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ABSTRACT 
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Tampere University of Technology 
Master of Science Thesis, 50 pages, 1 Appendix page 
September 2018 
Master’s Degree Programme in Information Technology 
Major: Embedded Systems 
Examiner: Ass. Prof. Jarno Vanne 
Keywords: video coding, High Efficiency Video Coding (HEVC), eye tracking, 
region of interest (ROI), Kvazaar HEVC encoder 

The increase in video streaming services and video resolutions has exploded the volume 

of Internet video traffic. New video coding standards, such as High Efficiency Video 

Coding (HEVC) have been developed to mitigate this inevitable video data explosion 

with better compression. The aim of video coding is to reduce the video size while 

maintaining the best possible perceived quality. Region of Interest (ROI) encoding 

particularly addresses this objective by focusing on the areas that humans would pay the 

most attention at and encode them with higher quality than the non-ROI areas. 

Methods for finding the ROI, and video encoding in general, take advantage of the Human 

Visual System (HVS). Computational HVS models can be used for the ROI detection but 

all current state-of-the-art models are designed for still images. Eye tracking data can be 

used for creating and verifying these models, including models suitable for video, which 

in turn calls for a reliable way to collect eye tracking data. Eye tracking glasses allow the 

widest range of possible scenarios out of all eye tracking equipment. Therefore, the 

glasses are used in this work to collect eye tracking data from 41 different videos. 

The main contribution of this work is to present a real-time system using eye tracking 

data to enhance the perceived quality of the video. The proposed system makes use of 

video recorded from the scene camera of the eye tracking glasses and Kvazaar open- 

source HEVC encoder for video compression. The system was shown to provide better 

subjective quality over the native rate control algorithm of Kvazaar. The obtained results 

were evaluated with Eye tracking Weighted PSNR (EWPSNR) that represents the HVS 

better than traditional PSNR. The system is shown to achieve up to 33% bit rate reduction 

for the same EWPSNR and on average 5-10% reduction depending on the parameter set. 

Additionally, the encoding time is improved by 8-20%.  
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Videoliikenteen määrä Internetissä on räjähtänyt viime vuosina kasvavien 

videoresoluutioiden ja suoratoistopalvelujen takia. Tähän haasteeseen on vastattu 

kehittämällä uusia videopakkausstandardeja, kuten High Efficiency Video Coding 

(HEVC). Videonpakkauksen tarkoituksena on pienentää videon kokoa ja samalla pitää 

videon laatu mahdollisimman hyvänä. Erityisesti mielenkiintoisen alueen pakkaus pyrkii 

tähän pakkaamalla paremmalla laadulla alueet, joihin ihmiset kiinnittävät eniten 

huomiota. 

Mielenkiintoisen alueen etsintään ja pakkaukseen tarkoitetut menetelmät hyödyntävät 

ihmisen näköaistimallia (HVS). Laskennallisia HVS-malleja voidaan käyttää 

mielenkiintoisen alueen etsimiseen, mutta olemassa mallit on suunniteltu pääasiassa still-

kuville. Katseenseurannasta saatua dataa voidaan hyödyntää näiden mallien 

rakentamiseen ja varmentamiseen, mukaan lukien mallit, jotka ovat tarkoitettu videolle. 

Siksi tarvitaan luotettava tapa kerätä tätä dataa. Katseenseurantalasit mahdollistavat 

kyseisen datan keräämisen monipuolisemmin ja niitä onkin tässä työssä käytetty 

katsedatan keräämiseen 41:stä videosta. 

Tämän työn pääasiallinen tavoite on esitellä reaaliaikainen järjestelmä, joka käyttää 

katseenseurantaa reaaliaikavideon pakkaamiseen paremmalla koetulla laadulla. 

Pakkaamiseen käytetään avoimen lähdekoodin HEVC videokooderia nimeltään Kvazaar. 

Subjektiivisella käyttäjätestillä todettiin järjestelmän parantavan laatua verrattuna 

normaaliin Kvazaarin. Myös objektiivisten testien mukaan järjestelmä käyttää jopa 33% 

vähemmän bittejä ja asetetuista parametreista riippuen säästöä saadaan keskimäärin 5-

10%, kun objektiivisena metriikkana käytetään katseenseurannalla painotettua PSNR-

metriikkaa (EWPSNR). EWPNSR vastaa paremmin ihmisen havaintokykyä kuin 

normaali PSNR. Lisäksi järjestelmä on 8-20% nopeampi kuin normaali Kvazaar. 
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1. INTRODUCTION 

Currently, 73 percent of all consumer network traffic is reported to be video traffic and it 

is forecasted to raise up to 82 percent by 2021. In the same time frame, all Internet traffic 

is forecasted to grow threefold, causing total monthly video traffic to be approximately 

228 EB (228 000 000 terabytes) [1]. Most of the video traffic is compressed since, e.g., 

ten minutes of 1080p30 raw RGB-video takes over 110 GB of storage space. Considering 

the volume of existing video traffic, being able to compress video further can reduce total 

network load significantly. 

High Efficiency Video Coding (HEVC/H.265) [2] is the state-of-the-art video coding 

standard following the current mainstream standard Adaptive Video Coding (AVC/H.264) 

[3]. HEVC is designed to reduce the bit rate of video by 40 percent over AVC for the 

same visual quality but with a complexity overhead of 40 percent. HEVC was primarily 

introduced to cope with increasing video resolutions, especially 4K and UHD [4]. Video 

encoding is, in general, lossy compression that removes details from the video but tries 

to maintain good perceived quality. For example, human perception is skewed towards 

lower frequency details, meaning that high frequency details can be removed more freely 

without affecting the perceived quality [5]. 

Region of Interest (ROI) encoding methods are developed to reduce perceptual 

redundancy of the video [6]. ROI encoding has especially drawn interest recently since 

the tools for removing statistical redundancy have been improved significantly during the 

past two decades, making ROI encoding an easier way to increase encoding efficiency. 

The main purpose of ROI encoding is to produce video that is perceived well by the 

Human Visual System (HVS), with less bits than traditional encoding. 

Although video encoding tries to maintain highest possible perceived quality within given 

bit rate constraint, the current tools do not always allow for it. Traditionally used quality 

metrics, which the encoder uses for optimizing the output, such as Peak Signal to Noise 

Ratio (PSNR) and Structural Similarity index (SSIM) [7] do not match with human 

perception [8]. To produce better-perceived quality, better models that resemble human 

perception are needed for encoders. One subdomain of computer vision, which is heavily 

dominated by neutral networks, is saliency [9]. Saliency maps could be used for detecting 

the areas that are most interesting to humans, however, they are mostly for two-

dimensional data, computationally complex, and do not necessarily model human 

behavior accurately [10].  
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The most common fields of eye tracking are usability and human-computer interaction 

studies but it can also be used to model human vision [11]. Eye tracking can be used to 

generate the saliency maps, which dictate the interesting areas for the encoder. Eye 

tracking data gathered from twenty different persons can generate a saliency map, which 

is reasonably close to universally applicable model [10]. However, encoding can produce 

artifacts that shift the viewers’ attention towards them, invalidating the saliency map. 

Therefore, any system trying to produce maximal perceived quality should pay attention 

to it. 

The remainder of this Thesis is structured as follows: In Chapter 2, the concepts behind 

video encoding, subjective video encoding, and eye tracking are discussed. Chapter 3 

goes over existing systems that make use of eye tracking as a part of a video codec. 

Chapter 4 describes the research methodologies used in this work. In Chapter 5, the 

proposed system using live eye tracking data to improve perceived video quality is 

described and the performance of said system is evaluated in Chapter 6. In Chapter 7, 

future possibilities of the system and the usage of eye tracking data are discussed. Finally, 

Chapter 8 concludes the work. 
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2. CONCEPTS OF VIDEO ENCODING AND EYE 

TRACKING 

The work presented in this Thesis is based on three key concepts: 1) video encoding; 2) 

region of interest (ROI) video encoding; and 3) eye tracking. In Section 2.1, the most 

interesting video coding standards and the encoding flow of the current state-of-the-art 

HEVC standard are considered briefly. In addition, a comparison of open-source video 

encoders is made to choose the best one for this work. The main concepts of ROI encoding 

are explained in Section 2.2. Finally, the basics of eye tracking and the tools used for eye 

tracking are looked at in Section 2.3. 

2.1 Video Encoding 

The main purpose of video coding is to reduce the file size by removing redundancy. In 

traditional coding, first encoding and decoding data must preserve the contents, e.g., 

encoding the content of this Thesis and then decoding it only to find half of the words 

missing would be highly inconvenient. By default, all analogue data lose detail compared 

with real world, since analogue signals are on a continuous scale but they have to be 

clamped to discrete values when digitalized. For videos, each pixel is represented by a 

limited number of bits, i.e., they have a certain bit depth. Data such as sound, images, and 

video that are mainly consumed by human senses can lose further detail without humans 

noticing it, e.g., color shades that are very close to each other might be impossible to 

distinguish from each other and can be encoded to same value saving bits. In order to 

minimize the video bit rate as much as possible, it is not uncommon for video encoder to 

produce noticeable visual artifacts, particularly when targeting lower bit rates [6].  

For most people, the RGB color space is the most familiar one but in video and image 

compression, the most commonly used color space is YUV. Like RGB, YUV consists of 

three different components, the Y-component is called luma and U and V-components 

are called chroma. The luma component represents brightness and chroma components 

color information. YUV was introduced as a natural move from black and white television 

to color television, since the luminance layer is already present in black and white image. 

Additionally, since humans are more sensitive to changes in brightness than color, the 

chroma layers can be subsampled. The most and second-most common subsampling 

schemes are 4:2:0 and 4:2:2, respectively. In 4:2:0 format, the resolutions of chroma 

layers are halved both vertically and horizontally whereas only the horizontal resolution 

is halved in 4:2:2 format. 

Video coding standards are developed to produce the highest possible quality video for 

the given bit rate. Currently, the most well-known video formats are AVC, HEVC, 
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Versatile Video Coding (VVC/H.266) [12], VP9 [13], and AV1 [14]. AVC, HEVC, and 

VVC are all developed as a joint effort of ITU-T Video Coding Experts Group (VCEG) 

and the ISO/IEC Moving Picture Experts Group (MPEG) standardization organizations 

[15]. Since its finalization in 2013, HEVC has slowly started to replace AVC. For 

example, most modern smartphones from late 2014 onwards have had HEVC decoding 

hardware support [16], [17]. Existence of mobile hardware decoders fosters the adoption 

of a standard since they allow better energy efficiency, which is extremely important 

factor on popular mobile platforms. However, the largest hurdle for largescale adoption 

of HEVC has been the licensing issue that is caused by multiple patent pools in the 

technologies used by HEVC [18]. VP9 and its successor AV1, developed originally by 

Google and Alliance for Open Media thereafter, were introduced as royalty free 

alternatives to HEVC [1]. VVC is a foreseen successor to HEVC but its standardization 

process has just begun. Its most likely competitor AV1 is yet to have any use outside of 

tech-demos. 

In this work, the rest of the discussion is focused on HEVC because it is the current state-

of-the-art standard. In addition, some discussion about differences between HEVC and 

the preceding AVC standard is included to get familiar with the background of the field. 

One should note that this is not complete coverage of the standards but a quick overview 

of the parts that are relevant to this Thesis.  

2.1.1 HEVC Overview 

All modern video coding standards, including AVC and HEVC, are block based [4], i.e., 

the image is split into smaller blocks that act as encoding units. These blocks are called 

macroblocks and Coding Tree Units (CTU), respectively. Moving from static sized 

macroblock to variable size CTUs is one of the most noticeable changes between AVC 

and HEVC [4]. The most common size for CTUs is 64×64 pixels, though standard allows 

them to be smaller. CTUs can contain one Coding Unit (CU) or they can be split into 

multiple CUs with the smallest allowed size being 8×8, conversely the macroblocks are 

always 16×16. Figure 2.1 depicts how images are split into CTUs in HEVC and Figure 

2.2 how CTUs can be further partitioned into CUs.  
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HEVC and its predecessors have two different prediction modes: intra and inter. Intra 

prediction works within a single video frame by copying pixel values from surrounding 

CUs. In HEVC, intra prediction has 35 different modes [4]: planar, DC, and 33 angular 

modes. The different angular modes are visualized in Figure 2.3. In planar mode, a 

gradient of the edge pixels is used whereas average of all edge values is used for 

prediction in DC mode. In angular mode, the pixel values are copied according to the 

angle.  

The main difference between a still image and video is a temporal dimension, which adds 

a lot of redundancy in video and favors using inter coding as a prediction type. With inter 

prediction, the currently encoded CU is compared with co-located areas in previous 

 

Figure 2.1. Partition of a video image into coding tree units. 

 

 

Figure 2.2. Coding tree unit split into multiple 

coding units. 

64 Pixels

64 Pixels

 

Figure 2.3. Angles of HEVC intra 

prediction modes [4]. 
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frames to find an optimal motion vector for the CU. After the prediction mode is chosen, 

the prediction is subtracted from the original frame to create a residual. 

The residual is encoded using transform coding. In HEVC, the residual is transformed 

using Discrete Cosine Transformation (DCT) or in the case of 4 × 4 luma blocks with 

Discrete Sine Transform (DST). The transformed coefficients are quantized to reduce 

their size. A Quantization Parameter (QP), having a range from zero to 51, is used to 

determine the quantization level. A higher QP means that the coefficients are quantized 

to fewer values, resulting in more distortion to the encoded video. Generally speaking, 

QP has the highest factor to the video bit rate out of all other tools and steps of the 

encoding.  

Both AVC and HEVC allow varying QP at macroblock and CU granularity, respectively 

[20], [21]. The varying QP can be used for rate control or ROI encoding. Rate control 

belongs to the non-normative part of the encoding process but it is necessary in real-life 

use cases. Rate control ensures that the bit rate of the video stays nearly constant by 

allocating the bits of the video, either at Group of Pictures (GOP) level or at picture level. 

Most live Internet videos are delivered at a constant bit rate because otherwise situations 

like scene-cuts, which require many bits to maintain the quality, would cause buffering. 

Both AVC and HEVC support Supplemental Enhancement Information (SEI) messages. 

The purpose of SEI messages is to allow embedding additional information into the video 

bit stream, such as color space information and timing information for the frames. At the 

beginning of the SEI message, there is a sixteen bytes long unique identifier that is used 

to differentiate between different kinds of SEI messages, followed by the payload of the 

message. 

2.1.2 Comparison of Open-Source Video Encoders 

The encoders compared in this Section include Joint Model (JM) [22], x264 [23], HEVC 

Test Model (HM) [24], Kvazaar [25], Turing [26], and x265 [27]. A summary of all these 

projects is given in Table 2.1.  

The AVC encoders, JM and x264, are also included because the previous work explored 

in Section 3 is mainly based on them. JM is a test model of AVC, developed by the 

standardization group. It implements all features specified in the standard and little 

attention is paid to its complexity suppressing any real-life use. x264 is probably the most 

well-known practical open-source AVC encoder. It is developed by the non-profit 

organization VideoLAN and it is often used as baseline for encoder comparisons [28]. 

Practically all research on AVC is based on these two encoders. Theoretical proposals are 

often implemented in JM whereas more practical ones address x264. Especially, when 

complexity is concerned JM is a poor choice, since its acceleration might have a poor 

correlation with real applications.  
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Similarly to JM, HM is a test model implementing all features of HEVC. x265 is 

developed by MulticoreWare and is currently probably the best-known practical open-

source HEVC encoder [27]. Turing codec is a newcomer to open-source HEVC encoders, 

developed by BBC [26], and unlike x265 it is a complete codec instead of an encoder 

only. The reported commit count in Table 2.1 is most likely undervalued since the 

development seems to be mostly internal. Kvazaar is an award-winning open-source 

HEVC encoder developed by our Ultra Video Group at Tampere University of 

Technology [29]. 

Because this work particularly addresses real-time systems, the real-time performance of 

the encoders is evaluated. In Table 2.2, the version and command line arguments of the 

applied versions of Kvazaar, Turing, x264, and x265 are tabulated. HM and JM are not 

included in the evaluation because they are far from real-time. x264 is included as a 

baseline to display a concrete difference between the performances of the HEVC and 

AVC standards. For all the chosen encoders, the fastest preset is used, with a low-delay 

or equivalent configuration if available.  

 

The performance figures of the encoders are tabulated in Table 2.3. A more thorough 

explanation on how these values were obtained is given in Chapter 4. The speedup is 

reported over the frame rate of x264. Bit rate tells how many bits the encoder requires to 

produce similar quality. All the benchmarked HEVC encoders are clearly slower than 

x264, as expected, with x265 being nearly three times, Kvazaar four times, and Turing 

Table 2.1. Overview of the open-source video encoders. 

Encoder JM x264 HM x265 Turing Kvazaar 

Standard AVC AVC HEVC HEVC HEVC HEVC 

License BSD 
GPL2/ 

Commercial BSD 
GPL2/ 

Commercial GPL2.0 LGPLv2.1 

Coordinator JCT-VC VideoLAN JCT-VC MulticoreWare BBC TUT 

Language C C C++ C++ C++ C 

Commits N/A 2901 4959 12368 89 2592 

Last Commit 06/2015 01/2018 04/2018 Active 11/2017 Active 

 

Table 2.2. Used encoder versions and command line arguments. 

Encoder Commit Command line arguments 

Kvazaar 4fb1c16c6198 --preset ultrafast --owf 0 

Turing  5d44bd79b3be --speed fast --concurrent-frames 1 

x264 7d0ff22e8c96 
--preset ultrafast --tune psnr --non-deterministic --no-scenecut  
--bframes 0 --b-adapt 0 --sliced-threads --no-mbtree  
--rc-lookahead 0 --sync-lookahead 0 --force-cfr 0 

x265 538f3ad860a5 
--preset ultrafast --tune psnr --bframes 0 --b-adapt 0  
--rc-lookahead 0 --no-scenecut --no-cutree --frame-threads 1 
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over 25 times slower. Still, both Kvazaar and x265 are able to encode 1080p30 video in 

real time on the test machine. Although Turing is able to provide better quality than 

Kvazaar and x265, it is simply too slow for real-time coding. It should be noted that the 

use of low-delay settings reduces the amount of parallelism available to the encoder, so 

increasing the delay improves encoding speed but not enough to make Turing 

competitive. Since the quality of Kvazaar and x265 is practically the same x265 would 

be a better choice if the selection was made on the basis of performance measurements. 

The other important aspect for the encoder selection is their compatibility to ROI 

encoding. x265 supports multiple different rate control schemes but none of them is 

targeted at ROI encoding. The closest tool of x265 is adaptive quantization that tries to 

work around the flaws of the traditional rate control. Despite that the rate control scheme 

of Kvazaar is not as sophisticated, Kvazaar supports Delta QP (DQP) matrixes that allow 

setting the QP values in a way that the ROI areas are encoded with higher quality. This 

feature clearly advocates implementing the proposed ROI scheme in Kvazaar.  

2.2 Region of Interest (ROI) Video Encoding 

Since both VVC and AV1 [30], [28] increase the coding complexity massively over their 

predecessors, it is obvious that most traditional coding techniques have been exhausted. 

Further bit rate savings can be achieved by either introducing more and more complex 

coding tools or by changing the approach. In the former case, the complexity grows 

unsustainably, which is evident from the exponential growth in complexity with each 

standard. ROI encoding is a prime example of the latter, since video encoding tries to 

produce the best perceived quality at a given bit rate, the simplest way to achieve it is to 

allocate the available bits to the areas that humans find salient.  

ROI encoding seeks to select the interesting areas and encode them with higher quality. 

ROI encoding does not specify how the quality of the video should be controlled 

regarding the ROI. The methods for changing the quality can be divided into two distinct 

Table 2.3. Performance of the HEVC encoders compared with x264 on the standard 

HEVC test sequences with Intel i7-5960x processor.

 

  Kvazaar Turing x265 

Class Bit rate Speedup Bit rate Speedup Bit rate Speedup 

hevc-A -54.8 % 0.26× -76.8 % 0.04× -51.3 % 0.34× 

hevc-B -56.0 % 0.24× -81.9 % 0.04× -56.4 % 0.36× 

hevc-C -44.2 % 0.22× -72.8 % 0.03× -43.1 % 0.35× 

hevc-D -35.3 % 0.28× -72.1 % 0.05× -36.5 % 0.51× 

hevc-E -58.5 % 0.24× -81.6 % 0.04× -63.6 % 0.36× 

hevc-F -13.6 % 0.20× -54.8 % 0.03× -12.2 % 0.34× 

Total -42.6 % 0.24× -73.0 % 0.04× -42.9 % 0.38× 
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categories: 1) preprocessing the image; and 2) embedding the quality change into the 

encoding process [6]. Preprocessing methods most commonly apply low-pass filter or 

Gaussian blur to the image. They are not standard dependent and can be applied to any 

encoder. However, their effect is usually limited, since for example, applying a Gaussian 

blur to an image is inelegant method thus becomes noticeable very fast. Thus, 

preprocessing is not a commonly used method but it can be used to augment other 

methods or as an easy to implement method to test ROI detection algorithms. 

The more common and effective method for implementing the varying quality is 

embedding it into the encoding process. The two most common approaches are to use 

either non-uniform DQP matrixes or a custom rate control system [6]. With DQP 

matrixes, a lower QP value is set to the areas inside the ROI. Rate control implementations 

replace the native rate control algorithm of the encoder with a custom one that allocates 

more bits to the ROI area at the expense of the non-ROI areas. A rate control system is 

more complex to implement than DQP matrixes, but it allows finer control over the result. 

In addition, it is the only option for applications that require the bit rate to be limited to a 

certain level. 

While quite a lot of research effort has been put into ROI encoding, surprisingly little 

research exist on how the quality should change around the ROI. Arndt and Antons 

conducted a test using eye tracker to recognize where the viewers were looking and 

displayed higher quality video around the gaze center [31]. The purpose of the test was 

to find out how the radius of the higher quality area around the ROI affected perceived 

quality of the video. The degradation in quality was a sharp drop around the ROI and they 

noted that all test subjects noticed the sharp drop at least for some of the test conditions. 

Thus, a real system should not use a sharp drop but linear or logarithmic rate of 

degradation. Changing the degradation method would most likely mean that the radius 

could be smaller than what was found in their experiment. In addition, the test was 

conducted with only one 10 minute sequence. It would also be useful to examine 

differences between low and high foreground/background movement. For example, 

watching a newscast with a static background versus a background with action where the 

viewers gaze is more likely to drift around. Finally, the higher quality area was placed at 

the area where the person is watching. This approach requires that a watcher is using an 

eye tracker, but a model that tries to find out where the user is watching cannot accurately 

predict gazes of every single person. Some comparative research has been done between 

linear and logarithmic rate of quality degradation [32]. The results suggest that 

logarithmic degradation is better than linear, but no in-depth results are available. 

However, together with the fact that HVS is logarithmic [6] using logarithmic degradation 

over linear should be justifiable until further studies on the topic are conducted. 

In ROI encoding, one can find it challenging to assess the quality of the result [6]. The 

best way to assess the quality would be to conduct subjective user tests but those are time 

consuming, expensive, and require extra care to make sure that the results are credible. 
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However, objective metrics such as PSNR and SSIM reflect HVS poorly [8], but they are 

used in encoders due to their computational simplicity. For example, when comparing bit 

rates of HEVC and AVC for the same quality HEVC requires more bits with PSNR than 

with subjective metrics [33]. Whereas evaluating different objective quality metrics over 

the subjective ones is out of the scope of this work, care should be taken when evaluating 

any ROI encoding system. 

A major challenge of ROI encoding is the actual selection of the ROI. Handpicking can 

be used if the only goal is to test a rate control scheme or when comparing a model for 

picking the ROI. However, there is a caveat with handpicking the ROI areas, since the 

handpicked areas may not represent HVS. Eye tracking can be used to detect human gaze 

points for a certain sequence. About twenty people are required [10] to achieve gaze maps 

that do not change noticeably even if the number of viewers is increased. However, 

generating the ROI with eye tracking may not always be possible. A common feature for 

all the ROI generation methods is that they try to imitate the HVS. 

2.2.1 Human Visual System (HVS) and Foveation 

Human Visual System (HVS) is the backbone of any perceptual video encoding effort 

[6]. The 2-5 degree area at the center of human vision, called fovea, is the main concept 

of the HVS [11]. Outside of the fovea, the perception reduces gradually towards the edge 

of the vision. This particularly holds with stationary objects while moving objects can 

grab a person’s attention even from the edges of the vision. Foveation is a concept where 

parts of image are expressed at lower resolution, similarly as the HVS perceives it. The 

most common example of foveated images are map applications where the image 

resolution gets gradually better as the user zooms in. Foveated pictures are created by 

foveation filters. 

The HVS can make use of two different patterns: bottom-up and top-down [11]. The 

bottom-up pattern is mostly the subconsciousness guiding the gaze, e.g., bright colors 

draw attention. On the other hand, top-down is mostly conscious decision: prior 

knowledge or looking for something specific in the scene. Most of the time the HVS 

operates in the bottom-up mode, which makes humans often look at moving objects. 

2.2.2 History of Computational Saliency Models 

Whereas the HVS model has been an interesting topic since the late 19th century, [11] 

the first computational model for it was introduced in 1998. It is called the IKN-model, 

named after its creators Itti, Koch, and Niebur [34]. The model was originally created to 

find possible interesting image areas in order to apply more computationally complex 

algorithms for them. The model is purely bottom-up because the HVS also works in 

bottom-up mode when scanning the image. The model uses Gaussian pyramids of 

luminance, color, and orientation to calculate the saliency map. The model works on 
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biological basis where the scan order of the salient objects is addressed. The first object 

is considered to be the most salient one. Then, based on the distance to the previous salient 

object the next most salient is chosen and a scan-path for the image is formed. 

The original IKN model was meant for images but in [35] the model was extended to 

work with video data by adding temporal effect to the luminance, color, and orientation 

pyramids. The model picks one to five different ROIs based on the parameters given to 

the model. The actual ROI encoding is done by applying varying Gaussian blur to the raw 

video frame before encoding. The model was verified by using eye tracking from eight 

subjects, which may not be enough [10]. Furthermore, the perceived video quality was 

not verified, which leaves the credibility of the results questionable.  

After the IKN model, several other computational models have been created, e.g., [36] 

and [37]. The work in [36] focuses on detecting the salient objects from an image. The 

detection is done by using a conditional random field with maximal logarithmic sum of 

different features as the optimization function. The features are from three categories: 

local, regional, and global. The local feature is simply an average of different levels of 

contrast pyramids. The regional feature is calculated by forming a histogram of the colors 

in the image and then the supposed salient object’s histogram is compared with its 

surroundings. Finally, the global feature is formed by calculating the spatial variance of 

color in the image. Conversely, [37] focuses on how saliency is distributed on an image. 

It uses logarithmic representation of Fourier transforms of 64 by 64 blocks in the image. 

The saliency map is formed by deducting the average Fourier transform of multiple 

images from the transformed image and then applying an inverse Fourier transform to the 

remaining values and smoothing the result. 

Recently, solutions using Neural Networks have become the state-of-the-art methods for 

creating saliency models, most prominently [38] and [39]. The drawback with [38] is that 

it only segments the salient object out of the image similarly to [36]. Assigning only one 

large area completely salient is not very usable in video coding, since the actual saliency 

is most likely heterogeneously distributed inside the object. For example, if the salient 

object is a house, people are more likely to look at specific parts of the house such as 

doorways and windows. On the other hand, [39] can generate very natural heat maps 

compared with real human fixations but it is primarily designed for images.  

Surprisingly little effort has been put into saliency models meant specifically for videos. 

There exist no neural networks that would try to generate models for improving the 

perceived quality or influence the rate control of video encoding. The model presented in 

[40] is probably the most promising among the models released in recent years. It is 

heavily based on the IKN model with global motion compensation added for the temporal 

effect, since the IKN model does not perform well when the camera is moving [40]. 
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2.3 Eye Tracking 

The English term “eye tracking” is somewhat confusing, since it commonly refers to gaze 

tracking rather than tracking eyes only. Throughout this Thesis, eye tracking refers to its 

broader definition, but tracking eye movements is considered here first.  

Eye trackers are devices used for tracking the eye movements. They can be split into four 

broad categories based on the measurement methodology: 1) Electro-OculoGraphy 

(EOG); 2) scleral contact lens/search coil; 3) Photo-OculoGraphy (POG) or Video-

OculoGraphy (VOG); and 4) video-based combined pupil and corneal reflection [11].  

EOG was developed in the 1970s and it relies on measuring electrical differences on the 

skin when the wearer shifts their gaze, by using electrodes placed on skin near the eyes. 

The main disadvantage of EOG is that it only tracks the eyes and for actual gaze tracking 

the user’s head has to be held in place or the movement has to be tracked.  

Like EOG, the contact lenses also record eye movement only but with a contact lens and 

a measuring device placed on the eye [11]. Contact lenses provide the best accuracy, but 

they are the most intrusive method for eye tracking and cause discomfort for the user. 

A difference between POG and VOG methods is the lack of temporal dimension in POG. 

Otherwise, they group together since both methods use features of the eyes under 

movement and corneal reflection usually from infrared light [11]. The features can be 

either detected manually, or automatically from a video, but manual detection can be 

extremely tedious and error prone. In Figure 2.4, corneal reflections from an infrared light 

and automatically detected pupil are visualized. Like the previous methods, POG and 

VOG are only suitable for eye and not gaze tracking on their own.  

Video-based combined pupil and corneal reflection is an advancement of the POG and 

VOG methods. It introduces easy ways to turn the eye tracking into gaze tracking [11]. 

Cameras and image processing software are used to track the head position relative to 

eyes and the systems can be worn or table mounted. 
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Both the EOG and corneal contact lenses are still used in some cases but in the last decade 

all commercial eye trackers have been the pupil and corneal reflection type. These can be 

split into three distinct classes: 1) embedded to a head mounted display (HMD); 2) eye 

tracking glasses; and 3) screen-based solutions. HMDs are used for virtual reality and 

while virtual reality is out of the scope of this work, it could be considered in the future. 

Eye tracking glasses are worn like regular glasses. The glasses have at least infrared 

cameras for eyes and typically a scene camera. The gaze data is relative to the video from 

the scene camera. Screen based solutions can be further split into two subclasses, either 

the sensor is integrated into the display or the sensor is a separate sensor unit that can be 

used with different displays. Figure 2.5 depicts a distinct sensor on a laptop and a person 

wearing eye tracking glasses.  

Currently, there are multiple companies offering eye tracking equipment for commercial 

and research use, most notably Tobii [41], SR-Research [42], Pupil Labs [43], and 

Ergoneers [44]. Basic information about these companies and what type of eye trackers 

they offer are tabulated in Table 2.4. Tobii is probably the best-known eye tracking 

equipment manufacturer and it is the only one offering all the different equipment types. 

SR-Research is the oldest company, which is fairly evident from their eye tracking 

 

Figure 2.4. Human eye, under infrared illumination, with corneal reflection highlighted 

in blue, the pupil in red, and the whole eye based on calculated model in green. 
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glasses; they are more intrusive than the ones offered by the other companies. Pupil Labs 

is a newcomer to the eye tracking field and unlike others it offers completely open-source 

software stack and even partially open hardware. All the others only offer software 

development kits and do not allow modifying the core of their software. Ergoneers 

focuses on bringing eye tracking to automotive and transportation but it also offers eye 

tracking for more general use cases.  

 

The screen-based solutions, where the sensor is integrated into the display, provide the 

best tracking quality but they tend to be the most expensive solutions of up to hundred 

thousand euros. In addition, since they are integrated into the display they are only usable 

for experiments where the screen is suitable for the test. The biggest weakness of separate 

sensors is that most of them are designed at most 24-inch displays [45]. The screen size 

limitation becomes an issue with Ultra High Definition (UHD) resolution screens, since 

those are practically always over 24 inches. Eye tracking glasses allow the greatest 

flexibility when it comes to test environment. However, their accuracy is a little bit worse 

than that of the screen-based solutions since the sensor unit is attached to the user and 

maybe able to move a bit with the user’s head movements. 

Eye tracking glasses were chosen due to them being possible to use with large enough 

screens and the extra accuracy provided by integrated screen-based solutions is not 

Table 2.4. Different eye tracking equipment manufacturers and their products. 

Manufacturer Tobii SR-Research Pupil Labs Ergoneers 

Based on Sweden Canada Germany Germany 

Since 2001 1991 2014 2005 

Screen based Yes Yes No No 

HMD Yes No Yes Yes 

Glasses Yes Yes Yes Yes 

 

 

 

Figure 2.5. A separate eye tracking sensor attached to a laptop [41] and a person 

wearing eye tracking glasses. 
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necessary when combining data from multiple people together. The Ergoneers’ glasses 

are discarded because their software stack is completely closed source. Parts of the 

Tobii’s software stack is open source but Pupil Labs’ software stack is completely open 

source, as well as most of the hardware is also open source. In addition, the Pupil Labs’ 

glasses have more competitive price, so they are chosen. 
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3. EXISTING EYE TRACKING SOLUTION FOR 

VIDEO CODECS 

Currently, there exist a few systems that use eye tracking for either video encoding, 

decoding, or presentation. The primary purpose of all these systems is to improve the 

perceived quality of the video over traditional systems with similar bit rate. In this 

chapter, a couple of most notable prior-art systems in the field are reviewed: a foveation 

based codec is presented in Section 3.1, Section 3.2 presents a system for delivering 

higher quality video based on user gaze. Finally in Section 3.3an encoding system that 

uses offline gaze data. 

3.1 Foveated Video Codec 

The foveated video codec introduced in [46] is most likely one of the first, if not the first, 

systems that makes use of eye tracking data in video encoding. It improves video quality 

during preprocessing and encoding, i.e., unlike most other systems it uses both methods 

described in Section 2.2. The system is loosely based on the old H.263 standard. Because 

H.263 does not support non-uniform QP values by default the decoder side of the system 

had to be also modified for it.  

The preprocessing is done by applying a foveation filter to the image before the encoding 

[46]. The foveation filter consists of multiple low pass filters with varying cutoff 

frequencies. The strongest filter is only applied to the areas furthest away from the gaze 

centers. Symmetric and circular-symmetric filters are used to smooth out the areas 

between different low-pass filters [46]. 

In the encoder, a conventional motion estimation algorithm is replaced by a hierarchical 

algorithm where the optimal motion vector is searched using a pyramid of down sampled 

images [46]. The similarity criterion of the algorithm is Sum of Absolute Differences 

(SAD) that is weighted based on how far it is from the gaze center. To further improve 

the coding gain, the rate control algorithm is also optimized using the gaze data. The QP 

values are set lower around the gaze centers and they degrade towards the edges of the 

frame.  

The system is mostly theoretical and all parts are simulated separately, so it is still 

questionable whether it can be used in a real application. Since there is no real 

implementation it is impossible to know the total computational complexity of the system, 

although the complexity of most of the parts is analyzed to be reasonably simple. 

Additionally, the system is based on pre-obtained gaze centers from an eye tracker, which 

raises further question about the real-time applicability. 
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3.2 Gaze Influenced Video Delivery 

A couple of prior-art systems use pre-encoded video of different qualities and eye tracking 

to enhance the perceived quality of a video [31], [47]. Both systems transfer the gaze data 

to a server that sends back the higher quality video only on the area where the viewer is 

looking. Figure 3.1 depicts the basic idea behind these systems. 

 

The system presented in [31] was designed for two reasons: to test system that serves 

better quality video around the users gaze and to test how the radius of the higher quality 

area affects the perceived quality. The server side has both the higher and lower quality 

videos already encoded. The lower quality frame is always sent together with a cropped 

out region of the higher quality frame and the client stitches the videos together for 

playback. In the experiment, both the server and client ends were on the same machine. 

The arrangement is reasonable for testing but the results cannot be used as is for any real-

world system because latencies are not considered. All online video services have at least 

 

Figure 3.1. Architecture of the systems. 
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some latency due to network delay and buffering the data at the client. Considering that 

human gaze can move very fast, latency should be accounted for such a system. 

The system in [47] uses eye tracking to improve perceived video quality. It is not meant 

to be a complete system that considers all latencies, but some attention is paid to it. For 

example, the lowest quality layer is sent like in usual streaming services, i.e., it is buffered 

on the client side, while the higher quality layer is sent live based on the gaze. The video 

frames are split into uniform size cells that are used for serving the different quality areas. 

The cells are stitched on the client side into a full frame. The eye tracker is realized with 

cheap webcams, whose tracking quality is poor but good enough for the application. Also, 

the system works with mobile devices, since the front camera of the smartphone can be 

used for the eye tracking [47]. Overall [47] is superior for a real-world solution but the 

main contribution of [31] is the effect of ROI size to perceived quality. 

3.3 Eye Tracking for Semiautomatic Saliency Model 

A system that uses eye tracking as a part of semiautomatic saliency model is introduced 

in [10] and further refined in [48]. It is most likely the first semiautomatic saliency model. 

It represents a middle ground between an automatic saliency model and collecting 

extensive eye tracking data. Using human gaze data enables combining both top-down 

and bottom-up elements of the HVS into the model rather cheaply. Eye tracking data from 

a single observer is used as a base for building the saliency model. The gaze data from a 

single point in time is propagated backwards and forwards using the motion vector field 

of the next or previous frame. It should be noted that the motion vector field is not the 

one calculated during the encoding but the saliency model generation is done completely 

before the encoding process. 

The main difference between [10] and [48] is how the actual ROI encoding is 

implemented. Both of them use x264 as a baseline. In [10], the video is first encoded 

regularly and the QP map is extracted during the encoding by using the multiple pass 

feature of x264. The extracted QP map is then modified according to the saliency model 

so that QP is decreased at salient areas and increased elsewhere. Conversely, in [48] a 

custom rate control algorithm is implemented. The idea behind the introduced algorithm 

is simple: assign X percent of the bits to Y percent of the most salient areas in the video. 

However, the implementation is not straightforward, since without multiple encoding 

passes it is difficult to estimate bit allocation to each frame. However, a rough estimation 

can be done based on the QPs chosen by the native rate control, which allows for a 

concrete calculation for bit allocation.  

In both systems, there is a sharp drop in quality outside of the salient areas, so allocating 

bits too aggressively to the salient areas would cause noticeable difference between the 

salient and non-salient areas. Furthermore, the saliency model has to be generated before 
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encoding, especially in [10], because it requires multiple encoding passes. Hence, both of 

these systems are primarily intended for offline encoding to maximize coding quality.  

Even though the semiautomatic model is interesting, maybe even more interesting are the 

findings from using the model for encoding. In both cases, Eye tracking Weighted SSIM 

(EWSSIM) was used as an objective quality metric whereas subjective tests are 

additionally performed for [48]. EWSSIM is based on Eye tracking Weighted PSNR 

(EWPSNR) [49]. A clear advantage over the native rate control of x264 is shown. The 

model loses to two observers when comparing with the ground truth eye tracking data but 

when used for encoding the model produces better results. More impressively, a 

significant improvement in bit rate is reported with subjective test [48]. The improvement 

is higher when the target bit rate is lower because the different methods might produce 

visually similar results at higher bit rates and only the details that humans do not pay 

attention differ. However, at least with the rate control parameters chosen for the 

subjective test the quality seems to be worse for high enough bit rate than with regular 

x264, questioning the model usability for generic cases. 

In general, both systems present valuable aspects but leave many questions in the field of 

ROI encoding unanswered. The critical question that keeps the model from being used, 

is how to select the ROI size and how much bits should be allocated to the area, and this 

problem is acknowledged by the authors [10]. Additionally, the authors do not consider 

the computational complexity of the model nor the complexity that is added to the 

encoding process. Although the math seems simple, it would have been good to include 

complexity analysis for the model. The authors suggested that removing the back 

propagation component from the model would make it suitable for real-time applications, 

but no results were shown [48]. Moreover, even if the model works without the back 

propagation the complexity might prove problematic. 
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4. RESEARCH METHODOLOGY 

Three primary factors are typically measured in video encoder evaluations: bit rate, 

quality, and complexity. Bit rate is the number of bits the encoder outputs per unit of time, 

usually a second, quality equals distortion between an original and a coded picture, and 

complexity refers to the computational complexity, i.e., coding speed of the encoder. In 

Section 4.1 the methodology for obtaining the objective quality measurements is 

explained. Conversely, Section 4.2 explains the methodology for subjective quality 

evaluation. In Section 4.3 the complexity measurement is explained. In Section 4.4 the 

test material used for the measurements is introduced. Finally, Section 4.5 goes over the 

eye tracking data gathering process. 

4.1 Coding Efficiency 

Bit rate and quality are meaningless without each other. For example, if bit rate is not 

limited one could just pass the uncompressed video without any quality degradation. 

Thus, these two variables can be combined to a single metric called coding efficiency. If 

the bit rate is reduced for the same quality or quality improved for the same bit rate, the 

coding efficiency is better. Any improvements to coding efficiency often come at the cost 

of complexity, i.e., if the coding efficiency is improved, the encoding speed tends to be 

lower. 

Coding efficiency is computed from bit rate and quality. Bit rate for a video sequence 

requires counting the total number of bits the encoder uses for the sequence. For objective 

quality metrics, the quality is given by distortion to the original frame. The two most 

common metrics used for quality computation are PSNR and SSIM [7]. PSNR is the 

simplest metric and is given by Mean Square Error (MSE) as 

PSNR = 10 ∙ log10

(2B − 1)2

MSE
 , 

where MSE is normalized to the bit depth B of the video. PSNR is in logarithmic scale. 

Lower MSE means less distortion and the converse applies to PSNR, i.e., when distortion 

approaches zero PSNR approaches infinity.  

SSIM is significantly more computationally complex than PSNR but it also matches 

human perception in many cases better than PSNR [7]. SSIM uses means, variance, and 

covariance of a window around each pixel. Usually, the window size is 11 by 11 and 

Gaussian weighting is used for the window [7]. Even though PSNR and SSIM are the 

most used algorithms they are originally designed for images; thus, they do not consider 

the temporal dimension at all.  
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Both PSNR and SSIM can be weighted with eye tracking data for ROI coding assessment 

[10], [49]. PSNR is weighted by the individual square errors before MSE is calculated 

whereas SSIM is weighted by each value of SSIM before calculating the average for a 

single frame. In both cases, the weighting was done using fixations, which are more stable 

than raw gaze points. However, no fixation is registered when a moving object is being 

watched. Since moving objects tend to draw watcher’s attention, gaze directed towards 

them should be included. Because of this, the weighting in this work is done using the 

raw gaze point by convolving a Gaussian kernel with the size equivalent to 5 degrees of 

vision, i.e., the largest fovea size over the gaze points. In case no gaze points are found 

for a specific video frame, the MSE or SSIM of the frame is not weighted. Weighting 

turns both metrics to resemble the HVS more closely and will add slight temporal 

component, since humans tend to focus on a single object at a time. 

Both PSNR and SSIM operate on a single-color plane at the time so the results of luma 

and chroma planes have to be combined. Since luminance has higher priority in the HVS, 

the planes are weighted at 6:1:1 ratio. The average PSNR and SSIM for the whole video 

is an arithmetic mean of all encoded frames [21]. PSNR does not work if the encoder 

manages to encode any single frame at zero distortion because PSNR would be infinite 

for that frame causing the PSNR to be infinite for the whole sequence. However, in 

practice this happens rarely unless the encoder is explicitly set to lossless mode, which is 

not the case in this work. 

The Bjøntegaard-delta bit rate (BD-BR) [50] has been developed as a single metric that 

encapsulates both bit rate and distortion differences of two encoders to a single quantity. 

First, the test sequences are encoded by both encoders using four different QP values. The 

HEVC common test conditions [51] define these QP values as 22, 27, 32, and 37. They 

are also used in this work. The measured bit rate is converted to logarithmic scale to 

prevent over emphasizing high bit rates [50]. A third-order polynomial is fitted to pass 

through the four measured distortion points [50]. The BD-BR is computed as a difference 

of the areas that are given by an integral over the distance that both curves cover [50]. A 

negative BD-BR means that the compared encoder manages to produce similar quality 

with smaller number of bits. Conversely, positive bit rate means that more bits are 

required for similar quality. While BD-BR was originally meant to be used with PSNR, 

it also works with other metrics as long as they are transformed to similar scale as PSNR. 

4.2 Subjective Quality Evaluation 

The most reliable way to compare encoder qualities is to perform subjective quality tests. 

ITU-T has released multiple recommendations on how the subjective tests should be 

conducted, most recently the ITU-T Recommendation P.910 [52]. Although it is ten years 

old, it is still mostly relevant. However, some parts such as monitors have changed a lot 

since then, e.g., CRT monitors have been completely replaced by LCD monitors and 

monitor resolution and sizes have increased. The recommendation has a rigid set of rules 
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for the viewing conditions [52] to simplify setting up a new scenario or reproducing a 

prior scenario. However, the disadvantage is that the viewers might feel uncomfortable 

in the situation, and it may affect the results, or the conditions do not match the intended 

use of the system. The most realistic conditions would be obtained by arranging tests at 

viewers’ homes. However, this is not a practical solution. When conducting subjective 

tests, compromises must be made between controlled laboratory environment and viewers 

comfort. 

The recommendation lists a couple of testing methods including Absolute Category 

Rating (ACR) and Pair Comparison (PC) that are the most used [6], [52]. In ACR, the 

viewer is shown the video sequences one at time and after each sequence the viewer is 

asked to rate the viewed video, usually on one to five scale [52]. Conversely, in PC the 

viewer is shown the same video sequence twice in a row and then asked to select the 

better one [52]. The results of ACR have to be normalized in terms of viewer, sequence, 

and type of distortion (if many) in order to generate the Mean Opinion Score (MOS). 

Because the results must be normalized to three different factors, there is a possibility 

they get twisted from the original meaning. However, with eliminating outliers after 

normalization and using a large enough sample size mostly neutralizes the risk. PC only 

ranks the perceived qualities but not express the quantity of the difference. As the 

recommendation states, they are only suggestion on how the test could be conducted and 

can be adapted to different test purposes [52]. Due to these reasons, the PC method was 

used in this work because it was only necessary to find out whether the proposed method 

was better or not. 

As is the case with BD-BR, either bit rate or quality has to be set constant for subjective 

test because interpreting the results would be ambiguous otherwise. Typically, bit rate is 

set constant since trying to produce video that would be perceived at the same quality is 

difficult [6]. Technically, MOS could be used as a distortion metric for BD-BR but that 

would bring a fourth variable to the subjective test. In this work, the bit rate is set constant. 

First, the videos are encoded with the proposed system that uses constant QP and then the 

measured bit rate is used to encode the same video again using native rate control to 

produce video with the same size. 

Final aspect that should be considered with subjective tests is the selection of test subjects 

[52]. Depending on the application, it might be extremely important or practically a side 

note. The most important factor in most cases is that the viewers have normal or 

corrected-to-normal vision, unless the intention is to test how vision impairments affect 

the perceived quality. The rule of thumb is that the viewers should match the intended 

audience of the application. Thirteen people from our Ultra Video Group were used for 

the subjective test with one being female and twelve males. The age of the participants 

ranged from 23 to 33. 
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The test was conducted simultaneously for all the participants seated comfortably from 

three to five meters away from the screen. The used screen was a 55-inch Panasonic UHD 

television. Many of the participants were experts of video encoding but they were 

instructed to view the videos normally and to evaluate the quality of the whole video, not 

to look extensively at any coding artifacts. The quality voting was done at the end of each 

video pair. One drawback with this method is that unsure participants are more likely to 

vote for the second video. However, the order of videos is random so both methods should 

gain additional votes this way. 

4.3 Complexity 

Although complexity is not the main focus of this work it should be evaluated to make 

sure it is acceptable. The complexity of an encoder is measured by running the encoder 

multiple times and taking an arithmetic mean of the running times. Because the encoder 

binary and the sequence are cached by the operating system, the first run tends to be 

slower and is discarded. To get as fair results as possible the amount of other processes 

running on the same machine is minimized and only one encoder instance is run at a time. 

The QP also affects encoding speed. With low QP values, the residual is quantized to 

more coefficients than with larger values of QP. The entropy coding of coefficients is 

relatively slow making encoding time higher with low QPs. In this work, the 

measurements were done using the same QP values as in the coding efficiency evaluation. 

Each test sequence was encoded five times with all four QP values and an average of the 

runs was taken for each QP value. For each sequence, the speedup was computed by 

averaging the speedups at each QP. A ratio between the average encoding time of the 

anchor and that of the tested encoder was reported. The details of the computer used for 

the tests are listed in Table 4.1. 

  

Table 4.1. Properties of the test computer. 

Processor Intel i7-5960x 

Base clock frequency 3.00 GHz 

Boost clock frequency 3.50 GHz 

Number of cores 8 

Number of threads 16 

Processor cache 20 MB 

Motherboard Asus x99-A 

Memory 16 GB 

Operating system Windows 10 64-bit 
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4.4 Test Material 

The HEVC common test conditions [51] define a set of 24 test sequences with different 

characteristics. In this work, 22 of these videos were used. They are tabulated in Table 

4.2. The sequences are divided into six different classes enumerated from A to F. Classes 

A, B, C, and D consist of sequences with varied content and have resolutions of 

2560×1600, 1920×1080, 832×480 and 416×240, respectively. Class E features video 

conferencing content with 1280×720 resolution. Finally, class F consist of screen content 

such as computer-generated graphics with various resolutions. 

In addition, sequences from several other sources were used to collect eye tracking data: 

seven videos from Ultra Video Group [53], one from AWS Elemental [54], and twelve 

videos from Xiph.org [55]. These videos are tabulated in Table 4.3. The sequences from 

[53] are of various content and have UHD resolution. The sequences were originally 120 

Hz, but they were down sampled to 60 Hz because no 120 Hz 4K resolution monitor was 

available at the time. The down sampling was done by removing every other frame. The 

single sequence from AWS Elemental is an UHD remake of the famous Foreman 

sequence. The Xiph.org sequences represent various content such as a distinct object of 

Table 4.2. Details of the HEVC test sequences. 

Class Sequence Resolution Frame rate (Hz) Length (s) 

hevc-A 
PeopleOnStreet 2560×1600 30 5 

Traffic 2560×1600 30 5 

hevc-B 

BasketballDrive 1920×1080 50 10 

BQTerrace 1920×1080 60 10 

Cactus 1920×1080 50 10 

Kimono 1920×1080 24 10 

ParkScene 1920×1080 24 10 

hevc-C 

BasketballDrill 832×480 50 10 

BQMall 832×480 60 10 

PartyScene 832×480 50 10 

RaceHorses 832×480 30 10 

hevc-D 

BasketballPass 416×240 50 10 

BlowingBubbles 416×240 50 10 

BQSquare 416×240 60 10 

RaceHorses 416×240 30 10 

hevc-E 

FourPeople 1280×720 60 10 

Johnny 1280×720 60 10 

KristenAndSara 1280×720 60 10 

hevc-F 

BasketballDrillText 832×480 50 10 

ChinaSpeed 1024×768 30 16.7 

SlideEditing 1280×720 30 10 

SlideShow 1280×720 20 25 
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interest on the foreground or no clear areas of interest and a lot of background movement. 

The sequences are either of 1920×1080 or 1280×720 resolution. 

 

For the subjective tests, six videos were chosen: BasketballDrive, Johnny, Kimono, 

OldTownCross, PeopleOnStreet, and Shields. The selection includes many kinds of 

content. BasketballDrive has a moving camera and a lot of movement, Johnny has a static 

camera with little movement, Kimono has a scene cut, OldTownCross has a moving 

camera but not much other movement, PeopleOnStreet has a static camera but a lot of 

movement otherwise, and Shields has a zoom. 

4.5 Eye Tracking Data Collection 

In this work, the gaze data was collected with eye tracking glasses rather than a screen 

based sensor that is used by most of the previous works. In the screen based solutions, the 

gaze recorded by the device is automatically tied to the relative screen location whereas 

the gaze is relative to the screen cameras view of the eye tracking glasses. The Pupil Labs’ 

software has a feature that allows using specific tags to map out an area of the scene 

cameras view. In Figure 4.1, a screen with the tags is depicted, the area highlighted in 

blue is where the screen area is mapped. It should be noted that the lightning conditions 

were brighter than that of Figure 4.1 and they are better illustrated in Figure 4.2.  

Table 4.3. Additional eye tracking test sequences. 

Source Sequence Resolution Frame rate (Hz) Length (s) 

Ultra Video 
Group 

Beauty 3840×2160 60 5 

Bosphorus 3840×2160 60 5 

HoneyBee 3840×2160 60 5 

Jockey 3840×2160 60 5 

ReadySteadyGo 3840×2160 60 5 

ShakeNDry 3840×2160 60 2.5 

YachtRide 3840×2160 60 5 

AWS Elemental Foreman 4k 3840×2160 24 10 

Xiph.org 

CrowdRun 1920×1080 50 10 

OldTownCross 1920×1080 50 10 

Parkrun 1280×720 50 10 

PedestrianArea 1920×1080 25 15 

RushHour 1920×1080 25 20 

Shields 1280×720 50 10 

SpeedBag 1920×1080 30 19 

Station2 1920×1080 25 12.5 

Stockholm 1280×720 60 10 

Vidyo1 1280×720 60 10 

Vidyo3 1280×720 60 10 

Vidyo4 1280×720 60 10 
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In this work, the experiments were performed with Pupil Labs Eye Tracking glasses, a 

27-inch Lenovo ThinkVision X1 UHD display, and the same computer as the complexity 

tests. The videos were displayed using Media Player Classic – Home Cinema (MPC-HC). 

The sequences below UHD resolution were displayed uncompressed. The UHD 

sequences were compressed since the test computer did not have a fast enough SSD to 

play them back at 60 frames per second. The sequences were compressed as little as 

possible to a degree that would not affect people gaze points. 

The subjects were obtained by advertising the experiment in the student and staff intranets 

of Tampere University of Technology (TUT), thus most of the subjects were students or 

staff of TUT. The subjects were offered a chocolate bar as a reward for participating in 

the experiment. Because the eye tracking glasses do not allow using regular glasses at the 

same time, the subject were required to have a normal vision at one-meter distance or use 

contact lenses for correction. A total of thirty-seven subjects were gathered with 

seventeen being female and twenty male. The minimum, maximum, mean, and median 

age of the participants were 13, 43, 27.4, and 26, respectively. Majority of the subjects 

were of Finnish background but a couple of them were from Middle East, East Asia, 

Southern Europe, or Eastern Europe. The subjects were not specifically screened for 

normal vision and were trusted considering the reward was no significant enough to 

warrant lying just to obtain the reward. Most of the subjects had normal vision, couple of 

them were near-sighted and completed the experiment without glasses, and two used 

contact lenses. 

 

Figure 4.1. The screen with the tags used for tracking. 
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At the beginning of the experiment, the subjects were given a written instruction on how 

the experiment will proceed. The instructions can be found in Appendix A. After it was 

confirmed that the subject had understood the instructions (s)he was seated about one 

meter from the screen. The subjects were allowed to move within the seat. The monitor 

was adjusted so that the subject was looking straight at the center of the screen. The 

subject put on the eye tracking glasses and the experiment personnel adjusted the eye 

cameras so that the subject’s eyes were completely within the frame of the eye camera. 

Figure.2. depicts a snapshot of the test environment where a subject is sitting in the chair 

with the eye tracking glasses on. Next, the eye tracking glasses were calibrated, and the 

successfulness of the calibration was confirmed by the personnel. In most cases, the 

calibration was successful with a single attempt, but in about quarter of the experiments 

a second calibration was required and once a third attempt was necessary. After the 

calibration routine was finished it was made sure that the subject had no questions and 

was left alone to minimize any outside interference for the remainder of the experiment. 

The experiment consisted of 41 videos listed in the previous section. The total duration 

of the actual video viewing was about twelve minutes. The order of the videos was 

randomized for each subject to remove any statistical errors that could come from a static 

order. For example, an interesting object in a corner at the end of a video would make it 

more likely that at the beginning of the next the subject would still be watching the same 

position. After every five videos, the video playback was paused and a sequence of five 

calibration symbols was shown. The subject was informed that the experiment will be 

 

Figure 4.2. The eye tracking experiment test environment. 
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over once the MPC-HC player is closed or that they can also wait for the personnel after 

the experiment ended. 

After the experiment, each subject was questioned verbally if they had any problems, 

findings, or other comments concerning the experiment. Most subjects had nothing to say. 

However, some found the experiment fairly exhausting and that they could not relax 

because the videos were so short. However, the risk was already known beforehand and 

considered a normal reaction. It was one of the reasons why the experiment was made as 

short as possible. For example, the Xiph.org collection included more videos than were 

used. A notable observation from the questioning was that none of the subjects found the 

eye tracking glasses uncomfortable so wearing the glasses should not affect the viewing 

experience. 

The Pupil Capture software is written in Python which has some limitations in 

multithreading. Therefore, the capture software uses ZeroMQ (ZMQ) [56] sockets for 

communicating between the different parts of the program. ZMQ is specifically meant 

for distributed computing and parallelism [56]. The socket interface allows 

communicating with the program, e.g., external programs can start the recording session. 

In addition, a custom Python script was used to control the whole experiment by 

communicating with the other components. A separate script was used because 

embedding all necessary features into MPC-HC would have been too cumbersome. MPC-

HC has a HTTP interface that allows controlling it, which enabled using the external 

control script. MPC-HC was also slightly modified to support the ZMQ interface of the 

capture software by initializing a ZMQ context and sockets at the startup of MPC-HC. 

Additionally, the results of the calibration check were made accessible through the socket 

interface. 

A diagram of the control flow between the components is depicted in Figure 4.3. At the 

beginning of the experiment, the control script was used to launch the calibration. This 

was not compulsory but it allowed an easy way to log and record the calibration attempts 

for further study. For example, to find out why multiple calibrations were necessary. The 

control script required confirmation of the calibrations success from the personnel. If the 

calibration was accepted the control software signaled MPC-HC to start the recording. 

MPC-HC signaled the name of the video a bit before the video was played. MPC-HC 

stopped the recording after the video was finished. A three second gap also made 

separating successive recordings easier. After five recordings, the capture software 

signaled the control script to pause the video playback in the middle of a gray screen and 

start the calibration check. Once the calibration check was finished the control script again 

signaled to start the video playback. This was repeated until the final video sequence was 

played. Once the final recording finished the capture software signaled it to the control 

script and MPC-HC closed and the experiment was over.  
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Figure 4.3. Dataflow between the different software components in the eye tracking 

experiment. 
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5. PROPOSED SYSTEM 

As shown in Chapter 3, there are multitude of different ways to make use of eye tracking 

data in video codecs. Whereas collecting eye tracking data is usually done with screen-

based solutions, this work shows that it can also be collected with eye tracking glasses 

but some additional processing is required. The process is presented in Section 5.1. 

Section 5.2 presents a system that uses eye tracking data to enhance the perceived quality 

of the live encoded video. The system is explained in detail with a proof-of-concept 

demonstration scenario. Several different systems using eye tracking data for encoding 

have been introduced but to the best of the author’s knowledge this is the first solution 

using live eye tracking data.  

5.1 Eye Tracking Data Processing 

During the recording the capture software saves all of the messages transported through 

the ZMQ interface. The Pupil player software allowed exporting the gaze data to a csv 

format afterwards, however, only a single recording at a time. The player had to be 

modified so that it would automatically open a new recording and exports its data once 

the previous recording was exported. 

The purpose of the mid-experiment calibrations were to ensure that the device was still 

properly calibrated or afterwards correct the results if there was a problem during the 

experiment. Originally, it was considered that the eye tracker would be recalibrated by 

the user if the check result was too poor. However, it was found that some people would 

require multiple attempts to get the device calibrated and as they got more and more 

exhausted the calibration became even more difficult, so the calibration was verified 

manually by the experiment personnel. The calibration process is also exhausting since 

the contrast between the calibration symbols and the background is extreme, so 

performing the calibration multiple times would definitely affect the results as the subject 

gets increasingly exhausted during the experiment. The calibration checks were used to 

form a timeline of how the projected screen surface had moved in between the calibration 

points. Then, a correction function was derived for each recording on the timeline and the 

associated gaze points were corrected. The correction process is covered in more detail 

in [57][1]. 

For visualization reasons, heat maps were also generated for the sequences. Additionally, 

a heat map of all gaze points is created for a single subject in each sequence. During the 

extraction, the player software creates the heat map based on the resolution of the screen 

area. The maps were generated by applying Gaussian filter with radius equivalent to three 

degrees of sight radius on a 27-inch screen from one meter away. However, setting the 
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resolution to 1080p or higher causes instability in the software so the heat maps for them 

were created afterwards. 

5.2 Gaze Controlled Real-time ROI Encoding 

The main idea behind the proposal is to use the gaze data from the eye tracking glasses 

to encode the video with higher perceived quality. The video is obtained from the scene 

camera of the eye tracking glasses. 

Kvazaar supports DQP matrixes, but by default the support is only for a single matrix 

over the whole sequence. As an input, Kvazaar accepts arbitrary sized matrixes but they 

are sampled to CTU level using nearest neighbor method. Thus, it does not make sense 

to use matrixes of finer granularity. Originally, the DQP matrix was stored in the 

configuration structure of Kvazaar. In order to allow a different matrix for each input 

frame the DQP matrix is moved to the picture data structure.  

Like in the eye tracking experiment, the ZMQ interface of the Pupil capture software was 

used for communication. Kvazaar was also modified to support ZMQ sockets. The 

messages sent by the capture software are packed by MessagePack [58] that uses a format 

similar to JavaScript Object Notation (JSON). However, it packs the data so that it 

requires less space than JSON making the transfers faster without any significant 

complexity overhead. MessagePack suffers from lackluster documentation, but it is 

simple to use. The ZMQ sockets work on a publish-subscribe (PUB-SUB) principle [56]. 

The PUB socket is on the capture software whereas the socket added into Kvazaar acts as 

a SUB socket.  

The capture software sends many messages but only the gaze data and the raw video 

frame messages are of interest here. By default, the capture software does not publish the 

frames from either the scene camera or eye cameras but has a plugin that allows the 

publishing. All messages have a timestamp. For the gaze messages the timestamp is 

relative to the frame of the eye camera from which the gaze data was detected from. The 

interesting information in the gaze message are gaze location normalized to the view of 

the scene camera and a confidence value. The confidence value ranges from 0.0 to 1.0 

and it is based on how well the capture program detected the pupil from the frame of the 

eye camera. In addition to the frame data, the frame message contains the width, height, 

and the data format of the frame. 

The scene camera of the eye tracking glasses is capable of multiple different resolutions 

and frame rates, most notably 1080p30 and 720p60. For this work, the 1080p30 option is 

the main consideration because the higher resolution video contains more CTUs thus 

allowing more granularity for the degradation of quality around the gaze center. The feed 

from scene cameras is compressed using Motion JPEG (MJPEG) on the camera hardware 

due to USB transfer limits. The frame publisher plugin allows multiple different formats: 



32 

JPEG, RGB, and YUV of which Kvazaar can take YUV as input. The plugin (version 

1.7) does not identify the chroma subsampling of the YUV format but it was found out to 

be YUV422 by testing. Since Kvazaar at the time of writing only supported YUV420, the 

YUV422 has to be down sampled before encoding. The down sampling is done using 

linear filtering, i.e., an average of every two vertical samples is taken. 

The eye tracking cameras operated at a higher frequency than the world camera, so 

multiple gaze points were detected per scene camera frame. The gaze data is stored by 

Kvazaar, unless the confidence value is too low, to wait for the video frame where the 

gaze data will be mapped. Time stamps could be used to map each gaze point to the video 

frame that is temporally closest to it but using next frame instead lowers the overall 

latency of the system and is simpler to implement. The timeline of different messages and 

mapping gaze points to frames are depicted in Figure 5.1. An average is calculated from 

all gaze points in a single frame. If no valid gaze points are found for a specific frame the 

average of previous frames is used. In addition, the gaze center is written to a custom SEI 

message. The SEI message can be used, e.g., as a part of video editing pipeline. A filter 

can read the gaze center from the SEI message and use it, e.g., to highlight the gaze area 

automatically. 

 

Since the purpose of the system is to provide better quality around the gaze points of the 

user, a slope of the quality degradation has to be solved. It is more likely that logarithmic 

change of quality is better for human perception so it is used over linear. For each CTU, 

the logarithmic distance in CTUs from the center of the CTU to the gaze center is 

calculated. The ROI is chosen as a single point defined by the gaze center, instead of a 

larger area, because the DQP matrix is formed in a way that CTUs around the gaze center 

tend to get zero DQP values. The distance is multiplied by Degradation Coefficient (DC) 

and the multiplied values form the DQP matrix. The larger the DC value the faster the QP 

drops around the gaze center.  

Figures 5.2 and 5.3 depict the effect of different DC values on the DQP matrix for two 

different resolutions. The green areas have the lowest DQP values starting from zero 

whereas the areas with the darkest shade of red have DQP values in the low twenties. 

 

Figure 5.1. Timeline of frames and gaze points arriving with coloring on which frame 

each gaze point will be mapped. 

 

Gaze Points
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Figure 5.4 depicts how the DC affects PSNR, SSIM, and EWPSNR BD-BRs with four 

different types of sequences. Eye tracking data of two persons (one female and one male) 

were selected randomly among the people who participated in the eye tracking 

experiment.  

PeopleOnStreet has a static camera with a lot of moving people. BasketballDrive is a 

short clip from basketball game where the camera follows player passing for another 

player who then scores. Johnny has a frontal shot of a man in a suit talking and FourPeople 

has four people holding a panel and passing some fliers to each other. Expectedly, the 

PSNR-BD-BR and SSIM-BD-BR curves show consistently decreasing quality as the DC 

increased and there were no significant differences between the two different viewers. 

The EWPSNR-BD-BR values were higher for the female watcher than male. Considering 

that EWPSNR is calculated based on the combined eye tracking results most likely the 

female watcher looked more at areas that most other people did not. 

 

 

Figure 5.2. DQP matrixes visualized as heat maps. a) DC = 2, b) 3.5, c) 6, and d) the 

original frame of the 4K sequence Beauty. 
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Overall, the EWPSNR values were negative at least for some DC values in all sequences 

other than FourPeople. Considering that the eye tracking data was collected without 

including audio in the sequences, the gaze for each person is expected to wander a lot 

differently in the sequence because the person speaking will not draw as much attention. 

The EWPSNR values were better than expected for the PeopleOnStreet sequence since 

there are no objects that would grab attention immediately. Most likely people just looked 

at the center of the video since there is no objects of interest. The results for 

BasketballDrive are expected, since most people looked at the ball. Neither of the chosen 

persons looked purely at the face of the person in the Johnny sequence, which explains 

the fairly poor results especially for the female watcher. If a user who looked purely at 

the face of the person was chosen, the results would be significantly better. At least 75 

percent of the people looked at the face at all times.  

Based on these results, the optimal value for the DC is between 2.0 and 3.5 in a general 

case. However, if it is known that the gaze points of a test person are similar to a majority 

of the people watching the encoded video, DC values as high as 6.0 or even 7.0 could be 

used.  

 

Figure 5.3. Three DQP matrixes visualized as heat maps for a) DC = 2, b) 3.5, c) 6, 

and d) the original frame of the 720p sequence Johnny. 
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The whole system can be demonstrated with the setup depicted in Figure 5.5. In addition 

to Kvazaar and the capture software, the demonstrator includes FFmpeg [59] which is a 

  

  

Figure 5.4. The effect of the Degradation Coefficient compared with regular encoding. 
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popular open-source multimedia framework that can be used for practically any video 

editing related tasks.  

Two computers are needed in the demonstration. The first computer is used for the eye 

tracking and video encoding. The eye tracking glasses are connected to this computer. 

The video encoded by Kvazaar is piped to an FFmpeg instance that encapsulates the 

HEVC bit stream into MPEG Transport Stream (MPEG-TS) and streams it to the second 

computer through Ethernet. MPEG-TS is a standardized transmission container for audio 

and video. The purpose of the second computer is to play the stream. The stream is 

decoded and played back by another instance of FFmpeg that also parses the SEI message 

containing the gaze center. FFmpeg uses a custom filter to draw a red dot over the gaze 

center for visualizing the user’s gaze point.  

The first computer has to be more powerful since it has to be able to run the capture 

software and encode the video; a desktop with at least eight-core processor is necessary. 

Conversely, the second computer can be a laptop since it only has to receive and decode 

the stream and display the decoded video.  

 

At the beginning of the demonstration session, one person puts the eye tracking glasses 

on. First, the glasses are calibrated using the capture software as in the data collection 

experiment. For the demonstration, it is beneficial to set the DC to such a high value that 

the effect is visible even though the perceived video quality might not be optimal, or 

alternate between the optimal DC value and a high one, such as 2.0 and 7.0. After the 

calibration is successful Kvazaar and the FFmpeg instance on the encoding computer can 

be started. Finally, FFmpeg on the receiving laptop is started and the rest of the viewers 

can corroborate the quality change around the gaze. In the demonstration session, it is 

 

Figure 5.5. The demonstration setup and the data formats between the components. 
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better if the first person wearing the glasses is one of the personnel presenting the 

demonstration, so that all spectators can see how the systems works.  
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6. PERFORMANCE EVALUATION 

This chapter contains coding efficiency and complexity evaluations of the proposed 

systems. This proposal is primarily intended for live usage so the evaluations are based 

on the Kvazaar ultrafast preset and low-latency setup. All the experiments were done 

using two test persons, same as used for DC exploration in Section 5.2, as the “live” 

watchers to know how much the results change between persons. They male person is 

labeled M-23 and female F-43 for the tables. 

Tables 6.1 and 6.2 tabulate the overhead in coding efficiency for HEVC common test 

sequences when SSIM and PSNR are used as the distortion metric, respectively. 

Traditional metric show that the quality degraded because they resemble the HVS poorly, 

e.g., video may have low quality at the edges but high at the center where people look, 

thus having high perceived quality but low quality when measured with PSNR or SSIM. 

The performance is evaluated using three different values of DC: 2.0, 3.5, and 6.0. The 

degradation is higher with large resolutions since by default the DQP values are larger at 

their edges than with smaller resolutions. The results between the two persons are 

practically the same excluding the class A with high DC and the class C for PSNR when 

DC = 6.0. Most likely, the person with higher bit rate looked more at the edges of the 

video causing the average value of the DQP to be lower.  

 

Table 6.1. SSIM BD-BR for different DC values compared with regular Kvazaar. 

DC 2.0 3.5 6.0 

Person M-23 F-43 M-23 F-43 M-23 F-43 

hevc-A 5,53 % 6,27 % 15,30 % 20,25 % 46,53 % 40,56 % 

hevc-B 5,69 % 5,73 % 16,63 % 16,72 % 50,06 % 50,21 % 

hevc-C 2,42 % 2,85 % 7,24 % 7,54 % 22,05 % 21,64 % 

hevc-D 1,45 % 1,50 % 4,43 % 4,72 % 12,96 % 13,03 % 

hevc-E 11,53 % 11,09 % 25,76 % 25,05 % 63,85 % 59,87 % 

hevc-F 2,43 % 2,54 % 7,94 % 8,06 % 24,01 % 21,49 % 

Total 4,61 % 4,74 % 12,45 % 12,97 % 35,57 % 34,04 % 
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Table 6.3 lists the BD-BR values for each sequence when using EWPSNR as the 

distortion metric. For DC = 2.0, the quality improved for a majority of the sequences. The 

major exception was FourPeople with which the quality degraded for both persons. The 

case was the same with Cactus and BasketballDrillText for the male person. In general, 

the sequences with no clear objects of interest have mostly reduced quality whereas 

sequences with a clear objects have improved quality. Also, the sequences with either 

multiple or somewhat clear objects of interest tend to improve quality with the higher DC 

values.  

The male person looked more at the areas that most of the people did not but nonetheless, 

the differences between the two persons are overall fairly small. Generally, the system 

seems to provide better quality when the video has a clear object of interest that draws 

most people’s attention.  

Table 6.2. PSNR BD-BR for different DC values compared with regular Kvazaar. 

DC 2.0 3.5 6.0 

Person M-23 F-43 M-23 F-43 M-23 F-43 

hevc-A 5,52 % 5,15 % 16,02 % 17,89 % 50,22 % 40,93 % 

hevc-B 5,69 % 5,81 % 17,22 % 17,34 % 52,98 % 53,40 % 

hevc-C 2,88 % 1,89 % 8,50 % 6,41 % 25,12 % 20,07 % 

hevc-D 1,15 % 0,94 % 3,72 % 3,03 % 12,96 % 10,92 % 

hevc-E 10,03 % 9,45 % 23,93 % 22,89 % 61,16 % 57,10 % 

hevc-F 3,33 % 3,42 % 10,37 % 10,04 % 29,43 % 27,37 % 

Total 4,50 % 4,21 % 12,74 % 12,23 % 37,22 % 34,26 % 

 



40 

 

In Table 6.4, the results of the subjective quality session are listed. The same male whose 

eye tracking data was used for the objective quality was used as the “live” watcher. Eye 

tracking data was used from only one person to reduce the length of the test and since the 

objective results were similar between the two persons it was not necessary to include 

both of them. The DC and QP values were selected to generate low bit rates based on trial 

and error. For higher DC values, lower base QP values were used because higher DC 

saves more bits. Overall, the results seem promising despite that Kimono and 

PeopleOnStreet should be ignored since the rate control algorithm of Kvazaar does not 

work optimally [60], and caused noticeable jitter. Hence, Johnny with DC = 6 is the only 

scenario where the perceived quality was worse, whereas most of the scenarios benefit 

from the proposed system (similar quality with OldTownCross). The quality with Johnny 

is not a surprise considering that the person looked around the scene, whereas most people 

looked exclusively at the character in the video. For the lower DC value, the proposed 

system clearly produces superior quality, at least compared with the rate control of 

Kvazaar. 

Table 6.3. EWPSNR BD-BR for different DC values compared with regular Kvazaar. 

DC 2.0 3.5 6.0 Clear 

ROI Person M-23 F-43 M-23 F-43 M-23 F-43 

PeopleOnStreet -6,0 % 0,0 % -5,7 % -13,4 % 4,9 % 0,0 % No 

Traffic -3,1 % -9,5 % 3,5 % -6,8 % 32,7 % 14,8 % No 

BasketballDrive -14,1 % -17,2 % -17,8 % -22,6 % -14,5 % -22,6 % Yes 

BQTerrace -7,6 % -11,5 % -2,7 % -9,1 % 25,0 % 12,9 % No 

Cactus 0,3 % -0,9 % 7,2 % 4,8 % 32,1 % 27,7 % No 

Kimono -7,5 % -13,2 % -7,7 % -16,3 % 1,9 % -12,0 % Yes 

ParkScene -14,5 % -16,1 % -16,9 % -19,7 % -12,3 % -16,0 % Yes 

BasketballDrill -4,8 % -6,8 % -5,8 % -9,4 % -2,6 % -8,4 % Yes 

BQMall -8,2 % -9,9 % -11,6 % -15,1 % -11,3 % -17,3 % No 

PartyScene -11,6 % -13,4 % -17,9 % -22,7 % -22,2 % -30,1 % Yes 

RaceHorses -8,0 % -12,4 % -11,9 % -19,6 % -13,4 % -25,9 % Maybe 

BasketballPass -7,3 % -5,4 % -12,3 % -9,8 % -18,0 % -14,5 % Yes 

BlowingBubbles -6,2 % -9,8 % -11,8 % -17,2 % -15,4 % -25,4 % Yes 

BQSquare -6,5 % -6,9 % -9,5 % -10,6 % -9,2 % -13,2 % Maybe 

RaceHorses -4,8 % -6,3 % -8,3 % -11,2 % -10,3 % -16,5 % Maybe 

FourPeople 5,3 % 1,3 % 15,2 % 7,9 % 46,1 % 29,0 % No 

Johnny -1,2 % -6,9 % 3,5 % -6,4 % 18,7 % 2,8 % Yes 

KristenAndSara -0,6 % -2,7 % 4,2 % 0,2 % 22,9 % 14,2 % Maybe 

BasketballDrillText 1,7 % -5,7 % 7,0 % -7,3 % 25,1 % -3,4 % Maybe 

ChinaSpeed -12,7 % -16,7 % -19,9 % -25,9 % -24,8 % -33,7 % Yes 

SlideEditing -5,2 % -5,2 % -6,4 % -7,5 % -4,4 % -11,6 % Maybe 

SlideShow -6,7 % -5,9 % -9,6 % -8,5 % -12,7 % -10,7 % Maybe 

Total -5.9 % -8.2 % -6.1 % -11.2 % 1.7 % -7.3 % 
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Table 6.5 lists the speedups in encoding time for each sequence class with DC values of 

2.0, 3.5, and 6.0. Again, the same two persons are used as “live” watchers. The encoding 

time is reduced for every sequence other than SlideEditing. The speedup is larger with 

higher DC values because the DQP gets larger. For the same reason, larger resolutions 

tends to have a higher speedup than smaller ones. For class A, the speedup is not as large 

even though it contains the largest resolutions because the sequences have large areas 

with no movement and changing the QP does not affect how long encoding those areas 

takes. The encoding time does not vary much between the persons.  

 

Table 6.4. Vote counts for preferring the proposed system out of 13 participants. 

  DC 2; QP 27 DC 2; QP 32 DC 6; QP 22 DC 6; QP 27 

Johnny 10 13 7 2 

BasketballDrive 13 13 11 13 

OldTownCross 11 12 5 7 

Shields 11 13 9 13 

Kimono 13 13 13 13 

PeopleOnStreet 13 13 13 13 

 

Table 6.5. Speedup in encoding times for different values of DC. 

DC 2.0 3.5 6.0 

Person M-23 F-43 M-23 F-43 M-23 F-43 

hevc-A 1.06× 1.12× 1.18× 1.19× 1.11× 1.27× 

hevc-B 1.14× 1.14× 1.22× 1.23× 1.33× 1.33× 

hevc-C 1.10× 1.10× 1.16× 1.16× 1.27× 1.26× 

hevc-D 1.04× 1.04× 1.07× 1.08× 1.13× 1.14× 

hevc-E 1.04× 1.04× 1.06× 1.06× 1.08× 1.07× 

hevc-F 1.05× 1.05× 1.08× 1.09× 1.13× 1.15× 

Total 1.08× 1.08× 1.13× 1.14× 1.19× 1.21× 
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7. FUTURE WORK 

Both the eye tracking data and the gaze controlled ROI encoding system have many 

potential use cases. Especially, the gaze controlled encoding system has a lot of different 

options considering it is currently a proof-of-concept system. 

7.1 Eye Tracking Data 

As noted multiple times in this Thesis, little effort is put into studies how steeply the 

quality of the video can deteriorate around the ROI for maximal perceived quality. The 

eye tracking data was originally collected solely for this reason, but other uses were also 

discovered, e.g., using it for weighting PSNR to EWPSNR. Where objective testing 

methods are simple, subjective tests are more important and difficult to conduct. 

Additionally, it is important to find out how the objective quality metric relates to the 

actual perceived quality. If some objective quality metric behaves similarly to the 

subjective results, it can be used for this type of distortion reliably without the need for 

performing subjective tests. 

The eye tracking data is used to detect ROI in a video. The parameters that could be 

considered for the experiment are 1) the base QP of the video; 2) radius of the ROI; 3) 

degradation method; and 4) the rate of the degradation. The parameters have to be limited 

since the amount of testing data increases exponentially. The base QP can be limited to 

two different choices: a lower value representing high quality video and a higher one for 

lower quality video, with the most probable being 22 and 32, respectively. The effect of 

the radius is not studied much [31] so it can be ignored in the experiment. Additionally, 

since the ROI is formed from multiple gaze points, the radius can be formed based on 

how many gaze points are clustered together. For the quality degradation method, linear 

and logarithmic methods are the most commonly used [6], [32], thus they should be 

tested. Finally, the rate of degradation is the parameter with the most variability allowed, 

since it has the largest impact out of the parameters when considering ROI encoding. The 

video resolution is a factor when considering the rate of the degradation, whether the rate 

should be equal when considering the distance in pixel domain or the actual width when 

displayed on the screen. Since in the experiment the videos will be shown stretched to the 

screen size it makes more sense to normalize the rate of the degradation to the screen size. 

Four to five different rates of degradation should be enough but actual trials should be 

done first to determine how large of an affect the different rates have. 

The video material used for the experiment should also be considered. Sequences can be 

roughly categorized into a 2 by 2 matrix based on how much background and foreground 

movement they have. Videos from all these categories should be considered since it is 
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likely that the optimal rate of degradation can be different for different categories. For 

example, a video with a lot of foreground movement and little background movement is 

likely to have a good perceived quality even if the QP drops sharply outside of the 

foreground objects. On the other hand, if there is a lot of background movement the 

degradation is likely more noticeable. 

Even with the limitations if at least two videos from each category per different test 

condition is wanted to be rated by each participant, they would have to watch total of 160 

sequences. Whereas watching 160 sequences is feasible during one experiment split into 

two sessions, with a break in-between, there are not enough unique sequences and using 

duplicates is not recommended for performing an ACR test [52]. An alternative is to split 

the test into two different experiments where the first will determine whether logarithmic 

or linear degradation is better by performing PC test for each test condition. Then the 

second experiment can be conducted with reduced test conditions with ACR, to determine 

the effect of different rates of degradation to the perceived quality. 

7.2 Gaze Controlled ROI Encoding 

The simplest improvement to the system would be to use Kvazaar as a library in the Pupil 

capture software instead of transferring the data to Kvazaar as an external program. This 

would be also beneficial for the capture software because the video encoding is currently 

done by a basic video interface of OpenCV [61] library, which is not meant for video 

compression. Implementing the change would require a Python interface for Kvazaar. 

Changing the scene camera of the eye tracking glasses would improve the overall video 

quality of the system. The pupil glasses and software are modular and allow changing the 

parts. However, since the pupil software supports multiple platforms, it uses libusbK USB 

drivers instead of the default ones. Two cameras were tested with the system: a Sony 4K 

action camera using external capture card and a Logitech Brio 4K webcam. The libusbK 

drivers for the capture card did not work out of the box and the webcam failed with no 

apparent reason for inputs higher than 720p30. However, getting them to work should be 

possible. If the libusbK turns out to be too difficult to use it is always possible to write a 

Windows specific capture plugin for the capture software. 

Mounting the alternative cameras should also be solved. For the webcam, it should be 

possible to disassemble the camera mount and substitute it for the default scene camera, 

since it is also a repurposed webcam. However, the action camera is larger so it requires 

an alternative mounting option. For example, using a helmet mount could work, although 

the capture software might require some tweaking considering that the scene camera is 

further away from the actual position of the eyes. More advanced system could use a 

camera that is not attached to the person’s head. In that case, some method would be 

necessary to track the head movement so that the gaze can be accurately mapped to the 

video. For example, in a car, the eye tracking sensor and a camera that is used to track the 
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head movement can be embedded into the dashboard. For the video, a dashcam could be 

used. The system can work as sort of a black box for the car. In such a system, it would 

probably make more sense to encode the area at the gaze center with worse quality since 

most likely the interesting area for the accident investigation is outside of the driver’s 

gaze. 

The ROI generation of the system can also be improved. The model in [48] could be 

embedded into the encoder with only the forward propagation part. Also, instead of using 

the DQP matrixes, a rate control algorithm similar to [48] could be used. One weakness 

the system currently has is that if the wearer’s gaze moves from the original area, the 

frame that will be used as a reference will have a worse quality at the gaze area, meaning 

the frames while moving the gaze will have worse quality. This can be alleviated by 

building a custom coding structure where frames that are more likely to be used as 

reference have larger high-quality areas. Similarly, the high quality area is larger when 

the gaze is moving . 
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8. CONCLUSIONS  

This work presented different ways to use eye tracking data to improve video encoding. 

First, some existing systems using eye tracking to enhance the perceptual quality of video 

were presented. Common feature for all these systems was that they either used pre-

encoded video or were not real-time capable. Second, the collection of eye tracking data 

from different videos using eye tracking glasses was depicted. Eye tracking data from 

videos is usually collected using screen based eye trackers but in this work, eye tracking 

glasses were validated as a working method. Furthermore, eye tracking glasses have the 

benefit of allowing more flexible viewing conditions, which in turn allows gathering more 

diverse data. 

Finally, a real-time system using eye tracking data to improve the perceived video quality 

was presented. The system uses eye tracking glasses to obtain the gaze data, which in turn 

is used to encode the video from the scene camera with higher perceived quality. 

Traditional quality metrics, such as PSNR and SSIM, do not show quality improvements. 

However, EWPSNR represents the HVS better and shows up to 33.7% and on average 5-

10% bit rate reduction over traditional video encoding. A conducted subjective test also 

justified that the system produces better quality. Additionally, the system improves the 

encoding speed by 8-20% depending on how aggressively the quality is degraded. The 

system has many potential uses, e.g., livestreaming events from a point of view 

perspective with higher perceived quality. 
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APPENDIX A. THE INSTRUCTION GIVEN FOR PARTICIPANTS 

Instructions 
  

1. Putting the headset on 
Once you have the headset on, try closing your eyes. If you feel that your eyebrows touched the 

headset or that they moved, try moving them a bit further out and try again. After you are 

comfortable with the glasses, the attendant will set the cameras properly. 

2. Calibration 
NOTE: Please keep your head as still as possible during the calibration 

During calibration, you will be shown symbols as described below. Gaze directly into the middle 

of the symbol and the red dot will turn green. Please keep your gaze on the dot until the symbol 

disappears and then move your gaze to the middle of the next symbol. This process will repeat 

until the calibration is done. 

 

Calibration symbol 

 

3. Actual test 
After calibration, the test begins and the assistant will leave the room. The actual test consist of 

41 videos that are all about 10 seconds long. After each video, you will be shown gray screen for 

three seconds. Every five videos you will be shown five symbols similar to the ones used during 

calibration to ensure that the calibration is valid. Afterwards the test resumes normally. The test 

ends when the video player shuts down and the computer returns to the desktop. At this point, 

you may remove the headset. Inform the assistant that the test is finished. 

If you have any problems during the test, you can pause the test by pressing spacebar. Call in 

the attendant to figure out the problem. 

NOTE: During this phase, you may move your head freely but try to avoid drastic head 

movement. Most importantly try not to squeeze your eyes because it can move the glasses. 

Blinking normally is fine. 


