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Wireless sensor networks (WSNs) are an emerging technology for a broad spec-

trum of applications. A WSN can consist even hundreds of thousands of devices

measuring, controlling and relaying the collected date. The devices often have to

endure harsh environments and operate unattended for long periods of time. Wire-

less communication and energy-awareness are mandatory to meet these objective.

It is evident that the design of WSNs is challenging.

Simulation tools enables fast exploration of the desing space and comparison

of options in early design phases. In WSN research simulation can be applied to

performance estimation of the communication protocols, device functionality and

applications. Most of the current network simulators focus on Internet protocols

and are not viable for WSN simulation. All the essential aspects of WSNs must be

accounted for in the simulation.

This Thesis discusses the applicability of Objective Modular Network Testbed

in C++ (OMNeT++) simulation framework for low-power WSN research. Two

simulation cases are implemented. The �rst models a hierarchical wakeup function

in a surveillance application. Low-power devices monitor the target area and wake up

other devices with video cameras on demand. The simulation shows that hierarchical

wake up mechanisms may signi�cantly improve the WSN energy-e�ciency. The

second simulation evaluates the applicability of a positioning algorihtm in WSNs. It

indicates that low-energy positioning in WSN could be feasible using simple distance

estimates.

The requirements for a WSN simulator are strict. First, the results must be

reliable and accurate. Second, the simulator has to scale with the number of devices

in the network with reasonable execution time. Finally, it must be able to model

events in both device and network scale. Based on the experience of two simulation

cases OMNeT++ proved to be extensible and scalable tool �t for WSN research.

However, much like other simulation tools, OMNeT++ is prone to produce too

optimistic results.
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Langattomat sensoriverkot ovat yleistyvä teknologia monilla sovellusalueilla. Sen-

soriverkko voi sisältää jopa satojatuhansia laitteita, jotka mittaavat, ohjaavat ja

siirtävät keräämäänsä tietoa. Laitteet joutuvat usein toimimaan vaativissa ym-

päristöissä ja toimimaan pitkiä aikoja ilman huoltotoimia. Langaton tiedonsiirto

ja energiatehokkuus ovat välttämättömiä edellytyksiä langattoman sensoriverkon

toiminnalle. Nämä vaatimukset tekevät verkkojen suunnittelusta haastavaa.

Simulaatio mahdollistaa suunnitteluavaruuden nopean kartoituksen ja vaihtoeh-

tojen vertailun aikaisessa vaiheessa tuotekehitystä. Langattomien sensoriverkko-

jen tutkimuksessa simulaatiota voidaan hyödyntää tietoliikenneprotokollien, lait-

teiden toiminnan ja sovellusten suorituskyvyn arvioinnissa. Suurin osa nykyisistä

verkkosimulaattoreista on suunnattu Internetissä käytettäville protokollille ja ovat

siten huonosti soveltuvia langattomien sensoriverkkojen simulointiin, joiden erityis-

piirteet tulee ottaa huomioon käyttökelpoisessa simulaatiossa.

Tässä diplomityössä tarkastellaan Objective Modular Network Testbed in C++

(OMNeT++) simulaattorin soveltuvuutta langattomien sensoriverkkojen simuloin-

tiin. Työssä toteutettiin kaksi simulaatiota. Ensimmäisessä mallinnettiin hierarkista

herätystoimintoa valvontasovelluksessa. Vähän energiaa kuluttavat laitteet tarkkai-

levat kohdealuetta sensorein ja havaitessaan liikettä herättävät varsinaiset valvonta-

laitteet, joihin on asennettu videokamera. Simulaation perusteella herätystoiminto

voi merkittävästi parantaa langattoman verkon energiatehokkuutta. Toisessa simu-

laatiossa tarkastellaan erään paikannusalgoritmin soveltuvuutta langattomissa sen-

soriverkkoissa. Se osoittaa, että laitteiden paikannuksessa voidaan käyttää yksinker-

taisia etäisyysarvioita ilman, että energiankulutus nousee liian korkeaksi.

Vaatimukset langattomien sensoriverkkojen simulaattorille ovat tiukat. Ensin-

näkin, simulaation tulosten on oltava luotettavia ja tarkkoja. Toisaalta, sen on

skaalauduttava suurelle määrälle laitteita siten, että suoritusaika pysyy kohtuullisena.

Lisäksi sillä on kyettävä mallintamaan niin yksittäisen laitteen kuin koko verkon kat-

tavia tapahtumia. Edellä mainittujen kahden simulaation pohjalta OMNeT++ on

osoittautunut hyvin laajennettavaksi ja skaalatuvaksi työkaluksi langattomien sen-

soriverkkojen tutkimuksessa. Monien muiden simulaatiotyökalujen tavoin OMNeT++

kuitenkin tuottaa herkästi liian optimistisia tuloksia.
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1. INTRODUCTION

A Wireless Sensor Network (WSN) is a collection of autonomous devices monitoring

a wide physical environment. Each device has sensors for capturing information

about its immediate surroundings, but very limited energy reservoir and compu-

tational capacity. The network of simple devices will be capable of complex ap-

plications, if the devices collaborate. The networks are often deployed in harsh

environments where the devices are susceptible to unexpected failure. Wireless

communication enables the devices to adjust to changes in the network, if some of

the devices fail and become unavailable either temporarily or permanently. Typical

application �elds are facility management, machine surveillance, health care and

military applications [1].

An example of a WSN is shown in Figure 1.1. The WSN is deployed to accomplish

a speci�c task and the devices are positioned to cover the area of the interesting

phenomenon. The number of devices in a network can vary from a few up to

thousands or even hundreds of thousands [1]. Each device collects data of the

monitored phenomenon and reports the �ndings to a sink [2]. A sink is a device

interested in the data and it can either process the data itself or forward it to an

external resource. The end-user is mainly interested in the information extracted

from the collected data, not the individual devices. In multihop routing networks

other devices help it by relaying its data towards the sink.

Simulation is a widely adopted method in analysis, experimentation and train-

ing [3]. Every simulation utilizes models. A model captures the behaviour of a single

real-world phenomenon. Simulation is essentially observing the model behaviour un-

der known conditions. Estimate of the real world outcome is derived from repeated

experiments on the model. The more detailed the models are, the more accurately

the estimate is. The amount of detail is often a trade-o� with the required amount of

e�ort to create the model. Once the models have been designed, simulation enables

fast exploration and comparison of di�erent con�gurations.

The research and development of WSN algorithms also bene�ts from simulation.

It would be impractical to experiment with a real network prototypes especially if

the devices had to be designed and implemented �rst, or a large number of devices is

needed [4]. Simulation is an enabling technology for fast exploration of functionality

and parameter combinations for applications and protocols. The objective is to
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Figure 1.1: The devices in a WSN independently gather data of an interesting phenomenon.
The data samples are relayed to the sink device which can forward the data to an external
server. The user can access the data on the server without concern of the underlying WSN.

provide early feasibility estimate of an algorithm with less e�ort, time and cost than

what it would take with real devices [5].

In WSNs some of the de�ning characteristics are application speci�c con�gu-

rations, wide scale of network sizes and densities, mobile devices, unreliability of

both devices and communication, resource scarcity, tightly coupled interaction with

environment, and dynamic changes in the network. A feasible simulation environ-

ment must provide means to model these features and scale well with the network

size. The majority of currently available network simulators are likely to disregard

or oversimplify some of these important aspects in WSNs [5]. Traditionally net-

work simulators have focused on wired networks and support is provided only for

wireless protocols designed to be coupled with higher level Internet protocols such

as TCP/IP. These protocols are mostly unfeasible in resource-constrained WSNs

making a lot of available simulation tools ill-suited for WSN research.

One of the simulators currently used for WSNs is Objective Modular Network

Testbed in C++ (OMNeT++) [6]. The main concept of OMNeT++ is that mod-

els are encapsulated in modules that interact by sending and receiving messages.

The modules can be assembled into a more complex hierarchical structures using

compound modules that encapsulate other modules. Each module is customizable,

re-usable and easily replaceable with another. The simulation scenario can be altered

by changing the module composition.

The Integrated Design Environment (IDE) allows the user to assemble the mod-

ules in a graphical editor. The IDE provides all the necessary tools for development,

build, simulation con�guration, run, visualization and result analysis. The model

behaviour and algorithms are described in C++ [7]. For users familiar with C++
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learning to use OMNeT++ is fairly straightforward.

While there are many advantages in using OMNeT++ for WSN simulation, the

number of available models for relevant protocols is surprisingly low [5]. This in-

creases the background work required for implementing own models and makes the

comparative evaluation of new models rather di�cult.

The objective of this Thesis is to deploy OMNeT++ in low-power WSN research

project. The �rst step is to setup the simulation environment. Next, two simulation

cases are de�ned and executed. The �rst simulation case models an existing proto-

type of a surveillance application implemented earlier in the project. The simulated

results are compared with the prototype to evaluate the error introduced by the

simulation. The second case models a light-weight positioning algorithm in a WSN.

The simulation results are used to evaluate the feasibility of the algorithm on a real

WSN platform. Based on the experiences of the two cases, OMNeT++ applicability

for WSN research is discussed.

The results of the Thesis are an evaluation and user experience of OMNeT++ in

WSN research, analysis of the simulation case results, and the new models utilized

in the simulations. The models are a low-power Medium Access Control (MAC)

and a routing protocol and a dual protocol stack for devices with two radios. The

models are reusable and con�gurable for future needs.

The structure of the work is as follows: Chapter 2 introduces the �eld of wireless

sensor networks. Chapter 3 discusses the general principles of modeling and simula-

tion and available simulation tools for WSNs. OMNeT++ simulation framework is

discussed separately in Chapter 4. Chapters 5 and 6 present the implemented sim-

ulation cases, the models they utilize and the simulation results. Finally, Chapter 7

concludes the work.
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2. WIRELESS SENSOR NETWORKS

This chapter discusses the general concepts of WSNs. It is important to understand

the characteristics of WSNs since the same concepts and issues must be considered

in simulation. A plausible simulation environment must provide the means to model

these unique features of WSNs.

First, the network functionality is introduced. Next, the required protocols and

hardware devices are brie�y discussed. A lot of WSN-related standards have been

released and those related to the selected simulation cases are discussed in this

chapter. Finally, an example of a functional energy-e�cient WSN is shown.

2.1 Network Topology and Functionality

The basic building block of any WSN is a node device. A node is an embedded

system designed for sensing surrounding phenomenon, processing the gathered data

and communicating the extracted information to the user [1]. When an interesting

event occurs in the network area, it is detected by one of the sensor nodes. The node

is now the source of the information. Another node is interested in the captured

data. This node is called the sink.

To deliver the data to the sink, the source needs a connection to it. In a single-

hop communication the sink is reached by the source alone. However, in most

networks the majority of nodes are located further away from the sink and cannot

reach it directly. Multi-hop communication utilizes other nodes as intermediators

who forward the messages from the source towards the sink. A network may have

multiple sinks that are interested in di�erent data.

The source and the intermediator nodes must somehow decide, which node they

forward the data to so it will eventually arrive at the destination [4]. These forward-

ing decisions dictate the message route through the network. A routing protocol

is responsible for establishing and maintaining these routes from the sources to the

sink(s).

The simplest two forwarding rules are �ooding and gossiping [4]. In �ooding the

source �oods the network by broadcasting a message to all neighbour nodes who will

in turn rebroadcast it. Figure 2.1(a) illustrates the propagation of a data packet

from the source node in the upper left corner to the sink node on the right. The

packet propagates one hop at a time until all nodes, including the sink, have received
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Figure 2.1: Routing protocol dictates how packets propagate from the source to the sink.
Flooding (a) and gossiping (b) are examples of very simple routing protocols.

a copy of the it. Gossiping represents the other extreme: Each node forwards the

packet to a random neighbour until it arrives at the destination or until all nodes

have seen it. An example of gossiping is shown in Figure 2.1(b). Compared to

�ooding, gossiping causes less tra�c in the network, but the packet delay is likely

longer.

The active links between nodes compose the logical topology of the network. In

wireless communication the links are prone to errors and interference. A single node

can establish a link to any neighbouring node within its transmission range. Yet,

it is often bene�cial to concentrate the communication to certain neighbours while

ignoring the others [1]. This selective communication is called topology control. It is

a major concern in most WSNs because of their ad-hoc nature. In ad-hoc networks

new nodes may join the network or nodes may leave the network at an arbitrary

moment in time. The network must have mechanisms to adapt to these changes.

Network topologies can be divided into two categories: hierarchical and non-

hierarchical [1, 8]. In a non-hierarchical (�at) network all nodes have an equal role

of keeping track of the changes in the network. A node relies on other nodes to

inform it of changes outside its neighbourhood. As the size of the network grows,

the amount of messages reporting the changes soon exceed the data messages and

the delay increases for both the data and the network state messages. Eventually

the network congests when the nodes send more messages than the network can

deliver. The surplus messages begin to build a queue at the nodes until the memory

constraint of the nodes forces some of the messages to be dropped. As a consequence
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Figure 2.2: Clustering (a) and network backbone (b) are hierarchical network topologies.

the change reported in the dropped message is never delivered to the destination

node whose record of the network state now becomes �awed.

In contrast to �at networks, a hierachical network assigns nodes di�erent roles in

recording the network status. The two techniques presented here are clustering and

network backbone [1]. The main principle in clustering is to divide the network into

groups of nodes and assign one node in each group a cluster head. The cluster head

controls and manages the resources within the group. In a two-hop cluster each

node can communicate with any other node in the cluster either directly or by using

the cluster head as a relay. This is often su�cient, but forces small cluster size.

However, multi-hop clusters introduce more complexity and may require additional

node roles to be used.

An example of a clustered network is shown in Figure 2.2(a). The communication

between clusters is handled either by the cluster heads or by gateway nodes. If two

cluster heads are more than one node apart, the set of connected nodes between

the clusters can form a distributed gateway. It is usually possible for a node to be

associated with more than one cluster head at a time.

A hierarchical network may utilize a network backbone instead of clustering.

The general concept is similar. A set of connected nodes are selected to form the

network backbone. All other nodes are connected to the backbone nodes and all

communication is routed through the backbone. An example of a network backbone

is shown in Figure 2.2(b).

In any WSN a node may also function as a gateway to another kind of a network,

for example the Internet [1]. The user may then receive information from the network

or manipulate its operation without a wired connection to each device separately.

Moreover, such gateways enable thorough analysis, visualization and utilization of
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the measurement data on the external server where the processing capacity is no

longer limited by the node devices.

2.2 Protocol Stack

The communication between the nodes follows a chosen protocol that is a set of

rules and restrictions for communication. The implementation of such a protocol is

fairly complex and therefore modularized for easier design. The modules are then

stacked so that the lower layer provides a set of functions for the higher layer who

in turn provides more complex functions. The protocol stack in WSNs has typically

the following �ve layers from the highest to the lowest: Application layer, Transport

layer, Network layer, Data link layer and Physical layer [2]. The protocol stack and

the essential functions of each layer are shown in Figure 2.3.

The application layer describes the interaction of the application software and the

protocol stack. All other layers exist only to provide service to it. Since the require-

ments for the layer are highly application speci�c, no single protocol or protocols has

become widely adopted and application layer remains mostly an unexplored region

[2]. Some protocols for example Sensor Management Protocol (SMP), Task As-

signment and Data Advertisement Protocol (TADAP) and Sensor Query and Data

Dissemination Protocol (SQDDP) have been proposed for use in application layer

[2].

The transport layer provides a reliable transport of higher layer packets from one

place to another and abstracts away the network [1]. The most important mech-

anisms for ensuring reliability are packet loss detection and repair. The transport

layer should also have mechanisms for avoiding or recovering from network conges-

tion. The transport layer also manages the data �ow when the receiver node is

temporarily unavailable. These tasks in mind the importance of transport layer is

clear when the network can be accessed from an external network, for example the

Internet [2]. Node resource scarcity and varying routing protocols in network layer

Transport

Network

Data Link

Physical

Application interface

Data flow maintenace

Routing, network maintenance

Medium access

Physical signal transfer, 

reception and modulation

Application

Figure 2.3: The WSN protocol stack has typically �ve layers.
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make traditional transport protocols, for example TCP, mostly unfeasible in WSNs.

However, no widespread standards or proposals have yet emerged.

The network layer handles packet routing that is �nding a path from the source

to the sink. In practice this means that the network structure, links between the

nodes, must be created and maintained. Another important function is to provide

interworking with external networks such as the Internet [2]. For example, IPv6

over Low power Wireless Personal Area Network (6LoWPAN) [9] enables the trans-

mission of IPv6 [10] packets over IEEE 802.15.4 [11] data link and physical layer.

Challenges rise from resource scarity and the unreliability of the wireless medium.

Also, energy-e�cient consideration in WSNs makes the network layer further com-

plicated.

The data link layer is often divided into two functions: Medium Access Control

(MAC) and Logical Link Control (LLC). MAC regulates the access of the nodes to

the common transfer medium. Contention-based MAC protocols do not restrict the

nodes from accessing the shared medium simultaneously. They target to minimize

the number of collisions and provide mechanisms for recovering when collisions do

occur. Contention-free protocols secure beforehand that collisions do not happen.

Typical contention-free solutions are Frequency Division Multiplexing (FDM) and

Time Division Multiple Access (TDMA). They divide either the available frequency

band or time into slots and distribute the slots among the nodes. Only one node is

allowed to transmit in a given slot. Compared to contention-based MACs the cost

is often higher complexity and nodes may have to wait unnecessarily if the reserved

slots are not used. The challenge all MAC protocols face is minimizing the power

consumption. The single most important method is to avoid idle listening of the

medium [1].

LLC hides the underlying physical errors of the wireless medium. The objective

is to guarantee a certain level of reliability of transmissions with minimal energy [1].

LLC uses redundancy and retransmissions to improve transfer reliability at the cost

of increased energy consumption. Another important function is the management

of the links. It should provide mechanisms for link establishment, teardown and

estimation of link quality.

Physical layer concerns of the transfer of the data signal, as well as its modulation

and demodulation. In WSNs the physical layer should provide a low-power, simple

yet robust transfer. To decrease the power consumption small transmission power

and low duty cycle must be used. As a consequence, the nodes will have low data

rate and small communication range.
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2.3 Node Devices

The design and implementation of a single node is an essential part of the whole WSN

design since the chosen hardware sets constraints for the network performance. The

exact requirements for a single node are highly related to the application at hand,

but some general de�ning characteristics can be derived. The prerequisite for all

WSN designs is that the applied technologies must be scalable, adaptive and fault-

tolerant [1]. For practical reasons the nodes should also be easily programmable,

small of size, have a low production cost and operate unattended for long periods

of time [2].

Figure 2.4 illustrates the basic hardware components of a node. Sensors and

actuators are used as an interface to the physical world by sensing and controlling

nearby events. A controller unit processes these observations and executes the de-

sired actions. Memory provides a storage for the program code de�ning these actions

and all relevant data. A transceiver connects the node to the network by providing

means to send and receive messages from other nodes. The power supply provides

energy for all components.

A WSN without sensors will not be able to produce any useful information. Sen-

sors provide an interface between the analogous physical world and the digital world

of the controller unit [4]. They convert the physical events or quantities into elec-

trical signals that can be digitally processed and stored. The measured signal often

requires ampli�cation, �ltering or other pre-processing before analog-to-digital con-

version (ADC) can be done. Typical sensors in WSNs include thermometers, light

sensors, humidity meters, vibration sensors, acceleration sensors, and chemical sen-

sors such as smoke detectors. Actuators provide the controller means to in�uence

the environment. Common methods are opening/closing a switch or relay or con-

trolling a device such as a motor or a light. An actuator should always be coupled

with a sensor for feedback [1].
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Figure 2.4: A node device has sensors, actuators, a controller, a memory, a transceiver and
a power supply. The �gure is based on [1].
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The controller unit collects and processes the data from sensors, controlling the

behavior of actuators and deciding where and when to send the measurement data.

The software implementation of the protocol stack contains these decisions. Micro-

controllers are particularly designed for embedded systems and often provide many

of required features. The desired features may include for example interface modules

such as Serial Peripheral Interface (SPI) and Two-Wire Interface (TWI) for sensors,

Analog-to-Digital Converter (ADC) modules, internal memories, timers and sleep

modes.

Flexibility, low cost, small size and relatively low power consumption make general-

purpose microcontrollers a suitable choice for most WSNs. However, for computation-

intensive and energy-e�cient applications other technologies must be considered.

Alternatives include Application Speci�c Integrated Circuits (ASICs) [12], Digital

Signal Processors (DSPs) [13] and Field Programmable Gate Arrays (FPGAs) [14].

Wireless communication is a mandatory prerequisite for WSN operation. Possible

technologies are for example optical communication, ultrasound and radio frequen-

cies. Radio frequencies are the most common choice in WSNs. A transceiver device

has the capability for transmitting and receiving radio frames. Typical commu-

nication over a radio channel is half-duplex and switching between reception and

transmission is done according to the MAC protocol. The transceiver is the energy

intensive part of the node and therefore it must provide low-energy idle and/or sleep

states.

2.4 WSN Standards

Commonly accepted standards ensure that WSN devices from di�erent vendors are

interoperable [8]. Devices using the same standardized protocols can be e�ectively

integrated into a single WSN by choosing the best �t device for each task [15].

Furthermore, existing networks can be extended with new devices unconstrained by

the current devices in the network. Since the potential of WSNs lies in the large

number of devices, this is a signi�cant bene�t. Harmonizating pre-existing standards

id considered a key challenge in current WSN development [8].

This section presents an overview of WSN communication standards related to

this work. IEEE 802.11 [16], Ad hoc On-demand Distance Vector (AODV) [17] and

ISO-18000-7 [18] standard have been used in the simulation cases. The simulation

models presented in this work are based on the last two. IEEE 802.15.4 [11] and

ZigBee [19] are widely adopted in WSNs. DASH7 [20] presents a WSN protocol

based on the ISO-18000-7 standard which resembles the MAC model implemented

in this work.
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2.4.1 IEEE 802.11

The IEEE 802.11 standard is one of the most popular standards for wireless de-

vices [4]. It de�nes the physical layer and data link layer for Wireless Local Area

Networks (WLANs). The frequency band in WLANs is typically 2.4 GHz and the

communication range less than 100 m. The maximum data rate for is 100 Mbits/s.

The standard de�nes two operating modes. In Point Coordination Function

(DCF) mode all the communication is routed through a central device known as

the Access Point (AP). This forces a star-topology with the AP as the center node

which ensures collision-free communication within the network. In Distributed Coor-

dination Function (DCF) each device connects directly with the others. The devices

utilize Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) method

to prevent collisions. A device will only transmit after listening to the channel and

ensuring it is idle. If the channel is not idle, the device will defer its transmission

and try again later. Both modes support only single-hop communication.

Although IEEE 802.11 is widely adopted in many application areas, it cannot

be applied in WSNs [1, 8]. Both PCF and DCF require a lot of listening to the

channel which increases the power consumption to an unacceptable level in WSN

nodes. Furthermore, limiting only to a single hop network is impractical for WSNs

monitoring wide areas.

2.4.2 IEEE 802.15.4

The IEEE 802.15.4 standard [11] de�nes a MAC and physical layer for low data rate

wireless devices in Personal Area Networks (PANs). The operation frequency band

is 868 MHz, 915 MHz or 2.4 GHz and maximum data rates are 20, 40 or 250 kbit/s

respectively. A typical operation range of a PAN device is 10 meters.

A devices in the network is categorized as a Full-Function Device (FFD) or a

Reduced-Function Device (RFD) [1]. A FFD can assume any of the three device

roles: PAN coordinator, coordinator and a device. A PAN coordinator initiates the

network and is responsible for its management. Each network has exactly one PAN

coordinator. A (PAN) coordinator can communicate with and relay data from any

other device in its range. In optional beaconed mode, a coordinator oversees the

transmissions of neighbouring devices. A device joins to the network through one

(PAN) coordinator in its range and will communicate only with it. A RFD is always

an end device and does not have routing capacity. IEEE 802.15.4 uses either 16-bit

addresses, which are assigned by the PAN coordinator and unique within the PAN,

or extended 64-bit addresses.

In beaconed mode the medium access is controlled by superframes managed by the

coordinators [1]. The superframe is divided into an active period and an inactive
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Figure 2.5: IEEE 802.15.4 superframe consists of contention access period, contention-free
GTS and an inactive period.

period as shown in Figure 2.5. The active period is further divided into 16 time

slots. The �rst slot is reserved for the beacon packet that describes following the

superframe. The remaining 15 slots are distributed into Contention Access Period

(CAP) and Guaranteed Time Slots (GTS). During the CAP the devices content for

the channel using slotted CSMA-CA (Carrier Sense Multiple Access with Collision

Avoidance) protocol.

The GTSs are used to assign a device contention-free access to the channel for the

duration of the slot. The coordinator announces the assigned slots in the beacon.

During the inactive period all devices, including the coordinator, may enter a sleep

state to reduce energy consumption. The devices are required to wake up before

the beginning of the next superframe to receive the next beacon. During the CAP

and GTSs end devices need to wake up only on demand. The coordinator however

must listen to the channel for the duration of the CAP and each assigned GTSs.

Therefore, the energy consumption in the network is unavoidably asymmetric. The

same issue concerns the unbeaconed mode.

In the unbeaconed mode there are no superframes to organize the communication.

Devices wake up according to their own schedule to send to or request data from

the coordinator using unslotted CSMA-CA protocol [1]. Without synchronization

the channel can be accessed at any time so the coordinator has to constantly listen

to the channel.

The standard supports two general topologies: star networks and peer-to-peer

networks [8, 11]. In a star network, the PAN coordinator is the central node and all

communication from other devices, FFD or RFD, must pass through it. An example

of a star network is shown in Figure 2.6(a). In a peer-to-peer network, FFDs may

communicate directly with others. They can connect in an arbitrary pattern which

allows more complex topologies than star-topology. An example of a peer-to-peer

network is shown in Figure 2.6(b). A cluster-tree network is a specialized case of

peer-to-peer networks. In a cluster-tree the PAN coordinator is the root node, while

other FFDs compose the branches and RFDs can join the network as leaves. As the

size of the network increases, it is split into clusters. Some of the coordinator FFDs
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Figure 2.6: The IEEE 802.15.4 standard supports star-topologies (a) and peer-to-peer (b)
topologies. Cluster-tree topology (c) is a specialised case of peer-to-peer topology.

become cluster heads to provide synchronization within the cluster. An example is

shown in Figure 2.6(c).

Flexibility, low complexity and low power consumption has made IEEE 802.15.4

feasible over a broad spectrum of applications. Peer-to-peer networks allow multi-
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hop routing, but since routing is a function of the network layer, it is not included

in the original standard. Other standards, such as ZigBee and 6LowPAN, have

emerged to complement IEEE 802.15.4 since its rati�cation in 2003.

2.4.3 ZigBee

The ZigBee Alliance has released IEEE 802.15.4 technology enhanced with higher

level protocols. The application layer manages the device role, services and security.

The APplication Support sublayer (APS) provides an interface to the network layer.

The network layer provides functions for devices to join and leave the network.

Multi-hop routing is supported by using AODV routing algorithm.

ZigBee has become a widespread technology in embedded systems with high reli-

ability and versatility requirements where low data rates are acceptable. Low data

rate and power consumption are inherited from IEEE 802.15.4. Other important

features of ZigBee are over two years of lifetime and low complexity of the devices.

In heterogeneous networks ZigBee is often the common standard that guarantees

interoperability of devices from di�erent vendors. The �rst version of ZigBee was

released in 2004 and updated in 2006.

2.4.4 Ad hoc On-demand Distance Vector

AODV is a light-weight routing protocol commonly found in WSNs and other wire-

less applications. Each node maintains a private routing table of active routes to

other nodes. AODV does not record the complete route, but only the address of the

next node on the path towards the destination, the destination address and the min-

imum number of hops to the destination. When a node wishes to communicate with

another, only an active route can be used. If the sender has no route to destination

node, it will �rst initiate a route discovery to establish one.

Figure 2.7 illustrates the phases of a route discovery process. To initiate a route

discovery, the originator node A �oods a route request message (RREQ) to the net-

work. The message has header �elds for the originating address A, the destination

address E and the number of hops back to the originator (marked in parenthesis in

Figure 2.7(a)). If the receiving node, �rst node B, is not the destination, the discov-

ery process continues. Intermediators store the address of the node they received

the request from and rebroadcast it with incremented hop count as shown in Figure

2.7(b).

Eventually the request arrives at the destination node which then unicasts a route

reply (RREP) back towards the originator as in Figure 2.7(c). The intermediator

node(s), node B in Figure 2.7(d), forwards the reply using the reversed path es-

tablished earlier when relaying the request. Route discovery is completed when the
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Figure 2.7: Route discovery in AODV �oods the network with the request message. When
it reaches the destination, the shortest, reversed path is used to deliver the reply.

reply arrives at the originator and the route is stored in the routing table.

If consecutive requests arrive at the destination, it will only reply a request with

a lower number of hops to the originator than already recorded in the routing table.

In the previous example, node F will not receive a reply from node E since the

proposed route has a greater hop count back to node A.

The route discovery process creates potentially a lot of tra�c in the network and,

if no route to the destination exists, the communication has only wasted precious
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energy. A common method of lowering the impact of route discovery packets is to

limit the propagation range of the message. A time-to-live (TTL) �eld is introduced

into the packet header and each receiving node decrements the TTL value by one.

When the value reaches zero, the packet is no longer forwarded.

When a broken link to a neighbour is detected, all destinations behind the neigh-

bour become unreachable. The detecting intermediator node sends a route error

message (RRER) to the originator who reinitiates a new route request for the desti-

nation, if the route is still needed. It is also possible for the intermediator to attempt

a local repair by initiating a route request of its own.

2.4.5 ISO 18000-7

The ISO 18000-7 standard de�nes an air interface for Radio Frequency IDenti�cation

(RFID) devices operating on the 433 MHz frequency band. The standard covers the

communication protocol on physical and data link layer.

All communication is of a master-slave type that is only a master can initialize a

communication between devices. The master issues a command to the slaves which

then perform the task determined by the command code and reply the master with

the result if the task yields any The master can address the packet to either all

slaves in range or a single slave.

In RFID a master device is referred as an interrogator and a slave device a tag.

Each tag is identi�ed by a unique Tag ID and each interrogator by an Interrogator

ID. Devices can be arbitrarily grouped by assigning an Owner ID to devices in the

same group.

The medium access is contention-based. The interrogator begins the communica-

tion by broadcasting a wakeup signal for minimum of 2.5 seconds up to 2.7 seconds.

All the tags periodically listen to the channel to detect the signal. Upon detecting

the signal, tags continue to listen to the channel for the command message follows

the wakeup signal. After the command message, all the addressed tags will reply

the interrogator with the requested data. The reply has an acknowledge �ag that

indicates whether the tag acknowledged (ACK) or did not acknowledge (NACK) the

command. The interrogator closes the communication by sending a sleep command

to the tags.

The interrogator ensures the message delivery and validity in all cases. Collisions

are handled using a collision arbitration mechanism. All the tag replies must take

place within a time window speci�ed by the interrogator. The time window is divided

into reply slots and each tag will randomly choose one. A tag is permitted to transmit

only during its selected slot. During the reply time window, the interrogator listens

to the channel recording both collisions and successful replies. A sleep command

is sent to tags whose response was received and they will not participate in the
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subsequent collection rounds.

If the interrogator detected collisions, the collection is then repeated for the re-

maining tags. The procedure is repeated until all tag replies have been received or

three collection rounds have passed. The minimum size for the reply time window

is 57,3 ms which must be used on the �rst interrogation round. The on subsequent

rounds the interrogator may choose to adjust the window to decrease the probability

of collisions.

2.4.6 DASH7

The DASH7 Alliance protocol (D7A) [20] has later described a full protocol stack for

RFID tags based on the ISO 18000-7 standard. Unlike traditional RFID protocols,

D7A supports tag-to-tag communication. The 433 MHz frequency band enables up

to 1 km communication range and higher obstacle penetration than 2.4 GHz band.

The maximum data rate is 200 kbit/s.

Typical RFID communication is master-slave type where data is retrieved from

the slaves with a pull operation. In a pull the interrogator sends a requests and the

receiving tags reply with the requested data. D7A supports also push operations

where tags can initiate a data transfer to the gateway. This is useful for example, if

tags send measurement data at a constant interval.

2.5 TUTWSN

The WSN research group at Tampere University of Technology (TUT) research

group has dedicated over a decade of research work on WSNs. Based on their ex-

periences a complete WSN architecture, TUTWSN, was designed and prototyped

successfully [15]. TUTWSN targets at ultra low/power consumption, high con�g-

urability and scalability.

TUTWSN MAC protocol utilizes a hybrid version of the clustered topology and

tree topology. While clustering provides high connectivity, the cost is increased

demand of resources, most importantly energy and memory. Tree topologies have

proven more energy e�cient in data routing, but lack the robustness of clustered

topology against node or link failure due to low connectivity [15]. A hybrid design

called multicluster-tree topology targets for the bene�ts of both domains with ac-

ceptable cost. The cluster heads, called headnodes in TUTWSN, connect to a few

neighbouring head nodes. resulting in several, partially overlapping tree topologies.

The leaf nodes, called subnodes, communicate only with the head nodes.

The access cycle is divided into a superframe and idle time. A head node manages

the superframe to which the subnodes and associated headnodes synchronize. The

superframe structure is similar to IEEE 802.15.4 with three partitions: a beacon
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Figure 2.8: TUTWSN MAC access cycle and superframe structure.

slot, contention slots and contention-free slots. The complete superframe structure

is shown in Figure 2.8.

During the contention slots, subnodes can request reservation of contention-free

slots and association with the headnode [15]. Unlike in IEEE 802.15.4, the chosen

protocol is slotted ALOHA [21]. The contention-free slots are reserved for data

transmissions. All nodes in the cluster synchronize to the slot boundaries. Each slot

is divided into an uplink and a downlink subslot. The receiving node has to wake

up to listen only at the beginning of the uplink slot. If no transmission is detected,

it may resume the sleep state until the beginning of the next slot. Compared to

IEEE 802.15.4, where the coordinator has to listen to the whole CAP, this approach

enables the headnode to conserve energy by spending more time in the sleep state.

Therefore even the headnodes can be battery-operated.

The TUTWSN routing protocol, TUTWSNR, is based on Directed Di�usion [22]

where the sink is the central node and all other nodes keep a record of a gradient

which points in the direction of the sink [15]. The gradient determines the next

hop of a packet and is redirected whenever a neighbour advertises a lower cost than

already known. In TUTWSNR a headnode can keep a record of several routes

towards the sink with associated costs.

In network setup phase the sink �oods the network with a route advertisement and

all nodes adjust the gradient accordingly. The sink advertises its interest for mea-

surement data with an interest advertisement message which is propagated through-

out the network. The measurement data propagates towards the sink using the pre-

viously established gradients. Later nodes can query the route to the sink or active

interest requests from the neighbour nodes. This keeps the network connectivity

maintenance overhead low when new nodes join the network or existing links break

unexpectedly.
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Chapter Conclusion

The general characteristics of WSNs have been discussed in this chapter to give

lay a foundation for the simulation models. WSNs have been applied to numerous

di�erent applications with highly diverse requirements. Inevitably no single design

is applicable to every application. WSNs design is trade-o�s between performance,

power-consumption, cost and applicability to multiple applications. Both the node

hardware and chosen protocols constitute to these factors. International standards

have been released to ease the integration of solutions from di�erent vendors.
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3. WIRELESS SENSOR NETWORK

SIMULATION

The objective of all simulation tools is to provide valuable insight into the modeled

phenomenon. In WSN this practically means fast exploration of design space and

early feasibility evaluation for new algorithms. Simulation tools can help decide

whether a prototype should be built. Simulators focus on di�erent features of the

model and therefore choosing the right tool is important for obtaining reliable results.

This chapter discusses the basic principles of simulation focusing on the aspects

important in WSN simulation. At the end of the chapter three network simulators

are introduced to provide an overview of current simulation options.

3.1 Modeling and Simulation

A model describes the behaviour of a real world phenomenon or a theoretical system.

The description is either a mathematical model or a symbolic model, for example a

computer program. Modeling and simulation has three phases [3].

1. De�ning the model.

2. Running experiments on the model.

3. Analyzing the simulation results.

The �rst phase is capturing the de�ning features of the phenomenon. A set of state

variables are chosen to represent the state of the phenomenon. This phase abstracts

the target, introduces assumptions and simpli�es or omits details. The accuracy and

the complexity of the model is a direct consequence of these abstraction decisions.

The model is then further developed into a computer simulation or design.

The second step is simulation, executing the model on computer by introducing

the aspect of time [3]. As time advances, the changes in the state variables re�ect

the system's behaviour. If the phenomenon behaviour is very slow or very fast,

observations are possible by slowing or accelerating time in simulation. Computer-

driven simulation enables fast repeated experimentation on the model. By changing

the simulation parameters, di�erent scenarios can be created and evaluated.

By observing the model behaviour and output in simulation, the real world equiv-

alent can be estimated. Simulation lets the designer explore possibilities, diagnose

problems, indentify constraints and specify requirements. This analysis is the �nal
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step, but may be followed by a new iteration where the model is further de�ned

based on the observations.

Simulation processes time either as a continuum or as discrete [3]. In continuous

simulation state variables change continuously with respect to time independently

of events in the system. In computer simulation this is imitated by advancing simu-

lation time in small constant-sized steps. The smaller the step, the more accurately

time is modeled. Inevitably the simulation runtime increases as the size of the time

step decreases. Example applications for continuous time simulation are mechanical

and electrical component simulations.

In discrete simulation time advances in respect of events in the system. An event

indicates a point of time where state variables may undergo a change. All other time

steps can be omitted from the simulation and simulation time advances discretely

from event to another. The reduced amount of timesteps makes the simulation more

e�cient. All simulation tools for WSN simulation are discrete event simulators.

3.2 Discrete Event Simulation

In discrete event simulation the state variables change in zero time. Any change

can only take place at a discrete time instance indicated by an event. A simple

server-client example in Figure 3.1 demonstrates the concept of events. A client

sends a request to the server which processes the request and sends the requested

information back to the client. The processing at the server takes a non-zero time.

The initial event, denoted e1, activates the client to send the request. The recep-

tion of the request at the server is indicated with event e2. It must be followed by

a reply to the client so the server model creates a new event e3 that takes place at

the time instant at which the reply must be sent. The server state is changed from

idle to processing and it remains unchanged until e3 occurs. Therefore the simula-

tion time may jump directly from t2 to t3 without missing any details at the server.

When event e3 occurs, the reply is sent. Finally event e4 closes the communication
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Figure 3.1: Communication between a client and a server modeled with four events.
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as the client receives the reply. Events not only indicate a change in the state, but

may also trigger activities in the model or create new events.

Every event has a timestamp that indicates the time the event is scheduled to

occur [3, 23]. When an event is created, it is placed in the Future Event List (FEL)

according to its timestamp value. Events are extracted from the FEL in time order

which ensures that later events cannot have impact on earlier events. Events can

however cause future events to be added or removed as e3 was created in response

to e2.

A simulator executes events sequentially by following the algorithm presented in

Figure 3.2. In the initialization phase one or more events are created to start the

system. Then the �rst event is taken from the FEL, simulation time is set to the

timestamp value of the event and the event is processed. Then the same procedure

is executed on the next event. The simulation ends when there are no more events

in FEL or a speci�c end condition has been met. In most cases the FEL will never

become empty and the simulation is terminated either by the end condition or user

action. Some simulations run only to explore the phenomenon and resolve the end

condition. At the end of the simulation there is usually a clean-up phase at which

the model instances are destructed and the output records written.

3.3 Requirements for WSN Simulator

Reliable simulation results can be achieved only through accurate modeling. Any

simulator for WSNs must provide means to model the node platform, di�erent com-

munication protocols and the physical environment [4]. The simulator must obvi-

ously have tools for collecting and analyzing the simulation output and statistics.

WSN simulation has two important aspects: the communication and the node

platform [15]. The communication protocols, the wireless medium, the transceiver

unit and the application all constitute to the communication perspective. The mem-

ory, computation and energy constraints relate to the platform of a single node

device. Platform model should be able to simulate the data processing using the

intended algorithms. To accurately simulate both aspects, a separate simulator is
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often needed for the network-wide communication and the node hardware platform.

However, the aspects are not decoupled and a joined simulation of the two is prefer-

able to two separate simulations.

Scalability is currently one of the main concerns. The simulation should execute

fast even if the network consists of hundreds of thousands of nodes. Component-

based architecture has been reported to scale better than object-oriented [24]. How-

ever, object-oriented approach makes recomposing the models easier which is often

desirable. For example, layers of the protocol stack may be replaced with others

while exploring options for optimal communication for a speci�c application.

An increasingly important feature is the visualization of the model, collected data

and sensor behaviour [3, 4]. Graphs, images and animations are all techniques used

in visualization. The objective is to help understand the model and the information

obtained through simulation. This is especially important for large quantities of

data and information that varies over time.

3.4 Network Simulators

There are a lot of simulator tools available for wired and wireless networks. J-Sim

[24], GloMoSim [25], NS-2/NS-3 [26, 27], SENS [28], and SensorSim [29] are all non-

commercial simulators, just to name a few. Commercial simulators include OPNET

Modeler [30] by Riverbed, Simulink [31] by MathWorks and NetSim [32] by Cisco.

The following sections introduce three well-known non-commercial simulators along

with their pros, cons and central features. It helps to understand how the require-

ments discussed in the previous section are currently accounted for. OMNeT++ is

discussed in detail in Chapter 4.

3.4.1 J-Sim

J-Sim [24] is an open source WSN simulation framework written in Java [33]. It

utilizes a component-based architecture that scales better than the object-oriented

approach used in many simulators. Real hardware sensors can be connected to the

simulation for authentic data from outside the network. Furthermore, real applica-

tions can be ported on top of the protocol stack. A script interface allows integration

with scripting languages such as Perl [34], Tcl [35] and Python [36].

J-Sim is more scalable than object-oriented simulators such as NS-2, but com-

plicated to use [5]. While other issues do exist, the greatest drawback is that only

the IEEE 802.11 MAC protocol is supported. While Java makes the framework

platform-independent, extensible and reusable, it also imposes some of its problems

to the framework itself. Simulation is less e�cient than in frameworks based on

other languages that must be compiled to the native language of the platform. The
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latest update for J-Sim was released in 2006.

3.4.2 GloMoSim

Global Mobile Information System Simulator (GloMoSim) [25] is a parallel discrete

event simulation library. It is designed for e�cient simulation of wireless multi-hop

ad-hoc networks. The simulation library is implemented using C-based programming

language called PARallel Simulation Environment for Complex Systems (PARSEC)

[37]. PARSEC Visual Environment (PAVE) accounts for visual design and con�gu-

ration of simulation models.

GloMoSim provides a set of library modules each simulating a speci�c protocol

in the protocol stack. Strictly de�ned Application Programming Interfaces (APIs)

have been designed for each layer. The API de�nes how the layer communicates

with the neighbouring layers. Any layer can be replaced with any other that obeys

the same API.

The simulation consists of physical processes (entities) and time-stamped mes-

sages representing events. Traditional approach suggests that each node in the

network is represented as an entity associated with other entities representing its

protocol layers. However, parallel simulation does not scale well with the number

of entities making this approach unsuitable for very large networks. In GloMoSim

scalability has been accounted for by dividing the network into partitions. An en-

tity represents a single protocol layer for all the nodes in the partition. The chosen

approach signi�cantly reduces the amount of simulation entities.

GloMoSim has proven as an e�ective tool for IP network simulations, but it is

not capable of simulating any other type of networks [5]. Another major restriction

is that all events must be generated by the nodes in the network. Due to these

limitations, many WSNs cannot be accurately simulated. The original GloMoSim

environment was released as open source, but it has not been updated since 2000.

Instead, it has been replaced by QualNet, which is a commercial simulation tool

built on GloMoSim..

3.4.3 NS-2

One of the most popular open source network simulators has been NS-2 [26]. It is

an object oriented simulation tool targeted for modularized, extensionable network

simulation. Simulations are implemented using C++ for protocol models and OTcl

(Object oriented extension of Tcl) for controlling the simulation environment. This

makes the simulation entities run fast but changes are slow since they require re-

compilation. OTcl runs slower, but changes are fast. Due to its popularity it is not

surprising that numerous contributors have released public protocols libraries.
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NS-2 has several known issues [5]. Due to its object-oriented approach, it does not

scale very well with the network size. It also imposes restrictions to customization

for packet formats, energy models and MAC protocols, for example. Furthermore,

it completely lacks the application model. Finally, although the use of two di�erent

languages is justi�ed, it makes the simulator more di�cult to use. The user has to

learn two languages and how they are connected in the simulation environment.

Many of these issues were addressed in the succeeding NS-3 simulator [27]. The

simulation core is C++ while Python has replaced OTcl. Much like NS-2, NS-

3 focuses on Internet protocols, but is not limited to them. NS-3 also provides

interaction with real world and packets can be sent and received in the simulation

through network interfaces.

Chapter Conclusion

Although simulation is widely adopted in many �elds, the characteristics of WSNs

have proven di�cult to capture. Modeling a complex network of devices requires

not only detailed models but also e�cient simulation environments. A WSN simu-

lator must be scalable, modular and extensible. There are a lot of simulation tools

available, yet choosing one for speci�c use is not a trivial task.
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4. OMNET++ SIMULATION FRAMEWORK

This chapter describes the OMNeT++ simulation framework. It presents the sim-

ulation tool and introduces the modeling concepts. The concepts de�ne how new

models can be implemented for simulation.

4.1 Overview

Objective Modular Network Testbed in C++ (OMNeT++) is a component-based

discrete event simulator for wired and wireless networks. The simulation models are

implemented in C++ and attached to the environment using NEtwork Description

language (NED). OMNeT++ is free for educational use, but has also a commercial

lisence available. The commercial version is known as OMNEST.

OMNeT++ is distributed as a zip-archive �le. After the archive has been ex-

tracted, the source �les are compiled for the target platform. Once the compilation

has �nished, the simulation environment is ready for use. The archive contains

only the simulation environment, no model libraries are included. A step-by-step

installation guide is provided in [6].

The environment includes an Eclipse-based [38] Integrated Design Environment

(IDE) for development, simulation and project management. An example of the IDE

view is shown in Figure 4.1. The directory structure of the open project is shown

on the left. The modeled networks and modules can be assembled and connected in

a graphical editor shown in the middle. By selecting the Source view, the editing

can be done in a text format. All changes will be visible in both views. The text

editor is also used for C++ development for implementing the module behaviour.

The IDE provides tools also for compilation, debugging and simulation run.

The simulation can be run on either of the two user interfaces: Cmdenv or Tkenv

[23]. Cmdenv runs the simulation from command line and may utilize scripts for

repeated batch execution. Tkenv provides a graphical representation of the simu-

lation run. An example is shown in Figure 4.2. A red rectangle is used to identify

the currently active module. Transmitted messages are denoted with colored circles

whose color depends on the message type.

Tkenv shows the visualization and the run-time output in a separate window. An

example of the run-time events is shown in Figure 4.3. The simulation execution and

speed can be manipulated using the controls in the toolbar at the top. Simulation
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Build tools

Source file editor

Project explorer

Source view selection

Figure 4.1: OMNeT++ IDE is build on Eclipse.

Figure 4.2: Tkenv provides a clear visualization of the network.

can be run for example one step (event) at a time, in normal speed or in express

speed. The future event list is shown on the left. All the events and the module
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Future event list Simulation log

Simulation timeline

Controls

Figure 4.3: The simulation details are shown in a separate window.

outputs are printed in the simulation log.

The IDE has also analysis tools for the simulation results. The results can be

browsed, processed and visualized as charts and plots. The Scave Tool provides a

lot of the same information on command-line and can be used to produce data �les

for other tools for further processing.

4.2 Modeling Networks

The following subsections describe the modeling concepts in OMNeT++. These

concepts must be followed in all simulation models. Creating new models requires

understanding these underlying structures.

4.2.1 Messages

In OMNeT++ instances of class cMessage represent events [23]. They encapsulate

all forms of communication in the system: from a simple signal that activates the

system to arbitarily long data packets transmitted from a device to another. The

arrival of a message clearly indicates a possible change in the receiver's state. By
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sending the message to itself, an entity can activate after a pre-determined time.

Such messages are known as self-timers. In the server-client example e2 represents

a packet from the client to the server and e3 a self-timer. Since messages in general

often introduce a timestamp �eld for e.g. synchronization purposes, OMNeT++

uses �eld arrival time to maintain time order in FEL.

Lower layer in protocol stack often requires additional information from the upper

layer for processing a message. Additional control information can be attached to a

cMessage with method setControlInfo(). The lower layer can then retrive the control

info object by using getControlInfo().

cMessage has a subclass cPacket for modeling network packets, for example Eth-

ernet frames. Packets, unlike messages, may encapsulate other messages and have a

�eld for the bit length of the packet. However, these features alone are not enough

to capture all the information packet headers contain. Writing an exteded subclass

with additional data members is often trivial, yet laborous. To address these two

problems, OMNeT++ provides a mechanism for generating classes from a NED

message de�nition. The generated class may introduce new �elds e.g. addresses and

inherit other de�nitions. The generated subclass has private variables along with

setter and getter methods for all the de�ned �elds. An example de�nition of an

Ethernet frame is shown in Listing 4.1. Some of the �elds are omitted for clarity.

packet EthernetFrame

{

bitLength = 208 ; //Header l e n g t h

int destAddr ; //Des t ina t ion MAC address

int srdAddr ; //Source MAC address

int c r c ; //Frame Checksum

}

Listing 4.1: Message de�nition of an Ethernet frame.

The de�nition may also set initial values or alter inherited �elds as bit length is set

in the example. Comments can be inserted as in C++. Using message de�nitions

considerably improves re-use of existing message classes and reduces the e�ort of

creating new message types.

4.2.2 Modules and Channels

Modules represent the entities in which events take place and new events are gen-

erated in. They model for example actors, devices, protocol layers, user inputs and

any other components composing the simulation target. OMNeT++ uses two types

of modules: simple modules and compound modules.

Simple modules are the active parts of the simulation. At the beginning of the

simulation, before the �rst event takes place, initialize() is called for each module
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for internal initialization. When an event is scheduled to occur, the simulation

environment passes it to the receiving module for processing. The module reacts to

the event as described the handleMessage() function. When the function returns,

next event is extracted from the FEL. Function activity() can be used instead of

handleMessage in process-style models. At the end of the simulation, the simulation

environment calls �nalize() for each module for output recording and clean-up.

A compound module has no behaviour of its own. It instead contains an arbitary

combination of other modules and interconnections. This enables hierarchical simu-

lation structure and model design. The top-level component of the simulation must

be tagged with the @network property. The connections are implemented using

specialized modules called channels.

NED is used to declare modules, interfaces and to assemble compound modules

from submodules and channels. Both simple and compound modules are parametriz-

able. The C++ implementation can access the NED parameters at runtime and

therefore a change of parameters does not require recompilation. NED uses a lot of

metadata annotations for labeling and attaching properties to objects. An example

simple module description for a client is shown in Listing 4.2.

simple Cl i en t l ike IC l i e n t

{

parameters :

@class ( S impleCl i ent ) ;

double send_interva l @unit( s ) = uniform (0 s , 1 s ) ;

gates :

output toServe r @label ( EthernetFrame ) ;

input f romServer ;

}

Listing 4.2: Example NED de�nition of a simple module

The client module inherits a common interface, IClient, as indicated by the like

keyword. The �rst parameter demonstrates the use of metadata properties: @class

de�nes the C++ class that implements the functionality. The second parameter

is used to control the behaviour by assigning a uniform distribution that de�nes a

pseudo-random time between two consecutive messages to the server. It also has a

metadata property that de�nes seconds as the expected unit.

The gates-section lists the gates channels can be attached to. The gate must have

one of the three directions: input, output or inout. A gate may also be declared as

an array. This is useful for connecting several modules whose messages are handled

in a similar way. For example, a server may have an array for several clients to

connect to. The gates are expected to be connected, unless they have the @loose

or the@radioIn label. A gate can have a metadata label to inform of the expected
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message type. In Listing 4.2 the arriving messages from server are expected to be

of type EthernetFrame.

A channel creates a unidirectional connection by associating with exactly one

output gate and one input gate in the connected modules. When a module sends

a message to an output gate, the channel delivers it to the input gate of the other

module. Bidirectional channels are impelented by attaching two channels together.

OMNeT++ features three default channels: ideal channels, delay channels and

datarate channels. An ideal channel delivers messages in zero time from one com-

ponent to another without altering the message. A delay channel delivers a message

to the recepient after a prede�ned delay. A datarate channel calculates the delivery

time for every message from the channel's set datarate and the packet's bit length.

It may also introduce a bit error or a packet error to the message. For most applica-

tions these three channels are su�cient, but it is also possible to implement custom

channels. Like simple modules, their behavior must be explicitly described in C++.

OMNeT++ features a signaling mechanism. Signals can be used for example to

notify objects or simulation environmnent of changes in the model, gather statistics

and implement communication channels where the subscribers do not know about

the sender(s). Any component (module or channel) can emit signals using the

emit() function. A data value can be associated with the signal. The emitted signal

propagates up in the module hierarchy until it reaches the system level. A listener,

an object inherited from the cIListener class, is an entity that receives signals. To

receive signals the listener subscribes to desired signal(s). When a signal is emitted,

the subscribing listener is noti�ed and its receiveSignal() function is called. It is

possible for the listener to �gure out the source of the signal, but it is often desireable

to conceal the source. For example, in the server-client example, assuming that the

client and the server emit signal packetDrop on a failed transmission, a listener on

system level aggregates the number of dropped packets in the whole network.

4.3 Simulation Output

The simulation statistics and output can be generated by either directly as a part

of the behavior in C++ code or by using the signal mechanism [23]. Traditionally

modules keep record of their own statistics and write the statistics at the end of the

simulation when �nalize() is called. The drawback with this method is that any

changes requires changes in the code and thus recompilation.

The output record uses scalars and vectors. A scalar is a summarizing value,

for example the number of sent packets by a module. Vectors are collections of

time-value pairs and can be used for example to record the end-to-end delay of

packets. For more complex statistics, such as standard deviation and histograms,

OMNeT++ provides own estimation classes that can be used inside components for
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output recording.

NED has property @statistic for declaring signal-based statistics in a component.

The input signal(s), processing, what properties and the output record(s) must be

declared. Listing 4.3 shows an example use of a statistic declaration in the previous

client example. The statistics trigger when signal retry is emitted. If no source signal

is speci�ed, the signal with the name of the statistics, connectionRetry, is considered

the input. After the signal has been emitted, all the given records, count and last, are

updated. The total number of connection retries are stored in the count record and

the last value of the signal in the last record. OMNeT++ supports result �ltering

with other common aggregate functions such maximum, minimum and mean value.

Vector recording the values is marked optional using the question mark. Other

optional element include for example the unit for the values.

simple Cl i en t

{

parameters :

@class ( S impleCl i ent ) ;

@statistic [ connect ionRetry ] ( source=r e t r y ;

r ecord=count , l a s t , vec to r ? ) ;

double send_interva l @unit( s ) = uniform (0 s , 1 s ) ;

gates :

output toServe r @label ( EthernetFrame ) ;

input f romServer ;

}

Listing 4.3: Statistic recording using signals.

Finally, watches can be used to monitor component's variables at simulation

run-time. Watches must be de�ned inside the component implementation using the

WATCH() macro. The watched variable values can also be changed in the simulation

environment. Finally, watches are used for creating snapshots of the simulation. The

snapshot() function writes all the values monitored by watches into a snapshot �le.

Regular snapshots during simulation enables monitoring the model behavior over

time.

4.4 Related Work

The OMNeT++ simulator has been utilized in WSN simulation also earlier. This

section introduces some of the most notable work. Like the simulator itser, most of

them are not yet �nished.

INET Framework [39] is a simulation library of protocol models for OMNeT++.

It includes various models for all protocol layers and supporting modules e.g. routing

tables, device mobility, wireless channel model, propagation models and simulation
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Table 4.1: Protocols provided with INET Framework [39].

Protocol layer Protocols
Application HTTP, FTP, DHCP, Video streaming, VoIP
Transport TCP, UDP, SCTP, RTP, RTCP
Network IPv4, ICMPv4, ARP, IGMPv2, IPv6, ICMPv6, MIPv6, HIP
Routing LSR, OSPF, BGP, RIP, RSTP, AODV, DYMO, DSDV, SDR,

OLSR
Data link Ethernet, PPP, IEEE 802.11, IEEE 802.15.4, IEEE 802.16

scenario manager. The available protocols and models, excluding those reported

incomplete or unstable, are listed in Table 4.1. The latest stable version of INET

was released in August 2013. The INET Framework has been used as a part of this

work.

The lower layer implementations lack a lot of detail and provide only very ab-

stract behavior. Other projects and branches of the INET have been initiated to

provide more accurate models. Some notable projects are MiXiM [40] for radio and

MAC implementations, INETMANET [41] for ad-hoc networks and OverSim [42]

for overlay and peer-to-peer networks. While most of the provided models are eas-

ily utilizable and mature, the documentation of various models is incomplete and

outdated. The documentation has not been updated since June 2012.

Castalia [43] is an OMNeT++ based simulator for networks of low-power wire-

less devices such as WSNs and Body Area Networks (BANs). The simulator focus

is strongly on the communication perspective. Wireless channel transmissions are

modeled in great detail based on empirically measured data and are easily con�g-

urable for di�erent scenarios. Several MAC protocols, such as IEEE 802.15.15 and

T-MAC [44], are also provided. While routing is less important to communication,

a basic routing protocol, called multipathRings, is also provided for convenience.

Other notable features include monitoring of node energy consumption and clock

drift, mobility, sensor device simulation and extensibility. The latest version was

releases in March 2011.

The Castalia simulation structure is shown in Figure 4.4 [43]. Wireless channel

module simulates the data physical transfers between the nodes. Each node consists

of a protocol stack, a resource manager, a mobility manager and a sensors manager.

The resource manager monitors the node resource state and usage. The monitored

resources include energy, cpu, memory and clock drift. Mobility manager keeps track

and distributes of the node position information and handles the node movement.

Sensors manager encapsulates all the sensing devices and their functionality. Moni-

tored phenomenon such as temperature and illumination are modeled as individual

physical processes.

The value of the physical quantities vary in spatial and temporal domains and may
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Figure 4.4: Network structure in Castalia.

be a�ected by several sources. Sensor manager request the value from the physical

process which will reply with the value in the corresponding time and place [43]. For

example, two nodes monitoring room temperature read di�erent measurement values

since they are located di�erently inside the same room. Furthermore, multiple heat

sources e.g. radiators, devices and people cause local changes in the temperature

which will over time increase the overall room temperature. For each monitored

physical process, there is one sensing device in the node's sensor manager.

Chapter Conclusion

This chapter has discussed the possibilities of OMNeT++ simulation framework.

It has several advantages over the other simulators described in Chapter 3: The

framework is scalable and protocol independent, unlike J-Sim, the framework itself

and the protocol models are highly customizable, unlike NS-2, and new updates

become available on a regular basis. OMNeT++ provides a full set of tools for

visualizing the simulation run and analyzing the simulation results.
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5. WSN SURVEILLANCE SIMULATION

The �rst simulation case, the WSN surveillance simulation, is based on an existing

prototype implemented earlier in a WSN research project at TUT. The prototype

is shown in Figure 5.1. It is composed of a TUTWSN node and a WLAN video

camera and the node can activate the recording on demand. The surveillance con-

cept is imported to the simulation environment. The results obtained with the

prototype could be compared with the simulation. Simulation model also enables

experimenting with a larger network.

The network is logically divided into hierarchy levels. In normal operation energy-

conscience nodes are used for sensing. They compose the the lowest hierarchy level.

A node detecting a triggering event alarms the network and wakes up the higher

level which utilizes more e�cient, but more energy consuming communication. The

objective of the simulation is to study the impact of two radios in terms of energy

consumption and performance.

Figure 5.1: A working prototype has a WLAN camera and a low-power TUTWSN node
for camera wakeup.
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Figure 5.2: Simulation case setup.

Devices on the higher level model the prototype. They are equipped with surveil-

lance cameras and wake up upon receiving the alarm. They utilize high data rate

protocol to transfer video stream of the event to a server gateway. The network con-

�guration is shown in Figure 5.2. Once the event has passed, the streaming nodes

resume the sleep state to minimize their energy consumption.

5.1 Requirements

The network has essentially three kinds of devices: low-power sensing nodes with

motion detectors, camera-equipped nodes capable of low-power and video streaming

communication and sink device(s) to receive the video stream. The sensing nodes

must be equipped with motion sensors that react to movement in range and trigger

the application. The application exploits the underlying protocol stack for alarming

other devices.

The nodes with cameras will require two separate protocol stacks: one for low

datarate communication with the sensing nodes and another for high datarate video

streaming. The node may be equipped with motion sensors or rely on the sensing

nodes to inform it of the alarm events. The video streaming protocol stack is initially

turned o� while the low-power protocol monitors the deployment area.

The server gateway requires only the video streaming protocol. It must be ready

to receive an incoming data stream at all times. The radio module must constantly

listen to the channel unless the gateway is transmitting. It can be assumed that the

gateway device is not battery-operated and idle listening is not an issue.
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Finally, a mobile motion stimuli is required to model a moving target in the

deployment area. Its sole purpose is to trigger the motion sensors. Without it the

network would never wake up.

5.2 Implementation

This section presents the implemented models required in the simulation of the

described surveillance application. The most notable models are a low power routing

and a MAC protocol that could not be obtained from third party libraries. Their

implementation has a major impact on the accuracy of the simulation results.

5.2.1 Devices

The INET Framework implementation of IEEE 802.11 WLAN video streaming was

chosen as a starting point for the high data rate protocol stack. The provided radio

model could also be used as a base for the low-power radio as well. Other required

protocols, that is application, routing and low-power MAC, had to be designed and

implemented since no applicaple models are available.

The low-power and high datarate protocol stacks have to be usable together in

one device and separately in other devices. Initially, they have to be instantiated

in the surveillance nodes as shown in Figure 5.3. Models implemented in this work

are denoted with green. Models from other libraries are denoted with blue. Models

denoted with yellow originate from other libraries, but have been been modi�ed for

this application.

From the communication perspective, the sensing mechanism is the least interest-

ing. Therefore a simple implementation of the motions sensors is su�cient. Every
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LplRadio

RoutingTable

NotificationBoard
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IPv4

Management

IEEE80211
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IEEE80211

MAC
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WLANLock

Sensor(s)
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Figure 5.3: The dual protocol stack in surveillance nodes.
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time a target module moves, the motion sensors receive a noti�cation with the new

coordinates of the target. The sensor then calculates the distance to the stimulus.

If the stimulus is within the sensor's range, the sensor sends a reading to the appli-

cation layer. The sensor is con�gurable with parameters for sensing range and delay

for sending the sensor reading.

The sensor utilizes the node's mobility module to get its location at the begin-

ning of the simulation. The mobility implementation in the INET framework was

modi�ed to support two radios in the same device. The existing implementation

imposes a constraint that the sensing nodes must remain stationary. In the target

scenario this is acceptable.

5.2.2 Surveillance Application

The surveillance application has a simple objective: raise an alarm in the whole

network upon detecting an event of interest. Once the application receives a sensor

reading, it will immediately send a message to the network informing other nodes

of the event. All other nodes receiving the alarm message will forward the alarm

message e�ectively �ooding the network. The alerted node will immediately activate

the protocol stack for delivering video stream to the gateway.

The INET implementation of WLAN MAC and radio protocols assumes that the

radio is always on. To minimize the energy consumption in the nodes the whole

stack had to be shut down. Without altering the INET layer implementations, the

simplest way to implement this is to add a lock module between the MAC and the

radio. The application can unlock the module by sending an unlock message to it.

While the module is unlocked, it will let all the messages from the MAC to the

radio pass throught. Otherwise it will discard all messages and thus prevents all

the communication. The module will lock again when the application sends another

message to it or after a con�gurable idle time if no messages are sent or received.

The surveillance application sends another request to the video application. The

original INET implementation was altered by an additional port to the module to

receive the start message. Upon reception the application initializes a video stream

transfer to the gateway.

5.2.3 Routing

AODV was chosen for a low-power routing protocol. It has been successfully utilized

in WSNs earlier and it provides all the required functions for routing in the target

scenario. Some features have been omitted for simplicity. This section describes the

implemented model in detail.

Two features have been omitted from the model. First, the packets do not have
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a TTL �eld and are allowed to �ood the entire network. In networks with relatively

small number of devices this will not cause severe performance issues. Second, when

a link breaks, the intermediator attempts a local repair by initiating a route request

to the destination, but will not send a route error message upstream to the originator.

This simpli�es the model and lowers network tra�c, but may result in unoptimal

routes. For example, if the destination node has moved closer to the source, a new

route through the intermediator is longer than what could be discovered by the

source.

The NED description of the routing layer is shown in Listing 5.1. It inherits a

common IRouting interface which allows fast swapping of the routing layer with

other implementations. The identifying node id of the device must be given as a

parameter. It is interpret as the address of the device in the network. The routing

layer has four gates for connecting to the neighbouring layers. An additional gate

is provided for future use for connecting to the CPU module. The @loose attribute

ensures it can be left unconnected.

simple AODVRouting l ike IRouting

{

parameters :

@class (AODVRouting ) ;

@display ( " i=block /network2 ; q=downQueue" ) ;

int nodeId ;

// Inhe r i t e d from IRouting :

bool rout ingCapac i ty = true ;

s t r i n g routingTableName = default ( " rout ingTable " ) ;

gates :

// Inhe r i t e d from IRouting :

input upperIn @labels (AppMsg ) ;

output upperOut @labels (AppMsg ) ;

input l owerIn @labels (RoutingMsg ) ;

output lowerOut @labels (RoutingMsg ) ;

inout proc @labels ( NodePrimitiveMsg ) @loose ;

}

Listing 5.1: AODV routing layer description in NED.

The decision algorithm for messages from the higher layer is shown in Figure

5.4. Any message marked as a broadcast by higher layer can be sent immediately

and is passed to the lower layer. For other messages the destination address is read

and checked, if an an active route exists in the routing table. If a route exists, the

message is forwarded as a unicast to the next node along the route. If no route

exists, a route request is initiated and the message is bu�ered until the discovery

process is done.
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Figure 5.4: Routing algorithm for messages to transmit.

The handling of a received message obtainded from the lower layer is not as

straightforward. The decision algorithm is shown in Figure 5.5. First, the address

of the previous intermediator is stored in the routing table with a hop count of

one. Further actions are based on the message type which is read from the header

�elds. The handling of route requests and replies is detailed in Figures 5.6 and 5.7

respectively.

Data packets are next checked, if the received packet is a duplicate of an earlier

received packet. In AODV the duplicates are identi�ed by the combination of the

source address and the sequence number. The model simply uses message tree ids

provided by the simulation engine. Regardless of the detection method, duplicate

messages are discarded to avoid congestion of the network. All incoming broadcast

messages are passed to higher layer and a copy is broadcast to all neighbouring nodes.

A unicast message addressed to the receiving node is passed to the higher layer as

well. Otherwise, if an active route to the destination is found in the routing table,

the message is sent to the next node towards the destination. If no route exists, a

route discovery is initiated. Nodes without routing capacity can not forward any,

broadcast or unicast, messages, but the rest of the functionality remains the same.

Figure 5.6 shows the decision algorithm for route requests. A route request may be

set as a route repair when a broken link is detected and new route request is initiated

to discover an alternative route. Receiving a route repair message invalidates all

routes in the routing table to and through the destination of the repair message and

initiates a route discovery.

Other route requsts are �rst checked for the hop count back to initiator. If the

hop count is higher than the count in the routing table and the request message is

seen before, it is discarded. A route with a lower hop count is updated to the routing
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Figure 5.5: Routing algorithm for received messages.

table. If the receiving node is the destination of the message, a route reply is sent

back to the originator. Otherwise, an active route to the destination is looked up in

the routing table. If a route to destination is already knwon, the request is forwarded

as a unicast to avoid unnecessary broadcasts. If there is no route in the routing table,

an entry for it is created and the route status is set as requested. The request is then

forwarded as a broadcast. If another request to the destination arrives later in time

while the route status is requested, the request message is discarded.

Finally, the routing algorithm for received route replies is shown in Figure 5.7.

Any reply for which there is no route in the routing table is immediately discarded.

The hop count back to the source of the reply is compared to the known hop count
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in the routing table. A shorter route is updated to the routing table. A longer route

is discarded. If the reply is for the receiving node, i.e. it is the originator of the

route request, all messages in the transmit bu�er are sent towards the destination.

Otherwise the reply is forwarded towards the originator.
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5.2.4 MAC protocol

The simulated MAC protocol, ISO-MAC, was implemented using the ISO-18000-7

standard as a starting point. In the standard each tag is identi�ed by a unique

Tag ID and each interrogator by an Interrogator ID. The implementation bundles

these to a single node ID. It is used to identify and address the node on both the

ISO-MAC and the routing layer. Tags can be arbitarily grouped by using Owner

IDs, but this feature is not used in either of the simulation cases.

In order to be usable in as WSN MAC protocol, the standard functionality was

extended by allowing a device to function as both an interrogator and a tag. This

enables multihop-routing in the network. When a node has data to send, it assumes

the role of an interrogator. All nodes periodically listen to the channel and assume

the role of a tag upon detecting a wakeup signal from a neighbouring node. To

minimize collisions, an interrogator will always listen for any ongoing wakeup signals

before initializing a wakeup signal of its own.

An example of the communication is shown in �gure 5.8. First node A has

data to send. It will immediately trigger a listen period for detecting any ongoing

transmissions. Since none is detected, it will assume the role of interrogator and

start sending a wakeup signal. Node C is out of its range and experiences only noise.

Node B on the other hand is in the range and will detect the wakeup signal on its

next listen period assuming the role of a tag. It receives the data at the end of the

wakeup signal and replies at its chosen time slot. Node A has no more data and

sends a sleep command to Node B to terminate the communication.

After the next listen period Node B in turn assumes the role of interrogator.

Nodes A and C accidentaly choose the same reply slot and the replies collide. Node

B reacts by resending the data after the reply time window has expired. Now nodes

A and C choose di�erent reply slots and node B receives their acknowledgements.

Finally, node B issues a sleep command to the nodes separately. If the original

packet was not addressed to node C, it will continue the cycle until the message

reaches the destination.

Two optimizations were made to decrease the energy consumption of the nodes.

First, if a tag receives a point-to-point message not addressed to it immediately

after the wakeup signal, it can resume the sleep state until the beginning of its next

wakeup period. Any following transmissions on will only take place between the

interrogator and the addressed tag. Second, the number of failed collection rounds

before the interrogator resumes the sleep state can be con�gured to other than three.
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The NED description of the ISO-MAC layer is given in Listing 5.2. The timing

can be con�gured by altering the values of wakupInterwal, wakupListenTime and

wakeupSendTime. The �rst listening period occurs wakeupO�set after the simula-

tion starts. By using a randomized value it is very unlikely that two neighbouring

nodes begin their listen period and thus their transmissions at the same point in

time. As in the INET framework, the ISO-MAC gets the noti�cation of changes in

radio state through the noti�cation board module. There must be exactly one noti-

�cation board for each radio. In dual protocol stack implementation there are two

noti�cation boards and therefore ISO-MAC uses parameter noti�cationBoardName

to identify which one of the modules to subscribe to.

simple Iso180007BasicMac l ike INodeLayer

{

parameters :

@class ( Iso180007BasicMac ) ;

@display ( " i=block / l ay e r ; i s=n" ) ;

// Wake up i n t e r v a l , s tandard i s 2.5−2.7 s .

double wakeupInterval @unit( s ) = default ( 2 . 5 s ) ;

// Li s t en time f o r wake up , s tandard i s 200ms .

double wakeupListenTime @unit( s ) = default (200ms ) ;

double wakeupSendTime @unit( s ) = default ( this . wakeupInterval ) ;

double wakeupOffset @unit( s ) =

default (uniform (0 s , this . wakeupInterval ) ) ;

// I n i t i a l r e p l y time window , s tandard i s 57.3ms .

double windowSize @unit( s ) = default ( 57 . 3ms ) ;

int nodeId = default (uniform ( 0 , 1 0 2 4 ) ) ; // In t e r p r e t as t ag Id

int ownerId = default ( 0 ) ;

int maxRetries = default ( 3 ) ; // Re t r i e s f o r unresponded messages

int maxResends = default ( 4 ) ; // Re t r i e s f o r c o l l i d e d acks

int r epa i rThre sho ld = default ( 3 ) ; //Threshold f o r l i n k r epa i r

s t r i n g not i f icat ionBoardName = default ( " no t i f i c a t i onBoa rd " ) ;

gates :

input upperIn @labels (RoutingMsg ) ;

output upperOut @labels (RoutingMsg ) ;

input l owerIn @labels ( Iso180007Msg ) ;

output lowerOut @labels ( Iso180007Msg ) ;

inout proc @loose ;

}

Listing 5.2: ISO-MAC layer description in NED.

The Finite State Machine (FSM) implementing the ISO-MAC protocol is given

in Figure 5.9. The functionality is logically divided into reception and transmission.

In both cases the cycle begins in the idle state where the radio is turned o�.

Periodically after wakeupInterval has passed a timer triggers a state change from
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Figure 5.9: ISO-MAC operation as a �nite state machine.

to listen wakeup. The radio is turned on to listen to the channel for wakeupListen-

Time. If no wakeup signal is detected, the ISO-MAC returns to idle and radio is

turned back o�. However, if an ongoing wakeup signal is detected, the ISO-MAC

changes to ready state to wait for the command message. After receiving the com-

mand message ISO-MAC will wait in the send response state until the beginning

of its designated reply slot. During the reply slot it sends the response message

and returns to ready state for the next command. Receiving a sleep command ac-

tivates the transition back to idle state. A timeout period was added to return the

ISO-MAC to the idle state should the interrogator fail to send or the link break. If

ISO-MAC does not receive a message during a timeout period it returns from ready

state to idle state. The duration of the timeout period is equal to the wakeupInterval

period.

If there are messages pending in the transmit bu�er, the node may assume the

role of an interrogator after the listen period in listen wakeup state. A wakeup signal

is sent for wakeupSendTime in send wakeup after which the command is transmitted

in the send data state. Next, the interrogator will wait in wait response state for

the period of the reply window de�ned by windowSize. It stores the tag replies
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in a response bu�er and records possible collisions. If the data message was of a

point-to-point type, there will only be a maximum of one response whose reception

will trigger a transition to set sleep and intialize the sending of sleep command. If

the message was a broadcast, the transition is triggered by a timer after the whole

window has expired. All the tags whose reply was successfully received and stored

is now set to sleep with a point-to-point sleep command. Any record of collisions

results in an interrogation retry after transition to send data and the commmand

is resend to any remaining tags. After all or no tags reply or the number of retries

equals maxRetries, the interrogator will return to idle state.

5.3 Simulation

The simulation is set up with ten devices spread over a 100x40 m area. Five of the

devices have only the low-power protocol stack and a motion sensor. Four devices

have both the low-power and the WLAN protocol stacks. One is selected as a

gateway device. Finally, one additional router without sensors is added to provide

a route from the furthest surveillance device to the gateway. The setup is shown

in Figure 5.10. The motion sensor ranges are marked with black circles around the

sensing nodes. One motion stimulus is set to move horizontally back and forth to

trigger the motion sensors repetively over the simulation.

The routes from the security nodes to the gateway are initially con�gured in the

routing tables. SecurityNode 0 and SecurityNode 1 communicate directly with the

Gateway and SecurityNode 2 through RouterNode 0 and SecurityNode 1. The low-

power nodes do not initiate route discoveries since all alarm messages are sent as

broadcast.

Both the protocol stacks use the 2.4GHz frequency channel, but on separate

channel. The low-power radio module con�guration is based on Texas Instruments

Figure 5.10: Simulation setup captured from OMNeT++ Tkenv. The possible links be-
tween the nodes are also marked.
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Table 5.1: Energy consumption estimates of the devices.

Device WLAN average
energy consump-
tion [mW]

Low-power radio
average energy
consumption
[mW]

Average commu-
nication energy
consumption
[mW]

SecurityNode 0 283.9 21.6 305.5
RouterNode 0 297.6 21.8 319.4
Node 0 n/a 21.8 21.8

CC2530 [45] chip. It is designed for IEEE802.15.4 and ZigBee compliant commu-

nication with low energy consumption and provides a plausible reference for the

model parameters. The nominal currents are 29.0 mA for transmission, 24.0 mA

active reception and 0.4 µA for the most e�cient power saving mode. Assuming

the maximum operation voltage of 3.6 V, the power consumptions are 104.40 mW,

86.40 mW, and 2.88 µW respectively. The radio communication range is about 15

meters.

TheWLAN radio con�guration is based on Texas Instruments SimpleLink CC3000

[46] WLAN radio chip. The nominal currents are 190.0 mA for transmission, 92.0

mA for reception and 5.0 µA for idle state. The operation voltage is 3.6 V. The

power consumptions are 684.0 mW, 331.2 mW, 18.0 µW respectively. The WLAN

communication range is up to 49 meters.

The simulation was run for one hour of simulation time. The ISO-MAC access

cycle was adjusted to 1.25 seconds, half of the minimum in the ISO-18000-7 standard,

to lower the latency. The cost is an increase in energy consumption, since the nodes

will have to wake up to listen to the channel more often. The simulated minimum

latency for alarm messages is 1.46 seconds. On average the alarm latency is 17.00

seconds and the maximum measured latency is 40.67 seconds.

The average power consumption estimates for di�erent devices are summarized

in Table 5.1. WLAN communication consumes over 10x power compared to the

low-power radio. Without the lock module, the di�erence would be even greater.

The evaluation of the results would bene�t from comparison with a prototype or

a mathematical model. While there is no documentation of the prototype energy

consumption, the results can be compared with a TUTWSN node. Furthermore,

additional simulations with varying number of devices, data rates and access cycle

times would provide better coverage and lead to a re�ned model.

The energy consumption of a TUTWSN node is 60.17 mW for active reception,

up to 42.17 mW for transmission and 37 µW for sleep mode [15]. The values have

been measured with 3.0 V supply voltage and includes the power consumption of an

active MCU. Compared to TUTWSN the simulated power consumptions are in the

correct order of magnitude. However, since the simulated models omit the MCU,
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Table 5.2: Total number of lines of C++ code to implement the model behaviour.

Module Lines of code
Motion Sensor 473
Surveillance Application 601
AODV Routing 824
Routing Table for AODV 246
ISO-MAC 1729
WLAN Lock 158
Total 4031

the estimated energy consumptions are likely too optimistic. Even with average

energy consumption of 21.8 µW, battery-operated node devices are not applicable in

WSNs. However, the di�erence of over 10x compared to WLAN suggests a signi�cant

improvement in energy consumption. The means to simulate multiple radios in a

single device is considered more important result in this work than the absolute

energy consumption values.

In TUTWSN the access cycle is 2 seconds. On average each hop has 1 s latency.

The simulated minimum latency of 1.46 s is comparable to a single hop latency.

Since the interrogator uses 0.2 s for channel listening and 1.25 s for sending a wakeup

signal, the latency can not be further decreased without lowering the access cycle

time. The simulated network is very small in the scale of WSNs and based on the

average latency the MAC and routing protocols may not be applicable in larger

networks.

The modeling e�ort can be estimated by the amount of source code lines since

no estimates of the time usage are available. Table 5.2 shows the number of lines of

C++ code for each module implementation. The amount includes all the inherited

classes and header �les. As seen in Listings 5.1 and 5.2 the NED �les contain only

few lines and the total amount is estimated to about 200 lines.
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6. MOBILE POSITIONING NETWORK

The objective of the second simulation case was to evaluate the accuracy of a po-

sitioning algorithm in WSNs. Traditionally global positioning system (GPS) has

been used for device positioning, but in energy-constrained WSNs, it is not viable

energy- or cost-wise for each node to have a GPS receiver.

This chapter shows a simulation for evaluating one possible locationing algorithm

in WSNs. The algorithm was initially evaluated using a Python script for simulating

the node mobility and communication. Importing the simulation to OMNeT++

provides more options for con�guring the scenario. It enables more diverse mobility

models to be used and improved simulation of the physical environment.

6.1 Positioning Algorithm

In [47] Shang et. al propose a positioning algorithm utilizing connectivity infor-

mation already available in most WSNs. In a fully connected network the relative

positions of the nodes can be estimated from the distances between the nodes. The

distances can be mathematically estimated using the Received Signal Strength In-

dication (RSSI) values.

The estimate results in a map which is arbitarily rotated and �ipped as the node

locations are relative to each other and not absolute. However, with only a few

anchor nodes equipped with a GPS the map can be transformed to the absolute

node positions. The anchor nodes can be equipped with an external power source

to provide the node with su�cient energy. The used mathematical method, Multi-

Dimensional Scaling (MDS), is too computationally intensive to be executed in the

WSN network, but can be performed in an external server. Consequently, the nodes

will have to send the collected statistics to the server gateway for analysis.

6.2 Implementation

OMNeT++ was used to simulate the node movement and communication. The

nodes record the RSSI value for each received messages. The absolute position is

recorded for reference and used to calculate the error of the position estimates. The

MDS positioning algorithm is run in Matlab using the record �les as input. A

Python script was used to produce other set of input records for comparison. The

simulation �ow is shown in Figure 6.1.
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Figure 6.1: Positioning simulation �ow.

Compared to the Python script, OMNeT++ simulation targets to provided more

realistic model by introducing new error sources accounted in real WSN environ-

ments. The messages may be lost or collide in the wireless medium and all the

transmissions have a non-constant latency which was not accounted for in the Python

implementation. Modeling these physical phenomena in Matlab would be cumber-

some. Conversely, running a complex computation algorithm in Matlab is more

convenient than modeling it in OMNeT++.

The simulation requires mobile nodes with position and RSSI logging. The mo-

bility is enabled by using the Mobility module provided by INET framework. The

communication is handled by the MAC and routing protocols described in the pre-

vious chapter. The INET radio model used as a base for the low-power protocol

stack radio already calculates the RSSI values for the received packets. However, the

other layers have no access to it and therefore the radio model has to be modi�ed.

In a real implementation, the radio would store the RSSI values into memory

and the application would later read, process and send it to the gateway. In the

simpli�ed simulation model, the radio was modi�ed to write the RSSI value directly

into the application payload data. The application layer records the RSSI values of

the received messages into a �le when the payload data is delivered to it through

the protocol stack.

The distance between two nodes is estimated using three methods. The methods

are visualized in Figure 6.2. The �rst method, real distance, calculates the absolute

distances from the recorded node positions. The second method, sum distance,

estimates the distance between any two nodes as the sum of the distances of the

intermediating nodes. The distance between two neighbouring nodes are estimated

from the RSSI value. This method is simple, but generally tends to yield longer

distances than the real distance. The �nal method, hop distance, uses the number

of hops between the nodes as the distance.

The simulation does not take into account the delay from node to gateway or that

some messages that are likely to drop before reaching the gateway. The application
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Figure 6.2: Three estimation methods for node distances in multihop.

layer needs to broadcast messages periodically to generate tra�c in the network.

Broadcasting eliminates the cost for route building and maintenance.

6.3 Simulation

The network has 20 nodes including 4 anchor nodes. The nodes move with a constant

speed and change their direction every 5 seconds. The radios operate on 433 MHz

frequency band and the communication range is set to maximum of 105 meters. Each

node broadcasts randomly between 6 to 8 seconds. The following sections describe

three simulation scenarios. The simulation time in all scenarios is 10 minutes.

6.3.1 Group Walk

In the �rst scenario all the nodes move in a 10x10 km area as a loose group. Initially

the nodes move around the area randomly. The node with the lowest id acts as a

group leader. If any other node detects that no neighbours are within its communi-

cation range, it will immediately turn towards the group leader to rejoin the group.

Figure 6.3 shows an example of the node behaviour. The node movement in this

case is mimics the Python implementation.

The measured average location errors for di�erent estimates are shown in Table

6.1 and visualized in Figure 6.4. Using the absolute distances the average location

error is measured in centimeters. At worst it is less than 0.2% of the communication

range so the error introduced by the MDS algorithm is very small.

Using the other two methods the error increases almost linearly with the node

speed. The location estimate seems to be most accurate when the nodes move at a

very slow speed. Only after the node speed exceeds 0.50 m/s the error is greater than

with stationary nodes. It is not surprising that using only the number of hops as the

distance, the average location error is always higher than with the sum estimate.
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Figure 6.3: In the group walk scenario the nodes follow the leader node.

Table 6.1: Average location error in group walk simulation.

Node Speed
[m/s]

Average Er-
ror of Real
Distance [m]

Average Error
of Sum Distance
[m]

Average Error
of Hop Distance
[m]

0.00 0.02 59.41 74.34
0.10 0.02 26.79 48.00
0.20 0.01 39.62 62.61
0.30 0.02 61.13 84.16
0.40 0.01 39.09 61.13
0.50 0.01 54.71 75.64
0.60 0.02 60.28 81.18
0.70 0.01 81.23 101.04
0 80 0.01 48.75 63.50
0.90 0.01 66.15 82.39
1.00 0.01 58.25 75.27
1.10 0.01 67.74 88.51
1.20 0.01 74.58 78.46
1.30 0.01 108.08 108.31
1.40 0.01 68.49 88.05
1.50 0.01 86.81 98.94
1.60 0.01 75.51 86.03
1.70 0.01 79.78 90.44
1.80 0.01 85.96 98.16
1.90 0.01 85.45 103.78
2.00 0.02 86.79 91.12
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Figure 6.4: Node speed vs. average location error in group walk.

6.3.2 Stationary Anchor Nodes

The second scenario corresponds to indoor positioning. The nodes are limited to

300x300 m area and the anchor nodes remain stationary. All other nodes move

randomly in the area. The anchor nodes have been located to cover the whole area

so that the mobile nodes have always a link to at least one of them. The scenario is

shown in Figure 6.5.

The average location errors for di�erent estimate methods are given in Table 6.2

and visualized in Figure 6.6. Compared to the group walk the average location error

is smaller in most cases especially if all the nodes are stationary.

Although the location error is smaller than in the group walk scenario, if the node

Anchor 

node

Figure 6.5: The anchor nodes remain stationary while other nodes move freely in the area.
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Table 6.2: Average location error in stationary anchor nodes simulation.

Node Speed
[m/s]

Average Er-
ror of Real
Distance [m]

Average Error
of Sum Distance
[m]

Average Error
of Hop Distance
[m]

0.00 0.56 30.39 57.05
0.10 1.04 35.40 63.21
0.20 0.93 28.69 53.92
0.30 0.43 33.64 53.95
0.40 0.64 39.18 69.91
0.50 0.58 38.97 59.34
0.60 1.54 38.66 60.85
0.70 0.79 48.90 94.29
0 80 0.95 50.15 73.32
0.90 2.24 48.64 76.12
1.00 1.48 50.90 73.14
1.10 0.63 53.08 70.95
1.20 1.29 60.78 79.19
1.30 1.68 60.58 77.58
1.40 1.83 60.33 81.15
1.50 0.87 65.71 85.67
1.60 1.11 62.35 84.97
1.70 1.74 63.76 81.74
1.80 1.66 62.68 86.67
1.90 2.08 71.59 90.63
2.00 1.32 62.66 86.79
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Figure 6.6: Node speed vs. average location error with four stationary anchor nodes.
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speed is over 1 m/s, the average error is still over 50% of the communication range.

This may be acceptable for some applications for example in indoors positioning

where the required accuracy is at room level.

6.3.3 Constant Speed Walk

In the �nal scenario, all the nodes move in the same direction with the same constant

speed of 2 m/s, but the maximum number of hops in the network is altered. The

initial positioning of the nodes designate the maximum number of hops. First, all

nodes are grouped tightly and every node is within the communication range of the

others. Then the nodes are spread out until �nally the nodes form a single line

and each node can only communicate with the previous and the next node. This is

illustrated in Figure 6.7. In the �nal stage, the maximum number of hops is 19.

The simulation results for are shown in Table 6.3 and Figure 6.8. Location error

increases almost linearly with the hop count. The sole exception is at the maximum

number of hops is four. This is probably caused by positioning all the anchor nodes

on the same line which makes the estimation by the MDS algorithm di�cult. For

over 8 or more hops the hop distance is no longer applicable as the error exceeds

100% of the communication range.

Three simulation scenarios were used to evaluate the MDS algorithm for WSN

positioning. Based on the simulation results, the MDS algorithm would be applica-

ble to location-based applications with loose accuracy requirements such as indoor

Maximum hop 

count 1

Maximum hop 

count 2

Maximum hop 

count N-1

Figure 6.7: Maximum number of hops in the network was altered by spreading out the
nodes.
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Table 6.3: Average location error for maximum number of hops in the network.

Maximum Number
of Hops

Average Error of
Sum Distance [m]

Average Error of
Hop Distance [m]

1 17.24 37.60
2 41.71 57.90
3 20.73 40.01
4 116.84 108.70
5 26.84 56.80
6 28.10 66.50
7 26.10 83.60
8 29.57 112.50
9 38.52 120.50
10 31.14 115.30
11 55.42 182.50
12 56.82 218.30
13 70.16 209.60
14 39.51 173.30
15 71.82 228.80
16 65.32 255.90
17 94.31 289.80
18 83.23 319.60
19 52.95 272.30

positioning. The location error is less than 50% of the communication range for

devices moving slowly. For low-power devices with small communication range this

is often su�cient. Even simple estimates of the node distances were found to yield

decent estimates.
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(a) Number of hops vs. location error estimated by sum distances.
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Figure 6.8: The location error increases almost linearly with the maximum number of hops
in the network.
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7. CONCLUSIONS

The objective of this Thesis was to deploy OMNeT++ simulation environment in

WSN research. Two simulation cases were implemented to evaluate the simulator

and modeling e�ort. These cases required new simulation models to be designed

since no existing models full�lled the case requirements.

The simulation environment was deployed and the simulations were run success-

fully. The simulations showed that hierarchical operation and alarming can reduce

the overall energy consumption in the network. However, the alarm latency will

probably not scale well with the networks size, if the modeled MAC and routing

protocols are used.

The challenge of a layered protocol stack design is the unavoidable dependencies

between the layers and cross-layer communication. The implementation accepts

this coupling of layers and does not try to provide a general layer interface that

can be connected to any other layer. The inevitable consequence is that the models

are incompatible with any other existing models. However, it simpli�es the design

considerably.

OMNeT++ has proven to be a stable, easily extensible, and scalable simulator. It

can be considered in WSN research. Althought fewer models are available compared

to many other simulators, many projects are working to extend the available model

libraries. Current simulation models often show too optimistical results. As the

libraries evolve, new reference models become available and the existing models

will become more accurate. Also the modeling e�ort reduces as the nodes can

be assembled from interchangable layers according to the application requirements

instead of modeling all the required layers.

Future work of the models begins with the decoupling of the protocol layers.

The functionality can be further optimized and improved in many aspects. For

example, the surveillance application would bene�t from clustering the network

into surveilance areas that can be individually alerted. The neighbouring areas are

alerted only if the event is likely to move to that area. WSN research would bene�t

from more accurate energy and resource consumption estimation. As the work on

network simulators proceeds, new and more detailed models will hopefully emerge.
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