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Speech is the basis of human communication: in everyday life we automatically

decode speech into language regardless of who speaks. In a similar way, we have the

ability to recognize di�erent speakers, despite the linguistic content of the speech.

Additionally to the voice individuality of the speaker, the particular prosody of

speech involves relevant information concerning the identity, age, social group or

economical status of the speaker, helping us identify the person to whom we are

talking without seeing the speaker.

Voice conversion systems deal with the conversion of a speech signal to sound as if

it was uttered by another speaker. It has been an important amount of work in the

conversion of the timber of the voice, the spectral features, meanwhile the conversion

of pitch and the way it temporarily evolves, modeling the speaker dependent prosody,

is mostly achieved by just controlling the level and range.

This thesis focuses on prosody conversion, proposing an approach based on a

wavelet transformation of the pitch contours. It has been performed a study of the

wavelet domain, discerning among the di�erent timing of the prosodic events, thus

allowing an improved modeling of them. Consequently, the prosody conversion is

achieved in the wavelet domain, using regression techniques originally developed for

the spectral features conversion, in voice conversion systems.
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1. Introduction

Voice Conversion algorithms aim to modify the utterance of a �rst speaker to sound

as if it was uttered by a second speaker. The speaker identity is composed by

di�erent factors, including short-term spectral characteristics, prosody and linguistic

style, thus in Voice Conversion it is important to take into account all of them, in

order to transform the global identity of the speaker. A signi�cant amount of work

has focused on the conversion of spectral parameters, which re�ect the timbre of

the voice (how the voice itself sounds). However, the modeling and conversion of

the prosody is still one of the most challenging areas within the Voice Conversion

framework, and the employed methods are still slightly simplistic.

The prosody of speech, the speaking style of the speaker, is an idiosyncratic fea-

ture of the speaker. Nevertheless, depending on what the speaker wants to re�ect on

the utterance, e.g. irony, sarcasm, question utterances or commands; the emotional

state of the speaker, or the target audience of the speech, the prosody of the exact

same utterance may change notoriously. Jointly with the di�culties of evaluating

the prosody, this is one of the main di�culties of the prosody modeling.

1.1 Motivation

Prosody is created by several factors, such as the phone duration, loudness and

pause location, however, the main manifestation and the most expressive one is the

pitch. Di�erent speakers have di�erent pitch ranges, which can be represented by

calculating the mean pitch and pitch variance for each speaker.

Nevertheless, the shapes and contour of the pitch, not just the mean and variance,

contain speaker speci�c information that needs to be extracted and transformed in a

voice conversion framework, since changing pitch throughout an utterance is usually

the most powerful way of expressing emotion or emphasis based on the meaning of

the message.

Di�erent speakers may utter the same sentence with di�erent intonation patterns

and each speaker may have speci�c habits of expressing a message, or a particular

emotion. In an ideal voice conversion system, it is important to capture these global

habits and manipulate the entire pitch contour accordingly while converting from

one speaker to another. Therefore, implanting an appropriate pitch contour, model-

ing the identity and characteristics of the speaker, is crucial to retain the perceived
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naturalness of converted speech.

1.2 Objective, scope and main results

The objective of this thesis consists of developing a new prosody conversion method,

based on the transformation of the pitch, the most expressive manifestation of the

speaking style. The proposed approach uses a well-known technique in signal pro-

cessing, the wavelet transformation, to extract further information from the initial

pitch. The wavelet analysis allows discerning the di�erent prosodic phenomena

present in the speech, and modeling them separately in the posterior conversion.

The hypothesis is studied and evaluated for English intra-gender and cross-gender

conversions. The conversion of the spectral parameters of the speech is carried out

in order to evaluate the �nal synthesized speech, however they are out of the scope of

this thesis, thus, no attempts are made in order to improve the performance. Other

prosodic features, such as syllables and words durations, or the power of the signal,

are neither converted. The performance of the method is assessed in an objective

framework as well as in a perceptual listening test, comparing the proposed method

with the simplest conversion scheme that has been largely used in the literature

[Sty98].

The results show a clear preference in the cross-gender conversion, for the pro-

posed method in improving the naturalness of the generated sample when compared

against the typical pitch conversion in literature. Moreover, the statistical results

of the proposed method also show an improvement of the similarity with the target

speaker pitch contour.

In addition to the evaluation of the conversion method, there are presented other

interesting results concerning just the wavelet transformation: the prosodic morphol-

ogy contains di�erent temporal levels, from the intonation pattern along the whole

utterance, to the microprosody events present on the phonemes, going through dif-

ferent levels, all of them with signi�cant prosodic information.

1.3 Outline

This dissertation is organized as follows:

Chapter 2 provides the theoretical background related to the human speech pro-

duction system, and introduces the main speech parametrization and representation

methods in speech processing systems.

Chapter 3 is focused on the linguistic side of prosody, introducing the principal

reasons of di�erent prosodic styles, and the major prosodic events in the speech.
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Chapter 4 introduces the theoretical background related to the Voice Conver-

sion task and summarizes the most in�uencing works of Voice Conversion.

Chapter 5 describes the new approach presented in this thesis: the conversion

of the prosody with wavelets. It is presented the characteristics of the wavelet trans-

formation applied to speech signals, and the relation between the wavelet domain

and the prosodic hierarchical model. Finally, the characteristics of the prosody con-

version are introduced.

Chapter 6 presents an evaluation of the proposed prosody conversion method,

and a comparison of the performance with the main method in the literature.

Chapter 7 gives the main conclusions of the thesis, together with the future

work that can be considered as extension of this dissertation.
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2. Speech Feature and Representation

Speech has a central role in human interaction, thus, a lot of research attention has

focused in di�erent aspects of the human speech production, speech perception and

di�erent features of spoken language understanding. Moreover, it exists an extensive

work in the last years modeling the features of speech and developing new speech

processing techniques.

This chapter presents a brief introduction of the human speech production pro-

cess, in 2.1, and introduces the main speech representation techniques used in the

literature in 2.2.

2.1 Human speech production

The human speech production process is divided in four main steps: the language

processing, where the contents of an utterance are divided �rst into words and

then in phonemic symbols in the brain language center; the generation of motor

commands to the vocal organs in the brain's motor center; the movement of the

organs involved in speech production (Fig. 2.1) based on the sent commands; and

the emission of the air sent from the lungs in the �nal speech form.

Figure 2.1: Humans organs involved in speech production. (From [Wik])

This �nal step is the one which generates the main characteristics of speech: when

air is released from lungs, it �ows through the glottis between the vocals cords which
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vibrate at regular intervals to produce voiced sounds, such as vowels, or remains

open on the unvoiced sounds, in unvoiced consonants (Fig. 2.2).

Therefore, the V-shaped opening between the vocal cords is the most important

sound source in the vocal system. Each person has a di�erent natural length on

the vocal cords and the particular mass and tension applied a�ects the way the

vocal cords vibrate (opening and closing) on the voiced portions, generating the

characteristic frequency of the voice, the fundamental frequency of voice (F0). Thus,

this F0 is di�erent for each person, although men and women can generally be

grouped in two separate ranges of F0: between 40 Hz and 180 Hz for men and

between 100 Hz and 300 Hz for women.

Figure 2.2: a) Voiced speech for the vowel 'i', and b) unvoiced speech for the consonant
's'.

Finally air reaches the oral cavity (and nasal cavity) where the velum, palate,
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teeth and lips modify the �rst excitation of vocal cords. Along with the position of

the mouth, the position of the tongue and the way the tongue is placed, allows the

addition of harmonics, called formants, and the production of the �nal phoneme1.

2.2 Speech Representation

One of the basic tools for analyzing speech is the short-time Fourier analysis: by

selecting overlapping segments among 10-30 ms2, displaced by e.g. 5-10 ms steps

and computing a discrete Fourier transform (DFT), the speech signal is decomposed

into several frames, each one showing its corresponding spectral characteristics (Fig.

2.3).

Figure 2.3: Spectrogram of the sentence "The singing voice approached rapidly.", uttered
by a male speaker. The speech sample was windowed in 50 ms blocks with a 5 ms dis-
placement.

However using a source-�lter model, see Fig. 2.4, the e�ect of F0 and vocal tract

(formants) can be separated, and consequently used in a more accurate way: the

source represents the air �ow coming, the excitation signal which allows producing

the voiced sounds, when it consists of the F0 periodic impulses, and the unvoiced

or fricated sounds, when it is working as a random noise source. On the other hand,

1A phoneme is de�ned as any of the perceptually distinct units of sound in a speci�ed language

that distinguish one word from another, for example p, b, d, and t in the English words pad, pat,

bad, and bat.
2Speech signals are assumed to be approximately stationary in blocks of 10-30 ms, allowing the

correct assumption of stationarity in multiple signal processing algorithms.
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the �lter models the resonances in the vocal tract.

Figure 2.4: Source-�lter model of the production of speech.

2.2.1 Linear prediction model

Linear prediction (LP) is widely used in speech applications, due to the fact that

speech production process is well modeled with LP. The LP model of a speech signal

can be written in the following way:

x(m) =
K∑
k=1

akx(m− k) +Gu(k) (2.1)

where m is the time index, K represents the number of coe�cient in the model, ak,

k = 1, . . . , K, are de�ned as the linear prediction coe�cients (LPC), G is the gain

of the system, and u(k) is the excitation signal. The equation 2.1 can be written,

using the z-transform, in the frequency domain:

H(z) =
G

1−
∑K

k=1 akz
−k
, (2.2)

which corresponds to an all-pole transfer function.

The LPC can be estimated in various ways, e.g. using the autocorrelation method

with Levinson-Durbin algorithm [Lev46; Dur60], or the covariance method with the

Cholesky decomposition method [Bel87].
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2.2.2 Line spectral frequencies

Line spectral frequencies (LSFs) are a more robust representation of the coe�cients

of linear predictive models. LSFs are obtained from LPCs, computing the roots of

two polynomials, called line spectral pair (LSP), P (z) and Q(z):

P (z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z)− z−(p+1)A(z−1) (2.3)

The reverse conversion is also easily computed as follows:

A(z) =
1

2
(P (z) +Q(z)) (2.4)

LSF o�ers a robust representation, good interpolation properties, and a close re-

lationship to the formants, however they just model spectral peaks, corresponding

with the formants, but not the valleys.

2.2.3 Cepstral features

Another way of parameterizing the speech features is using cepstral analysis. The

cepstrum is an homomorphic transformation [Hua92] de�ned as

x̂(n) =
1

2π

∫ π

−π
lnX(ejω)ejωndω. (2.5)

It allows an easy, but not perfect, separation of the source and �lter of the pro-

duced speech signal: if the interest is in the glottal excitation, the high-quefrency

components of the cepstrum are taken, and if the interest is on the vocal tract, it

must be kept the low-quefrency components.

The Mel-Frequency Cepstrum Coe�cients (MFCC) is a representation de-

�ned as the real cepstrum of a windowed short-time signal derived from the DFT of

that signal. The di�erence remains mainly in the frequency scale used; MFCC uses

the Mel scale, a nonlinear frequency scale which gives a better approximation of the

behavior of the auditory system, instead of the linear frequency scale:

fmel = 2595 log10 (1 + f/700) (2.6)

This scale conversion is achieved using a bank of triangular �lters located ac-

cording the Mel-frequency scale. Finally is applied a discrete cosine transformation

(DCT) to the logarithmic energy of the �lterbank:
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Figure 2.5: Cepstral representation of the source, within a speech sample.

c[n] =
M−1∑
m=0

S[m]cos(πn(m+ 1/2)/M) (2.7)

where S[m] is the logarithmic energy of themth �lter, andM is the number of �lters.

It varies for di�erent implementations from 24 to 40, but usually is set to M = 24

in a 16 kHz sampling rate.

MFCCs are capable of modeling both spectral peaks and valleys, but more im-

portant, are reliable for measuring acoustic distances, therefore, they are especially

useful for alignment on parallel data.

2.2.4 The generalized Mel cepstral analysis

LSF (and also LP) is a good method for obtaining all-pole representation of speech,

modeling the spectral peaks, but is not capable of giving information of the valleys,

the spectral zeros. On the other hand, cepstral modeling can represent poles and

zeros with equal weights, but if a small number of cepstral coe�cients are taken, it

overestimates the band widths of the formants.

The Generalized Mel cepstral analysis method [Tok94] allows varying the model

spectrum continuously from the all-pole spectrum to that represented by the cep-

strum according to two control parameters: α and γ.

The parameter α controls the frequency resolution of the spectrum Ψa(z) (Eq.

2.8), from α = 0 for linear scale to α = 0.42 which approximates the Mel-frequency

scale, when the sampling frequency is 16 kHz. The parameter γ adjusts the gen-

eralized logarithmic function sγ(w) (Eq. 2.9), from γ = 0 for cepstral modeling to



2. Speech Feature and Representation 10

γ = −1 for LP representation.

Ψa(z) =
z−1 − α
1− αz−1

, |α| < 1 (2.8)

sγ(w) =

 wγ−1
γ
, 0 < |γ| ≤ 1

logw, γ = 0
(2.9)

The �nal Mel-generalized coe�cients (MGCs) are generated with the minimiza-

tion of a cost function (generally the mean square linear prediction error) from an

unbiased estimation of log spectrum.

Figure 2.6: General framework of the cepstral analysis [Tok94]

One interesting case of the MGC, due to its recent popularity in Voice Conversion

([Hel10; Tod07; Hel12], is theMel-cepstral coe�cients (MCC), where γ = 0. The

spectrum is modeled as:

H(z) = exp
M−1∑
m=0

cα(m)Ψm
α (z) (2.10)

being M the number (order) of MCC, and α is set to 0.42 for 16 kHz of sampling

frequency. The bene�ts of these parameters are quite similar to MFCCs, allowing

the accurate modeling of both peaks and valleys of the spectrum and thus especially

useful for the alignment.
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3. Prosody of Speech

Prosody is a complex weave of physical, phonetic e�ects, appreciated on the rhythm,

stress, tone and intonation patterns of an utterance, which is employed to express

attitude, assumptions and attention as a parallel channel in the speech communica-

tion. It can re�ect many features of the speaker or the utterance, such as the voice

characteristics of the speaker, the emotional state of the speaker, the form of the

utterance (statement, question or command) or the presence of irony or sarcasm.

In terms of speech processing, modeling the prosody is a problematic issue, since

every person involves a particular and di�erent way of speaking, and even the same

person can also utter the same sentence in quite di�erent prosodies. Thus, it is

assumed the goal in prosody conversion is not a perfect match with some speaker

target sentence, but creating a credible prosody, an utterance which can be spoken

by the speaker in some situation.

This chapter reviews why the generated prosody is unique for every person in

section 3.1, the main prosody phenomena in section 3.2, and �nally the morphology

of the prosody in section 3.3.

3.1 Speaking uniqueness

Prosody does not just depends on the linguistic content of the sentence, but on many

other factors such as the speaker's voice and the emotional state of the speaker.

Therefore, di�erent people generate di�erent prosody for the same sentence, and a

same person could generate di�erent prosody depending on the mood or the emotion

which is feeling by the time the sentence is uttered. Another important factor af-

fecting the prosody is obviously the language in which the sentence is uttered, since

in some languages the di�erent pronunciation of a word may a�ect the �nal meaning.

3.1.1 Character

In terms of prosody, it is referred as the long-term, stable and extralinguistic prop-

erties of the speaker. Many things can a�ect the character of a voice, from the

individual personality to the membership of a group. Some idiosyncratic features,

such as gender, age, physical state, or speech defects a�ect the prosodic character,

and some social characteristics, such as speaker's region, economic status may also
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a�ect the prosody of the generated speech.

In Fig. 3.1 it appears the representation of two di�erent speakers pitch pro�les

saying the same sentence, showing important di�erences among them: the level,

range, duration of the utterance or the shapes of the contours can be clearly distin-

guished from one speaker to another.

Figure 3.1: Two di�erent speakers, a male and a female, uttering the same sentence "Don't
you see, I'm chewing this thing in two.".

3.1.2 Emotion

Temporary emotions in the speaker produce an e�ect on the prosody of the uttered

sentence, such as anger, happiness, disgust, fear or surprise. These emotions are gen-

erally independent from the speaker's character, since you can imagine any speaker

with some social/dialect/gender/age characteristics being in several emotional situ-

ations, generating numerous emotional prosodic phenomena (Fig. 3.2).

A large number of high level factors a�ect the emotional features of speech: spon-

taneous or acted emotions, culture-depending or universal emotions, the correct

interpretation of the emotion by the listener, the strength of the emotion; which

produces remarkable di�erences between the same emotions uttered by di�erent

speakers.

Some examples can be clearly understood in the main studied emotions in liter-

ature: a controlled pitch sentence, with a low range and close to the monotonicity

could be either interpreted as anger or sadness, while another kind of anger, more

overtly expressive and with a wide, raised pitch range, is closer to the happiness.

Although each emotion has its own characteristics, the di�culties of creating and
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recognizing them from speakers and listeners, respectively, are one of the challenging

parts in emotion recognition and conversion.

Figure 3.2: The german sentence 'Der lappen liegt auf dem Eisschrank.' for the same
male speaker. Sentence a) is uttered in a anger way, meanwhile the sentence b) is uttered
simulating boredom. The di�erences in the pitch range, maximum and duration of the
sentence are remarkable.

3.2 Prosodic phenomena: stress, tone and intonation

The suprasegmental features of speech, producing changes in the loudness or the

pitch of sounds, are commonly classi�ed in stress, tone and intonation. Both of

them are used in languages to add information at the text-alone sentence, and even

modifying the meaning of the uttered sentence.

3.2.1 Stress

Comparing the word 'protest' in the following sentences:

(a) It started as a student protest against rising tuition fees.

(b) The students organized a march to protest against these changes.

it appears a remarkable di�erence of pronunciation. In 'student protest', the �rst

syllable, 'PROtest', gets greater emphasis. This emphasis is called stress, and

it is named that the �rst syllable is a stressed syllable, while the second syllable

remains unstressed. Stressed syllables tend to be louder and somewhat longer than

the unstressed ones. On the other sentence, 'protest' is used as a verb, generating a

new stress pattern; the stressed syllable is the second one, 'proTEST'.
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Moreover, in polysyllabic words, some syllables appear to be an intermediate

degree of stress between stressed and unstressed syllables. Consider the word 'gym-

nast'; the main stress falls into the �rst syllable, 'gym-', but the second syllable,'-

nast', has also some stress, known as secondary stress.

This type of stress, distinguishing words such as 'PROtest' and 'proTEST' is

known as lexical stress or word stress. Another type of stress, known as phrasal

stress, allows disambiguating sentences which the purely written form cannot:

Mike repairs motorcycles.

The neutral pronunciation of the sentence would provide an amount of stress to

each syllable, although 'motorCYcles' would get slightly more stress. However, if the

stress is put on the word 'MIKE repairs motorcycles', the sentence provides some

extra information by centering the attention on the person who realizes the action,

being the natural answer to the question 'Who repairs motorcycles?'. Finally, if the

question is 'What does Mike do with motorcycles?', the logical stress of the answer

would be 'Mike REPAIRS motorcycles'.

3.2.2 Tone

The tone or pitch of the voice is very important in language, since all language

make use of it for some purpose. In some languages, such as Mandarin Chinese,

Serbo-Croatian or Swahili, di�erent words are even distinguished from each other

by means of pitch [Lie67]. These di�erent pitch pro�les depending on the meaning

of the word, are called tones. An example, in Fig. 3.3, is the word 'ma' in Mandarin

Chinese:

word
chinese

character
meaning tone

m	a "mom"

má "hemp"

m  "horse"

mà "scold"

Figure 3.3: Di�erent meanings of the word "ma" in Mandarin, depending on the pronun-
ciation tone.
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Not only di�erent levels of tones are used (high or low), even the evolution of the

pitch during the course of the syllable a�ect the meaning of the word, qualifying

Mandarin as a tone language.

English is not a tonal language, however the variations on the pitch are largely

used, not for changing the meaning of the words, but generating intonation, the last

prosodic phenomena.

3.2.3 Intonation

The variations in the pitches in non tonal languages produce the intonation pattern

of an utterance, providing information about the attitude expressed by the speaker

without, unlike tonal languages, modifying the meaning of the word.

Consider now the instances of the word 'me', where the pitch is represented

graphically:

a) me b) me? c) me! d) me?!

Figure 3.4: Di�erent intonation patterns on the same word, generating di�erent types of
sentences.

The pitches has signi�cant variations, however the meaning of the word remains

unaltered. From a normal statement (a), a question (b), a strong assertation (c),

to an expression of disbelief (d), the information provided due to the intonational

pattern of the word has changed.

Unlike tonal languages, the tones generated cannot be assumed as part of a

single word; in normal utterances, consisting of more than one syllable, the tone is

generated over the whole utterance creating the suprasegmental intonation pattern.

All languages make use of intonation, including the tonal ones, however the ex-

act use di�ers widely from one language to another and from one dialect to another.

For instance, the intonational pattern of British English is completely di�erent from

the American English, giving the impression of pretentiousness or �attery, while

American English sounds rude and pushy for British people.

3.3 Prosodic morphology

The prosodic constituent structure of an utterance has generally been proposed

[Sel80; Nes86] to be derived rather directly from the morphosyntactic constituent
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structure of the sentence: syllable, word, phrase and utterance. In many cases

the correspondence between these levels and the prosodic levels is quite accurate,

however it is not exact:

(1) He sat down at the table ][ with the vase of �owers.

(2) He ][ sat down at the table with the vase of �owers.

On the �rst sentence, the prosodic boundary, represented by '][', is located on the

approximately middle, generating a normal intonation pattern, whereas the second

intonation pattern is close to the syntactic boundary (subject-verb) but has no sense

in terms of intonation.

With this trivial example, can be noticed that syntactic structure in�uences the

prosodic structure, but other factors, e.g. speaking rate, number of words and syl-

lables, semantic focus or discourse structure, also a�ect the �nal prosodic structure.

Current prosodic theories have postulated prosody as a hierarchical system of

constituents and the existing relation between pairs of constituting elements on

the same level [Lib77; Sel80; Sel86; Bec86], in order to model all these factors which

a�ect the �nal suprasegmental realization of speech. The constituents of the prosodic

hierarchy are normally classi�ed as:

• Intonational phrase

• Phonological phrase

• Prosodic word

• Stress foot

• Syllable

• Mora

A mora is a timing unit; each mora takes approximately the same length of time

to say. Moreover, it is also the unit which allows the measurement of the weight of

the syllable [Pri83; Hym85]. Usually heavy syllables, the ones which contain more

than onemora, are those that consist of a long vowel or diphthong, such as 'rain' or

'see', meanwhile light syllables usually consist of a short vowel, such as the second

syllable of 'father'.

The syllable constituent corresponds to the grammatical syllable, as well as the

prosodic word corresponds respectively to the grammatical word.

The stress foot is a prosodic level constituted by at least one stressed syllable

and usually an unstressed syllable. Consider the words 'modest and 'gymnast'(Fig.
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3.5). Both �rst syllables are stressed, 'mo-' and 'gym', but it exists a remarkable

di�erence on the second syllable: meanwhile the syllable '-dest' is an unstressed one,

the syllable '-nast' has a secondary stress, generating a new stress foot.

Figure 3.5: Prosodic hierarchy of words 'modest' and 'gymnast'.

However, the two stress feet do not have the same amount of weight on the

word, considering 'gym-' as a strong stress foot and '-nast' as a weak foot.

The phonological phrase is conformed by at least two prosodic words. Contem-

plating again the sentence 'He sat down at the table with the vase of �owers.', there

exist many possible separation into phonological phrases but the more logical one

might be:

[He sat down] [at the table] [with the vase] [of �owers.]

The intonational phrase conforms the major prosodic level. It is normally

referred as the union of one or more phonological phrases, and normally appear a

couple of intonational phrases within a syntactic sentence. In the previous exam-

ple, the sentence can be uttered separating the speech in a couple of intonational

phrases, with a small pause in between, or can be uttered in a joint biggest into-

national phrase:

[He sat down at the table] [with the vase of �owers.]

[He sat down at the table with the vase of �owers.]

Upper and lower levels can be de�ned, contemplating i.e. an utterance level or a

phoneme level, describing the whole intonation of the speech or the microprosody, re-

spectively. However, the main discussion of linguistics regarding the prosodic levels,

is the appearance of middle levels between the prosodic word and the phonological

phrase, such as the clitic group or the prosodic list unit, modeling intermediate

prosody phenomena.
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4. Voice Conversion

Voice Conversion (VC) is an area in speech processing, which deals with the

conversion of the speaker identity: the original speech produced by a �rst speaker

is transformed to sound as if it was uttered by a second speaker. VC systems

have several potential applications, such as hiding the identity of the speaker, voice

restoration and vocal pathology, or dubbing games or movies, however the main use

is creating new voices in text-to-speech synthesis in a cost-e�cient manner.

This chapter reviews the state of the art of VC framework, giving special em-

phasis to the used methods in the proposed experiments. It is organized as follows:

section 4.1 describes the general architecture of the VC systems, section 4.2 reviews

the analysis/synthesis framework, section 4.3 deals with the main alignment tech-

niques for parallel data and section 4.4 describes the main mapping functions used

to model the conversion.

4.1 Architecture of Voice Conversion systems

Currently, all VC systems are based on two main steps: the training phase and the

conversion phase (Fig.4.1).

Figure 4.1: Blog diagram of VC architecture

In the training phase, speech samples of both source and target speakers are an-
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alyzed, extracting its characteristic speech features. In some VC approaches [Hel07]

[Dux04], it is used additional information, such as syllable boundaries, intonation

marks or phonetical information. After the features are extracted, and are correctly

aligned in case of parallel corpus database1, the model is trained and the mapping

function between source and target is created. In the conversion phase, the source

features are extracted as well, and the trained mapping function is applied to them

in order to convert the original speech to the target one, with the voice features of

the new speaker.

In the next subsections there is a deeper description for the analysis and synthesis

phase, the alignment phase, and the mapping functions to create the model.

4.2 Analysis/Synthesis framework

The �rst step and one of the most important ones of any VC is the analysis of the

voice signals. It is crucial using an analysis system which provides a high quality

analysis of the speech signals and thereby a high quality on the extracted features.

The simplest system used for extracting the speech features is the LPC vocoder.

As other LP-based coders, the representation of the spectral envelope is carried out

using an all-pole �lter and the excitation is modeled as a two-category decision:

white noise for unvoiced signals or a sequence of impulses for voiced signals, with a

spacing of the pitch period. Consequently, for the frames decided as voiced frames,

it is needed an estimation of F0.

Another group of analysis systems are based on a sinusoidal representation: in

[Nur06] they assume the excitation signal as a sum of sine waves. The sinusoids can

be classi�ed as continuous or random-phased; the �rst ones represent voiced speech

and are modeled using F0 harmonics as frequency and linearly evolving phase while

the random-phased are used to model the unvoiced speech, using a �xed value of F0

as a frequency and a random phase.

A di�erent approach on the sinusoidal representation-basis is as harmonic plus

noise model (HNM)[Sty05]. It is based on an harmonic modeling for the periodic

frames (voiced), using multiples of F0 as frequencies of the sinusoids, and a noise

model for the non-periodic (unvoiced), obtained by subtracting the periodic-part

from the original speech signal.

1A parallel corpus database consists of speech recordings produced by di�erent speakers uttering

the exact same sentences.
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STRAIGHT

One of the most used analysis/synthesis (A/S) systems is the one proposed by

[Kaw99], known as STRAIGHT. It is a high quality analysis/synthesis method,

which uses pitch-adaptative spectral analysis combined with a surface reconstruction

method in the time-frequency region. The speech waveform is decomposed into F0

contour and spectrum, but also an aperiodicity map is extracted.

The F0 estimation is performed, under the assumption of a nearly harmonic struc-

ture of the speech signal, by a series analyzing continuous wavelet transform, and

the �nal pitch is selected as the one having higher signal to noise ratio of the sinu-

soidal component and background noise. On the unvoiced frames, no fundamental

frequency is detected, returning the expected 0 pitch value (Fig. 4.2).

Figure 4.2: STRAIGHT pitch estimation from the sentence "The singing voice approached
rapidly", uttered by a male speaker.

The aperiodicity map (Fig. 4.3) represents the deviations from periodicity, which

introduce additional components on inharmonic frequencies. It is extracted jointly

with the pitch estimation, providing this additional information concerning the

source of the speaker that is not represented in the F0 extraction.

Finally, the spectral analysis shows the spectral features of speech with no trace of

the periodicity due to the fundamental frequency. The �lters used for the extraction

of the spectrogram bene�ts of the previously estimated fundamental frequency to set

its bandwidth and, by using a smoothing function to deal with small F0 variations,

extract the spectral properties of speech (Fig. 4.4).
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Figure 4.3: STRAIGHT aperiodicity map and the corresponding aperiodicity bands.

Figure 4.4: STRAIGHT spectrogram estimation from a voiced 5 ms. frame.

4.3 Alignment in parallel corpus

Generally, one same sentence uttered by two di�erent speakers is never produced

at the same speak rate: neither loudness nor speed are the same for the same word

when it is uttered by two speakers. Therefore, when working with parallel data,
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equal sentences uttered by di�erent speakers, the utterances must be aligned in

time so they can preserve linguistic correspondence.

The simplest alignment method is a linear time scaling: the main assumption is

the speaking rate is proportional to the duration of the sentence and independent

of individual sounds, thus, the two utterances are stretched or compressed linearly

so that they become the same length. This way of alignment works reasonable

well for monosyllabic utterances but when multisyllabic sentences are included the

performance decreases.

The main approach of alignment, in order to work properly with multisyllabic

utterances, is dynamic time warping (DTW), which is discussed in the following

subsection. Other approaches for aligning parallel data are HMM-based align-

ments [Err10b], forced-alignment speech recognition or even manual alignment, when

phoneme boundaries are available.

For non-parallel data, either intra-lingual VC or cross-lingual VC, it is still neces-

sary an alignment step in order to train the conversion functions. The main approach

in literature is the INCA algorithm [Err10a], based on an iterative combination of

a Nearest Neighbor search combined with a voice conversion, which in the next it-

eration is used as the source voice.

4.3.1 Dynamic Time Warping

The purpose of Dynamic Time Warping (DTW) [Sak78] is �nding an optimal align-

ment between two given (time-dependent) sequences under terms of a distance func-

tion. Given the two sequences X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yM), of

respective length N and M ∈ N, is built a cost matrix C = RNxM . Then the goal is

having an alignment between X and Y , by having minimal overall cost. Intuitively,

the optimal alignment runs through the cost matrix C, along a low cost path.

Although several ways of computing cost matrices exist, Eq. 4.1 shows the main

approach to built the cost matrix:

C(i, j) = d(xi, yj) + min (C(i− 1, j − 1), C(i, j − 1), C(i− 1, j)), (4.1)

where C(i, j) is the cumulative distance of point (i, j) and d(xi, yj) is the distance at

the current point. The total cost of the optimal alignment is returned by C(N,M),

and the optimal alignment can be obtained by path backtracking.

This path requires some constrictions in the �nal warping function: endpoint

constrains, monotonicity constrains and step size constrains need to be accomplished

in order to get a signi�cant warping path function to compare both sequences:
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• Boundary condition: p1 = (1, 1) and pL = (N,M).

• Monotonicity condition: n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤ . . . ≤ mL.

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [l : L− 1].

A common choice in speech processing is using Euclidean distance as distance mea-

sure, and MCCs or MFCCs as alignment features.

4.4 Mapping functions

The model which allows converting the speech characteristics from source data to

target data is constructed during the training phase, creating a conversion function

to map the source feature vector xn into the target feature vector yn for each frame

n.

The �rst approaches for forming the conversion function were based on a codebook

mapping. The main idea in the codebook approaches for VC systems is generating a

mapping codebook describing a function between the vector spaces of two speakers.

In [Abe88] the source and target feature vectors are quantized frame by frame, and

its correspondence is determined using DTW. The mapping function is a linear

combination of the target vectors, based on an histogram as a weighting function.

In the recent VC systems are using statistical techniques to �nd a conversion

function F(∆), minimizing the prediction error ε:

ε =
N∑
n=1

‖yn −F(xn)‖2 (4.2)

One of the main techniques in VC [Sty98; Kai01; Tod07; Che03] to model the

distribution of the source and target features vectors is using a Gaussian mixture

model (GMM) applied to the spectral features of speech, which is described in Sec.

4.4.1.

An alternative method recently proposed by [Hel12; Sil13], to model the spectral

features of speech is the Dynamic Kernel Partial Least Squares (DKPLS). It is

an statistical mapping that allows non-linear conversion and improves temporal

continuity, since it allows handling the dynamics of speech. It is described in Sec.

4.4.2.

4.4.1 Gaussian mixture model

A GMM is a probability density function built as a weighted sum of M Gaussian

components:
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p(x) =
M−1∑
m=0

αmN (x;µm,Σm) (4.3)

where αm is the prior probability of themth Gaussian component and N (x;µm,Σm)

is the p-dimensional Gaussian function:

N (x;µm,Σm) =
1

(2πp/2
√
|Σm|)

exp [−1/2(x− µm)TΣm(x− µm)] (4.4)

with x = [x0, x1, . . . , xp−1]
−1 a p-dimensional random vector, µm the p-dimensional

mean vector and Σm the p × p covariance matrix of the Gaussian distribution. In

order to de�ne properly GMM as a probability density function, two extra restric-

tions must be taken into account: the scalar mixture weights of the GMM must be

non-negative, αm ≥ 0, ∀m = 0, . . . ,M − 1, and normalized to 1,
∑M−1

m=0 αm = 1.

The most popular way to estimate the GMM parameters from the set of source

vectors is the expectation maximization (EM) algorithm. The EM algorithm [Dem77]

iteratively increases the likelihood of the model parameters by successive maximiza-

tions of auxiliary functions.

There are two main approaches in the literature in order to create the mapping

function with GMM: just using source features or using both source and target

feature vectors to be �t in a GMM .

GMM with source data

This �rst approach, proposed in [Sty98], uses the minimum mean square error to

estimate the source-target mapping function, assumed to be linear for each Gaussian:

x′ = F(x) =
M−1∑
m=0

P(Cm|x)[νm + ΓmΣ
−1(x− µm)] (4.5)

where νm denotes the mean target vector belonging to the mth Gaussian, Γm is the

cross-covariance matrix of the source and target vectors:

Γm = E[(y− ν)(x− µ)T ] (4.6)

and P(Cm|x) is the posterior probability of vector x:

P(Cm|x =
αmN (x;µm,Σm)∑M−1
j=0 N (x;µj,Σj)

(4.7)

The unknown parameters νm and Γm are computed using least squares approach.
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Joint density GMM

The other mapping model based on GMMs, proposed by [Kai01], considers modeling

the joint density of the target and source data with a GMM:

p(zn) =
M−1∑
m=0

αmN (x;µ(z)
m ,Σ(z)

m ) (4.8)

where zn = [xTn ,y
T
n ]T is the source vector augmented with the target vector, and

µ(z)
m =

(
µ

(x)
m

µ
(y)
m

)
(4.9)

Σ(z)
m =

(
Σ(xx)
m Σ(xy)

m

Σ(yx)
m Σ(yy)

m

)

are the augmented mean and covariance.

The conversion function is also computed as the one which minimizes the mean

squared error between converted source and target vectors:

x′ = F(x) =
M−1∑
m=0

P(Cm|x)[µ(y)
m + Σ(yx)

m Σ(xx)
m (x− µ(x)

m )] (4.10)

P(Cm|x) =
αmN (x;µ

(x)
m ,Σ(xx)

m )∑M−1
j=0 N (x;µ

(x)
j ,Σ

(xx)
j )

(4.11)

4.4.2 Dynamic kernel partial least squares

DKPLS is a statistical mapping technique based on two steps: a pre-processing

step consisting of a kernel transformation of the source data and a converting step

where partial least squares (PLS) regression is used to estimate the new features.

The kernel data is augmented with the previous and following frame, being able to

characterize the dependencies between consecutive frames.

Kernel transformation

The concept of a kernel is a data matrix where exists similarity measures for a

speci�c dataset. In this method the kernel matrix K is built based on a Gaussian

transformation of speech features:

kjn = e−
‖xn−cj‖2

sσ2 , (4.12)
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Figure 4.5: Overview of the training procedure using DKPLS

leading to the �nal kernel matrix

K =


k11 k12 . . . k1N

k21 k22 . . . k2N
...

...
. . .

...

kC1 kC2 . . . k1N

 (4.13)

where kjn are the �nal entries of the kernel matrix, xn are the source features, cj
are the reference vectors, and σ is a scaling parameter. The C reference vectors

are obtained by k-means algorithm, where the found cluster centers act as reference

vectors.

Finally, before carrying out the PLS regression, the kernel has to be centered to

force the bias term of the conversion to zero. Since in the kernel space the mean can-

not be computed automatically, it is necessary some accuracy in this step [Emb04] :

�rst it is calculated the average of each row and stored for later use, then the aver-

age of each column is computed and subtracted from the kernel matrix resulting of

row-centering. The new centered kernel is denoted by K̃ = [k̃1, k̃2, . . . , k̃n, . . . , k̃N ] .

The kernel of the test data needs to be centered similarly: the saved row averages

are subtracted from the testing kernel, and the column average is computed and

subtracted from the obtained row-centered testing kernel.

Dynamic modeling

In order to model the time continuity of the speech features, a redundant problem

in VC [Hel10; Tod07], the source data is augmented with its previous and next

frame data. This allows modeling the dynamic relations of the data, smoothening

transitions from frame to frame, and consequently building higher quality models.

The predictor variables become:
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Xn = [k̃n−, k̃n, k̃n+] (4.14)

being k̃n the centered kernel vector and k̃n− and k̃n+ the centered kernel vectors for

the previous and next frames.

Partial Least Squares Regression

The prediction of Y variables from the observed variables X is done by a regression

model de�ned as:

yn = βxn + ε (4.15)

where xn are the source observation vectors, yn are the target observation vectors,

ε denotes the regression residual, and β is the regression matrix.

In the DKPLS method, due to the kernel transformation, k̃n becomes linearly

dependent, and the addition of the dynamics at the �nal source observation vector

xn introduces collinearity. Partial least squares (PLS) regression is a technique for

predictive modeling of the relationships between predictor matrix X and response

matrix Y, which can deal with the collinearity of the observation vectors and cases

where the number of observations is less than the number of variables.

To perform the regression task, PLS constructs new explanatory variables, called

latent vectors, which are a linear combination of the original x1, x2, . . . , xN vec-

tors. The aim of these vectors is explaining the most relevant information in the X

variables that is also useful for predicting Y. This is a similar way of working to

principal component analysis (PCA), but the di�erence remains in meanwhile PCA

just uses X to determine the principal components, PLS uses both X and Y for

extracting the latent vectors.

4.5 Prosody modeling and conversion in speech processing

The modeling of the pure linguistic prosody phenomena is problematic, since there

are no quantitative measures available, and hence they need to be re-estated in

other parameters able to be treated and modi�ed. In speech processing are normally

parametrized as:

• Pauses: the gaps between words and separating phrases, normally related to

punctuation marks.

• Pitch: the rate of vocal-fold cycling (fundamental frequency or F0) as a func-

tion of time.
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• Rate/relative duration: the phoneme and syllable durations, timing and rhythm

of the sentence.

• Loudness: the relative amplitude of the sentence.

Since pitch is the most expressive of the prosodic phenomena, most of the prosody

conversion methods in literature are based on a frame-level conversion of the pitch.

However, in the last years, new approaches have been working based on a local con-

tour of F0, normally at syllable level, also adding linguistic information and timing

references, being able to model the timing parameters as well.

Mean and standard deviation scaling

The �rst approach to transform F0 is a simple scaling, referred to as mean and

scaling (MS) method. In order to obtain the F0 of the target speaker ft, the following

transformation is computed to the F0 of the source speaker fs:

ft =
σft
σfs

(fs − µfs) + µft (4.16)

where µft , σfs , µft , σfs represent the mean and standard deviation of the F0 values

for the target and source, respectively. This mapping function is computed based on

the assumption that each speaker's F0 values belong to a Gaussian distribution with

a speci�c mean and variance [Ric95]. Although this �rst transformation method,

does not really convert the prosody appearing in F0, is the most common way of con-

verting F0 since results are good enough, as has been shown in [Ina03; Hel07]. This

MS method is also performed in logarithmic domain, since the human perception of

sound is in a logarithmic scale:

log ft =
σlog ft
σlog fs

(log fs − µlog fs) + µlog ft (4.17)

A bene�t of MS method is that parallel data is not required, but in terms of

prosody conversion, it keeps the shapes and contour of source F0 and is unable to

model small changes depending on the target speaker prosody. Thus, technically

prosody is not converted.

Polynomial conversion

This method was proposed by is an improvement of the MS: a higher-order mapping

function is estimated without the assumption of a Gaussian distribution. Based on
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Figure 4.6: Representation of the pitch of two di�erent speakers, male and female, and the
converted pitch using the MS method.

the scatterplot model of mean pitch for each speaker least squares method is used

to compute the Nth order polynomial function.

Contour codebook and dynamic time warping

Another approach in prosody conversion is the one presented in [Ina03]. In contrast

of the previous approaches, this codebook method is working with the utterance

contour instead of at a frame-level, trying to impart an entire pitch contour. Here it

is used DTW algorithm to select the closest pitch contour from an available training

sentence database. This helps minimize lexical stress while maintaining the large-

scale intonation di�erences between the speakers' utterances. Finally the target

pitch contour is warped in order to generate the new pitch, helping maintaining some

characteristics of the intonation pattern but also adding those new characteristics

of the new speaker.

Piecewise linear mapping using intonation marks

In [Gil03] is proposed using intonational marks for creating the mapping function

able to model the prosody. The F0 contours are parametrized based on four selected

points: sentence-initial high, sentence-�nal low, non-initial accent peaks and post-

accent valleys. For each sentence there is one sentence-initial high and sentence-�nal

low, appearing several number of peaks and valleys. The piecewise mapping function
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is constructed based on the di�erent union of these source and target pair points:

post-accent valleys and sentence-�nal low, post-accent valleys and non-initial peaks,

and non-initial peaks and sentence-initial high.

Syllable codebook with regression trees

The prosody conversion method proposed by [Hel07], introduces a syllable-level

codebook containing paired source and target F0 contours. These contours are

compressed using discrete cosine transform (DCT), which allows fast comparison

and avoids using DTW techniques. A �rst selection is done between the source

speaker F0 and the codebook, selecting possible target candidates. The �nal decision

is based on a classi�cation and regression tree (CART) trained with linguistic and

durational information.

Duration conversion based on regression trees

Another approach using extra information to model the prosody, is the one proposed

in [Ina07]. The F0 contours are modeled based on the global intonation contour and

the duration of phones. For the modeling of the intonation, they use three-state

left-to-right HMMs for each syllable, while the duration is modeled by CARTs using

information such as phone identity, previous phone, next phone, lexical stress, word

position or word length.
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5. Prosody modeling and conversion

with wavelets

The assumption of a hierarchic model of prosody by phonologists and phoneticians

is largely accepted. Recently, some approaches working with a hierarchic prosody

model [Wan08] [Lei10], not just in a frame wise of F0, have put in relevance that

there is important information, in terms of speech processing, in every linguistic

level of the utterance, from microprosody information on phonemes, to the whole

prosody of the sentence and utterance.

A function or signal, and certainly speech signals, can be understood as compo-

sitions of smooth backgrounds and details on top of it, and if we speak in terms of

frequency, the high and low frequencies of the signal. The wavelet transform is a

tool that splits data into di�erent frequency components, and allows studying each

component with a frequency resolution matched to its scale [Mal98].

Due to this multiresolution analysis properties of the wavelets, which allows the

study of multiple frequency levels of the input sequence keeping the temporal lo-

calization, the wavelet transformation has been lately a trend in many �elds, such

as physics and chemistry, but specially in signal processing: it has been frequently

used in image processing for compressing and denoising images, but also in speech

recognition and speech synthesis. [Sun13] has used the wavelet transform to model

the prosody of speech and represent the hierarchic model. Moreover, [Vai13] has also

used the wavelet transform as an analysis tool, developing a system for an automatic

detection of word prominence applicable to a high quality speech synthesis system.

This chapter introduces a review of the theoretical basis of the wavelets in 5.1,

the capability of the wavelet transformation to model the hierarchic prosody model

in 5.2, by decomposing F0 contours into di�erent wavelet levels, close related to

linguistic prosody levels and displaying its containing prosodic information. Finally,

section 5.3 presents a new prosody conversion method, based on the properties of

the wavelet analysis.

5.1 Theoretical approach to wavelets

The standard Fourier transform also gives a representation of the frequency con-

tent of the signal, but information concerning time-localization of the interesting

frequency is lost. The short-time Fourier transform, allows getting time-frequency
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localization, by windowing the signal in small frames, and then computing its Fourier

Transform.

However, the time-frequency localization properties are inherent in the wavelet

transformation, so that the di�erence between the windowed Fourier transform and

the wavelet transform remains in the transformation function: while Fourier trans-

form always consists of the same envelope, translated to the proper time location and

"�lled in" with higher frequency oscillations from the data, the wavelet transform

has time-width adapted to their frequency: high frequency transformation functions

are very narrow, while low frequency functions are much broader. The result is the

wavelet transform is better able to capture both low frequency and very brief high

frequency phenomena.

The Continuous Wavelet Transform (CWT) is the basis of the wavelet anal-

ysis [She96], and it is written as:

Twavs,τ = |s|−1/2
∫
dtf(t)ψ

(
t− τ
s

)
(5.1)

This equation produces the decomposition of the function f(t) into the di�erent

ψt,τ wavelets, all of them generated from the mother wavelet (Eq.5.2) by adjusting

s, τ , the scaling and translation parameters.

ψs,τ (t) =
1√
s
ψ

(
t− τ
s

)
(5.2)

5.1.1 Basis of multiresolution analysis

Considering a function f(t) and labeling the resolution level by j the scale below

which all �uctuations on that resolution are ignored is 1/2j. The function that

approximates f(t) is fj(t). At the next resolution level j + 1, the details, denoted

by dj(t), are included in function fj+1(t) = fj(t) + dj(t). This procedure can be

repeated several times. The function f(t) can be viewed as

f(t) = fj +
k=∞∑
k=j

dk (5.3)

Similarly, the space of square integrable functions L2(R) can be viewed as com-

positions of subspacesWk and subspace Vj. Wk contains details dk(t). The subspace

Vj, contains fj(t) approximation of function f(t) on resolution level j.
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The requirements of multiresolution analysis are [Dau92]:

1. Subspace V , must be contained in all subspaces on higher resolutions

. . . ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R) (5.4)

2. All square integrable functions must be included at the �nest resolution level

(5.5) and only zero function on the coarsest level

∪jVj = L2(R) (5.5)

∩jVj = {0} (5.6)

3. All the spaces {Vj} are scaled versions of the central space V0. If f(t) is in

space Vj and it contains no details on scales smaller than 1/2j, then function

f(2t) contains no details on scales smaller than 1/2j+1 and it is from space

Vj+1.

f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 (5.7)

4. If f(t) ∈ V0, so do its translates by integer k, {f(t− k)}.

f(t) ∈ V0 ⇔ f(t− k) ∈ V0 (5.8)

Once these properties are satis�ed by a ladder of spaces Vj there exists a function

ψ(t) ∈ V0 so that {ψ(t− k)} constitute an orthonormal basis for V0.

5.1.2 Discretization of the wavelets

Since the CWT has in�nite wavelets representations, depending on the values of s

and τ , it is not practical using it as an analysis tool. Moreover, depending on the

selected values of the translation and scaling parameters, the mother wavelet could

constitute an orthogonal basis [Dau92], facilitating the posterior reconstruction.

The Discrete Wavelet Transform (DWT) is de�ned by the discretization of s and

τ :

Twavm,n = |a0|−m/2
∫
dtf(t)ψ

(
t− nb0am0

am0

)
= |a0|−m/2

∫
dtf(t)ψ

(
a−m0 t− nb0

)
,

(5.9)

where a0 > 1, b0 > 0, andm and n range over Z. The selection of the values of a0 and
b0 is important for the correct representation of the information contained in f(t),

and the fact that, for some special values, the ψm,n constitute an orthonormal basis
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for L2(R). In particular, if a0 = 2, b0 = 1, there exist ψ with good time-frequency

localization properties, such that

ψm,n(t) = 2−m/2ψ (2mt− n) (5.10)

constitute an orthonormal basis for L2(R) as long as ψm,n are orthonormal.

The �rst known function which satis�es the orthonormal requirements was the

Haar function [Haa10]:

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2
≤ x < 1

0 otherwise

(5.11)

but in the recent years, several functions have proven its properties as orthonor-

mal basis, such as the Meyer wavelet, the Daubechies family of wavelets or the

Mexican Hat wavelet (Fig. 5.1).

Figure 5.1: Several mother wavelet functions, its progressive dilation constitutes an or-
thonormal basis. a) Haar wavelet b) Meyer wavelet c) Daubechies1 wavelet d) Mexican
Hat Wavelet
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5.1.3 The problem of reconstruction

When the discretization of the wavelets is used on a transformed continuous signal

the result is understood as a series of wavelet coe�cients, but it appears a couple of

important questions:

Do the discrete wavelets coe�cient completely characterize the original func-

tion? Can the original function be reconstructed from the discrete wavelets

coe�cients?

It has been proven that is possible getting a stable reconstruction as long as the

wavelets coe�cients satisfy the following condition [Dau92]:

A ‖f‖2 ≤
∑
j,k

| 〈f, ψn,m〉 |2 ≤ B ‖f‖2 (5.12)

being ‖f‖2 the energy of the original function, A > 0, B <∞ and A,B independent

from f . If ψm,,(t);m,n ∈ Z satis�es this condition, also can be understood as an

stability requirement, it is referred as a frame. The connection between frames

and numerically stable reconstruction from discretized wavelets has been proved by

several authors [You80; Gro85].

[Dau92] and [She96] have also proven that if the mother wavelet, joint with the

dilation and scaling parameters, constitutes an orthonormal basis, the reconstruction

of an arbitrarily signal f(t) can be accomplished by summing the orthogonal wavelet

basis function, weighted by the wavelet transform coe�cients:

f(t) =
∑
m,n

Twavm,n (t)ψm,n(t) (5.13)

In conclusion, as long as these conditions are achieved, the signal is fully charac-

terized by the discretized wavelet levels and what is more, the original signal can be

reconstructed.

5.1.4 The equivalence between wavelets and filters

The principal property of the wavelets transformation is the capability of analyzing a

time-variant signal on di�erent frequency scales. The details shown on each wavelet

level, will depend on the scaling parameter s , or its discrete equivalent m (See Eq.

5.1 and Eq. 5.9), �ltering the interesting frequencies on each level.

Furthermore, due to the band-pass like spectrum of the mother wavelet functions
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[Dau92], the progressive dilations of wavelet can be understood as a band-pass �lter

bank (5.2).

Figure 5.2: Filter bank produced by the progressive dilation of Mexican Hat wavelet,
starting from 40 ms and taking ten representation scales.

Adjusting correctly the dilation parameter, the whole spectrum of the signal is

covered by the spectra of dilated wavelets. Once again, if a0 is set to 2 and m ∈ Z,
it ensures the full representation of the signal's spectrum and good time-frequency

localization properties.

5.2 Prosody of speech in the wavelet domain

Using the multiresolution properties of the wavelet analysis, the F0 contours are

transformed to the wavelet domain in order to achieve a better capability of under-

standing the prosodic phenomena present on it. The pitch contours are obtained

from STRAIGHT (See Sec. 4.2), using a 5 ms frame update interval. The spectral

features, modeled as MCC using the SPTK toolkit [SPT], and the aperiodicity map,

are both also obtained from STRAIGHT.

5.2.1 Preprocessing F0

The wavelet analysis is sensitive to the gaps of the signal, besides mean and variance,

therefore a couple of preprocessing steps, proposed originally by [Sun13], are required

to the precise conversion of the signal to the wavelet space.
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The �rst step applied to the F0 contour is a transformation to the logarithmic

scale, since the relevant information in the pitch signal is closely related to the

logarithmic perceptual scale. To �ll the gaps, produced by the unvoiced frames,

a simple linear interpolation is applied to an smooth version of the F0 contour,

created using a 3-point mean �lter. The interpolated gaps are added to the original

logarithmic F0, and a 3-point median �lter is applied to the �nal interpolated signal

to reduce continuities.

In order to reduce the e�ect of the edges, constant F0 is added prior and after

the utterance. The pre-utterance F0 is set to the mean of the �rst half F0, while the

post-utterance is set to the minimum of the second half F0. Finally, the interpolated

F0 contour is normalized to zero mean and unit variance, required by the wavelet

analysis, leading to the �nal F0 preprocessed contour depicted in Fig. 5.3b).

Figure 5.3: F0 contours before (a) and after (b) applying the preprocessing step.

5.2.2 Wavelet transformation of pitch contours

The F0 contour is decomposed using the DWT (see Eq. 5.9), with the Mexican Hat

wavelet as a mother wavelet (Eq. 5.14), with a standard duration of 5 ms. (for

convenience the same interval STRAIGHT uses for the extraction of one sample).

The parameters for the wavelet transformation are set to a0 = 2 and b0 = 1, and

ten scales has been chosen, one octave apart, for the modeling of the di�erent levels

of the wavelet m = 2, 3, . . . , 11.
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ψ(t) =
2√

3π1/4
(1− t2)e

−t2
2 (5.14)

Twavm,n = |2|−m/2
∫
f(t)ψ(2−mt− n)dt, (5.15)

These timing scales are the same ones ones proposed by [Sun13], due to its

proven relation with the prosodic formants of the hierarchic prosody model (Sec.

3.3)[Vai13], leading to the corresponding frequencies in each level:

Scale Duration Frequency
1 20 ms 50 Hz
2 40 ms 25 Hz
3 80 ms 13 Hz
4 160 ms 6 Hz
5 320 ms 3 Hz
6 0.64 s 1.6 Hz
7 1.28 s 0.8 Hz
8 2.56 s 0.4 Hz
9 5.12 s 0.2 Hz
10 10.24 s 0.1 Hz

Table 5.1: Duration of the mother wavelet and frequencies corresponding on each decom-
posed wavelet level.

The �nal wavelet transform of the F0 contour is depicted in Fig. 5.4.
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Figure 5.4: Wavelet transform of the F0 signal with the ten choosen scales, from the
sentence "A maddening joy pounded in his brain" uttered by a male speaker.
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5.2.3 Study of the prosody of speech in the wavelet domain

Once the contour has been decomposed in the ten di�erent levels, interesting di�er-

ences between the speakers uttering the sentence can be perceived.

Figure 5.5: Wavelet transform of two F0 contours corresponding to the sentence "He cried,
and swung the club wildly." , from a male speaker and a female speaker.

In Fig. 5.5 every wavelet level shows di�erent contours for both speakers, allowing

a better and easy modeling of the particular prosody of each speaker, instead of just

using the F0 contour. However, if a deep analysis of the wavelet domain is realized

for each speaker, by adding the boundaries of phonemes, syllables and words, can

be depicted abundant prosodic information on each level, highlighting most of the

prosodic phenomena introduced in Sec. 3.2.

The �rst two levels of the wavelet analysis, corresponding to the phoneme levels,

are shown in Fig. 5.6. It can be noticed that almost every "phoneme slot" corre-

sponds to one peak of the signal, normally aligned close to the boundary, showing a

correlation between the phoneme level of the wavelet analysis and the real phoneme

boundaries. However it is di�cult to analyze the suprasegmental prosodic events in

these high frequency levels (the duration of the phonemes is estimated to be among

50-100 ms.).
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Figure 5.6: Phoneme levels of a F0 contour corresponding to the sentence "A maddening
joy pounded in his brain.", from a male speaker. Phoneme boundaries are represented by
red vertical lines.

Figure 5.7: Syllable levels of a F0 contour corresponding to the sentence "A maddening
joy pounded in his brain.", from a male speaker. Syllable boundaries are represented by
red vertical lines.

In the third and fourth levels, corresponding to the syllable levels, it appears
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several peaks in every "syllable slot", produced by the di�erent phonemes. These

di�erent peaks might correspond to the mora level in the hierarchic model, but since

there are no boundaries estimated for moras or any estimated timing, it cannot be

a�rmed properly.

In the example sentence, it is re�ected in the words 'maddening', where the �rst

peak corresponds to the 'm' sound and the second and third correspond to 'add'

and 'en'; 'joy', with two peaks corresponding to 'j' and 'oy'; or the word 'pounded',

where the �rst peak corresponds to 'pou', the second to 'nd', and third one to 'ed'

(Fig. 5.7).

Figure 5.8: Words levels of a F0 contour corresponding to the sentence "A maddening joy
pounded in his brain.", from a male speaker. Words boundaries are represented by red
vertical lines.

Looking at the word levels, it is recognized one of the main prosodic phenomena:

the stress of the syllable.

The sentence 'A maddening joy pounded in his brain', its word levels are depicted

in Fig. 5.7, the two stressed syllables of the sentence are placed in 'MADDening' and

'POUNDed', a fact that can be appreciated in the wavelet contours: compared to the

other peaks in the corresponding words, the stressed syllables are clearly relevant.

However the syllables 'joy' and 'in' have also a high peak, showing that this speaker

also puts some relevant stress in these syllables, remarking its signi�cance in the

sentence.

Another interesting fact related with the stress of the syllables that can be dis-

cerned in these levels is where it exactly appears: it is not in the whole syllable but
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in the start of the vowel in the syllable.

Figure 5.9: Sentence levels of a F0 contour corresponding to the sentence "A maddening
joy pounded in his brain.", from a male speaker. Words boundaries are represented by red
vertical lines.

Moving forward to the sentence levels, seven and eight of the wavelet transforma-

tion, and keep representing the word boundaries, can be perceived one interesting

fact related to the word categories: in nouns, verbs, adverbs and adjectives, known

as content words, words to which an independent meaning can be given, content a

peak on it. On the other hand, words such as prepositions, conjunctions, or articles,

known as function words, that have little semantic contain of its own and chie�y

indicates a grammatical relationship, they do not content any peak or just a slight

peak.

Both contrasting behavior can be clearly observed in the higher sentence level, as

seen in the example sentence (Fig. 5.9): 'maddening', 'joy', 'pounded' and 'brain'

are content words and it appears its corresponding peak, while 'a', 'in' and 'his' are

function words thus they do not contain any clear peak.

Furthermore, in the second sentence level, high peaks involving several words

can be recognized, which may be understood as either phonological or intonational

phrases (see Sec. 3.3). However, the separation among these prosodic levels it is not

clear thus it is di�cult to place the edges of phonological and intonational sentences

in a written sentence. In the example, they are suggested two groups of intonation:

'a maddening joy' and 'pounded in his brain', which corresponds to the intonation

produced in the audio sample.
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This e�ect produced by phonological and intonation phrases can be easily under-

stood in a sentence with a comma, since it provides a natural division into several

intonational sentences. In Fig. 5.10 both commas are clearly identi�ed in the wavelet

representation, producing the corresponding valleys in the contour. Therefore can

be con�rmed that three phonological phrases are present in the utterance.

Figure 5.10: Sentence levels of a F0 contour corresponding to the sentence "Only, it is so
wonderful, so almost impossible to believe.", from a male speaker. Words boundaries are
represented by red vertical lines.

The �nal levels of the wavelet analysis, corresponding to the utterance levels, show

the general trend of the sentence, the general intonation pattern. In addition,

when two sentences are concatenated to produce a real utterance, it appears the

extra information concerning both sentences, showing the separation in between

(Fig. 5.11).

In conclusion, every level has its own information and show the main prosodic

events represented in a more understandable way. However the levels are not per-

fectly �t to what it is supposed to be represented on it: in the syllable levels can

be appreciated some characteristics from the phonemes, in the word levels can be

observed the stress of the syllable, and in the sentence levels can be recognized some

characteristics of the words. Consequently some adjustments are necessary in order

to achieve a better analysis of the prosody.
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Figure 5.11: Utterance levels of two concatenated F0 contours corresponding to the sen-
tences "A maddening joy pounded in his brain." and "You must sleep, he urged.", from a
male speaker. Words boundaries are represented by red vertical lines.

5.3 Prosody conversion

The wavelet transformation provides a tool to get a better analysis about the prosody

of speech. Comparing the wavelet levels of several speakers can be noticed that the

more di�erent ones, thus the ones which carry the identity and personality of the

speech, are the syllable, word and sentence levels. Based on this hypothesis it is

proposed a new method for the conversion of the prosody in speech (Fig. 5.12):

Figure 5.12: Framework of the proposed prosody conversion method.
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5.3.1 Adjustment and selection of wavelet levels

The scales proposed by [Sun13] which generate the wavelet levels are based in a

study of the Finnish word prominence [Vai13]. Although the scales applied to En-

glish language are quite accurate and generate reasonable wavelet levels, the di�er-

ences among the languages. Since Finnish is a predominantly polysyllabic language,

word level and syllable level are quite di�erent, thus its corresponding frequencies

are clearly di�erentiated. On the other hand, English is closer to a monosyllabic

language, hence syllable frequencies are closer to word frequencies.

This fact can be observed in the wavelet levels: syllable levels show information

majorly related with smaller units than the syllables, meanwhile word levels contain

information related to the syllables and sentence levels shows information concerning

both words and sentences. Consequently, it is proposed increasing the scales by

one octave, thus m = 3, 4, . . . , 12 (See Sec. 5.2.2). With this new timing, the

wavelet levels have been displaced �tting the properties observed in every level to

its corresponding frequency.

A study of the new wavelet levels of 100 F0 contours from the four used speakers

in the dataset (See 6.1), two male and two female, is performed, computing for

every energy-normalized wavelet level, the RMSE among the same wavelet level of

the other speakers. It can be concluded that the levels which have major di�erences

between speakers are the syllable, word and sentence, which re�ects the di�erences

present on the main prosodic phenomena (syllable stress, word stress and intonation)

uttered by the di�erent speakers.

RMSE

Scale 1 0.6347

Scale 2 0.6718

Scale 3 0.8622

Scale 4 0.8327

Scale 5 0.8107

Scale 6 0.7422

Scale 7 0.6119

Scale 8 0.5203

Scale 9 0.4162

Scale 10 0.5023

Table 5.2: Root MSE for 100 F0 contours from four di�erent speakers.

Notice that the �rst two levels are, comparatively, more di�erent than the levels 7

and 8 (the sentence levels), however they are not selected since the goal is modeling
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the suprasegmental features of prosody. Thus, levels 3, 4, 5, 6, 7 and 8 are chosen

to be transformed.

5.3.2 Conversion of wavelet levels and post-filtering

The conversion of the selected wavelet levels is realized using DKPLS (See 4.4.2),

and the algorithm used to solve the PLS regression problem is SIMPLS, proposed

by [de 93].

In the training phase, 40 sentences are used to create the mapping function, prop-

erly aligned using DTW (Sec. 4.3.1), with the extracted MCC as spectral features

(Eq. 2.10). The F0 contours are transformed to the wavelet domain, selecting the

syllable, word and sentence levels, and normalizing each level by its own energy.

Once the conversion is achieved, transforming the syllable, word and sentence

levels and copying the phoneme and utterance levels from the source, a �nal �ltering

stage is applied to the converted wavelet levels to avoid the appearance of frequencies

not corresponding to the desired wavelet level. A simple low-pass �lter is used with

the cut-o� frequencies from each level, shown in Table 5.3.

Cut frequency

Scale 3 25 Hz

Scale 4 12.5 Hz

Scale 5 6 Hz

Scale 6 3 Hz

Scale 7 1.5 Hz

Scale 8 0.8 Hz

Table 5.3: Cut frequencies applied in the low-past post-�ltering stage.

After the �ltering, the original energy of the levels is denormalized, leading to

the �nal converted levels, represented in Fig. 5.13.
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Figure 5.13: Converted wavelet levels from the sentence "A maddening joy pounded in his
brain", uttered by a male speaker and converted to a female speaker.

5.3.3 Reconstruction of the pitch

The reconstruction of the signal after the wavelet decomposition can be achieved

since, all the conditions concerning the mother wavelet equation and the di�erent

dilation and scaling parameters are accomplished. However, the �nal reconstruc-

tion method di�ers from the proposed ones in Sec.5.1.4; it is based on the formula

proposed by [Sun13]:

f0(n) =
10∑
m=1

Twavm,n (m+ 2.5)−5/2 (5.16)

Since this formula was computed ad hoc, its accuracy and e�ciency must be

evaluated: the reconstruction RMSE and the correlation between the original signal

and the reconstructed was tested in 20 sentences from male and female speakers. For

males, the reconstruction error was 1.67Hz with a 99.95% of correlation, meanwhile

in females the reconstruction error was 2.59Hz with a 99.93% of correlation.

Finally, the reconstructed contour is weighted by the mean and variance of the

target speaker, and retransformed to the linear scale (Fig. 5.14), in order to resyn-

thesize the �nal converted speech.
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Figure 5.14: Reconstructed pitch from the sentence "A maddening joy pounded in his
brain", uttered by a male speaker and converted to a female speaker.
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6. Evaluation of the prosody

conversion method

One of the di�culties about VC systems is the real possibilities to evaluate the

quality of the system in terms of identity conversion. The perception of the identity

in speech is largely subjective, and it is a�ected by both speaker and listener: when

a sentence is uttered by a speaker di�erent times, each repetition shows di�erent

details about the identity. On the other side, the listener is closer to recognize the

speaking style if comes from a known person.

Due to these reasons, no unique correct way of converting the speech, and in this

case the prosody it is assumed. The objective is achieve a converted speech, which

might be uttered by the speaker in some situation, and showing characteristics of

the identity and prosody of the target speaker. Based in this goal, some objective

measures can be extracted from the converted speech, however the best way of

evaluation are the listening tests.

This chapter introduces the dataset used in the experiments in 6.1, and presents

both ways of evaluation: section 6.2 introduces an study of the RMSE and the cor-

relation between the converted and target samples, meanwhile section 6.3 presents

a listening test, asking by the evaluation of the naturalness of the converted samples.

6.1 Speech corpus

The dataset used in this thesis comes from the CMU ARCTIC databases, originally

created for speech synthesis by J. Kominek and A. W. Black [CMU]. It consists of

nearly 1150 phonetically balanced English utterances, recorded under studio condi-

tions, and packaged with phonetic labels and pitchmark �les.

The Arctic corpus consists of four primary sets of recordings, 3 male speakers and

1 female speaker, and several ancillary databases. In this thesis, the used speakers

were BDL and RMS, for male speakers, and SLT and CBL, for female speakers. All

of them are experienced voice talent, with an US English accent.
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6.2 Objective evaluation of F0 contours

In order to evaluate the quality and e�ectiveness of the method, it is proposed

studying the RMSE and the correlation of the converted speech using the wavelet

approach and target speech, and compare it with the RMSE and correlation achieved

with the main proposed method in the literature: the MS method (Sec. 4.5). 25

speech samples for each speaker, two male and two female, were converted and

reconstructed, leading to the following results in RMSE:

BDL RMS SLT CLB

BDL 10,35 Hz. 22,63 Hz. 16,93 Hz.

RMS 8,07 Hz. 21,13 Hz. 15,54 Hz.

SLT 12,08 Hz. 14,96 Hz. 20,27 Hz.

CLB 9,56 Hz. 11,66 Hz. 19,56 Hz.

Table 6.1: RMSE between the converted speech with wavelets and sample speech for 25
samples for every speaker. RMS and BDL correspond to the male speakers, meanwhile
SLT and CLB are female speakers.

BDL RMS SLT CLB

BDL 11,14 Hz. 30,68 Hz. 14,43 Hz.

RMS 9,85 Hz. 32,47 Hz. 16,16 Hz.

SLT 11,36 Hz. 15,07 Hz. 15,80 Hz.

CLB 11,31 Hz. 13,53 Hz. 32,58 Hz.

Table 6.2: RMSE between the converted speech with MS method and sample speech for
25 samples for every speaker. RMS and BDL correspond to the male speakers, meanwhile
SLT and CLB are female speakers.

In the case of the correlation between the signals, the results are:

BDL RMS SLT CLB

BDL 73,62% 56,62% 70,82%

RMS 76,10% 54,97% 67,90%

SLT 69,81% 62,18% 69,44%

CLB 64,02% 62,57% 60,87%

Table 6.3: Correlation between the converted speech with wavelets and sample speech for
25 samples for every speaker. RMS and BDL correspond to the male speakers, meanwhile
SLT and CLB are female speakers.
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Involved genders
in conversion

RMSE for
wavelets

RMSE for MS
method

Correlation for
wavelets

Correlation for
MS method

female-to-female 19,92 Hz. 22,53 Hz. 61,93% 44,83%
female-to-male 12,07 Hz. 11,34 Hz. 59,12% 61,23%
male-to-male 9,22 Hz. 10,35 Hz. 74,86% 71,85%
male-to-female 19,09 Hz. 22,62 Hz. 59,02% 45,46%

Table 6.5: RMSE and correlation comparison between prosody conversion with wavelets
and MS method. The di�erent measurements are computed depending on the genders
involved in the conversion.

BDL RMS SLT CLB

BDL 69,52% 31,73% 67,25%

RMS 69,22% 21,13% 59,69%

SLT 57,90% 51,77% 59,42%

CLB 66,16% 56,63% 24,12%

Table 6.4: Correlation between the converted speech with MS method and sample speech
for 25 samples for every speaker. RMS and BDL correspond to the male speakers, mean-
while SLT and CLB are female speakers.

Discerning the conversion among genders, the global results of the RMSE and

correlation are shown in Table 6.5. Although the RMSE for the proposed system

is lower than the MS method, except for the female-to-male conversion, the di�er-

ence between both methods is minimal (less than 4 Hz). On the other hand, the

correlation parameter increases remarkably for the female-to-female and the male-

to-female, showing a better approach to the shape of the target F0 contour. In the

case of male-to-male conversion, it has also increased, however the source and target

F0 contours were already clearly similar. Finally the female-to-male conversion is

the only case where the correlation of the signals decreases.

In conclusion, the proposed method shows a better approximation to the target

prosody of speech, however it is di�cult to evaluate the real prosody performance

based in just two objective parameters. In the next subsection it is proposed a lis-

tening test in order to evaluate the perception of the converted prosody.

6.3 Perceptual evaluation

One of the major di�culties in the evaluation of the prosody of speech is the fact that

the person who evaluates the produced speech does not normally know the speakers

involved in the original samples, consequently the singular prosody of every speaker

is unknown and thus di�cult to evaluate.
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The proposed listening test was conducted under the assumption of creating a

credible sentence, which might be uttered by the target speaker in some situations,

therefore the goal was evaluating the naturalness of the converted prosody, instead

of the particular prosody of the speaker.

There were evaluated four di�erent scenarios of conversion: male-to-female con-

version, male-to-male conversion, female-to-male conversion and female-to-female

conversion, consisting of �ve randomly selected sentences for each speaker pair in

every test. The recordings used come from the CMU ARCTIC databases [CMU],

originally created for speech synthesis. The samples are recorded under studio con-

ditions, and packaged with phonetic labels and pitchmark �les. 16 listeners partic-

ipated in the test. Nativeness was not required as the test was designed in such

a way that also non-native listeners with good English skills can easily judge the

relevant issues from the speech samples.

The listeners heard an initial sample, uttered by the target speaker, and two

versions of the speech uttered by the source speaker, in which the prosody was con-

verted using the two di�erent techniques, the wavelet approach and the MS method.

They were asked to choose the sample that presents best naturalness. The subjects

could also choose "equal" and it was possible to listen to the samples as many times

as necessary. The spectral features were also converted, however they were asked

not to care about quality of the spectral conversion.

6.3.1 Results of listening test

The percentages of preference votes that the two methods received as well as the

total number of votes are shown in Table 6.6 for the four possible scenarios.

Method CW MS equal

male-to-female 63.75% (51) 20% (16) 16.25% (13)

male-to-male 30% (24) 21.25% (17) 48.75% (39)

female-to-male 72.5% (58) 13.75% (11) 13.75% (11)

female-to-female 31.25% (25) 37.5% (30) 31.25% (25)

Table 6.6: Preference votes given to the proposed approach (CW) and to the MS based
approach (MS), and the "no preference" votes (equal).

The percentage results show a clear preference for the proposed approach in

the cases where speech is converted between di�erent genders, either female-to-

male or male-to-female. In the intra-gender conversion, the results do not present

a clear preference for any of the methods proposed: in male-to-male conversion

the predominating choice is the "no preference", meanwhile in the female-to-female
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conversion the votes are almost equally distributed.

According to a two-tailed t-test, the con�dence intervals are computed for every

possible conversion, represented in Fig. 6.1 jointly with the total percentage. It is

shown a signi�cant di�erence between the performance of both proposed methods:

the results for both cross-gender conversion scenarios are statistically signi�cant,

meanwhile in the intra-gender conversion the performance is highly similar.

Figure 6.1: Preference percentage, with 95% con�dence interval for the MS method and
the proposed wavelet method.

Since the database used is originally created for speech synthesis, thus, its ut-

terances are spoken in a controlled prosody style, the di�erences between speakers

from the same gender are minimal, meanwhile for speakers from di�erent gender, the

speaking style presents more di�erences. This is supposed to be one of the reasons

why the intra-gender conversion does not present a clear dominance for any of the

proposed methods.

On the other hand, the listeners were asked to only rate the naturalness, not

how well the prosody matches the expected prosody of the target speaker. Thus,

it is an expected result that the two methods performed at a similar level in the

intra-gender conversion: in this kind of scenario, it is most likely very hard to get

statistically meaningful di�erences, since much less modi�cation is needed than in

the case of inter-gender conversion and, depending a bit on the speaker pair, the

simple reference method may already do quite a good job in terms of naturalness.

And even more importantly, since the listeners didn't know the speakers, the detailed

prosody does not matter that much, as long as the F0 level and scale are �t in the

correct range.
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In the case of cross-gender conversion, the situation is di�erent. The reference

method performs adequately rather rarely because the di�erences in prosodies are

much bigger. It is common that the simple shifting and scaling reduces the nat-

uralness rather much in inter-gender conversion. Thus, there is a lot of room for

improvement, being easier to get statistically signi�cant improvements with a more

adequate prosody, and the fact that the listeners do not know the speakers does not

a�ect the results that much.
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7. Conclusions and Future work

This thesis has addressed the study and conversion of the prosody of speech, using

a well-known technique in signal processing: the wavelet transform. It is proposed

a new prosody conversion system using the wavelet transform to model the di�erent

prosodic phenomena, taking into account the di�erent timing of each one with the

inherent properties of multiresolution analysis of the wavelets. In contrast with

most of the conversion systems present in the literature, the wavelet transformation

allows working with an extended set of data for every temporal frame, enlightening

extra information in the pitch contour.

Section 7.1 presents the conclusions concerning the study of the prosody phenom-

ena in the wavelet domain, meanwhile section 7.2 discusses the prosody conversion

method. Finally, section 7.3 presents lines for future research that can be considered

as extensions of the work developed in this dissertation.

7.1 The wavelet domain

The prosody modeling system using the wavelet transformation has shown a con-

siderable potential to analyze the prosodic phenomena of the speech. Due to the

separation in di�erent streams, the diverse prosodic events emerge and thus, can be

easily studied and modeled. Moreover, since the prosodic phenomena are extracted

directly from the pitch, it is not required explicit information of the e.g. stressed

syllables or the content words.

The stress of the syllables and words, and the intonation pattern are the main

prosodic phenomena appreciable in the wavelet domain, nevertheless, it can also

be observed other prosodic phenomena, such as the distinction among content and

function words or the appearance of the intonational phrases. Other prosodic events,

di�erentiating the morphological levels of prosody, such as the mora or the stress

foot, are also perceptible, however since the boundaries of these levels are imprecise

and di�cult to place, the study of the prosodic events present in these levels is

not strictly accurate. On the other hand, the syllable and prosodic word levels are

clearly related to the boundaries of syllables and words, respectively: essentially

every syllable or word boundary coincide to a valley on the corresponding wavelet

level.

However, the entire prosodic phenomena appearing in speech have remarkable
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di�erences depending on the language which the sentence is uttered, therefore the

timings of the wavelet transformation have to be adjusted and �t according the

language the sentence is uttered. In this thesis, the timings proposed by [Sun13] for

Finnish language were tested in an English corpus, showing a dissimilarity between

the supposed wavelet levels and the prosodic events present on it. Therefore, an

adjustment of the wavelet transformation timings was required, in order to represent

the entire prosodic morphology properly.

This fact suggests that, for every language, the timings of the wavelet transfor-

mation must be reviewed, according to the intrinsic characteristics of the language.

Moreover, for di�erent speaking styles in the same language, or for modeling emo-

tions, which also a�ects and alters the prosody, the timings should also be reconsid-

ered.

7.2 A new prosody conversion system

The proposed conversion system, based on a wavelet transformation of F0 contours

and the posterior conversion in the wavelet domain, presents better objective mea-

sures, in this thesis RMSE and correlation, than the usual method in literature for

three of the four tested conversion scenarios. The female-to-male conversion is the

only one which presents a worst performance.

Otherwise, the perceptual evaluation shows the clear preference for the new pro-

posed method in the cross-gender conversion (male-to-female and female-to-male),

where the di�erences of source and target pitches are noteworthy. On the other

hand, for intra-gender conversion, where the pitch pro�les are closer in range and

mean level, there is no clear preference for any of the evaluated methods, leading to

an equal perceptual performance.

The di�erences according the objective and perceptual measurements are inter-

esting, since the only case where the RMSE and correlation have decreased in com-

parison with the MS method, it is precisely the case where better results have been

obtained in the listening test. Thus, it is suggested that the proposed method al-

lows creating more natural pro�les of pitch than the MS method, in the cases where

the di�erences of speaking style are remarkable among the speakers, although the

di�erences with the actual target pitch are substantial.

7.3 Future work

There are several lines for future research that can be considered as extensions of the

work developed in this dissertation. Three major areas, which will bene�t greatly

from further research, are brie�y discussed in the following paragraphs.
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Automatic adjustment of the timings for the wavelet analysis. The se-

lection of the timings of the wavelet is a critical point, since in order to generate

an accurate representation of the prosodic events of speech. A suggested system,

already used by [Vai13], to the establishment of the correct timings, is studying the

peak prominence in the word and syllables levels and relating it with the syllable

and word boundaries. The level showing major relation between the peaks and syl-

lables/word slots will be selected as syllable/word level, allowing the construction

of the complete wavelet domain.

Testing other wavelets transforms Even though the Mexican Hat wavelet has

proved good properties in order to represent the prosodic events, other wavelets with

di�erent properties can be proven. The Morlet wavelet (or Gabor wavelet), which is

highly related with the auditive perception scale of the humans, or wavelets allowing

a full reconstruction of the original signal without depending on the dilation and

scaling parameters, such as the Daubechies wavelets, can be tested.

Improving the statistical mapping technique DKPLS has shown its capabil-

ities to model the prosody using the wavelet domain, however, several improvements

can enhance the performance of the system. It is suggested to treat each prosodic

unit separately: using the phonemes/syllables/words boundaries on the correspond-

ing wavelet level to model the prosodic unit, for instance with CARTs, based on the

position and amplitude of the peak present on the slot.

Testing the system in diverse databases The proposed method has shown

good results in speakers where the speaking style is clearly di�erent, consequently,

the system could also be tested in emotional databases, where the prosody is clearly

di�erent for every emotion. Moreover, a complete prosody and emotion conversion

system requires a detailed conversion of the speaking rate and the duration of the

syllables. The approach proposed by [Nav14], modeling the syllable duration with

CARTs, would be an appropriate alternative.
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