

WAEL MOHAMMED

ENCAPSULATION OF MES FUNCTIONALITIES AS RESTFUL WEB

SERVICES FOR KNOWLEDGE-DRIVEN MANUFACTURING SYS-

TEMS

Master of Science thesis

Examiners: Dr. Andrei Lobov and Prof.
Jose L. Martinez Lastra
Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences
on 7th of October, 2015

i

ABSTRACT

WAEL MMOHAMMED: ENCAPSULATION OF MES FUNCTIONAL-

ITIES AS RESTFUL WEB SERVICES FOR KNOWLEDGE DRIVEN

MANUFACTURING SYSTEMS

Tampere University of technology
Master of Science Thesis, 47 pages, 5 Appendix pages
January 2017
Master’s Degree Program in Automation Engineering
Major: FACTORY AUTOMATION AND INDUSTRIAL INFORMATICS
Examiner: Dr. Andrei Lobov and Prof. Jose L. Martinez Lastra
Supervisor: Dr. Andrei Lobov

Keywords: Open knowledge driven system, OKD, manufacturing Execution sys-
tem, MES, Ontologies, OWL, Orchestration, Orchestrator, ORL, RESTful Web
Services

Computer and network technologies are growing rapidly nowadays. For this reason, many

doors are opened for implementing some of these technologies in different areas. Cur-

rently, manufacturing systems is considered as main consumer of new technologies such

as web services and knowledge-based systems. therefore, new terms came to the surface

like industry 4.0 and IoT devices. An example could be seen in the eScop project. The

concept idea is addressed as designing a knowledge driven manufacturing system which

is capable to be applied on various industrial facilities. In this regards, this thesis aims to

define MES functions for the Open Knowledge-Driven Manufacturing Execution System

(OKD-MES). The study took place on FASTory line located at FAST Lab. In Tampere

University of Technology. It is used as a validation case study to proof the implementa-

tion of the functions.

The objective of this thesis focuses on employing the MES functions as web services to

suit the OKD-MES concept. In this research, the state of art reviews MES functions which

were defined at a general level by MESA. Then, these MES functions are specifically

defined to work with the layer concept of the OKD-MES which presented by the eScop

project. The approach which has been developed for MES functions is a general platform

that can be used for all MES functions even though the industry type is different. This

approach tends to maximize the flexibility of configuring MES functions in the manufac-

turing system. At the same time, it minimizes the dependencies in the OKD-MES. With

this approach, the user is responsible for defining the description of web services in on-

tology form as configuration and providing the functionality that suits the manufacturing

system as functional scripts. These features of the presented approach allow the user to

implement new logic for the MES functions or even use ready-made tools.

Finally, the developed approach is tested with a production scenario. The results of the

test show the advantage of using this approach in terms of configurability and simplicity

of installation. Nevertheless, the presented approach holds chances for future develop-

ment.

ii

PREFACE

 بسم الله الرحمن الرحيم

حبه اجمعين. صو الصلاة و السلام على اشرف الخلق و المرسلين, سيدنا محمد, وعلى اله و الحمد لله رب العالمين

لدرجة بدايةً, اود ان أشكر أبي و أمي و جميع الأهل و الأصدقاء على دعمهم و مساندتهم طوال فترة دراستي

خص بالشكر كل أو هنا, أود أن الماجستير. كما أود أن أشكر قسم الفاستلاب. على ما قدموه من مساعده و تشجيع لي,

ق إسكوب الذي من الدكتور أندري لوبوف و البروفسور جوزيه لاسترا. ثم أخيرا و ليس أخيرا، أتوجه بالشكر إلى فري

 .قدم الدعم و الفرصه لتقديم أطروحتي هذه. حيث ان هذه الاطروحة تمت بدعم من مشروع إسكوب

In The Name of Allah, The Most Gracious and The Most Merciful

Praise be to God and prayer and peace be upon His prophet and messenger Muhammad,

and his family and all his companions. First of all, I would like to thank my father, my

mother, my family and my friends for their support for the period of my studies for the

master degree. I would like also to thank the FAST-Lab for their help and encourage. And

here, I would like to especially thank Dr. Andrei Lobov and Professor Jose Lastra for the

help and guidance that they provide to me. Then, last but not least, I thank the eScop team

who provided support and the opportunity to make this thesis. As this thesis has been

supported by eScop project.

Tampere, 15th Dec,2016

Wael M. Mohammed

iii

CONTENTS

1 INTRODUCTION .. 1

1.1 Thesis Background ... 1

1.2 Motivation and objectives .. 2

1.3 Problems definition .. 2

1.4 Limitations and restrictions .. 2

2 THEORITICAL BACKGROUND FOR BUILDING OKD-MES AND MES

FUNCTIONS .. 3

2.1 Manufacturing Executing systems and MES functions 3

2.2 Open-Knowledge-Driven System .. 7

2.3 OKD systems and MES.. 10

2.4 Web services in Manufacturing Systems ... 11

2.5 APIs (Application Programming Interface) ... 12

2.6 Summary .. 13

3 THE METHODOLOGY OF DESINING THE MES FUCNTIONS 14

3.1 The Approach ... 14

3.1.1 Ontology Manager and Ontology Model 16

3.1.2 Service Manager .. 18

3.1.3 Function Manager .. 18

3.2 Techniques ... 20

3.2.1 Web Service Manipulations ... 21

3.2.2 Ontology Manipulation .. 21

3.2.3 The Functional Scripts ... 22

3.2.4 Validation Scenario .. 24

4 IMPLEMENTATION OF THE CONCEPT ... 26

4.1 FASTory case-study ... 26

4.2 Deployment of OKD-MES on FASTory ... 28

4.2.1 Visualization Layer .. 29

4.2.2 Representation Layer ... 29

4.2.3 Orchestration Layer .. 30

4.3 MES functions Layer ... 31

4.3.1 Resource Allocation and Status ... 32

4.3.2 Operations/ Detail Scheduling ... 34

4.3.3 Dispatching Production Units .. 36

1.1.1 Data Collection/ Acquisition .. 38

4.3.4 Products Tracking and Genealogy ... 40

5 RESULTS ... 42

6 DISCUSSION ... 47

7 CONCLUSION ... 49

7.1 Matching the objective ... 49

7.2 Future Work ... 49

iv

8 REFERENCES .. 51

9 APPENDIX ... 53

9.1 FASTory RESTful.. 53

9.1.1 Services .. 53

9.1.2 Events ... 54

9.1.3 Data .. 55

9.2 ORL RESTful API ... 56

9.3 RPL RESTful API .. 57

v

LIST OF FIGURES

Figure 1: ISA-95 structure by [6] ... 4

Figure 2: OKD-MES architecture [23] .. 8

Figure 3: PHL structure [23] ... 8

Figure 4: RPL architecture [23] ... 9

Figure 5: ORL architecture [23] .. 9

Figure 6: VIS architecture [23] .. 10

Figure 7: Ontology model [24] ... 11

Figure 8:Semantic Web Services Framework using DPWS [31] 12

Figure 9: MES functions in OKD-MES .. 14

Figure 10: MES Function Model .. 15

Figure 11: User activity diagram ... 16

Figure 12: MESF model.. 17

Figure 13: sequence diagram for the platform workflow ... 19

Figure 14: General flowchart for the work sequence of MES functions 20

Figure 15: Validation function flowchart ... 23

Figure 16: Order to Product scenario .. 25

Figure 17: Mobile phone parts ... 26

Figure 18: FASTory line typology .. 27

Figure 19: Conveyor zone types in FASTory line ... 27

Figure 20: Order entry page in VIS .. 29

Figure 21: Flowchart for interaction between ORL and MSE-F3 30

Figure 22: MES functions Layer instances ... 31

Figure 23: Sequence Diagram of resources function ... 33

Figure 24: Example of population MESF for MES-F1 ... 34

Figure 25: MES-F2 interaction sequence diagram .. 35

Figure 26: An example of the populated MESF for MES-F2 ... 36

Figure 27: MES-F3 interaction sequence diagram .. 37

Figure 28: A populated MESF model for MES-F3 ... 38

Figure 29: Sequence diagram for interactions of MES-F5 .. 39

Figure 30: MESF for MES-F5 .. 39

Figure 31: Sequence diagram of MES-F10 interactions .. 40

Figure 32: Example of MESF model for MES-F10 .. 41

Figure 33: Changes in PHL pen before and after inserting an order 42

Figure 34: Effect of queuing in PHL .. 43

Figure 35: Product tracking ... 43

Figure 36: Service recorder .. 44

Figure 37: Event recorder .. 44

Figure 38: I/O recorder .. 45

Figure 39: Resources and available services ... 45

vi

LIST OF TABLES

Table 1: MES functions as defined by MESA [7] ... 5

Table 2: Conveyor zones description .. 28

Table 3: MES functions services ... 31

Table 4: MES-F1 services ... 32

Table 5: MES-F2 services ... 35

Table 6: MES-F3 RESTful services... 36

Table 7: RESTful API for MES-F5 ... 38

Table 8: RESTful APIs for MES-F10 .. 40

Table 9: A comparison between before and after eScop implementation. 48

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface

BPEL Business Process Execution Language

DC Device Catalogue

DSC Distributed Control System

DPWS Device Profile Web Services

ERP Enterprise resource planning

GUI Graphical User Interface

HMI Human-Machine Interface

HTML Hypertext Markup Language

HTTP The Hypertext Transfer Protocol

JSON JavaScript Object Notation

MES-F1 MES function 1 (Resource Allocation and Status)

MES-F2 MES function 2 (Operations/ Detail Scheduling)

MES-F3 MES function 3 (Dispatching Production Units)

MES-F4 MES function 4 (Document Control)

MES-F5 MES function 5 (Data Collection / Acquisition)

MES-F6 MES function 6 (Resource Allocation and Status)

MES-F7 MES function 7 (Labor Management)

MES-F8 MES function 8 (Quality Management)

MES-F9 MES function 9 (Maintenance Management)

MES-F10 MES function 10 (Products Tracking and Genealogy)

MES-F11 MES function 11 (Performance Analysis)

MSO Manufacturing System Ontology

OKD-MES Open Knowledge Driven Manufacturing Execution System

ORL Orchestration Layer

OWL Web Ontology Language

PHL Physical Layer

RPL Representational State Transfer

RPL Representation Layer

RTU Remote Terminal Unit

RFID Radio Frequency Identifier

SME Small and Medium-sized Enterprises

SOAP Simple Object Access Protocol

SPARQL Simple Protocol and RDF Query Language

SVG Scalable Vector Graphics

URL Uniform Resource Locator

VIS Visualization Layer

WSDL Web Service Description Language

1

1 INTRODUCTION

This thesis presents an approach for implementing MES functions in open knowledge

driven manufacturing system. The task is to redesign MES functions as framework

which provides web services to suit the OKD-MES requirements. This implantation

takes place on FASTory assembly line in FAST Lab. in Tampere University of Tech-

nology. OKD-MES is considered as main stream nowadays in development of manu-

facturing systems. Therefore, many conferences and journals publish hundreds of arti-

cles about knowledge driven system.

This document is divided into six chapters. First chapter is the introduction which

shows the motivation, objectives, challenges and limitations of the concept of this the-

sis. The second chapter illustrates the background of manufacturing execution systems,

the international standards related it to and open-knowledge driven system as state of

art. The third chapter presents the methodology of developing MES functions. This

chapter illustrates the developed approach, tools that are used for development and

techniques behind the development. The fourth chapter presents the implementation of

the concept on FASTory assembly line. It provides an example of using the presented

approach in chapter three. This example is illustrated by using five MES functions. The

fifth chapter shows a discussion of the implementation that illustrated in chapter 4. This

chapter provides the study case results such as the gained value and the feasibility of

the concept and it shows a comparison between OKD system with other manufacturing

systems which have been applied on the line as well. The final chapter presents the

conclusion of this thesis. Also it points out the future development which can be applied

on the concept.

1.1 Thesis Background

Tampere University of Technology was a partner in the eScop project. The eScop pro-

ject aims to produce a sufficient and general OKD-MES that can be applied on various

manufacturing systems. An important part of this project is designing MES functions

to work with the OKD-MES. This thesis spots the design phase of MES functions in

OKD system. As chapter four shows, the manufacturing system which is represents the

target of eScop project is presented with order-product scenario.

2

1.2 Motivation and objectives

As this thesis shows in chapter two the benefits of using OKD-MES in manufacturing

system, the questions is how it would be beneficial to use MES functions as web ser-

vices in OKD system in order to enhance the manufacturing information system in

terms of flexibility, re-configurability, cost, easiness of installation and versatility?

Therefore, the objective of this research work can be addressed as presenting a meth-

odology of designing general web-based framework for MES functions which could be

applied on different industry types.

1.3 Problems definition

As mentioned in section 1.2, this study focuses on including MES functions in OKD-

MES as web services. This involvement of MES functions in OKD-MES consists of

architecture design, implementation and testing the framework with a provided case

study as proof of concept. Since this is the objective of this study, this section lists the

hypothesis of this thesis as follows:

1. By using web services, the interactions between manufacturing components

and the MES functions is expected to be rapid and independent.

2. With enabling the knowledge-driven for configurations, it will be possible to

simplify user interactions.

3. Using the concept of employing the logic of MES functions as scripts could

provide more flexibility in term of the user choice.

1.4 Limitations and restrictions

Manufacturing systems are categorized as very large topic. Thousands of studies have

been conducted to improve and develop the manufacturing systems. This thesis focuses

on development of MES functions to be used as web services in an OKD-MES. The

previous section showed how MES function supposed to behave. However, reasonable

limitations should be taken into account. These limitations depend mainly on the avail-

ability of tools to achieve the required target. One of these limitations could be lack of

real industrial RTU (Remote Terminal Unit) that supports different web services stand-

ards. Also as new topic, OKD system is still under development by many parties and it

is not standardized yet. Another limitation could be seen as automation amount in the

factory level. As known, some industries still rely on the manual labors. Meanwhile,

some other industries are fully automated. These variations of the automation level in

the manufacturing system could generate more complexity in this research work.

3

2 THEORITICAL BACKGROUND FOR BUILDING

OKD-MES AND MES FUNCTIONS

Nowadays, manufacturing systems tend to involve all available technologies. The aim

of this involvement appears in various examples of technologies usage in industry such

as internet and computers, artificial intelligence, cloud processing, etc. one of these

technologies is known as KD (knowledge-driven) system. KD comprises the core tech-

nology of this thesis. Besides KD, this thesis involves web services technology as well.

This chapter discusses the state of art of some technologies which are related to this

thesis. It focuses on the vision of using Open Knowledge-driven approach in manufac-

turing execution system. As presented in the introduction, this study may provide a

flexible solution for manufacturing systems.

This chapter contains six sections; first section illustrates the definition of MES layer

and MES functions. The second section provides the definition for OKD system in in-

dustry. This section shows a comparison between OKD-MES and ISA-95 standard

manufacturing system as well. The third section provides a view for implementation of

MES functions in OKD system. This section demotes how MES functions can be trans-

formed from general definition as provided by MESA to special definition which suit-

able for OKD-MES. In forth section, an overview covers web services usage in indus-

try. The fifth section summarizes several APIs (Application Program Interface) which

can be used in development phase of MES functions in OKD-MES approach. The final

section highlights the relation between the stat of the art and the objective of this thesis.

2.1 Manufacturing Executing systems and MES functions

In late 70’s of last century, MES began to appear in manufacturing systems. At that

time, MES has been involved to solve minor problems in manufacturing system. MES

was not fully apart from DCS (Distributed Control System) as well. On the other hand,

enterprise planning (ERP) layer (material resources planning (MRP) before) and fac-

tory floor have been mostly isolated. As described in [1], MES began to be involved to

close the gap between both layers. Later on, MES start being modularized since com-

puter science revolution rose in manufacturing systems. Then in the early 90’s in United

States, a company called Advanced Manufacturing Research (AMR) proposed the en-

terprise model (ERP – MES - DCS) [1], [2]. During this period, MES gained more

functionality in manufacturing systems. This model led to standardize the functionali-

ties of MES in 1995 by Manufacturing Execution System Association (MESA). Re-

garding this standardization, 11 MES functions have been defined and merged with

ISA-95 standard [3], [7].

4

ISA-95 standard defines the structure of factory information system into fine layers (see

Figure 1)[5]. For ISA-95 standard, level 0, 1 and 2 represents the physical world of the

factory like machine, equipment, materials, products, controllers and factory labors.

This layer needs to be organized and controlled according to the orders that are issued

by the managements. Level 4 contains the management part of the factory. This layer

is called ERP and it is responsible to accept orders/ provide products from/to customers.

Also ERP interacts with suppliers for providing the required materials. Besides that,

ERP includes the human resource and the financial departments. ERP is located on the

top of manufacturing systems pyramid which shows that ERP as highest level in the

factory structure.

Level 3 is the binding layer between ERP (level 4) and DCS (level 0, 1 and 2). This

layer is defined as Manufacturing Execution Systems (MES). MES accepts orders from

ERP which are representing the customer needs. Then, MES transforms these orders to

schedules in shop floor. On the other hand, MES receives the requirements from shop

floor and transforms these requirements to offers in.

Figure 1: ISA-95 structure by [6]

According to the description of ISA-95, MES has to get standard form in order to

achieve the required collaboration. Therefore, MESA is derived to introduce 11 MES

functions. Table 1 shows MES functions as defined by MESA:

5

Table 1: MES functions as defined by MESA [7]

1
Resource Allocation

and Status

Manages resources including machines, tools labor skills, ma-

terials, other equipment, and other entities such as documents

that must be available in order for work to start at the operation.

It provides detailed history of resources and insures that equip-

ment is properly set up for processing and provides status real

time. The management of these resources includes reservation

and dispatching to meet operation scheduling objectives.

2
Operations/ Detail

Scheduling

Provides sequencing based on priorities, attributes, characteris-

tics, and/or recipes associated with specific production units at

an operation such as shape of color sequencing or other charac-

teristics which, when scheduled in sequence properly, minimize

setup. It is finite and it recognizes alternative and overlapping/

parallel operations in order to calculate in detail exact time or

equipment loading and adjust to shift patterns.

3
Dispatching Produc-

tion Units

Manages flow of production units in the form of jobs, orders,

batches, lots, and work orders. Dispatch information is pre-

sented in sequence in which the work needs to be done and

changes in real time as events occur on the factory floor. It has

the ability to alter prescribed schedule on the factory floor. Re-

work and salvage processes are available, as well as the ability

to control the amount of work in process at any point with buffer

management.

4 Document Control

Controls records/forms that must be maintained with the pro-

duction unit, including work instructions, recipes, drawings,

standard operation procedures, part programs, batch records,

engineering change notices, shift-to-shift communication, as

well as the ability to edit “as planned” and “as built” infor-

mation. It sends instructions down to the operations, including

providing data to operators or recipes to device controls. It

would also include the control and integrity of environmental,

health and safety regulations, and ISO information such as Cor-

rective Action procedures. Storage of historical data.

5
Data Collection/ Ac-

quisition

This function provides an interface link to obtain the intra-op-

erational production and parametric data which populate the

forms and records which were attached to the production unit.

The data may be collected from the factory floor either manu-

ally or automatically from equipment in an up-to-the-minute

time frame.

6 Labor Management

Provides status of personnel in and up-to-the-minute time

frame. Includes time and attendance reporting, certification

tracking, as well as the ability to track indirect activities such as

material preparation or tool room work as a basis for activity

based costing. It may interact with resource allocation to deter-

mine optimal assignments.

7
Quality Manage-

ment

Provides real time analysis of measurements collected from

manufacturing to assure proper product quality control and to

identify problems requiring attention. It may recommend action

to correct the problem, including correlating the symptom, ac-

tions and results to determine the cause. May include SPC/SQC

6

tracking and management of off-line inspection operations and

analysis in laboratory information management system (LIMS)

could also be included.

8
Process Manage-

ment

Monitors production and either automatically corrects or pro-

vides decision support to operators for correcting and improving

in-process activities. These activities may be intra-operational

and focus specifically on machines or equipment being moni-

tored and controlled as well as inter-operational, which is track-

ing the process from one operation to the next. It may include

alarm management to make sure factory person(s) are aware of

process changes which are outside acceptable tolerances. It pro-

vides interfaces between intelligent equipment and MES possi-

ble through Data Collection/Acquisition.

9
Maintenance Man-

agement

Tracks and directs the activities to maintain the equipment and

tools to insure their availability for manufacturing and insure

scheduling for periodic or preventive maintenance as well as the

response (alarms) to immediate problems. It maintains a history

of past events or problems to aide in diagnosing problems.

10
Product Tracking

and Genealogy

Provides the visibility to where work is at all times and its dis-

position. Status information may include who is working on it;

components materials by supplier, lot, serial number, current

production conditions, and any alarms, rework, or other excep-

tions related to the product. The on-line tracking function cre-

ates a historical record, as well. This record allows traceability

of components and usage of each end product.

11
Performance Analy-

sis

Provides up-to-the-minute reporting of actual manufacturing

operations results along with the comparison to past history and

expected business result. Performance results include such

measurements as resource utilization, resource availability,

product unit cycle time, conformance to schedule and perfor-

mance to standards. May include SPC/SQL. Draws on infor-

mation gathered from different functions that measure operating

parameters. These results may be prepared as a report or pre-

sented online as current evaluation of performance.

Regarding to Table 1, MESA aims to define MES functions in general form. The defi-

nition may vary according to the involvement in the industry. Nowadays, MES func-

tions are considered as spine of the manufacturing system. These functions provide the

needed connection between ERP and factory shop floor.

The generality of MES functions definition increased the adaptation of MES with all

different kinds of industries (batch, process and discrete). In this thesis, the focus is

directed towards discrete industry. Discrete industry is defined in terms of number of

parts of the product and complexity of assembling products [8]. In this manner, many

of industrial technology providers build solutions to fit the industry demand for differ-

ent industry type. The list below shows some of industrial technology vendors with

their solutions for discrete manufacturing execution system.

 SIMATIC IT by Siemens [8]

 Discrete manufacturing operations management software by ABB [9]

7

 E-Business Suite by Oracle [10]

 Proficy for Discrete Manufacturing by General Electric [11]

 Industry solution package by SAP [12]

 Rockwell Automation [13]

All the listed solutions provide the manufacturing system with needed interaction

through standalone applications.

2.2 Open-Knowledge-Driven System

Many philosophers tried to define general knowledge. Nevertheless, the majority

agreed on the theory of knowledge as “Justified True Knowledge” as Grayling stated

in [14]. From technical point of view, knowledge is defined as the ability for providing

information [15]. In this context, knowledge represents a set of comprehensive infor-

mation composed by truth and experience. In industry, knowledge driven system is

defined as smart system by some researcher [16], [17]. OKD defines a system as

knowledge or semantic information form. This information (knowledge) is defined as

set of ontologies. Meanwhile, ontologies have been considered as flexible, extensible

and scalable description mechanism [18][19]. In early 90’s, ontology has been formal-

ized by T. Gruber [20]. Ontologies could be defined in many languages in computer

science. One of these languages is OWL (Web Ontology Language) by W3C organiza-

tion [21].

The involvement of knowledge-based concept in several fields has increased nowadays

because of internet revolution in the beginning of 21th century. Factory automation is

one of the fields which involve the most recent technologies. In this manner OKD-MES

(Open Knowledge-Driven Manufacturing Execution System) trends to add more flexi-

bility and configurability to manufacturing execution systems [22].

As Iarovyi and Xu describe in [23], the openness term represents the possibility to be

distributed and replaceable in terms of architecture of information. They provide an

inclusive illustration for building OKD-MES in [23]. In their article, OKD-MES core

is composed by five layers; Physical Layer (PHL), Representation Layer (RPL), Or-

chestration Layer (ORL), Visualization Layer (VIS) and Interface Layer (INT). See

Figure 2.

8

Figure 2: OKD-MES architecture [23]

PHL represents the controlling unit for shopfloor in a factory. As shown in Figure 3,

the structure of PHL consists of three main components; WS toolkit, Runtime core and

I/O module. Since OKD-MES adapts web services, PHL interacts with other layers via

WS toolkit (Web Services toolkit). Runtime core provides logic processes such as struc-

tured list or ladder diagram representations. Meanwhile, I/O Module communicates

with shopfloor equipment.

Figure 3: PHL structure [23]

The next layer of OKD-MES core states RPL (Representation Layer). This layer is

considered as knowledge provider. As appears in Figure 4, RPL comprises of six com-

ponents; Device Registration Module, Visualization Provider Module, Ontology Man-

ager Module, SPARQL (see section 2.5) Query Factory, Ontology connector and On-

tology Database.

9

Figure 4: RPL architecture [23]

Device Registration provides information about OKD-MES accessibility. Furthermore,

this component is called Services Inventory as well. Visualization Provider supplies

VIS with visualization description according to the configuration in the ontology.

Meanwhile, Ontology Manager Module manages information flow in RPL. This com-

ponent communicates with ORL and Production manager (MES functions) via web

services. SPARQL Query Factory and Ontology Connector bridges the previous com-

ponents with Ontology Database. Finally, Ontology Database holds information as on-

tologies. This component serves query/update request for information manipulation.

Another component in author’s approach is called ORL. ORL manages the execution

of process in OKD-MES especially processes and services in PHL. This layer is de-

signed to achieve the generalization concept of OKD-MES. Consequently, ORL is con-

nected with RPL in order to retrieve the information about PHL services and status of

the system. According to Figure 5, this layer contains two modules; Services Composer

and Orchestration Engine.

Figure 5: ORL architecture [23]

Service Composer generates lists of tasks which required to be applied on PHL. These

tasks depend on the situation of PHL and production status (MES functions). On the

other hand, Orchestration Engine manages the execution of these lists on PHL. As well,

this module updates RPL with information about processes execution.

10

Finally, the layer which supports OKD-MES with visualization components is so called

VIS. This layer allows the user to interact with the manufacturing system via visual

interface browser. As the specified approach in [23], the browser states internet web

browser. Accordingly, this layer requires information about requests of users from RPL.

Then this Dynamic Composer collects visualization components from Symbol library

as SVG elements. These elements are shown in web browser as html page. Similarly,

VIS monitors PHL through Visualization Agent. This agent subscribes to PHL events

that are connected to visualization functionality such as status of machine events. Then

due to PHL events, visualization agent updates the correspondent elements in the html

page. See Figure 6.

Figure 6: VIS architecture [23]

2.3 OKD systems and MES

The usage of KB (Knowledge-Based) approach in manufacturing system is still under

development. As LONG Wen illustrates in [24], the model of ontology for MES con-

tains Process model, Product model, Organization model, Resource model, Information

model and Function model. His approach provides a good view about the connections

between classes and initial view about how MES ontology will look like. But MES

functions did not have a unique entity as model in the ontology. Figure 7 shows the

ontology model which is presented by LONG Wen.

11

Figure 7: Ontology model [24]

In LONG Wen approach, some of MES functions are inseparable. This means if the

user would like to have his/her own function, s/he has to change all the ontology struc-

ture. Therefore, the flexibility of editing ontologies is restricted. Furthermore, the user

is limited to choose the solution that s/he prefers. In this thesis, one of the targets

planned as building separate MES functions ontologies which allow the user to choose

the function that s/he would like to use regardless the core configuration of OKD-MES.

2.4 Web services in Manufacturing Systems

Since the revolution of networks and internet has been started in 90’s, many of indus-

trial controllers’ providers have implemented web services in their products. For this

reason, providing SOA (service oriented architecture) by W3C [25] is considered as a

necessary requirement for industrial controllers. The main benefit of SOA is to provide

a structure of communication between different agent regardless of the differences in

the platform or the operating system[25], [26], [27].

As a conclusion in [28], SOA could provide automation with more flexibility and con-

figurability which is required in automation systems. One of SOA deployment in man-

ufacturing systems is DPWS (Device Profile Web Services). DPWS is defined as an im-

plementation of web services that provide security, discoverability and accessibility for

WS description. The core of DPWS is based on WSDL, XML schema, SOAP and WS

Addressing[29], [30]. As an implementation example in [31], Figure8 shows an imple-

mentation for the DPWS with Knowledge-based system for building a Semantic Web

Services Framework

12

Figure 8:Semantic Web Services Framework using DPWS [31]

Another WS definition provided by W3C is REST architecture (Representation State

Transfer). REST is based on HTTP method like GET, POST, PUT, DELTE, etc. The

real meaning of HTTP methods is combined in CRUD (Create, Read, Update and De-

lete) term [32]. The remarkable difference among the other web services appears as

representing web resources using a uniform set of "stateless" operations. Furthermore,

REST architecture support various kind of data format like xml, html, plain text, JSON

message formats. Although REST is not standardized yet, it features light weight pro-

cesses and fault-tolerant[33] as well. Thus, REST web services are raising more in in-

dustrial applications. Furthermore, a vocabulary definition for Hypermedia-Driven

Web APIs (HYDRA)[34] has been defined in order to provide a generic structure for

web API clients.

2.5 APIs (Application Programming Interface)

Any research and development process needs tools for development. According to the

objectives, this thesis trends to develop MES functions in OKD-MES as web services.

Therefore, first tool which is necessary for the development is ontology editor. Ontol-

ogy editors are deployed for structuring OWLs. There are many ontology editors are

available such as Protégé, JOE (Java Ontology Editor), Olingvo, etc. Olingvo is a

graphical ontology editor based on java API [35]. Moreover, Olingvo provides users

with the ability to use SPARQL queries/update on the available ontology.

After building ontologies, a server has to be used to provide query and upgrade services

to the ontology using SPARQL language. In this study Fuseki server has been deployed

to fulfill this functionality. It also supports REST-SPARQL HTTP format for query and

upgrade services [36]. Because of that, Fuseki is considered as suitable tools for serving

ontology via HTTP protocol.

13

As illustrated in the introduction, MES functions have to host certain web services. The

choice from variety available APIs depends on the functionality and complexity of the

API. Java is one strong candidate which allows the programmer to work in object ori-

ented environment. Also Java can be used on any platform which makes it highly con-

sidered for this job [37]. Similarly, C++ and C# are strong APIs as well for building

automation applications. But because of the nature of MES functions, C++ and C#

could be not the suitable choice since MES functions run as server which may be ap-

plied on different platforms. In this matter, java is considered as most likely to be im-

plemented. Even so, after research and conducting some test, NodeJS appeared to be

reasonably choice. NodeJS is JavaScript API environment built using chrome v8 en-

gine. The structure of NodeJS is defined as event-driven and non-blocking I/O API.

Accordingly, NodeJS is lighter and more efficient API for building web applications.

Besides that, NodeJS employs npm open source library. The npm is a package manager

for NodeJS. As a fact, the npm is considered as the largest open source library in the

world [38]. Consequently, NodeJS provide the capability to the user to include many

open source modules through npm.

2.6 Summary

As the objective of this thesis to present a methodology for implementing the MES

Functions as web services, this chapter focused on the related fields such as MES and

MES functions, knowledge-based systems, the concept of OKD-MES, the cutting edge

of the web services and the available tools that can be utilized for building the frame-

work. As this thesis focuses on the implementation of the MES functions as web ser-

vices, the approach which is illustrated in the coming chapters combines the main fea-

tures of the listed fields in this chapter.

As the problem definition presented the hypothesis of this thesis, the lack of having

MES solution which supports the manufacturing systems with MES functionalities

through web services. Thus, this chapter intended to highlight the manufacturing exe-

cution systems definition, the open-knowledge driven approach for MES, the web ser-

vices in the industrial use and the current used APIs for building applications. In the

next chapter, the reader will be presented with a methodology of building MES func-

tions platform for web-based and knowledge-based manufacturing execution system.

14

3 THE METHODOLOGY OF DESINING THE MES

FUCNTIONS

The vision of developing MES functions is to present configurable and replaceable

tools which allow the user to edit or to replace the implementation of MES functions.

This chapter presents the methodology of developing MES functions to work side by

side with OKD-MES. This methodology illustrates a general and robust model for MES

functions. Hence this model could be used for all MES functions.

This chapter contains four sections. First section illustrates the model of MES functions

that can be used for all MES functions regardless industry type. While the second sec-

tion shows the tools that can be used for developing MES function. And the third sec-

tion presents the technique of developing MES functions. Finally, the fourth section

presents the validation process for the provided model.

3.1 The Approach

Since MES functions are going to be implemented in OKD systems, the target is to

present MES functions as layer of OKD-MES. This layer is considered as an optional

layer. In other words, it can be used partially or completely according to the user needs.

Figure 9 shows the general interaction between OKD-MES layers and MES functions

layer.

Figure 9: MES functions in OKD-MES

15

As presented in the objectives of this thesis, MES functions have to be generalized

despite of the differences in the functionality. Building MES functions platform using

KBS and web services is one approach may achieve this requirement. Therefore, the

model of MES functions may contain configurable parts (parameters, functions logic

and configurations) which represent the differences between these functions. All other

parts of the model will be the same for all MES functions. The provided model contains

three main separate components. First component is Ontology Manager (OM) which is

designed to manage the query and upgrade ontology services. The second component

is the Service Manager (SM). This part is fixed for all functions and provides RESTful

services to communicate with OKD-MES layers and/or MES functions. The third part

is Function Manager (FM) which is responsible to provide the functionality of MES

functions by providing logic aspect for MES functions. Figure 10 shows MES function

model.

Figure 10: MES Function Model

The user of the MES functions platform is expected to study the manufacturing which

the platform will be implemented in. Figure 11 depicts the user activity diagram. Once

an appropriate case where the platform can be used, the user starts populating the on-

tology model with the existent knowledge such as MEs Function will be used, the logic

of these MES functions, other components in the manufacturing system such as the

factory shopfloor. Next, the user is subjected to prepare the functional scripts which

includes the logic for the MES functions. Finally, the user can deploy the platform in

the manufacturing system.

16

Figure 11: User activity diagram

3.1.1 Ontology Manager and Ontology Model

MES functions are the core of the manufacturing facility. However, not all MES func-

tions are necessary for all industries. Thus the implementation of MES functions de-

pends on several conditions like industry type, level of automation in the factory and/or

the owner needs. The user may choose the tool that s/he prefers. Therefore, these func-

tions must have separate ontology than OKD-MES ontology in order to be easily edited.

Ontologies structure consists four parts; concept (class), attributers, relations and in-

stances. In this chapter the discussion focuses on classes, attributes and relations. Mean-

while, instances are illustrated in the fourth chapter were the implementation takes

place. Classes describe the object with one or many vocabularies It represents the mean-

ing of a concept or sub-concept in the domain. An attribute provides information about

the class like ID. Or it can be used to define constants or variable for the class. Relations

17

define the connection between different classes. Ontology manager is the component

where the user populates the ontology model according to the used case.

Figure 12: MESF model

As depicted in Figure 12, the model contains six classes; OkdMesLayer which repre-

sents the MES functions as layer in the OKD-MES. It includes id, name, host and port

datatypes. Besides, this class holds a one instance in the ontology once it populated by

the user. The OkdMesLayer is linked to Configurations, Service and MesFucntion clas-

ses via needsConfig, hasService and hasMesFunction dataproperties respectively. The

Configurations class support the layer with the needed preferences. It includes device-

CatalogueUrl which is a component in the RPL, phlEvents which is comma separated

string that contains the PHL event ids. And finally eventListenerUrl for configuring the

endpoint where the platform will receive events from the PHL.

The Service class contains id, url, method, reqBody, reqParam, reqQuery, resBody and

resStatus datatypes for service composition purposes. In this class, the user defines the

services that the platform will serve. The Service is linked to FunctionalScript class

using hasFunctionalScript datatype. As appeared in Figure 12, both the OkdMesLayer

and the MesFunction could has service instance. This means that the platform may

serve a service for all platform like i.e. changing the configurations of the platform or

Service instance can be a part for the MES function itself. After that, the MesFucntion

class includes id and name datatypes and it is linked to Service and FuntionnalScript

classes by hasService and hasFunctionalScript dataproperties respectively. In this

class, the user defines the MES functions that are going to be implemented in the used

case. Then the FucntionalScript class includes id, name and url datatypes. This class

18

can be part of the MES function or it can be part of a service. In this manner, the user

is able to define functional scripts that are called once a service is received or it can be

a script runs in the background of an MES function. The FunctionalScript class is linked

with Parameter class using hasParameter data property. This parameter can be used as

input, output or variable. Finally, the Parameter class includes name, type, datatype and

value datatypes.

Ontology manager contains two components, information stack which is represented as

MESF OWL file and ontology engine which is built by Fuseki server. The ontology

manager is responsible to provide query and update services for local ontology. For the

global ontology, RPL hosts predefined services. These services are known for MES

functions by Service Inventory.

3.1.2 Service Manager

As presented in the introduction, MES functions works in web services domain since

OKD-MES approach is targeted. In order to provide web services, MES platform con-

tains the SM. The SM is responsible for interacting with OKD-MES components and

MES functions. Besides that, it has to decompose the request for the invoked service

and to compose the response for the service. In this context, services manipulation is

done by SCDU (Service Composition and Decomposition Unit). SCDU involves HY-

DRA definition in the structure of the web APIs.

SCDU provides detailed information about invoked service to MES function platform.

This information describes the request of the service. Accordingly, MES function

model responds to the invoked service via SCDU. Correspondingly, SCDU composes

the response in a suitable HTTP standard. On the other hand, SCDU may compos re-

quests as well. This request is required by the platform.

3.1.3 Function Manager

Function Manager is the third component of MES functions model. This component is

the core of the platform. It bonds the SM and the OM. It is also the part of the function

where calculations take place.

Function Manager holds three parts; FLM (Functions Logic Module) and PU (Process

Unit). Functions are predefined scripts by the user which contains logic of MES func-

tions in JavaScript format. The reason behind using JavaScript language that the plat-

form is developed using NodeJS. For more friendly representation, MES functions

scripts can be built using STL in IEC-61131-3 standard for future updates. These scripts

are different from MES function to another according to the usage of each one.

19

Secondly, the PU is the part where calculations are occurring. It connects service man-

ager requests and responses with ontology information and calls the required functions

according to the matching between ontologies with services. As shown in Figure 10,

PU as the main part of the FM is communicating with service manager using JSON

notation. Meanwhile, it uses SPARQL queries to communicate with the OM. Figure 13

presents the sequence diagram for the platform.

Figure 13: sequence diagram for the platform workflow

As Figure 12 shows, an application requests a service in the platform. Accordingly, the

SM notifies the FM about the incoming request and includes the request information to

the FM. Then, the FM requests the OM to validate the incoming request. As user pop-

ulated the ontology model, the OM returns the validation result to the FM. In this man-

ner, the FM could return a response directly to the client or a response contains the

specified Functional Script which the service uses in the ontology model. More expla-

nation is provided in the next section.

20

3.2 Techniques

As mentioned in section 3.1, the platform contains three main parts; the OM, the SM

and the FM. This section presents the communication between these parts. It also pro-

vides in details how these main parts are collaborating with each other once a service

invoked. As shown in Figure 14, the flow of service manipulation starts with validation

of the invoked service. The validation process depends on the information in the ontol-

ogy. If the service is not valid, then SCUD returns error code according to the validation

procedure. If the service is valid, then the associated function scrip is called and exe-

cuted. The response of the invoked service depends on the service. It is also possible

that MES function invoke other services in OKD-MES components or in MES func-

tions as well before or after responding for the invoked service.

Figure 14: General flowchart for the work sequence of MES functions

This section is divided into four subsections. First subsection shows the interaction be-

tween the SM and the FM. The second subsection illustrates the collaboration between

the OM and the FM. The third subsection discusses the deployments of script functions

and how they are linked with invoked service and information in ontology. Finally, a

validation scenario is described in order to build an examination bases for the platform.

21

3.2.1 Web Service Manipulations

This sub section describes the interaction between components of MES functions model

in terms of web services. As mentioned in 3.1.2, the platform uses RESTful web ser-

vices for communication. The process starts when a client request service from an MES

function. The request reaches SCDU via REST interface. SCDU extract all information

from the request and send it as JSON object to PU. This object contains information

about requested services.

Afterwards, the PU starts validating the service. This validating process queries infor-

mation from the OM and evaluates the service. The query request is shown in Code 1.

The query selects all MES functions, services and functional scripts where the provided

requested url and the http method have a match in the knowledge model.

PREFIX ms:<http://www.escop-project.eu/#>
SELECT ?OKD_MES ?MES_Function ?Service ?Function
WHERE{
?OKD_MES ms:URL_Value "http://127.0.0.1:3100".
?MES_Function ms:URL_Value "/tracking".
?Service ms:URL_Value "/Products".
?Service ms:HasFunction ?Function.
?Service ms:IsGetHTTPMethod "Get".
}

Code 1: SPARQL script for manipulating the invoked services

According to the queried information, the FM proceed in the process of serving the

request. Then PU sends JSON Object for the response of the invoked service. Once

SCDU receives the response object, it transfers JSON object services which has header

and body. Finally, SCDU sends it back to the client. Another usage of the SM is to

invoke services in global domain like OKD-MES layers. This service is described in

component as so called Services Inventory. Service inventory is component in RPL

which hold all information about web services for OKD-MES layers.

3.2.2 Ontology Manipulation

Since MES function server is build using NodeJS, it has the ability to include modules

or packages to communicate with Fuseki server. The Fuseki server is used to serve

ontologies through http protocol. But this server communicates with clients using

SPARQL language. Thus a module has been included in NodeJS to fulfill this gap. The

model is open source and downloadable via NPM library. The module is called “sparql-

client” [39]. This module is able to return information in JSON format. This feature

easies the interaction with ontology manager.

Any JavaScript function which uses sparql-client module has to include the module

script in Code 2.

22

var SparqlClient = require('sparql-client');
var util = require('util');
var endpoint = 'http://dbpedia.org/sparql';

Code 2: Importing the SPARQL client in NodeJS

Then the query is defined as a string variable in JavaScript. After wards, a client is

defined as a new instance of SparqlClient. Finally, the client uses the method “query”

to invoke the query in the Fuseki server. See Code 3.

var query = " PREFIX ms:<http://www.escop-project.eu/#>
SELECT ?OKD_MES ?MES_Function ?Service ?Function
WHERE{

?OKD_MES ms:URL_Value "http://127.0.0.1:3100".
?MES_Function ms:URL_Value "/tracking".
?Service ms:URL_Value "/Products".
?Service ms:HasFunction ?Function.
?Service ms:IsGetHTTPMethod "Get".

}";
var client = new SparqlClient(endpoint);
client.query(query);

Code 3: Example of using the SPARQL client in the NodeJS

This JavaScript code returns the information as JSON object which is described in sub-

section 3.2.3.

3.2.3 The Functional Scripts

As the platform has been illustrated so far, the user has to populate the MESF. Another

component that needs the user to define is the functional scripts. These scripts contain

the logic for each MES function. But there is one function used by all MES functions.

This specific function is required for model use. It requires nothing from the user to

modify. This function is web services validation functions. It evaluates the request of

services and responds according to the information stored in the ontologies.

Once the validation function is called, it queries the information of the invoked service

as shown in previous subsection. Then validation function starts validation by evaluat-

ing the result of the query. If the query result is not empty, then the service is correct

and validation return with the id of associated function for the service. If the result of

the query is empty, then validation function removes body and header query triples and

invoke query service again. If the new result is not empty, then validation returns error

code 400 (Bad request error [40]). But, if the result is empty again, then validation

removes httpMethod triple and request query services again. If the result is empty then

validation returns error code 404 (Not found error [40]). If the result is not empty, then

23

validation function returns error code 501 (Not implemented error [40]). Figure 15

shows the flowchart of the validation function.

Figure 15: Validation function flowchart

The other associated functional scripts are defined by the user. These scripts are called

according to the use as described in the ontology. The concept of calling JavaScript

24

inside JavaScript is achievable by different methods. After doing some tests and re-

search, two main approaches are feasible to be used. First method is by using eval()

command in JavaScript library [41]. This method executes JavaScript from string

datatype. There are two approaches to implement it; first one is by saving all function

scripts as text files and read these functions and converts them to string then call it. This

approach requires more time for reading the file. The second approach is by providing

all function scripts as GET RESTful web services. Then the function executes the re-

sponse of the services directly. Using eval() command has two main drawbacks;

firstly, it is hard to pass parameters to the function or to return results from the function.

Secondly it is dangerous command because it will be executed in unknown location in

the code. Therefore, synchronizing the function with other functions or services is not

available.

The second method is by using JavaScript files saved in the server. This method is safer

and faster than first method. It works by require command in NodeJS then deal with the

function as object. This method easily passes parameters and results and synchronisa-

ble. The following code shows how it is implemented:

External JavaScript object (file name: Mul.js):

exports.functions={
 mul:function (x,y){
 var z = x*y;
 console.log("The result is : "+z)
 return z
 }
}

Code 4: Example of using exports in NodeJS

Main function:

var test_function = "Mul"
var mul_function = require('./'+ test_function +'.js').functions;
mul_function.mul(155,2); // call the external function

Code 5: Example of importing a library in NodeJS

3.2.4 Validation Scenario

For validation purposes, a scenario has been included for this thesis. The scenario ad-

dresses a production process that can be seen in any factory. As shown in Figure 16,

this scenario involves four main MES functions; MES-F1: Resources Allocation/ Sta-

tus, MES-F2: Operation / Detail Scheduling, MES-F3: Production Unit Dispatching

and MES-F10: Products Tracking and Genealogy. In this scenario, three functions will

use the provided model. The implementation includes ontology and functions scripts

usage.

25

Figure 16: Order to Product scenario

The scenario starts by inserting an order to the OKD-MES through the VIS. The order

goes to the MES-F2 which updates the RPL. Then the MES-F2 requires all the orders

which needs to be served. Then the MES-F2 requires the ORL to start the production.

After that, the ORL proceeds in the production process with the help of the MES-F3.

Consequently, the MES-F3 needs both the RPL and the MES-F1 to direct the ORL for

the needed production tasks. At the end of the chain, the PHL executes the tasks which

are coming from the ORL. At the same time, it updates the MES-F1 with all the changes

that happens in the factory equipment.

26

4 IMPLEMENTATION OF THE CONCEPT

This chapter presents the implementation of the approach of development MES func-

tions which described in chapter three. The implementation focusses on deploying the

approach on a testbed industry. Also, implementation includes providing a test scenario

for the model. Thus, this chapter is divided into four sections. First section presents the

testbed for the developed approach. This test bed is FASTory assembly line. The pur-

pose of using the FASTory is to apply the concept on discrete industrial assembly line.

The second section illustrates the readymade OKD-MES by eScop developers. Next

section shows the implementation of MES functions model on few functions in MES

functions. In this section, the methodology which discussed in chapter three will be

applied. The last section shows the test scenarios for the concept which has been de-

ployed for validation of the concept.

4.1 FASTory case-study

FASTory is discrete assembly line. It is used to mock the assembly of mobile phone.

The line draws three mobile phone parts (frame, screen and keyboard) with three dif-

ferent colors. Also the line can produce 3 different models of mobile phones. See Figure

17.

Figure 17: Mobile phone parts1

FASTory line contains 12 work station forming loop typology as shown in Figure 18.

The line consists of one work stations (WS1) for loading row material and unloading

accomplished products, one work stations (WS7) for loading/ unloading pallets to the

line. This work station works as buffer for the line. It can hold up to 18 pallets. The

remaining ten workstations are identical work stations (2, 3, 4, 5, 6, 8, 9, 10, 11 and 12)

which are used for production purposes. Each of these work stations can produce any

model with any color of mobile phone.

1 http://escop.rd.tut.fi:3000/instructions

http://escop.rd.tut.fi:3000/instructions

27

Figure 18: FASTory line typology

 Each of 12 work stations contains one conveyor and one robot. For WS 1 and WS7,

the conveyor has only main conveyor, meanwhile all other work stations have main

conveyor and bypass conveyor. Main conveyor is used for producing process. The by-

pass conveyor is used when a pallet id required to reach next work stations. In this

typology, the assembly line will not be on hold during production process. Also each

work station has SONY SCARA robot. In WS1, the robot is responsible for loading

and unloading papers to the line. For WS7, robot loads and unloads pallets to the line.

On the other hand, for the rest of work stations, Robot draws mobile phone parts.

Figure 19: Conveyor zone types in FASTory line

As shown in Figure 19, each conveyor in FASTory line is divided into different zones.

There are five different types of zones. In each zone there is one presence sensor that is

used for detecting the pallet presence. Also, there is one stopper to stop the pallet when

the conveyor is transferring other pallets. An RFID reader is located in each zone 1 for

each workstation. This reader reads the pallet’s tags for identifying the entering pallet.

Table 2 shows the functionality of these zones.

28

Table 2: Conveyor zones description

Zone ID Zone Functionality Availability in FASTory

Z1 Work station entrance. This zone reads the ID

of the transferred pallet from previous work

station. In this zone the decision could be

taken for move the pallet to the work station or

to pass it to the next work station

This zone is available in all

work stations except ws7

Z2 Internal buffer for the work stations. This zone

holds extra pallet in the line if Z3 is occupied

This zone is available in all

work stations

Z3 Productions zone. This zone is used to ac-

complish the task of the work station (loading/

unloading and drawing).

This zone is available in all

work stations

Z4 This zone is used for bypass conveyor. There

are two functionalities; first one is to decide

which pallet will be transferred to zone 5 (from

3 to 5 or from 4 to 5). The other functionality is

to hold pallet if zone 5 is occupied.

2, 3, 4, 5, 6, 8, 9, 10, 11 and 12

Z5 Exit zone where the pallet reach the end of

work station

This zone is available in all

work stations

With this architecture, each robot and conveyor is represented as an RTU (Remote ter-

minal Unit), 12 Conveyors and 12 robots. Each RTU is controlled by INICO S1000

[42]. INICO S1000 a is web-based industrial controller. It supports DPWS (Devices

Profile Web Services) mechanism for discovery and manipulating web services. Fur-

thermore, INICO S1000 uses XML/SOAP standard for communications. During eScop

project, a reasonable update has been conducted on the S1000. As a requirement of the

project, the PHL should support RESTful web services in the communications level.

For this thesis, a replica of the FASTory assembly line is deployed. This replica is

known as FASTory simulator. This simulator was developed by eScop development

team in order to mimic the real line. The simulator is considered as a handy tool for the

development and validation stages during the project [43]. The FASTory simulator rep-

resents the physical layer of OKD-MES approach in this thesis. The simulator services

can be found in instructions page of the simulator2. The FASTory simulator APIs are

available in the attached appendix.

4.2 Deployment of OKD-MES on FASTory

OKD-MES has been developed for eScop project by different parties. As described in

section 2.2, OKD-MES layers are represented by ontologies. This ontology is separate

than MES functions ontology. It is developed by eScop project partners as well. This

2 http://escop.rd.tut.fi/fastory/instructions

http://escop.rd.tut.fi/fastory/instructions

29

section presents eScop tools3 (VIS, RPL, ORL and PHL). PHL layer is presented in the

previous section. In this section the focus will be on VIS, RPL and ORL and how these

layers are prepared and deployed on FASTory line.

4.2.1 Visualization Layer

As any solution for MES, an interface has to be designed for user to interact with man-

ufacturing system. In OKD-MES there is layer so called Visualization layer (VIS). The

objective of this layer in OKD-MES covers many topics. In this thesis, VIS is just in-

volved for orders entry.

Figure 20: Order entry page in VIS

For implementation an order entry page has been designed to serve the functionality of

entering orders. See Figure 20. In this page the user insert order by selecting frame,

screen and keyboard for the product. Each order has one product with desired quantity.

Then the order is sent to scheduling function (F2: Operation/ Detail Scheduling).

4.2.2 Representation Layer

As described in section 2.2, RPL works as information manipulator in OKD-MES4.

Thus in FASTory implementation, RPL provides information about all components in

OKD-MES. This information could be used for configuration of these components or

status of manufacturing system. This study aims to test the collaboration between MES

functions with RPL.

RPL provides information as defined in ontologies. These ontologies contain infor-

mation about all services that are available in OKD-MES layers (MES functions as

well) in a block so called Service Inventory. This information allows the requester to

retrieve service’s URL and service’s parameters via service Id. In other words, this

information is defined by the user once s/he build the ontology. Therefore, the user is

able to choose any tool to fulfill MES functionality. In this thesis RPL has been used

3 http://www.escop-project.eu/training/pilots/FASTory_Tools.pdf
4 http://www.escop-project.eu/training/components/RPL_training.pdf

http://www.escop-project.eu/training/pilots/FASTory_Tools.pdf
http://www.escop-project.eu/training/components/RPL_training.pdf

30

for orders, recipes and pallets information in FASTory line. The RPL APIs are listed in

the attached appendix.

4.2.3 Orchestration Layer

Orchestration layer (ORL) is the layer which control shopfloor through PHL. The tech-

nique for ORL may vary according to different reasons. As an example, industry type

(process, discrete or continuous) affects how the ORL will behave for certain scenarios.

Also the orchestration method (i.e. BPEL) affects as well. Another factor may affect

the design of ORL is the communication structure of the manufacturing system (i.e.

SOAP vs REST).

For this thesis, ORL is designed to control PHL from pallets point of view. In this man-

ner, ORL subscribes for Z1_Changed in PHL for all workstations (Z2_Changed for

WS7). Then once the event is triggered, ORL retrieves PalletID and senderID for re-

questing list of executable URLs from MES-F3 (Dispatching Production Units). After

that MES-F3 provides ORL with list of tasks that needs to be applied for the pallet. See

Figure 21.

Figure 21: Flowchart for interaction between ORL and MSE-F3

31

In this manner, ORL provides fixed and general orchestration for all devices in PHL.

However, ORL do not make decisions for pallet to be move to which workstation. ORL

which has been tested has developed by eScop project partners5. The RESTful APIs for

the ORL are listed in the attached appendix.

4.3 MES functions Layer

In chapter three, the architecture of MES functions has been presented. This section

shows the implementation of MES functions by using the developed approach. For

some of MES functions, MESF is populated to describe the MES functions services

and configurations. Then the functional scripts are built to serve the functionality of

MES function. These are the steps which the user has to make in order to deploy this

concept on his/her factory. For this thesis the implementation covers three MES func-

tions; MES-F1, MES-F2, MES-F3, MES-F5 and MES-F10. See Figure 22.

Figure 22: MES functions Layer instances

For the validation purposes, and as presented in section 3.2.4, three MES functions are

used for testing the platform. Each of these functions provides several RESTful services

that are includes some functionalities. The following table (Table 3) shows the RESTful

services which are needed for testing running the validation scenario.

Table 3: MES functions services

Function

Name
Functionalities Services

Metho
d

Quer
y

Bod
y

Re-
sponse

1 Status

onEvent /eventListenr POST 200

getAvailableService /availalbe services/:id GET id
_func-

tion

2 Scheduling
onEvent /eventListenr POST 200

getOrder NeedOrder GET id
_func-

tion

5 http://www.escop-project.eu/training/components/eScop_ORL_how_to.pdf

http://www.escop-project.eu/training/components/eScop_ORL_how_to.pdf

32

SetOrder NewOrder POST
or-
der

204

3 Dispatching

onEvent /eventListenr POST 200

getTask /nextOperation GET id,ws
_func-

tion

4 Data

onEvent /eventListenr POST 200

getEvents /eventrecorder GET
_func-

tion

getData /dataRecorder GET
_func-

tion

5 Tracking

onevent /eventListener POST
_func-

tion

getProducts /products GET
_func-

tion

4.3.1 Resource Allocation and Status

For any manufacturing system, resources statues are required to be accessible. This

information is used in various implementations like monitoring of the system by VIS,

orchestration for PHL and material status for supplement department. In this thesis,

MES-F1 (Resource Allocation and Status) is used for providing status of available ser-

vices in PHL. Table 4 shows the REST services which MES-F1 serves. For first service,

MES-F1 responses with available services that are provided by a specified RTU with

id. This service responds with a JSON scripts describing the status of the RTU. As

described in section 4.1, each drawing workstation provides draw service with different

color. The selected color in each work station governs the available services of the

workstation. Besides that, the available services of workstations depend on the current

position of the pallets in the workstation. For instance, if a pellet is located in zone 3

then TransZone23 services will not be available.

Table 4: MES-F1 services

Service

Method
Service URL Service Response

1 GET /resources/available-services/:id

Return all available service for

the RTU which holds the re-

quest ID (RTUID)

2 POST /resources/event-listener Empty response

As the platform employs the event-driven approach, MES-F1 retrieves the required in-

formation directly from the PHL. Thus, MES-F1 listens to post service through a unique

URL (/resources/event-listener) for Z1_Changed, Z2_Changed, Z3_Changed,

Z4_Changed, Z5_Changed, DrawStartExecution, DrawEndExecution and Pen-

Changed events that issued by each device. With zone change events, MES-F1 extracts

information about status of the conveyor (Busy/Idle) and of zones as well. Meanwhile

DrawStartExecution and DrawEndExecution events provide information about status

33

of the robot (Busy/Idle). On the other hand, PenChanged event provide knowledge

about the color which the robot able to draw with.

This thesis aims to provide easy configurability for manufacturing systems. By apply-

ing the concept which illustrated in chapter 3, the user is required to provide ontologies

for the configuration and the services that the function hosts. Besides that, the user is

required to provide function models for the system. In this implementation, MES-F1

contains 2 functions; EventListener (EventBody), AvailableServices (RTUID). Event-

Listener function is used once MES-F1 receives a notification about events. This func-

tion takes the body of the notification and performs certain calculations to extract a

useful information like the status of equipment. EventListener do not return any value.

The sequence diagram in Figure 23 illustrates the interaction for the MES-F1.

Figure 23: Sequence Diagram of resources function

For AvailableServices function, one input variable is needed. This variable could be

string with RTU id or string with ‘ALL’ which refers to all RTUs. Then a series of

logical operations is required to return the available services of the RTU(s). This func-

tion returns JSON object that contains information about statuses and available services

in each RTU.

After defining the functions in function module, the user is required to define certain

knowledge by using the proposed structure of ontology in 3.1. Figure 24 shows the

instances for ontology regarding the implementation of MES-F1 in this thesis.

34

Figure 24: Example of population MESF for MES-F1

As shown, the MES-F1 hosts three services; Res_available-resources, Res_availabe-

resources-id and RES_event-listener. The Res_availabe-resources-id and Res_avail-

abe-resources are GET services which returns the available services in the PHL RTUs.

The main difference is that Res_availabe-resources-id returns the specified RTU by its

id while Res_availabe-resources returns available services for all PHL RTUs.

4.3.2 Operations/ Detail Scheduling

As defined in ISA-95, MES layer binds ERP with shopfloor of factories. One of the

main functionalities that MES has to provide is scheduling and planning. OKD-MES is

not a different case. Scheduling orders and equipment is required. MES-F2 provides

such functionality. In fact, this function translates incoming orders from customers into

schedules for machines.

In this implementation, MES-F2 does not provide schedules for machines since the

orchestration is occurred on pallets not machines. Instead, MES-F2 controls the color

of the used pen in each workstation. Therefore, the services availability of each work-

station is affected. Besides that, MES-F2 connects orders to products. It provides MES-

F3 (Dispatching Production Unit Function) with products that need to be produced.

This interconnection is described more in the next section where MES-F3 is illustrated.

Figure 25 depict the sequence diagram for the MES-F2 interactions.

35

Figure 25: MES-F2 interaction sequence diagram

Regarding this implementation, MES-F2 hosts two services; needOrder and newOrder.

NeedOrder service is used when a client request product recipe to produce. This service

gets all registered orders in RPL and choose the eldest order then it return it as JSON

object. While newOrder is requested once the user inserts a new order through VIS. In

this service, MES-F2 register the new order in RPL then it retrieves all registered orders

in RPL in order to control the used color in each workstation. Table 5 shows the avail-

able services in MES-F2.

Table 5: MES-F2 services

Service

Method
Service URL Service Response

1 GET /scheduling/needOrder
Returns recipe of product regarding to priority of

orders

2 POST /scheduling/newOrder Return empty response

3 POST /scheduling/event-listener Empty response

As all MES functions, MSE-F2 listens to incoming notifications using (/schedul-

ing/event-listener) URL. In this study, MES-F2 listens to one event in PHL. This event

is so called PalletLoaded. PalletLoaded event is triggered once a pallet is loaded to the

line in workstation 7. MES-F2 registers the pallet in RPL in order to be known for MES-

F3. This interaction on is described in more details in next section.

36

Figure 26: An example of the populated MESF for MES-F2

The functionality model for MES-F2 contains three functions; needOrder (), newOrder

() and EventListener (). NeedOrder function retrieves all orders in RPL and chose the

order with highest priority. This priority is defined by the user such as registration time

or customer urgency for the order. The needOrder function returns the recipe of the

product. On the other hand, newOrder function gets the new inserted order to the system

and registers the order in RPL. Figure 26 shows a populated example of MESF for

MES-F2

4.3.3 Dispatching Production Units

Another MES function which is implanted in this study is Dispatching Production Unit

(MES-F3). This function translates orders to task that has to be performed on PHL. This

function is hardly connected to ORL since ORL is responsible to control PHL on higher

level. This function also requests recipes from MES-F2 in order to provide ORL with

list of tasks. As well, MES-F3 interacts with MES-F1 to retrieve information about

available services in PHL.

Table 6: MES-F3 RESTful services

Service

Method
Service URL Service Response

1 GET
/dispaching/next-opera-

tion

Returns list of operations which ORL requested

for managing PHL

According to Table 6, MES-F3 hosts one service. This service is called next-operation.

This service is used for reviving list of tasks according to the orders recipe that mapped

to a pallet and to workstation available services as well. As illustrated in 4.2.3, ORL

listens to Z1_Changed event in PHL for each workstation. Once this event is issued,

ORL requests from MES-F3 to provide list of tasks. MES-F3 requests both available

37

services of the workstation and recipe of the order which mapped to the pallet. Then

MES-F3 matches the recipe with available service. If there is a match, MES-F3 re-

sponds with PHL services IDs. If not, then it responds with empty body. Figure 27

shows the sequence diagram for this function.

Figure 27: MES-F3 interaction sequence diagram

For MES-F3 there is one function in functionality model. This function is called Get-

NextOperation (WS, Pallet). This function accepts two input variables; WS which rep-

resents workstation ID and Pallet for Pallet ID. As described in 4.2.3, this function is

invoked once pallet reaches zone 1 of each workstation. In this manner, and according

to FASTory design, there are three possibilities; WS1 for loading and unloading papers,

WS7 for loading and unloading pallets and the rest workstations for drawing process.

Therefore, MES-F3 firstly requests available services for workstation from MES-F1. If

the workstation is down or do not afford any services, then the function returns empty

list of tasks. If not, then MES-F3 examines if the pallet is registered in the system or

not by querying pallet information from RPL. For pallet status there are three possibil-

ities; unregistered pallet which means the pallet will y unloaded once it reaches WS7.

For any other workstations, unregistered pallet passes by the workstation. The second

possibility includes registered pallet but without order mapping. In this case, pallet will

be mapped to an order once it reaches WS1 otherwise it will pass by workstations. The

last possibility addresses the registered and mapped pallet. Here MES-F3 requests

MES-F2 to provide recipe for the pallet. If the pallet does not require any process, MES-

F3 responds with empty body which means the pallet will pass by all workstations ex-

cept WS1 which the paper will be unloaded. If the recipe still contains some processes

to be conducted, MES-F3 matches the available services with processes that have to be

drawn. If the match shows some processes, then MES-F3 responds with id of process

which have been matched the available services. if not, then pallet will pass by the work

station. An example of populated MESF mode for MES-F3 is depicted in Figure 28. As

38

appear in the figure, has two services; next-operation and event-listener. As well it con-

tains datatypes related to the MES function, i.e. name, id and type.

Figure 28: A populated MESF model for MES-F3

1.1.1 Data Collection/ Acquisition

Data analysis is one of the core functionality in any MES. Thus Data collection tech-

niques are main stream in MES development. MES-F5 (Data Collection/ Acquisition)

collects data like I/O values, events, invoked services and machine status with respect

to time. This data is used then for analysis, maintenance investigation or performance

analysis. In this study, MES-F5 is used to collect data of PHL and provide it as web

service. Another functionality which is included to this function is events subscriptions

in order to notify all MES functions about PHL events.

Table 7: RESTful API for MES-F5

Service

Method
Service URL Service Response

1 GET /data/event-record
The response contains all events triggered in

PHL

2 GET /data/data-record
The response contains all I/O for PHL with re-

spect to a certain period

Table 7 shows the services which MES-F5 provides. Event-record provides all events

that have been issued by PHL. While data-record provides all values of I/O in PHL. It

also might provide other MES fucnbtions with event notifications in case an MES func-

tion does not subscribe to events. See Figure 29. For data-record, a time period is as-

signed in configuration in ontologies of MES-F5. As shown in Figure 30: MESF for

MES-F5, a populated MESF example for MES-F5 contains three functions; GetEven-

tRecord, GetDataRecord and StrartScanning.

39

Figure 29: Sequence diagram for interactions of MES-F5

 GeteventRecord returns list of all events occurred in PHL. Same as GetEventRecord,

GetDataRecord returns list of I/O status with respect to time. Both functions do not

accept inputs and return JSON object. StartScanning function scans I/O of PHL. The

scanning procedure composes of invoking of REST web services in order to retrieve

I/O in PHL. This function called once the MES-F5 is initialized.

Figure 30: MESF for MES-F5

40

4.3.4 Products Tracking and Genealogy

As any Factory tracking the product during manufacturing process is necessary. The

generated information supports i.e. the quality assurance and fault tracking and fast

recovery. In this thesis, the MES-F10 (Products Tracking and Genealogy) has been de-

ployed once Z_changed, StrartDrawingExecution and EndDrawingExecution

events are triggered. As depicted in Figure 31, the MES-F10 creates a record for each

product listing the location, time and resource which participated for producing the

products.

Figure 31: Sequence diagram of MES-F10 interactions

The MES-F10 hosts one service which allows the consumers to retrieve the production

tracking information. See Table 8. Once this service is invoked, the MES-F10 responses

with a JSON formatted message show each part of the product where it has been man-

ufactured and the time of manufacturing. Such an information could be handy for the

performance analysis or fault tracking in a series of product.

Table 8: RESTful APIs for MES-F10

Service

Method
Service URL Service Response

1 GET /products
The response contains all products which have

been produced or in progress.

According to the concept of the MES platform, the MESF model can be instanced as

shown in Figure 32 for MES-F10. As shown, the MES-F10 hosts two services;

Tra_products which is a GET service that provides the user with all products which

41

has been produced in the factory. Tra_event-listener on the other hand, receives the

notifications from the PHL.

Figure 32: Example of MESF model for MES-F10

42

5 RESULTS

As illustrated in 3.2.4, the proposed validation scenario highlights a production used-

case (from Order to Product). Therefore, the implementation6 focused on the required

MES function that related to this validation scenario. Besides, it is important to mention

that this validation scenario shows qualitative results. In other words, the expected re-

sults show how well the MES functions are implemented.

The scenario starts by inserting the order via the VIS. The user is able to define the

required product by specifying the model and the color of the screen, keyboard and

frame. After choosing the required product the user submits the order to the MES-F2.

Accordingly, the colour of the used pen in the PHL is changed according to the inserted

order. This allows the manufacturing system to balance the load on the PHL in case of

multi orders. See Figure 33.

Figure 33: Changes in PHL pen before and after inserting an order

Then, the user manually inserts the pallet in Z1 of WS8. Once the pallet appears in Z1

of the WS8, it will be transferred till it reaches WS1. Each time the pallet reach Z1, the

ORL request the status of the pallet. At this stage the pallet is registered in the system

but not assigned to an order, therefore the ORL transfer it out.

With the eScop implementation which is the bases of this thesis, a queuing mechanism

is employed in the RTUs in order to queue the requests for operations. With this feature,

ORL provide high level of controlling equipment in PHL. Meanwhile each RTU in

PHL is considered as smart entity which manages itself. See Figure 34.

6 http://www.escop-project.eu/training/

http://www.escop-project.eu/training/

43

Figure 34: Effect of queuing in PHL

While the pallets transferring between workstations, the MES-F3 provides list of tasks

each time pallet reach zone 1 in each workstation. The user can assure that dispatcher

is performing well by

1) Observing pallets transferred between work stations.

2) Monitor the properness of choosing correct work stations, the user may get

to products tracking page.

As appears in Figure 35, a product with id Prod_F1GS1BK1R_1453974821472 which

is related to order 1453974786866 and is mapped to pallet that has id 1453974700387

at 2016-01-28T09:53:41.477Z is in production process. The product is successfully

received keyboard part in WS2 at 2016-01-28T09:53:55.762Z and still waiting frame

and screen.

Figure 35: Product tracking

44

Meanwhile the user is able to monitor the invoked services in the PHL (see Figure 36).

The figure shows a JSON formatted description of the service. This information could

be used for performance analysis or error tracking.

Figure 36: Service recorder

Similarly, the MES-F5 records all notification that triggered in the Manufacturing

system. This operation depends on the user configuration of the MES function. Figure

37 presents an example of the notification that has been triggered by the PHL.

Figure 37: Event recorder

45

As well, I/Os status is persisted in the MES-F5 (see Figure 38).as appears in the figure,

the status of the I/Os is presented as JSON file which contains three elements; v which

denotes the value of the I/O. In the FASTory case, the I/Os are binary and may have 0

or 1 value. Then the q which represents the quality of the I/O. this assures that the RTU

is connected. The last element is the t which shows the current time in milliseconds

when the data is retrieved.

Figure 38: I/O recorder

Finally, the user could read the online status of the RTUs in the PHL. This information

is supported by the MES-F1. As depicted in Figure 39, the status of the CNV1 and

CNV2 is shown as IDLE. Besides, the user can see the pallet in each zone. In the

presented case, all zones of CNV1 and CNV2 are empty. Finally, the services array

shows the available services in the RTU.

Figure 39: Resources and available services

46

 As shown in the above snapshots, the MES functions has been implemented in web

services manner. However, the platform did not perform for complicated implementa-

tion due to lack of dependencies management in the platform. However, it has shown a

potential for future development.

47

6 DISCUSSION

Regarding to the previous chapter where the platform has been implemented in FAS-

Tory case-study, this chapter presents the author point of view as discussion of the pre-

sented solution. This chapter discusses the presented hypotheses in chapter 1, the out-

come of the presented approach and a comparison with the effect of using this approach

on the FASTory line.

Returning to the listed hypothesis in chapter 1, the usage of the web services is expected

to provide independency and fast integration. In this matter, the presented approach

illustrated this feature by the conducted tests. As shown, the platform validates the in-

coming request from different consumers without any relation to the operating system

or the programming language that the consumer uses. Since it uses http RESTful ser-

vices then the approach will function correctly. As well, the provided framework re-

quires the NodeJs to be installed and as known, the NodeJs is available for most used

operating systems.

The second point in the hypotheses list considers using the Knowledge-based system

could simplify the user interaction. In this regard, the approach involve the knowledge

based system in the design phase of the MES functions. As shown, the user defines the

MES functions that are going to be used, the hosted services and the logic behind the

defined services. As a user interaction, it is required by the user to populate the provided

ontology model. It has to be noted that populating the ontology model without a proper

UI could requires some skills such as knowledge of using SPARQL language. How-

ever, the user expected to provide all necessary information in the populating phase.

After that, the framework will function according to the inserted knowledge.

The last point in the hypotheses addresses the usage of the functional scripts as separate

logic entity which could increase the flexibility for adapting different choices. This

point can be seen in the comparison with ready available solutions for the MES layer.

As stated in the second chapter, many technology providers (i.e. Siemens, Rockwell)

provide solutions for MES but these solutions tend to perform with certain industry

such as monitoring of power plants. Meanwhile, the provided approach allows the user

to define the services and the logic which increases the flexibility. Besides, with such

solution, the user might employ the presented approach in different industry types since

the logic is defined by the user.

Regarding the effect on the case study, the FASTory assembly line has been exploited

in several projects such as eSonia, ASTUTE and finally eScop. The line has received a

remarkable upgrade in terms of the technology which runs the line equipment. Before

eScop project, FASTory assembly line was deploying DPWS with SOAP messaging

48

standards. The orchestrations and the MES functionality concepts were embedded in

the WSDL and BPMN files. The following table summarizes the effect that occur on

the FASTory line after employing the presented approach.

Table 9: A comparison between before and after eScop implementation.

 Before After

Technology SOAP messages and

DPWS.

OKD-MES solution with

RESTful web services

MES Functionality The MES functionalities

were embedded in the

BPMN and WSDL. In this

sense, the user provides all

the logic as request defined

in the BPMN file.

Each MES function is defined

and uniquely configured. The

user also have the ability to

choose the required functional-

ity and then provides the

proper logic.

Flexibility, re-con-

figurability and ex-

pandability

Even the implementation of

DPWS using WSDL and

BPMN provided proper or-

chestration for the pallets in

the FASTory line, the man-

ufacturing system required

time and effort for any

change.

The manufacturing system al-

lows the user to reconfigure

the MES functions using the

Knowledge model.

Communications Large overhead due to

SOAP standard, high traffic

since the shopfloor devices

host the WSDLs of the sys-

tem.

RESTful with JSON body for

less overhead. Shopfloor de-

vices are controlled by ORL

which runs in the network.

49

7 CONCLUSION

This thesis has been focusing on the implementation of MES functions as web services

in an Open Knowledge-Driven Manufacturing Execution Systems. Firstly, an introduc-

tion has been presented which includes the motivation and objectives, the problem def-

inition and the limitations and restrictions. While the second chapter provided a State

of the Art in the second chapter. In this chapter, an illustration has been presented on

the MES functionality in general and how OKD-MES works according to the eScop

project.

The third chapter presented a methodology of building a platform for MES functions

which allows the user to implement the MES functions as web services in an OKD-

MES. The methodology showed the structure of the platform, the techniques of building

the platform. In this manner, the technique includes a description on how the presented

platform is built, how it works and how it can be validated. After that, chapter four

presented the implementation of the platform in the OKD-MES. In this chapter, the

OKD-MES layers and the MES platform are deployed in order to suit the FASTory

used-case. Then, chapter five presented the results of deploying MES functions as ser-

vices in OKD-MEs. As well, a comparison between before and after employing eScop

in FASTory assembly line has been presented.

7.1 Matching the objective

According to the objective which is pointed out in the first chapter, this thesis is re-

quired to present a methodology of designing a MES functions which are suitable for

any industry type, able to be configurable and expandable and able to work in the OKD-

MES.

In this regards, this thesis provided the platform which can support all the requirement

that mentioned above. However, according to lack of some features such as security,

dependencies management and programing language dependencies, the platform is ex-

pected to function on used cases where the user will not include external (packages that

are not in NodeJS or the used by the platform) dependencies in the functional logic.

7.2 Future Work

Due to the lack of the mentioned features, this platform requires:

1. Security implementations

50

Security is one of the main requirement when it comes to the web applications. The

presented approach exposes all services and data to the user without security features.

Therefore, this research work could be extended to address the security protocols which

assure a secure communication. Besides, a proper encryption might be needed since all

the transmitted date is represented as readable text.

2. Dependencies managements

As presented, NodeJS has been used for building the platform as a web application. For

NodeJS, developers use public open source libraries provided by the npm repository.

In this context, if a user requires some ready-made packages in the logic of the MES

functionalities, then these dependencies will be loaded every time the function is called

which might affect the performance after running the platform for a while. Therefore,

a dependency manager is necessarily needed for managing the dependencies in the plat-

form. As well, the presented platform uses JavaScript language for building the func-

tional scripts. This makes the platform targeted to users whom gained a knowledge of

programming in JavaScript.

3. Support the user with GUI

As any application that interacts with users, it is preferred that the application hosts a

GUI. As presented in the SOTA, the OKD-MES provides this feature via the VIS layer.

But since this platform could be also applied on different manufacturing systems, a

proper interface could be considered as a future work.

51

8 REFERENCES

[1] M. Younus, C. Peiyong, L. Hu, and F. Yuqing, “MES development and significant applications in

manufacturing -A review,” in 2010 2nd International Conference on Education Technology and

Computer (ICETC), 2010, vol. 5, pp. V5–97–V5–101.

[2] D. J. Adler, J. Herkamp, D. Henricks, and R. Moss, “Does a Manufacturing Execution System re-

duce the cost of production for bulk pharmaceuticals?,” ISA Trans., vol. 34, no. 4, pp. 343–347,

Dec. 1995.

[3] M. Georgoudakis, C. Alexakos, A. Kalogeras, J. Gialelis, and S. Koubias, “Decentralized Produc-

tion control through ANSI / ISA-95 based ontology and agents,” in 2006 IEEE International

Workshop on Factory Communication Systems, 2006, pp. 374–379.

[4] “mes functions mesa - Google Search.” [Online]. Available:

https://www.google.fi/search?q=mes+mesda&oq=mes+mesda&aqs=chrome..69i57j0l5.1786j0j4&

sourceid=chrome&es_sm=122&ie=UTF-8#q=mes+functions+mesa. [Accessed: 03-Jul-2015].

[5] “ISA95, Enterprise-Control System Integration- ISA.” [Online]. Available:

https://www.isa.org/isa95/. [Accessed: 05-Sep-2015].

[6] “BatchControl.com: Now This is Exciting!” [Online]. Available: http://www.batchcon-

trol.com/s95/s95.shtml. [Accessed: 13-Nov-2015].

[7] “Understanding Manufacturing Execution Systems (MES).” [Online]. Available:

https://www.qad.com/Public/Collateral/Freedom%20MES%20White%20Paper.pdf. [Accessed:

04-Apr-2016].

[8] “Siemens MES for Discrete Industries – SIMATIC IT - Industry - Siemens.” [Online]. Available:

http://w3.siemens.com/mcms/mes/en/industry/discretemanufacturing/pages/default.aspx. [Ac-

cessed: 05-Sep-2015].

[9] “Discrete Manufacturing Operations Management Software from ABB - ABB Industry software

case studies and best practices (ABB Operations Management Software for Industries).” [Online].

Available: http://new.abb.com/cpm/industry-software/industry-specific-solutions/discrete-manu-

facturing. [Accessed: 05-Sep-2015].

[10] “Oracle E-Business Suite | Applications | Oracle.” [Online]. Available: http://www.ora-

cle.com/us/products/applications/ebusiness/resources/index.html. [Accessed: 06-Sep-2015].

[11] “Proficy for Discrete Manufacturing | GE Automation.” [Online]. Available: http://www.geauto-

mation.com/products/proficy-discrete-manufacturing. [Accessed: 06-Sep-2015].

[12] “Discrete Manufacturing - Process Flow Hierarchy - SAP Library.” [Online]. Available:

http://help.sap.com/saphelp_46c/helpdata/en/8a/1a1ee54e4211d182be0000e829fbfe/content.htm.

[Accessed: 06-Sep-2015].

[13] “Welcome to Rockwell Automation – Leader in Industrial Automation & Information.” [Online].

Available: http://www.rockwellautomation.com/global/overview.page. [Accessed: 06-Sep-2015].

[14] “What is knowledge? - theoryofknowledge.net.” [Online]. Available: http://www.the-

oryofknowledge.net/knowledge-and-knowers/what-is-knowledge/. [Accessed: 13-Nov-2015].

[15] Randall Davis, Howard Shrobe, and Peter Szolovits, “What Is a Knowledge Representation?,” AI

Magazine, vol. 14, pp. 17–33, 1993.

[16] M. Saberi, A. Azadeh, Z. Saberi, and P. Pazhoheshfar, “A knowledge management system based

on artificial intelligence (AI) methods: A flexible fuzzy regression-analysis of variance algorithm

for natural gas consumption estimation,” in 2012 International Conference on Information Re-

trieval Knowledge Management (CAMP), 2012, pp. 143–147.

[17] M. Honma, H. Nakamura, A. Nakano, and S. Tsuruta, “Knowledge refinement approach through

incorporating case-based knowledge in maintenance engineer scheduling AI system,” in 1999

IEEE International Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Confer-

ence Proceedings, 1999, vol. 5, pp. 814–819 vol.5.

[18] B. Ramis, L. Gonzalez, S. Iarovyi, A. Lobov, J. L. Martinez Lastra, V. Vyatkin, and W. Dai,

“Knowledge-based web service integration for industrial automation,” in 2014 12th IEEE Interna-

tional Conference on Industrial Informatics (INDIN), 2014, pp. 733–739.

[19] J. L. M. Lastra, I. M. Delamer, and F. Ubis, Domain Ontologies for Reasoning Machines in Fac-

tory Automation. ISA, 2010.

[20] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl. Acquis., vol. 5,

no. 2, pp. 199–220, Jun. 1993.

52

[21] “OWL 2 Web Ontology Language Primer (Second Edition).” [Online]. Available:

http://www.w3.org/TR/owl2-primer/. [Accessed: 06-Sep-2015].

[22] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M. Lastra, “Cyber Physical Sys-

tems for Open-Knowledge-Driven Manufacturing Execution Systems,” Proc. IEEE, vol. PP, no.

99, pp. 1–13, 2016.

[23] Sergii Iarovyi and Xiangbin Xu, “Developing Open Knowledge-Driven Manufacturing Execution

System,” in OPEN KNOWLEDGE-DRIVEN MANUFACTURING & LOGISTICS, THE ESCOP

APPROACH, S. Strzelczak, P. Balda, M. Garetti, and A. Lobov, Eds. Warsaw University of Tech-

nology Publishing House, Warsaw 2015, pp. 295–310.

[24] W. Long, “Construct MES Ontology with OWL,” in ISECS International Colloquium on Compu-

ting, Communication, Control, and Management, 2008. CCCM ’08, 2008, vol. 1, pp. 614–617.

[25] “Web Services Architecture.” [Online]. Available: http://www.w3.org/TR/ws-arch/. [Accessed:

06-Sep-2015].

[26] “SOA and Web Services.” [Online]. Available: http://www.oracle.com/technetwork/articles/ja-

vase/soa-142870.html. [Accessed: 06-Sep-2015].

[27] “IBM developerWorks : New to SOA and web services,” 05-Mar-2007. [Online]. Available:

http://www.ibm.com/developerworks/webservices/newto/service.html. [Accessed: 06-Sep-2015].

[28] A. W. Colombo, F. Jammes, H. Smit, R. Harrison, J. L. M. Lastra, and I. M. Delamer, “Service-

oriented architectures for collaborative automation,” in 31st Annual Conference of IEEE Industrial

Electronics Society, 2005. IECON 2005, 2005, p. 6 pp.–.

[29] “OASIS Devices Profile for Web Services (DPWS).” [Online]. Available: http://docs.oasis-

open.org/ws-dd/ns/dpws/2009/01. [Accessed: 15-Nov-2015].

[30] A. Lobov, J. Puttonen, V. V. Herrera, R. Andiappan, and J. L. M. Lastra, “Service oriented archi-

tecture in developing of loosely-coupled manufacturing systems,” in 6th IEEE International Con-

ference on Industrial Informatics, 2008. INDIN 2008, 2008, pp. 791–796.

[31] A. Lobov, F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M. Lastra, “Semantic Web Services

framework for manufacturing industries,” in IEEE International Conference on Robotics and Bio-

mimetics, 2008. ROBIO 2008, 2009, pp. 2104–2108.

[32] “RESTful Web services: The basics,” 09-Feb-2015. [Online]. Available: http://www.ibm.com/de-

veloperworks/library/ws-restful/. [Accessed: 15-Nov-2015].

[33] Ondřej Severa and Roman Pišl, “REST-Enabled Physical Devices in Service Oriented Architec-

ture,” in Open Knowledge-Driven Manufacturing & Logistics - The eScop Approach, S.

Strzelczak, P. Balda, M. Garetti, and A. Lobov, Eds. Warsaw University of Technology Publish-

ing House, Warsaw 2015, pp. 341–354.

[34] “Hydra Core Vocabulary.” [Online]. Available: http://www.hydra-cg.com/spec/latest/core/#intro-

duction. [Accessed: 18-Apr-2016].

[35] A. Kuutti, A. Dvoryanchikova, A. Lobov, J. L. M. Lastra, and T. Vantera, “A device configuration

management tool for context-aware system,” in 2012 10th IEEE International Conference on In-

dustrial Informatics (INDIN), 2012, pp. 10–15.

[36] “Apache Jena - Fuseki: serving RDF data over HTTP.” [Online]. Available:

http://jena.apache.org/documentation/serving_data/. [Accessed: 13-Sep-2015].

[37] K. Thramboulidis and A. Zoupas, “Real-time Java in control and automation: a model driven de-

velopment approach,” in 10th IEEE Conference on Emerging Technologies and Factory Automa-

tion, 2005. ETFA 2005, 2005, vol. 1, p. 8 pp.–46.

[38] “Node.js.” [Online]. Available: https://nodejs.org/en/. [Accessed: 13-Sep-2015].

[39] “sparql-client.” [Online]. Available: https://www.npmjs.com/package/sparql-client. [Accessed: 28-

Sep-2015].

[40] “HTTP/1.1: Status Code Definitions.” [Online]. Available: http://www.w3.org/Proto-

cols/rfc2616/rfc2616-sec10.html. [Accessed: 29-Sep-2015].

[41] “eval(),” Mozilla Developer Network. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/eval. [Accessed: 29-Sep-2015].

[42] “Inico Technologies.” [Online]. Available: http://www.inicotech.com/s1000_overview.html. [Ac-

cessed: 16-Sep-2015].

[43] Wael M. Mohammed, Andrei Lobov, Borja Ramis Ferrer, Sergii Iarovyi, and Jose L. Martinez

Lastra, “A Web-Based Simulator for A Discrete Manufacturing System,” in IECON 2016 - 42st

Annual Conference of the IEEE Industrial Electronics Society.

53

9 APPENDIX

9.1 FASTory RESTful

The following tables present the RESTful API of FASTory simulator. More description can be found in http://escop.rd.tut.fi/fastory/instructions

9.1.1 Services

Service ID RTU ID Method Service URL Service Body

1 LoadPaper ROB1 POST
http://escop.rd.tut.fi:3000/RTU/ROB1/ser-
vices/LoadPaper

{"destUrl":"http://hostname"}

2 UnloadPaper ROB1 POST
http://escop.rd.tut.fi:3000/RTU/ROB1/ser-
vices/UnloadPaper

{"destUrl":"http://hostname"}

3 LoadPallet ROB7 POST
http://escop.rd.tut.fi:3000/RTU/ROB7/ser-
vices/LoadPallet

{"destUrl":"http://hostname"}

4 UnloadPallet ROB7 POST
http://escop.rd.tut.fi:3000/RTU/ROB7/ser-
vices/UnloadPallet

{"destUrl":"http://hostname"}

5 ChangePenRED ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/ser-
vices/ChangePenRED

{"destUrl":"http://hostname"}

6
ChangePen-
GREEN

ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/ser-
vices/ChangePenGREEN

{"destUrl":"http://hostname"}

7 ChangePenBLUE ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/ser-
vices/ChangePenBLUE

{"destUrl":"http://hostname"}

8 GetPenColor ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/ser-
vices/GetPenColor

{"destUrl":"http://hostname"}

9 Draw** ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/ser-
vices/Draw**

{"destUrl":"http://hostname"}

10 TransZone12 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/TransZone12

{"destUrl":"http://hostname"}

11 TransZone23 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/TransZone23

{"destUrl":"http://hostname"}

http://escop.rd.tut.fi/fastory/instructions

54

12 TransZone35 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/TransZone35

{"destUrl":"http://hostname"}

13 TransZone14 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/TransZone14

{"destUrl":"http://hostname"}

14 TransZone45 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/TransZone45

{"destUrl":"http://hostname"}

15 Z1 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/Z1

{}

16 Z2 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/Z2

{}

17 Z3 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/Z3

{}

18 Z4 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/Z4

{}

19 Z5 CNV* POST
http://escop.rd.tut.fi:3000/RTU/CNV*/ser-
vices/Z5

{}

20 Reset N/A POST http://escop.rd.tut.fi:3000/RTU/reset {}

* can be replaced with 2, 3, 4, 5, 6, 8, 9, 10, 11 or 12

** can be replaced with 1, 2, 3, 4, 5, 6, 7, 8, or 9

9.1.2 Events

Event ID
RTU
ID

Method Event URL Event Body

1 PaperLoaded
ROB
1

POST
http://escop.rd.tut.fi:3000/RTU/ROB1/events/Paper-
Loaded/notifs

{"destUrl":"http://host-
name"}

2 PaperUnloaded
ROB
1

POST
http://escop.rd.tut.fi:3000/RTU/ROB1/events/Pa-
perUnloaded/notifs

{"destUrl":"http://host-
name"}

3 PalletLoaded
ROB
7

POST
http://escop.rd.tut.fi:3000/RTU/ROB7/events/Pallet-
Loaded/notifs

{"destUrl":"http://host-
name"}

4 PalletUnloaded
ROB
7

POST
http://escop.rd.tut.fi:3000/RTU/ROB7/events/Pal-
letUnloaded/notifs

{"destUrl":"http://host-
name"}

5 PenChanged ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/events/Pen-
Changed/notifs

{"destUrl":"http://host-
name"}

55

6 DrawStartExecution ROB* POST
http://es-
cop.rd.tut.fi:3000/RTU/ROB*/events/DrawStartEx-
ecution/notifs

{"destUrl":"http://host-
name"}

7 DrawEndExecution ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/events/Draw-
EndExecution/notifs

{"destUrl":"http://host-
name"}

8 LowInkLevel ROB* POST
http://es-
cop.rd.tut.fi:3000/RTU/ROB*/events/LowInkLevel/no-
tifs

{"destUrl":"http://host-
name"}

9 OutOfInk ROB* POST
http://escop.rd.tut.fi:3000/RTU/ROB*/events/Ou-
tOfInk/notifs

{"destUrl":"http://host-
name"}

1
0

Z1_Changed CNV* POST
http://es-
cop.rd.tut.fi:3000/RTU/CNV*/events/Z1_Changed/no
tifs

{"destUrl":"http://host-
name"}

1
1

Z2_Changed CNV* POST
http://es-
cop.rd.tut.fi:3000/RTU/CNV*/events/Z2_Changed/no
tifs

{"destUrl":"http://host-
name"}

1
2

Z3_Changed CNV* POST
http://es-
cop.rd.tut.fi:3000/RTU/CNV*/events/Z3_Changed/no
tifs

{"destUrl":"http://host-
name"}

1
3

Z4_Changed CNV* POST
http://es-
cop.rd.tut.fi:3000/RTU/CNV*/events/Z4_Changed/no
tifs

{"destUrl":"http://host-
name"}

1
4

Z5_Changed CNV* POST
http://es-
cop.rd.tut.fi:3000/RTU/CNV*/events/Z5_Changed/no
tifs

{"destUrl":"http://host-
name"}

* could be replaced with 2, 3, 4, 5, 6, 8, 9, 10, 11 or 12

9.1.3 Data

Data ID RTU ID Method Data URL Response Body

1 S1 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/S1 {"v":" ", "q":" ", "t": " "}

2 S2 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/S2 {"v":" ", "q":" ", "t": " "}

3 S3 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/S3 {"v":" ", "q":" ", "t": " "}

4 S4 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/S4 {"v":" ", "q":" ", "t": " "}

56

5 P1 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/P1 {"v":" ", "q":" ", "t": " "}

6 P2 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/P2 {"v":" ", "q":" ", "t": " "}

7 P3 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/P3 {"v":" ", "q":" ", "t": " "}

8 P4 CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/P4 {"v":" ", "q":" ", "t": " "}

9 RFID CNV* GET http://escop.rd.tut.fi:3000/RTU/CNV*/data/RFID {"v":" ", "q":" ", "t": " "}

* could be replaced with 2, 3, 4, 5, 6, 8, 9, 10, 11 or 12

9.2 ORL RESTful API

 Registration in Device Catalogue

ORL registers in Device Catalogue to allow other willing parties to subscribe for its events. The registration is done at the following URL:

http://<RPL_HOST>/RPL/RTU

 Registration for appropriate events in Device Catalogue

Before marking as ready to start, the FASTory process definition is scanned by ORL for all needed events. ORL will ask for event subscription

URL at the following URL in RPL:

http://<RPL_HOST>/RPL/RTU/events/<device id>/<event_name>

 Querying for operations URLs in Device Catalogue

Every time when ORL needs to perform certain operation on device (eg. TransZoneXY, DrawX), the Device Catalogue is asked for the URL of

given operation on given device. The query goes as follows:

http://<RPL_HOST>/RPL/RTU/discovered-operations/<device id>/<operation id>

 Querying for the next operation drawing operation (or NOP) on workstation's robot:

To decide whether certain workstation should by bypassed or if there are any operations to perform, the ORL queries the Dispatcher:

http://<RPL_HOST>/dispatcher/next-operation?id=542314&WS=WS5

57

In return a JSON object with operation field is returned. If the field contains some value ORL will send the palette to the robot stand and perform

this operation and ask for next one, until empty operation is returned. If empty operation is returned before entering robot stand, the palette takes

bypass through zone 4.

9.3 RPL RESTful API

Device catalogue, being populated using approach described in the previous section provides access to the events and services URLs based on

their identifiers and identifiers of hosting devices. The following services are implemented in device catalogue:

 GET: /RPL/RTU – Gets a list of registered devices.

 POST: /RPL/RTU – Inserts a new device in DC. Requires a Device Hello message as a body.

 DELETE: /RPL/RTU – Clears the list of registered devices

 GET: /RPL/RTU/{deviceID} – Gets a full description of a device with “deviceID” id.

 DELETE: /RPL/RTU/{deviceID} – Removes a description of device with “deviceID” id from DC

 GET: /RPL/RTU/{deviceID}/{type}/{opID}[?fields=links.self|all] – Gets information about event or service by id of host (“deviceID”)

and id of event or service (“opID”). “type” may be “events” or “services” and identifies if it is event or a service information about which

is requested. The amount of information provided may be controlled by a filter “fields”. By default, this service provides only a self-link

of the operation. If fields would be set to all will provide all available information about the operation. This service is used to request proper

URL for event or service based on the knowledge which type of operation is required in which workstation of FASTory line.

 GET: /discovered-devices/{deviceId} – Gets a link to device description by device ID

 GET: /discovered-operations/{deviceId}/{operationId} – Gets a URL of the operation with id “operationId” hosted on device with id

”deviceId”. If not exists returns 404.

 GET: /events – Gets a list of URLs of all discovered events

 GET: /events/{deviceId}/{eventId} – Gets the URL of an event by its id and id of the device hosting it.

 PUT or DELETE: /order – a representation for all available orders

 GET, PUT, POST or DELETE: /order/{oId} – a representation for a single order

 PUT or DELETE: /order/{oId}/pallet same as /pallet – a representation for all assigned pallet

 GET, PUT, POST or DELETE: /order/{oId}/pallet/{pid} same as /pallet/{pid} – a representation for a single pallet

 GET: /order/{oId}/recipe – a representation of used recipe

