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Emotions in speech are a fundamental part of a natural dialog. In everyday life,

vocal interaction with people often implies emotions as an intrinsic part of the

conversation to a greater or lesser extent. Thus, the inclusion of emotions in human-

machine dialog systems is crucial to achieve an acceptable degree of naturalness in

the communication. This thesis focuses on automatic emotion conversion of speech,

a technique whose aim is to transform an utterance produced in neutral style to a

certain emotion state in a speaker independent context.

Conversion of emotions represents a challenge in the sense that emotions a�ect

signi�cantly all the parts of the human vocal production system, and in the conver-

sion process all these factors must be taken into account carefully. The techniques

used in the literature are based on voice conversion approaches, with minor modi�ca-

tions to create the sensation of emotion. In this thesis, the idea of voice conversion

systems is used as well, but the usual regression process is divided in a two-step

procedure that provides additional speaker normalization to remove the intrinsic

speaker dependency of this kind of systems, using vocal tract length normalization

as a pre-processing technique. In addition, a new method to convert the duration

trend of the utterance and the intonation contour is proposed, taking into account

the contextual information.
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1. Introduction

Automatic generation of expressive speech in multiple emotional styles is growing

in popularity as the human-machine dialog systems advance continuously, and their

aim is to achieve higher and higher levels of naturalness. The reason for this is the

multiple potential applications that are arising, such as in the leisure industry, in

which the creation of avatars with properly de�ned arti�cial intelligence is becoming

more and more important. Additionally, there are several other applications in the

industry to create dialog systems that provoke empathy in its clients, which is likely

to increase the happiness of the clients with the company, and therefore raise the

potential bene�t.

Generation of emotional speech still remains as a challenging area in the �eld of

speech processing, although some satisfactory results have already been obtained

[Hof04]. A wide range of techniques can be used to achieve this goal, from all the

text to speech classical methods to voice conversion. The �rst type of methods

generate the synthesized speech from scratch, while the latter parts from an existing

utterance and uses regression techniques to transform the parameters and create the

sensation that the utterance was produced with a determined emotion.

When speaking about text to speech synthesis applications, the classical tech-

niques used to synthesize the output speech require extensive databases that capture

every possible phenomenon present in the speech generation process. Let us imagine

a situation in which it is necessary to build a text to speech system that is able to

change the emotion of the speech depending on the content of the text or the current

interaction with the �nal user. This application would require enormous databases

for each of the emotions that the system had to emulate with the additional con-

straint of being produced by the same speaker, which is absolutely nonviable when

the number of emotions is relatively large. At this point, voice conversion appli-

cations show a big advantage, because this kind of techniques are meant to model

speaking styles using regression methods to mimic the identity of a certain target

speaker by learning a transformation function from another source speaker using a

small amount of data. In practice, emotions in speech can be regarded as utterances

produced by another source speaker, because of the changes that they cause in the

voice production system.
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1.1 Emotions in conversion systems: Problem de�nition

In the emotional speech generation �eld, voice conversion techniques represent a big

improvement compared to other methods since it is possible to model emotions with

a small amount of data, which is advantageous when there is a relatively big amount

of emotions to generate, as for example in the MPEG-4 standard [Ost02], which uses

six emotion categories in face animation processes, which would require six addi-

tional big databases to generate the di�erent possible emotional speech states if

these techniques were not used. However, most voice conversion techniques for emo-

tional speech generation su�er from an additional drawback, which makes them still

not perfectly suitable for all the possible applications, which is that voice conversion

techniques require a �xed source and target speaker.

The speaker dependency requirement is actually not a problem in the common

voice conversion techniques, since their goal is to transform the identity of the source

speaker into that of the target speaker. However, in the emotion conversion process

the goal is to mimic an emotion, and to have such a strong restriction in the possible

input speaker makes the system still not as adaptive as would be desired, since the

system would still require to build additional databases (although smaller) for the

speaker whose emotion is desired to be transformed.

On the other hand, the modeling of prosody (i.e. the patterns of stress and

intonation in speech) is a very important issue in an emotion conversion system,

because as it is commonly known, there is a wide variety of emotions that are

expressed mainly via prosody, such as sadness or boredom. This fact is commonly

not taken into account in the classical voice conversion systems, due to the fact that

prosody is not an extremely critical factor in identity perception, but if emotions

are present, prosody begins to play an important role. The prosody characteristics

that have to be specially taken into account are the speaking rate and the local

pitch variations. This way, the least complex model should at least be able to scale

the mean duration of the utterance and generate new pitch contours according to

the emotion. However, a desirable model should also be able to model the intra

sentence variations of the duration and the pitch, which is a problem that can be

addressed via regression methods that either take into account explicit contextual

information, as in this thesis, or model contextual information implicitly, which can

be represented for example using wavelets [San14].
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1.2 Objectives and main results

The main goal of this work is to build a functional emotion conversion system, with

the additional objective of removing speaker dependency from the voice conversion

system. The approach used in this thesis is based on a two step voice conversion.

First, the input identity is normalized using a rough parametric transformation

function, whose aim is to reduce the acoustic distance between a certain reference

speaker and the input speaker, not needing the identity transformation to be sub-

jectively perfect. The second step exploits the fact that the transformed speech is

close to the reference speaker, and applies a speaker dependent model to transform

the emotion, which has been trained for the reference speaker. Finally, the identity

transformation is reversed and the remaining speech has the identity of the input

speaker with the desired emotion.

This thesis also presents a transformation system to create emotional style in-

tonation patterns in prosody based on direct transformation of the input speech

parameters. The proposed method takes into account lexical information to pro-

duce the conversion result, resulting in a context sensitive system that evolves with

time.

The performance of the system was evaluated using objective and subjective

criteria, to test the degradation due to the inclusion of a two step voice conversion

in the �rst case, and to check the perceived quality of the converted emotions in

the second case. The results show that the subjective performance of the system is

in general signi�cantly close to authentic emotions, although some emotions show

better result than others, which is discussed in Chapter 6. The objective results show

that the conversion system e�ectively reduces the original distortion, sometimes

performing almost as well as a speaker dependent system.

1.3 Organization of the thesis

This thesis is organized as follows. Chapter 2 brie�y introduces speech production

system and common parameterizations. The e�ect of emotions in the speech pro-

duction system is presented in Chapter 3, as well as the types of emotional speech

databases that can be found in the literature. Chapter 4 introduces voice conversion

techniques and their usual architecture, along with a description of how the methods

have to be adapted in order to model emotions. Chapter 5 presents the methods

used in this thesis to build a complete emotion conversion system. The techniques

and the data used to evaluate the performance of this system is presented in Chap-

ter 6, together with a brief discussion about the results. Finally, Chapter 7 exposes

the conclusions extracted from this thesis and the possible lines of future work and

investigation to extend and improve the current system.
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2. Speech Representations

An insight of how speech is mathematically represented is essential for speech trans-

formation and synthesis. In this chapter, the basis of human speech production, and

its digital mathematical modeling is presented.

2.1 Speech production model

Speech is the main form of human communication, consisting in a sequence of sounds

that create a symbolic representation of the information. The set of sounds is unique

of each language, but the production mechanism is common to all them, which allows

to develop a universal model for the speech production.

2.1.1 The voice production apparatus

Speech is generated by the human vocal production system, which is illustrated in

the �gure 2.1. The sound is the result of air-pressure waves that are originated in

the lungs, and afterward are �ltered by the vocal tract, which produces the di�erent

phonemes that conform the language.

The speech production apparatus can be divided into the lungs, trachea, larynx

(organ of voice production), pharyngeal cavity (throat), oral and nasal cavity. The

pharyngeal and oral cavities are typically referred to as the vocal tract, and the

nasal cavity as the nasal tract [Hua01].

The di�erent sounds that the human vocal system can produce are divided into

two essential categories according to the excitation mode: voiced and unvoiced.

Voiced sounds are produced by the pressure wave going through the glottis with

the vocal cords in a tense status, which causes the cords to vibrate, acting as a

relaxation oscillator, and its oscillation frequency is called fundamental frequency

(F0) or pitch. This produces quasi-periodic pulses of air �ow which are �ltered

by the vocal tract. Unvoiced sounds are produced by creating a constriction in

some point of the vocal tract, and expelling air through it at a speed that causes a

turbulence, which produces noise that excites the vocal tract.

Once the excitation is produced, the vocal tract and the nasal tract act as reso-

nance tubes of non-uniform cross-sectional area. The spectrum of the corresponding

sound is therefore shaped according to the frequency selectivity of the vocal tract.

The resonant frequencies of the vocal tract are called formant frequencies or simply

formants.
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Figure 2.1: Human vocal tract. [Wik14]

The di�erent sounds are generated by varying the shape of the vocal tract, which

is translated into movements of the formant frequencies, and speaking style is de�ned

by the movements of F0. Thus, the speech is completely de�ned by the excitation

signal and the vocal tract �lter.

The last part of the human voice production system is the transfer of the gen-

erated sound to the free space. This is achieved through the lips, which, due to

an acoustic impedance mismatch with the open air, act as a high-pass �lter, and

attenuates the low frequencies.

2.1.2 The Source-Filter Model

The human vocal tract can be modeled by using theory of acoustic circuits, assum-

ing that the tract can be represented as a concatenation of tubes of non-uniform

cross-sectional area, as mentioned in section 2.1.1. Therefore, the complete pro-

duction model can be represented as an air�ow excitation generator, and a series

of tubes with time-varying cross-sectional area that shape the frequency content of

the excitation signal with a resonant �lter. The model assumes that the glottis is a

tube of in�nite length and the lips are another tube of in�nite length as well, as it

is shown in the �gure 2.2.
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Figure 2.2: Tube model for speech production

The digital model that represents this scheme is called the source-�lter model,

and it consists on the excitation signal (e(n)) generator, convolved with a linear

�lter with impulse response h(n) that represents the vocal tract and a radiation

�lter with response r(n):

y(n) = e(n) ∗ h(n) ∗ r(n) (2.1)

In the z-domain this equation can be expressed as:

Y (z) = E(z)H(z)R(z) (2.2)

The vocal tract �lter H(z) can be su�ciently modeled with an all-pole �lter, and

the radiation �lter can be expressed as a simple �rst order high pass �lter:

H(z) =
G

1 +
∑P

k=1 αkz
−k

R(z) = 1− βz−1 (2.3)

where G and {αk} are parameters that depend on the shape of the vocal tract, and

β is a radiation parameter that satis�es β < 1 [Hua01]. The excitation signal e(n)

is dependent on the desired excitation type. A periodic train of pulses is required

for voiced sounds, and random white noise is needed for the unvoiced sounds. The

block diagram of the complete system is shown in the �gure 2.3.

2.2 Linear predictive coding

Linear prediction is one of the most powerful tools in speech processing, since it is

based in the assumption that a signal s(n) can be expressed as:

s(n) = −
p∑

k=1

αks(n− k) + e(n) (2.4)
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Figure 2.3: Source-�lter model block diagram

where the parameters αk
1 are the result of the linear prediction analysis, and e(n) is

the residual error, which is minimized in the mean squared error (MSE) sense, and

corresponds to the stochastic component of the signal that cannot be predicted by

this model.

The equation 2.4 can be written in the z-domain as:

S(z)

(
1 +

p∑
k=1

αkz
−k

)
= E(z)⇒ S(z) =

E(z)

1 +
∑p

k=1 αkz
−k (2.5)

which means that this method is useful to model signals generated by auto-regressive

(AR) processes like speech, and therefore the analysis is able to extract signi�cant

information about its generation process.

These coe�cients {αk} give a compact representation of the spectral envelope of

the speech signal, which is suitable for transformation and synthesis, and the coding

of speech based on these coe�cients is called Linear Predictive Coding (LPC).

2.2.1 Linear prediction analysis

The premise of the LP analysis is, as shown in equation 2.4, that the current sample

can be partially predicted as a linear combination of the previous p samples. The

block diagram of the system is shown in the �gure 2.4.

The prediction �lter P (z) can be expressed as P (z) = −
∑p

k=1 αkz
−k, and thus

the global �lter can be written as A(z) = 1 +
∑p

k=1 αkz
−k.

1The minus sign in equation 2.4 is a convention and may di�er in the literature
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Figure 2.4: Block diagram of the LP analysis

To solve the estimation of the prediction parameters αk, the residual error is

minimized in the MSE sense. The mean squared error is de�ned as:

E{e(n)2} = E


(
s(n) +

p∑
k=1

αks(n− k)

)2
 (2.6)

The minimization criterion thus requires:

∂E{e(n)2}
∂αj

= 2E

{(
s(n) +

p∑
k=1

αks(n− k)

)
s(n− j)

}
= 0 (2.7)

Which implies:

E{s(n)s(n− j)} = −
p∑

k=1

αkE {s(n− k)s(n− j)} (2.8)

Rs(j) = −
p∑

k=1

αkRs(j − k) j = 1, . . . , p (2.9)

Where Rs(k) represents the autocorrelation function, which can be estimated

from the signal s(n). The equation 2.9 leads to the well-known normal equations,

which can be solved e�ciently using the Levinson-Durbin method [Lev47; Dur60]:
Rs(0) Rs(1) . . . Rs(p− 1)

Rs(1) Rs(0) . . . Rs(p− 2)
...

...
...

Rs(p− 1) Rs(p− 2) . . . Rs(0)



α1

α2

...

αp

 = −


Rs(0)

Rs(1)
...

Rs(p)

 (2.10)



2. Speech Representations 9

This equation is valid for stationary signals, but as it has been shown, speech is

naturally non-stationary since the vocal tract is changing in time, and thus the �lter

H(z) is time-varying in the model. This problem can be overcame by assuming that

speech is locally stationary within the length of a phoneme, and therefore the LPC

analysis can be performed in framed segments of speech, applying a window signal

w(n).

2.2.2 Line spectral frequencies

Although the LPC coe�cients give a compact representation of the spectral envelope

of the speech signal, they are not widely used to code or transform speech, since the

operations that may be applied to these coe�cients can easily make the resulting

�lter unstable, and that produces a problem in the synthesis process.

To solve this problem, the line spectral frequencies (LSF) are introduced. Let the

LP analysis �lter be A(z) = 1 +
∑p

k=1 αkz
−k, then the polynomials

P (z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z)− z−(p+1)A(z−1)
(2.11)

Are respectively a symmetric and anti-symmetric polynomials which satisfy:

A(z) =
1

2
(P (z) +Q(z)) (2.12)

And have the following properties [Soo84]:

• All zeros of P (z) and Q(z) are in the unit circle (i.e, the modulus equals 1).

• The complex argument of the zeros of P (z) and Q(z) are interlaced with each

other.

• Zeros of P (z) and Q(z) do not overlap.

An inspection of these properties show that the LP �lter A(z) is totally repre-

sented by the zeros of P (z) and Q(z). Furthermore, as the zeros are located on the

unit circle, they can be located uniquely by their phase, named Line Spectral Fre-

quency, which allows to store them as a real number rather than a complex number.

Additionally, the LSFs are positioned symmetrically respect to the real axis, remov-

ing the need of storing the negative LSFs, and therefore the LP �lter is completely

represented by p real numbers.

The advantage that LSF representation shows compared with the LPC coe�cients

is that it ensures the stability of the reconstructed �lter although the values are

altered, which is a desirable property in speech coding and transformation.
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2.3 Cepstrum

As with LPC, the cepstral analysis is a major method to extract and represent

the spectral envelope of the speech signal. The cepstral analysis is a homomorphic

transformation, as it transforms the convolution of discrete-time signals into a sum

of discrete-time signals as shown in equation 2.13.

s(n) = x(n) ∗ y(n)
C−−−→ ŝ(n) = x̂(n) + ŷ(n) (2.13)

The complex cepstrum of a signal s(n) is de�ned as the inverse Fourier transform

of the complex logarithm of the Fourier transform of the signal [Opp65]:

ŝ(n) = C{s(n)} = F−1 {log(F{s(n)})} = F−1{log(|S(ω)|)}+ F−1{j arg(S(ω))}
(2.14)

From this de�nition can also be deduced that if the signal s(n) is real, then the

complex cepstrum is real as well. The time index n is usually called quefrency, in

opposition to the word frequency.

The homomorphic properties can be easily shown, by inputting a convolved

s(n) = x(n) ∗ y(n) signal into the analysis system:

S(ω) = F{s(n)} = F{x(n) ∗ y(n)} = X(ω)Y (ω)

log(S(ω)) = log(X(ω)) + log(Y (ω))

ŝ(n) = F−1{log(S(ω))} = F−1{log(X(ω))}+ F−1{log(Y (ω))} = x̂(n) + ŷ(n)

(2.15)

However, the cepstrum is frequently de�ned as F−1 {log |F{s(n)}|} instead, and
then it is called real cepstrum cs(n), or simply cepstrum by some authors [Roa96;

Pro07], which can be easily shown to be the even part of the complex cepstrum:

cs(n) =
ŝ(n) + ŝ(−n)

2
(2.16)

This is easier to compute as there is no need to compute the complex logarithm.

Furthermore, the complex cepstrum of a minimum phase signal can be shown to

be null for n < 0 (annex A.1), and therefore the complex cepstrum is completely

de�ned by the real cepstrum:

ŝ(n) =


0 n < 0

cs(0) n = 0

2cs(n) n > 0

(2.17)
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Using the cepstral analysis it is possible to separate the vocal tract �lter from

the excitation signal, due to the fact that the vocal tract �lter is a minimum phase

all-pole �lter, which by observation of the equation A.6, it can be deduced that the

energy is essentialy concentrated in low quefrencies, whereas the excitation signal

has the energy concentrated on harmonics of the fundamental period, as shown in

equation A.11 in annex A.2. The process of extracting the cepstral representation

of the �lter is called liftering, in contrast to the word �ltering.

Figure 2.5 illustrates the process of cepstral analysis applied to one vowel. Figure

2.5a shows the spectral envelope obtained by liftering, and �gure 2.5b depicts the

real cepstrum of the analyzed signal.

According to the source-�lter model described in section 2.1.2, the speech signal

can be represented by the vocal tract �lter and the fundamental fequency F0. Using

cepstral analysis, the vocal tract �lter envelope can be represented using a small

number of coe�cients from the cepstrum, and F0 can be also determined from the

position of the cepstral peak.

2.4 Mel-cepstral representation

Although cepstral modeling can represent the spectral envelope of speech modeling

poles and zeros with equal weights, the number of coe�cients needed to adequately

represent the spectral envelope of the signal is relatively high compared to the LPC

representation.

However, the human psycho-acoustic system does not perceive every frequency

with equal resolution. Two well known scales that model the human ear frequency

response are the Mel and Bark scales. The Mel scale is widely used for speech

feature extraction in many applications, and it is de�ned as:

m = 2595 log10

(
1 +

f

700

)
(2.18)

Mel-cepstral coe�cients (MCC) are frequency warped coe�cients [Ima83a] that

have been popular in voice transformation tasks [Tod07; Hel12b]. The spectrum is

modeled using Dth order MCCs cα(k), k = 0, 1, . . . , D:

H(z) = exp

(
D∑
k=0

cα(k)z̃−k

)
(2.19)

where z̃−1 is de�ned via the bilinear function:

z̃−1 =
z−1 − α
1− αz−1

(2.20)
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(a) Spectrum of the vowel /a/ and its liftered envelope

(b) Real cepstrum of the signal without liftering

Figure 2.5: Cepstral anlysis of the spanish vowel /a/

An appropiate selection of α can approximate the mel scale. In the case of 16

kHz sampling, the usual choice is α = 0.42.

The vocal tract �lter can be reconstructed by means of the Mel-Log Scale Ap-

proximation Filter (MLSA), which implements the reconstruction in equation 2.19,

as described in [Ima83b].
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3. Emotions in speech

Emotions are complex phenomena, and the way they a�ect the speech production is

still an unclear issue. However, several authors have tried to develop the basis of a

consistent theory to support the vocal expression of emotions, as in [Sch03; Cor00].

The results presented in this chapter illustrate how emotions are present in the

speech signal and that the evaluation methods for emotional speech synthesis are

necessarily biased due to the relatively low recognition rate in emotion identi�cation.

To understand how emotions a�ect speech, the study in [Ban96] is quite rep-

resentative. It analyzes the acoustic characteristics of recorded emotional speech,

including spectral and prosodic features. It was found that emotions a�ect the

energy distribution of the spectrum, and changes occur in the formant positions.

Additionally, a linear regression model was �tted to the prosodic features, using

as independent variables all those that may a�ect the value of the parameter: the

speaker identity and gender, the linguistic content of the sentence, the environment,

and of course the emotion. In the result it is shown that the emotion explains 55%

of the variation of the mean intensity, and 50% of the variation of mean F0. There

are several studies conducted by phoneticians and psychologists that con�rm the

result, a compilation of the most important �ndings in these studies is presented in

[Eri05].

3.1 Emotional speech databases

In order to analyze the e�ect of emotions in speech, a database of emotional speech

is needed. The obtaining of a proper emotional speech data is still a big challenge.

The ideal is to gather a closely controlled dataset with spontaneous speech. This is

impossible to achieve, as it is not possible to get spontaneous speech under controlled

conditions, thus, researchers have developed several techniques to obtain somewhat

natural and spontaneous voice.
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3.1.1 Acted emotions

The simplest technique consists on acted speech uttered by professional actors pre-

tending a certain emotion. This kind of recordings can be made in a conditioned

room, where the recording conditions and the text content are under complete con-

trol. On the other hand, it does not provide full naturalness in the selected emotions,

generally due to overacting. Because the speaker does not have any other means

than his own voice to express the emotion, there is some tendency to overacting so

as to get the emotion clearly portrayed [Bat00].

This method is generally used to record databases oriented to developing text-

to-speech or voice transformation systems, where the quality of the recorded speech

generally plays an important role. Furthermore, because of the overacting, the

emotions in these databases are very recognizable, which is adequate to develop a

speech synthesizer system of emotional speech, where the important fact is that the

listener identi�es the emotion.

It is also a widely used technique to analyze the emotional speech signal comparing

it with other emotions. Because the method allows a total control over the read text,

it is possible to record the same text in every emotion.

3.1.2 Stimulated emotions

This method consists on having emotionally rich carrier sentences read by non pro-

fessional actors, which intends to evoke genuine emotions. It is expected that the

highly emotive text provokes the emotions to arise naturally without the need of

overacting. Using this approach the utterances can still be recorded under strictly

controlled environmental conditions, but the possibility of having parallel sentences

vanishes, which make the databases less suitable for voice transformation, where

parallel utterances are a big bene�t.

3.1.3 Real emotions

The databases with real emotions are usually obtained from TV programs with

high emotional content (such as debates), from interviews, or from Wizard of Oz1

experiments. The emotions portrayed in these databases are completely natural,

but the control over the environment and the content is completely lost. This kind

of database is suitable for the testing of automatic emotion recognition systems,

where the generalization capability is important.

1AWizard of Oz experiment is a research experiment in which subjects interact with a computer

system that subjects believe to be autonomous, but which is actually being operated by a hidden

human being
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3.2 Emotion perception

Although there is a clear evidence that emotions a�ect speaking style, in absence of

extra clues, the identi�cation of the portrayed emotion is not straightforward even

for humans. In [Sch01] it is reported that vocal expression of a�ect may be motivated

in part by universal psychobiological mechanisms, and in part by the segmental and

supra-segmental aspects of the particular language. In this work, they gather results

from a study conducted in nine countries in Europe, the United States, and Asia on

vocal emotion portrayals of anger, sadness, fear, joy, and neutral voice as produced

by professional German actors. Data showed an overall accuracy of 66% across all

emotions and countries. Nevertheless, there were di�erences ranging from 74% in

Germany to 52% in Indonesia. However, patterns of confusion were very similar

across all countries. These data suggest the existence of similar inference rules from

vocal expression across cultures, although the highest recognition rate comes from

the native speakers of the expressive speech language.

The results of this study shows that humans are well able to infer the emotional

status of an unknown speaker, but the recognition rate shows that there is still

confusion between emotions when speaking. For instance, joy is the emotion with

the lowest recognition rate with only a 48% of recognition rate among the German

listeners, while a neutral speaking style is the best recognized with a 88% recognition

rate. However, there is a clear overestimation of neutral style, being confused up to

34% of the times when the emotion was joy.
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4. Voice Conversion

In this chapter, �rstly, a review of the most common voice conversion (VC) tech-

niques is shown and the generic blocks of a VC system are described, emphasizing

on the state of the art mapping techniques. Secondly, an insight of how emotions

are handled in VC systems is given, describing the necessary components to perform

the task successfully.

The term voice conversion refers to the the area of speech processing that deals

with the transformation of the speech uttered by one speaker (source speaker) to

create the impression that it was uttered by another speaker (target speaker). The

conventional VC systems consist of two steps: Training and conversion. In the

training phase, a transformation function is created based on the speech data from

both speakers to map the source speaker features to the target speaker features.

In conversion, the mapping function is applied to any unknown utterance from the

source speaker to make it sound like it was spoken by the target speaker. The goal

of a VC system is to achieve the highest quality possible with a relatively small

training dataset. The most common scheme of this stand-alone voice conversion is

depicted in the block diagram of the �gure 4.1.

The great majority of existing VC systems are focused in the spectral features

modi�cation, leaving the prosodic characteristics in the background or performing

simple modi�cations of these features.

4.1 Parallel dataset alignment: Dynamic Time Warping

The same sentences uttered in di�erent moments rarely have the same speaking rate.

The utterances must therefore be aligned in time to estimate the transformation

function frame by frame.

The most popular approach for alignment is Dynamic Time Warping (DTW),

which was introduced in [Sak78] for word recognition. The aim of the DTW al-

gorithm is to �nd an optimal time correspondence between two feature sequences

A = {a1, . . . , aN} and B = {b1, . . . , bM} in terms of a distance function. The al-

gorithm assumes that the �rst and the last vectors are aligned, and that sequences

do not go back in time. A usual choice is to use euclidean distance together with

MFCCs for speech recognition or MCCs for speech transformation, which give a

reasonably measure of the acoustic distance [Nur12]. For the purpose of this thesis,

MCCs were the features to be aligned.
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Figure 4.1: Voice conversion block diagram.

First, a local cost matrix D = (dij) is built, where dij contains the distance

between the feature vector i from the sequence A and the vector j from the sequence

B:
D ∈ RNxM : dij = ||ai − bj|| i ∈ [1 : N ], j ∈ [1 : M ] (4.1)

Once the local cost matrix is built, the algorithm �nds the optimal alignment

path, which runs through the minimum cumulative distance path, which can be

calculated by de�ning a cost function for every point in the grid. The most common

cost function is de�ned as follows:

φ(i, j) = dij + min[φ(i− 1, j − 1), φ(i− 1, j), φ(i, j − 1)] (4.2)

where φ(i, j) is the cumulative distance at point (i, j). The minimum cumulative

distance is φ(N,M), and the optimal path is found by backtracking from the point

(N,M) to the point (1, 1).
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4.2 GMM-based mapping

A Gaussian Mixture Model (GMM) is a statistical distribution constituted by a

weighted sum of M simple gaussian distributions, so that the density function of

this distribution is:

fx(x) =
M∑
m=1

ωmN (x;µm; Σm) (4.3)

where ωm represents the prior probability of the mth gaussian, and N (x;µm; Σm)

denotes the D−dimensional multivariate normal distribution with mean µi and co-

variance matrix Σi:

N (x;µm; Σm) =
1

(2π)D/2
√
|Σm|

exp

[
−1

2
(x− µm)TΣ−1

m (x− µm)

]
(4.4)

GMM based mapping functions are based on the assumption that the probability

density function (PDF) of both source and target features is a GMM distribution.

The assumption is reasonable since these distributions with enough number of gaus-

sians can approximate any probability distribution [Fel66].

4.2.1 Source GMM

The GMM approach was �rst proposed in [Sty98]. In this approach a GMM was

built for the source feature vectors, and the mapping function is assumed to be linear

for each gaussian in the form:

ŷt = F (xt) =
M∑
m=1

P (m|xt)(Amxt + bm) (4.5)

Where ŷt is the estimated taget feature, the regression matrix Am and the bias

term bm are to be estimated with minimum mean squared error (MMSE) criterion,

and the posterior probability of the mth gaussian can be calculated using the Bayes

theorem:

P (m|xt) =
ωmN (xt;µm; Σm)∑M
m=1 ωmN (xt;µm; Σm)

(4.6)
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4.2.2 Joint density GMM

The required matrix to obtain the MMSE solution for the source GMM approach is

very large and sometimes poorly conditioned, so in [Kai98] it was proposed to build

a joint GMM for the source vectors and the target vectors. The source features are

augmented with their corresponding target features as zt =
[
xTt , y

T
t

]T
, and {zt}Nt=1

modeled with a GMM, such that:

fz(z) =
M∑
m=1

ωmN (z;µ(z)
m ; Σ(z)

m ) (4.7)

where

µ(z)
m =

[
µ

(x)
m

µ
(y)
m

]
Σ(z)
m =

[
Σ

(xx)
m Σ

(xy)
m

Σ
(yx)
m Σ

(yy)
m

]
(4.8)

Under this assumption, xt and yt are jointly multivariate gaussian for each gaus-

sian in the GMM, and the conditional distribution probabilities are therefore a GMM

as well [Mar79]. The conversion function with MMSE criterion is the expected value

of the conditional distribution of yt given xt, which is:

ŷt = E{yt|xt} =
M∑
m=1

P (m|xt)µm(xt) =
M∑
m=1

P (m|xt)
[
µ(y)
m + Σ(yx)

m Σ(xx)
m

−1
(xt − µ(x)

m )
]

(4.9)

4.2.3 Problems with the GMM-based mapping

These GMM based techniques su�er from several disadvantages inherited from the

machine learning models on which they are based. When determining the complexity

of the model, there is a trade-o� between the generalization capability that it has

and the �delity to the training data.

The most common problems found in GMM approaches are the following:

• Oversmoothing: Simple models tend to remove the �ne details of the spectrum

and to broaden the formants.

• Over�tting: Models that are too complex may be over�tted to the training

data and the generalization capability is therefore low.

• Time-independency: The temporal correlation of the converted features is

ignored in these models.
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In order to solve these issues, several solutions have been proposed, such as in

[Hua01], where post-�ltering is introduced to improve oversmoothed spectra. In

[Tod07], a maximum-likelihood (ML) estimation of the parameter trajectory is pro-

posed, which partially solves the time independency of the mapping. Additionally,

this work proposes using the global variance of the target features to palliate the ef-

fect of oversmoothing, which is simpler than the post-�ltering method. In [Hel12a],

PLS regression is proposed as an alternative to the MMSE solution to reduce the

over�tting of the models.

4.3 Dynamic Kernel Partial Least Squares Regression

Nonlinear mapping can be accomplished using a broad range of techniques, such

as arti�cial neural networks (ANN) [Nar95; Des10], or support vector regression

[Son11].

A major drawback of these nonlinear regression systems is the extensive param-

eter tuning they require. To overcome this problem, in [Hel12b] a new technique

called dynamic kernel partial least squares (DKPLS) is introduced.

The KPLS method was �rst introduced in [Ros01], and has the advantage of being

able to model nonlinear relations between variables by using a kernel transformation

as a preprocessing step. In the DKPLS technique, the dynamics are modeled by

augmenting the regressors of every frame with the kernel data from consecutive

frames. The regression is performed using PLS criterion, which is able to handle the

multicollinearity generated by the use of kernels and the dynamic modeling.

The training scheme for the DKPLS system is depicted in the �gure 4.2. After

the alignment step, as explained in section 4.1, the k-means clustering algorithm is

applied on the source data to �nd a set of C reference vectors, and then the feature

vectors are non linearly mapped to a higher dimension space via the kernel transfor-

mation, as explained in section 4.3.1, and the transformed vectors are centered, as

the regression model requires the data to be zero-mean. The temporal continuity is

taken into account by concatenating the kernel transformed vectors of consecutive

frames. Finally, the conversion parameters are found using the PLS method [Jon93].
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Figure 4.2: DKPLS block diagram for training [Hel12b]

4.3.1 Kernel transformation

The kernel transformation is performed using a Gaussian radial basis function kernel

as the transformation function. The transformation calculates the similarity between

each source vector sn, n = 1, . . . , N , and the reference vectors obtained from the

k-means clustering zj, j = 1, . . . , C. The Gaussian kernel is de�ned as

kjn = e
−‖sn−zj‖2

2σ2 (4.10)

where σ is the width parameter of the kernel. The selection of σ is not highly crucial,

usually it is enough to �nd a decent range for it.

The transformed vectors are stored into a matrix K which has the following form:

K =


k11 k12 . . . k1N

k21 k22 . . . k2N

...
...

...

kC1 kC2 . . . kCN

 (4.11)

To force the bias term of the conversion model to zero, kernel centering is required.

Centering in the kernel space is not as obvious as in the original feature space, since

the mean cannot be computed directly. For the kernel matrix K, the following steps

are applied [Ben03]:

1. Calculate the average of each row in the kernel matrix and subtract the values

from K. The averages of the rows are stored into vector µ.

2. Calculate the average of each column and subtract them fromK resulting from

Step 1. The resulting column and row-wise centered kernel matrix is denoted

as K̃.
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In the conversion process, an analogous procedure is followed, with the exception

that the vector which is subtracted from the columns of K is the µ vector obtained

in training.

4.3.2 Dynamic Modeling

In order to take into account the time continuity of the speech features, the DKPLS

algorithm relies on augmenting the kernel transformed vectors with its respective

previous and following vectors, obtaining a vector xn as:

xn =

k̃n−

k̃n

k̃n+

 (4.12)

where k̃n denotes the centered kernel vector for feature vector sn, and k̃n− and k̃n+

the centered kernel vectors for the preceding and following frames of sn, respectively.

The notation n+ and n− is introduced due to the fact that in the training pro-

cess, the frames are aligned using DTW, which alters the natural ordering of the

sequences. However, in conversion the order is unchanged and every frame is pro-

cessed, and thus the preceding and following frames are the frames n− 1 and n+ 1

respectively.

4.3.3 Kernel Partial Least Squares

After the kernel transformation, a linear regression model yn = βxn + en is applied,

where yn denote the unprocessed target vector, xn represents the augmented kernel

transformed vector of the source feature vector (as in equation 4.12), and en rep-

resents the regression residual. The entries of xn are highly linearly dependent on

each other, due to the use of kernels that increases the dimensionality, and to the

concatenation of the consecutive transformed vectors.

PLS is a linear regression method that models relationships between a regressor

matrix X and a response matrix Y which is di�erent from the standard multivariate

regression (based on MMSE) in a way that it can cope with collinear data and cases

where the number of observations is lower than the number of explanatory variables.

PLS works similarly to principal component analysis (PCA), but in PCA, the

principal components are determined by only X whereas in PLS, both X and Y are

used for extracting new regressor variables. The aim of PLS is to extract compo-

nents that capture most of the information in the X variables that is also useful for

predicting Y.
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To perform the regression task, PLS constructs new explanatory variables, called

latent variables or components, where each component is a linear combination of

xn, then standard regression methods are used to determine the latent variables in

yn. The number of latent components has to be set beforehand, and the optimal

number can be estimated using cross-validation.

There exist many algorithms for the PLS regression problem. In this thesis, the

SIMPLS algorithm proposed by [Jon93] is used to �nd the regression matrix β.

The SIMPLS algorithm is computationally e�cient and avoids calculating matrix

inverses.

4.4 Prosody modeling

Prosody refers to the supra-segmental structure of intonation, energy and speaking

rate. Prosody structure comes partially de�ned by the semantic and linguistic con-

tent of the sentence, perceptible in accents, intonational patterns, or prosodic pauses

to clarify the message (which in written language are translated into commas or full

stops). However, prosody is also used frequently to transmit nonverbal information.

Although most of the VC literature is focused on the spectral transformation, it

has been shown that prosodic features provide important cues of the speaker identity

[Hel07a], and are also very important when emotions are involved [Ban96]. Regard-

ing prosody transformation, literature focuses on F0 transformation and duration

modi�cation.

The most common transformation for prosody is themean-variance scaling, which

is based on a simple linear scaling for each sample:

F0t(n) = µt +
σt
σs

(F0s(n)− µs)

This modeling is equivalent to assuming that F0 is a white Gaussian process with

mean µs and variance σs
2, and the transformation is a simple PDF equalization

(see annex A.3). This approach is obviously imprecise, but for identity conversion it

works reasonably well, since most of the information is in the spectrum, and prosody

plays an active role mostly when the speaker is known to the listener [Hel07a].

However, if an accurate description is desired, the above mentioned method does

not work appropriately. This may be the case of transforming to a special speaking

style, or the aim of mimicking an emotion, which is the purpose of this thesis.

There are several more elaborate F0 transformation methods, which use more

sophisticated regression techniques [Ina03]. Most of these methods ignore the tem-

poral correlation of the F0 samples, and they perform the regression sample-wise,

with more complex functions (i.e. an Nth order polynomial, or a GMM function

like in section 4.2).
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Nevertheless, there are approaches that try to model F0 on a higher level, such

as the codebook regression, which builds the �nal F0 contour by concatenating

segments selected from a codebook database [Ina03; Hel07b]. A drawback of this

method is that it requires an extensive codebook in order to build an adequate

output F0 contour, which con�icts with the principle of VC of using a small training

dataset.

On the other hand, there are approaches which express F0 contour as a result of

a mathematical model [Xu01; Fuj05; Kor03]. These methods are specially popular

in Chinese speech manipulation, where F0 is restricted to the basic 5 tones of this

language for each syllable [Kan06].

Recently, a F0 model based on wavelet decomposition has been proposed in

[Sun13] for speech synthesis applications, and its application to VC systems is dis-

cussed in [San14]. The study in [Sun13] suggest that the wavelet decomposition of

F0, if calculated appropriately, can give information about the di�erent phonetic

units in each wavelet level.

4.5 Emotions in voice conversion systems

When the goal is to mimic an emotion, a conventional VC system is not enough.

Emotions exhibit complex prosodic patterns and a�ect the voice production system.

In order to deal with this issues, the emotion applied VC systems usually incorporate

additional elements that try to to handle all these contingencies.

It is commonly believed that emotions are essentially a prosodic phenomenon,

but according to [Bar07], emotions can be classi�ed in the range of mainly prosodic

to mainly segmental. This means that certain emotions are identi�ed using almost

uniquely the speaking style or prosody, such as surprise or sadness, some others are

recognized using the information in the spectrum, such as cold anger, and �nally

there are emotions that show complex identi�cation patterns, such as joy or happi-

ness. Furthermore, emotions a�ect the voice quality as well, making it creakier or

mu�ed in some cases. Thus, to capture these e�ects, the conversion system must

be able to take into account every element of the voice production chain.

The problem of expressive speech generation from neutral speech has been ad-

dressed by several authors with similar results. Most works usually have a spectral

model for timbre transformation and a prosodic and duration models, which mimic

the prosody of the emotion.
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4.5.1 Spectral transformation

It has been shown that emotions a�ect the vocal tract, due to the tension or re-

laxation associated with certain emotions, and thus an adequate spectral transfor-

mation model is needed. Emotions that involve tension in the vocal tract, such as

anger, show a tendency to increase energy distribution in high frequencies, and the

formant positions are moved, which creates an e�ect of �narrow voice� [Sch03]. On

the other hand, emotions that get the voice production apparatus relaxed result in

a raise of low frequency energy and broadening of formant bandwidths. In [Sal10],

an analysis of the variation of energy distributions due to emotions is performed,

and the results show that the mean �lter that redistributes the energy from neutral

style to a certain emotion is very similar for each phoneme.

Spectral conversion is a well-known technique in the �eld of VC. The spectral

model can be a standard GMM regression as described in section 4.2, which is used

in several works where the focus area is the prosodic model [Ina07; Cen10]. However,

emotions are phenomena where the dynamic information plays an important role,

and some authors focus their work in developing a more elaborate regression method

to capture these dynamics, such as in [Wu06], where the target and source features

are modeled by left-to-right HMMs, and the transformation function is a dependent

on the state of the so called Bi-HMMs. Additionally, this work modi�es the state

duration of the HMMs so that it follows a gamma distribution.

4.5.2 Prosody transformation

It is clear that the classic mean-variance scaling for F0 is inadequate for the purpose

of emotion transformation. Thus, a proper model should take into account contex-

tual information that a�ect the speaking style. The prosodic model usually deals

with F0 transformation and duration modi�cation, and relies on the spectral model

for energy transformation.

A common approach is to generate a whole new F0 using similar techniques to

those that speech synthesizers use to generate spectral samples, using for instance

context-dependent HMMs [Ina07]. Nevertheless, this method requires a reasonably

big training dataset, which counterposes the main goal of VC.

Parametric descriptions of F0 are also used to transform prosody [Kan06], as this

way the transformation function only has to deal with a small set of parameters,

and can be mapped using any kind of known regression methods, such as GMM

regression.
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The duration of phonemes or syllables is an important element to take into ac-

count, as gives important clues of the portrayed emotion [Ban96]. Duration can

be modi�ed by simply scaling the mean duration of the syllables, which performs

reasonably good [Cen10], or it can be modi�ed either phoneme-wise or syllable-wise

[Ina07], which gives a more accurate results in very prosodic emotions, such as bore-

dom. In this sense, a regression method to predict the durations is needed, such as

CART regression, which additionally allows the use of categorical predictors, useful

to represent linguistic information.
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5. Methodology

This chapter discusses the implementation details of a VC system applied to emotion

conversion. First, an overview of the system is presented. Secondly, the building

blocks of the conversion scheme are described in detail.

The proposed system is based on the classical VC scheme, using additional

emotion-speci�c subsystems whose purpose is to improve the perceived sensation

of the portrayed emotion, as shown in section 4.5, and with the additional goal of

removing the speaker dependency in the conversion.

5.1 System architecture

The conversion method has to take into account every element that emotions a�ect

in speech, and thus a good description of speech is needed in order to perform the

conversion. The features used must be descriptive and easily convertible, and they

must allow a complete resynthesis of speech after the conversion.

For this purpose, the STRAIGHT [Kaw97] high quality vocoder has been chosen

to extract the speech features and synthesize back the converted speech. The vocoder

provides the spectral envelope of the signal, which is transformed to 24th order MCC

representation using the SPTK implementation [SPT]. Additionally, the vocoder

provides an estimation of the fundamental frequency F0, that is used to convert

the intonation, and also information about the excitation signal in the form of

aperiodicities, that explain the degree of voicing in speech as a function of frequency.

The extracted features are then converted using the system depicted in �gure 5.1.

Prosody conversion is achieved through a CART regression. The CART provides

scales for the mean F0 and the duration in each syllable. The transformed F0 is

obtained by means of sample-wise scaling using a soft contour created through in-

terpolation of the scaled syllable-wise means, and subsequently the syllable segments

of F0 are resampled to achieve the desired duration.
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Figure 5.1: Block diagram of the emotion conversion system

Spectral conversion is performed in a two step transformation. First, a normal-

ization technique called vocal tract length normalization (VTLN) is applied, which

acts as a parametric �pre-voice conversion� step, which is intended to reduce the

acoustic distance between the spectral parameters of the input speaker and the pa-

rameters of a certain reference speaker chosen from the training database, whose

features were used to train the emotion transformation function of the second step.

Secondly, a speaker dependent emotion spectral conversion model is applied, which

is based on DKPLS regression, and captures the conversion function in detail as it

has been trained with both neutral and emotional data from the reference. After the

emotion model is applied, the VTLN e�ect is reversed, and the converted spectrum

is resampled to match the duration of the F0 converted segments.

Speaker adaption can nevertheless be achieved via other methods, such as �aver-

age voices� training, which is based on using several speakers in the training process.

The reason why the system is designed using VTLN based adaption is because it

is able to normalize any input features without prior knowledge of them, as the

process is on-line. This is advantageous due to the reduced amount of training data

it requires in contrast to other techniques, since there is usually a large number

of emotions to model, which increases the number of required training utterances

dramatically. For example, in the case of six emotions plus neutral style and 30

utterances per emotion for training, the minimum amount of utterances would be

just 210 for VTLN based adaption, and 210N for average speakers training, where

N is the number of training speakers, usually large.



5. Methodology 29

5.2 Feature extraction

The selection of the features is a crucial issue in a VC system, and specially in a

system where the aim is to transform emotions, since the description of the speech

signal should also describe the emotional status. Thus, the analysis of the speech

signal must return a compact representation of the vocal tract �lter and the ex-

citation signal. For this purpose, the STRAIGHT[Kaw97] high quality analysis-

synthesis framework is used to analyze the speech signal. The parameters returned

by STRAIGHT are then converted to a compact representation, as shown in chapter

2.

5.2.1 STRAIGHT Framework

STRAIGHT is the most established of the commonly used vocoding methods. It

was originally proposed by Kawahara in [Kaw97], and it has been under continuous

research and development.

STRAIGHT is amulti-band mixed excitation vocoder, which means that it uses ad-

ditional parameters along with the F0 value to generate the excitation signal, instead

of a regular periodic train of impulses, in order to reduce the �robotic� e�ect that

they create. STRAIGHT was originally designed as a tool for speech transformation

and accurate spectral envelope representation. Original STRAIGHT parameters are

represented as Fourier transform magnitudes and aperiodicity measurements corre-

sponding to them.

First, STRAIGHT uses a F0 extraction algorithm called TEMPO (Time-domain

Excitation extractor using Minimum Perturbation Operator). The TEMPO algo-

rithm is based on the following almost harmonic representation of speech:

x(t) =
N∑
k=1

ak(t)cos

(∫ t

0

(kω0(τ) + ωk(τ)) dτ + φk

)

where ak(t) represents a slowly time-varying instantaneous amplitude, ω0(τ) is the

instantaneous frequency (to estimate), and ωk(τ) is a slowly varying FM component

of the kth harmonic.
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The fundamental frequency is then extracted by means of a continuous wavelet

transform with a Gabor mother wavelet, and calculating a measure called funda-

mentalness [Kaw99], de�ned as:

M(t, τc) =− log

[∫
Ωc

(
d|D(t, u)|

du

)2

du

]
+ log

[∫
Ωc

|D(t, u)|2du
]

− log

[∫
Ωc

(
d2 arg(D(t, u))

du2

)2

du

]
+ 2 log(τc)

where D(t, τ0) is the wavelet transform of the speech signal, and Ωc is an integration

interval proportional to the size of the analyzing wavelet at scale τc. Extracting

F0 is performed by simply �nding the maximum in terms of the scale τ0. The

instantaneous frequency is then calculated for each channel τc as:

ω0(t, τc) =
d(arg(D(t, τc))

dt

And selecting the fundamental frequency is reduced to �nding the maximum of

M(t, τc) in terms of τc, and then either choose the instantaneous frequency corre-

sponding to that scale, or interpolate through the scales proportionally to the value

of M .

Then, the spectral envelope of the signal is calculated by smoothing the spectrum

using F0 adaptive windows with equivalent temporal and spectral resolution. The

signal is windowed using two complementary windows:

w(t) = e
−π

(
t
t0

)2

h

(
t

t0

)
wc(t) = w(t) sin

(
π
t

t0

)
where t0 is the fundamental period, and h(t) is the 2nd order cardinal B-spline

function, de�ned as:

h(t) =

{
1− |t| |t| < 1

0 otherwise

Smoothing in the frequency domain is achieved through the 2nd order cardinal

B-spline function, which robustly interpolates the sampled spectrum (due to the

periodicity of the signal). The complimentary window function ωc(t) is sinusoidally

modulated so that the spectrogram produces maxima there where the original spec-

trogram has minima [Kaw99].
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The �nal spectrogram is obtained through the combination of the smoothed spec-

trograms P0(ω, t) and Pc(ω, t) calculated using the window functions:

P (ω, t) =
√
P0(ω, t)2 + ξPc(ω, t)2

Where ξ is a blending factor that minimizes the temporal variation of the spectro-

gram.

Additionally, STRAIGHT provides measures of aperiodicity for each frequency.

The measures are taken by comparing the ratio of the upper and lower spectral

envelopes for each frequency, and taking a value from a look-up-table (LUT). Then,

the aperiodicity values are smoothed by averaging throughout the speech spectrum:

PAP (ω, t) =

∫∞
−∞w(λ, ω)S(λ)2LUT(λ)dλ∫∞

−∞w(λ, ω)S(λ)2dλ

Where w is a simpli�ed auditory �lter centered at frequency ω, and S(λ)2 is the

speech power spectrum.

5.2.2 Representation in the system

The STRAIGHT framework provides high quality features, which makes them suit-

able for speech manipulation. However, the representation that the vocoder gives

is very high-dimensional, since it returns an uncompressed estimate of the spectral

envelope and aperiodicities for every frequency. The dimensionality of the features

makes the conversion process very computationally demanding.

The parameters returned by the vocoder are a power spectral envelope of 513

coe�cients, which are the �rst coe�cients of a 1024-dimensional fast Fourier trans-

form, to avoid redundancy; a measure of aperiodicities for each frequency, which

therefore has 513 coe�cients as well; and an F0 measure. The parameters are up-

dated every 5 ms and F0 is computed in the range from 60Hz to 310Hz. An example

of the parameters returned by STRAIGHT is shown in �gure 5.2.
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(a) Spectrogram with the power spectral envelope as a function of time

(b) F0 contour

Figure 5.2: STRAIGHT analysis of the German sentence �Der lappen liegt auf dem eiss-

chrank�

In order to achieve a representation which requires a reasonable computational

power, the spectral features are converted to 24th order MCCs, and the aperiodicity

measures are compressed to band aperiodicities (BAPs).

The BAPs are obtained by averaging the aperiodicity measures in �ve bands: 0-

1kHz, 1-2kHz, 2-4kHz, 4-6kHz and 6-8kHz. This way, only �ve-dimensional features

are used to represent the excitation.

To represent the spectral envelope of the speech signal, MCCs are used, with a

frequency warping factor of 0.42 (see section 2.4), which approximates the mel-scale.

This selection is motivated by the fact that MCCs are commonly used in VC tasks,

and they are a robust method to characterize the amplitude spectrum, which is very

close to the way the human auditory system processes audio.

In order to obtain the spectral representation, the SPTK toolkit [SPT] is used to

obtain the MCCs. SPTK takes the 513-dimensional power spectrum obtained from

STRAIGHT and obtains the warped log-spectrum using a cost function based on the

unbiased log-spectrum estimation [Tok94], which is minimized using the Newton-

Raphson method.
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5.3 Spectral conversion

A major drawback of the previous approaches to emotional speech generation using

VC techniques is that they are strongly speaker dependent. The problem is essen-

tially originated in the spectral regression method, in which the data is taken from

parallel sentences uttered by the same speaker, which creates a speaker dependency

in the model. In this thesis, this problem is addressed by performing a two-step

spectral regression. First, an identity conversion is performed with a parametric

invertible transformation called vocal tract length normalization (VTLN), whose

function is to act as a pre-voice conversion step to provide a normalized identity to

the following element in the conversion chain. It is important to note that the iden-

tity transformation does not create a subjectively perfect sensation of the reference

speaker's identity, but reduces the acoustic distance between them. Secondly, the

normalized speech is introduced into a speaker dependent DKPLS model (see section

4.3) trained for the reference speaker, which is expected to handle all the possible

complex e�ects caused by dynamics and nonlinearities originated by the presence

of emotions. Finally, the converted spectrum is vocal-tract denormalized to recover

the original speaker identity, and it is resampled in time to �t the durations dictated

by the prosody model (see section 5.4.2).

5.3.1 Vocal Tract Length Normalization

VTLN is a well known technique in the �eld of speech processing. It has been

widely used for speaker recognition [Kam95], as it proved to increase signi�cantly

the recognition rate, since it reduces the spurious variability that the recognizer has

to deal with.

The basic theory of VTLN is based on the underlying idea that resonances in an

acoustic tube (such as the vocal tract) are inversely proportional to the length of

the tube. Therefore, the formant positions depend on the length of the vocal tract,

and the speaker normalization can thus be achieved by means of frequency warping

of the spectrum, as shown in �gure 5.3.

In sum, VTLN was originally developed as a tool to compensate for the speaker

di�erences due to the di�erences in vocal tract length by warping the frequency axis

of the amplitude spectrum. This purpose is the exact same as that of VC, hence

VTLN is a technique that can be used to perform identity transformation. VTLN

has already proved to be a useful technique for VC purposes, as shown in [Sun03]. In

this thesis this fact is exploited to normalize the identity before the emotion model

is applied.
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Figure 5.3: Frequency warping of speech spectrum. Warped spectrum is shown with a
thick blue line, and original spectrum is shown with a thin black line. [Mcd98]

VTLN is characterized by being an invertible parametric technique, which means

that it performs the frequency warping by means of a �xed function that depends

on one or more parameters, and whose e�ect can be subsequently reversed. Most

warping functions depend only on a single parameter α, out of which the most

popular are following:

• Symmetric piece wise linear warping [Weg96; Wel99]:

ω̃α =

αω ω ≤ ω0

αω0 +
π − αω0

π − αω0

(ω − ω0) ω ≥ ω0

(5.1)

ω0 =

7π
8

α < 1

7π
8α

α ≥ 1

• Bilinear function warping [Mcd98]:

F (z) =
z − α
1− αz

where ω̃α = F (ejω) (5.2)
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In the context of this thesis, bilinear warping VTLN is used, because it can be

easily embedded within the process of feature extraction, since the extraction of

the MCCs requires the same type of warping. Furthermore, as shown in [Ace93], a

cascade of two bilinear transforms with parameters αM and αV is equivalent to a

single transform with parameter:

αT =
αM + αV
1 + αMαV

(5.3)

Which besides means that the concatenation of two bilinear transforms is conmuta-

tive. Using this result, the extraction of the spectral features followed by the VTLN

can be expressed as an only system with one warping parameter, as shown in �gure

5.4.

Figure 5.4: Block diagram of the MCC and VTLN systems concatenation equivalence

The parameter selection is therefore developed taking into account the mel warp-

ing parameter of the MCC extraction. In order to estimate the optimal overall

warping parameter in the conversion process, �rst a statistical model is built for the

distribution of the reference speaker's MCCs, and then the warping parameter can

be estimated in the ML sense, such that:

α̃ = arg max
α
{L(xα|Θ)} = arg max

α

{
N∑
k=0

L(xαk|Θ)

}

Where L(xα|Θ) represents the log-likelihood of the warped sequence resulting from

transforming the input sequence x, containing N vectors, using the warping param-

eter α, given the statistical model Θ.
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The statistical distribution of the reference speaker is modeled using a GMM

with 256 Gaussian components, as it has been shown to be e�ective for speaker

modeling and identi�cation [Jou13]. The search is bounded for the VTLN warping

parameter, which is forced to satisfy |αV | < 0.2 in order to prevent the system from

deviating too much from the identity mapping (it is assumed that the variations

due to vocal tract di�erences are subtle). The ML search is �nally performed using

Brent's method [Bre73], a minimization method for one dimensional functions with-

out computing derivatives, which has proved to give good results in the parameter

estimation [Mcd98], and preserves the bound restrictions in the search.

Brent's method

The ML criterion requires �nding the maximum of the likelihood function, which

depends on the the warping parameter α. Instead of searching a local maximum

directly, the negative log-likelihood function is de�ned as a one dimensional func-

tion L̃ = −L(xα|Θ), and Brent's method is used to �nd the minimum, using the

implementation in [Bur].

Brent's method is a minimization algorithm that combines the bisection method

with inverse quadratic interpolation within a bounded interval to �nd a local min-

imum of a function f [Bre73]. The method starts with a �xed triplet (a, b, c), such

that f(b) > f(a) and f(b) < f(c), and iteratively collapses the bounds of the interval

until the �nal solution is reached. In every iteration, an estimate of the minimum x0

is obtained with inverse quadratic interpolation or using bisection, and the bounds

are collapsed using the following rule:

(ak+1, bk+1, ck+1) =


(x0, bk, ck) if x0 < bk ∧ f(x0) > f(bk)

(ak, x0, ck) if f(x0) < f(bk)

(ak, bk, x0) if x0 > bk ∧ f(x0) > f(bk)

The algorithm tries to use the inverse quadratic interpolation when possible, and

if the bounds of the interval are not collapsing rapidly enough, a bisection step

is applied. This guarantees that the convergence is at worst linear, but generally

superlinear.
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Figure 5.5: Block diagram of the spectral subsystem training

5.3.2 System training

The spectral model subsystem requires examples of both the emotion which is going

to be portrayed, and the same sentences using neutral style. Then, the regres-

sion function is learned using the DKPLS method due to the nature of emotions,

which are expected to introduce complex temporal dynamic e�ects (as the e�ect of

emotions is highly dependent on the linguistic content, which is time varying), and

possible nonlinear e�ects that can be well captured by the system.

The training system is designed to be able to handle several speakers in training

by using VTLN to remove the variability due to the identity, although it is not

strictly necessary if enough examples of the target emotion are available with only

one speaker. Furthermore, it is encouraged to train the system with only one speaker

whenever possible, since VTLN does not remove the identity variations perfectly,

and each speaker expresses emotions in a slightly di�erent way in the spectral sense.

However, a gender dependent model can be built using VTLN with satisfactory

results (see chapter 6), which allows to have more examples in the training function

estimation.
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The complete training system is depicted in �gure 5.5. As shown in the �gure,

the system requires parallel sentences parameterized with MCCs and BAPs. The

parameters �rst go through a voice activity detector (VAD), which removes the silent

frames based on a power threshold, since they barely contain spectral information

and most likely would worsen the resulting function. In practice, this can be achieved

by thresholding the �rst MCC, which is directly related to the power in the frame,

although in this context the actual power is used, and was computed beforehand.

Once the silent frames are removed, VTLN is applied to the MCC values, but the

parameter is estimated using only the neutral MCCs for the likelihood calculation.

This is because it is assumed that VTLN removes the e�ect of the identity, but the

identity of the speaker is the same for both sentences. In addition, the estimation of

two di�erent parameters would partially remove the e�ect of the emotion, since the

VTLN transformation would try to make it as similar as possible to the reference

model, which is built with neutral sentences.

Finally, the warped features are aligned using DTW, and the aligned parameters

are then introduced into the DKPLS training scheme. The �rst MCC is not included

in the training of the transformation function and it is copied from the source in

the conversion process. This is because the �rst MCC describes the energy of the

frame and its value is usually rather di�erent in scale and range from the rest of the

coe�cients, and if it were introduced in the system it would be likely to dominate

the kernel formation process due to the di�erence in scale, which would worsen the

resulting function.

DKPLS is able to handle collinear input data, and therefore partially linear de-

pendent regressors may be used. For this reason, both MCCs and BAPs are used

as input regressors simultaneously to predict either the target MCCs or the target

BAPs, since they are highly correlated and information can be extracted from both

of the features [Sil11].

5.4 Prosody conversion

In the context of this thesis, the prosody conversion subsystem creates a F0 contour

that tries to mimic the emotional speech style, and modi�es the duration trend so

that the speaking rate is closer to the emotional rhythm.

The main unit for prosody conversion is the syllable, and it is assumed that the

e�ects that emotions produce in prosody are essentially observable at this level.

Prosody modeling at syllable level is relatively common in VC systems, and it has

been used in elaborate prosody transformation systems [Hel07b].
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In order to do the transformation, CART regression is used to obtain the syllable

related parameters (see annex A.4 for an in-depth description of the CART regression

method). The predicted outcomes are scales for the mean of F0 in each syllable, the

duration of the voiced part of the syllable, and the duration of the unvoiced part of

the syllable; each of them returned by a di�erent CART.

5.4.1 Training of CARTs

A key issue of a regression problem is how well the predictor variables describe the

dependent variable. In this case, a precise description of F0 and the duration of

the syllables is desired to imitate the portrayed emotion adequately, and for this

purpose, contextual information must be included in the predictors.

The regression method used to achieve an adequate description of all the emo-

tion related phenomena is the CART, due its ability to handle both categorical and

non-categorical predictors simultaneously to perform the transformation, because

linguistic information can be easily represented in categorical variables. Further-

more, not all emotions are best represented with the same set of predictors, as they

a�ect the vocal production system di�erently, which implies that a parameter se-

lection must be performed before the actual model is trained. An overview of the

training scheme is shown in �gure 5.6.

Figure 5.6: Block diagram of the prosody model training

The parameter selection is performed in the MMSE sense. To accomplish this,

the MSE is evaluated using 2-fold cross validation. First, optimally pruned CARTs

are trained with every possible combination of predictors (see table 5.1) using a

random subset of the available training data (training set). Secondly, the prediction

error is computed as the average of the MSE for each sentence in the remaining

subset (test set). The �nal CART is trained using the predictor subset that resulted

in the lowest MSE.

In addition, an outlier removal is performed by removing 1% of the data from the

tails of the distribution of the training parameters, to prevent miscalculations that

may be a�ect the �nal regression.
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Computation of the predictors

The total set of predictors before any selection is performed is a collection of 11

di�erent features related to the linguistic content of the sentence and to the prosody

of the sentence, as depicted in table 5.1.

Predictor name Description Categorical

isMonosyllabic
The word that the syllable belongs to is
monosyllabic (yes/no)

YES

partOfSpeech
Grammatical category of the word that the
syllable belongs to (9 categories)

YES

isTonical
Lexical stress of the syllable (stressed/non-
stressed)

YES

posInWord Position of the syllable in the word (0-1) NO

posInSentence
Position of the word in the sentence (initial,
initial-mid, middle, mid-end, end)

YES

durSyllRatio
Ratio of the duration of the syllable to the
mean duration

NO

vuvRatio
Ratio of the voiced part of the syllable to the
total duration

NO

prevSyllDurRatio
Ratio of the duration of the syllable to the
duration of the previous syllable

NO

meanF0Ratio
Ratio of the mean F0 in the syllable to the
global mean of F0

NO

isLast
Current syllable is the last in the sentence
(yes/no)

YES

isPrevLast Current syllable is the penultimate (yes/no) YES

Table 5.1: Description of the di�erent predictors used for the CART training

The computation of this set of features requires the availability of several contex-

tual tags that have to be obtained beforehand. The required tags are the temporal

boundaries of the syllables and the words, the stress of the syllables, and the part

of speech of each word. In the context of this thesis, annotated databases are used,

in which each sentence has an associated tag �le with the phoneme boundaries, and

the sentence content. The parts of speech are obtained automatically using the

TreeTagger software [Sch95] on the sentence content from the annotation �le, and

then the categories are compressed to the 9 basic categories: Pronouns, adjectives,

verbs, prepositions, adverbs, nouns, interjections, conjunctions and determinants.
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Duration CARTs

Two regression trees are built to obtain the duration scales, since the duration scales

for the unvoiced and voiced parts of the syllables are predicted.

In the training phase, the duration scales are normalized by the mean speaking

rate of each sentence (as shown in equation 5.4), to prevent the CART from having

to predict this approximately constant scale. The mean speaking rate quotient

between emotions is stored additionally to perform the regression afterward:

dScij =

emotionalDurationij
emotionalRatej
neutralDurationij
neutralRatej

=
emotionalDurationij
neutralDurationij

neutralRatej
emotionalRatej

(5.4)

rateQuotient =
1

M

M∑
j=1

emotionalRatej
neutralRatej

(5.5)

Where j represents the jth training sentence, i represents the ith syllable in the

sentence j, M is the number of syllables in the sentence j, and dScij represents the

training scale of the syllable i and sentence j.

F0 CART

An analogous process to that of the duration CARTs is performed to train the F0

CART.

The regression tree is trained using the ratio of the mean F0 of the emotional sen-

tence to the mean F0 of the neutral sentence calculated syllable-wise, and normalized

by the global F0 averages of each sentence, as shown in the following equation:

f0Scij =
emotionalF0ij

neutralF0ij

neutralMeanj
emotionalMeanj

(5.6)

where neutralMeanj and emotionalMeanj represent the global mean of the neutral

F0 and the global mean of the emotional F0 respectively, averaging only over the

voiced segments.

Analogously to the duration scale procedure, the mean ratio of F0 averages is

stored for the regression process. Additionally, since F0 is updated every 5 ms, any

syllable in which the voiced part lasts less than 50 ms is discarded from the training

set to prevent possible small local variations from a�ecting the �nal result.
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5.4.2 Feature conversion

The CARTs provide a set of scales signi�cant at syllable level, but in order to be

able to synthesize speech, a frame-wise description is needed. To obtain an F0

representation valid for synthesis, a two step process is applied. First, the syllable

level scales for the F0 syllable averages are transformed into a soft contour using

spline interpolation, and then F0 is scaled using the interpolated contour. The

scaled F0 is divided into syllable segments, and each segment is resampled in time

so that it �ts the obtained duration.

Global contour scaling

The transformation of the F0 sequence is performed via simple scaling. However,

the scale must be a function of time, since the intonation patterns vary with time

as a function of the emotion and the linguistic content. To accomplish this, CART

regression is used to obtain syllable dependent scales. The scales are calculated

over the mean F0 in each syllable, and therefore need to be transformed into a

sample-wise scale vector.

The most straightforward approach would be to simply scale every sample in

the syllable with the same scale, but this would generate undesired steps in the F0

contour. To solve this inconvenience, F0 is described using a soft contour extracted

from the mean F0 values in the syllables. The conversion is performed in a �ve step

process:

1. Obtain a vector S containing the mean values of F0 syllable-wise

2. Produce the scale vector with the normalized scales obtained from the CART

multiplied by the mean ratio of F0 averages between emotions that was stored

within the model.

3. Scale the vector S with the scale vector, generating the scaled vector Ssc

4. Generate soft interpolated contours Si(n) and Sisc(n) using cubic spline inter-

polation over S and Ssc respectively, assuming that the elements of the vectors

S and Ssc are located in time in the middle of the corresponding syllables.

5. Obtain the scaled fundamental frequency sequence F̂0 by multiplying the orig-

inal F0 by the quotient of the obtained soft contours:

F̂0(n) =
Sisc(n)

Si(n)
F0(n)
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The process is depicted in �gure 5.7. The pattern illustrated in the �gure cor-

responds to boredom, in which it is characteristic to start with a high F0 and fall

down to a low level. As it can be seen, the scaling process is able to capture the

emotional trend while mostly preserving microprosodic phenomena.

Figure 5.7: Scaling process for the fundamental frequency, converting from neutral style
to boredom

Duration �tting

In order to achieve the corresponding speaking rate, the duration trend is modi�ed.

The duration is represented as function of the syllable. However, a distinction is

made between the voiced part of the syllable and the unvoiced part of the syllable.

This way, it is assumed that the voiced sounds and unvoiced sounds inside the

syllable unit can vary their duration di�erently depending on the emotion.

To �t the parameters to the duration scales, resampling is applied. The pro-

cess requires the splitting of the temporal sequences into voiced parts and unvoiced

parts, and each of this parts is resampled according to the corresponding scale. The

procedure can be explained in �ve steps:

1. Produce the scales vectors with the normalized scales obtained from the du-

ration CARTs multiplied by the mean ratios of duration averages between

emotions (voiced and unvoiced) that were stored within the model.

2. For each syllable segment, use the voicing decisions provided by STRAIGHT

in F0 to separate the voiced and the unvoiced parts in the F0 sequence, and

in the MCCs and BAPs sequences.
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3. For every subsegment resulting from the splitting, subtract the mean of the

�rst and the last element in the subsegment to improve the accuracy in the

resampling process.

4. Resample each subsegment using linear interpolation to �t the corresponding

scaled duration.

5. Concatenate all the subsegments in the proper order to create the new duration

scaled sequence.

This process preserves the synchrony between F0 and the spectral representation,

which is essential in the process of re-synthesis.
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6. Evaluation and discussion

This chapter describes the details of the procedures used to evaluate the e�ectiveness

of the proposed methods. First, the databases used for evaluation are described,

along with the recording conditions and special requirements that each of them

ful�ll. Subsequently, the results obtained under these conditions are presented.

Finally, the performance of the system is discussed based on the obtained results.

6.1 Databases of emotional speech

In order to evaluate the performance of this work, two di�erent databases in di�erent

languages were used. The languages used are Spanish and German, and both were

recorded under strict conditions.

6.1.1 German database

The German database is called Berlin Database of Emotional Speech [Bur05], which

contains 535 recordings of ten speakers, �ve men and �ve women, simulating six

di�erent emotional states plus a neutral style. The database is therefore an acted

database (see section 3.1). The portrayed emotional styles are anger, boredom,

disgust, fear, joy and sadness; and the corpus is comprised of ten sentences with

neutral semantic content. All the recordings are available at 16 kHz sampling and

16 bits per sample.

The authors of this database made a great e�ort to achieve high naturalness in

the collected emotions. Around 40 speakers went through a selection process in

which they had to record one sentence in each of the emotional states in an o�ce

environment. Afterward, three experts evaluated the naturalness and recognizability

of the performance, and �nally selecting the ten actors that participated in the

experiment.

As the content of the sentences is nonsense, an actual emotional recording repre-

senting the intended emotional state was played for the actors prior to each recording

to prevent overacting and reinforce naturalness (e.g. happiness after winning a large

amount of money in the lottery or sadness caused by losing a very good friend or

relative). In addition, two phoneticians gave advice and instructions to the actor to

improve naturalness, such as not to shout when portraying anger. If in any moment

the actor considered that the emotion was not adequate, the recording was repeated,

storing every repetition.
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To achieve a high audio quality, the recordings were performed in the ane-

choic chamber of the Technical University Berlin, Technical Acoustics Department.

Recordings were taken with a sampling rate of 48 kHz, and they were downsampled

afterward to 16 kHz.

After the recording sessions were �nished, around 800 utterances were available.

These sentences were subjected to an evaluation test, in which 20 listeners had

to identify the emotion and rate the naturalness. In order to remain in the �nal

database, the sentences had to have at least 80% recognition rate and 60% rate

of naturalness. After the selection process, 535 sentences remained, which means

that emotions are not balanced in the database, and some are more represented

than others. Finally, the phoneme boundaries of each recording were annotated by

expert phoneticians, with the aid of spectrograms and laryngograph records.

This fact has some impact on the system, since the models are gender dependent

and therefore the average amount of data per emotion is halved, and in the least

represented emotions, such as disgust, the available amount of data was somewhat

small (e.g. 11 sentences in the case of disgust uttered by male speakers), which may

result in an inaccurate transformation function. Due to the size of the training set,

it is unfeasible to build speaker dependent models, and therefore the models for this

database were built exclusively in a gender dependent way, exploiting VTLN in the

training process.

6.1.2 Spanish database

The Spanish database used in this thesis is part of a bigger multilingual database

in English, Slovenian, French and Spanish developed as a collaboration between the

University of Maribor, Slovenia; Lernout & Hauspie, Belgium; and the Polytechnic

University of Catalonia, Spain [Amb00].

The databases contain utterances produced by a male speaker and a female

speaker simulating six emotional states, compliant with the MPEG-4 standard

[Ost02], which means that this is an acted database as well. The portrayed emotions

are anger, disgust, surprise, joy, sadness and fear. All the recordings are available

at 16 kHz sampling and 16 bits per sample.
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The recordings were performed in a silent room, divided by a thick glass window.

The actors had to read the sentence in the indicated emotional style from a computer

screen. The computer and the screen were located at the other side of the window

to prevent additional noises caused by the computer, such as the computer fan. Two

operators were checking the recording process, one of them checked that the content

of the sentence corresponded exactly with the sentence prompted to the actor, and

the other checked the recording system. No deviation or mispronunciation was

allowed. The recordings were initially made at 32 kHz sampling and afterward

downsampled to the required 16 kHz.

There corpus is comprised of 186 parallel utterances in each emotional category,

produced by both speakers, which makes the database highly suitable for VC pur-

poses or even speech synthesis, due to its extensive size. The utterances comprise

isolated numbers and words, sentences in a�rmative, exclamatory or interrogative

forms and paragraphs, as described in the table 6.1. The corpus was selected to

have examples of all the Spanish phonemes in di�erent parts of the sentences.

Utterance

number
Description

1-100
A�rmative sentences including short and
long ones.

101-134 Interrogative and stressed sentences.

135-150 Paragraphs.

151-160 Digits.

161-184 Isolated words.

Table 6.1: Content of the di�erent utterances in the Spanish database

The corpus was recorded twice in the six MPEG-4 emotions plus neutral. The

recording of the styles took place in two di�erent sessions delayed more than 15

days. In the context of this thesis, only the a�rmative sentences were used, with a

top of 40 sentences for the training process to be compliant with the requirement of

low data of VC systems. The training was performed with sentences from the �rst

recording session, and the tests were done with sentences from the second session.

The database contains the phonetic transcription of every sentence in the corpus,

which was used afterward to obtain the phoneme temporal boundaries using forced

alignment with HMMs [Bru93] in the Polytechnical University of Catalonia.
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6.2 Objective results: Mel-Cepstral distortion

This section is intended to give a measure of the performance of the whole spectral

conversion system. To evaluate the system, the mel-cepstral distortion (MCD) is

calculated. The MCD is de�ned as [Tod07]:

MCD(dB) =
10

ln(10)

√√√√2
D∑
d=1

(c(d)− ĉ(d))2

Where c(d) and ĉ(d) are the dth MCCs from the target vector and the converted

vector respectively.

However, in the proposed system the target features are unclear, since the system

does not try to mimic the features of a speci�c speaker, but a certain identity-warped

version of the reference speaker that matches the identity of the input speaker. To

partially overcome this problem and get measurements, the scheme presented in

�gure 6.1 is proposed.

Figure 6.1: Calculation of mel-cepstral distortion

This scheme uses VTLN to transform the identity of the reference speaker to that

of the input speaker. To follow the convention used in �gure 5.1, the transform is

indicated here as inverse VTLN.

The result are measured using the Spanish database, taking advance of its ex-

tension. The reference speaker is the male speaker, and the method was applied to

both the male speaker and the female speaker. The results are gathered in table

6.2. Additionally, a speaker dependent DKPLS model was built without the pres-

ence of VTLN, whose result can be directly compared to the target utterance from

the database.

The results here show that the presence of VTLN scarcely increases the distortion

in the case of the reference speaker (male in this case), and e�ectively reduces the

distortion in the case of a di�erent speaker (female in this case).
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No conversion Converted Speaker dependent

converted

Anger
Male 6.837 dB 6.162 dB 6.049 dB

Female 7.2 dB 6.744 dB 6.053 dB

Disgust
Male 6.653 dB 6.17 dB 6.166 dB

Female 7.5 dB 6.943 dB 6.035 dB

Fear
Male 7.013 dB 6.573 dB 6.429 dB

Female 7.507 dB 7.241 dB 5.649 dB

Joy
Male 6.648 dB 6.923 dB 7.018 dB

Female 7.33 dB 7.44 dB 7.503 dB

Surprise
Male 7.368 dB 6.671 dB 6.535 dB

Female 7.709 dB 7.148 dB 6.296 dB

Sadness
Male 7.368 dB 6.671 dB 6.535 dB

Female 7.903 dB 7.431 dB 5.464 dB

Table 6.2: Mel-cepstral distortion in the Spanish database

On the other hand, results show that the reduction in distortion may not seem

as high as it could be expected for some emotions. Nevertheless, the fact that

VTLN does not perform a perfect identity conversion must be taken into account

when interpreting this results, and therefore reference utterance which the converted

utterance is being tested against does not perfectly represent the target, but an

approximation of it. In addition, the absence of another male speaker to test the

e�ectiveness of the system in a gender-dependent way makes di�cult to interpret

the result, since convertig from male to female forces VTLN signi�cantly more than

intra gender conversion. However, the results shown in section 6.3 show that the

emotions are converted successfully independently of the speaker.

6.3 Subjective results: Listening test

In order to evaluate the performance of the system, a listening test was performed.

Two di�erent listening test were elaborated, one for the German language and an-

other for the Spanish language using the available databases. The test was performed

online, but the instructions encouraged to do the test in a silent environment and

with good quality headphones.
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The test consisted on ten questions per emotion category, evaluating four random

emotions from the total set of six, to prevent fatigue in the listener. In every question

the listener was shown an utterance, and he was asked to rate how well the audio

represents the intended emotion, which was indicated in the question test. The

possible grades ranged from one to �ve, being 1 equivalent to �No emotion present

or the emotion does not correspond� and 5 to �The emotion is perfectly portrayed�.

Additionally, the listener was shown a face icon that represents the emotion indicated

in the question, to help matching the utterance with the emotion. An example

question from the online test is shown in the annex A.5. There was an additional

introductory question to show the emotional level of the utterances, which contained

an original acted emotion from the database.

In every question, the utterance was selected randomly between neutral style,

original acted emotional utterance from the database, and converted by the system;

but this was not indicated to the listener. Since it is expected to have low scores

on the neutral style and high scores on the original acted utterances, these two

groups are slightly less represented, appearing with probability 30% each, whereas

the converted sentences appeared with probability 40%.

The results of the tests are presented here as box plots. The box plot is a repre-

sentation in which the distribution of the data is plotted as a box, where the lower

edge of the box represents the 25th percentile of the distribution and the upper edge

represents the 75th percentile. The median of the distribution is represented as a

crossing red line and the mean is represented with an asterisk inside a circle. Box

plots may also have lines extending vertically from the boxes (whiskers) indicating

variability outside the upper and lower percentiles. If any data is classi�ed as an

outlier, it is plotted as an individual point.

On the other hand, two Welch's t-tests were performed on the converted data

to support the graphical visualization. The null hypotheses were that the average

score of the converted data is equal to the average score of the neutral data in the

�rst test, and that it is equal to the average score of the original data in the second

test. The hypotheses are rejected at a 5% signi�cance level, which means that the

probability that the null hypotheses are valid is lower than 5%. This probability

is called p-value, and they are presented along with the box plots for each emotion

using this notation:

• pC−N : P-value of the test with null hypothesis �The average score of the con-

verted data is equal to the average score of the neutral data�

• pC−O: P-value of the test with null hypothesis �The average score of the con-

verted data is equal to the average score of the original data�
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The results show that the average score of the converted data is never equal to

the average score of the neutral data, which implies pC−N < 0.05 in every case, and

the average score of the converted data is always higher than the average score of the

neutral data. However, in the case of testing the scores of the converted data against

the scores of the original data, the results show that they are generally di�erent, but

in some emotions the test does not show enough evidence that the mean scores are

di�erent, achieving very high p-values (up to 0.93), which could possibly mean that

the converted utterances perform essentially as well as the natural acted sentences

in those cases.

6.3.1 Results with the German database

The results presented in this section correspond to the listening test conducted

in German language. The total number of listeners was 12, out of which 6 were

German speakers. The average number of examples is 80 per emotion category,

with an average of 32 examples of converted utterances and 24 examples of neutral

and original utterances respectively.

Emotion: Boredom

Figure 6.2: Box plot of the distribution of the scores for emotion �Boredom� in German
language

pC−N = 6.273 · 10−3 pC−O = 0.175
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Emotion: Fear

Figure 6.3: Box plot of the distribution of the scores for emotion �Fear� in German language

pC−N = 5.716 · 10−5 pC−O = 6.842 · 10−6

Emotion: Disgust

Figure 6.4: Box plot of the distribution of the scores for emotion �Disgust� in German
language

pC−N = 6.625 · 10−7 pC−O = 0.011
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Emotion: Joy

Figure 6.5: Box plot of the distribution of the scores for emotion �Joy� in German language

pC−N = 2.729 · 10−4 pC−O = 4.701 · 10−5

Emotion: Sadness

Figure 6.6: Box plot of the distribution of the scores for emotion �Sadness� in German
language

pC−N = 2.531 · 10−4 pC−O = 0.937
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Emotion: Anger

Figure 6.7: Box plot of the distribution of the scores for emotion �Anger� in German
language

pC−N = 1.1068 · 10−3 pC−O = 1.632 · 10−5

6.3.2 Results with the Spanish database

This section shows the results of the listening test conducted in Spanish language.

The total number of listeners was 18, out of which 13 were Spanish speakers. The

average number of examples is 120 per emotion category, with an average of 48

examples of converted utterances and 36 examples of neutral and original utterances

respectively.
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Emotion: Surprise

Figure 6.8: Box plot of the distribution of the scores for emotion �Surprise� in Spanish
language

pC−N = 2.74 · 10−11 pC−O = 2.842 · 10−8

Emotion: Fear

Figure 6.9: Box plot of the distribution of the scores for emotion �Fear� in Spanish language

pC−N = 8.571 · 10−9 pC−O = 8.427 · 10−3
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Emotion: Disgust

Figure 6.10: Box plot of the distribution of the scores for emotion �Disgust� in Spanish
language

pC−N = 0.012 pC−O = 0.684

Emotion: Joy

Figure 6.11: Box plot of the distribution of the scores for emotion �Joy� in Spanish language

pC−N = 6.602 · 10−4 pC−O = 1.381 · 10−9
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Emotion: Sadness

Figure 6.12: Box plot of the distribution of the scores for emotion �Sadness� in Spanish
language

pC−N = 1.396 · 10−8 pC−O = 9.921 · 10−5

Emotion: Anger

Figure 6.13: Box plot of the distribution of the scores for emotion �Anger� in Spanish
language

pC−N = 6.547 · 10−9 pC−O = 2.665 · 10−5
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6.4 Discussion

The method described in this thesis has proved to be able to transform neutral

speech into emotional speech with reasonably good results. The listening test results

show that the emotions that are better represented with the system are those that

are expressed mainly via prosody (e.g. sadness or boredom) in both languages,

although these emotions are also the ones that create the most confusion when the

listener is prompted a neutral style utterance. On the other hand, more complex

emotions that show strong interaction between the spectral part and the prosodic

part tend to have slightly lower scores in conversion (e.g. anger or fear), which is

likely to happen because of the need of synchrony between certain spectral patterns

with their corresponding prosodic patterns, which are not modeled in detail by this

system. A phoneme-wise description would probably improve the result, although

this would require more precision and complexity when estimating the temporal

boundaries.

It is somewhat noteworthy the case of joy in both languages, which shows results

closer to the neutral scores than the rest of emotions. The improvement that the

system provides for this emotion is rather small compared to the neutral style,

although it is enough to prove that the mean scores of the converted utterances

are still higher. Joy is a special emotion because it is not expressed uniformly

throughout the sentence, and it is more noticeable at the ending of the utterances

than at the beginning. Thus, although the prosody model can model this e�ect

due to the inclusion of temporal information in the predictors, the spectral model

cannot capture this, and the spectral evolution with time introduces confusion in

the regression function estimation, therefore producing a voice which is di�cult to

identify. This fact can be seen in the MCD, illustrated in table 6.2, which shows that

for this concrete emotion, the distortion increases even with a speaker dependent

model.
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7. Conclusions and future work

In this work, voice conversion systems and their application in emotional speech

generation tasks has been studied, and a conversion system has been proposed.

In addition to being able to model emotions in speech, the proposed system had

the additional task of converting the emotion independently of the input speaker

to the system. This goal was achieved by performing a two-step voice conversion,

exploiting VTLN to perform the initial identity conversion, and then using a complex

transformation model to capture the e�ects caused by emotions.

The prosody subsystem has been developed to be context dependent, in order

to model e�caciously the intonation contour and the speaking rate to �t that of

the target emotion. To achieve this, regression is performed syllable-wise using

parameter driven conversion, and these parameters are then used to generate the

converted F0 contour from the neutral one.

The proposed system has been evaluated in two languages by means of a listen-

ing test, proving to be successfully able to generate emotional speech out of neutral

style speech. Additionally, objective measures have been provided that prove that

the speaker independence does not increase distortion in the converted speech sig-

ni�cantly. However, objective results suggest that it is advisable to build gender de-

pendent models, since there are important di�erences in average vocal tract length

between genders that the system has to model.

As a suggestion for further investigation, a more sophisticated VTLN algorithm

could be incorporated in the system, such as the one proposed in [Sun03], which

reduces spectral distortion more e�ectively than the bilinear transform used in this

work, which is likely to produce a better identity normalization and hence a more

reliable result. Nevertheless, the advantage of the bilinear transform method is that

it can easily be embedded in the parameter extraction process.

Additionally, the system can be subjected to more extensive tests to measure the

e�ectiveness, building speaker dependent models and gender dependent models, and

develop listening tests that measure the relative degradation between the di�erent

systems.

On the other hand, the current prosody model is based on a syllable-wise de-

scription, and a phoneme-wise description is likely to increase the performance at

expenses of more di�culty in the parameter obtaining. However, this issue should

not represent a big problem in text to speech systems, where the content is perfectly

controlled, and the system can perfectly be used within this context.
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Another area of investigation is the possible substitution of the context depen-

dent prosody model for a simpler model that is able to model somehow contextual

information implicitly, such as the system suggested in [San14]. Following this lead,

prosodic information could also be included as regressors for the spectral transfor-

mation, which possibly improves the results found in emotions such as joy.
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A. Annex

A.1 Derivation of the complex cepstrum for AR-MA pro-

cesses

Let H(z) = Z{h(n)} be the �lter of an AR-MA process, then:

H(z) =
AzD

∏Mi

k=1(1− akz−1)
∏Mo

k=1(1− ukz)∏Ni
k=1(1− bkz−1)

∏No
k=1(1− vkz)

(A.1)

Where Mi and Mo denote the number of zeros inside and outside the unit circle

respectively, and Ni and No denote the number of poles inside and outside the unit

circle.

To obtain the complex cepstrum, take logarithms:

log(H(z)) = log(A) + log(zD) +

Mi∑
k=1

log(1− akz−1)+

+
Mo∑
k=1

log(1− ukz)−
Ni∑
k=1

log(1− bkz−1)−
No∑
k=1

log(1− vkz)

(A.2)

Then use the Taylor series to express:

log(1− x) = −
∞∑
n=1

xn

n
for |x| < 1 (A.3)

Thus, for any of the terms of equation A.2:

M∑
k=1

log(1− bkz−1) =
∞∑
n=1

(
M∑
k=1

bk
n

n

)
z−n = Z

{
M∑
k=1

bk
n

n

}
n > 0 (A.4)

N∑
k=1

log(1− vkz) =
∞∑
n=1

(
N∑
k=1

vk
n

n

)
zn = Z

{
N∑
k=1

vk
n

n

}
n < 0 (A.5)
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In the region of convergency of the Z transform, which is |akz−1| < 1 and |vkz−1| < 1.

Hence, the complex cepstrum of h(n), de�ned as ĥ(n) = Z−1{log(H(z))} is:

ĥ(n) =



log(A) n = 0

Ni∑
k=1

bk
n

n
−

Mi∑
k=1

ak
n

n
n > 0

No∑
k=1

vk
n

n
−

Mo∑
k=1

uk
n

n
n < 0

(A.6)

obviating the term zD, which is just a signal delay.

Then, if the signal is minimum phase, every pole and zero is inside the unit circle,

thus vk = 0 and uk = 0, and therefore ĥ(n) = 0 for n < 0.

A.2 Cepstrum of a windowed periodic signal

Let s(n) be a windowed periodic signal with period N , then it can be expressed as

s(n) = sbase(n) ∗ e(n), where e(n) is a train of unit impulses:

e(n) =
M−1∑
k=0

αkδ(n− kN) (A.7)

Applying the properties of the cepstrum, it is possible to write ŝ(n) = ŝbase(n) +

ê(n). To calculate the cepstrum of the impulse train, �rst calculate the Z transform

and take logarithm:

Z{e(n)} =
M−1∑
k=0

αkz
−kN =

M∏
k=1

(1− ckz−N) (A.8)

log(E(z)) =
M∑
k=1

log(1− ckz−N) (A.9)

Then, using equation A.3, it is obtained:

M∑
k=1

log(1− ckz−N) =
∞∑
n=1

(
M∑
k=1

ck
n

n

)
z−nN (A.10)

And therefore, the cepstrum of the signal e(n) is:

ê(n) = Z−1

{
∞∑
r=1

(
M∑
k=1

ck
r

r

)
z−rN

}
=

∞∑
m=1

M∑
k=1

ck
m

m
δ(n−mN) m > 0 (A.11)
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A.3 Mean-scale transformation as a PDF equalization

Let F0(n) be a discrete white Gaussian process with mean µx and variance σ2
x. This

assumption implies that each sample xn is uncorrelated with each other and they

follow this Gaussian distribution:

fxn(xn) = N (µx, σx) =
1√

2πσ2
x

exp

[
−(xn − µx)2

2σ2
x

]
The function T that transforms a sample to �t a di�erent PDF is:

yn = T (xn) = F−1
y (Fx(xn))

where Fy(·) represents the cumulative density function of the target PDF and Fx(·)
represents the cumulative density function of the Gaussian PDF. If the target PDF

is a Gaussian distribution with mean µy and variance σ2
y, then:

Fy(yn) =
1√

2πσ2
y

∫ yn

−∞
e

(t−µy)2

2σ2y dt =
1√
2π

∫ yn−µy
σy

−∞
e−

t2

2 dt = Φ

(
yn − µy
σy

)
Fx(xn) = Φ

(
xn − µx
σx

)
And therefore:

F−1
y (α) = σyΦ

−1(α) + µy =⇒ F−1
y

[
Φ

(
x− µx
σx

)]
= σyΦ

−1

[
Φ

(
x− µx
σx

)]
+ µy

So the �nal transformation function for the sample xn is:

yn = F−1
y (Fx(xn)) = µy +

σy
σx

(xn − µx)

Which is the mean-variance scaling transformation.

A.4 Classi�cation and Regression Trees

Classi�cation and regression trees (CART) [Bre84] are machine learning tools that

are used to predict the outcome of a variable. The goal of a CART is to predict the

�nal value of this variable based on the known values of a certain number of other

variables called predictors. If the predicted variable has a �nite set of possible values

(classes), the task is then classi�cation, otherwise, the CART performs regression.
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The CART addresses the problem by creating recursive binary partitions of the

input data. It proceeds by �nding the split that minimizes a certain measure of

impurity. For each possible split based on the values of the predictors, the impurity

is calculated, and the data is split in two subsets using the question that minimizes

the impurity. The process is repeated for every subset recursively. This splitting

sequence constitutes a binary tree structure, where each split can be regarded as a

node, and the original set can be represented as the root node, as illustrated in �gure

A.1.

Figure A.1: Split sets as a binary tree

In classi�cation tasks, the impurity measure is usually calculated as the entropy

of the split data:

I(St) = −
∑
x∈X

p(x) log2(p(x))

where St is the subset that would remain after the split at node t, X is the set of

classes in St, and p(x) is the proportion of elements in class x related to the number

of elements in St. From this de�nition, it is clear that when the classi�cation is

perfect (i.e, all the elements in St belong to the same class), the impurity of the

subset is null.

On the other hand, if the purpose is to perform regression, the impurity measure

is de�ned as the MSE of the split subset:

I(St) =
1

Nt

Nt∑
k=1

(yk − µt)2

where Nt is the number of elements in the subset St, {yk} are the values of the

dependent variable at node t, and µt represents the mean of the dependent variable

at that node.
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The size of the tree is an important issue, as very large trees can �t very well

the training data, but generalize poorly to new data (known as the bias-variance

dilemma). In order to determine the optimal size of the tree, a set of sub-trees of

di�erent sizes are built by means of pruning. The full tree (i.e. that in which no

more splits are possible) is pruned by removing the node that provides the lowest

change in purity, and the process is repeated recursively, generating a set of pruned

sub-trees.

In order to select the optimal sub-tree, �rst, a cost function called error-complexity

measure for the depth of the tree is established [Bre84]:

EC(T ) = MSE(T ) + αL

whereMSE(T ) denotes the mean squared error of the tree T , and L denotes number

of leaves of the tree. The parameter α is free choice, and for each α, there is a pruned

sub-tree that minimizes the error complexity measure.

The optimal parameter α is selected using cross validation. The training dataset

is divided into M di�erent subsets, and the optimal EC trees (varying α) are built

for theM−1 training sets. Then, the optimal α is chosen as the one that minimizes

the MSE in the testing set.

Once α is selected, a tree is grown from the complete dataset, in a way that

minimizes the error-complexity measure using the selected parameter.
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A.5 Example of listening test query

Figure A.2: Example of listening test question, querying for the emotion �Anger�. The image has been rotated to enhance resolution.
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