas Enterprise Service
Directory (SD) or registry and Enterprise Service Bus (ESB) are auxiliary services [30].
It is very important to know the principles of SOA for successful implementation. These
principles are discussed in [26] and are defined briefly as follows:

• Abstraction: Abstraction aims to conceal logic from outside world, which is used
to design the service. The description of the service is only provided in the service
contracts. Service meta information is categorized into four fields which are func-
tional, technology, programmatic and service quality. Service contracts and ser-
vice registry is then made by using this information. Open access is limited only
to interested consumers and service owners.

• Autonomy: The aim of this principle is to make services which can control their
logical operations. Autonomy provides the services with the freedom from the
technology restrictions. It means that the services are platform independent and it
is not necessary for the applications, built on these services, to follow the same
development platform as the service itself. This also implies that the services can
run on diverse platforms.

• Loose coupling: This principle states that all the services are independent. This
highlights that in SOA services shall be able to engage with each other without
knowing where that service is physically located. In other words, the services shall
not be tightly coupled with each other and must be unaware of their surroundings.

• Reusability: As the name implies the services shall be able to use or be used as
an existing asset. This can be only possible if the service is built generic in nature.
Reusability provides cost avoidance opportunities and can be used by multiple
consumers.

• Discoverability: All the metadata containing the information of a service, are
stored in the service registry, as explained earlier in abstraction. Service consumer
finds the required service from the service registry. This phenomenon is defined
as discoverability, stating that the service shall have communicative metadata so
that it can be easily found and used by the consumer. Discoverability is very im-
portant since it is impossible to construct an efficient infrastructure if the services
cannot find each other.

• Composition: This principle states that services shall be able to participate in the
composition and they can adapt to new business logic by making changes at the
runtime. It promotes that services shall be able to create new solutions by using
the existing services [26]. Composition reduces development costs by enabling
dynamic reconfigurability of services without the need for hardcoding them.

• Statelessness: Statelessness is achieved by suspending state information manage-
ment when necessary [26]. While doing so, the consumption of resources is re-

17

duced to the minimum. It is important that the developers should try to avoid un-
necessary resource consumption so that it is possible for the service to satisfy more
requests in order to achieve statelessness.

It is very important to have services discovered by the consumer, which is possible
through web services. Web services can be defined as the set of protocols to publish,
discover and use services in a standard form [20]. Web service is not the compulsory
component in developing SOA, but they assist in its implementation. Table 2 shows a
comparison of service principles between Web Services and SOA enabled services.

Table 2. Comparison of good service principles between SOA enabled Services and Web
Services [28].

Principles enabled
by Web services

Standardized Standards-based protocols.

 Technology
neutral

Endpoint platform independence.

 Consumable Enabling automated discovery and usage.

Principles enabled
by SOA

Reusability Use of Service, not reuse by copying of
code/implementation.

 Abstracted Service is abstracted from the implementa-
tion.

 Published Precise, published specification functionality
of service interface, not implementation.

 Formal Formal contract between endpoints places ob-
ligations on provider and consumer.

 Relevant Functionality presented at a granularity recog-
nized as a meaningful service by the user.

18

SOA implementation brings many advantages and promises. It has provided software in-
dustry flexibility, lower cost, and autonomy but on the other hand, it also has some draw-
backs such as security issues. These security risks become at large when the SoAs are
deployed on the third-party cloud. Some of the principles of SOA such as abstraction help
reduce security risks. However, security risks associated with SOA is still at large. Fur-
thermore, Cloud Computing (CC) is currently the efficient mean of deploying SoAs.

Figure 8. SOA deployed on off-premises versus on-premises cloud computing [26].

 Figure 8 illustrates two methods of deployment on CC, on-premise and off-premise. In
on-premises the services are running on the organization's own infrastructure and hence
are only managed by the organization itself. In this scenario, the risks associated with
SoAs due to CC are limited. Whereas, in the off-premise CC, widely in use nowadays,
infrastructure is provided and managed by CC service providers [26]. Service providers
offer auto-scalability and multi-tenancy which implies that the infrastructure is shared
among many companies. Furthermore, services might demand the resources located on
different virtual machines in distant locations. This method is essential when cost reduc-
tion and less utilization of limited resources is needed.

SOA is built on XML which is itself not very secure language. XML rewiring attack is a
known XML exploit, despite the efforts of WS-Security and WS-Policy standards devel-
oped to secure XML based applications.

19

Security risks associated with SOA can be discussed separately as security risks related
to each SOA principle discussed above. These risks are shown in Table 3. The first col-
umn shows the principle of SOA, applications in the second column whereas, the third
and fourth column shows the technologies required to implement corresponding principle
and the risks associated with off-premise CC respectively. Furthermore, these risks are
mapped to CSA cloud attacked which were observed in 2013 [26].

Table 3. SECURITY ISSUES RELATED TO THE UTILIZATION OF EACH SOA PRIN-
CIPLE IN OFF-PREMISE CLOUD [26].

SoA Applica-
ble
to

Vulnerable
Technologies

Risks due to CC CSA Notorious 9
Threats

Abstraction Service
Contract

SOAP
UDDI
WSDL
XML
HTTP

1. Exposure
2. Redundancy
and integrity
issues
3. Access control
4. Trust

1.0 Data Breaches
4.0 Insecure
Interfaces and APIs
3.0 Account or
Service Traffic
Hijacking

Discovera-
bility

Service
contract
and
Service
Registry

SOAP
UDDI
WSDL
XML
HTTP

1. Exposure to
cloud risks
2. Authentication
and access
control

1.0 Data Breaches
4.0 Insecure
Interfaces and APIs
3.0 Account or
Service Traffic
Hijacking

Composa-
bility

Services TCP
communica-
tion
XML

1. Lack of
standards
2. QoS.
3. Availability
4.Trust
3. Compliance
4. Governance

1.0 Data Breaches
4.0 Insecure
Interfaces and APIs
3.0 Account or
Service Traffic
Hijacking
5.0 Denial of Ser-
vice
6.0 Malicious In-
siders

20

Autonomy Services TCP
communica-
tion
XML

1. Lack of
standards and
safe patterns
2. Exposure to
cloud risks

1.0 Data Breaches
4.0 Insecure
Interfaces and APIs
3.0 Account or
Service Traffic
Hijacking
9.0 Shared
Technology
Vulnerabilities

Formal
contract

Service
Contract

SOAP
UDDI
WSDL
XML
HTTP

1. Trust
2. QoS
3. Authentication
and access
control

6.0 Malicious In-
siders
5.0 Denial of Ser-
vice

Loose
coupling

Services TCP
communica-
tion
XML

1.QoS
2.Exposure to
cloud risks
3. Data
Interception

5.0 Denial of Ser-
vice
4.0 Insecure
Interfaces and APIs
1.0 Top Threat:
Data
Breaches

Reusability Services TCP
communica-
tion
XML

1. Compliance
2. QoS
3. Exposure to
cloud risks
4. Authentication
and access
control

6.0 Malicious In-
siders
5.0 Denial of Ser-
vice

Stateless-
ness

Services TCP
communica-
tion
XML

1.Exposure to
cloud risks
2.Compliance
3. Trust

1.0 Data Breaches
4.0 Insecure
Interfaces and APIs
3.0 Account Hi-
jacking

21

The above-mentioned risks in the Table 3, associated with each principle are discussed in
detail with some recommendations to minimize them, as follows.

• Abstraction: As explained earlier with less abstraction there will be more infor-
mation exposed about the logic of the service to the outside world, making it an
easier target to the attacker. Hence, the vulnerability is increased, and the security
risks become a greater subject. However, more abstraction will decrease reusabil-
ity. Another issue related to abstraction is access control. When the service is on-
premise, the owner has access to all the sensitive information, such as source
codes, design specifications, etc. Off-premises deployment of the SoAs increases
the possibility of account hijacking since the SoAs are exposed to the outside
world. Also, due to abstraction, composite services are not known to the develop-
ers and consumers. Therefore, it is recommended that when developing a service,
the service developers shall balance the amount of abstraction. Likewise, during
implementation services should be monitored appropriately and consistently for
risks management.

• Discoverability: Due to this principle and the off-premise nature of deployment
on the cloud, PAC files are exposed. Whereas in on-premise deployment, these
files can only be attacked if the attacker is within the company premises. Further-
more, service broker adds an extra vulnerable layer of communication. Hence, it
is recommended to use some sort of authentication between services and SB when
communicating. It is also advisable to use automatic updating of services provided
by many SoAs vendors to constantly update security software.

• Composability: Composability encourages reusing existing services to compose
new services, but it lacks standard rules to define how to securely create new so-
lutions. Moreover, creating new solutions will affect the parent services. The qual-
ity of service (QoS) created, is also affected since the CC infrastructure is un-
known. CC is a multi-region infrastructure and therefore can cause issues related
to compliance as well. Compliance issues relate to the problems arising due to the
regulation of the country in which a sub solution is created, which may differ from
the regulations of the country of parent services. Composability also increases
transit time since the communication between composing services is augmented.
Therefore, it is highly recommended to follow safe composing methods such as,
encryption techniques and using digital signatures when transmitting data. Fur-
thermore, the composed services must be monitored, and the compliance shall be
analyzed with the specific country regulations before allowing the services to
compose new solutions.

• Autonomy: When autonomy is implemented, the risk of exposing services on
many different platforms also increases. Service autonomy requires a greater
amount of trust between applications to avoid malicious modification and avoid
service integrity issues [26]. Services need to communicate with each other in

22

order to maintain control over resources. More resources mean more communica-
tion which, in term implies that the possibility of security risks is of greater mag-
nitude as more resources will be accessible for malicious attack. It is recom-
mended to have a thorough assessment of the need for implementing autonomy.
A strong validation shall be implemented to verify trusted inputs. Finally, WS-
Security can provide trusted communication between applications and autono-
mous services.

• Loose Coupling: Implementation of this principle reduces throughput and in-
creases latency to the response time since messages are transmitted over the inter-
net. Furthermore, more messages are exchanged between the environment and the
service. Encryption is one of the methods to avoid any data infringement. The
bandwidth and the latency overhead can be reduced by using compression tech-
niques.

• Reusability: Reusability principle is implemented to increase cost efficiency, but
it can lead to compliance issues similar to composability. Another issue that can
arise due to reusability is the difference in configurations in different CC infra-
structures. This will lead to QoS variance and the change in the standards can lead
to higher level of insecurity. This problem can be minimized by testing service on
many different platforms and infrastructures before deploying them on a cloud. It
is also important to make sure that the service data is not illegal throughout the
service stages [26].

• Statelessness: When statelessness is implemented external components can be
placed anywhere in the world. Therefore, it becomes a necessity to make sure that
the latency limits are met in the cloud. Moreover, state of the service is being
exposed while communicating between different clouds. Once more encryption is
the basic method to secure the communication and like loose coupling compres-
sion techniques can help in reducing bandwidth and latency overhead [26].

2.3.2 Web-Based SOA

As explained earlier Web services are an essential component in SOA. It uses Web Ser-
vices Description Language (WSDL) in order to describe services available. According
to [22], “WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented infor-
mation”. WSDL can provide the description of endpoints without being affected by the
type of communication protocol used. Hence, it makes it an extensible language [22].
Extensible Markup Language (XML) is the default message format for WSDL.

XML is commonly used to make information formats and describe data since it is a very
flexible. It can transfer structured data electronically over networks and internet. It is self-
defining and self-describing. Element is defined by tags and is the basic building block
in an XML document [27]. Furthermore, there is always a starting and ending tag in an

23

element [27]. This is illustrated in Figure 9 which shows that the city name is Burnsville.
The starting tag is <city> whereas, the ending tag is </city> [29].

Figure 9. XML message tags [29].

There can be nested elements as well in XML. Furthermore, XML does not have any
predefined tags. The name of the element describes the content whereas the structure re-
lates the relationship. XML document shall be well organized and easily understood by
XML parser. XML supports elements attributes and the characteristics of an element can
be defined in the beginning tag. It has endless applications since it defines information in
a standard way. These applications are able to perform normally with the addition of new
data. Data is stored in different ways which is incompatible with each other in normal
applications. This makes the exchange of data between different systems time-consuming
since a large amount of data must be converted into compatible format before exchange
and in this process, data is often lost [24]. XML is suitable for such applications since it
provides data to all kinds of devices without extra processing.

24

Service Directory (SD) is the place where information for all published and available
services described in WSDL, is held. One of the methods of creating such directory is to
use Universal Description, Discovery, and Integration (UDDI). Finally, Simple Object
Access Protocol (SOAP) is used to send WSDL among the services. SOAP provides en-
velop for sending web services messages over the internet [29]. There are two parts in
this envelope. First one is an optional header which provides information on the authen-
tication, encoding technique and the method of processing SOAP message by the recipi-
ent [29]. Whereas, the body of the message is described in the second part. There are two
main encoding styles in SOAP, known as Remote Procedure Call (RPC) and Document-
Literal. In this encoding style WSDL definition contains name and type of each argument.
Whereas, operation arguments are defined by elements in the body of SOAP. The stand-
ard encoding format is used in order to serialize the data. SOAP specifications contain
the information about this encoding format. RPC-style encoding interactions are repre-
sented in Figure 10.

Figure 10. RPC-style SOAP [21].

This technique was popular as it has a simple programming model, but this technique can
cause interoperability problems. [21].

Document-Literal SOAP can contain the business document in its request. In this ap-
proach, the body of the message follows no standard structure of XML content. There is
no standard encoding standard used. So, in order to successfully encode SOAP body,
rules are specified in XML schemas that are created by the developer of the service pro-
vider. [21]. Figure 11 shows this process.

25

Figure 11. Document-Literal SOAP [21].

The commonly used protocol in SOAP is Hypertext Transfer Protocol. The Hypertext
Transfer Protocol (HTTP) is a protocol that utilizes statelessness in all the requests and
responses. This protocol operates at an application level and uses semantics which is ex-
tensible and message payloads that are self-descriptive in order to provide flexible inter-
action with information systems. Moreover, HTTP is designed in such a way that it can
be used to translate communication between HTTP and non-HTTP based information
systems. Hence, acting as an intermediate protocol for communication. Furthermore, dif-
ferent resources are identified in HTTP by using Unified Resource Identifiers (URIs).
Intermediaries are used in HTTP to manage requests through connections. There exist
three forms of intermediaries which are gateway, proxy, and tunnel. A single intermediary
can act as all kind of intermediaries, switching between them, depending on the request
nature. HTTP tunneling is a process by which the outside client can bundle all the infor-
mation needed by the broker into normal HTTP request. A tunnel behaves like a blind
relay since it does not change the messages between two connections. When both ends of
the connection that are relayed closes, tunnel shuts down. A "proxy", is a message-for-
warding agent and is selected by the client, using local configuration rules. It is used to
receive requests for absolute URI of some type(s) and attempt to satisfy them by translat-
ing through the HTTP interface [25]. Whereas, a gateway acts like an origin server, aim-
ing at translating and forwarding requests coming from outbound connections to other
servers.

SOAP protocol is sometimes avoided in pure web services method by using Representa-
tional State Transfer (REST), which is a simpler method then SOAP. [21]. Roy Fielding
[25] proposed Representational State Transfer (REST). The complexity and processing
overhead is reduced due to use of HTTP only. Every information piece has a unique iden-
tifier which enables the information to be retrieved by using a unique endpoint. As an
example, let take car fuel tank capacity as a service and car fuel efficiency as another
service. Both these services can be utilized using REST as

26

www. example.com/tank

www. example.com/ fuel

REST relies on HTTP protocol to establish communication and carrying out four basic
operations between the service provider and the service consumer. These four basic op-
erations are POST, GET, PUT and DELETE. These four basic operations relate to create,
retrieve, update and delete (CRUD) operations in a restful application. GET request asks
the service provider to give data corresponding to the endpoint identifier, which in the
above-mentioned example can be tank or fuel. POST requests inform the service provider
to create the data. PUT indicates to replace the data with the new one and finally DELETE
request, requests the service provider to delete the data. REST has many advantages over
SOAP such as modifiability, simplicity, high interoperability and better performance as
it can cache the responses when possible or desired. [21]

ESB provides support to the web services in routing messages. These messages can be
from fixed to fixed applications or from one source to many applications. The messages
can be either dynamic based on system availability or on load balancing. ESB is further
equipped with authentication, encryption and authorization facilities. [21]. Figure 12 il-
lustrates a basic overall process of Web Service discussed in detail above.

Figure 12. Web Services Basics [29].

27

Steps involved in publishing and consuming a web service as explained in [29] are as
follows:

1. Service is published to a directory after being described using WSDL.
2. Service consumer queries the directory to get information about the location of

the desired service and the means of communication.
3. The method of the communication required by the SP is defined by the part of

WSDL which is passed to the service consumer by the provider.
4. WSDL is used by the SC to send a request to SP in the desired manner.
5. The response is provided by the SP to the request send by SC.

2.3.3 Arrowhead Framework

Arrowhead is based on SOA and follows all the principles mentioned above for SOA.
Furthermore, Arrowhead provides a framework which can be used to develop a manage-
ment system by following the certain set of rules defined by the Arrowhead project. The
cookbook version 1.6, which is available for project partners, explain how core services
should be utilized. Document model for these core services is also described below in this
section. Arrowhead network also contains local cloud core system which can consist sev-
eral local clouds. Each local cloud shall host at a minimum the mandatory services de-
scribed in core services

Core services of Arrowhead are divided into mandatory core services and support core
services. According to Arrowhead, mandatory core services are the Service Registry sys-
tem, the Authorization system, and the Orchestration system.

• Service Registry

The service registry system is used to keep track of all the available services located in
the local cloud. Arrowhead uses domain-based infrastructure, so it is mandatory for all
the systems located in the local cloud to publish product services in their service registry.
The management tool, explained later in the next chapter presents with the user interface
of the service directory.

Arrowhead provides with different documents which allow the developer to follow in a
unified way the principles of SOA. Service Discovery REST is one such document and
explains the implementation model of service discovery using JSON over HTTP while
utilizing Restful web services. Message sequence for Service Registry (REST) is shown
in Figure 13.

28

Figure 13. Message Sequence in Arrowhead Registry Framework [1].

The sequence describes how to lookup the services registered in the service registry. Fur-
thermore, it also explains the dynamic associated with registering and unregistering the
service. Service Registry Bridge is developed and used by Arrowhead framework to trans-
late REST-WS to DNS-SD.

• Orchestration System

Service Orchestration provides with the functionality of re-usability and composability.
The orchestrator follows the basic principles of loose coupling, autonomy, abstraction
and statelessness. Furthermore, Arrowhead Service Orchestration also provides with dy-
namic service replacement if the service fails. The sequence shown in Figure 14 shows
the dynamic behavior when retrieving configurations. System A registers a service to the
registry which system B can discover and utilize later.

29

Figure 14. Getting Configuration from Arrowhead Orchestration System [2].

• Authorization System

Arrowhead framework provides two methods of authorization and authentication. The
first method is based on certificates [X509] whereas the second method is based on Ra-
dius tickets. The tickets consist of a small group of bytes which contain the necessary
information for each service to be authenticated. Authorisation Control core service is
responsible for implementing authorization control. Authorize sequence is represented in
Figure 15.

Figure 15. Arrowhead Framework Authorize message sequence diagram [3].

30

When system B sends a call operation to utilize the service A. Service A discovers the
Authorisation Control in the Service Registry, then sends the authorize message. If the
value received is true, the requested data is returned to the system B.

31

3. METHODS AND TOOLS

This chapter describes the tools and methods used in the development of an application
for implementing IoT management system. The chapter is divided into two subsections
describing the methods and tools respectively. The method used in this thesis for com-
munication between services is Representational State Transfer (REST). This chapter also
gives a brief introduction of the tools that can be used to develop this system. This section
also explains how Arrowhead Management Tool can be used to publish and manage ser-
vices on the cloud service provided by Arrowhead.

3.1 Methods

This section describes the method in this thesis for developing a management system for
IoT services by using the Arrowhead framework. For the design of the application, the
method used is the utilization of Representational State Transfer (REST) defined in Ar-
rowhead framework. This section explains how REST method can be used to make HTTP
calls.

Representational State Transfer (REST) uses HTTP to make calls and is a very light-
weight framework. With the use of HTTP, REST can perform CRUD operations which
are Create, Read, Update and Delete. In this method, each data and resource have a unique
URI (Unified Resource Identifier) which can be used to operate CRUD operations. The
methods used to perform these operations are GET, POST, PUT, and DELETE. GET is
used to retrieve a resource from the given URI whereas DELETE erases the resources at
that URI. POST is used when a subordinate is to be created for the resource at the ad-
dressed URI. PUT method is used when the data is to be updated.

REST is independent of language and platform. Therefore, it is used to develop RESTful
applications. A RESTful application has the capability to run on several platforms such
as mobile, social applications, web applications etc. Furthermore, REST can perform all
the functions which are performed by Simple Object Access Protocol (SOAP) and Web
Services Description Language (WSDL). REST can take advantage of HTTPS security
features by establishing a secure connection over HTTPS. These security features are
such as encryption or username and password tokens. The main characteristics of REST-
ful applications are that they are stateless, supports caching of resources, uses a client-
server system, support proxy server, and uses logical URLs to identify resources.

HTTP status codes are used to further inform the user about the status of the request. Most
commonly used status codes are status code 200 (OK) which is received when everything
went as expected and the request was successfully executed, code 500(Internal Server

32

Error) is used to show the errors related to the server, code 404(Not Found) which hap-
pens when there is nothing to be found at the resource URI. Finally, 403(Forbidden) is
used to indicate that the server is refusing to fulfill the request, mostly due to the reason
that the requestor is unauthorized to the resource.

3.2 Tools

Several tools are available that can be used to support in the implementation of the tech-
nique. This section briefly discusses some of these tools such as Arrowhead Management
Tool, NodeJS, jQuery, Mozilla HTTP Requester, CanvasJs, and Mongo DB

3.2.1 Arrowhead Management Tool

Arrowhead Management Tool provides a user interface which is built as a web applica-
tion for monitoring authorization rules and orchestration.

Figure 16. Components of Arrowhead Management Tool [4].

As shown in Figure 16, it consists of Authorization MMI, Orchestration MMI, and Ser-
vice Repository MMI. Furthermore, it allows the user to visually see the available ser-
vices in service registry.

33

Figure 17. Service Registry Component.

Service Registry component as shown in Figure 17, enables the user to see all the services
available at that moment. The list can be refreshed by clicking the ‘Get’ button. Service
Instance shows the published services. Hence, after publishing a service the provider can
verify that the process has been successfully completed by locating that service name in
the service registry.

Next component of Arrowhead Management Tool is ‘Orchestration’ which describes the
orchestration rules. This component tab is represented in Figure 18.

Figure 18. Orchestration Component.

To use this component; the user has to select the system from the drop-down menu. In
case if the system is not available on the list, it can be entered in the manual tab. A system

34

can have one or several different configurations. Configurations drop-down menu enables
the user to select the desired configuration and then activate that specific configuration
by selecting the Active checkbox. To add service instances the consume checkbox is se-
lected and then store button is pressed. There was a problem of not knowing the currently
selected services if the page is refreshed while utilizing this component. To overcome
this problem a small application was developed, which allowed reconfirming that the ser-
vices are subscribed to a specific configuration of a system.

Authorisation component provides with the user interface for authorization rules. Arrow-
head provided certificates [X509], which are used for allowing a system with the author-
ization to utilize services. Services can be authorized individually, or another way is to
authorize a system to consume all the services by using the asterisk mark. New rules can
be added in the ‘Add Rule’ box whereas ‘Delete’ enables the user to delete an existing
rule. Figure 19 represents this component.

Figure 19. Authorisation Component.

3.2.2 Node JS

Node JS is a programming language which is built on chrome’s V8 JavaScript engine. It
is lightweight and is very efficient since it uses non-blocking I/O model which is also
event-driven. Node is designed to handle many connections simultaneously and is used
to build extensible networking applications. The calls between the connections are asyn-
chronous. For each connection, a callback is fired which returns the desired output of each
connection request. Some programming languages implement concurrency with different
threads, which is relatively difficult and inefficient to use. Thread-based networking uses
different cores of the system to do simultaneous tasks. Node can also make use of multi-
core environment with child processes. Node gives the opportunity to build a non-block-
ing system hence it is best for developing network applications. [5]

35

API reference documentation which can be found at [6], provides with different functions
and objects present in NodeJS. It also explains arguments, return values and errors asso-
ciated with a method.

3.2.3 MongoDB

MongoDB stores data in the form of JSON objects which can have variable structure.
MongoDB stores relevant data together to enable faster query of the information. In Mon-
goDB, new records can be created without initially defining the structure. This is possible
because MongoDB uses dynamic schemas. It is very easy to simply add new fields or
delete existing ones in this data model. Furthermore, it allows you to store arrays, com-
plex structure and represent hierarchical relationships more conveniently. [7]

MongoDB provides some high functionalities which are not possible to be offered in sim-
ple key-value stores other than the rich set of features offered by MySQL. Table 4 illus-
trates these functionalities in comparison to MySQL.

Table 4: Comparison between MySQL and MongoDB [7].

Functionalities MySQL MongoDB

Rich Data Model No Yes

Dynamic Schema No Yes

Typed Data Yes Yes

Data Locality No Yes

Field Updates Yes Yes

Easy for Programmers No Yes

Complex Transactions Yes No

Auditing Yes Yes

Auto-Sharding No Yes

36

3.2.4 jQuery

jQuery is a JavaScript library which is built to enable fast handling and manipulation of
HTML documents, animations and event handling. It is compatible with numerous
browsers [8]. jQuery provides support for AJAX calls and it is easy to use due to the
reason that it can handle JSON data with the field identifier without parsing them. Fur-
thermore, jQuery is also extensible.

3.2.5 Mozilla HTTP Requester

Mozilla Http Requester is a development tool provided as an add-on for Mozilla Firefox.
It is useful in developing RESTful applications. It can be used to verify the responses of
different CRUD operations. Mozilla Http Requester supports all four (GET, POST, PUT
and DELETE) functionalities. Another available option is Postman from Chrome. Figure
20 shows the User interface for this tool.

Figure 20. Mozilla Http Requester.

37

The resource URI is entered in the URL section. From the list, the type of operation (GET,
POST etc.) is selected which is to be performed. Content is entered in the content field.
In the case of GET request, content is left blank. Furthermore, type of content can be
chosen from content type list. Response with the status code is represented in the left most
column. This tool also stores the history of the requests for easy operation.

3.2.6 CanvasJs

CanvasJs is a library built on HTML5 and JavaScript to help in creating easy and attrac-
tive charts. It can run in many different environments such as iPhone, iPad, Android,
Windows Phone, Microsoft Surface, Desktops, etc. [9]. Since it has a capability of run-
ning on many different environments, it makes it the best library to be used in our project
without compromising any functionality. Other benefits of using it include high perfor-
mance, elegant themes, support from developers and no dependency on any other library.
Furthermore, it provides many different types of charts such as area chart, line chart, col-
umn chart, etc.

38

4. IMPLEMENTATION

This chapter describes the implementation of Arrowhead framework through the devel-
opment of Energy Consumption service deployed on Arrowhead cloud server. The im-
plementation is divided into two sections; prototype and deployment. In the prototype
‘NodeArrowhead' is used to represent Arrowhead framework environment. ‘NodeArrow-
head' is available on GitHub and is an open source. It represents the Arrowhead imple-
mentation of core services. In the prototype three applications were developed; ‘Light
simulator', ‘Meter' and ‘Energy Consumption'. The functionality of each service is ex-
plained in section 4.1. Furthermore, Car heating and Coffee machine energy consumption
data were also analysed to provide a real-time example of smart cities physical objects.
In the deployment, the above-mentioned services were implemented on actual Arrowhead
cloud service to facilitate the user to use energy consumption service analyses in order to
monitor urban cities devices energy usage. Section 4.2 explains the deployment phase.

4.1 Prototype

Service Oriented Architecture is the foundation of Prototype implementation with the
‘NodeArrowhead’ used as the tool. Two services of ‘NodeArrowhead’ used are
‘NodeServiceRegistry’ and ‘NodeOrchestrator’. ‘NodeServiceRegistry’ resembles the
‘ServiceRegistry’ core functionality of Arrowhead Framework. Whereas, ‘NodeOrches-
trator’ provides full orchestration services on the local environment. A Prototype imple-
mentation is represented in the component diagram as shown in Figure 21.

Figure 21. UML Component Diagram representation of Prototype implementation.

39

Light Simulator is an application, developed on ‘NodeJS’, and provides with a virtual
representation of light sensor in the real world. It publishes its endpoints on the
‘NodeServiceRegistry’ so that it can be consumed by other services. Therefore, only re-
quired connection for this application is with the ‘NodeServiceRegistry’ as represented
in Figure 21. Light Simulator does not consume any other service hence, it is unnecessary
for this application to have orchestration rules. It runs on two modes; automatic and man-
ual. In the automatic mode, the current luminosity data is returned to the user. This lumi-
nosity data is generated randomly in between 0%-100%. Whereas, in the manual mode
the user can set the luminosity value through a POST command. Table 5 represents the
RESTful interface for this service.

Table 5: Light Simulator RESTful Interface.

Mode Request URL Method Body Response

Automatic /automatic/sta-
tus

GET - {
 "name”: String,
 "type": String,
 "host": String,
 "port": Integer,
 "measurement”: Integer,
 "properties": JSON Array
}

Manual /manual/status POST value=
[0...100]

{
 "name”: String,
 "type": String,
 "host": String,
 "port": Integer,
 "measurement”: Integer,
 "properties": JSON Array
}

Meter acts as a middleware application to fetch the readings from Light Simulator and
store them in some database. We have used ‘MongoDB' in this implementation. Meter
gets the orchestration rules form ‘NodeOrchestrator'. In the orchestration rules, a list of
all the devices which meter must monitor is passed on. Meter further requests the
‘NodeServiceRegistry' to find the endpoints of the devices in order to connect with them.
An individual request is sent to each device, in this case, ‘Light Simulator' to request the
measurement every 1 minute and is stored in the MongoDB for further evaluation.

There are some functionalities provided in the meter to enable dynamic reconfigurability
and autonomy. It reads orchestration rules every 10th cycle to confirm that the rules are

40

not changed. Moreover, if no orchestration rules are found the application waits until
some orchestration rules are provided. In the case, if any of the device provided in the
current orchestration rule unpublishes itself from ‘NodeServiceRegistry', then new or-
chestration rule is requested. This error handling is made possible by monitoring the Http
Response status code. Similarly, if the device exists in the new orchestration but no re-
sponse is received from the device then there exist the chances that the device endpoint
has been changed. So, in this scenario, ‘NodeServiceRegistry' is checked again to update
the endpoints.

All the communication is based on REST and the values are stored in JSON form in the
database. The JSON data, stored in the database, is represented as below in Table 6.

Table 6: Data stored to database.

Type Data

JSON {"Name": String,
"Date": String,
"value": Integer,
"timestamp": Integer
}

.

The above-mentioned sequence for a single device is shown in Figure 22. Meter when
starts, sends a request to NodeOrchestrator to get the device list. After it receives the list
of devices from the NodeOrchestrator it requests NodeServiceRegistry to get the end-
points of the devices. It then further requests the devices to receive data and simultane-
ously sends a connection request to MongoDB. In the final step the modified data is stored
in the database.

41

Figure 22. Meter UML Sequence Diagram for prototype implementation.

Energy Consumption service works in the same way when working in the prototype or in
the Arrowhead environment. The basic difference is in the endpoints and in the publishing
of this service endpoint to the NodeServiceRegistry or to the Arrowhead Registry respec-
tively. Hence, this service is explained in the section 4.3 as a use case example.

4.2 Deployment

This section explains the deployment of energy consumption service on the Arrowhead
framework. The data for the energy consumption evaluation is gathered from light simu-
lator application and two real-time devices which are represented by car heating and cof-
fee machine services. These services are also deployed on Arrowhead framework to fa-
cilitate meter in getting the desired endpoints from Arrowhead Registry. Deployment is
carried out in the similar fashion as the prototype. In the first step the ‘Light Simulator’,
‘Coffee Machine’ and ‘Car Heating’ services are registered on the ‘Arrowhead Registry’
located in ‘BnearIT’ server. Following the meter is started which then requests the ‘Ar-
rowhead Orchestrator’ for the orchestration rule. Finally, the data is stored on to the Mon-
goDB or V3M database. V3M database was used by the project partners and is only ac-
cessible to them. The procedure for registering a service on the Arrowhead Registry, and

42

defining orchestration rules is explained in the tools subsection 3.2.1. This implementa-
tion is represented in a component diagram in Figure 23.

Figure 23. UML Component Diagram for Deployment of services on Arrowhead Frame-
work.

‘Light Simulator’ works in the similar fashion on Arrowhead Framework as mentioned
in the Prototype section 4.1. The only difference is that instead of running on the local
environment it is connected to the cloud through ‘BnearIT’ server and can be accessed
anywhere around the world.

‘Car Heating’ and ‘Coffee Machine’ are two real-time devices located in the Tampere
University of Technology. However, they have the same associations as the ‘Light Sim-
ulator’. The requests sent to these devices are secured as they are only accessible to au-
thorized users. Furthermore, data is requested once every day for the whole previous day
from the Tampere University of Technology servers.

Meter has some modifications from the prototype implementation, though the working
principle is same. This modified working principle is shown in Figure 24. It needs to
connect to ‘Arrowhead Orchestrator’, which provides it with the set of rules. Device lists
are provided in the orchestration rule. This orchestration rule is provided in XML format
which must be converted into JSON and is restricted to only one station. These restrictions
can be edited in the authorization tab of management tool, explained in earlier in Arrow-
head Framework in section 3.2.1.

43

Figure 24. UML Meter Sequence Diagram for Deployment.

Every Arrowhead station has a designated certificate which was provided by the Arrow-
head. These certificates are needed to be made compatible with JavaScript and must be
included in the options field of the request when retrieving orchestration rules from Ar-
rowhead Orchestrator. The certificate identifies the authorization of the request. If the
requestor is authorized, then the orchestration rules are returned. otherwise an error mes-
sage is returned, and the request is denied access to the orchestrator. Table 7 shows a
successful reply from the Arrowhead Orchestrator.

Table 7: Arrowhead Orchestrator Response.

Function Method Response

Retrieve Orchestration Rule GET STATUS: 200
{
 "rule":
 [Device 1_Type,
 Device 2_Type]
}

44

4.3 Case Example of managing IoT service for Energy Con-
sumption

Energy Consumption Service is built on the set of rules defined by the Arrowhead in order
to realize this service. These rules were defined in Arrowhead design description docu-
ment. The important set of rules are shown in Table 8.

Table 8: Energy Consumption Service operation rules.

Method: /energyconsumption/{id}/{start}/{stop}

The method energy consumption returns the energy consumption value. The input parameters
are used to specify different subsets.

Parameter in curly brackets “{xx} “means that it can be left out but then all parameters after that
must also be left out.

Request: The method that request to the web service REST has the following parame-
ters:

- id: the object id that denotes a specific energy consumption measure-
ment object. This parameter should be one of the listed identities in the
/object/ response with the exception of the id “ALL” that should return
the combined measurement during a time interval.

- Start: the starting time of the energy consumption measurement in UTC.
- Stop: the ending time of the energy consumption measurement in UTC.

http://[IP]: [PORT]/[PROJECT_NAME_WS]/energyconsump-
tion/{id}/{start}/{stop}

If {stop} is left out the requested energy consumption value is from start time
to current.

If {start} (and {stop}) is left out the returned the requested energy consumption
value is the current value (cumulative energy meter value).

If {id} (and {start} and {stop}) is left out a list of all available current energy
consumption values (cumulative energy meter values) is requested. One meas-
urement for each object(id).

Example:

GET http://[IP]: [PORT]/[PROJECT_NAME_WS]/energyconsump-
tion/123/1461357723655/1461357725443

Response: The response of this service is a plain value representing the consumed energy
during the time interval. A negative value indicates generation of energy. If a
system is unable to match the requested start and stop times for an object, the
response shall contain energy consumption value for a period with a length and
mean time as close as possible to the requested period. The Start and Stop pa-
rameters shall always state the period that corresponds to the provided Meas-
urement value.

- Id: A unique id (within the scope of the service)

45

- Type: Enumeration of measurement object types.
- Name: User readable name of the object
- Measurement: An energy consumption measurement value of the ob-

ject in kWh. The type is a floating-point value.
- Start: the actual starting time of the provided energy consumption meas-

urement in UTC.
- Stop: the actual ending time of the provided energy consumption meas-

urement in UTC.

Example of the structure in JSON with only one object:
{“Object1”: {“Id”: “123”, “Type”: “BUILDING”, “Name”: “Sydney Opera
House”, “Measurement”: 1.56, “Start”: 1461357723600,” Stop”:
1461357725600}}

Example of the structure in JSON with a list of two objects:
{ “Object List” : [“Object1”: { “Id” : “123”, “Type”: “BUILDING”, “Name”:
“Sydney Opera House”, “Measurement” : 1.56, “Start”:
1461357723600,”Stop”: 1461357725600}, “Object2”: {“Id” : “A2F”, “Type”:
“SMALL ELECTRIC DEVICE”, “Name”: “My Espresso Machine” , “Meas-
urement” : 0.03, “Start”: 1461357723655,”Stop”: 1461357725443}]}

Energy Consumption Service follows all the above-mentioned rules and functionalities.
There are few extra functionalities embedded in this service, such as the ability to display
cumulative and non-cumulative readings on a single web application user interface. The
service reads all the required data from MongoDB. Furthermore, energy consumption
service is not restricted to only one device. This states that it can read multiple numbers
of devices which are defined as configurations in the configuration file. This file is read
by the service on every successful startup. Table 9 shows how this service can be seen in
Arrowhead Management Tool Service Registry.

Table 9: Arrowhead Management Tool.

Service Instance

Service Type Host Port

Properties

energyconsumption._en-
ergy-ws-
http._tcp.srv.test.bnearit.ar-
rowhead.eu.

energy-ws-http Arrowhead
Channel

Port number {path=/ener-
gyconsumption,
version=1.0}

User Interface was developed to make visualization of energy consumption more effi-
cient. Figure 25 represents the activity diagram for this interface. As shown in the activity
diagram, once the web interface is requested it waits until the device list is requested.
Device list shows all the available devices that energy consumption can monitor. These
devices appear dynamically on the interface. The user then selects the devices that are to
be monitored through checkboxes and the start time and end time is provided. Time fields

46

can be skipped as according to the instructions of energy consumption, explained in Table
8. Finally, the user must mention that in which mode the interface should response the
results. There are two modes of operation. The cumulative mode takes all the values from
the start time and adds up the values until the mentioned end time to represent a cumula-
tive graph. If the end time is not mentioned, then the last possible date value stored in the
database is considered. Likewise, in the non-cumulative mode, each value entries are dis-
played as individual bars.

Figure 25. User Interface UML Activity Diagram.

User interface layout is shown in Figure 26. This layout represents the general idea of the
view which is shown to the end user.

Figure 26. General Overview of User Interface.

47

5. RESULTS AND ANALYSIS

In this chapter, the results of the deployment are discussed. Energy Consumption service
provides with the good graphical representation of the data. This data can be analysed to
deduce the energy utilisation. The result of the implementation is the successful represen-
tation of managing IoT systems. Results of this implementation can be divided into three
stages. The first one is the ability of the devices to register themselves on the Arrowhead
Registry. The next successful stage is creating the managing system that fetches the or-
chestration rules, discovers the devices and stores the data into a database. Lastly, repre-
senting the consumption data on a user interface that is accessible irrespective of the lo-
cation of the user. IoT system in this implementation consists of two real-time devices
connecting to the Arrowhead framework. The list of devices that are registered and are in
the orchestration rule can be displayed by using the devices tab. The results of this query
are displayed in Figure 27.

Figure 27. Results of Device Query.

The next results are the energy consumption analyses graphs. These consumption results
can vary based on the method of the request in the implementation. Figure 28 shows the
results of C0 (Coffee Machine) and C1 (Car Heating) when the desired outcome was the
cumulative graph of the energy used.

48

Figure 28. Cumulative Graph of Energy Consumption.

The figure above shows the consumed energy for 5 days between (05.09.2016 –
10.09.2016). The value as shown in the figure is 4576 for the coffee machine. The unit
for the calculation is Watt. Whereas, it is 5.041 KW for Car heating. Furthermore, JSON
string is returned in the response field. This response follows the same principles as de-
scribed by the Arrowhead Energy Consumption design description document discussed
in section 4.3.

Figure 29. Current Reading of Energy Consumption.

If the start and end time are not provided, then the graph will represent the only current
value that is the cumulative reading at the current time. This is represented for C0 in
Figure 29.

If the desired results are non-cumulative data than the user can select non-cumulative
mode. In that case, all the values will provide energy consumption data for each day. This
is represented in Figure 30 for the same periods as cumulative graphs for better under-
standing.

49

Figure 30. Non-Cumulative Energy Consumption Graph.

The measurement value is always calculated as the total energy consumed in the provided
time span. Therefore, it is same as the cumulative value.

These graphs give a useful comparison of the energy consumption of each and every de-
vice that is connected to the IoT system. Furthermore, new devices can be added to the
IoT system for monitoring energy consumption. Similarly, previous devices can easily be
removed.

50

6. CONCLUSION AND FUTURE WORK

This master thesis focuses on the IoT systems in a Smart City. Smart City aims to provide
efficient means of utilizing city resources and provides means of reducing energy con-
sumption. Furthermore, it reduces administration costs and increases the quality of life
for its inhabitants. These facilities are possible due to an evolution of information and
communication technologies and the concept introduced by the Internet of Things. Many
different types of research have been carried out to demonstrate feasible architecture
styles for implementing smart cities. Most common among them are Event Driven archi-
tecture, Multi-Tier architecture and Service Oriented Architecture.

Arrowhead Framework is used in this thesis to develop applications in this thesis. This
framework is provided by Arrowhead Project and is based on SOA. Hence, all the prin-
ciples of SOA, such as interoperability, autonomy, loose coupling, discoverability, and
composability is followed. There are three core systems that are offered by Arrowhead;
Service Registry, Orchestration and Authorisation System. These systems enable devel-
opers to develop and then deploy the services that are compatible with Arrowhead Project.
The scope of Arrowhead is divided into five different domains. These domains include
Smart Building and Infrastructure, Energy Production, Virtual Market of Energy, Produc-
tion, and Electro-Mobility.

Arrowhead Framework was used to develop prototype implementation and then it was
deployed to Arrowhead. Light Simulator service demonstrates how different lights lo-
cated at different locations can connect to the internet and then send information to the
user. Furthermore, the intensity of the simulated lights can be controlled. This service was
used in prototype implementation and was used as a demonstration. Another service 'Me-
ter' was developed to act as middleware management service. This service was responsi-
ble for getting Light Simulator, Coffee Machine, and Car Heating. The service first reads
the orchestration rules and then connect to Registry to get the endpoints of the devices. It
then converts the data into preferred format and stores it into a database. Finally, a pilot
service was developed for Arrowhead Project ‘Energy Consumption Service'. This ser-
vice calculates the energy consumed by the above-mentioned devices and displays a
graphical layout for the user.

These applications demonstrate how Arrowhead Project can be used to monitor, control
and evaluate energy consumption in an Urban City using Arrowhead Framework and
Web Services.

51

6.1 Future Work

The applications developed in this thesis can be upgraded by working on the hardware.
All the readings obtained for Light Simulator can be converted to real-time data by inte-
grating proper hardware with the light sensors. Light Simulator service is built generic in
nature so that it is possible in future work to expand it to other devices such as surveillance
cameras, automated doors, parking places etc. Since Meter is not restricted to the type or
number of devices it can monitor, there is no major compatibility problems associated
with different types of physical devices. Hence, it is possible to integrate more objects to
this service. Raspberry Pi or some other powerful controller can be used for running meter
service to provide a commercial solution. Energy Consumption service can also be im-
proved by providing more functionalities such as runtime energy distribution control sys-
tem to improve energy efficiency. Arrowhead Project can also be further developed es-
pecially, in the security and authorization by improving certificates distribution. There
shall be better support available for the development of RESTful applications. Orchestra-
tion core service does not show the previous orchestration rules. This shall also be ad-
dressed further.

52

REFERENCES

[1]. F. Blomsted, Arrowhead_IDD_Service Discovery REST_WS-JSON-SPSDTR ver-

sion 1.1, unpublished project material, 27th April 2016.

[2]. F. Blomsted, Arrowhead_IDD_Orchestraton Store REST_WS-TLS-XML-

SPORCH version 1.3, unpublished project material, 10th May 2016.

[3] F. Blomsted, Arrowhead_IDD_ Authorisaton Control REST_WS-TLS-XML-

SPAUTH version 1.3, unpublished project material, 10th May 2016.

[4] J.Delsing, Arrowhead Framework Cookbook version 1.6.1, unpublished project ma-

terial, 2015, 19 p. [Online]. Available: https://forge.soa4d.org/plugins/scmgit/cgi-

bin/gitweb.cgi?p=arrowhead-f/arrowhead-f.git;a=tree;f=4_How+to+implement+appli-

cation+sys-

tems/1_Cook+book;h=41b05310a39bdc571b9c2d945c3c5899fd53229c;hb=HEAD

[5] N. Foundation, "About | Node.js", Nodejs.org, 2017. [Online]. Available:

https://nodejs.org/en/about/. [Accessed: 30- May- 2017].

[6] N. Foundation, "Index | Node.js v7.10.0 Documentation", Nodejs.org, 2017.

[Online]. Available: https://nodejs.org/api/. [Accessed: 30- May- 2017].

[7] MongoDB and MySQL Compared", MongoDB, 2017. [Online]. Available:

https://www.mongodb.com/compare/mongodb-mysql . [Accessed: 30- May- 2017].

[8] j. jquery.org, "jQuery", Jquery.com, 2017. [Online]. Available: http://jquery.com/ .

[Accessed: 30- May- 2017].

[9] "Introduction to CanvasJS JavaScript Charts | CanvasJS", CanvasJS, 2017. [Online].

Available: http://canvasjs.com/docs/charts/intro/ . [Accessed: 30- May- 2017].

[10] Jin, J., Gubbi, J., Marusic, S. and Palaniswami, M. (2014). An Information Frame-

work for Creating a Smart City Through Internet of Things. IEEE Internet of Things

Journal, 1(2), pp.112-121.

https://forge.soa4d.org/plugins/scmgit/cgi-bin/gitweb.cgi?p=arrowhead-f/arrowhead-f.git;a=tree;f=4_How+to+implement+application+systems/1_Cook+book;h=41b05310a39bdc571b9c2d945c3c5899fd53229c;hb=HEAD
https://forge.soa4d.org/plugins/scmgit/cgi-bin/gitweb.cgi?p=arrowhead-f/arrowhead-f.git;a=tree;f=4_How+to+implement+application+systems/1_Cook+book;h=41b05310a39bdc571b9c2d945c3c5899fd53229c;hb=HEAD
https://forge.soa4d.org/plugins/scmgit/cgi-bin/gitweb.cgi?p=arrowhead-f/arrowhead-f.git;a=tree;f=4_How+to+implement+application+systems/1_Cook+book;h=41b05310a39bdc571b9c2d945c3c5899fd53229c;hb=HEAD
https://forge.soa4d.org/plugins/scmgit/cgi-bin/gitweb.cgi?p=arrowhead-f/arrowhead-f.git;a=tree;f=4_How+to+implement+application+systems/1_Cook+book;h=41b05310a39bdc571b9c2d945c3c5899fd53229c;hb=HEAD
https://nodejs.org/en/about
https://nodejs.org/api/
https://www.mongodb.com/compare/mongodb-mysql
http://jquery.com/
http://canvasjs.com/docs/charts/intro/

53

[11] Ferreira, J.C. & Afonso, J.L. (2011). Mobi-System: A personal travel assistance

for electrical vehicles in smart cities, pp. 1653-1658.

[12] L. Anthopoulos, P. Fitsilis, Exploring Architectural and Organizational Features

in Smart Cities, In 16th International Conference on Advanced Communication

[13] Nam, T. & Pardo, T.A. (2011). Conceptualizing smart city with dimensions of

technology, people, and institutions, pp. 282-291

[14] Source: “International Energy Outlook 2010 - Highlights,” U.S. Energy Infor-

mation Administration press release, May 25, 2010

(http://www.eia.doe.gov/oiaf/ieo/highlights.html).

[15] L. Filipponi, A. Vitaletti, L. Landi, V. Memeo, G. Laura and P. Pucci,“Smart City:

An Event Driven Architecture for Monitoring Public Spaces with Heterogeneous Sen-

sors”, in Fourth International Conference on Sensor Technologies and Applications, pp.

281-286, 2010

[16] A. Monzon, Smart Cities Concept and Challenges: Bases for the Assessment of

Smart City Projects, In International Conference on Smart Cities and Green ICT

Systems (SMARTGREENS), IEEE, 2015 pp. 1–11.

[17] K. Takahashi, S. Yamamoto, A. Okushi, S. Matsumoto, M. Nakamura, Design

and Implementation of Service API for Large-Scale House Log in Smart City

Cloud, In 4th International Conference on Cloud Computing Technology and Science

(CloudCom), IEEE, 2012, pp. 815–820.

[18] Ji-chen and G. Ming, "Enterprise Service Bus and an Open Source Implementa-

tion", in International Conference on Management Science and Engineering, 2006.

[19] Forrester, "Getting Clever About Smart Cities: New Opportunities Require New

Business Models", 2010.

[20] D. Sprott and L. Wilkes, "Understanding Service-Oriented Architecture", Msdn.mi-

crosoft.com, 2004. [Online]. Available: https://msdn.microsoft.com/en-us/li-

brary/aa480021.aspx. [Accessed: 10- Aug- 2017].

54

[21] Bianco. Philip, Kotermanski. Rick, and Merson. Paulo, "Evaluating a Service-Ori-

ented Architecture," Software Engineering Institute, Carnegie Mellon University, Pitts-

burgh, Pennsylvania, Technical Report CMU/SEI-2007-TR-015, 2007. http://re-

sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8443

[22] E. Christensen, F. Cubera, G. Meredith and S. Weerawarana, "Web Service Defini-

tion Language (WSDL)", W3.org, 2001. [Online]. Available:

http://www.w3.org/TR/wsdl. [Accessed: 10- Aug- 2017].

[23] M. Rouse, "SOAP (Simple Object Access Protocol)", Managing architectures,

2014.

[24]"XML Introduction", W3schools.com, 2017. [Online]. Available:

https://www.w3schools.com/xml/xml_whatis.asp. [Accessed: 22- Aug- 2017].

[25] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. R. Field-

ing, Ed., J. Reschke, Ed. June 2014. (Format: TXT=205947 bytes) (Obsoletes

RFC2145, RFC2616) (Updates RFC2817, RFC2818) (Status: PROPOSED STAND-

ARD) (DOI: 10.17487/RFC7230)

[26] A. Abuhussein, H. Bedi and S. Shiva, "Exploring Security and Privacy Risks of

SoA Solutions Deployed on the Cloud", in 2012 International Conference for Internet

Technology and Secured Transactions, London, UK, 2012, pp. 1-5.

[27] M. Rouse, "XML (Extensible Markup Language)", Managing Architectures, 2014.

[Online]. Available: http://searchmicroservices.techtarget.com/definition/XML-Extensi-

ble-Markup-Language. [Accessed: 22- Aug- 2017].

[28] "Understanding Service-Oriented Architecture", 2017. [Online]. Available: #
https://msdn.microsoft.com/en-us/library/aa480021.aspx. [Accessed: 27- Aug- 2017].

[29] D. Barry and D. Dick, Web services, service-oriented architectures, and cloud
computing, 1st ed. Waltham, MA: Morgan Kaufmann, 2013, pp. 23-26.

[30] Y. Baghdadi, "A framework to select an approach for Web services and SOA de-
velopment", in International Conference on Innovations in Information Technology
(IIT), Abu Dhabi, United Arab Emirates, 2012, p. 279.

[31] M. De Saulles, The internet of things & business. Routledge, 2017, pp. 1-2.

https://www.w3schools.com/xml/xml_whatis.asp
http://tools.ietf.org/html/2145
http://tools.ietf.org/html/2616
http://tools.ietf.org/html/2817
http://tools.ietf.org/html/2818
http://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language
http://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language

55

[32] IT Glossary. [online]. Available at: www.gartner.com/it-glossary/internet-of-
things/ .

[33] D. Georgakopoulos, P. Jayaraman, M. Zhang and R. Ranjan, "Discovery-Driven
Service Oriented IoT Architecture", in IEEE Conference on Collaboration and Internet
Computing (CIC), Hangzhou, China, 2015.

[34] S. Li, L. Xu and S. Zhao, "The internet of things: a survey", Information Systems
Frontiers, vol. 17, no. 2, pp. 243-259, 2014.

[35] R. Fielding and R. Taylor, "Principled design of the modern Web architecture",
ACM Transactions on Internet Technology, vol. 2, no. 2, pp. 115-150, 2002.

[36] Calvo, J. Gil-García, I. Recio, A. López and J. Quesada, "Building IoT Applica-
tions with Raspberry Pi and Low Power IQRF Communication Modules", Electronics,
vol. 5, no. 3, p. 54, 2016.

[37] A. NEVAVUORI, “DEVELOPMENT OF AN INTELLIGENT DATA COLLEC-
TION INSTRUMENT FOR MOBILE EQUIPMENT,” 2015.

[38] N. Javed, “IOT NODE EMULATION AND MANAGEMENT TESTBED,” 2013.

[39] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things
for Smart Cities", IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, 2014.

[40] "Arrowhead — Ahead of the future", Arrowhead — Ahead of the future, 2017.
[Online]. Available: http://arrowhead.eu. [Accessed: 22- Nov- 2017].

http://www.gartner.com/it-glossary/internet-of-things/
http://www.gartner.com/it-glossary/internet-of-things/

