
DANIEL KOSLOPP

DISTRIBUTED PROCESSING IN FPGA ACCELERATED CLOUD

Master of Science thesis

Examiner: Prof. Timo D. Hämäläinen

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 29th August 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250164532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

ABSTRACT

DANIEL KOSLOPP: Distributed Processing in FPGA Accelerated Cloud
Tampere University of Technology

Master of Science thesis, 76 pages

December 2018

Master's Degree Programme in Information Technology

Major: Pervasive Systems

Examiner: Prof. Timo D. Hämäläinen

Keywords: Hardware Accelerator, FPGA, NFV, Cloud, SDN, Machine Learning

Motivated by the need of cost reduction, better energy e�ciency and agile update

and deployment of new services, telecommunication industry is moving towards vir-

tualization, which lead to Network Function Virtualization (NFV) standard. NFV

leverages cloud technologies to deploy network functions that are traditionally im-

plemented using dedicated proprietary hardware. Still, the performance provided by

current cloud infrastructure does not ful�ll the requirements for demanding NFV's

use cases. Thus, hardware acceleration should be deployed.

The hardware programmability of FPGAs allows them to adapt well to many type

of workloads, placing them as good candidates to be used as hardware accelerators

in virtualized environments. In this thesis, the CRUN framework is proposed to pro-

vide FPGA as hardware accelerator resources in cloud, abstracting the integration

complexity while enabling sharable and scalable use of such devices.

CRUN architecture allow user's acceleration hardware to be accessed locally and

through the datacenter's network. The latter provide �exible connectivity by fol-

lowing the Software-de�ned Networking (SDN) principles. The architecture enables

the same sharable FPGA to be used simultaneously as a co-processor, a network

accelerator or as a distributed accelerator in a scalable scenario over several FPGAs.

In its current development state, CRUN was leveraged for inference of a machine

learning application composed of a fully connected neural network. The main per-

formance target was to achieve ultra-low latency, less than 40µs, for each inference

at software level. Only CRUN ful�lled the requirement among the analyzed alter-

natives, where the architecture is capable of providing latency in the 30µs range

in average. For context, high-end General-Purpose Processor (GPP) and Graphics

Processing Unit (GPU) provided latency values of 798µs and 1 897µs respectively

for the same application.

II

PREFACE

At �rst, I thank God for all the blessings in my life.

I would like to thank Nokia for all the support and working hours I had available to

dedicate to this work. Also, I would like to express my gratitude to all my colleagues

that are part of it: Anssi Örn, Kalle Holma, Pekka Jokela, Aki Kaihtela and Miika

Jokinen.

Special big thanks to Jouni Markunmäki for the immeasurable technical guidance

and support, Piia Saastamoinen for the careful review, Hannu Tulla for solving

all possible problems with the laboratory and obrigado to Juho Tieaho for SDN

development and the daily cooperation in any challenge.

I wish to thank Prof. Timo D. Hämäläinen for the opportunity to conduct my thesis

under his supervision and all the assistance.

My most sincere thanks to my father Silvio Koslopp, my mother Maria Elisabeth

G. Koslopp and my brother Denilson Koslopp, all of who have always supported me

in all aspects and decisions in my life.

At last, my deepest gratitude, admiration and love to the greatest partner of my

life, Talita Tobias Carneiro, for being my light and inspiration.

Tampere, 20.11.2018

Daniel Koslopp

III

TABLE OF CONTENTS

1. Introduction . 1

2. Virtualization In Mobile Networks . 4

2.1 Cloud RAN . 4

2.2 Network Function Virtualisation . 7

2.2.1 VNF Layer . 8

2.2.2 NFVI . 9

2.2.3 MANO . 10

2.3 Cloud Computing . 11

2.3.1 Virtualisation and Orchestration 12

2.3.2 Deployment Modes of Cloud Computing 14

2.3.3 Service Models of Cloud Computing 15

2.4 Software-de�ned Networking . 16

2.4.1 Data Plane . 17

2.4.2 Control Plane . 18

2.4.3 Management plane . 19

2.5 Cloud Computing, NFV and SDN . 20

3. Hardware Acceleration in Cloud . 24

3.1 Accelerators . 24

3.1.1 Workload Characteristics . 25

3.1.2 Connectivity Options . 26

3.1.3 Deployment Topologies . 28

3.2 FPGAs in Cloud . 29

3.2.1 Programming Languages . 30

3.2.2 Design Flow . 30

3.3 FPGA Virtualization . 31

3.3.1 Sharing . 32

3.3.2 Abstracting . 33

IV

3.3.3 Securing . 33

3.3.4 Scaling . 34

4. Related Work . 35

4.1 Hardware Acceleration Only . 35

4.2 Partially Scalable Hardware Acceleration 36

4.3 Fully Scalable Hardware Acceleration 37

4.4 Hardware Acceleration in NFV . 39

5. Methodology . 41

5.1 Hardware and Laboratory Setup . 41

5.2 Software and Libraries . 42

5.3 Test Cases . 43

6. CRUN Architecture . 44

6.1 CRUN FPGA's Hardware . 44

6.1.1 Server and Datacenter . 44

6.1.2 CRUN Shell . 46

6.1.3 Accelerator Hardware Unit . 51

6.2 BRO Management Software . 52

6.2.1 BRO-SERVER . 52

6.2.2 BRO-CLIENT . 54

6.2.3 BRO Usage . 55

7. Evaluation . 58

7.1 Development State . 58

7.2 Hardware Metrics . 58

7.3 Trial . 60

7.4 Analysis . 64

7.4.1 Hardware . 64

7.4.2 Software . 65

8. Conclusions . 67

Bibliography . 69

V

LIST OF FIGURES

2.1 Cloud RAN vs RAN . 5

2.2 Traditional network vs NFV . 8

2.3 NFV architecture . 9

2.4 NFV's main terminology . 11

2.5 Virtua Machines vs Containers . 13

2.6 Service models of cloud computing 15

2.7 Software-de�ned Networking planes and layers 17

2.8 OpenFlow-enabled SDN devices . 18

2.9 NFV, Cloud Computing and SDN . 21

3.1 HWA attachement options . 26

3.2 HWA deployment topologies . 28

5.1 Main components, hardware and test cases 42

6.1 Server architecture . 45

6.2 Datacenter architecture . 46

6.3 FPGA architecture . 47

6.4 AHU's interfaces . 51

6.5 BRO-SERVER architecture . 53

6.6 BRO-CLIENT architecture . 55

6.7 BRO typical usage �ow . 56

7.1 MLP's AHU . 61

VI

7.2 Trial's inferences per second vs latency results graph 62

VII

LIST OF TABLES

2.1 Cloud computing and Cloud RAN requirements 7

7.1 Shell's resource utilization. 59

7.2 Shell latencies per packet size at 10Gbps 59

7.3 Results for di�erent implementations of the MLP neural network . . . 61

VIII

LIST OF ABBREVIATIONS AND SYMBOLS

AHU Accelerator Hardware Unit

API Application Programming Interface

ASIC Application-Speci�c Integrated Circuit

AVG Average

BBU Baseband Unit

BS Base Station

CAPEX Capital Expenditure

CLI Command Line Interface

COTS Management and Orchestration

DMA Direct Memory Access

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

EM Element Manager

ETSI European Telecommunications Standards Institute

FPGA Field-programmable gate array

GPP General Purpose Processor

GPU Graphical Processor Unit

HDL Hardware Description Language

HLS High Level Synthesis

HWA Hardware Accelerator

IaaS Infrastructure-as-a-Service

ID Identi�cation

IP Internet Protocol

ISG Industry Speci�cation Group

IT Information technology

MANO Management and Orchestration

MAX Maximum

MIN Minimum

MLP Multilayer Perceptron

NAT Network Address Translation

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NIC Network Interface Controller

NIST National Institute of Standards and Technology

NOS Network Operating System

IX

N-PoP Network Point of Presence

OPEX Operating Expenses

OS Operating System

PaaS Platform-as-a-Service

PCIe Peripheral Component Interconnect Express

PF Physical Function

PNF Physical Network Functions

PR Partial Recon�guration

PRR Partial Recon�gurable Region

RAN Radio Access Network

RRH Remote Radio Head

SaaS Software-as-a-Service

SDN Software-de�ned Networking

SFC Service Function Chain

SR-IOV Single Root I/O Virtualization

TCO Total Cost of Ownership

VF Virtual Function

VHDL VHSIC Hardware Description Language

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFC Virtual Network Function Component

VNFM Virtual Network Function Manager

1

1. INTRODUCTION

For a long time, the telecommunications industry has relied on physical proprietary

devices for providing services. This practice ossi�es the infrastructure not allowing

them to easily update or innovate services due to the specialized and manual work

needed for it. Meanwhile, it also increases complexity to maintain the facilities [87].

The rapid increase of data tra�c is well known worldwide [19] along with the diver-

sity and insertion of new services. All this requires scale as well as constant and fast

modi�cations on the underlying infrastructure, which tied to in�exible environments

lead to high costs.

For this reason, telecommunication operators joined e�orts and proposed virtual-

ization and COTS (Commercial o�-the-shelf) hardware as the key solution for en-

abling a rapidly evolving infrastructure, culminating on the establishment of the

NFV (Network Function Virtualization) [22]. The core principle behind this move

is the decoupling of the function from the physical equipment that runs it.

Concurrently, virtualization and COTS are also the key idea behind cloud comput-

ing, which has been evolving for some time. The bene�ts provided by this scheme,

namely the possibility of o�ering infrastructure, platform and software as a service

directly translates into e�cient use, cost savings and �exibility [67].

Cloud providers are constantly improving their facilities for supporting a wide range

of use cases. Consequently, more and more the usage of their services is spread over

several segments of industry. The �exibility, scalability and usability constitute key

elements for developing and deploying such a diversi�ed scenario.

Just as common cloud applications, NFV covers a wide range of services and appli-

cations. This means that the requirements also vary considerably. Many NFV's use

cases can be directly deployed in current cloud infrastructure. In fact, most of early

trials and proofs of concept of NFV applications have used them.

Yet, more demanding NFV services have requirements that are not met by resources

provided in common cloud, namely GPP (General Purpose Processors). Cloud RAN

1. Introduction 2

(Cloud Radio Access Network) is an example of such case, but even more straight

forward use cases can face issues when executed in GPPs.

Motivated by the goal of supporting more applications and providing increased

performance, which directly translate in added value and income, cloud providers

have already started to introduce hardware acceleration in their infrastructure.

Main common Hardware Accelerator (HWA) deployed is Graphical Processor Units

(GPUs), which covers a range of applications but is not �exible and e�cient enough

for many of NFV's use cases. Similarly motivated by the limitations of current cloud

systems, telecommunication operators and academia alike also have been researching

and testing HWA solutions.

Recent e�orts have been done for the deployment of FPGAs (Field-programmable

Gate arrays) as HWA in cloud. This type of HWA adapts better for a wider range

of workloads scenarios and use cases than GPUs and GPPs. Meaning that better

performance and more energy e�ciency may be obtained.

Still, FPGAs bring their own challenges for deployment in a virtualized environ-

ment, both for the provider and user. From the user perspective the development

languages, such as VHDL (VHSIC Hardware Description Language) and Verilog, as

well as tools and �ows are signi�cantly di�erent from the ones software engineers

are used to. Even when using currently available higher-level description languages

the developer should have understanding of hardware design.

From the provider perspective, FPGAs insert heterogeneity in an already complex

homogeneous system. This leads to di�culties in how to manage the resources and

requires considerable changes in the software that orchestrate the infrastructure.

Providers must implement a system that allow the FPGAs to be sharable, scalable

and secure, while abstracting the hardware details when exposing the resources for

development and deployment to the users.

This work presents a framework developed from the scratch for enabling the usage

of FPGA as hardware accelerator in a cloud environment, motivated by NFV but

not limited to it. The goal is to enable high performance and provide a scalable and

�exible system while abstracting the complexity of managing and using it. There are

some e�orts available in academia with similar motivations as well as proprietary

solutions in industry. Still the architectural details presented here are di�erent,

specially the usage of SDN (Software-de�ned Networking) to provide distribution of

workloads over several accelerators.

The architecture developed is named CRUN. It provides abstraction of the connec-

1. Introduction 3

tivity and expose standard interfaces for the user. A scalable system is achieved

and allows the distribution of processing over several accelerators. The software

management system proposed virtualizes the FPGA as a resource in the cloud. Fur-

thermore, a distributed ultra-low latency machine learning inference report of a trial

that leverages CRUN is presented. The trial was developed by a third party.

The work also brie�y explains the main associated subjects and their relation, such

as NFV, SDN and cloud computing. Cloud RAN is presented and used as an example

of the motivations behind this thesis. Moreover, hardware acceleration in cloud is

brie�y reviewed.

The rest of this thesis is structured as follows. Chapter 2 describes the main vir-

tualization related concepts, such as cloud computing, NFV, SDN. Hardware accel-

eration and FPGAs in cloud are reviewed in Chapter 3. Chapter 4 discusses and

review related e�orts in the �eld. Chapter 5 presents the hardware equipment as

well as software tools and libraries leveraged. Chapter 6 details the proposed ar-

chitecture. Chapter 7 shows and discuss the results obtained from the architecture

and its performance comparison provided by the trial. Finally, Chapter 8 presents

the �nal considerations and prospects for future work.

4

2. VIRTUALIZATION IN MOBILE NETWORKS

In this chapter important concepts like Network Function Virtualization (NFV),

Software-de�ned Networking (SDN) and cloud computing are presented along with

how they relate with each other.

Even though there are several e�orts for inserting hardware acceleration in common

cloud, one can assume that the need is accentuated in the telecommunication indus-

try due to its demanding requirements. Thus, �rst Cloud RAN is introduced, which

is shown here as an example of the motivations for inserting FPGAs as hardware

accelerator in cloud.

Cloud RAN demonstrates well the reasons behind virtualization trends in the telecom-

munication industry, namely the NFV, as well as the challenges it imposes in cloud

computing technologies.

2.1 Cloud RAN

The mobile tra�c grow is well known, documented and experienced by the industry

and users. Recent reports show an increase in global mobile tra�c of 18-fold from

2011 (400 petabytes) to 2016 (7.2 exabytes) and forecast an 7-fold grow by 2021 (49

exabytes) [19]. On the other hand, average revenue per user does not compensate for

the increase in Total Cost of Ownership (TCO) that tra�c grow imposes in mobile

operators [76, 13].

A simpli�ed analysis of TCO can be break down to Capital Expenditure (CAPEX)

and Operating Expenses (OPEX). CAPEX is related with costs for building the

network infrastructure, while OPEX associates with operation and management of

the network.

OPEX expense represents about 60% of TCO and is composed mainly by oper-

ation and maintenance, site rent and electricity. CAPEX cost examples are site

acquisition, civil works, supplementary equipment as air conditioning and the ac-

tual hardware and software responsible for the wireless functionality. The latter is

2.1. Cloud RAN 5

Mobile Backhaul

Network

RRH 1

RRH 2

RRH n

BBU 2

BBU 1

BBU n

(a)

Mobile Backhaul

Network

RRH 1

RRH 2

RRH n

(b)

BBU Pool

Figure 2.1 RAN (a) vs Cloud RAN (b). Adapted from [13].

what actually brings revenues and represents less than 50% of the CAPEX costs

[15].

To support the afore mentioned growth, mobile operators have to improve their

Radio Access Network (RAN) capacity, which architecture is traditionally designed

to scale mostly with inclusion of more Base Stations (BSs). This solution quickly

become prohibitively expensive and operators introduced the novel Cloud RAN [15].

Simply summarizing the RAN evolution, in the �rst wireless mobile architecture

generations (1G and 2G) each network cell was a single Base Station consisting of an

antenna located few meters away from a radio module. In the third generation (3G),

the RAN is divided into Remote Radio Head (RRH), responsible for the analog to

digital and vice-versa conversion, �lter implementation and power ampli�cation, and

a Baseband Unit (BBU) that is mainly responsible for the signal processing tasks.

In this con�guration BBU could be located in more convenient and cost-e�cient

locations than beside RRH [13]. Finally, in the fourth generation (4G) and on the

road for the �fth (5G), Cloud RAN is the evolution that leverages both wireless

and IT (information technology) technologies by virtualising BBUs and sharing its

storage and compute resources [62]. A high-level overview of the di�erence between

traditional RAN architecture and Cloud RAN is shown in Figure 2.1.

The main bene�ts of Cloud RAN can be categorized as follow [76, 38]:

• Reduced Cost: Concentrating computation and sharing resources in a single

2.1. Cloud RAN 6

datacenter reduces OPEX by simplifying management, maintenance and op-

eration. Also, the more e�cient utilization of the equipment achieved through

virtualization reduces CAPEX cost.

• Energy E�ciency: The number of individual BBUs are decreased and enables

�ner control for setting some BBU to low power and even turning it o�. Also,

there is no need to dimension several BBUs for the peak tra�c of its location,

since the dynamic loads of various locations may even out each other, i.e. some

business area has high demand of tra�c during day time, while house areas

are mostly idle and vice-versa during night.

• Spectrum Utilization E�ciency: Centralization facilitates low latency shar-

ing of information among BBUs, like base stations and user equipment link,

tra�c data and control services, which enables multiplexing more streams on

the same channel with less mutual interference and consequently increasing

capacity.

• Scalability: It becomes easier to add more resources or upgrade them to in-

crease compute and storage capacity in the BBU. Also, RRH can be scaled

to increase coverage and capacity faster and at lower cost since installation

mainly requires the antenna and feeder systems.

Even tough Cloud RAN is a prime technology for enabling 5G mobile network [46],

it does impose some challenges, such as [13]:

• High bandwidth, strict latency and jitter: the fronthaul transport network (be-

tween BBU and RRH) requirements may be 50 times larger than the backhaul

(among BBUs and Mobile Backhaul Network)

• BBU Cooperation, Interconnection and Clustering: Sharing user data, schedul-

ing and channel handling for interference control require BBU coordination,

which in turn requires reliability and security mechanisms.

The challenges may be better understood from Table 2.1, which compares Cloud

RAN requirements with common applications in cloud computing. One realizes

that current cloud computing technology does not o�er a ready made solution for

telecommunication operators. Cloud RAN is an example of virtualization trends

that motivated the foundation of the Network Function Virtualization standard.

In fact, Cloud RAN is one of the use cases covered by NFV [25, 87]. Hence, it is a

narrower example of NFV's requirements since it varies for other use cases and can

be even more demanding.

2.2. Network Function Virtualisation 7

Table 2.1 Cloud computing and Cloud RAN requirements. Adapted from [13].

Cloud Computing Cloud RAN

Data rate Mbps range Gbps range

Data pro�le Bursts and low activity Constant stream

Latency Tens of ms Hundreds of µs
Jitter Tens of ms ns range

Information Life time Long (content data) Extremely short

Recovery time s range ms range

Number of clients Thousands to millions Tens to hundreds

2.2 Network Function Virtualisation

The challenges of virtualization are not limited to mobile operators only but the

whole telecommunication industry. To address it, seven world's leading telecom-

munication operators and the European Telecommunications Standards Institute

(ETSI) founded in 2012 the Industry Speci�cation Group (ISG) for Network Func-

tions Virtualization (NFV) [22].

Broadening the scope from Cloud RAN and mobile operators to the telecommunica-

tion industry in general, networks traditionally contain several dedicated proprietary

hardware to execute network functions, also referred as middle-boxes or Physical

Network Functions (PNFs). Example of such middle-boxes are Network Address

Translation (NAT), Firewall and Deep Packet Inspection (DPI).

The constant increase in diversity of services and demanding requirements is propor-

tional to the number of PNFs in the network infrastructure. At the same rate, the

complexity of deploying them rises due to the specialized and manual work needed

for it. Also, incompatibility among middle-boxes is frequent as well as diagnosis of

failures or miscon�guration is di�cult. Furthermore, the fact that they are �xed in

some physical and logical location and the inability to easily move or share them

make the network in�exible and ossi�ed. This issues directly translate in slow and

costly process for a network provider to install, maintain or update any service [87].

NFV aims to change this scenario by standardizing how to leverage virtualization

and change the way telecommunication operators infrastructure their network. In-

stead of deploying middle-boxes, they are implemented in Commercial-O�-The-Shelf

(COTS) equipment in the form of Virtual Network Functions (VNFs) as shown in

Figure 2.2 [30]. This e�ectively decouples hardware from software and brings �ex-

ibility for faster update and deployment of new services in the same hardware and

enable dynamic scaling [51]. NFV target bene�ts such as improvement in energy

e�ciency, decreasing the equipment cost, faster update and deployment of new ser-

2.2. Network Function Virtualisation 8

Firewall

Load Balancing

Crypto

DPINAT

Router

Crypto DPI NAT

Typical Network

Appliances
NFV-based Approach

Figure 2.2 Traditional network functions in middle boxes are deployed as VNFs in COTS
hardware. Adapted from [30].

vices, and provide a scalable and elastic ecosystem [87, 51].

Simply speaking, NFV is the cloudi�cation of network functions. Throughout this

work, traditional cloud computing is called common cloud, while NFV cloud refers

to a cloud infrastructure used for deploying VNFs.

ETSI divides NFV architecture in three main layers: VNF Layer, Network Function

Virtualization Infrastructure (NFVI) and Management and Orchestration (MANO)

[23]. Figure 2.3 depicts this architecture.

2.2.1 VNF Layer

VNF is the virtual version of a PNF using virtual resources like Virtual Machines

(VMs) in the NFV Infrastructure, providing the same functionalities of their physical

counter-part. VNFs may be composed of one or several VNF components (VNFC).

For example, one VNF can span several Virtual Machines, where each is one com-

ponent, across multiple physical servers. The life cycle control of those components,

such as instantiation and con�guration, is the responsibility of Element Manager

(EM). In the same context, one or more VNFs can be grouped to form a service [51].

2.2. Network Function Virtualisation 9

NFVI

VNF LAYER

VNF

VNFC VNFC

EMS

...
EM EM

Virtual Resources

Compute Storage Network

Hardware Resources

Compute Storage Network

Hypervisor

MANO

VNFM

VNFM

VIM

NFVO

VNF

VNFC VNFC
...

Figure 2.3 NFV Architecture. Adapted from [87].

2.2.2 NFVI

NFVI combines both hardware and software where the VNFs are deployed. In this

layer hardware is decoupled from software [51].

The physical resources provide compute, storage and network functionalities from

COTS equipment. Example of compute resources are x86 servers or hardware ac-

celerators that can be applied for performance improvement. For storage, Direct

Attached or Network Attached Storage servers can be used and for network stan-

dard switches are applied [87].

Those resources are then abstracted by a virtualization layer. Usually, virtual com-

pute resources are exposed to the VNF layer as Virtual Machines using an hypervisor

such Linux KVM [42], but container technology can also be used.

Virtual networking resources interconnect the virtual compute and storage nodes

following the physical networking principles, but it must be aware that nodes may

be located in the same host or not [31].

Following the same principle, virtual storage resources expose scalable and �exible

pools of storage and also bring features such as backup and snapshots [87].

2.2. Network Function Virtualisation 10

Software acceleration may be implemented in the virtual layer similarly to hardware

accelerators in the physical layer, some common examples are Data Plane Develop-

ment Kit (DPDK) and Single Root I/O Virtualization (SR-IOV) [40].

NFVI is not a complete solution for NFV and di�erent service providers can and

are building their own NFVI depending on their requirements [87].

2.2.3 MANO

MANO is responsible of managing and orchestrate hardware and software resources

and their life cyle in the NFVI layer. It also manages VNF instances, their placement

and their life cycle. Furthermore, it includes database to store information of the

VNFs and NFVI [51].

Due to such complex and wide scope MANO is further divided into three sub ele-

ments: NFV Orchestrator (NFVO), VNF Manager (VNFM) and Virtual Infrastruc-

ture Manager (VIM) as shown in Figure 2.3 [87].

NFVO chains and orchestrate multiple VNFs to provide services, it includes the

responsibility of �nding the optimal path and placement of the VNFs accordingly to

the requirements. VNFM manages multiple instances of any type of VNF, including

life cycle from instantiation to termination. Finally, VIM control and manages NFVI

compute, storage and network resources [87].

ETSI presents a reference architecture for the MANO and it is known that NFVO,

NFVM and VIM borders are blurry. Thus, many implementations of MANO may

not be directly mapped to them [87]. Furthermore, the support for heterogeneity,

i.e. hardware accelerators, is an open question still [51].

To summarize the NFV architecture, a visualization of the main terminology and

how they are related can be seen in Figure 2.4. Virtualized network functions are

referred in the standard as (VNF) and the Element Manager (EM) is responsible

for controlling its life cycle. A NFV Infrastructure (NFVI) provides the necessary

resources where VNFs are deployed. This deployment can be constituted of one or

multiple VNFs connected to form a Service Function Chain (SFC). Due to strict

requirements and high coupling of VNFs in a SFC, the location of those in the

NFVI is important and are referred as Network Point of Presence (N-PoP). The

control of resources and connection among VNFs in the NFVI is performed by the

Management and Orchestration (MANO) element, which is further divided by the

standard in Virtualized Infrastructure Manager (VIM), VNF Manager (VNFM) and

NFV Orchestrator (NFVO) [87].

2.3. Cloud Computing 11

VNF LAYER

NFVI

N-PoP

N-PoP

N-PoP

N-PoP

HYPERVISOR

VNF

VNF

PNF

VNF

 EMSEM EM EM

M

A

N

O

End

Point

End

Point

Virtualization ManagementPhysical Link Logical LinkCoupling

SFC

Figure 2.4 NFV's main terminology and their relations. Adapted from [87].

Note that a VNF can coexist with a PNF when forming a SFC, it is expected and

especially important in the early implementation phase of NFV.

2.3 Cloud Computing

Cloud computing is a key technology in NFV. As many concepts on computer sci-

ence, the idea behind cloud computing is not as new as it may seem. As early

as 1961, Professor John McCarthy suggested the concept of utility computing, in

which he envisioned computing as a public utility, just as the electricity and tele-

phone system [1]. This early concept proposed that not only computing power, but

speci�c applications would be sold in a utility-type business model in the future [66].

This idea was revitalized in the past two decades and resurfaced as cloud computing

[1, 66].

There are many de�nitions for cloud computing, industry and academia alike have

composed several meanings. According to the National Institute of Standards and

Technology (NIST) cloud computing is �a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of con�gurable computing resources (e.g.,

2.3. Cloud Computing 12

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management e�ort or service provider interaction.� [48,

p. 2].

From the NIST de�nition one can point out �ve essential characteristics of cloud

computing [67]:

• Scalability: Resources must scale up and down fast and as needed;

• Measurable services: Services must be controlled and monitored by cloud

provider for billing, access control, resource optimization and other purposes;

• Automation: Tenants can use services on-demand without human interaction;

• Ubiquitous: Cloud is available over the network and can be easily accessed;

• Shared: Physical and virtual resources are assigned and reassigned on con-

sumer demand who usually has no control of its exact location.

Computing is treated as utility in cloud. Thus, the user, also called tenant, pay

for its usage as one pay for water and electricity, lowering costs since resources are

essentially rented on demand [67]. This means a business paradigm shift in which

third parties are contracted for delivering commodities of computing power, data

storage and services to enterprises and customers [1].

Virtualization and cloud orchestration are key technologies enabling this paradigm

shift and may be considered as one of the foundations of cloud computing [77, 6].

Furthermore, there are two important concepts within this context, the deployment

mode and the service model of cloud computing. The next subsections brie�y explain

these terms.

2.3.1 Virtualisation and Orchestration

Virtualization is a technology used for running multiple independent virtual operat-

ing systems on a single computer [1], as such, the underlying physical resources are

abstracted away by logical ones. The objectives of this abstraction are agility, �exi-

bility and energy-e�cient resource utilization [67], bringing further bene�ts such as

hardware independence, availability, isolation and security [77]. There are two main

techniques to achieve virtualization: hypervisor-based and container-based. Figure

2.5 compares them.

2.3. Cloud Computing 13

Host OS

Hardware

Virtualization Layer

Guest Process Guest Process

Host OS

Hardware

Virtualization Layer

Guest OS Guest OS

Guest Process Guest Process

Hypervisor-Based Virtualisation Container-Based Virtualisation

Figure 2.5 Virtual Machines vs Containers. Adapted from [77].

Most common form of virtualization is hypervisor-based, which inserts a software

layer to provide abstraction of multiple virtual resources on top of a physical one

(host). These virtual resources are called Virtual Machines (VMs). The hypervisor

runs on host Operating System (OS) and provides an isolated execution environment

to each VM allowing them to have their own OS, usually called guest OS. In practice

it means that one host OS can execute multiple di�erent guest OSs. Some well known

hypervisors are Xen, VMware and KVM [77].

VMs impose overhead and degrade performance. A lightweight alternative is container-

based virtualization. Containers are multiple isolated user-space instances that run

directly in the physical machine at the OS level [77]. Containers do not provide

the same level of isolation as VMs and may introduce security issues but have less

footprint [87]. Docker [21] is probably the most well-known container platform.

To realize the full potential of a cloud, resource management is needed. Cloud or-

chestration controls and arranges the underlying hardware and hypervisors to pro-

vide users the required resources as e�cient as possible. In practice the orchestrator

controls the sharing of resources among several users. This is a complex task due

to the need for scalability, heterogeneous resources and several constrain from the

limited capacity [6]. OpenStack [58] is a widely used cloud orchestrator.

There are three main requirements for the cloud orchestrator [6]:

• Visibility: The system has to monitor all cloud resources and expose to user

their availability, status, placement, cost and any other information required;

2.3. Cloud Computing 14

• Orchestration: The allocation must guarantee that user is provided with the

agreed resource, such as bandwidth and latency, while coordination must en-

sure correct con�guration and execution of the resources;

• Provisioning: Users and provider must coordinate sharing of statistics and

resource utilization to optimize the system, using techniques such as auto-

scaling and failure recovery.

With proper orchestration and virtualization, a datacenter with its limited number

of physical servers can be shared among several users, since one single host can

execute many guests simultaneously [67].

2.3.2 Deployment Modes of Cloud Computing

There are four deployment modes as de�ned by NIST [48], categorized as below.

This classi�cation refers to the ownership of the cloud datacenter [61].

• Public Cloud: this category describes the environment own by a third party

provider that exposes their services via the Internet [67, 61]. Resources are

dynamically provisioned on a self-service basis in which the availability is done

in a pay-as-you-go manner to the general public [61]. Famous examples are

Microsoft's Azure [50], and Amazon AWS EC2 [4, 1].

• Private Cloud: the management of data and process is handled within the

organization. In this sense, there are no restrictions as in public cloud ser-

vices related to network bandwidth, security exposures and legal requirements.

Some examples cited here are Amazon VPC and OpenStack [1].

• Community Cloud: is constituted by a group of organizations sharing the

same interests, being speci�c security requirements an example. The group

members share the access to the data and applications [67].

• Hybrid Cloud: is the combination of the Public and the Private Cloud modes,

as such, an organization can run some applications on an internal cloud infras-

tructure while still running others in a Public Cloud. In this sense, the main

advantage for a company is to bene�t from scalable resources o�ered by third

party service providers while being on control of speci�c applications or data

[61]. Examples are RightScale and QTS [1].

2.3. Cloud Computing 15

IaaS
Amazon EC2

Microsoft Azure

Sun Cloud Compute Service

PaaS
Google App Engine

Force.com

Heroku

SaaS
Google Apps

Office 365

Salesforce.com

Figure 2.6 Service Models and the three layers. Adapted from [61].

The typical choice of telecommunication operators is the deployment of private

clouds. Yet, this work is not limited to it since the main di�erence among the

deployment modes is who owns and manages the cloud and not its infrastructure.

2.3.3 Service Models of Cloud Computing

With regard to the type of the service o�ered, the NIST de�nition speci�es three

distinct groups, as showed below [48]. These models are widely known �as a service�.

Figure 2.6 shows their correlation.

• Software-as-a-Service (SaaS): one or more providers owns the software, its de-

livery and remote management. They are o�ered in a pay-per-use manner.

It constitutes the most visible service in this context, since the end consumer

actually access and uses the software [61]. A single instance of the object

code and the correspondent application database must be shared along com-

mon resources for supporting multiple customers in a simultaneously manner.

Important examples are Salesforce.com and Oracle [1].

• Platform-as-a-Service (PaaS): these o�erings are intended to software devel-

opers [61]. The key idea here is to provide developers with the systems and

environments that they need, from an end-to-end life cycle perspective, com-

prising developing, testing, deploying, and hosting of applications [1]. In this

sense, there is no need to worry about the underlying layer, which is the hard-

ware infrastructure (IaaS), it means an easy to use environment for developing

applications and services over the Internet [61]. Key examples are Google App

Engine and Microsoft Azure [1].

2.4. Software-de�ned Networking 16

• Infrastructure-as-a-Service (IaaS): as showed in Figure 2.6 this service model

constitutes the lowest abstraction layer. It o�ers the computing resources

directly, as processing power and storage in the format of a service over the

Internet [61]. The provided infrastructure can be scaled up or down depending

on the needs [67]. Usually IaaS is o�ered in a virtualized infrastructure, in

which they are exposed to the upper layers through standardized interfaces

as uni�ed resources, where the user can create its own VMs, for example. As

providers one may cite for processing Amazon Web Services with its Elastic

Compute Cloud (EC2) and for storage Simple Storage Service (S3) [61].

The scope of this thesis is the IaaS level where the hardware accelerator is exposed

to upper levels as a virtualized resource.

2.4 Software-de�ned Networking

In cloud computing, NFV and networks in general, switches and routers are key

elements that enable �ow of information around the world in the form of digital

packets. Although highly pervasive, they are known to be complex and challenge

to manage due to the usage of low-level and often vendor-speci�c languages. These

characteristics lead to low �exibility, halt network evolution and increase costs [41].

Any update, new feature or change in the network functionality is complex since

they need to be implemented directly into the network infrastructure [56]. A clear

example of the problem is the transition from IPv4 to IPv6, which has taken more

than a decade and is still ongoing, even though it is a protocol update only [41].

This environment, also so-called Internet �ossi�cation�, is attributed mainly to the

tight coupling of data and control planes in the network devices [56].

Software-de�ned Networking (SDN) principle is exactly the separation between con-

trol and data planes [56]. SDN is still recent and growing at very fast pace, conse-

quently its de�nitions may be fuzzy among literature. The objective of this work

is not to debate over di�erent views, as such, to avoid ambiguity the four pillars

architecture de�nition provided by Kreutz at el. (2015) is used to identify the re-

quirements of a SDN enabled device [41]:

• The control and data planes are decoupled;

• Forwarding decisions are �ow based, instead of destination based;

2.4. Software-de�ned Networking 17

Net App Network Applications

Programming Languages

Northbound Interface

Network Operating System

Southbound Interface

Network Infrastructure

Net App
Net App

Net App
Net App

Net App

Management Plane

Control Plane

Data Plane

Figure 2.7 Software-de�ned Networking planes and layers. Adapted from [41]

• Control logic is moved to an external entity, called Network Operating System

(NOS);

• The network is programmable through software applications running on top

of the NOS.

Summarizing SDN architecture, the data plane is responsible for analyzing each

packet and e�ciently decide what to do with it, for example forward to some port or

drop. The control plane is responsible for translating network policies, i.e. forward

rules, so they are recognized by the data plane, which in turn will enforce the

policy by processing the packet accordingly. On top of the control plane resides

the management plane, which contains network applications that de�ne the desired

behavior of the network through some programming language that in turn abstracts

away the actual implementation of the policies [41]. Figure 2.7 shows plane and

layers views of SDN and next subsections go into more details.

2.4.1 Data Plane

Data plane in SDN is simpli�ed and composed basically from forward devices that

leave all the intelligence to the control plane. These devices expose some standard

interface called southbound [41]. There are multiple standards that can currently

be used to �ll the southbound interface layer, like OpenFlow, ForCES and POF

[20]. Arguably, OpenFlow is the de-facto SDN standard and mostly widespread

2.4. Software-de�ned Networking 18

Network Operating System

Net App
Net App

Net App

Net App
Net App

Net App

SDN Device

Flow Tables

Southbound Interface

Rule Action Stats

Protocol IP src
Port

src
IP dst

Port

dst

1. Forward packet to port

2. Accelerate packet

3. Drop packet

Packet and counters

Flow Table

Figure 2.8 OpenFlow-enabled SDN devices. Adapted from [41].

[41, 56]. Thus, it is described here how an OpenFlow-enabled device functions to

better explain how the data plane actually works and is separated from the control

plane.

Figure 2.8 shows the components of an OpenFlow-enabled device. In these equip-

ment, header �elds of incoming packets are matched against headers in the �ow

tables of the device. Depending on whether a match is found a speci�c action, i.e.

forward or accelerate is taken, if a match is not found the device can be con�gured

to drop the packet or forward it to the controller so the tables can be updated ac-

cordingly [20]. The tables can be pipelined and also include statistics �eld that can

be fetched by the controller to visualize the network behavior. This functionality

enables a device to be controlled to behave as a router, switch or even more complex

roles as tra�c shaper, load balancer, and other depending on what kind of actions

it can execute on the packets [41].

Furthermore, depending on performance requirements no specialized hardware is

needed and the forward device can be fully virtualized in COTS hardware [51].

2.4.2 Control Plane

The SDN controller is frequently regarded as the operating system of the network,

thus the name NOS, and in practice it abstracts away the application layer from the

low level details of the hardware [20, 41, 56].

2.4. Software-de�ned Networking 19

As traditional operating systems, NOS should provide essential services and common

APIs (Application Programming Interfaces) to developers. Among essential services

one can mention device management and discovery, shortest path, topology informa-

tion, statistics, noti�cation and security mechanisms. There are several controllers

and platforms due to the number of competitors �ghting to be at the forefront of

SDN. Hence, there are no clear standard and they vary greatly in architecture and

features [41]. The main aspects that di�erentiate them are:

• Centralized vs Distributed: Centralized controllers can provide enough perfor-

mance for a dense data center but may su�er scalability issues and is a single

point of failure, while distributed can scale better and be more resilient but

are naturally more complex. [41]

• Packet vs Flow: Packet is the basic network unit but a per packet control may

imply overhead, on the other hand, applications usually send many packets

that can be grouped as a �ow. [56]

• Reactive vs Proactive: In reactive control every time an unknown packet/�ow

arrives, it is forwarded to the controller to decide the action and update �ow

tables, this increases the delay of the �rst packet, which may or not be a

problem. On the other hand, in proactive control new �ows are kept in the

data plane and the controller do not need to be consulted, usually.

OpenFlow and other southbound languages standardize the hardware interface, but

it not necessarily makes the process of con�guring them easy. Hence, they are

usually compared to low-level language of x86 platforms such as assembly [20, 41].

More complex operations and orchestration of the network are realized in the man-

agement plane through applications [20]. Applications and NOS are connected by

the northbound interface. Aligned with the controller diversity, no clear standard

can be determined currently [20]. Furthermore, an east-west bound interface may be

present, especially in distributed NOS architectures, since NOS interact with each

other through it. However, these interfaces are usually private and incompatible

among di�erent controllers [20].

2.4.3 Management plane

Network applications reside in the management plane. Once more when comparing

with x86 platforms, network applications are developed using high-level program-

ming languages and also run on top of NOS. The main purpose of such high-level

2.5. Cloud Computing, NFV and SDN 20

languages are to abstract further the task of programming forwarding devices, assist

software reusability and speed up development. Several high-level programming lan-

guages have been proposed, a comprehensive list and their approach can be found

in [41].

As an example, a common network application is load balancing. One can imagine

multiple workers executing the same heavy process in packets of a group of �ows,

the task of this application is to keep the load of the workers balanced so no �ow is

excessively delayed or dropped due to the limits of a single worker. Furthermore, it

can be tuned to reduce power usage in periods of reduced load by directing all �ows

to a limited number of workers, allowing others to move to a low power state. To

achieve this, the application must instruct the controller to install and update the

forwarding rules and policies of the devices. [41]

In [41] it is provided detailed network application examples and references to them.

Among a wide variety of use cases, SDN applications can usually be categorized as

follow [41]:

• Tra�c Engineering: Load balancing, energy aware routing, scheduling and

Quality of service (QoS);

• Mobility and Wireless: RAN virtualization (Cloud RAN), interference man-

agement and programmable virtualised WLANs.

• Measurement and Monitoring: Active and passive measurements and moni-

toring of QoS parameters;

• Security and Dependability: Attack detection and mitigation, security �ow

rules privatization and �ne-grained access control;

• Datacenter Networking: network utilization optimization, live network migra-

tion and workload prediction.

2.5 Cloud Computing, NFV and SDN

Cloud computing, NFV and SDN are enablers for a revolution in how networks are

implemented and monetized, being NFV the one that unify them and which brings

higher value for telecommunication operators [30]. In [51], they are classi�ed as

an abstraction of di�erent resources, being compute for cloud computing, network

for SDN and functions for NFV, as such, they are very related. NFV, for example,

2.5. Cloud Computing, NFV and SDN 21

Automation

Isolation

Agility

Orchestration

Resource Pooling

Elasticity

Network APIs

Virtualisation

Decouples functions from hardware to

increase service agility and reduce

network operator CAPEX and OPEX

Creates network abstractions to

enable faster innovation,

network flexibility and holistic

management

Enables resources sharing,

allows flexibility, scalability

and resource pooling

Function Abstraction

Networking Abstraction Computation Abstraction

SDN Cloud

NFV

Figure 2.9 NFV, Cloud Computing and SDN. Adapted from [51].

leverage cloud computing technologies to deploy VNFs while SDN may use the same

technologies to implement one or multiple SDN controllers on demand [51]. Mean-

while, cloud computing may bene�t from SDN applications and VNFs to automate

and optimize datacenter's network [41]. Figure 2.9 summarize their relationship.

Additionally, NFV and SDN highly complement each other. For example, a SDN

application, such as load balancing and monitoring, may be implemented as a VNF

in a service chain. In this way SDN bene�ts from running in the NFVI while NFV can

use SDN's features to automate complex service chains deployment [51]. Still, while

very powerful when used together, NFV and SDN can be deployed independently

of each other [87].

Moreover, the IaaS service model in cloud computing can be directly mapped to the

NFVI layer in NFV's architecture, providing both physical and virtual resources.

2.5. Cloud Computing, NFV and SDN 22

Thus, most NFV early trials have been deployed using dedicated VMs in common

cloud. Furthermore, VNFs and services can be compared with SaaS [51].

Yet, since NFV applications are mainly originated from telecommunication industry,

they impose di�erent requirements than commonly deployed cloud applications, such

as high pressure on processing performance, harder network demands and stronger

availability and reliability needs, as shown in Cloud RAN in Section 2.1 Conse-

quently, NFV will most probably change considerably when compared with common

cloud [51].

Although correlated, NFV and cloud are not the same. NFV focuses on function

virtualization and open the scope to provision of services, while cloud focuses on

resource virtualization [87]. NFV brings new challenges to the common cloud and

intensi�es the existing ones, such as:

• VNF performance

• Energy e�ciency

• VNF deployment and placement

• VNF life cycle control and migration

• Service chaining

• Performance evaluation

• Policy enforcement

• Security, Reliability and Portability

This work concentrates mainly in the performance issue. More about the other items

can be found in [87, 51, 31].

Performance requirements of applications should be guaranteed but it is an challenge

even in non-virtualized hardware at high speeds [54]. Moreover, COTS are known

to be weaker in terms of performance and reliability when compared to specialized

hardware [87]. Packet processing, encryption and decryption are examples where

GPPs perform poorly.

To address the question whether virtualized hardware can provide high and pre-

dictable performance while assuring portability, ETSI created the �NFV Perfor-

mance & Portability Best Practises� speci�cation [24]. This speci�cation provides

2.5. Cloud Computing, NFV and SDN 23

recommendations of minimum features and requirements the hardware and hypervi-

sor should support and also reports performance test results on NFV use cases. The

results show that when using high-end servers and applying the recommendations,

performance was consistent, predictable and portable as desired for the cases covered

[51], showing that COTS hardware can support many applications requirements.

Yet, even though it is desired to have a virtualized environment composed of COTS

hardware only [87], not all VNFs may achieve the performance requirements in this

scenario as shown in [28]. Hence, studies show that hardware acceleration techniques

will also be important in NFV [51]. Specialized hardware is against NFV's concept,

nonetheless, in practice a trade-o� among performance, cost and �exibility is needed

[87, 51].

24

3. HARDWARE ACCELERATION IN CLOUD

In this chapter the main hardware accelerators used for cloud and how they are

deployed are reviewed, along with the connectivity options and what type of work-

loads they best �t. The �nal section then go into details of why FPGAs should be

leveraged for cloud acceleration, the requirements for doing so and how they are

usually deployed.

3.1 Accelerators

Unlike homogeneous systems composed of only General-Purpose Processors (GPP),

heterogeneous systems introduce specialized hardware devices, also called Hardware

Accelerators (HWAs), that are better suited for certain type of work. The motivation

of such systems are performance and energy-e�ciency requirements that may not

be achieved with GPPs only systems in high demanding applications [29].

Some well-known HWAs currently used are Application-Speci�c Integrated Circuit

(ASIC), Graphic Processing Units (GPUs) and Field-programmable Gate Array

(FPGA) [57, 11].

GPUs are deployed mostly as co-processor and are widely used with General Purpose

Processor (GPPs) to improve performance. Currently, most big players in cloud

computing, such as Azure [5] and AWS [4], already o�er scalable GPU-enabled

instances in its infrastructure, providing on demand acceleration for application such

as machine learning training and inference, streaming, gaming and video encoding.

ASICs are integrated circuits that o�er unique features for speci�c applications, such

as PNFs in NFV that are usually composed of such devices. On one hand, ASIC

typically provides the highest performance and energy e�ciency with smallest chip

size. On the other hand, designing such devices that realize these advantages require

considerably more development time. Also, each new feature or design error found

after taping out of the chip requires a new set of masks for silicon fabrication as well

as more time for a new tape out process. The ever increase complexity of designs

aggravates it, since huge e�orts and time in veri�cation are needed to avoid errors.

3.1. Accelerators 25

This yields a very high cost which is only mitigated in applications that need high

volumes of chips [88]. Furthermore, since ASICs have speci�c purpose, they provide

very limited programmability [54].

FPGAs are COTS silicon devices that provide programmable digital circuits. Simply

speaking, FPGAs contain several basic elements such as con�gurable logic blocks,

registers and memory that are connected via programmable interconnects. This al-

lows designers to develop custom hardware that takes most advantage of parallelism

and data path of an application, in other words, the hardware can be con�gured

at run time to best �t speci�c applications [43]. As with ASICs, FPGAs o�er po-

tential �exibility for many workloads [64], but with no fabrication process, faster

development time and the ability to update or �x the design at any time by sim-

ply reprogramming the FPGA [26]. On the other hand, FPGAs do not match the

performance of ASICs because of their internal structural overhead [39].

3.1.1 Workload Characteristics

As mentioned before, GPPs are capable of providing su�cient performance for

many applications but may not be enough in all use cases. These more demanding

functions can be broadly classi�ed in two types, Compute-intensive and Network-

intensive [7]. They are mainly characterized by the amount of computation needed,

latency and how dynamic is the data.

Compute-Intensive functions requires heavy computations and GPP resources in

relatively static data. Example of such functions are big data, security, machine

learning training and inference, media and games [7]. This type of workload can

be further divided into responsive or not. Non-responsive Compute-Intensive work-

loads process huge chunks of data while latency can be on minutes to day's range.

Examples of such applications are machine learning training and scienti�c calcula-

tions. Responsive ones on the other hand require relatively short latency values on

moderate amount of data. Example of such application is non-real-time machine

learning inference.

Both responsive and non-responsive Compute-Intensive applications can be acceler-

ated using look-a-side model. In this type of acceleration data can be transferred

from GPP's memory to accelerator using batches, a group of inputs, where the

whole batch is processed and results are send back to GPP's memory. The size of

the batches can then be adjusted to match the latency requirements.

Network-Intensive functions on the other hand process highly dynamic amount of

3.1. Accelerators 26

Compute NodeAccelerator Node

Co-processor Node

HWA board

HWA

RAM

GPP board

GPP

RAM

Network

HWA board

HWA

RAM

GPP board

GPP

RAM

Network

PCIe Ethernet

Ethernet

Ethernet

Cloud Co-processor Node

HWA board

HWA

RAM

GPP board

GPP

RAM

Network

PCIe

Ethernet

(a)

(b)

(c)

Ethernet

Figure 3.1 Hardware accelerator attachment options: (a) Tightly coupled; (b) Network
attached; (c) Tightly coupled and network attached. Adapted from [39].

data with very short latency [7]. This type of function tends to exhaust memory

bandwidth of GPPs architectures [55]. This workload is usually processed in a

stream manner and examples of applications are NAT, load balancing, streaming

video processing and machine learning inference with tight latency requirements.

Network-Intensive workloads are good candidates for in-line acceleration model.

This type of acceleration processes the packets while they traverse through the

accelerator.

3.1.2 Connectivity Options

One can point out three main options in how to connect HWA with GPPs as shown

in Figure 3.1: Tightly coupled (a), Network connected (b) and combination of

both (c) [39]. Figure 3.1 shows these options using PCIe (Peripheral Component

Interconnect Express) and Ethernet as examples of interfaces.

3.1. Accelerators 27

The most prevalent type of accelerators systems are the ones composed of GPPs

and co-processors [39], where the GPP o�oad compute intensive tasks to the co-

processor that is tightly coupled to it [29]. Tightly coupled GPPs and HWA are

usually connected to each other using some coherent memory mechanism or direct

memory access (DMA) [10, 39]. The accelerator chip can be located in a daughter

attached card, in the same board as the GPP or even in the same die [33, 73]. For

GPUs and FPGAs the most common option is adding a daughtercard using PCIe

[39, 73].

Tightly coupling accelerators with GPPs in the same board or die provide better

latency values and can potentially easier DMA and coherence [64]. However, this

approach su�er from scalability, resilience, size and power issues [73, 64]. They are

expected to be used for very speci�c applications [73]. Using daughtercards and

PCIe connectivity partially solves scalability since more chips and/or cards can be

added, but if an application needs more devices than the number available it cannot

be implemented. Also, if less are needed the system is over-provisioned [64]. In

neither case tightly coupled accelerators scale across servers [10].

Network-only connect accelerators are directly hooked to the datacenter's network.

Co-processing in this approach may not be e�cient due to the higher response time

and the need of constant communication with the host [39]. Thus, the accelera-

tor has to work as standalone and capable to communicate with other resources

over the network [73]. This approach increases scalability and �exibility compared

with tightly attached option, since in this con�guration accelerators can be accessed

remotely, deployed independently of the number of hosts and allow user de�ned

topologies [74].

Both previous options are good for some workloads but are not generic enough. A

third and more �exible alternative is to provide both attachments, tight coupling

and network connectivity [39]. This con�guration covers more application scenarios,

such as, local acceleration over the tight connection, network acceleration over the

network connection and global acceleration using pool of remote HWA available

from the network [11].

In more details, local HWA occurs when the accelerator works as a co-processor for

the GPP and is ideal for Compute-Intensive tasks, as long as the local accelerator has

enough capacity to handle it. Network acceleration are good for Network-Intensive

workloads like processing incoming or leaving packets of the host. In the case where

one accelerator is not enough for large-scale applications, network connectivity pro-

vide a pool of accelerators that can be used remotely to distribute the tasks [11].

3.1. Accelerators 28

HWA GPP

HWA GPP

HWA GPP

HWA GPP

GPP

HWA CPU

GPP

GPP

HWA

GPP

GPP

HWA HWA

HWA

Network

HWA GPP HWA GPP GPP

Symmetric Distributed Non-symmetric Distributed Cluster

Figure 3.2 HWA deployment topologies alternatives.

3.1.3 Deployment Topologies

In [11], it is mentioned that there are basically two ways to introduce HWA in a

datacenter: cluster and symmetrically distributed. This work goes further and also

presents a third option, a non-symmetric distributed. Figure 3.2 shows these three

deployment topologies.

Cluster of HWA break datacenter homogeneity and limits scalability [11]. Never-

theless, it minimizes disruption to the infrastructure and optimize hardware cost.

Non-symmetric distributed topology maintains optimized costs by providing �exible

accelerator and server ratio while allowing the provider to introduce HWA contin-

uously, in smaller steps as needed, to an already existing infrastructure. Also, it

applies better than the cluster option for some workloads, i.e. local acceleration.

However, the homogeneity is also broken, and management become more complex.

For example, mapping some application requires details whether HWA is available

in a speci�c node or not.

Symmetric distributed topology on one hand provide e�cient scalability, easies the

management, maintain the highly desirable homogeneity [11] and is generic enough

for a wide range of workloads. On the other hand, in most cases it requires the

3.2. FPGAs in Cloud 29

highest hardware investment and may result in underutilization.

Furthermore, the topology choice may be in�uenced by the physical restrictions

in the infrastructure, such as, power limits for the accelerators, physical space,

resilience and temperatures [11]. For example, a provider who wishes to insert

HWA without buying new servers may have problems to go with the distributed

options due to restrictions in its current servers.

3.2 FPGAs in Cloud

The diversity of cloud workloads and its fast change rate is a challenge for HWA.

It is highly desirable that any hardware inserted to the infrastructure can adapt to

this during its lifetime, in other words, HWA needs programmability. This make

FPGAs and GPUs preferable over ASICs whenever possible [11].

GPUs and FPGAs are both already deployed in cloud environments at reasonable

scale [11]. GPUs architectures are e�cient when processing images and video data,

but since they are designed for its speci�c domain, they may not be so e�cient

or even decrease performance when processing di�erent types of workload, such as

signal processing and ciphering [43]. In fact, GPUs are not suited for tasks that do

not contain a fair amount of well-structured data-level parallelism [29]. Furthermore,

GPUs power and size requirements are bigger than FPGAs [11], which may make

GPUs signi�cantly less energy-e�cient [37].

Providing FPGAs as resources in cloud infrastructure �lls the gap among e�ciency

provided by ASICs and �exibility of GPPs [43]. As a matter of fact, AWS already

provide FPGA as resources [4] while Azure currently o�er it in preview mode for ex-

ternal users [50] and have worldwide deployment trials for its own purposes [64, 11].

An overview of developed HWA with FPGAs used for common cloud applications

along with their main metrics is presented [35].

Additionally, resilience and reliability at hyper-scale is required when deploying

FPGAs in cloud. Currently only Microsoft have such a high-volume system in

production. They report only 0.03% of board failure in one month, all of them

during the beginning of deployment, which is an acceptable level specially because

the scale of datacenters provides su�cient redundancy [11]. The only restriction is

that the management system should be able to detect and isolate problematic nodes.

The diverse range of workload types in NFV use cases [25] turn FPGA into even

more promising candidate to be used as HWA in NFV systems. Yet, FPGAs do

3.2. FPGAs in Cloud 30

come with their own di�erences and challenges when developing applications to run

on it. One can classify these challenges in programming languages and design �ow.

3.2.1 Programming Languages

Traditionally, applications for FPGAs are created using low level Hardware Descrip-

tion Language (HDL), such as VHDL or Verilog, this impose a challenge since it is

a barrier for most software developers [69].

FPGA and system vendors have been putting high e�ort in the last years to reduce

such a barrier by using well known high-level languages, such as C++, OpenCL and

C, to abstract away hardware details. This abstraction is referred as High Level

Synthesis (HLS) [35, 69]. Such abstraction usually results in reduced performance

when compared with optimized HDL code, but for a wide range of designs, HLS

tools can provide average performance around 90% when compared with optimized

HDL [29]. Furthermore, usage of HLS facilitates code reuse and portability, even

among di�erent accelerators, i.e. the same OpenCL code can be deployed in FPGAs

and GPUs [34].

Still, to obtain good results the developer should have understanding of hardware

aspects [53], especially for I/O interfaces such as PCIe, Ethernet and o�-chip DRAM

[69]. This can be mitigated by frameworks that completely abstract the FPGA board

and its I/O from the developer [69]. Some example of such frameworks from major

vendors are Xilinx c© SDAceelTM [81] and Intel R© FPGA SDK For OpenCLTM [34].

Frameworks and pure HDL tools allow also another alternative to reduce the burden

of developing HDL components. It is the use of Intellectual Property components

designed by specialized developers, being third party entities or not. Making Intel-

lectual Property components easily available and facilitating its integration by de-

velopers with no prior experience with HDL allow applications to leverage the better

performance obtained by optimized HDL code seamlessly [35]. This approach works

similarly as with software libraries, and as such, require usage of standard interfaces

and is usually provided for tasks that are frequently required.

3.2.2 Design Flow

FPGAs also require a completely di�erent design �ow and set of tools than the

ones software engineers are used to for compiling the applications. Instead of a

set of instructions, the end result of a FPGA �compiler� is a binary �le that mainly

3.3. FPGA Virtualization 31

describe the internal connectivity of the basic elements inside the device. This binary

�le, also called bitstream, is then loaded into the FPGA to implement the desired

circuit and functionality [26].

The �ow to obtain such bitstream is composed of a chain of automated tools that

know the details of the available elements and their possible connections in the

device target and translate the HDL descriptor accordingly [39].

One can simply describe the �ow chain as follows: First, if the design is developed

using HLS languages, it is translated to HDL. A synthesis step then take place where

the HDL functionality is mapped to the basic elements available in the device. Then

in the placement phase, the tool chooses among the elements which one to be used

based on its location in the silicon �oor. Later, in the routing phase the tool explores

the best possible routes to connect the mapped elements. Finally, a time analysis

take place, this phase checks each existing path among the elements and verify if

they meet time requirements, in other words, it check if the desired clock frequency

can be used, ensuring that the hardware functions as expected.

In practice, each step search among a wide range of possibilities and choose optimal

con�gurations with the goal of reaching requested time constrains, while keeping

the number of elements (area) and power consumption as low as possible. Due to

the wide range of possibilities, designers can constrain the tools to look for solution

that optimize time, performance or energy consumption. The whole �ow is a heavy

and complex process, as such, compiling a design can take from minutes to several

hours for each of the steps depending on the complexity [39].

3.3 FPGA Virtualization

Besides challenges from the developer point of view, providing FPGAs as HWA

resources in cloud is no simple task for the infrastructure provider either. There are

at least four essential requirements that need to be addressed [14]:

1. Sharable: As with all resources in cloud, FPGAs should be sharable among

multiple tenants and applications in order to maximize resource utilization.

2. Abstracted: FPGAs must be exposed to tenants as a pool of resources that

can easily be requested, allocated and deallocated. Programmability of the

FGPAs must be exposed to tenants, similar as with GPPs and GPUs, in other

words, FPGAs should not be considered as an ASIC, but a programmable one.

3.3. FPGA Virtualization 32

3. Secure: FPGAs should provide proper isolation when multiple tenants and

applications are sharing the same resource and one cannot impact the other

on purpose or not.

4. Scalable: To not limit applications to resources of a single FPGA at most,

tenants should be able to easily scale applications among multiple FPGAs

and create their own topology.

Furthermore, to increase productivity, it is highly desirable to expose APIs for con-

trolling the FPGA as well as interfacing application logic and board-level functions

while supporting resilience and debugging [64].

In the following it is discussed how those essential requirements are or can be pro-

vided.

3.3.1 Sharing

The fact that GPPs applications are a set of instructions allow the same core to

execute several applications from multiple users, in practice, the virtualization takes

place by sharing the same resource by time slicing and scheduling the instructions

from each application accordingly. Even though the synthesis time required by

FPGA's design can be mitigated by creating the bitstream beforehand, the process

to program an FPGA is still too slow to allow multiple applications and users to

share the same area of the device in a time slice manner, limiting its scalability [64].

To allow more applications and users one could simply deploy multiple FPGAs for

that, but it easily become costly, consuming more power and wasting resources when

not needed. Partial Recon�guration (PR) is a key enabler for sharing FPGAs and

can be used to allow multiple applications to run on the same FPGA by dividing

the device's area, instead of time slicing [64].

PR is a technique where only part of the FPGA is recon�gured during run-time

instead of the whole device. Beforehand a speci�c area is reserved to be static, this

region is never recon�gured during run-time and usually contain all the management

circuitry and communication interfaces, such as PCIe and Ethernet. The remaining

area of the device can be divided into multiple Partial Recon�gurable Regions (PRR)

that can be recon�gured during run-time without interfering in others PRR [26].

3.3. FPGA Virtualization 33

3.3.2 Abstracting

Infrastructure level of abstraction for FPGAs can be achieved by exposing them

as a resource in a cloud management system such as OpenStack [58]. Following

the cloud nomenclature, in its core this functionality is provided by a hypervisor

that allows users to implement and execute their guest Operating System. In the

FPGA context, the hypervisor is a set of hardware (shell) and software (manager)

components that allows user to program and run their own hardware design [39, 8].

In the hardware side, abstraction is achieved by utilizing a static area that is pro-

grammed during start-up and not accessible by the user, the shell. The shell ab-

stracts away all the board connectivity, such as PCIe and Ethernet, while providing

common standard interfaces, such as AMBA [3, 2], to the user's hardware, in this

work called Accelerator Hardware Unit (AHU). This release the heavy burden of sys-

tem integration from the user and makes the design reusable among di�erent devices

and boards as long as the shell remains compatible, speeding up development and

increasing portability [64]. Furthermore, the shell communicates with the manager,

providing status and debugging information while receiving global or user-speci�c

con�gurations commands.

Multiple �avors of HWA can be exposed to users via the manager. It could be

for example the whole FPGA or part of it, in both cases PR can be leverage to

provide abstraction [39], allowing �ne grain selection of resources. Once a resource

is selected, the desired acceleration functionality is programed into the FPGA with

a compatible bitstream image previously uploaded to the manager, i.e. using glance

service in OpenStack [8].

3.3.3 Securing

From the security point of view, the infrastructure must guarantee that users can-

not propositionally crash other's applications or the system. Also, it must provide

complete data isolation [14].

The former requirement can be provided by a robust hypervisor that ensure security

access in the manager level [39] and that utilize PR. With Partial Recon�guration

users can only a�ect their own region in the FPGA and the shell must be designed

so that it is able to detect faulty AHU and prevent it to a�ect others [14].

Data isolation for tightly coupled connections can be solved using DMA. The hy-

pervisor supervises all DMA operations and allow only legal and correct ones, thus

3.3. FPGA Virtualization 34

users can only access the memory regions they are allowed to [14]. For network

connected devices, common network security approaches can be used while the hy-

pervisor must ensure that the users can only receive and generate packets from and

with addresses which they are allowed.

3.3.4 Scaling

FPGA attached through tightly coupled connections have scalability limited to a

single server [10]. Hence, to enable truly scalable FPGAs and allow global accelera-

tion [11], at least network connectivity is needed. The hypervisor should allow the

user to request as many FPGAs as the design requires, which could be from couple

to thousands of devices [10].

Furthermore, it is needed to allow the user to easily create its own topologies for

network connection when requesting multiple FPGAs. Integrating SDN capabilities

into the manager and shell allow the user to create extremely �exible and scalable

architectures that enable powerful solutions.

Besides the four essential requirements above, another is compatibility. It addresses

the issue that design �ows, tools and libraries for developing FPGAs applications are

still very dependent on the vendors and devices. A framework that provide common

ecosystem and seamlessly migration among devices versions and vendors available

should be exposed. Contrary to [14], here scalability requirement was promoted as

essential in place of compatibility. This is done so because this work concentrates on

the IaaS layer of the cloud environment. One could argue, but here it is assumed that

compatibility could be better addressed in a higher level of abstraction, similar with

the PaaS in common cloud, while the four essential requirements must be addressed

already in the infrastructure layer.

35

4. RELATED WORK

In this chapter closely related works are reviewed, this means that the list is re-

duced to e�orts that focus on FPGAs and in at least one of the subjects: HWA

virtualization or abstraction; Scaling HWA; HWA for NFV or SDN;

They are divided in four sections: Hardware acceleration only contains e�orts that

do not provide scalability; Partially scalable hardware acceleration reviews works

that have some level of scalability; Fully scalable hardware acceleration provides

review of e�orts that allow deployment of scalable hardware acceleration in the

range of thousands or more; Finally, Hardware acceleration in NFV provides review

of related works that focus on it.

4.1 Hardware Acceleration Only

Even though this work focusses on enabling FPGA in a cloud environment for dis-

tributed acceleration of NFV systems, FPGAs are currently mainly used for accel-

eration of speci�c applications. It is worth to mention some available solutions that

focus on this area.

IBM's Coherent Accelerator Processor Interface (CAPI) [75] enables acceleration

of Compute-Intensive applications on POWER8 processors by simplifying the com-

plexity of programming the I/O system. The system connects GPP and FPGA

through PCIe and provide coherent memory between them, allowing the application

to share its memory space with the hardware accelerator and transfer data through

simple memory access commands.

Intel's Hardware Accelerator Research Program (HARP) [33] follow similar approach

as CAPI, abstracting away the system integration and providing coherent memory.

HARP di�er from CAPI because it can also connect Xeon R© processor with an in-

package FPGA. In this con�guration, when GPP and FPGA are in the same pack-

age, they can be connected through Intel R© QuickPath Interconnect (QPI), which

improves system bandwidth when compared with PCIe.

4.2. Partially Scalable Hardware Acceleration 36

In the same line as CAPI and HARP, CCIX Consortium [12] promotes a standard

speci�cation to enable coherent interconnect, but instead of FPGA only, the Con-

sortium aims to include more accelerator devices, such as GPUs and ASICs.

All frameworks presented in this section enable easier integration between GPP

and FPGA and allows e�cient communication. Neither of the solutions above o�er

scalability, in other words, if one or a limited number of FPGAs is not enough, it

cannot be used, or workarounds must be taken, which decreases performance.

4.2 Partially Scalable Hardware Acceleration

In this section it is described works that provide some level of scalability but have

some limitation and are not considered fully scalable.

In [26], a framework was developed to integrate FPGAs in cloud using a card con-

nected via PCIe. The system supports multiple accelerators using partial recon�g-

uration. A shell hardware in the FPGA provides control and standard interfaces

to the accelerators and maintain fair bandwidth among them. Also, the software

stack was developed to facilitate integration. The software contains FPGA driver

for PCIe operation, an API for transfer data between host and FPGA, an hypervisor

for resource and security management and a middleware that uses Linux sockets to

enable clients to access the cloud services. To ensure that no malicious bitstreams

are used, the system authenticate them using bitstream watermarking. The usage of

virtual machines in this work is not mentioned and users can only access accelerator

through Linux sockets.

Similarly to [26], [14] presents a framework to integrate FPGAs but leverages Open-

Stack and integrates the system to virtual machines with Linux KVM. It uses a

Xilinx's board connected via PCIe and leverages PR for sharing the same device as

well. The framework is divided in four layers: hardware; hypervisor; library and

application. Hardware layer implement the shell functionality. The hypervisor layer

provides the drivers to access the FPGA and the controlling and monitoring sys-

tem. The library layer exposes an API for the applications and maintain a library

of bitstream �les. The application layer consists of a modi�ed version of OpenStack

that enables users to upload bitstreams and allocate accelerators. DMA is used to

transfer data from and back to acceleration, which causes overhead when using VMs

since translation between guest and host memory space is needed in this framework.

The work compares two techniques to solve this, one is copying the data from guest

to host and other is translating addresses. In any case, transferring data among

multiple FPGAs add signi�cant overhead.

4.3. Fully Scalable Hardware Acceleration 37

vFPGAmanager in [63] is a framework that virtualize the communication between

FPGA and VMs or containers using DMA with PCIe that leverages SR-IOV for fast

data transfer. This framework exposes an API that could be used by some VIM

orchestrator. Scalability is limited by the tight couple between FPGA and GPP but

the use of SR-IOV should provide better performance than the framework presented

by [14].

Microsoft's Catapult project [64] is probably the �rst medium-scale deployment of

FPGAs in a production level cloud. The work describes multiple techniques used to

enable such accomplishment and the improvement of 95% in the Bing search algo-

rithm. Contrary with the previously mentioned works, the Catapult's architecture

does not contain only PCIe or network connectivity, instead, it leverages PCIe and a

secondary dedicated network among up to 48 FPGAs. Also, it uses an in house de-

veloped board that is compliant with their requirements. As with others, the FPGA

contains a shell that provides easy integration of the user's hardware. Although no

details about the proprietary software is provided, they describe additional services

that were added to it in order to ensure correct operation, failure detection and

recovery as well as debugging.

Amazon o�ers up to 8 FPGAs as resources in its AWS cloud [4]. The devices are

connected through a PCIe fabric and share a memory space. The largest �avor is

connected with a bidirectional ring for low-latency and high bandwidth communi-

cation. Even though in the cloud, it is still limited to 8 FPGAs.

4.3 Fully Scalable Hardware Acceleration

In [8], the authors show a framework that uses Ethernet as data transfer instead of

PCIe and leverage a modi�ed OpenStack to virtualize FPGAs in the cloud system.

The FPGAs are instantiated and tear down by the users as it is done for VMs. Each

partial recon�gured area of the FPGAs is presented as it would be for the whole

FPGA and the shell provides the interface abstraction. A special user has access to

scripts that allow them to compile their own accelerator and upload them for use

while basic users can only use precompiled hardware. The scripts for compilation

allows users to use HLS for fast development. The shell uses MAC (Media Access

Control) address to route packets to the correct accelerator and enforce the right

MAC addresses in the output, avoiding sni�ng and spoo�ng of data. The manage-

ment is done through UART and a soft processor inside the FPGA. Even though

network connectivity provide scalability, the use of plain Ethernet limits �exibility

of the network.

4.3. Fully Scalable Hardware Acceleration 38

In the same line as [8], [73] also proposes to connect FPGAs thorough the network

but argument for more �exibility by adding a Network and Transport Stack that

provides hardware implementation of L3-L4 protocols. This wider the scope to ap-

plications that use, for example, TCP, UDP or RoCE protocols. Furthermore, this

stack applies SDN principles, thus only data plane is implemented in the acceler-

ator while control plane runs on decoupled software. The cloud integration is also

achieved by leveraging a modi�ed OpenStack where FPGA is considered a stan-

dalone resource and is not attached to some VM. The framework allows the user to

create large and distributed applications with its own topology and provide an API

to interface it.

Another framework that provides network connectivity is present in [39], with the

main di�erence this also includes PCIe connection. The authors described their own

framework that, contrary to others not proprietary ones, is not based on OpenStack.

A shell for abstraction is showed, PR is leveraged, and the design �ow allows users to

use HLS to improve development speed. Furthermore, interesting services models

are proposed: Recon�gurable Silicon as a Service (RSaaS) provide full access to

an entire FPGA board along with the framework's development �ow, drivers and

VM. The concept similar to IaaS in cloud. Recon�gurable Accelerators as a Service

(RAaaS) provide access to PR regions only and user develop the accelerator and use

the provided API to interface with the FPGA. This model could be mapped to PaaS.

A third model that could be comparable with SaaS is Background Acceleration as

a Service (BAaaS), where the FPGA is not directly available, instead, users bene�t

from applications that are accelerated by the FPGA in the background.

At last, even though very powerful, the �rst version of Catapult's architecture still

had some limitations, for example, scalability of the system was limited to 48 nodes

and a secondary network was expensive and complex. To overcome those limitations

Catapult evolved to Con�gurable Cloud architecture presented in [11], which is

currently deployed world-wide in all new Bing and Microsoft Azure cloud servers.

In this version, all tra�c goes through the FPGA that is connected between the

server's NIC and Ethernet switches while still providing PCIe connectivity too.

The authors argument that this provide enormous �exibility, especially because it

allows local, network and global accelerations, widening the range of applications.

The world-wide level of deployment of this system is a strong argument in favor

of the potential FPGAs have in cloud. It is further con�rmed with some recent

examples where the infrastructure is used, such as project Brainwave [17] and Azure

Accelerated Networking [27].

4.4. Hardware Acceleration in NFV 39

4.4 Hardware Acceleration in NFV

Neither of the previous mentioned works take into account NFV. This section reviews

some works that cover the deployment of HWA in NFV.

The work presented in [36] proposes the use of FPGA for NFV and SDN. The

authors argument that FPGA can provide the �exibility of virtualization and high

performance of specialized hardware for NFV systems but no detailed solution is

showed.

In line with this idea, in [28] FPGA accelerators are integrated using OpenStack.

The work shows how FPGA resources could be provided to VNFs for acceleration

in a very similar way as [39] and [26], leveraging PR and using PCIe connectivity.

Results shows an order of magnitude improvement for functions such as NAT, DPI

and Dedup. Again, scalability is limited due to the tightly coupling between FPGA

and GPP and solution for this is not described.

Deployment of HWA in a NFV system requires strong hardware and software sup-

port. In the software side, full NFV's MANO implementation is required to achieve

such goal and it is out of the scope of this work, as such, attempts to provide com-

plete MANO stack are not reviewed here. Still, for sake of completeness, one can

refer to the works in [52, 87] for a comprehensive review on e�orts in this area.

Still, it is not possible to enable FPGA as HWA in NFV systems without software

support. Even though the MANO architecture may be a bit fuzzy depending on

the implementation, in this work the software is limited to the VIM component in

MANO's architecture. In other words, the focus is in managing the virtualization of

the FPGA similarly as the ones previously reviewed works presented in [14, 39, 8, 73].

Another example of a software architecture of a framework for management and

control of a infrastructure that enables creation of heterogeneous NFV service chain

is presented in [45]. Their concept is not limited to FPGA only, but allows man-

agement of GPUs and IoT sensors, for example. The framework is deployed in

the SAVI testbed, a multi-tier and SDN-enabled cloud which contain heterogeneous

compute, wireless, and IoT resources. It allows �exible chaining of heterogeneous

VNFs leveraging OpenStack for compute virtualization and OpenFLow for network.

In this work no details about the hardware is shown.

From all the works reviewed here, it is clear that Microsoft's Con�gurable Cloud

[11] is the most advanced one, nevertheless it is worldwide deployed. Still, being

a proprietary technology, details about the whole framework is not disclosed. Be-

4.4. Hardware Acceleration in NFV 40

sides that, neither of the other e�orts provide the same �exibility and scalability.

This work describe an early stage of a framework which goal is to be as �exible as

Con�gurable Cloud while aiming acceleration of NFV's services chains.

41

5. METHODOLOGY

This chapter presents hardware and software tools and libraries leveraged in the

development and measurements of the architecture proposed in this work.

5.1 Hardware and Laboratory Setup

A high-level view of the main components and hardware used in this thesis is shown

in Figure 5.1.

The laboratory setup contains three servers with dual socket Intel R© Xeon R© E5-2680

v4 @ 2.40GHz CPUs of 64-bit and x86 architecture, the CPUs have 14 physical cores

each and hyperthreading enabled, providing 56 treads in total and 128 GB of DDR4

memory. The Network Interface Controllers (NICs) used for network communication

are Intel R© 82599ES 10 Gigabit Ethernet Controller. In the network path a switch

model QFX5100-48S from Juniper R© Networks was applied to connect NICs and

FPGAs.

Three Xilinx R© Kintex R© UltraScaleTM FPGA KCU1500 Acceleration Development

Kit boards were used. Each board contains a XCKU115 FPGA device, 16GB of

DDR4 memory, two x8 interfaces bifurcated to x16 edge connector PCIe Gen3 and

two Ethernet QSFP cages. Details about the board can be found in [85].

FPGA development, simulation, veri�cation and debugging were done with Vivado

Design Suite [84]. Multiple components, known also as Intellectual Property compo-

nents, provided in Vivado were leveraged for the design, such as 10G/25G Ethernet

Subsystem, DMA/Bridge Subsystem for PCIe and Integrated Logic Analyzer (ILA)

for debugging. Own logic with VHDL was used to develop the CRUN's shell top

level, ROUT RX component and a glue logic for interfacing with de metadata in-

terface of P4 RX and TX components.

The integration of SDN into FPGA allow users to easily create �exible and scalable

distributed architectures. This thesis leverages Xilinx R© SDNetTM packet processor

[82]. This tool generates components that can be integrated in the FPGA for a wide

5.2. Software and Libraries 42

HOST

NIC

PCIe

FPGA

PCIe

ETH ETH

HOST

NIC

PCIe

FPGA

PCIe

ETH ETH

TRex

FPGA

ETH

IXIA

ETH

HOST

NIC

PCIe

FPGA

PCIe

ETH ETH

TRex

(a) (b)

(c)

SWITCH

SWITCH

B A

A B

AB

Latency Measurement points

Figure 5.1 Main components, hardware and test cases: (a) shows the setup for hardware
performance measurements; (b) presents the setup for software measurement of a single
accelerator; (c) provides the setup to obtain distributed accelerator metrics.

range of packet processing functions. Designs can be described using P4 language

[72], which is a standard to describe SDN's programmable data planes [82].

5.2 Software and Libraries

The host runs CentOS Linux release 7.5.1804 Operating System [70] and virtualiza-

tion of x86 hardware is achieved with KVM hypervisor [42]. To control virtualization

and interact with KVM hypervisor libvirt is leveraged, more speci�cally its libvirt-

python library wrapper [44]. Since libvirt is heavily dependent on XML �les for

describing VMs and con�guration, lxml library [47] is also employed.

For DMA and control access to the FPGA through PCIe a driver provided by

Xilinx R© is used [86]. For high performance when accessing NIC's PCIe interface

from a VM, SR-IOV [49] is employed.

5.3. Test Cases 43

5.3 Test Cases

To proof the architecture functionality and obtain performance values, the test cases

in Figure 5.1 were realized together with a third party trial.

For network measurement of the hardware only, IXIA board NOVUS-R100GE8Q28

tra�c generator was employed. IXIA was directly connected to the FPGA Ethernet

port, as shown in Figure 5.1 (a), for precise measurement of shell throughput

and latency without switches or software bottlenecks in the path, providing precise

hardware measurements at nanoseconds scale.

To validate the hardware and obtain performance measurement from the application

point of view, TRex version 2.45 [18] is used. TRex is an open source tra�c gener-

ation tool that runs on Linux and employ DPDK [71] to obtain high performance.

The throughput and latency measurements obtained from TRex include the Linux

software stack and provide a more realistic view of the performance achieved by an

application running on the host, in other words, it includes the software limitations

and not the hardware only as with IXIA, for the same reason it is not as precise as

IXIA values.

Figure 5.1 (b) shows the test case used to obtain performance values with TRex

for the case where only one accelerator is used, while Figure 5.1 (c) provide the

performance values for a distributed acceleration case. The metrics obtained from

(b) and (c) include also the switch, which a�ects mostly the latency of the system.

44

6. CRUN ARCHITECTURE

This chapter presents the proposed architecture, which is divided in hardware and

software sections. The architecture is named CRUN, as a pun from its main moti-

vation, Cloud RAN, where CRUN means �a cloud that does not walk, it RUNs�.

It is important to note that the architecture shown here is a proposal providing the

desired functionalities and not the �nal solution. Currently it is being developed and

not yet completed. The details of what has been actually implemented is presented

in Chapter 7.

6.1 CRUN FPGA's Hardware

The hardware is described in a top-down fashion, meaning that �rst server and

datacenter are described along with the view of the infrastructure, then the FPGA's

shell is presented followed by the Accelerator Hardware Unit (AHU) details.

6.1.1 Server and Datacenter

The high-level view of the server with acceleration can be seen in Figure 6.1. This

�gure shows only the relevant components for this thesis and does not try to repre-

sent all the existing ones.

As shown in Figure 6.1, FPGA has its own on-board memory and both NIC and

FPGA are connected through PCIe. Also, FPGA provides two PCIe drivers, one

for accessing its control logic and another for data transfer through DMA. The host

contains an hypervisor that provides VMs and expose the PCIe's Physical Functions

(PFs) of both FPGA and NIC as Virtual Functions (VFs) to the user's VMs using

SR-IOV. The BRO-CLIENT is part of the management software application and is

responsible of managing the host OS, the hypervisor, NIC and FPGA.

The main physical di�erence required for the server is the addition of a FPGA

daughtercard connected through PCIe. This is an approach similar to the one used

in [11], but here the NIC is connected directly to the network instead of the FPGA.

6.1. CRUN FPGA's Hardware 45

FPGA
FPGA

DRAM

ETH

MEM IF

HOST

PCIe

BRO-

CLIENT
HYPERVISOR

NIC

PCIe

ETH

VMn

NIC VFn

DRIVER

FPGA DMA VFn

DRIVER

NIC PF

DRIVER

FPGA DMA

PF DRIVER FPGA CTRL

PF DRIVER

VM0

NIC VF0

DRIVER

FPGA DMA VF0

DRIVER

Figure 6.1 Server architecture.

The Figure 6.2 shows a high-level view of a datacenter setup composed of three

servers as an example. The acceleration framework in this thesis leverages dis-

tributed connectivity instead of clustering since it adapts to more workloads and

acceleration scenarios then the cluster option.

Here, it is assumed that the datacenter is a symmetrically distributed system in

terms of deployment topology, i.e. each server in the datacenter has its own ac-

celerator board as discussed in Subsection 3.1.3. The option for non-symmetric

distribution depends on support for it in the management software, since it inserts

more constrains when mapping the VMs and accelerators.

Referring again to Figure 6.2, it also contains the data path for the three acceleration

scenarios that the system aims to support, as is the case presented in [11]. In local

acceleration, path 1 from and back to VM in HOST 1 (green dashed line), the

data is transfered through PCIe via DMA straight to accelerator and back. In

network acceleration, path 2 from VM in HOST 2 to INTERNET (black dashed

line), the packet is in-line processed after leaving the VM and before going out of

the datacenter. In distributed acceleration, path 3 from and back to VM in HOST

3 (yellow dashed line), data is transfered to a chain of two FPGAs through the NIC.

6.1. CRUN FPGA's Hardware 46

HOST 1

HOST 3

NIC

PCIe

FPGA

PCIe

ETH ETH

SWITCH

HOST 2

NIC

PCIe

FPGA

PCIe

ETH ETH

VM

NIC

PCIe

FPGA

PCIe

ETHETH

BRO-

CLIENT

BRO-

CLIENT

BRO-

CLIENT

BRO-

SERVER

INTERNET

VM VM

(1) Local Acc.

(2) Network Acc.

(3) Distributed Acc.

1

2

3

Figure 6.2 Datacenter architecture with hardware acceleration model.

Note that the �exibility of the system allows several combinations of paths. For

example, depending on the requirements, local acceleration could use the NIC path

to access a remote and free FPGA, leaving the local one to others VMs with more

critical tasks. In network acceleration more than one FPGA could be on the process-

ing path, becoming a mix of distributed and network acceleration. In distributed

acceleration scenario, the �rst FPGA could receive packet from DMA instead of

NIC.

6.1.2 CRUN Shell

The Figure 6.3 shows the CRUN shell architecture and its main components in a

high-level view. In the center of referred �gure one can see multiple AHUs, each one

6.1. CRUN FPGA's Hardware 47

FPGA

P4 RX
ETH

RX
R

O
U

T
 R

X
P4 TX

ETH

TX
A

R
B

 T
X

CTRL

PCIe DMA

PCIe CTRL

MEM IF

AXI4-Stream

AXI4-Lite

AXI4

CSR

MEM ARB

AHU 0

Figure 6.3 FPGA architecture.

being a Partially Recon�gurable Region (PRR) that can be programmed indepen-

dently of the others. This is widely used practice for sharing the FPGA, as can be

seen in most of the works presented in Chapter 4. All remaining components except

the AHU are static and belong to the shell logic.

Depending on the FPGA device and needs of the users, multiple shell versions

can be deployed, each with di�erent number of AHUs and sizes. It allows a �ne

tune of available resources. When changing the shell version during run-time, the

management system should �rst take care that no AHU is currently being used in

the target FPGA, since updating the shell requires full reprogramming of the device.

Each color (or line) in the Figure 6.3 represents one clock domain. Clock domain

crossings from AHUs to the interfaces are provided by the shell. Furthermore, AHUs

are served with prede�ned clock frequency inputs and the user can choose which best

suits their hardware.

6.1. CRUN FPGA's Hardware 48

Stream Path

The blue components (ETH RX, P4 RX, ROUT RX, ARB TX, P4 TX and ETH

TX) compose the Ethernet stream path. All of them function on line rate so the

system supports full throughput and never stalls. This path provides functionality

similar to the ones presented in [8, 73] and enable full scalability of the system.

ETH RX main responsibility is checking and translation of incoming physical Eth-

ernet packets from the I/O transceivers into the equivalent AXI4-Stream ones. An

Ethernet frame packet is composed of multiple �elds and the standard can be checked

in [32]. The ETH RX component removes the preamble, Start of Frame Delimiter

and Frame Check Sequence �elds in the Ethernet frame while checking for possi-

ble errors. Those �elds do not carry any user information. The component then

provides the relevant �elds (Destination and Source MAC addresses, Ethertype and

Payload) as output in the form of AXI4-Stream packet.

P4 RX is a SDN component created using SDNetTM and was developed together with

a third party. A received packet is �rst parsed by P4 RX in order to identify the �ow

it belongs to based on 5-tuple de�nition, which is composed by �ve �elds of an IP

(Internet Protocol) packet: protocol, source and destination IP addresses, and source

and destination ports. One AHU can receive packets from more than one �ow as well

as send packets with di�erent �ows. This allows multiple sources and destinations

to use the same AHU. Thus, each packet is tagged with the corresponding �ow ID

(Identi�cation) it belongs to, so the AHU can identify the �ow and also use it when

sending packets out. The �ow ID and tables are updated during run-time. Flow ID

is de�ned by user per AHU, it allows the user to identify clearly where the packet

comes from and/or is destined to.

Once the packet is parsed, P4 RX does checksum veri�cation and matches against

a lookup table. If a match is not found the default action is taken, which is to

drop the packet. Otherwise, the component strip out all headers so only payload is

forwarded. P4 RX then indicates to ROUT RX the �ow ID and which AHU the

packet is destined to.

ROUT RX receives the packet payload from P4 RX and routes it to the correspond-

ing AHU along with the �ow ID. The component contains small bu�ers, so it can

store a few packets and check whether or not the corresponding AHU is ready to

receive it. The stream path must not stall, since it would mean that other AHUs

may be a�ected. Thus, if the AHU is not ready for any reason the packet is dropped

and a corresponding user-readable counter is increased. It is user's responsibility

6.1. CRUN FPGA's Hardware 49

to make sure the AHU supports the desired throughput and the counter provides

status of how many packets were dropped, if any.

The ARB TX component is responsible for receiving the packets generated by the

AHUs and arbitrating among them which one should be served. Di�erent priority

schemes can be used to provide more throughput to some of the AHUs, allowing

�ner grain selection for the users.

P4 TX is also created with a third party with SDNetTM. This component receives

packets with payload only from the AHU with the information of which �ow it

belongs to and uses it to build the corresponding IP headers. The constant header

�elds belonging to each �ow, such as addresses and ports, are updated at run-time

through the control port, while dynamic ones, such as checksums and lengths are

determined on the �y.

Similarly to ETH RX, ETH TX converts AXI4-Stream Ethernet packets to the

physical correspondent ones and sends back to datacenter's network, where they

will be routed to the desired destination.

DMA Path

The DMA path is composed by the green components (MEM ARB, PCIe DMA and

MEM IF) in Figure 6.3. AHUs can access the FPGA's on-board memory through

MEM IF interface or do Direct Memory Access with host via PCIe DMA interface.

This path aims to provide local acceleration to the server in a similar manner as

most of the works presented in Chapter 4. Combining the DMA path to the stream

path allows in-line accelerator as well.

PCIe DMA is the interface component that translates AXI4 protocol inside the

shell to the physical I/O signals in the PCIe interface in order to transfer the re-

quired data. MEM IF perform similar tasks, but it interfaces the on-board memory

transceivers, providing large amounts of DDR memory to the AHUs.

MEM ARB is the main component in the DMA path and has similar concept as the

system presented in [14]. It assures secure data transfers since it knows which mem-

ory region each AHU can access either on DMA or on-board memory. Thus, only

allowed access transactions are executed. The management system is responsible of

controlling the regions each AHU can access by de�ning its context.

Contexts contain memory regions and sizes information allocated to the AHU and

6.1. CRUN FPGA's Hardware 50

they are dynamically updated through the control channel. Each AHU contains

also its own bank of control registers where users are able to issue read and write

requests.

Through the bank of control registers, accessible via the control channel, acceleration

tasks may be enqueued to the AHU. In fact, control registers are totally user de�ned,

it allows user to describe their own type of acceleration commands, management and

monitoring. For example, a region of the control register could be used as a queue

of jobs.

MEM ARB contains a DMA engine that takes care of DMA write and read requests,

keeps track of the responses and reorders whenever needed. For high performance

when communicating with VM, SR-IOV is leveraged as in [63]. MEM ARB is

also able to prioritize AHUs by providing di�erent bandwidths according to the

management software control. An internal scheduler manages each AHU context

for transferring data with host.

Control System

The control components are represented in yellow (PCIe CTRL, CTRL and CSR)

in Figure 6.3. The control system is accessed through PCIe CTRL interface and a

speci�c PCIe driver that do simple memory map access using AXI-Lite to the shell

and AHUs components, where each component has its own address space. Users

can only access the address space of its own AHUs while management can access all

shell components and the mandatory region of the AHUs.

The CTRL block is responsible of accessing the desired component base on the

address. It is through this component that P4 RX/TX tables are updated, number

of dropped packets per AHU in ROUT RX is requested, ETH TX/RX status is

checked, etc.

The control system has also a FPGA global Control and Status Register (CSR)

component that enable general control of the shell and status. CSR contains for

example resource ID, shell version, total number of AHUs and how many in use,

etc.

6.1. CRUN FPGA's Hardware 51

AHU

CONTROL

(AXI4-Lite)

R
X

(A
X

I4
-S

tr
ea

m
)

T
X

(A
X

I4
-S

tream
)

MEM

(AXI4)

Figure 6.4 AHU's interfaces.

6.1.3 Accelerator Hardware Unit

The Accelerator Hardware Unit (AHU) is the hardware component that actually

process the data. The user that wishes to accelerate some application has to develop

the AHU that executes the desired functionality using HLS or HDL, for example.

The provided interfaces of the AHU are shown in Figure 6.4.

The interfaces used are AMBA AXI4 compliant. The protocol is an industry-

standard widely known and deployed, with a robust third-party tools environment

which many component vendors support. AMBA AXI4 also provide high �exibil-

ity, for example, AXI4 is ideal for high-performance memory-mapped operations,

AXI4-Stream for high-speed streaming data and AXI4-Lite for lightweight memory-

mapped communication interface for simple control and status operations [78]. The

complete speci�cation can be found in [3, 2].

Referring to Figure 6.4, the AXI4-Stream RX interface is where incoming packets of

the physical Ethernet which are destined to the AHU are received, while the output

packets are sent to the corresponding TX.

The AXI4 MEM interface is used to do memory access either direct with host

through DMA or the on-board FPGA memory, the exact location is based on address

space.

The RX/TX interfaces are ideal for network and distributed acceleration, while

MEM interface can be used for local acceleration. It is also possible to use a com-

bination of them. In in-line acceleration, for example, incoming packets from RX

can be accelerated and delivered to host via MEM. Similarly, data from host can be

6.2. BRO Management Software 52

accelerated before going out to the TX interface.

The AXI4-Lite CONTROL interface access register banks in the AHUs for control

and monitoring. CONTROL and its respective register bank is not meant for trans-

ferring data but for controlling and monitoring the AHU. For example, user can use

this channel to indicates the AHU when to start some process and can poll some

register to check when it is done. CONTROL can and should also be used to monitor

application speci�c status, such as errors and internal counters.

6.2 BRO Management Software

The di�culties of using the system and managing it must be abstracted away from

the user and allow the provider to easily control it, which requires a strong software

support. The aim of this section is to explain the functionality of the proposed

infrastructure management software, called BRO. The name comes from the fact

that providing the MANO's functionality is the ultimate goal of the software and

that the word mano is a slang for brother in Brazilian's Portuguese as bro is in

English.

Even though full MANO functionality would be the ultimate target, it is out of

the scope of the proposed solution, which covers only the infrastructure level of

the system. Thus, BRO could be better mapped to VIM component in MANO's

architecture shown in Section 2.2.

BRO is developed mainly using Python language [65] and is divided in two main

components, BRO-SERVER and BRO-CLIENT. Their deployment in a datacenter

level can be seen in Figure 6.2. The following sections explain them.

6.2.1 BRO-SERVER

BRO-SERVER is the centralized main application that oversees the whole datacen-

ter's infrastructure. Figure 6.5 provides BRO-SERVER's architecture and main

components.

Users and administrators can interact with BRO-SERVER through a Command Line

Interface (CLI), that can be later expanded to be remotely accessible and provide a

graphical user interface. Administrators can have deep access to infrastructure data

and may, for example, add, modify or remove resources, change user's access rights

and monitor the whole infrastructure. Users on the other hand can only a�ect its

6.2. BRO Management Software 53

BRO-SERVER

RESOURCES

DESCRIPTOR

MAPPER

MONITOR

USER

CLI

CLI

ADMIN
R

E
S

T
 A

P
I

CONNECTORDEPLOYER

IMAGES

Figure 6.5 BRO-SERVER architecture

own services and have reduced view on the infrastructure. Thus, user have limited

access to BRO functionality. Example of allowed common user's commands are

upload of images, request and release of services and owned resource monitoring.

From Figure 6.5 one can see that the BRO-SERVER architecture contains two

databases and is divided in four main components.

The RESOURCE DESCRIPTOR database maintains information about resources

available and their details, such as servers and HWAs. IMAGES database is where

shell images and user's ones like VMs and AHU's bitstreams are stored. The

databases are developed using SQLAlchemy [68].

Each of the main components in the BRO-SERVER, being them the MAPPER,

DEPLOYER, CONNECTOR and MONITOR, is a single process running on the

6.2. BRO Management Software 54

host. They communicate with each other and their clients through REST API

developed using and following the microservice architecture principles.

The MAPPER is the component that directly interacts with users and administra-

tors as well as coordinates the other BRO's components. MAPPER maps requests

based on the information contained in the RESOURCE DESCRIPTOR database,

return information to users about services status and issue jobs to other components

in order to satisfy users and administrators requests accordingly to the infrastructure

constraints.

DEPLOYER receives resource requests from MAPPER, such as boot some VM in

a speci�c server or program some bitstream in a speci�c FPGA. DEPLOYER then

is responsible for keeping track and pass the required information to the respective

DEPLOYER-CLIENT running in the servers targeted, in order to deploy the VMs

and/or AHUs.

Similarly, CONNECTOR receives requests from the MAPPER with information

in how the resources required should be connected. CONNECTOR then interacts

with the targeted CONNECTOR-CLIENTs in order to achieve the con�guration

requested.

When either DEPLOYER or CONNECTOR have completed or failed their task,

MAPPER is noti�ed. Once both are done and a service is started successfully,

MAPPER then can provide the required information, so the user may start using

it.

MONITOR functions more independently of other components. Its main responsi-

bility is to inquiry from MAPPER and MONITOR-CLIENTs status and debugging

information about the services to provide it to the users and administrators.

6.2.2 BRO-CLIENT

In each server of the datacenter the BRO-CLIENT application must be running in

order to manage the local resources. BRO-CLIENT is responsible for the manage-

ment and con�guration of the host's OS, hypervisor, NIC and the FPGA. Figure

6.6 shows BRO-CLIENT's main components.

BRO-CLIENT is composed of client components that receives jobs from their re-

spective main server versions. Responsibilities that the BRO-CLIENT covers are

divided in the following by component.

6.2. BRO Management Software 55

BRO-CLIENT

CONNECTOR

-CLIENT

MONITOR-

CLIENTIMAGES

REST API

DEPLOYER

-CLIENT

Figure 6.6 BRO-CLIENT architecture

The DEPLOYER-CLIENT is mainly responsible to deploy VMs and AHUs in the

local server. Some examples of its tasks are: Interact with hypervisor in order

to boot up and down VMs; Control VM's resources such as number of cores and

amount of memory; Con�gure OS's Ethernet and PCIe interfaces and drivers; Maps

FPGA's SR-IOV physical and virtual functions; Program AHUs in the FPGA.

CONNECTOR-CLIENT manages all network aspect of VMs and AHUs in the local

server. Example of tasks it is responsible for are: Keep track and manage VM's IP

addresses; Control hypervisor's network; Maps NIC's SR-IOV physical and virtual

functions; Con�gure network lookup tables in CRUN shell.

MONITOR-CLIENT takes care of handling monitoring and status requests either

from VMs or FPGAs.

The IMAGES database is a reduced version of the main IMAGES database in the

BRO-SERVER. This local one contains only the images and their information that

are or were recently used in the local host.

6.2.3 BRO Usage

The BRO functionality is better explained by showing what each component does

in a typical service request. Figure 6.7 shows what steps BRO goes through and

each components responsibilities when a service is requested by the user.

Assuming that all required images were already uploaded and the resources available

were discovered and mapped before-hand, a user requests through the CLI a service

providing its description. The service descriptor contains mainly the resources re-

quired and its details as well as a graph of how they must be logically connected. In

a more advanced stage, the BRO could support also constraints such as maximum

latency and/or minimum throughput between resources.

6.2. BRO Management Software 56

C
L

I

Upload Images

Request Service

Resource

Discovery

MAPPER

DEPLOYER

- Boot up VM

- Program AHU

CONNECTOR

- Configure VM’s IPs

- Configure P4 tables

- Configure switch

MAPPER

- Return Service ID to user

- Map and reserve resources

- Save resource as

used

Pool Service ID

Request Service

Release

MAPPER

DEPLOYER

- Shutdown VMs

- Erase AHU

CONNECTOR

- Clean P4 tables

- Configure switch

MAPPER

- List resources to be

realeased

- Save resource as

free

Service Descriptor

VM

image0

10.0.1.1

AHU

bit0

10.0.1.2

AHU

bit1

10.0.1.3

T
IM

E

MAPPER

Runs Application MONITOR

- Provide monitoring

data

Service Request Descriptor

VM

image0

AHU

bit0

AHU

bit1

Figure 6.7 BRO typical usage �ow.

Upon service request, MAPPER �rst creates a service ID and return it, so the user

can check later its status. In the background then MAPPER checks the resources

available, maps the request and reserve them. Subsequently, MAPPER issues tasks

to DEPLOYER and CONNECTOR to provide the resources and connectivity, re-

spectively.

DEPLOYER boot up the VMs and program the AHUs in the FPGA as requested, by

interacting with the DEPLOYER-CLIENTs. Similarly, CONNECTOR interact with

6.2. BRO Management Software 57

the CONNECTOR-CLIENTs in order to set switches, VM's network and FPGA's

SDN components. Assuming everything was successfully completed, once all tasks

are done the MAPPER is noti�ed, which in turn set the resources as used in the

database.

With the service ID returned when issuing the request, user can poll MAPPER to

check its status. Upon successful creation of the service, MAPPER returns a service

descriptor with information on how the user can reach the resources. It means that

user receives VM's IPs and AHU's �ows, so they can be accessed and used. Once the

service is up, user can accelerate their application and monitor or debug it through

the MONITOR.

When the user wishes to terminate the service, a release request is issued with

the service ID. MAPPER then communicate it to DEPLOYER and CONNECTOR

which resources and connections should be released. In turn, they issue commands

to the targeted DEPLOYER-CLIENTs and CONNECTOR-CLIENTs in order to

shut down VMs and remove AHUs as well as reseting the corresponding network

con�gurations. Again, MAPPER is noti�ed when tasks are done, and resources are

marked as free in the database and are ready to be used in new service requests.

58

7. EVALUATION

In this chapter are described the current development state of the CRUN architecture

and the �rst trial realized with it. Furthermore, preliminary results in terms of

area, throughput and latency are shown. Finally, the whole system and results are

discussed.

7.1 Development State

As mentioned in Chapter 6, CRUN has not yet been completely developed. On

the CRUN shell side, the blue (stream path) and yellow (control) components in

Figure 6.3 are functional and in advanced state. Currently, one AHU is supported

with no partial recon�guration. Also, multiple �ows per AHU has not been tested

yet. Furthermore, the green components (DMA path) development has been not

started.

In the BRO software, currently the MAPPER, CLI, REST APIs, RESOURCES

DESCRIPTOR and IMAGES database as well as jobs queue with Redis Queue

are functioning. DEPLOYER and DEPLOYER-CLIENT main functionalities, such

as hypervisor management through libvirt and FPGA remote programming have

been tested but not integrated. CONNECTOR and CONNECTOR-CLIENT are in

similar state, where the tested functionalities such as IP management in hypervisor

and host OS as well as SDN control were tested. MONITOR and MONITOR-

CLIENT development has not been started.

Thus, BRO is not functional yet and it is not possible to automatically start a

service. Using the current state of CRUN shell it is possible to accelerate distributed

or network applications by manually starting the system and con�guring it.

7.2 Hardware Metrics

The shell should consume as little of the FPGA's resources as possible, so users can

�t bigger applications in the same device. The Table 7.1 shows the preliminary

values for the current development state of the shell.

7.2. Hardware Metrics 59

Table 7.1 Shell's resource utilization.

Resource Utilization Available Utilization %

LUT 102 234 663 360 15.41

LUTRAM 16 242 293 760 5.53

FF 179 912 1 326 720 13.56

BRAM 373 2 160 17.26

From Table 7.1 one can see that the shell consumes about 15% of the resources

available, which is a reasonable amount. The most area hungry components in the

shell are the P4 RX and P4 TX, which is expected due to their complexity. There are

not much that can be done in this regard since these components are automatically

generated. Fortunately, the use of P4 by the SDNetTM tool is recent, and it is

expected that it will provide considerable improvements and optimizations in the

near future.

The shell should not impact performance as well, thus it must not limit throughput

and inserts as little latency as possible. All the components in the stream path work

in line rate. It means that the shell does not limit the throughput and the total

10Gbps of the available Ethernet port link are provided to the AHUs. In terms

of latency, Table 7.2 shows the average (AVG), maximum (MAX) and minimum

(MIN) latency values per packet size when the total 10Gbps of throughput is fed to

the FPGA.

Table 7.2 Shell latencies per packet size at 10Gbps.

Packet Size AVG latency MAX latency MIN latency
[bytes] [ns] [ns] [ns]

78 4 122 4 132 4 105

1 088 4 255 4 270 4 240

1 856 4 624 4 637 4 607

The latency values are between 4.1µs and 4.7µs depending on the packet size. They

were obtained with the setup shown in Figure 5.1 (a), with IXIA directly connected

to the FPGA ports. This range is acceptable but for ultra-low latency applications

it may become signi�cant, especially in distributed acceleration where the data

travels among multiple shells. P4 RX and P4 TX are the components that limit

those values, in fact they are responsible for about 90% of the total latency. Again,

this is expected due to the look up operations and complexity of their tasks. In

this regard, it is possible to increase the frequency that P4 components use for its

internal operations, thus speeding up its processing time. This test has not been

done yet.

7.3. Trial 60

7.3 Trial

As mentioned previously, the main motivation of this thesis is to enable hardware

acceleration for NFV use cases due to its demanding requirements, more speci�cally

for Cloud RAN. Among several applications that are currently executed in Cloud

RAN, it is expected a signi�cant increase of machine learning applications on the

next mobile network architecture generation (5G).

The CRUN architecture was leveraged by a third party to implement an acceleration

trial for inference of a neural network application. In this work, only an overview

of the trial and results obtained are shown. A review about machine learning in

mobile networks and detailed description and analysis of the results shown here are

provided in [9].

The goal of the trial was to run inference of the application with ultra-low latency,

between 20µs and 40µs per inference at software level. The application consists of

a fully connected neural network, also known as Multilayer Perceptron (MLP), that

was trained to detect anomalies in mobile networks.

Figure 7.1 shows a high-level view of the AHU's architecture developed for inferring

the MLP, which consists of four fully connected layers. Each layer possess a NEU-

RAL ENGINE that computes multiplications and additions (MAC) among weights

and inputs, add biases and applies the activation function for one neuron at a time.

The bigger the layer the longer it takes to �nish its computation, thus layers can

be unrolled to achieve lower latency. In Figure 7.1 LAYER 2 was unrolled once

for this purpose. The remaining blocks are responsible for controlling the inference

process and bu�er the data.

The trial compared the inference performance obtained from CRUN and multiple

others implementation options, such as GPP, GPU, GEMX and SDAccel. It also

leveraged CRUN for distributing the acceleration among two FPGAs. Table 7.3

shows the performance values of each implementation and its details.

The simplest and straight forward implementations were realized with GPP and

GPU using Keras framework [16]. The GPP used was Intel R© Xeon R© Gold 6130

CPU @ 2.10GHz and GPU used was NVIDIA R© Tesla R© V100 Data Center.

GEMX from Xilinx [79] is a General Matrix Operation library used for acceleration

of BLAS-like matrix operations in FPGAs.

The same AHU developed for CRUN was also deployed in the Xilinx SDAccelTM

Environment [80]. SDAccelTM is a framework that o�ers the possibility of developing

7.3. Trial 61

NEURAL

ENGINE

AHU

FIFO

IN

FIFO

OUT

AHU

CONTROL

MLP
LAYER

2 HIGH

MLP

CONTROL

LAYER

2 LOW

Latency

LAYER

0

LAYER

1

LAYER

3

MAC

B

I

A

S

R

e

L

U

RX TX

Computed

Neuron

Neuron Not

Computed

Figure 7.1 MLP's AHU developed by a third party and used in the CRUN trial.

Table 7.3 Results for di�erent implementations of the MLP neural network.

Solution NN Latency/ Inferences Batch Freq. FPGA
Model Batch µs per second Size MHz Board

GPP-1 Keras 798 1 253 1 NA NA

GPP-16 Keras 3 694.6 4 330 16 NA NA

GPU-1 Keras 1 897.4 527 1 NA NA

GPU-16 Keras 1 973.4 8 107 16 NA NA

GEMX-32 Python API 1 500 21 333 32 60 VCU1525

SDAccel-16 Baseline 602.5 26 556 16 100 VCU1525

SDAccel-1 Baseline 272.5 3 662 1 100 VCU1525

CRUN-B Baseline 30.96 49 499 1 156.25 KCU1500

CRUN-U Unrolled 24.40 72 568 1 156.25 KCU1500

CRUN Dist. Unrolled 32.55 150 488 1 156.25 KCU1500

and delivering accelerated data center applications on FPGAs.

The GPP used for GEMX and SDAccelTM implementations was the same for GPP

trial and both were implemented in VCU1525 Recon�gurable Acceleration Platform

board [83]. VCU1525 is similar to the KCU1500 used in CRUN but should provide

better performance.

The CRUN implementation was realized with the laboratory setup shown in Figure

6.2 and hardware described in Chapter 5. Three di�erent versions are presented:

CRUN baseline (CRUN-B), which uses the same MLP core as SDAccelTM; CRUN

7.3. Trial 62

GPP-1

GPP-16

GPU-1

GPU-16

GEMX-32
SDAccel-16

SDAccel-1

CRUN-B

CRUN-U

CRUN-D

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

16 32 64 128 256 512 1024 2048 4096

In
fe

re
nc

es
 p

er
 s

ec
o
nd

 (
lo

g2
)

Latency (log2) [µs]

Figure 7.2 Trial's inferences per second vs. latency results graph.

Unrolled (CRUN-U) where the LAYER 2 of the MLP was unrolled once; CRUN

Distributed (CRUN-D) in which the MLP was distributed into two FPGAs, allowing

further optimization.

The latency measurements were obtained from TRex application as shown in Figure

5.1 (b) for CRUN-B and CRUN-U, while CRUN-D points of measurement are shown

in (c).

Figure 7.2 shows the inference per second vs latency of each implementation to

better present how they compare with each other. From Table 7.3 and Figure 7.2

one can see that only CRUN was able to provide the required latency values.

Here, inferences per second is the actual metric of interest instead of throughput.

They are di�erent because GPP and GPU uses 32-bits �oating point precision, while

FPGA's implementations uses 16-bit �xed point quantization. This quantization

7.3. Trial 63

step is common when porting designs to FPGA platforms and for the application in

question it did not a�ect the precision. Still, throughput and inferences per second

are used seamlessly in the text since they are proportional.

For all implementations except the CRUN, the batch size is used as a trade-o�

between latency and throughput. With bigger batch sizes, less is paid in expensive

memory transfers between host and accelerator.

When analyzing GPP, even though it performs better than GPU with batch size of

1, if more throughput is desired the price paid in latency is huge and the gain is not

as good as the gain with GPU.

GPU on one hand can dramatically increase the inferences per second with bigger

batch sizes without much e�ect on the latency. In fact, batch of 16 utilized only

around 1% of the available GPU resources in the trial, meaning that much more

could be obtained than the one shown in the graph. This shows well why GPUs are

suitable for tasks with large amount of parallelism and also indicates that it is not

a good �t for all scenarios, especially when low latency is the goal.

The GEMX implementation shows results on pair with GPU in terms of throughput

and slightly better latency. Still, GPU's inference per second overcome GEMX with

bigger batch sizes. Since GEMX implementation uses a relatively easy Python

API for designing the FPGA's hardware, it is considered here as an interesting

alternative.

SDAccel is the best among the other solutions in term of latency, providing also

the higher inference per second with same batch sizes. It is an example of the

performance that speci�c designed hardware can achieve in FPGAs. Again, GPU

may beat SDAccel throughput with larger batch sizes, but it is not a match in terms

of latency.

GEMX and SDAccel implementations can provide good latency values but are still

limited, especially due to the costly memory access operations that their archi-

tecture uses. For example, in the SDAccel-1, from the total latency of 272.5µs,

approximately 245µs are consumed by memory accesses, which represents almost

90% of the total.

CRUN was the only implementation capable of achieving the latency requirements

while also providing the best inference per second. The results obtained here place

CRUN in a completely di�erent level when compared with the other implementa-

tions.

7.4. Analysis 64

The possibility of distributing the application provided more area and allowed the

MLP to be further optimized, which in turn improved the total inferences per second

even further. For that, a small price in latency was paid since data travels through

two shells and do more hops in the switch.

7.4 Analysis

CRUN enables all three acceleration scenarios, local, network and distributed. In the

datacenter, the FPGA can be easily managed through the PCIe and users can have

access to local or multiple remote FPGAs seamlessly. Since its deployment aims to

be distributed through the datacenter instead of in clusters, no extra resources in

the FPGA is consumed to turn it into a standalone device.

Even in its preliminary state, the CRUN proves its potential. The machine learning

trial presents considerable gain in performance and is the only suitable solution for

the requirements among other solutions studied.

It is important to note that such latency values in CRUN trial was only possible due

to the use of TRex that leverages DPDK to bypass the Linux kernel stack. Also, all

trials were realized in bare-metal, which means that some performance degradation

is expected when running the application in a VM. This performance degradation

can be mitigated with the usage of SR-IOV, which is supported in most of modern

NICs.

The CRUN latency values presented in Table 7.3 are average ones. In fact, it was

observable that the maximum latency value could reach around 290µs. This must

be taken into account when using the system. Still, it is expected jitter also in the

others implementations, but such values were not obtained.

The use of DPDK and SR-IOV should also be leveraged when building the DMA

path for local acceleration. With this, it is expected even better results in terms of

latency for both bare-metal and virtualized systems, since there is no need for the

data to tra�c through the switches in the network. Still, the local acceleration has

somewhat limited scalability.

7.4.1 Hardware

CRUN also is the most complex implementation among all other implementations

used for comparison. The simple fact that the application uses HDL already add a

7.4. Analysis 65

barrier for most developers. On the other hand, the usage of standard interfaces such

as AXI4-Stream and the abstraction of the I/O signals facilitate the development.

As an example, only a few modi�cations in the control were needed to adapt the

hardware design between SDAccelTM and CRUN. Still, work is needed in order to

study options in how to provide a platform where the AHU can be easily integrated

and developed with support of HLS.

When analyzing the network connectivity, it is clear the importance of the P4 com-

ponents built from SDNetTM packet processor. On one hand, they can be easily

developed, modi�ed and integrated with the set of tools provided by Xilinx R©. On

the other hand, they are also the components that have major e�ect on area and la-

tency of the shell. Currently, it seems that the only other option that could provide

similar functionality is the project P4FPGA [60], but it has not been investigated.

Another option would be to develop similar functionality using HDL or HLS. Even

though the performance and area of the �nal design could be improved by opti-

mization, it is a very challenging, time consuming and error prone task that would

most probably not result in such complete tool. Thus, SDNetTM seems to be the

only design option that is easy, powerful and �exible enough for the functionalities

required here. Yet, this is a vendor speci�c and proprietary tool, limited to Xilinx's

FPGAs only.

7.4.2 Software

In any cloud environment, software support is needed to allow management of the

whole datacenter's infrastructure in an automated fashion, specially with HWA sup-

port. From the related work presented in Chapter4, one could point it out that most

of the e�orts leverages a modi�ed version of OpenStack [58]. In fact, OpenStack is

a strong candidate to �ll this position in NFV clouds [87], at least for open source

solutions.

HWA support from OpenStack is being developed by the Cyborg project [59], which

aims to provide a management framework for various types of accelerator resources,

such as FPGA, GPU and ASIC. O�cial OpenStack releases are still not mature in

this area, also Cyborg requires that vendors deliver their own Cyborg's driver so the

HWA can be deployed. Speci�cally for FPGAs, unfortunately there is no support

yet from vendors available. Furthermore, in the �rst phase it is probably expected

that only PCIe connectivity will be provided.

Thus, the in-house development of a software management called BRO was proposed.

7.4. Analysis 66

The motivation is to avoid the steep learning curve barrier to modify OpenStack and

to obtain a simple and quick VIM like functionality for proof of concept purposes

only.

The required functionality could be mapped to the VIM component in MANO's

architecture, but one can point out that MAPPER is a rather complex component

and goes above the VIM responsibilities of the MANO architecture. Again, MANO's

architecture division can be fuzzy, but MAPPER would be better compared with

NFVO, providing service level management, while DEPLOYER and CONNECTOR

would provide the automation of the infrastructure.

67

8. CONCLUSIONS

The need for hardware acceleration in cloud infrastructure is accentuated due to

the virtualization trend of applications with demanding performance requirements,

such as the ones covered by NFV.

This need is not limited to NFV's use cases only. Thus, hardware accelerators in

cloud, such as GPUs, are already commonly available for end user. Still, GPUs do

not �t well for many workloads and requirement scenarios while FPGAs can adapt

e�ciently to a broader scope. Hence, FPGAs are good candidates for hardware

accelerator resource as GPUs currently are. In fact, FPGAs are already being de-

ployed in commercial cloud, although only in proprietary solutions and at limited

scale for end users.

The virtualization of FPGAs requires signi�cant updates in infrastructure's man-

agement software as well as support from the hardware accelerator itself. In this

thesis, the CRUN framework for enabling FPGAs as accelerator resources in cloud

environment was proposed. The architecture contains hardware and software com-

ponents that provide sharable and scalable FPGA acceleration, while abstracting

away complex tasks from users, such as setting interfaces and network con�gura-

tion.

Partial Recon�guration is proposed to enable a sharable FPGA resource, in which

CRUN shell leverages static components that provides the necessary infrastructure.

This allows users to independently deploy their accelerators in the same FPGA.

Scalability is obtained by providing network connectivity powered by SDN compo-

nents that enables a �exible and automated network. With this approach users can

scale up their applications from a single region of a shared FPGA to several FPGAs

that are automatically logically connected through the network.

The proposed BRO software o�ers the necessary functionality for management of

the cloud infrastructure and support the hardware and virtualized resources. Also,

BRO exposes to users a simple interface for requesting, con�guring and logically

connecting VMs and FPGA's hardware accelerators (AHU).

8. Conclusions 68

Some features and improvements are still missing from the CRUN framework and

are subject for future development. For example, even though CRUN employ basic

mechanism to avoid users from accessing each other's data and a�ecting each other's

performance, security is a requirement that have not been deeply analyzed and one

cannot assure it is guaranteed. Also, a higher level of abstraction for development

and integration of the accelerator's hardware, such as HLS support and APIs for

controlling AHUs and transferring data needs further investigation and development.

Furthermore, the BRO software management aims to support proof of concept level

development and the system should be integrated to a tool that provide all the

necessary features for managing the cloud infrastructure, such as OpenStack.

The CRUN framework has not yet been fully implemented. The current CRUN

shell uses about 15% of the main resources available in the FPGA and provide the

full 10Gpbs of throughput available in the Ethernet link to the user's accelerators,

while adding around 4µs of latency for packet processing.

Even though not completely implemented, in its current stage CRUN can provide

distributed and network acceleration. Indeed, a machine learning application trial

was carried out independently as a proof of concept of the framework. The trial

achieved excellent results and was the only solution to ful�ll the application's ultra-

low latency requirements. In fact, it overcame all of the other implementations in

terms of inference per second as well, although with more optimizations GPU may

probably provide better values, but not at the same latency range.

Summarizing the trial's results, CRUN was able to provide 24.4µs of latency in

average at best, while the second best was obtained from SDAccel implementation

and achieved 272.5µs. Common implementations, such as GPP and GPU provided

798µs and 1 897µs respectively at best.

The results show the FPGA and CRUN architecture potential for providing high

performance in cloud environments. Furthermore, CRUN enables distributed hard-

ware acceleration in the cloud.

69

BIBLIOGRAPHY

[1] N. Antonopoulos and L. Gillam, Cloud Computing: Principles, Systems and

Applications. Springer Publishing Company, Incorporated, 2012.

[2] ARM, AMBA R© 4 AXI4-Stream Protocol.

[3] ARM, AMBA R© AXITM and ACETM Protocol Speci�cation.

[4] AWS. Amazon EC2 instance types: Accelerated computing. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/

[5] M. Azure. GPU optimized virtual machine sizes. [Online]. Available:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu

[6] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, �Cloud services orchestra-

tion: A comparative study of existing approaches,� in 2014 28th International

Conference on Advanced Information Networking and Applications Workshops,

May 2014, pp. 410�416.

[7] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, �Uniform handling and abstrac-

tion of nfv hardware accelerators,� IEEE Network, vol. 29, no. 3, pp. 22�29,

May 2015.

[8] S. Byma, J. G. Ste�an, H. Bannazadeh, A. L. Garcia, and P. Chow, �Fpgas in

the cloud: Booting virtualized hardware accelerators with openstack,� in 2014

IEEE 22nd Annual International Symposium on Field-Programmable Custom

Computing Machines, May 2014, pp. 109�116.

[9] T. T. Carneiro, �Distribution of ultra-low latency machine learning algorithm,�

Master of Science thesis, Tampere University of Technology, 2018.

[10] A. Caul�eld, E. Chung, A. Putnam, H. Angepat, J. Fowers, S. Heil, J. Kim,

D. Lo, M. Papamichael, T. Massengill, D. Chiou, and D. Burger, �A cloud-scale

acceleration architecture,� IEEE Micro, pp. 1�1, 2018.

[11] A. M. Caul�eld, E. S. Chung, A. Putnam, H. Angepat, D. Firestone, J. Fowers,

M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill,

K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger,

�Con�gurable clouds,� IEEE Micro, vol. 37, no. 3, pp. 52�61, 2017.

[12] CCIX. About CCIX consortium. [Online]. Available: https://www.

ccixconsortium.com/about/

https://aws.amazon.com/ec2/instance-types/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu
https://www.ccixconsortium.com/about/
https://www.ccixconsortium.com/about/

BIBLIOGRAPHY 70

[13] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger,

and L. Dittmann, �Cloud RAN for mobile networks�a technology overview,�

IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 405�426, 2015.

[Online]. Available: https://doi.org/10.1109/comst.2014.2355255

[14] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,

�Enabling FPGAs in the cloud,� in Proceedings of the 11th ACM Conference

on Computing Frontiers, ser. CF '14. New York, NY, USA: ACM, 2014, pp.

3:1�3:10. [Online]. Available: http://doi.acm.org/10.1145/2597917.2597929

[15] China Mobile, �C-RAN: The road towards green ran,� China Mobile Institute,

Withe Paper, 2011.

[16] F. Chollet et al., �Keras,� https://keras.io, 2015.

[17] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caul�eld, T. Massen-

gill, M. Liu, M. Ghandi, D. Lo, S. Reinhardt, S. Alkalay, H. Angepat, D. Chiou,

A. Forin, D. Burger, L. Woods, G. Weisz, M. Haselman, and D. Zhang,

�Serving dnns in real time at datacenter scale with project brainwave.� IEEE,

March 2018. [Online]. Available: https://www.microsoft.com/en-us/research/

publication/serving-dnns-real-time-datacenter-scale-project-brainwave/

[18] Cisco. Trex. [Online]. Available: https://trex-tgn.cisco.com/trex/doc/trex_

book.pdf

[19] Cisco, �Global mobile data tra�c forecast update,� Cisco Vi-

sual Networking Index, White Paper, 2017. [Online]. Avail-

able: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.html

[20] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L.

Owen, �Advancing software-de�ned networks: A survey,� IEEE Access, vol. 5,

pp. 25 487�25 526, 2017.

[21] Docker Inc. Docker. [Online]. Available: https://www.docker.com/

[22] ETSI. Network functions virtualisation. [Online]. Available: https://www.etsi.

org/technologies-clusters/technologies/nfv

[23] ETSI. Network functions virtualisation (nfv); architectural framework.

[Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV/001_099/

002/01.02.01_60/gs_NFV002v010201p.pdf

https://doi.org/10.1109/comst.2014.2355255
http://doi.acm.org/10.1145/2597917.2597929
https://keras.io
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://trex-tgn.cisco.com/trex/doc/trex_book.pdf
https://trex-tgn.cisco.com/trex/doc/trex_book.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.docker.com/
https://www.etsi.org/technologies-clusters/technologies/nfv
https://www.etsi.org/technologies-clusters/technologies/nfv
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf

BIBLIOGRAPHY 71

[24] ETSI. Network functions virtualisation (nfv); nfv performance & portability

best practises. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/

NFV-PER/001_099/001/01.01.02_60/gs_NFV-PER001v010102p.pdf

[25] ETSI. Network functions virtualisation (nfv); use cases. [Online]. Avail-

able: https://www.etsi.org/deliver/etsi_gr/NFV/001_099/001/01.02.01_60/

gr_NFV001v010201p.pdf

[26] S. A. Fahmy, K. Vipin, and S. Shreejith, �Virtualized fpga accelerators for

e�cient cloud computing,� in 2015 IEEE 7th International Conference on Cloud

Computing Technology and Science (CloudCom), Nov 2015, pp. 430�435.

[27] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,

H. Angepat, V. Bhanu, A. M. Caul�eld, E. S. Chung, H. K. Chandrappa,

S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov,

J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw, G. Silva,

M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,

K. Vaid, D. A. Maltz, and A. G. Greenberg, �Azure accelerated

networking: SmartNICs in the public cloud,� in 15th USENIX Symposium

on Networked Systems Design and Implementation, NSDI 2018, Renton,

WA, USA, April 9-11, 2018, 2018, pp. 51�66. [Online]. Available:

https://www.usenix.org/conference/nsdi18/presentation/�restone

[28] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao,

and X. Hu, �Openanfv: Accelerating network function virtualization with

a consolidated framework in openstack,� SIGCOMM Comput. Commun.

Rev., vol. 44, no. 4, pp. 353�354, Aug. 2014. [Online]. Available:

http://doi.acm.org/10.1145/2740070.2631426

[29] H. Giefers, P. Staar, C. Bekas, and C. Hagleitner, �Analyzing the energy-

e�ciency of sparse matrix multiplication on heterogeneous systems: A compar-

ative study of gpu, xeon phi and fpga,� in 2016 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), April 2016, pp.

46�56.

[30] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, �Network function virtualiza-

tion: Challenges and opportunities for innovations,� IEEE Communications

Magazine, vol. 53, no. 2, pp. 90�97, Feb 2015.

[31] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, �NFV: state of the art,

challenges, and implementation in next generation mobile networks (vepc),�

IEEE Network, vol. 28, no. 6, pp. 18�26, Nov 2014.

https://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.02_60/gs_NFV-PER001v010102p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-PER/001_099/001/01.01.02_60/gs_NFV-PER001v010102p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV/001_099/001/01.02.01_60/gr_NFV001v010201p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV/001_099/001/01.02.01_60/gr_NFV001v010201p.pdf
https://www.usenix.org/conference/nsdi18/presentation/firestone
http://doi.acm.org/10.1145/2740070.2631426

BIBLIOGRAPHY 72

[32] IEEE, �Ieee standard for ethernet,� IEEE Std 802.3-2015 (Revision of IEEE

Std 802.3-2012), pp. 1�4017, March 2016.

[33] Intel. HARP: Hardware accelerator research program. [Online]. Available:

https://software.intel.com/en-us/hardware-accelerator-research-program

[34] Intel. Intel R©fpga sdk for openclTM: Product brief. [Online]. Avail-

able: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/po/ps-opencl.pdf

[35] C. Kachris and D. Soudris, �A survey on recon�gurable accelerators for cloud

computing,� in 2016 26th International Conference on Field Programmable

Logic and Applications (FPL), Aug 2016, pp. 1�10.

[36] C. Kachris, G. C. Sirakoulis, and D. Soudris, �Network function virtualization

based on fpgas: A framework for all-programmable network devices,� CoRR,

vol. abs/1406.0309, 2014.

[37] S. Kestur, J. D. Davis, and O. Williams, �Blas comparison on fpga, cpu and

gpu,� in 2010 IEEE Computer Society Annual Symposium on VLSI, July 2010,

pp. 288�293.

[38] E. J. Kitindi, S. Fu, Y. Jia, A. Kabir, and Y. Wang, �Wireless network

virtualization with SDN and c-RAN for 5g networks: Requirements,

opportunities, and challenges,� IEEE Access, vol. 5, pp. 19 099�19 115, 2017.

[Online]. Available: https://doi.org/10.1109/access.2017.2744672

[39] O. Knodel, P. Lehmann, and R. G. Spallek, �RC3E: Recon�gurable accelerators

in data centres and their provision by adapted service models,� in 2016 IEEE

9th International Conference on Cloud Computing (CLOUD), June 2016, pp.

19�26.

[40] M. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia,

H. Koumaras, G. Gardikis, and F. Liberal, �Enhancing vnf performance by ex-

ploiting sr-iov and dpdk packet processing acceleration,� in 2015 IEEE Confer-

ence on Network Function Virtualization and Software De�ned Network (NFV-

SDN), Nov 2015, pp. 74�78.

[41] D. Kreutz, F. M. V. Ramos, P. E. VerÃssimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, �Software-de�ned networking: A comprehensive survey,�

Proceedings of the IEEE, vol. 103, no. 1, pp. 14�76, Jan 2015.

[42] KVM. Kernel virtual machine. [Online]. Available: https://www.linux-kvm.

org/page/Main_Page

https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/ps-opencl.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/ps-opencl.pdf
https://doi.org/10.1109/access.2017.2744672
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page

BIBLIOGRAPHY 73

[43] J. Lallet, A. Enrici, and A. Sa�ar, �Fpga-based system for the acceleration

of cloud microservices,� in 2018 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), June 2018, pp. 1�5.

[44] libvirt. libvirt: Virtualization api. [Online]. Available: https://libvirt.org/

[45] T. Lin, N. Tarafdar, B. Park, P. Chow, and A. Leon-Garcia, �Enabling network

function virtualization over heterogeneous resources,� in 2017 19th Asia-Paci�c

Network Operations and Management Symposium (APNOMS), Sept 2017, pp.

58�63.

[46] Y. Luo, S. Huang, J. Chou, and B. Chen, �A computation workload characteris-

tic study of c-ran,� in 2018 IEEE 38th International Conference on Distributed

Computing Systems (ICDCS), July 2018, pp. 1599�1603.

[47] lxml. lxml - XML and HTML with python. [Online]. Available: https://lxml.de/

[48] P. M. Mell and T. Grance, �Sp 800-145. the nist de�nition of cloud computing,�

Gaithersburg, MD, United States, Tech. Rep., 2011.

[49] Microsoft. Single root i/o virtualization (SR-IOV). [Online]. Avail-

able: https://docs.microsoft.com/en-us/windows-hardware/drivers/network/

single-root-i-o-virtualization--sr-iov-

[50] Microsoft Azure. Deploy a model as a web service on an FPGA with

azure machine learning. [Online]. Available: https://docs.microsoft.com/

en-us/azure/machine-learning/service/how-to-deploy-fpga-web-service

[51] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,

�Network function virtualization: State-of-the-art and research challenges,�

IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 236�262, Firstquar-

ter 2016.

[52] R. Mijumbi, J. Serrat, J. Gorricho, S. Latre, M. Charalambides, and D. Lopez,

�Management and orchestration challenges in network functions virtualization,�

IEEE Communications Magazine, vol. 54, no. 1, pp. 98�105, January 2016.

[53] N., P. M. Watts, C. Rotsos, and A. W. Moore, �Recon�gurable network systems

and software-de�ned networking,� Proceedings of the IEEE, vol. 103, no. 7, pp.

1102�1124, July 2015.

[54] L. Nobach and D. Hausheer, �Open, elastic provisioning of hardware accelera-

tion in nfv environments,� in 2015 International Conference and Workshops on

Networked Systems (NetSys), March 2015, pp. 1�5.

https://libvirt.org/
https://lxml.de/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/single-root-i-o-virtualization--sr-iov-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/single-root-i-o-virtualization--sr-iov-
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-fpga-web-service

BIBLIOGRAPHY 74

[55] L. Nobach, B. Rudolph, and D. Hausheer, �Bene�ts of conditional fpga provi-

sioning for virtualized network functions,� in 2017 International Conference on

Networked Systems (NetSys), March 2017, pp. 1�6.

[56] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti,

�A survey of software-de�ned networking: Past, present, and future of pro-

grammable networks,� IEEE Communications Surveys Tutorials, vol. 16, no. 3,

pp. 1617�1634, Third 2014.

[57] E. Nurvitadhi, D. She�eld, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, �Ac-

celerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic,�

in 2016 International Conference on Field-Programmable Technology (FPT),

Dec 2016, pp. 77�84.

[58] OpenStack. OpenStack. [Online]. Available: https://www.openstack.org/

[59] OpenStack. OpenStack cyborg. [Online]. Available: https://wiki.openstack.

org/wiki/Cyborg

[60] P4FPGA. P4FPGA. [Online]. Available: https://github.com/p4fpga/p4fpga

[61] S. Patidar, D. Rane, and P. Jain, �A survey paper on cloud computing,� in

2012 Second International Conference on Advanced Computing Communication

Technologies, Jan 2012, pp. 394�398.

[62] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, �Recent advances in cloud

radio access networks: System architectures, key techniques, and open issues,�

IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 2282�2308,

2016. [Online]. Available: https://doi.org/10.1109/comst.2016.2548658

[63] S. Pinneterre, S. Chiotakis, M. Paolino, and D. Raho, �vFPGAmanager: A

virtualization framework for orchestrated fpga accelerator sharing in 5g cloud

environments,� 2018 IEEE International Symposium on Broadband Multimedia

Systems and Broadcasting (BMSB), pp. 1�5, 2018.

[64] A. Putnam, A. Caul�eld, E. Chung, D. Chiou, K. Constantinides,

J. Demme, H. Esmaeilzadeh, J. Fowers, J. Gray, M. Haselman, S. Hauck,

S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, E. Peterson, A. Smith,

J. Thong, P. Y. Xiao, D. Burger, J. Larus, G. P. Gopal, and

S. Pope, �A recon�gurable fabric for accelerating large-scale datacenter

services,� in Proceeding of the 41st Annual International Symposium on

Computer Architecuture (ISCA). IEEE Press, June 2014, pp. 13�24.

[Online]. Available: https://www.microsoft.com/en-us/research/publication/

a-recon�gurable-fabric-for-accelerating-large-scale-datacenter-services/

https://www.openstack.org/
https://wiki.openstack.org/wiki/Cyborg
https://wiki.openstack.org/wiki/Cyborg
https://github.com/p4fpga/p4fpga
https://doi.org/10.1109/comst.2016.2548658
https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/
https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/

BIBLIOGRAPHY 75

[65] Python. Python. [Online]. Available: https://www.python.org/

[66] J. Rittinghouse and J. Ransome, Cloud Computing: Implementation, Manage-

ment, and Security, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2009.

[67] S. B. Shaw and A. K. Singh, �A survey on cloud computing,� in 2014 Inter-

national Conference on Green Computing Communication and Electrical Engi-

neering (ICGCCEE), March 2014, pp. 1�6.

[68] SQLAlchemy. SQLAlchemy. [Online]. Available: https://www.sqlalchemy.org/

[69] N. Tarafdar, N. Eskandari, T. Lin, and P. Chow, �Designing for fpgas in the

cloud,� IEEE Design Test, vol. 35, no. 1, pp. 23�29, Feb 2018.

[70] The CentOS Project. The CentOS project. [Online]. Available: https:

//www.centos.org/

[71] The Linux Foundation. Data plane development kit. [Online]. Available:

https://www.dpdk.org/

[72] The P4 Language Consortium. P416 language speci�cation. [Online]. Available:

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

[73] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, �Enabling fpgas in

hyperscale data centers,� in 2015 IEEE 12th Intl Conf on Ubiquitous Intelli-

gence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted

Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Commu-

nications and Its Associated Workshops (UIC-ATC-ScalCom), Aug 2015, pp.

1078�1086.

[74] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, �Disaggregated

fpgas: Network performance comparison against bare-metal servers, virtual

machines and linux containers,� in 2016 IEEE International Conference on

Cloud Computing Technology and Science (CloudCom), Dec 2016, pp. 9�17.

[75] B. Wile, Coherent Accelerator Processor Interface (CAPI) for Systems, IBM

Systems and Technology Group.

[76] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, �Cloud radio access network (c-ran):

a primer,� IEEE Network, vol. 29, no. 1, pp. 35�41, Jan 2015.

[77] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. D.

Rose, �Performance evaluation of container-based virtualization for high per-

formance computing environments,� 2013 21st Euromicro International Con-

ference on Parallel, Distributed, and Network-Based Processing, pp. 233�240,

2013.

https://www.python.org/
https://www.sqlalchemy.org/
https://www.centos.org/
https://www.centos.org/
https://www.dpdk.org/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

Bibliography 76

[78] Xilinx, AXI R© Reference Guide. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/ip_documentation/

axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

[79] Xilinx. General matrix operation library. [Online]. Available: https:

//github.com/Xilinx/gemx

[80] Xilinx, SDAccel Environment User Guide. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2018_2/ug1023-sdaccel-user-guide.pdf

[81] Xilinx. SDAccelTM development environment. [Online]. Available: https:

//www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[82] Xilinx, SDNet Packet Processor. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2018_2/ug1012-sdnet-packet-processor.pdf

[83] Xilinx, VCU1525 Recon�gurable Acceleration Platform. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/boards_and_kits/

vcu1525/ug1268-vcu1525-recon�g-accel-platform.pdf

[84] Xilinx. Vivado design suite. [Online]. Available: https://www.xilinx.com/

products/design-tools/vivado.html#documentation

[85] Xilinx. Xilinx kintex ultrascale FPGA KCU1500 acceleration development

kit. [Online]. Available: https://www.xilinx.com/products/boards-and-kits/

dk-u1-kcu1500-g.html

[86] Xilinx. Xilinx PCI Express DMA drivers and software guide. [Online].

Available: https://www.xilinx.com/support/answers/65444.html

[87] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, �A comprehensive survey

of network function virtualization,� Computer Networks, vol. 133, pp. 212 �

262, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1389128618300306

[88] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, and

B. Troxel, �A hybrid asic and fpga architecture,� in IEEE/ACM International

Conference on Computer Aided Design, 2002. ICCAD 2002., Nov 2002, pp.

187�194.

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://github.com/Xilinx/gemx
https://github.com/Xilinx/gemx
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1012-sdnet-packet-processor.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1012-sdnet-packet-processor.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com/products/design-tools/vivado.html#documentation
https://www.xilinx.com/products/design-tools/vivado.html#documentation
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html
https://www.xilinx.com/support/answers/65444.html
http://www.sciencedirect.com/science/article/pii/S1389128618300306
http://www.sciencedirect.com/science/article/pii/S1389128618300306

	Introduction
	Virtualization In Mobile Networks
	Cloud RAN
	Network Function Virtualisation
	VNF Layer
	NFVI
	MANO

	Cloud Computing
	Virtualisation and Orchestration
	Deployment Modes of Cloud Computing
	Service Models of Cloud Computing

	Software-defined Networking
	Data Plane
	Control Plane
	Management plane

	Cloud Computing, NFV and SDN

	Hardware Acceleration in Cloud
	Accelerators
	Workload Characteristics
	Connectivity Options
	Deployment Topologies

	FPGAs in Cloud
	Programming Languages
	Design Flow

	FPGA Virtualization
	Sharing
	Abstracting
	Securing
	Scaling

	Related Work
	Hardware Acceleration Only
	Partially Scalable Hardware Acceleration
	Fully Scalable Hardware Acceleration
	Hardware Acceleration in NFV

	Methodology
	Hardware and Laboratory Setup
	Software and Libraries
	Test Cases

	CRUN Architecture
	CRUN FPGA's Hardware
	Server and Datacenter
	CRUN Shell
	Stream Path
	DMA Path
	Control System

	Accelerator Hardware Unit

	BRO Management Software
	BRO-SERVER
	BRO-CLIENT
	BRO Usage

	Evaluation
	Development State
	Hardware Metrics
	Trial
	Analysis
	Hardware
	Software

	Conclusions
	Bibliography

