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ABSTRACT 

TEPPO HJELT: Natural language processing techniques for measuring word 
similarity 
Tampere University of Technology 
Master of Science Thesis, 67 pages 
December 2018 
Master’s Degree Programme in Magament and Information Technology 
Major: Software Engineering 
Examiner: Professor Tarmo Lipping 
 
Keywords: natural language processing, NLP, web scraping, artificial intelligence, 
AI, semantic similarity, semantic relatedness, word2vec, word embeddings, on-
tologies, language models 

An artificial intelligence application considered in this thesis was harnessed to extract 

competencies from job descriptions and higher education curricula written in natural lan-

guage. Using these extracted competencies, the application is able to visualize the skills 

supply of the schools and the skills demand of the labor market. However, to understand 

natural language, computer must learn to evaluate the relatedness between words. The 

aim of the thesis is to propose the best methods for open text data mining and measuring 

the semantic similarity and relatedness between words. 

Different words can have similar meanings in natural language. The computer can learn 

the relatedness between words mainly by two different methods. We can construct an 

ontology from the studied domain, which models the concepts of the domain as well as 

the relations between them. The ontology can be considered as a directed graph. The 

nodes are the concepts of the domain and the edges between the nodes describe their 

relations. The semantic similarity between the concepts can be computed based on the 

distance and the strength of the relations between them. 

The other way to measure the word relatedness is based on statistical language models. 

The model learns the similarity between words relying on their probability distribution in 

large corpora. The words appearing in similar contexts, i.e., surrounded by similar words, 

tend to have similar meanings. The words are often represented as continuous distributed 

word vectors, each dimension representing some feature of the word. The feature can be 

either semantic, syntactic or morphological. However, the feature is latent, and usually 

not under understandable to a human. If the angle between the word vectors in the feature 

space is small, the words share same features and hence are similar. 

The study was conducted by reviewing available literature and implementing a web 

scraper for retrieving open text data from the web. The scraped data was fed into the AI 

application, which extracted the skills from the data and visualized the result in semantic 

maps. 
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TIIVISTELMÄ 

TEPPO HJELT: Luonnollisen kielen käsittelyn menetelmät sanojen samankaltai-
suuden mittaamisessa 
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Diplomityö, 67 sivua 
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Diplomityössä käsiteltävän tekoälysovelluksen tehtävänä on louhia luonnollisella kielellä 

kirjoitettujen työpaikkailmoitusten ja korkeakoulujen opetussuunnitelmien tekstisisäl-

löistä niissä esiintyvät kompetenssit.  Louhittujen kompetenssien avulla pystytään visu-

alisoimaan koulujen osaamistarjonta ja työmarkkinoiden osaamiskysyntä sekä näiden vä-

liset yhtäläisyydet ja erot. Ymmärtääkseen luonnollista kieltä tietokoneen pitää pystyä 

arvioimaan eri sanojen samankaltaisuutta. Tämän työn tarkoituksena on etsiä ja esitellä 

parhaita keinoja avoimen tekstidatan louhimiseen ja sanojen semanttisen samankaltaisuu-

den mittaamiseen. 

Luonnollisessa kielessä eri sanat voivat tarkoittaa samanlaisia asioita. Tietokoneen on 

mahdollista oppia sanojen samankaltaisuus pääsääntöisesti kahdella eri tavalla. Tarkas-

teltavasta sovellusalueesta voidaan muodostaa ontologia, joka mallintaa alueen käsitteet 

ja niiden väliset relaatiot. Ontologia voidaan ajatella suunnatuksi graafiksi, jonka solmut 

ovat sovellusalueen käsitteitä, ja niitä yhdistävät kaaret käsitteiden välisiä relaatioita. Kä-

sitteiden välinen samankaltaisuus voidaan laskea niiden väliseen etäisyyteen ja niitä yh-

distävien relaatioiden vahvuuteen perustuen. 

Toinen sanojen semanttisen samakaltaisuuden laskennallinen toteamistapa perustuu tilas-

tollisiin kielimalleihin. Malli oppii sanojen väliset yhtäläisyydet sen perusteella, minkä-

lainen niiden todennäköisyysjakauma isoissa tekstikorpuksissa on. Sanat, jotka esiintyvät 

samassa kontekstissa eli samojen sanojen ympäröimänä, ovat yleensä merkitykseltään sa-

mankaltaisia. Moderneissa kielimalleissa sanat esitetään usein moniulotteisina sanavek-

toreina, joissa eri ulottuvuudet pyrkivät oppimaan jonkun piirteen sanasta. Piirre voi olla 

merkitykseen, syntaksiin tai sanan taivutukseen perustuva. Piirre on kuitenkin piilevä, 

emmekä yleensä pysty sitä päättelemään. Jos sanavektorien välinen kulma on moniulot-

teisessa piirreavaruudessa pieni, sanat jakavat samoja piirteitä ja ovat samankaltaisia. 

Tutkimus on tehty tieteelliseen kirjallisuuteen perehtymällä ja toteuttamalla web scraper 

tekstidatan keräämiseen avoimilta verkkosivuilta. Web scraperin keräämä tekstidata syö-

tettiin tekoälysovellukselle, joka etsi datasta osaamisia kuvaavat sanat ja visualisoi ne 

semanttisiksi kartoiksi. 
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PREFACE 

As a former library guy, I have a funny affection for words. In Finnish language we have 

lots of them. I mean words, not funny affections. Some consider it a good thing, but I 

guess computers do not. Computers prefer unambiguous and precise expression. Some-

times I believe they may even hate Finnish and its dozens and dozens of different word 

suffixes. However, I want to help computers get along with their Finnish issues, as well 

as other language issues. 

The last two courses of my studies, Deep Learning and Software Project, introduced me 

to the topic of natural language processing. Harri Ketamo and Antti Koivisto from Headai 

pushed me deeper by proposing the subject to this thesis. The effort is now completed, 

but it was just the beginning of some vague and exciting trip. During my first steps, I have 

learned that natural language processing is not an easy task. We speak with different 

words about the same subject or with same words about different subjects. Timo Honkela 

(2017) stated aptly in his AI-researcher’s testament Rauhankone (Peace Machine): lack 

of common language could be an initiator to many crisis. Fortunately, mine was just a 

personal crisis of the thesis writer. And a temporary one. 

I would like to thank my family for their patience; my fellow students and folks at Headai 

for their support; TUT and UCPori staff for all their help; and my examiner for keeping 

me on the right track. 

 

Pori, 30.10.2018 

 

Teppo Hjelt 
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1. INTRODUCTION 

Schools offer education, which supplies students with skills. The labor market demands 

skills. However, do these skills match? Whether the skills supply meets the demand has 

remained a widely researched problem for ages (Scarpetta et al., 2012). This study con-

siders an AI-driven (artificial intelligence) approach to the problem. AI can be harnessed 

to read a huge amount of job advertisements and curriculum details, after which it figures 

out the skills offered by schools as well as skills needed in the labor market (Figure 1).  

 

Figure 1. Theme description of the thesis, the “big picture”. 

AI outputs illustrative visual maps of skills supply and demand, from which we can find 

answers to various interesting and significant questions concerning curriculum develop-

ment and related tasks, such as: 

 What are the top skills needed in a particular field (e.g., computing or business) 

or in particular region (e.g., Helsinki region)? 

 What are the top skills supplied by a particular school (the focus of the school)? 

What are the top skills supplied by a combination of schools (the focus of a part-

nership)? 

 Do critical gaps exist? Does the school’s supply of skills lack something desper-

ately needed in the labor market? Or does it supply students with skills irrelevant 

in the labor market? 

Why AI, this sounds like an easy task? It would be easy for a human, if there was a 

reasonable amount of data to handle. Unfortunately, there are far too many of these skills 

descriptions to go through manually. It would be easy for a machine, if the data were 

expressed in a machine understandable way, unambiguously without redundant noise. 

However, the skills descriptions are written by humans for humans. Moreover, they are 

written by various humans using various vocabulary with various words meaning the 
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same thing and the same word meaning various things, many words actually meaning 

nothing important. So much for the unambiguity. 

We definitely need a machine to do the job and we need to make it understand natural 

language, especially semantic similarity and relatedness between different words and 

concepts. That is the focus of this thesis. Hence, we will pursue answers to the following 

research questions: 

 What is the role of natural language processing in data driven curriculum devel-

opment? 

 How to extract semantics from words, which originally are just character se-

quences on a web page? 

 How to measure semantic similarity and semantic relatedness between words? 

During the process we will also follow the evolution of information from data to 

knowledge:  at first we have only text strings on the web, then filtered text data in the 

database, then preprocessed and further filtered text to be processed with AI, then infor-

mation in the form of semantic representation of words, and finally decision supporting 

knowledge to be exploited in curriculum development and related tasks. The whole pro-

cess of data driven curriculum development is an interdisciplinary process beginning with 

Computer Science, ending somewhere in the middle of Educational and Management 

Sciences. However, the scope of this effort is limited completely to Computer Science. 

We will mostly deal with computational linguistics and natural language processing 

within the field of AI but will also study some text mining and information retrieval.  

This work follows the guidelines of exploratory research (Stebbins, 2008). We search for 

the best designs for the semantic concept matching (in this case skills matching) between 

documents by proposing methods for online data collection, information extraction and 

semantic similarity measuring. Proposed methods are sometimes illustrated by simple 

examples. The study relies on reviewing available literature and introducing an AI imple-

mentation as a solution to the concept matching problem. This application is used as a 

black box. In other words, it is viewed only in terms of its input (text data) and output 

(skills) without knowledge of its internal details and algorithms (see Figure 1).  

The organization of the thesis goes as follows. Chapter 2 introduces the reader with web 

scraping, a traditional data gathering technique used in this work. Programming a web 

scraper for retrieving and storing the curriculum data was the practical part of the thesis. 

Chapter 3 is the core of the work considering NLP techniques in word similarity measur-

ing. The chapter begins by outlining a set of text preprocessing methods and the rest is 

dedicated to exploring ontology-based and corpus-based semantic similarity computing. 

Chapter 4 focuses on the practical implementation of the previously mentioned AI appli-

cation. It covers the task specific data resources, i.e., curriculum data and job data, and 

demonstrates the semantic matching and visualization of skills extracted from them. The 

final chapter sums up the whole effort and reviews the results. 
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2. EXTRACTING DATA FROM THE WEB 

For data driven decision making, like curriculum development, we need to analyze data. 

In recent years, due to exponentially increased computing power and likewise exponen-

tially increased amount of available data, we tend to think all data analysis is about big 

data. By that somewhat abstract concept, big data, we usually mean data so vast and di-

verse it could not be perceived, acquired, managed and processed by traditional IT tools 

within tolerable time (Chen, Mao and Liu, 2014). Fortunately, there is still plenty of room 

for smaller data, too. Lots of important data are structured, or semi structured at least, and 

accessible by traditional means. That kind of data were harvested from the WWW, the 

World Wide Web (later referred to as the web), in the practical part of this thesis by a 

procedure called web scraping. 

2.1 Web scraping 

Web scraping is one of the oldest techniques for extracting web contents (Glez-Peña et 

al., 2013). Later, information is extracted from the scraped data and further processed to 

become knowledge exploited in decision making. So, we will travel the classic path of 

the knowledge hierarchy: from data to information, from information to knowledge and 

finally wisdom (Henry, 1974; Rowley, 2007). 

A Dictionary of Social Media describes web scraping as follows: 

Extracting large amounts of data from an online source (often using an automated 

tool), especially where it is then reproduced somewhere else (Chandler and 

Munday, 2016). 

Even after this description, web scraping as a concept could appear somewhat vague to 

the reader. It is no wonder, quite similar concepts buzz around internet data related articles 

densely. For example, Technopedia (2013) sums the following terms up as synonyms: 

web scraping, web data extraction and web harvesting. They are just terms for various 

methods to collect information from the internet. There exist even more terms with related 

meanings in informal communication. We will use the term web scraping systematically 

throughout this thesis. 

The main idea behind web scraping can be stated as follows: we program a software that 

accesses as many web sites as needed for the task, parses their contents to find and extract 

the data we need, and structures the data the in the most suitable way for us. Obviously 

there are three separate steps in the process: site access; HTML parsing and information 

extraction; and outputting the information (Glez-Peña et al., 2013). 
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Web scraping could be easily confused with web crawling. The main difference between 

these two is that crawling just indexes the data it finds – like Google indexes (almost) all 

of the internet – whereas scraping extracts information from the data it finds. These two 

could be effectively combined, though: the crawler bot first indexes the data and then the 

scraper extracts information out of it (Massimino, 2016). The line between crawling and 

scraping is obscure. For example, when programming an automated web scraper, it is 

sometimes necessary to solve web addresses of popup-windows by concatenating strings. 

This is usually carried out by following some formula or pattern, which is more of a 

crawling kind of operation. Web crawling is not covered in further detail here, only to the 

extent it is embedded into web scraping.  Curriculum data scraped in the practical part of 

this thesis was extracted from a few predetermined web sites, and in that sense did not 

involve web crawling. 

2.2 Web scraping techniques 

Sometimes, when extracting content from the web site, we might be able to take a shortcut 

compared to complete web scraping. That is the case, when we find a suitable data API 

(Application Programming Interface) to utilize. The data API provides a way to perform 

searches to the site and download content without retrieving and parsing the actual HTML 

code. The desired information is usually returned in JSON (or XML) format and can con-

veniently be inserted into database or whatever is chosen to be the storage for the infor-

mation. Unfortunately, there still remain lots of domains lacking existing APIs or the 

APIs just do not give access to the desired data (Glez-Peña et al., 2013). Hence, we need 

traditional web scraping. 

Much of the current data driven research and development benefits a lot from well-de-

signed web scraping. In fact, regardless of the web data related task, the ability to grab 

any online data, in any amount or format, storing and retrieving it in any suitable way, 

sounds like a very necessary skill for any data scientist (Mitchell, 2013). When designing 

web scraping, we create software that automatically extracts information from web pages 

originally designed for human use (Glez-Peña et al., 2013). In other words, the scraper 

extracts the same information from the HTML code that human sees on the web page. 

The aim of web scraping is simply to mimick a human copying only relevant information 

from the web and pasting it to a more suitable repository. Of course, there are times, when 

human copy-paste-method easily beats automated scrapers, but that is only with ex-

tremely small amounts of data, never with AI-related tasks. 

While programming a web scraper the best general programming techniques and good 

practices should be respected.  Testing, proper use of methods and speeding up programs 

give the scraper more efficiency. For example, threading can speed up scraping noticea-

bly. It could take a long time for web pages to respond, and multiple threads running 

simultaneously enable optimizing efficiency during these down times. Distributed com-

puting could be even more powerful than threading.  It also comes with another valuable 
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advantage. Using multiple cloud machines with distinct addresses to visit a web site might 

not be as alarming for a host trying to prevent unauthorized scraping as all requests com-

ing from a single address. (Mitchell, 2013) 

In order to fully understand what follows, the reader should first be introduced to the 

structure of an HTML element. HTML (Hyper Text Markup language) is the standard 

markup language for creating web pages and describing their structure. HTML elements, 

in turn, are the building blocks of the web pages, and hence crucial for web scraping. 

Elements are represented by tags, which label the content of the element. In the following 

code h1 denotes a heading and p denotes a paragraph: 

<h1>Main heading</h1> 
</p>First paragraph…</p> 

Elements can be enriched with additional attributes like id and class, which can be used 

to identify and classify elements. They are of great help in web scraping as we will later 

see. 

<h1 id=”thisParticularHeader”>Main heading</h1> 
<p class=”introductionParagraph”>First paragraph…</p> 

Program 1. HTML elements with attributes 

When the web browser shows the web page, the tags are not displayed, but only their 

content is. The interested reader can find more information about HTML and related top-

ics on the w3schools web site1. 

2.2.1 Scraping static web pages 

There exist two types of web pages, static web pages and dynamic web pages.  Let us first 

examine the static web page parsing, because it is much simpler and more straightfor-

ward. Static page is usually coded in plain HTML. If we look at the source code of the 

page on our web browser, we will see the same information that we see on the visual 

page, this time only supplemented with HTML-tags and attributes. The source code file 

contains the whole visible text content of the web page and all references to its other 

visible parts, such as images. 

The core of web scraping is to find the areas within a document, that contain the desired 

information for our purpose. According to Massimino (2016), scraping can be categorized 

into three general cases: 

1. using embedded identifiers, 

2. tree-based navigation, 

                                                 
1 W3schools is the world’s largest web developers site at the time, https://www.w3schools.com 

https://www.w3schools.com/
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3. searching for contextual identifiers. 

This is an eligible, progressively complex, order to explore web scraping, and we will 

follow it, too. 

Using embedded identifiers is the ideal situation for scraping. This can be exploited if the 

site to be scraped contains well-marked-up HTML: elements are identified and classified 

systematically with proper attributes, like id and class (see Program 1). The web scraper 

can then easily fetch the important elements by these attributes.  

Unfortunately, not all web pages are constructed systematically with decent attributes 

attached to all important elements. In this case, we might try the second way to approach 

scraping and use tree-based navigation, sometimes called HTML DOM parsing. Every 

time a web browser loads a web page, it creates a Document Object Model (DOM) of the 

page. DOM creates a tree of objects on the web page. DOM is not just HTML-related 

standard, though. Besides HTML DOM there exist XML DOM for XML-documents and 

Core DOM for all document types (W3schools, 2018). In our case the HTML DOM is 

sufficient, and it will later be referred to simply as DOM.   

Let us take an example to clarify the concept of DOM. Human sees a web page on a 

browser screen as formatted text containing a heading, a paragraph and an unordered list 

(Figure 2).  

 

Figure 2. Screenshot from a web page as human sees it (W3schools, 2018) 

The page written in HTML code contains the same information, but each section (in this 

case the row) of the page is coded as its own element. The visual content we see in Figure 

2 is coded in HTML in Program 2. 
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<html> 
 <head></head> 
 <body> 
  <h2>What You Will Learn</h2> 
  <p>In the next chapters of this tutorial you will learn:</p> 
  <ul> 
   <li>How to change the content of HTML elements</li> 
   <li>How to change the style (CSS) of HTML elements</li> 
  </ul> 
 </body> 
</html> 

Program 2. HTML code implying a tree structure (W3schools, 2018) 

The elements in Program 2 clearly create a tree structure, the root being the html element. 

The whole DOM tree created from the elements of Program 2 is visualized in Figure 3. 

 

Figure 3. HTML DOM tree created from an HTML code 

In tree-based navigation the web scraper traverses through the DOM tree and takes ad-

vantage of both the tree structure (parents, children, siblings) and the attributes of the 

HTML elements. 

These two first scraping techniques are sufficient if the structure of the page is consistent 

and systematic. This is often the case considering pages with similar content provided by 

the same host, like curriculums from a certain school or jobs from a certain job site. How-

ever, sometimes pages with similar content could be coded by various persons or infor-

mation on them could be extracted from various spreadsheets or database tables with var-

ious structures. This usually results in a web site having inconsistent tree structure without 

systematic identifiers (attributes). Inconsistent sites can be scraped by searching for con-

textual identifiers. 
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Contextual identifiers are usually some words on a web page giving a hint of the follow-

ing words containing the desired information (Massimino, 2016). For example, text “Lan-

guage:” on a course page reveals that the following word(s) might tell us the teaching 

language of the course. Using contextual identifiers usually leads to multitude of condi-

tions: if condition 1, then solution 1, else if condition 2, then solution 2 and so on. This is 

not efficient and for the most part not complete either. There can always be a condition 

not taken into consideration, but we must settle for that. As Mitchell (2013) appropriately 

puts it, web scraping is often riding between the lines of what is intended and what is 

possible. Sometimes we have to write inelegant code to deal with inelegant code. 

2.2.2 Scraping dynamic web pages 

Considering dynamic web pages, the situation is more complicated. What distinguishes 

dynamic pages from static pages is that some of the information we see on the browser 

screen is not included in the source code file. Hence, it is not possible to be scraped by 

the techniques described above. 

If we view the source HTML code of a dynamic web page on our browser, we will only 

find a part of the information visible on the actual web page. In fact, we will only see the 

static part. The dynamic parts of the web page are not included in the source code file but 

are requested from the server or from a database when the actual page is loaded. The page 

could also be all dynamic, in which case the source code does not include any of the 

visible information. The dynamic parts of the page are not written in HTML, but some 

server-side scripting language like PHP, Javascript or Java.  

The information we see on the screen could change by clicking on a button, whilst the 

URL (Uniform Resource Locator, the web page address) of the page remains the same. 

Hence, the source code of the web page lacks the new information. With our browsers 

Web developer tools2 we can try to solve how the new information is created. For exam-

ple, if a popup-window appears, we might be able to solve how its contents are con-

structed, i.e., which external contents are called while the window is loaded. However, if 

we do not succeed in this, we can set up a virtual web browser to mimic human web 

browsing. This method will be considered in more detail in Chapter 2.3. 

2.2.3  Storing the retrieved information 

Storing the fetched information in a proper way and into a proper place is critical for 

further processing. There is no point in web scraping, unless the information found is not 

used in any way. Sometimes, if we have only little data, it is sufficient to store them into 

a spread sheet. Since web scraping is usually a part of some larger task, we need to store 

the data in a place where it is smoothly retrieved by other programs. SQL database is still 

                                                 
2 Browser’s Web developer tools are usually available by pressing F12 on the keyboard 
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a prevalent choice for storage especially with structured data, even though NoSQL data-

bases are gaining ground among big data environment (Sadalage and Fowler, 2012; 

Mitchell, 2013; Reniers et al., 2017). The same basic principles that concern database 

storage in general are applicable to web data, too. Mitchell (2013) and Massimino (2016) 

offer some advice while storing data scraped from the web. These could be capsulized as 

follows: 

1. We must always sanitize the input, i.e. clean out the malicious code, while insert-

ing into our database or when updating the database, because we never know what 

we might be picking up from the web. For example, we should use prepared state-

ments. 

2. In addition to the scraped information, it is always useful to store case specific 

metadata-information, such as author, language, revision history, comments, re-

views. 

3. We should also add a timestamp indicating when the information is retrieved from 

the web. 

2.3 Web scraping tools 

There are several frameworks and desktop-based environments to implement web scrap-

ing. They could be handy and perhaps more integrative, but a programmer with at least 

some experience might be most comfortable with customizing his/her own scraper using 

available language specific libraries and tools (Glez-Peña et al., 2013). Massimino (2016) 

calls these tools semicustom software. Semicustom means that the programmer uses some 

well-documented open source library to handle low-level subroutines and supplements 

the code with his/her own implementations when needed. In addition to in-depth docu-

mentation available for the open source software, there is also continuous debate going 

on about the best practices for solving various kinds of problems with them in discussion 

boards and developer communities over the web, for example, Stack Overflow3. 

With a suitable combination of tools and libraries, the three-phase scraping process de-

scribed in the previous chapter could usually be implemented in the following way 

(Mitchell, 2013): 

1. retrieve the HTML code from a website, 

2. parse it into an object, 

3. isolate and process the desired data. 

Although tools and libraries vary between programming languages, the main scraping 

principle remains the same. 

To understand how the web scraping tools begin retrieving the HTML code, we need to 

know the very basics of HTTP (Hypertext Transfer Protocol). HTTP is a request-response 

protocol between local computer (client) and remote computer (server or host). The client 

                                                 
3 The largest developer community at the time, https://stackoverflow.com  

https://stackoverflow.com/
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in our case is the web browser. An application that hosts the web site is the server. The 

browser submits a service request to the server, which returns the response to the client. 

For web scraping we need to retrieve the content of the web page. Hence, the browser 

sends a GET request for a certain URL (i.e., web address) and if successful HTTP com-

munication occurs, the server responds by returning the content of the desired page to the 

browser. (W3Schools, 2018) 

For example, if we want to retrieve the content of the web page from URL 

http://www.webaddress.com/folder/index.html, the browser sends a request including the 

following information: 

GET /folder/index.html HTTP/1.1 
Host: www.webaddress.com 

Chosen programming language for the scraping task sets the options for available tools. 

The practical part of this thesis was programmed in Java, so the tools had to be Java 

compliant. By the help of the before-mentioned developer community the software cho-

sen for the task was Jsoup, a Java HTML parser.  Jsoup parses HTML code to the same 

DOM as modern browsers do and makes an object of the parsed document. The next 

simple example demonstrates how text information (course goals in this case) can be re-

trieved and extracted from the web page located at http://www.webaddress.com/folder/in-

dex.html using Jsoup: 

// Get the document from URL location and save it as an object 
Document doc = Jsoup.connect("http://www.webaddress.com/folder").get(); 
// Extract the elements with class=”goals” to an element list 
Elements goals = doc.getElementsByClass(goals); 
// Extract the text from each of these elements 
for (Element goal: goals) { 
    String goalText = goal.text(); 
    // Insert into database or list 
    … 
} 

The previous example was naturally just an oversimplified case of data extraction. Jsoup 

enables the most complex DOM traversals and CSS (Cascading Style Sheets) selections 

for finding the relevant HTML elements from static web pages. Besides extracting the 

text contents of the elements as we did above, it is also possible to extract attributes (like 

URLs from links) and modify data with Jsoup (Hedley, 2009). Modifying data is irrele-

vant in information extraction, though. 

With dynamic pages the HTML parsing tools are often insufficient. All the information 

on the dynamic pages is not included in the file retrieved by the parsing tool. The fetched 

page could include an element that has an attribute telling the browser to run a javascript 

code when the element is clicked on. Javascript code could load some additional infor-

mation on the page or open a popup window, and we also need to retrieve that infor-

mation. If we are able to resolve the URL of the loaded information by our web browser’s 

http://www.webaddress.com/folder/index.html
http://www.webaddress.com/folder/index.html
http://www.webaddress.com/folder/index.html
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developer tools, we have solved the tricky part of the problem. Then, we only need to 

feed this URL to our HTML parser tool, fetch the page and parse the information like 

before. However, sometimes we have to resolve hundreds or thousands or even more 

URLs of Javascript opened windows. In that case, if we are lucky, we can resolve the 

formula for creating these URLs. The formula could consist of some information of other 

elements, that could be extracted from the HTML source code. If we are not able to re-

solve the formula, we need a tool to execute JavaScript (or some other script language 

that loads the dynamic part of the page). 

Web browser automation tools are of great help when it comes to dynamic web pages. 

Primarily these kinds of tools are for automating web applications for testing purposes, 

but they can conveniently be deployed in web scraping also. The idea is as follows. We 

set up a virtual web browser and code it to mimic human web browsing. The virtual 

browser can be coded to click on the elements on the web page and load their dynamic 

content on the browser screen. Now the information on the screen can be extracted with 

the automation tool in the same way that the HTML parsing tool did before. One such 

automation tool with support for the largest browser vendors is Selenium4. Selenium can 

be controlled by all common programming languages, including Java. The following ex-

ample clarifies the performance of the Selenium tool. Let us have a simple HTML code 

including h2 elements with onclick parameters, which load some new content on the web 

browser: 

<h2 onclick=”loadGoals();”>What You Will Learn</h2> 
<h2 onclick=”loadPrerequisites();”>Required Prerequisites</h2> 

In this case, Selenium mimics a human web surfer in the following manner: 

// Create a virtual web browser 
WebDriver driver = new ChromeDriver(); 
// Get the document from URL location 
driver.get("http://www.webaddress.com/folder"); 
// Extract the h2-elements to an element list 
List<WebElement> headings = driver.findElements(By.tagName(("h2"))); 
// Click on each of these elements 
for (WebElement heading : headings) { 
    heading.click(); 
    // Extract information from the loaded content 
} … 

With Selenium we can also program our scraper to execute login procedures, search for 

specific information on the page and perform almost any web action like a human being 

would. Note, that this is only one of many ways to tackle scraping dynamic web pages. 

From the web, as well as literary sources concerning the subject, the interested reader can 

explore other approaches. 

                                                 
4 SeleniumHQ browser automation, https://www.seleniumhq.org  

https://www.seleniumhq.org/


12 

In web scraping we are dealing with text data, so some additional text processing tools 

are usually valuable, too. For example, we might need something to help us manage, or 

rather avoid, regular expressions. Friedl (2002) describes regular expressions, also called 

regexp, as a powerful text data manipulating tool. With regexp it is possible to describe 

all kinds of text patterns, such as e-mail addresses following the pattern user@do-

main.ending, for example. We can tell the code what characters must be included in the 

pattern (in this case @ and .) and what characters are allowed to be between them. How-

ever, in more complex cases regexp can construct a very complicated and long expression 

and hence have a great potential for mistakes. In fact, Netscape’s Jamie Zawinski’s leg-

endary quote from 1997 can be understood as an advice for inexperienced regexp users: 

Some people, when confronted with a problem, think "I know, I'll use regular ex-

pressions." Now they have two problems. 

Usually programming languages have great tools to utilize in these situations, and they 

are definitely worth giving a try. During the practical part of this thesis, Apache Commons 

Lang5 package, especially its StringUtils class, was in use and found very helpful in string 

manipulation.  

2.4 Challenges considering web scraping 

Web scraping for research, or some other general good, has usually good intentions. How-

ever, web scrapers are programmed for other purposes also, such as spamming. Therefore, 

the scraper, also a decent one, is in risk of being banned by the host. Web browsing is 

under continuous monitoring by some hosts to catch unauthorized crawlers and scrapers. 

That, in turn, results in problems complicating web scraping. Some of the problems are 

more challenging for web crawlers but are important to take into consideration also when 

programming web scrapers.  

Data ownership comes into question, when scraping information from the web. Although 

the data is publicly accessible, it by no means signifies that its usage and ownership rights 

are transferred in the scraping process (Mitchell, 2013) .  Hence, we always have to verify 

and follow the terms of use and copyright documents on the web sites that we scrape. For 

example, Twitter prohibits unauthorized web scraping in its Terms of Service: 

“crawling the Services is permissible if done in accordance with the provisions of 

the robots.txt file, however, scraping the Services without the prior consent of 

Twitter is expressly prohibited” (Twitter Inc., 2012) 

                                                 
5 Apache Commons Lang provides extra methods to manipulate Java’s core classes, http://com-

mons.apache.org/proper/commons-lang  

mailto:user@domain.ending
mailto:user@domain.ending
http://commons.apache.org/proper/commons-lang
http://commons.apache.org/proper/commons-lang


13 

The robots.txt file tells the web crawler/scraper, which parts of the site are not allowed 

to traverse. It is placed in the top-level directory of the web site. A simple robots.txt file 

could tell all the robots to avoid visiting the tmp-folder of the site in the following manner: 

User-agent: * 
Disallow: /tmp/ 

 

Robots.txt uses the Robots exclusion standard6, which is unofficial and that way legally 

not as binding as Terms of Service. It makes abiding robots.txt an ethical choice for the 

programmer (Mitchell, 2013; Kimmons, 2017). 

In case no terms of use considering web scraping are provided, Massimino (2016) 

strongly recommends to contact the host to resolve the matter. However, Mitchell (2013) 

points out that there is no fundamental difference between accessing information on a 

web page via a browser and via an automated script like web scraper. Nonetheless, many 

sites will check to see if the visitor is actually a browser before sending the data. These 

sites check the HTTP header information we are sending with our every request. So, 

sometimes we must modify this HTTP header information (especially user-agent) on our 

scraper’s request to make it look more like an occasional visitor on a web page: 

"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36" 

HTTP header information can be controlled with web scraping tools and libraries like 

previously mentioned Jsoup and Selenium. 

Hosts might have implemented spider traps, i.e., endless loops of references generating 

no content, to trap the unauthorized crawlers (Massimino, 2016). These traps could also 

be generated unintentionally within a host’s content generating process. As such, they 

annoy authorized web scraping as well. Instead, intentional spider traps could be avoida-

ble. Although, being an important part of web scraping, creating undercover scrapers in 

more depth is outside the scope of this thesis. An interested reader is recommended to 

explore Mitchell (2013) or Massimino (2016) for further information on the subject. 

                                                 
6 Robots exclusion standard: https://en.wikipedia.org/wiki/Robots_exclusion_standard  

https://en.wikipedia.org/wiki/Robots_exclusion_standard


14 

3. NATURAL LANGUAGE PROCESSING IN SE-

MANTIC SIMILARITY MEASURING 

The information scraped and stored from the web contains just word strings, which are 

symbols without meaning. Is the word car more similar to the word lorry than to the word 

cat? The modern techniques of natural language processing help us measure the similarity 

between words and give them meaning. 

3.1 Natural language processing or text mining? 

The reader has probably come across terms such as natural language processing (NLP), 

text mining and text analytics, and wondered about the similarities as well as differences 

between them. The terms are all about analyzing text data, but are not synonyms, certainly 

not all of them. Oxford Reference, which brings together two million digitized entries 

across Oxford University Press’s dictionaries and encyclopedias, gives us the following 

definitions: 

“Text mining (text analytics): A form of data mining, which involves identifying 

and analysing patterns within a text and uses techniques drawn from natural lan-

guage processing, machine learning, and statistics… Analyses that can be done 

include sentiment analysis, concept extraction, entity relation modelling, and text 

abstraction or summarization.” (Elliot et al., 2016). 

“Natural language processing: abbr.: NLP; the computational analysis and inter-

pretation of human language. NLP is used in software that provides automatic 

translations of text from one language to another, in robotic systems that use hu-

man‐language‐type commands, and in text‐mining tools (e.g. to provide summar-

ies or abstracts of large volumes of text).” (Cammack et al., 2006) 

From this we can conclude, that text mining and text analytics can safely be used as syn-

onyms. In turn, NLP can be understood as a method used in text mining applications. 

NLP is the tool that helps the computer understand human language and text mining is 

the tool that extracts information from it. The target of both together is to produce appli-

cations that have human like comprehension of text, which allows them help humans 

make decisions based on a massive amount of text data. The key thing is to extract inter-

esting and non-trivial patterns or knowledge from text documents. Without NLP and text 

mining this would not be possible or would at least be extremely difficult. It would take 

too much time, even if it was possible for a human to read all the text data involved. 
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From the point of view of this thesis it is not necessary to draw a strict line between these 

terms. In conclusion we can say that most of this chapter deals with NLP techniques in 

text mining. 

3.2 Preprocessing of text data 

Although job and curriculum data scraped from the web might not be as messy as in some 

other NLP tasks, it is not ready for further processing as it is. Around the web and in 

publications several frameworks or approaches for text preprocessing are introduced 

(Uysal and Gunal, 2014; Wang, Liu and McDonald, 2014; Elakiya and Rajkumar, 2017; 

Mayo, 2017). They give decent guidelines for designing text preprocessing, but choosing 

the best tactic always remains a task-specific, as well as a language-specific, problem. 

Preprocessing texts written in morphologically rich and highly inflected languages is a 

trade-off between computation time and thoroughness. 

Preprocessing of text for NLP and text mining consists of procedures such as tokeniza-

tion, removal of stop words (common meaningless words) and punctuation marks, stem-

ming, lemmatization, part of speech (POS) tagging and substituting numbers with words. 

Principally, these steps reduce the amount of the words in the vocabulary by getting rid 

of redundant and duplicate information, hence making the final knowledge extraction 

more successful. We will group the preprocessing steps into three high-level concepts for 

simplicity: tokenization; text cleaning and substitution; and text normalization. In any 

case, no matter how we approach the subject, the steps will always remain partly over-

lapping. We are going to focus on the steps important with modern NLP techniques and 

morphologically rich languages, like Finnish. 

3.2.1 Tokenization 

Text tokenization is a fundamental preprocessing step for almost any text analyzing sce-

nario and usually starts the whole preprocessing. According to Uysal and Gunal (2014) 

tokenization is a form of text segmentation, that splits larger text into smaller pieces, 

namely tokens. These tokens can be words, phrases or other meaningful text parts. Typi-

cally, word tokenization is performed considering only alphabetic or alphanumeric char-

acters separated by space. Tokenizing is simpler for languages, where space is used as the 

word delimiter, such as Finnish. Rehman et al. (2013) study tokenization within lan-

guages with more complicated space usage, like some Asian languages and hand-written 

languages, but they are naturally beyond the scope of this thesis. 

At first glance, tokenization might seem like a simple process: sentences are split by 

punctuation “.” and words are split by whitespace “ “.  However, there are complex struc-

tures in written language, like the sentence ‘“Mr. Holder is a Ph.D., and he’s walking a 

full-time student Mr. Hill’s dog”, clarified Ms. Lea, when Mr. Powell wanted to know, 
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what’s going on.’ The linear approach does not work anymore. There are numerous tech-

niques available trying to tackle the tokenization problems for the languages of the world, 

for example, rule based, statistical, fuzzy, lexical and feature based tokenization (Rehman 

et al., 2013; Mayo, 2017). Partially exploiting these techniques, the programming lan-

guages have their own tokenizer libraries.  Still, reaching an eligible result often demands 

manual contribution from the programmer. 

3.2.2 Text cleaning and substitution 

Merriam Webster dictionary (2018) defines noise as “irrelevant or meaningless data or 

output occurring along desired information”. As Xiong et al. (2006) emphasize, noise 

hinders most types of data mining. That makes data cleaning one of the most important 

phases in the knowledge discovery process. Considering text data, the focus is on cleaning 

the data from useless words or characters, that carry little or no semantic meaning and in 

the worst case, mess up the whole knowledge extraction. These irrelevant words and char-

acters include stop words, symbols, emoticons (are they sarcasm or not?), mathematical 

equations and extra punctuation marks (Wang, Liu and McDonald, 2014; Alam and Yao, 

2018). However, we usually want to keep sentence ending characters “.” for AI tasks. 

There is no universal list of stop words. They usually consist of conjunctions, preposi-

tions, articles and other meaningless words. They also depend on the given purpose. To 

give a simple example, stop words in English include words like the, is, at, which, on and 

in Finnish ja, tuo, se, mikä, on. Numerous stop word lists for numerous languages can be 

found from the web, but they are never complete and must usually be customized to meet 

the needs of the given task. 

By the time of writing the thesis, we have just passed the GDPR (General Data Protection 

Regulation) enforcement day, May 25, 2018. According to European Comission (2018) 

GDPR was designed to protect and empower all EU citizens’ data privacy.  Now people 

have more control over their personal data. This reshapes the organizations’ approach to 

data privacy in a way that no redundant personal data should be saved. This must be taken 

into consideration even more carefully than before and leads to data anonymization (or 

pseudonymization) before storing text data. There are several methods to perform anon-

ymization, and they can be explored, for example, in Salas et al. (2018). At its simplest, 

anonymization can be done via substituting all personal data with xxx or “John Doe”-like 

data referencing to a hypothetical “everyman”. 

If numbers are considered important for the knowledge extraction process, they should 

be converted to textual representations. If numbers carry no relevant information, they 

are among the meaningless data to be removed. Also, rare terms are often removed, if 

they have no contribution to the knowledge extraction. 



17 

3.2.3 Text normalization, stemming and lemmatization 

Above discussed text cleaning is sometimes considered a part of text normalization. Text 

normalization continues converting text into a format that enables more efficient 

knowledge extraction. Common techniques include converting all characters to lowercase 

and lemmatizing or stemming the text. The goal of normalization is to treat all forms of 

the word as one, making all text equal (Wang, Liu and McDonald, 2014). After normali-

zation, the words car, cars, Car and Cars will all be treated as the word car, which be-

comes the representative for all its forms. Converting text to lowercase is very straight-

forward but stemming and lemmatization need to be studied more closely. 

Finding the representative for all the inflections of the word is not always as simple as in 

the previous example of cleaning the plural suffix s from the noun car. English words 

democracy, democratic and democratization also have similar meanings and hence need 

to have a common form, or at least fewer than the original three forms. English is a weakly 

inflected language, and hence, the words do not have so many inflections. Instead, in 

highly inflected languages, such as Finnish, words usually have dozens of inflections. 

Stemming and lemmatization try to reduce this variation and find a common base form 

to present all the inflections. However, they use completely different methods to reach 

that goal.  

Stemming is simpler and faster and makes the job usually by crudely chopping the suffix 

and keeping the stem of the word (Manning, Raghavan and Schutze, 2009). For example, 

the stem of the word hitting is hit. The most common algorithm for stemming in English 

is Porter’s (1980) algorithm for suffix stripping. Later Porter extended his work to cover 

a variety of other languages, including Finnish in 2002. Porter described these stemmers 

in a high-level programming language called Snowball (Porter, 2014). Snowball stem-

mers are often used for stemming in modern NLP libraries of various programming lan-

guages. 

However, stemming is not an easy task in highly inflected languages. Let us take the 

Finnish translation of the word hitting as an example. Hitting is lyövä in Finnish. It is an 

inflection of the word lyödä. Other inflections of the lemma lyödä include lyön (I hit, 

present tense), löin (I hit, past tense), lyöt (you hit, present tense), löit (you hit, past tense) 

and dozens of others. Only the character l in the beginning remains the same and the 

subsequent characters differ. So, stemming by chopping the varying suffix would not be 

very convenient in this case. In fact, Finnish words could have two stems, which makes 

the issue even more complicated. A lot of research has been done on highly inflected 

language stemming (Kettunen, Kunttu and Järvelin, 2005; Kettunen, 2006; Saharia et al., 

2013; Brychcín and Konopík, 2015; Dadashkarimi et al., 2016). 

The other normalization method, lemmatization, uses different methods and usually 

reaches a different result, too. The goal of lemmatizing is to find the lemma, the basic 
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form of the word. The basic form is the uninflected form of a word used as a dictionary 

entry. All nouns are lemmatized as singular lemmas. For example, cars will become car.  

Lemmatization among highly inflected languages is even more complicated than stem-

ming. The format of each word is dependent on the position and grammar connection 

with surrounding words and inflectional rules are spiced up with several exceptions. As 

Gallay and Simko (2016) point out, often the only option is to use an approach exploiting 

a dictionary of word-lemma mappings. The problem with this is that the dictionaries tra-

ditionally need to be created manually first determining the part of speech (POS) of the 

word and then applying different stemming rules for each POS. According to the authors, 

the creation of word-lemma dictionaries can be done semi-automatically using large cor-

pora annotations. Still, neologisms (newly coined words) and new domain specific terms 

will evolve all the time. In any case, a human author or at least a human supervisor is 

required. This makes creating and maintaining dictionaries for highly inflectional lan-

guages a demanding task, if at all feasible. However, this kind of normalization, that takes 

the word dependencies into consideration, could be extremely helpful with unambiguous 

words, i.e., words with more than one meaning. If we know the POS of the word, we can 

distinguish between words abstract (adjective) and abstract (noun). 

There has been an interesting opening in automatic word lemmatization recently by Gal-

lay and Simko (2016) themselves. Their approach utilizes vector space word models, so 

called word embeddings. It is based on an assumption that word embeddings encode also 

morphological regularities in addition to syntactic and semantic ones. We will discuss 

word embeddings in in more detail in Chapter 3.5.4 and will get back to morphological 

regularity encoding as well. 

Stemming and lemmatization do not differ that much in English, which is a weakly in-

flected language. Stemmed words often are lemmas, too. The situation is rather diverse 

in morphologically rich, highly inflected, languages. Korenius et al. (2004) studied the 

two methods in Finnish text clustering, concluding that lemmatization outperformed 

stemming in this setting. However, we have discussed the difficulties with lemmatization. 

Hence, the choice will remain task specific and a tradeoff between computation time and 

accuracy. If we prefer efficient real time applications, we must be ready for compromises. 

3.3 Semantic similarity between words 

The sentences “I own a cat” and “I have a kitten” obviously have very similar meanings. 

Still, they have only two words in common, I and a. If the text is thoroughly preprocessed, 

these common words are probably cleaned out. Based on this information the computer 

has no chance to capture the similarity between the sentences. We need to find a way to 

get the computer to find out that the words own and have hold similar meanings, as well 

as the words cat and kitten. 
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Semantic likeness between terms acts as a fundamental principle by which we organize 

and classify objects (Goldstone, 1994). Hence, to outperform human in this object classi-

fying task, AI also must learn the semantic likeness between words. Therefore, computa-

tion of word likeness has become a popular research problem in AI and NLP fields tack-

ling classification related problems such as word sense disambiguation, synonym detec-

tion, thesaurus generation, semantic text similarity, machine translation, information ex-

traction and sentiment analysis (Curran, 2002; Patwardhan, Banerjee and Pedersen, 2003; 

Mihalcea, Corley and Strapparava, 2006; Chen, Lin and Chu, 2011; Cambria et al., 2013; 

Li et al., 2017). 

It is important to understand, that there are different kinds of semantic likeness. In seman-

tic similarity two terms share some aspects of their meaning. For example, cats and dogs 

are alike to the extent they are both mammals (or even more specifically pets). If the two 

words are synonyms, like child and kid, their semantic similarity is very high. Semantic 

relatedness refers to non-taxonomic, more general type of likeness, as in car and wheel, 

or legs and trousers. In fact, relatedness is what computational applications typically re-

quire, not similarity (Budanitsky and Hirst, 2001; Sánchez et al., 2012). However, seman-

tic similarity is more useful when applications need to capture the hierarchical relations 

between concepts, such as concept expansion (Dragoni, Da Costa Pereira and Tettamanzi, 

2010). 

The methods surveying computational semantic likeness between words can be divided 

into two categories: corpus-based methods and knowledge-based methods (Mihalcea, 

Corley and Strapparava, 2006). Both measure the likeness between words by gauging 

their distance from each other in their unique way. 

3.4 Knowledge-based semantic similarity methods 

According to Guarino, Oberle and Staab (2009), knowledge-based methods usually iden-

tify semantic similarity between two words by the help of artificial semantic resources, 

like ontologies. The roots of Ontology as a discipline (not yet being called Ontology, 

though) dealing with the structure of reality date back in the times of Aristotle. However, 

the prevalent use of the term from Computer Science’s perspective is an ontology, a 

countable artifact, that formally models the structure of a system. In this thesis, by ontol-

ogy we will always refer to the latter. The definition to an ontology was originally given 

by Gruber (1993), later refined by Borsts (1997) and finally these two merged by Studer 

(1998): “An ontology is a formal explicit specification of a shared conceptualization”.  

While discussing knowledge extraction and semantic similarity measures, we will en-

counter several other terms related to ontology such as taxonomy, thesaurus, knowledge 

base, knowledge graph and semantic graph. From the perspective of semantic likeness, 

the key point is that knowledge can be presented, and hence traversed, as a labeled, di-

rected graph. Distinguishing the terms from each other is not necessary. The reader can 
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consider all above listed representations as ontologies. In the following we will build a 

semantic graph beginning from a simple taxonomy and expanding our representation 

gradually. 

For the most part, ontologies can be expressed as graphs (Harispe et al., 2017). Figure 4 

shows a backbone of an ontology, a taxonomy, as a directed graph. Taxonomy represents 

the hierarchy of some domain, forming a directed tree of classes and their subclasses. 

Hereby, the taxonomy classifies concepts. From the taxonomy in Figure 4 we can learn, 

that dogs and cats are mammals, which are animals, which are things. Similarly, cars and 

bikes are vehicles, which are objects, which are also things. Taxonomy has a taxonomic 

scheme which defines the properties considered to distinguish classes. 

 

Figure 4. Taxonomy as a directed graph 

According to Blumauer (2014), taxonomy becomes a thesaurus, when it is supplemented 

with non-hierarchical relations between concepts, such as synonyms or other related 

terms. Because of the non-hierarchical relations, thesaurus cannot be visualized as a tree, 

but as a more complex graph (network). However, thesauri are not competent enough to 

present the complexity of the whole knowledge of the world. Full ontologies supply us 

with more sophisticated relations.  

All advanced approaches representing knowledge, like ontologies, share common com-

ponents (Harispe et al., 2017): 

 Concepts (classes) are sets of things sharing common properties, e.g., Cat. 

 Instances (individuals) are members of classes, e.g, Tigger (an instance of the 

class Cat). 

 Predicates are types of relationships between instances or classes, which carry 

specific semantics, e.g., subClassOf (Car is a subClassOf Vehicle). 

 Relationships (relations) are concrete links between classes and instances. Rela-

tionships form subject-predicate-object (spo) statements, which also carry specific 
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semantics, e.g., Tigger isA Cat, Tigger isSiblingTo Missy, Tigger isBiggerThan 

Missy, Cat has Fur 

 Attributes are properties of instances (and classes), e.g., Tigger hasName “Tig-

ger”. 

 Axioms are statements that say something about classes, instances, attributes, 

predicates or relationships, and comprise the overall theory the ontology de-

scribes, e.g., Any Cat has fur, Any Cat has exactly 4 legs. 

Utilizing these common components introduced above, the taxonomy in Figure 4 can be 

extended to serve as an ontology, as perceived in Figure 5. 

The ontology can be represented as nodes linked to their classes by simple spo-statements, 

hence forming a semantic graph representing semantic relationships between concepts 

(and instances). According to Harispe et al. (2017), all relationships which link the nodes 

of the graph, carry unambiguous and controlled semantics. There are two kinds of rela-

tionships in Figure 5: hierarchical relationships (indicated with blue text, like isA), that 

link subclasses (or instances) to their classes; and non-hierarchical relationships (indi-

cated with green text, like has), that link classes (or instances) to their properties or in-

stances to their data values. The semantic graph has been supplemented by three in-

stances: Tigger and Missy of class Cat and Lassie of class Dog indicated with blue text 

boxes. They all have names as attributes, with values indicated with yellowish text boxes. 

 

Figure 5.  A simple ontology extended from the taxonomy in Figure 4. 
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From Figure 5 we can extract spo-statements such as Car isA Vehicle, Tigger isBigger-

Than Missy, Ant has Legs. These spo-triples can be represented, for example, by RDF7 

(Resource Description Framework) and its extensions RDFS8 (Resource Description 

Framework Schema) or OWL9 (Web Ontology Language), which are all W3C (World 

Wide Web Consortium) standards. The interested reader is instructed to explore more on 

these vocabularies on W3C website as indicated at the footnote. 

Spo-relationships in semantic graphs are utilized to define algorithms and characterize 

paths in the graph (Harispe et al., 2017). Hence, they contribute to measuring the semantic 

likeness between the concepts. Semantic similarity relies on the hierarchical relations 

(like isA) between concepts and semantic relatedness accepts also non-hierarchical rela-

tions. Utilizing this information, we can conclude that cat and dog are semantically sim-

ilar because they share the same direct hypernym mammal. Semantic similarity between 

ant and cat is not as big because their common hypernym animal is further away. Ant and 

cat are semantically related also because they both have legs. We can intuitively deduce, 

that semantic similarity metrics is proportional to the length of the path connecting the 

concepts. Several classical methods are introduced in the literature to transform our intu-

ition into computable metrics. 

3.4.1 Path-based methods 

In what follows, we will moderately exploit the notation and terminology used by McIn-

nes and Pedersen (2013) as well as Zhu and Iglesias (2017) in their research of semantic 

similarity (and relatedness) computation between concepts in knowledge graphs. In the 

introduced knowledge-based approaches to semantic similarity we will study a 

knowledge graph (KG), which is a directed labeled graph G = (V, E, ), where V is a set 

of nodes, E is a set of edges between nodes and  is a function V  V  E that defines all 

spo-triples in G. An edge e connecting two consecutive nodes vk,vk+1  V will be denoted 

as e = < vk, vk+1 >  E. Nodes of the knowledge graph contain concepts (like Animal or 

Car in Figure 5) as well as their instances (like Missy in Figure 5). Edges describe the 

relations (like isA and has in Figure 5) between concepts and instances. The semantic 

similarity between two concepts ci, cj  V will be denoted as sim(ci, cj). 

Path method 

A path connecting ci and cj will be denoted as P(ci, cj) = { ci, < ci, vk >, vk , < vk, vk+1 >, 

vk+1,… , cj}. Two concepts can be connected via various paths of various lengths, the 

shortest path length denoted as minpath(ci, cj). 

                                                 
7 RDF: https://www.w3.org/RDF  
8 RDF Schema: https://www.w3.org/TR/rdf-schema  
9 OWL: https://www.w3.org/TR/owl-ref  

https://www.w3.org/RDF
https://www.w3.org/TR/rdf-schema
https://www.w3.org/TR/owl-ref
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The path method, originally called distance method by its developers Rada et al. (1989), 

simply uses the shortest path length to present the semantic distance between concepts. 

Semantic similarity is inversely proportional to the path length and indicated as  

𝑠𝑖𝑚𝑝𝑎𝑡ℎ(𝑐𝑖, 𝑐𝑗) =
1

1 + 𝑚𝑖𝑛𝑝𝑎𝑡ℎ(𝑐𝑖, 𝑐𝑗)
. 

The notation of path in the subscript refers to path method. The shorter the path, the more 

semantically similar the concepts are. The addition of one in the nominator prevents di-

viding by zero if ci = cj. As a matter of fact, path method is all about counting the edges 

in the shortest path between the concepts. 

Wup method 

Wu and Palmer (1994) (therefore the abbreviation wup) use the Least Common Subsumer 

(LCS) in their approach to semantic similarity computation. LCS is the nearest shared 

ancestor of the two concepts, a common hypernym. In Figure 5, the LCS of dog and cat 

is mammal, and the LCS of dog and ant is animal. We will denote LCS between concepts 

ci and cj as lcs(ci,cj). Wup uses the following formula to measure the semantic similarity 

between two concepts 

𝑠𝑖𝑚𝑤𝑢𝑝(𝑐𝑖, 𝑐𝑗) =
2 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐𝑖, 𝑐𝑗))

𝑑𝑒𝑝𝑡ℎ(𝑐𝑖)  +  𝑑𝑒𝑝𝑡ℎ(𝑐𝑗)
, 

where depth(ci) is the number of edges from root to node ci. What this adds to the path 

method is that also the specificity of the concepts affects the similarity measure, not just 

the path length between them. If we look at Figure 5, the path length between Object and 

Animal is equal to the path length between Cat and Dog, but the latter pair gets higher 

similarity points for being more specific, i.e., locating deeper in the taxonomy. 

Li method 

The approach by Li et al. (2003) combines the shortest path length and the depth of LCS 

in another way. Euler’s number e along with parameters  and , contribute to the shortest 

path length and depth of LCS respectively 

𝑠𝑖𝑚𝑙𝑖(𝑐𝑖, 𝑐𝑗) = 𝑒− 𝑚𝑖𝑛𝑝𝑎𝑡ℎ(𝑐𝑖,𝑐𝑗)
𝑒 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐𝑖,𝑐𝑗))  −  𝑒− 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐𝑖,𝑐𝑗))

𝑒 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐𝑖,𝑐𝑗))  +  𝑒− 𝑑𝑒𝑝𝑡ℎ(𝑙𝑐𝑠(𝑐𝑖,𝑐𝑗))
. 

The empirical optimal values for the parameters have been identified by the authors as  

= 0,2 and  = 0,6. 

Lch method 

Shortest path is exploited in a method by Leacock and Chodorow (1998) as well, but this 

time with a non-linear function. The similarity between two nodes is computed as follows 
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𝑠𝑖𝑚𝑙𝑐ℎ(𝑐𝑖, 𝑐𝑗) = − log 
𝑚𝑖𝑛𝑝𝑎𝑡ℎ(𝑐𝑖, 𝑐𝑗)

2 𝐷
, 

where D is the maximum depth of the whole concept taxonomy tree. In other words, D is 

the number of edges from the root node to the furthest leave node. So, lch similarity 

measure is relative to the taxonomy height. 

3.4.2 Information content based methods 

The methods introduced above were all path-based (or edge-based) methods, relying only 

on path lengths on taxonomy tree traversals. There are also semantic similarity metrics 

that exploit the information content (IC) given by the word probabilities (frequencies) in 

corpus.  While exploiting corpora, IC-based (or node-based) methods are knowledge-

based methods and should not be confused with actual corpus-based methods discussed 

in Chapter 3.5. 

Res method 

The basic argumentation of information theory originally proposed by Shannon (1948) 

says that information content (IC) of a concept c can be quantified as a negative log-

likelihood of its probability  

𝐼𝐶(𝑐)  =  − log 𝑝(𝑐). 

If we have a corpus of N concepts, the probability to encounter concept c in the corpus is 

simply 

𝑝(𝑐)  =  
𝑓𝑟𝑒𝑞(𝑐)

𝑁
 . 

When the probability of encountering the concept in corpus increases, its IC decreases. 

Resnik (1995) modified IC to be used as a similarity measure in the following manner  

𝑠𝑖𝑚𝑟𝑒𝑠(𝑐𝑖, 𝑐𝑗) =  𝐼𝐶(𝑙𝑐𝑠(𝑐𝑖, 𝑐𝑗))  =  − log 𝑝(𝑙𝑐𝑠(𝑐𝑖, 𝑐𝑗)). 

The choice of a logarithmic base corresponds to the unit for measuring information. Orig-

inally Shannon (1948) used base 2, in which case the resulting similarity is given in bits 

(or shannons). If natural logarithm (base e) is used instead, the result will be in units 

called nats. 

According to the above formula, the similarity between two concepts equals the infor-

mation content of their LCS, the nearest common ancestor (hypernym) of the concepts. 

It is important to remember that taxonomy wise the ancestor includes all its descendants, 

hence 
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𝑝(𝑐) =  𝑝(𝑐′)  + ∑ 𝑝(𝑑)

𝑑𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡(𝑐′)

, 

where c’ denotes the concept (word) c per se without its descendants. The semantic sim-

ilarity between dog and ant measured by the res method equals the probability to encoun-

ter any concept from any of the subclasses of animal in the corpus (animal being the 

nearest common hypernym of dog and ant). If the concepts do not share any other com-

mon hypernym than the root of the taxonomy, their similarity is 0, since p(root) = 1 and  

log(1) = 0. 

Jcn method 

Jiang and Conrath (1997) extended res method by including the IC of the individual con-

cepts. They measured the distance between concepts as 

𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑐𝑗) =  𝐼𝐶(𝑐𝑖)  +  𝐼𝐶(𝑐𝑗)  −  2 𝐼𝐶(𝑙𝑐𝑠(𝑐𝑖, 𝑐𝑗)), 

which gives similarity as its inverse 

𝑠𝑖𝑚𝑗𝑐𝑛(𝑐𝑖, 𝑐𝑗) =  
1

𝐼𝐶(𝑐𝑖)  +  𝐼𝐶(𝑐𝑗)  −  2 𝐼𝐶(𝑙𝑐𝑠(𝑐𝑖, 𝑐𝑗))
. 

Lin method 

Lin (1998) used the same pieces as Jiang & Conrath (1997), when introducing his solution 

𝑠𝑖𝑚𝑙𝑖𝑛(𝑐𝑖, 𝑐𝑗) =
2 𝐼𝐶(𝑙𝑐𝑠(𝑐𝑖, 𝑐𝑗))

𝐼𝐶(𝑐𝑖)  +  𝐼𝐶(𝑐𝑗)
. 

If we compare this to the wup method introduced earlier, we will find them to be similar 

except for the use of IC rather than the depth of the concepts. 

The discussed methods have captured the taxonomical semantic similarity between con-

cepts in ontologies. This can be extended to instances as well, since concepts can be 

viewed as semantic classes for their instances (Zhu and Iglesias, 2017). Thus, in Figure 5 

the semantic similarity between instances Missy and Lassie can be measured by calculat-

ing the semantic similarity between their respective concepts, Cat and Dog. 

3.4.3 Semantic relatedness methods 

In addition to semantic similarity, also semantic relatedness can be extracted from 

knowledge graphs. Relatedness does not rely only on hierarchical (isA) relationships be-

tween concepts but also considers, for example, the properties (has) of classes or relations 

between instances (isSiblingTo). In other words, the importance of an edge between two 

nodes also has a measure. Recent knowledge-based methods have been proposing metrics 



26 

for measuring semantic relatedness. A couple of them will be introduced shortly without 

going into further details of the relatedness computation. 

Hulpus et al. (2015) introduced a path-based semantic relatedness method, that uses social 

network analysis technique to measure the effectiveness of a path connecting instances. 

This is used together with the exclusivity metric that specifies the relative importance of 

the relations connecting these instances. The method follows two principles: 

1. the shorter the path between instances, the higher the relatedness between them,  

2. the relatively more important the relations between instances, the higher the relat-

edness between them. 

In their approach, Han et al. (2012) introduced the Concept Level Association knowledge 

(CAK) to represent the knowledge essential for human language understanding. Such 

knowledge includes facts like the birds can fly but trees cannot, and database table is not 

a kitchen table. Automatic CAK learning will be obtained by computed statistical asso-

ciations between instances, which base on the occurrences and co-occurrences of nodes 

and edges (terms and relations) in ontologies. 

Schuhmacher and Ponzetto (2014) used Combined Information Content (CombIC) to de-

rive weights for edges representing properties in the knowledge graph. The weights 

should capture the degree of associativity between concepts, as well as their different 

levels of specificity. 

Several other knowledge-based approaches to measuring semantic similarity or related-

ness between words have been introduced in the literature. The interested reader is sug-

gested to explore Harispe et al. (2017), who give a quite exhaustive, chronological listing 

of them.  

During the chapter, we have mostly discussed similarity between concepts, although the 

title says, “similarity between words”. It is true, that words can have several meanings 

and therefore appear several times in the taxonomy as different concepts. So, how do we 

compare the similarity considering these polysemic words? What sense of the word do 

we choose? Tversky (1977) demonstrated in his psychological studies, that humans pay 

more attention to word similarities than their differences while rating the similarity be-

tween two words. Hence, point and comma are rated similar, despite point has many other 

kinds of meanings. The same principal is exploited in computational word similarity, i.e., 

taking the maximal similarity score over all concepts that are senses of the word 

𝑠𝑖𝑚𝑤𝑜𝑟𝑑(𝑤𝑖, 𝑤𝑗)  =  max
𝑐𝑖𝑠(𝑤𝑖), 𝑐𝑗𝑠(𝑤𝑗)

𝑠𝑖𝑚𝑐𝑜𝑛𝑐𝑒𝑝𝑡(𝑐𝑖, 𝑐𝑗), 

where s(w) denotes a set of concepts that are senses of the word w (Sánchez et al., 2012; 

Zhu and Iglesias, 2017). 
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The presented knowledge-based semantic similarity metrics have been reported to per-

form well in WordNet10. WordNet is integrated in popular knowledge graphs such as 

DBpedia11, YAGO12 and BablNet13 enabling efficient semantic similarity computation 

(Zhu and Iglesias, 2017). WordNet is a lexical database of English language, where words 

are grouped into sets of cognitive synonyms called synsets, each expressing a distinct 

concept. These concepts are linked by semantic (and lexical) hierarchical relations 

(Princeton University, 2010). 

In general, knowledge-based methods are computationally effective. They do not require 

complex and time-consuming semantic language model building, like corpus-based ap-

proaches do. The language model is already built into the ontology. Although, not every 

domain has its own ontology describing the elements to compare. That is a strong limita-

tion. However, there is plenty of literature available for knowledge base generation and 

nothing prevents us from creating our own ontology to serve our purpose. (Harispe et al., 

2017)  

3.5 Corpus-based semantic similarity methods 

The lack of suitable ontology might drive us to find other solutions to handle semantic 

likeness between words. Corpus-based methods do not need anything but a vast amount 

of text for the task. The legendary quote from an English linguist John R. Firth (1957) 

captures the essence: “You shall know a word by the company it keeps”. Words in similar 

contexts tend to indicate similar meanings. This idea derived originally from the research 

of distributional structure of language by Harris (1954), and has later become known as 

the distributional hypothesis (Sahlgren, 2008). Building on that we can utilize the simi-

larity in word distributions to estimate the similarity in word meanings. Corpus-based 

semantic similarity approaches rely on this intuition. 

Corpus-based methods identify the degree of likeness between words using information 

entirely derived from large corpora, i.e., large collections of text data (Mihalcea, Corley 

and Strapparava, 2006). There are several free public corpora to be taken advantage of in 

corpus-based NLP tasks. At the time of writing the thesis, corpus lists can be found, for 

example, at Kielipankki14 website (Finnish corpora) and Nicolas Iderhoff Github15 web-

site (English corpora). 

                                                 
10 WordNet, a large lexical database of English: https://wordnet.princeton.edu  
11 DBpedia, towards a public data infrastructure for a large, multilingual, semantic knowledge graph: 

https://wiki.dbpedia.org  
12 YAGO, a large semantic knowledge base, derived from Wikipedia, WordNet, WikiData, GeoNames, and 

other data sources: https://github.com/yago-naga/yago3  
13 BabelNet, a multilingual encyclopedic dictionary and a semantic network: https://babelnet.org  
14 Kielipankki, The Language Bank of Finland: https://www.kielipankki.fi/corpora  
15 Nicholas Niderhoff Github site: https://github.com/niderhoff/nlp-datasets  

https://wordnet.princeton.edu/
https://wiki.dbpedia.org/
https://github.com/yago-naga/yago3
https://babelnet.org/
https://www.kielipankki.fi/corpora/
https://github.com/niderhoff/nlp-datasets
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Since corpus-based approaches can rely on various vast corpora, they usually have better 

coverage of vocabulary than knowledge-based approaches, that can cover only the con-

cepts included in the knowledge graph (Zhu and Iglesias, 2017). Corpus-based methods 

reflect all kinds of relations between words, both hierarchical and non-hierarchical. 

Hence, they principally measure semantic relatedness between words. Corpus-based 

methods do not take into account different meanings of polysemic words. For example, 

point is just a word, and does not represent any concept (such as punctuation, spot or fact) 

more than another. However, it could be represented in a way, that reflects its various 

meanings, as we will find out.  

3.5.1 Distributed word representation 

In the applications, the words are usually represented using well-known mathematical 

objects such as sets, vectors, probability distributions or nodes in the graphs. The repre-

sentation of the words naturally determines the way we compute the similarity between 

them. Knowledge-based methods rely on words as nodes in the graphs, as we saw in 

Chapter 3.4. Corpus-based methods, since relying on statistical computations, have to 

construct numerical vectors from words. 

There are principally two ways to present words as vectors, a symbolic (also referred to 

as local) and distributed representation. For many years presenting words as atomic units, 

like symbols, was the predominant one. In the symbolic representation, the k:th word in 

the vocabulary is presented as a one-hot vector x as follows 

{
𝑥𝑖 = 1, 𝑤ℎ𝑒𝑛 𝑖 =  𝑘
𝑥𝑖 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where k stands for the ordinal of the word in the vocabulary and xi is the i:th element of 

the vector x. In other words, the k:th element in x is 1 and all other elements are 0. We 

can illustrate this with a simple example.  Let us take the vocabulary of four words {cat, 

dog, car, bike}.  The symbolic one-hot vector representation of the 3rd word in the vocab-

ulary, car, is [0 0 1 0]T. The dimension of the vector in this case is 4. More generally, in 

the vocabulary of size V, the symbolic representations of words are one-hot vectors of the 

length V. 

Presenting words in a vocabulary as one-hot vectors has its virtues. It is very easy to 

implement and easy to understand. Unfortunately, it comes with a crucial failure consid-

ering our purpose. There is no decent measure for semantic similarity between words in 

the symbolic representation. A word cat is as close to a word dog as it is to a word car. 

They are just vectors with one entry as 1 and others as 0. If measured as Euclidian distance 

between the words, the distance of a given word from any another word will be  √1 + 1 =

√2 (Goodfellow, Bengio and Courville, 2017). 
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The other way to present words is as continuous distributed vectors, which Bengio (2003) 

aptly calls word feature vectors. Let us review the previous four-word vocabulary {cat, 

dog, car, bike}. Figure 6 presents the words of the vocabulary as one hot vectors and 

distributed vectors in 4-dimensional vector space. The difference between these presen-

tations is that in the symbolic presentation the dimensions of the vector are always the 

objects (the words) themselves, while in the distributed representation the dimensions are 

features of the object. In this case we have selected the following features:  

1. is the object a pet (yes = 1, no = 0),  

2. is the object a vehicle (yes = 1, no = 0),  

3. how many legs does the object have,  

4. how many wheels does the object have. 

Of course, we could have selected any number of dimensions with any features we de-

sired. 

 

Figure 6. Words of a four-word vocabulary presented as symbolic one-hot vectors 

and distributed vectors. 

We can notice how our distributed representation captures the semantic similarity be-

tween cat and dog ([1 0 4 0]𝑇 and [1 0 4 0]𝑇), as it does with car and bike ([0 1 0 4]𝑇 and 

[0 1 0 2]𝑇. Both vector pairs are close to each other in the vector space. In fact, cat and 

dog share the same distributed vector representation. 

In our example, we chose the four features for our distributed representation. We also 

gave them names to help visualize the idea: pet, vehicle, legs and wheels. By these fea-

tures we found the similarity between words. Cats and dogs were pets with legs, cars and 

bikes were vehicles with wheels. Of course, in real life’s NLP tasks the vocabularies are 

much larger and we need higher dimensionality for our distributed representation to cap-

ture the relevant features of the word, typically 300 dimensions (Church, 2017). Some-

times these features are understandable for a human but usually they are not (Landauer, 

Folt and Laham, 1998). Neither are they discrete as in our example, but continuous-valued 
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(Bengio, 2008). So, the concept could be somewhat pet-like although it is not a pet, for 

example, “pet-likeness” could be 0,4 for squirrel and 0,9 for cat. 

These features may seem rather mystical at first. However, they can be learned by the 

help of statistics related techniques. According to Landauer et al. (1998), the features can 

be considered as latent features. We can imagine that each dimension in feature space 

corresponds to a semantic or grammatical characteristic of words (Bengio, 2008). Let us 

get back to our previously mentioned example of the polysemic word point. Its distributed 

vector representation could learn various meanings of point as features. For example, one 

feature could be its “fact-likeness”, one could be “spot-likeness” and one could be “punc-

tuation-likeness”. 

3.5.2 LSA, Latent Semantic Analysis 

Latent Semantic Analysis (LSA) was introduced as a new approach to automatic infor-

mation retrieval and indexing by Deerwester et al. (1990). However, Landauer et al. 

(1998) were the first to discuss LSA in the context of word meanings and word similarity 

measuring. As the name implies, LSA tries to discover the hidden semantic features of 

the words. In order to succeed, LSA uses dimensionality reduction to extract semantics 

from term occurrences in a corpus. This is executed by Singular Value Decomposition 

(SVD) on the term-by-document matrix T representing the corpus. In literature, term-by-

document matrix is also referred to as word-by-document, word-by-context, document-

word or term-context matrix. Each row in T stands for a unique term and each column 

stands for a document (see Table 1). Documents are represented as bags of words 

(BOWs), where only the word counts are relevant, not the order of the words. This rep-

resentation defines the context of a word as a document in which the word occurs. It was 

originally introduced as Vector Space Model by Salton et al. (1975). 

We can demonstrate creating term-by-document matrix T with a simple example of the 

following four short documents: 

1. D1: Cats and ants have legs. 

2. D2: Dogs and cats have fur. 

3. D3: Cars and lorries have a wheel. 

4. D4: Cars and bikes have tires. 

After preprocessing, for example, removing stop words and normalizing the words, the 

vocabulary will contain ten terms: {cat, ant, leg, dog, fur, car, lorry, wheel, bike, tire}. 

Term-by-document matrix constructed from documents D1, …, D4 appears in Table 1 

and tells us how many times each word appears in each document. This time, the maxi-

mum count of appearances in documents happens to be 1, but naturally in larger corpora 

it is much higher. 
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Table 1. A term-by-document matrix of four documents  

and a ten-word vocabulary. 

 D1 D2 D3 D4 

cat 1 1 0 0 

ant 1 0 0 0 

leg 1 0 0 0 

dog 0 1 0 0 

fur 0 1 0 0 

car 0 0 1 1 

lorry 0 0 1 0 

wheel 0 0 1 0 

bike 0 0 0 1 

tire 0 0 0 1 

 

We can also reflect term-by-document matrix more generally. If we broaden the concept 

of document to cover all kinds of contexts, we will get a general term-by-context matrix. 

The context could be, for example, a window of ten consecutive words. Now each word 

vector would be defined by term occurrences inside this context window. 

SVD is a matrix operation, that can be applied to any rectangular m  n matrix to find 

correlations among its rows and columns. SVD decomposes the term-by-document ma-

trix T into three matrices  

𝑻 =  𝑼 𝑘 𝑽
T, 

where k is the rectangular diagonal matrix containing k = min(m, n) singular values of 

T, 1 ≥ 2 ≥ …≥  k, and U and V are column-orthogonal matrices. The sizes of U, k and 

VT are respectively m  m, m  n and n  n in full SVD and m  n, n  n and n  n in 

reduced SVD (or thin SVD) assuming m > n. The condition m > n applies if the vocabu-

lary size is greater than the number of documents considered. In such cases LSA uses the 

reduced form (Landauer, Folt and Laham, 1998). The reduced SVD decomposed from 

the data in Table 1 is 

  



32 

 

𝑻 =           𝑼 𝑘 𝑽T  = 

 

  . 

If we take only the k’ largest singular values and replace the other singular values by zero, 

we will obtain a least-squares best fit approximation T’ of the original T 

𝑻′ =  𝑼 𝑘′ 𝑽
T. 

SVD identifies (and orders) the dimensions along which datapoints show the most varia-

tion (Harispe et al., 2017). The two largest singular values of the term-by-document ma-

trix T in Table 1 are both 2 (indicated on gray background in k of the SVD above). In 

Table 2 we will see the approximation of the original T obtained by using only these two 

largest singular values (and replacing other singular values by zero). 

Table 2. The approximation of the original term-by-document  

matrix obtained by its two largest singular values. 

 D1 D2 D3 D4 

cat 1 1 0 0 

ant 0,5 0,5 0 0 

leg 0,5 0,5 0 0 

dog 0,5 0,5 0 0 

fur 0,5 0,5 0 0 

car 0 0 1 1 

lorry 0 0 0,5 0,5 

wheel 0 0 0,5 0,5 

bike 0 0 0,5 0,5 

tire 0 0 0,5 0,5 

 

How does this representation reveal any more similarity between the words than the orig-

inal? Landauer et al. (1998) interpret this in a human way. By taking the two largest sin-

gular values, it is decided that every word consists of two abstract features (some amount 

0,71 0 0 0

0,35 0 0,50 0

0,35 0 0,50 0

0,35 0 -0,50 0

0,35 0 -0,50 0

0 0,71 0 0

0 0,35 0 -0,5

0 0,35 0 -0,5

0 0,35 0 0,5

0 0,35 0 0,5

2 0 0 0

0 2 0 0

0 0 1,41 0

0 0 0 1,41

0,71 0,71 0 0

0 0 0,71 0,71

0,71 -0,71 0 0

0 0 -0,71 0,71
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of feature 1 and some amount of feature 2). If we consider each document as a context of 

the word, the representation tells the probability of the word appearing in that context. 

The probability of dog appearing in context D1 is 0,5, even though it did not appear in 

document D1 originally. So, dog might have legs. 

We can also think of the rows in the term-by-document matrix as vector presentations of 

the terms. Let us compare ant and dog to each other. They are both animals that intuitively 

could appear in similar contexts. However, their correlation (Pearson correlation co-effi-

cient) in the original representation is – 0,33, and in the approximation, it is 1. In other 

words, they are equivalent vectors in this simple presentation. Hence, the reduced dimen-

sional representation succeeds in capturing the semantic relatedness between the words. 

Of course, this example of only four documents and ten words is an oversimplified case 

in many ways, but it gives us a hint of how LSA performs.  In real life cases all words are 

not equally important. The importance of the word must also be taken into account. As 

stated before, when the probability of encountering the concept in corpus increases, its IC 

(information content) decreases and vice versa. Since ant is less probable word than cat 

in our corpus, we should give its appearance a greater importance.  

To put all the words on the same line before performing SVD, their overall frequency in 

the corpus must be computed as well, not only their frequency in a given context. We 

should construct a weighted term-by-document matrix instead of the matrix including 

only the raw word counts. When introducing LSA, Landauer et al. (1998) used the infor-

mation theoretic measure called entropy (see Shannon 1948) for weighting. Entropy is 

closely related to IC. The word frequencies were first converted to their logarithms and 

then divided by the word entropy. The entropy H for the word wi is  

𝐻(𝑤𝑖) =  − 𝑝(𝑤𝑖) log 𝑝(𝑤𝑖)  =  − 𝑝(𝑤𝑖)𝐼𝐶(𝑤𝑖). 

Hence, the weighted term-by-document matrix entry Tij (entry for the word wi in docu-

ment j) can be computed as follows 

𝑇𝑖𝑗 = − 
log 𝑓𝑟𝑒𝑞(𝑤𝑖𝑗)

𝑝(𝑤𝑖) log 𝑝(𝑤𝑖)
, 

where freq(wij) is the count of word wi in document j. This weighs the occurrence of each 

word by an estimate of its importance. There are several other ways to execute the 

weighting, perhaps the information retrieval related TF-IDF (Term Frequency – Inverse 

Document Frequency, N.B. dash and hyphen do not refer to subtraction in this case) 

method introduced by Salton and McGill (1983) as the most popular one alongside the 

entropy method. In the basic approach TF (term frequency) for the word wi in the docu-

ment j is simply its word count, denoted here TFij. The number of documents that contain 

the word (document frequency) is denoted DFi and it defines the inverse document fre-

quency (IDF) as follows 
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𝐼𝐷𝐹𝑖 =  log 
𝑁

𝐷𝐹𝑖
, 

where N is the total number of documents. The TF-IDF weighting is conducted as a prod-

uct of TF and IDF  

𝑇𝐹 − 𝐼𝐷𝐹𝑖𝑗 = 𝑇𝐹𝑖𝑗 𝐼𝐷𝐹𝑖 . 

Hence, also this method gives a high weight if the word is frequent in a particular docu-

ment, but rare otherwise. Also more elegant versions of TF-IDF exist (Manning, 

Raghavan and Schutze, 2009). Nakov et al. (2001) have explored the impact of several 

weighting methods on LSA performance. 

When the weighted entries for word vectors have been computed, the similarity between 

them must be evaluated. Landauer et al. (1998) used cosine distance for the word simi-

larity computing. Cosine similarity of word vectors wi and wj is the cosine of the angle 

between them 

𝑠𝑖𝑚𝑐𝑜𝑠(𝒘𝒊, 𝒘𝒋) =  cos(𝒘𝒊, 𝒘𝒋) =
𝒘𝒊  𝒘𝒋

‖𝒘𝒊‖‖ 𝒘𝒋‖
 , 

with the dot product of the vectors wi and wj in the numerator and the product of their 

Euclidean norms in the nominator. 

LSA is a classical method and acts as a good introduction to modern approaches. It in-

cludes many key features of the recent corpus-based similarity methods: 

 LSA uses distributed representation for words and cosine similarity for computing 

the likeness (similarity or relatedness) between words. 

 LSA learns meanings of words from the same data as humans learn: a large cor-

pus. 

 LSA is able to find latent features that construct the likeness between words mim-

icking human cognition. 

It is interesting that while summarizing their introduction to LSA, Landauer at al. (1998) 

commented: “It is hard to imagine that LSA could have simulated the impressive range 

of meaning-based human cognitive phenomena that it has unless it is doing something 

analogous to what humans do.” This seems to be quite what the modern approaches try 

to tackle by the help of neural networks. 

3.5.3 Neural network models 

Language models use a slightly different approach from LSA to word similarity compu-

ting.  A language model defines a probability distribution over a word sequence in a nat-

ural language. This is typically performed by predicting the next word given the preceding 
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ones. Many NLP applications, such as speech recognition and machine translation, use 

this kind of technique. The evolution of language models has led to state-of-the-art con-

tinuous distributed vector representations for words. We should begin from the initial 

language model, the n-gram model, to understand why and how this happened. 

History of language models 

N-gram based language models have been the dominant statistical language models until 

the turn of the millennium (Bengio, 2008). In this context, n-grams are sequences of n 

words (distinguished from character n-grams, which will be considered later). Shortest n-

grams are usually referred as unigrams (1-grams), bigrams (2-grams) and trigrams (3-

grams). N-gram models use n–1 order Markov model in predicting the probability of the 

t:th word in a sequence. In other words, only the n–1 preceding words matter and the 

words prior to that can be forgotten totally (Manning and Schütze, 1999). 

A simple example clarifies the case. We want to estimate the probability of the word 

meows following the sequence “my cat”, denoted p(meows | ”my cat”). First, we must 

count how many times the sequence “my cat” occurs in the corpus. Second, we calculate 

how many times the word “meows” follows the sequence “my cat” in the corpus, i.e., the 

occurrences of the sequence “my cat meows” (3-gram). From the ratio of these two we 

will get the desired probability 

𝑝(𝑚𝑒𝑜𝑤𝑠 | "𝑚𝑦 𝑐𝑎𝑡") = 𝑝("𝑚𝑦 𝑐𝑎𝑡 𝑚𝑒𝑜𝑤𝑠")   =  
𝑓𝑟𝑒𝑞("𝑚𝑦 𝑐𝑎𝑡 𝑚𝑒𝑜𝑤𝑠")

𝑓𝑟𝑒𝑞("𝑚𝑦 𝑐𝑎𝑡")
. 

This is the simple basis of statistical language models. The previous formula using 3-

gram model can be generalized to all n-gram models as follows: 

𝑝(𝑤𝑡 | 𝑤𝑡−(𝑛−1), 𝑤𝑡−(𝑛−2), . . . , 𝑤𝑡−1)  =  
𝑓𝑟𝑒𝑞(𝑤𝑡−(𝑛−1), 𝑤𝑡−(𝑛−2), . . . , 𝑤𝑡−1, 𝑤𝑡)

𝑓𝑟𝑒𝑞(𝑤𝑡−(𝑛−1), 𝑤𝑡−(𝑛−2), . . . , 𝑤𝑡−1)
. 

When we define the probability distribution over a longer sequence of words, we can 

exploit the chain rule of probability (a consequence of Bayes theorem). The probability 

of a sentence is the product of conditional probabilities of each word given the preceding 

ones  

𝑝(𝑤1, . . . , 𝑤𝑡)  =  𝑝(𝑤1)  𝑝(𝑤2|𝑤1)  𝑝(𝑤3|𝑤1, 𝑤2) . . .  𝑝(𝑤𝑡|𝑤1, . . . , 𝑤𝑡−1), 

where wi denotes the i:th word of the sentence (Bengio, 2008). 

Because models based on n-grams use only n – 1 word context for each conditional prob-

ability (n:th word given the n–1 preceding ones), the above formula applied to, for exam-

ple, trigrams (n = 3, context = 2 words) is 
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𝑝(𝑤1, . . . , 𝑤𝑡)  =  𝑝(𝑤1)  𝑝(𝑤2|𝑤1)  𝑝(𝑤3|𝑤1, 𝑤2) 𝑝(𝑤4|𝑤2, 𝑤3) . . .  𝑝(𝑤𝑡|𝑤𝑡−2, 𝑤𝑡−1)

= 𝑝(𝑤1)  𝑝(𝑤2|𝑤1) ∏𝑝(𝑤𝑘|𝑤𝑘−2, 𝑤𝑘−1)

𝑡

𝑘=3

. 

However, w1 and w2 do not actually have this 2-word context and are usually discarded 

(Goodfellow, Bengio and Courville, 2017). This leads to the general formula 

𝑝(𝑤1, . . . , 𝑤𝑡)  =  ∏𝑝(𝑤𝑘|𝑤𝑘−(𝑛−1), . . . , 𝑤𝑘−1)

𝑡

𝑘=𝑛

. 

Bengio (2008) summarizes, that n-gram techniques are non-parametric machine learning 

algorithms for the next word prediction which are based on storing and combining fre-

quency counts of word subsequences of n words and shorter. While we have these counts 

stored, we can estimate the probability of any sentence in the corpus using the previous 

formulas. 

However, we often need to estimate probabilities of sequences never met in corpus (which 

is our training set for the machine learning model). New sequences are also possible, 

although the above introduced formula does not generalize on them at all. It gives zero 

(numerator = 0) or undefined (denominator = 0) probabilities. Several methods were de-

veloped to fix this (Katz, 1987; Goodfellow, Bengio and Courville, 2017). For example, 

back-off methods looked up the lower order n-grams (that is why we need to store also 

sequences shorter than n–1 words) and estimated the probabilities according to them, and 

smoothing methods added non-zero probability mass to all possible next word probability 

values. 

The improvements did not fix the whole generalization problem. The n-gram model still 

did not capture the similarity of words and hence did not generalize well on semantically 

similar sentences. N-gram model is a local predictor looking for the nearest local neighbor 

word. However, the words are represented as one-hot vectors, and they all have exactly 

the same distance from each other (see Chapter 3.5.1). N-gram model did not see the 

similarity between sentences “I love cats” and “I love kittens”. Class-based language mod-

els were supposed to overcome this problem. They introduced the notion of word catego-

ries for statistically similar words based on word co-occurrence frequencies with other 

words. Models then used the word class instead of the word per se, while predicting the 

next word probabilities of sequences. A lot of information was lost, as all words did not 

have distinctive representations. Kitten is not the same word as cat, despite their semantic 

similarity. (Goodfellow, Bengio and Courville, 2017) 

Problems with similar words are not the only ones, though. Perhaps the most restrictive 

fault with n-gram models is the curse of dimensionality. In statistical language models we 

deal with word distributions. Consider we have a natural language vocabulary of 100 000 
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words and we want to model the joint distribution of 10 consecutive words. Bengio et al. 

(2003) point out, that our n-gram language model with symbolic (one-hot) word repre-

sentations needs to relate each training sentence to every possible similar sentence. There 

will be potentially 100 00010  −  1 = 1050  −  1 free parameters. And in NLP tasks vo-

cabulary of 100 000 words is a small one. What if we have a one-billion-word vocabulary 

or even larger? That is the curse of dimensionality. It is impossible to have enough train-

ing examples for every possible sentence. 

To overcome these two problems, i.e., the curse of dimensionality and failure to capture 

the semantic similarity between words, we need a language model, that is somehow able 

to share knowledge between words. Distributed word representations respond exactly to 

this need. Bengio (2003) introduced a neural probabilistic language model, which learned 

continuous distributed vector representations for words and hence allowed each training 

sentence to inform the model about an exponential number of semantically similar sen-

tences. 

Mikolov (2009), the father of the word2vec model (discussed in Chapter 3.5.4), considers 

Bengio as an originator of the modern neural network language model. However, distrib-

uted representation of words as continuous vectors learned by a neural network was not 

a new invention at the time. In the late 80’s Geoffrey Hinton with his colleagues intro-

duced how distributed representations can be learned by back propagating through neural 

network (Hinton, McClelland and Rumelhart, 1986; Rumelhart, Hinton and Williams, 

1986). Neural networks need a lot of computing, and lack of computing power those days 

prevented the model from gaining more popularity. So, Bengio (2003) was the one who 

succeeded in demonstrating how his neural network model surpassed standard n-gram 

models on statistical language modeling tasks. 

General idea behind neural network language models 

When we deal with extremely complex phenomena, like natural language processing and 

image recognition, neural networks and deep learning are the state-of-the-art techniques 

to reach the best solution. They are wide and extremely versatile subjects to cover briefly. 

The interested reader is recommended to explore, for example, Goodfellow et al. (2017), 

who give a thorough introduction to methods and applications in the  field. Language has 

been modeled with several kinds of neural networks. The most simple and effective im-

plementations use a feed forward network that learns by a supervised learning method 

(Mikolov, Corrado, et al., 2013; Church, 2017). 

We will not go any deeper into the details of earlier neural network models here. The 

most important details will be covered largely enough in the next chapter, while we ex-

plore word2vec, probably the most popular neural network driven model at the time 

(Church, 2017). However, in order to follow this, the reader must be briefly introduced 

to the idea of neural networks. It should be emphasized, that what follows is a really 

simplified summary of their architecture and learning. 
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In Figure 7 we have a simple example of a feedforward neural network, also called mul-

tilayer perceptron (MLP). Network consists of neurons which form the network layers: 

input layer, hidden layer(s) and output layer (which could also consist of several neurons). 

In fully connected MLP the information moves from layer to layer and every neuron from 

the preceding layer is connected to every neuron in the next layer. These connections 

(synapses) have weights, denoted by Wij and W’i in the figure. 

 

Figure 7. A simple feedforward neural network, multilayer perceptron (MLP). Biases 

and activation functions are not indicated in the figure. 

Let us take a math test score prediction as an example. The input x in Figure 7 is a 2-

element vector, and x1 could denote hours spent doing homework and x2 hours spent pre-

paring for the test. Output y denotes the test result. The weights Wij and W’i could be 

considered as measures which tell us how much each connection influences the output. 

The weights Wij map the input to the hidden layer and weights W’i map the output of the 

hidden layer to the network output. In this simplified case our network is trying to predict 

the output ypred from the input x via the hidden layer h as follows 

𝒉 =  𝑾𝑻 𝒙 

𝑦𝑝𝑟𝑒𝑑  = 𝑾′𝑻 𝒉 

𝑦𝑝𝑟𝑒𝑑  = 𝑾′𝑻 𝑾𝑻 𝒙 . 

This is the forward phase of our network. It feeds the input forward and computes values 

for every neuron in the hidden layer(s) and in the output layer. However, this function is 

linear and the real-life phenomena we try to predict with neural networks usually are not. 

For example, the math test score does not have to be a linear combination of hours spent 

on homework and preparing for the test. Hence, to break the linearity and make the net-

work able to learn more complex functions, neural networks use activation functions and 

biases before hidden and output layer values are computed. 
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Activation function is applied to the output of a linear transformation to yield a nonlinear 

transformation. For example, if we use an activation function g1 in the hidden layer of 

MLP in Figure 8, the output of W11 x1 + W21 x2 will become g1(W11 x1 + W21 x2), hence 

becoming the value of neuron h1. Bias bi can be added to every layer in the network to 

adjust its output, e.g, W11 x1 + W21 x2 + b1, thus yielding the final value h1 = g1(W11 x1 + 

W21 x2 + b1), where b1 is the bias for the input layer. Network will learn optimal bias terms 

while training (Goodfellow, Bengio and Courville, 2017). The recommended activation 

function for modern neural networks is the rectified linear activation function g(z) = 

max{0, z}, which replaces all negative outputs with 0 (Glorot, Bordes and Bengio, 2011). 

 

Figure 8. A simple MLP with huge amount of training data (n vectors), biases bi and 

activation functions gi. 

Often the neural network is harnessed to perform a classification task. In other words, it 

classifies inputs into two or more output classes. In that case the output must be a vector 

of length equal to the number of the classes. The output needs to represent a probability 

distribution over these classes. Regarding binary classification, Goodfellow et al. (2017)  

recommend using sigmoid activation function before the output layer  

(𝑧)  =  
1

1 + 𝑒−𝑧
 . 

Sigmoid squashes the outputs near values 0 and 1. In the case of word classification, i.e., 

predicting the next word probabilities, we have a massive number of output classes. In 

this case, we can use a generalization of the sigmoid called softmax (Bengio et al., 2003; 

Mikolov et al., 2009). Softmax squashes the N-dimensional vector z of arbitrary real val-

ues to give a proper probability distribution summing up to 1 
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(𝒛𝑗) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑛𝑁
𝑛=1

 𝑓𝑜𝑟 𝑗 =  1, . . . , 𝑁. 

Our network in Figure 7 and Figure 8 does not classify but computes us a predicted out-

put, for example, a predicted math test score ypred for each input vector. This probably 

differs a lot from the real output yreal, since we started the prediction with random weights. 

Of course, we want our prediction to be as close to real as possible. In other words, the 

prediction error yreal – ypred should be minimized. So, our weights W and W’ need to be 

adjusted. It would not be reasonable just to guess some new weights until we reach an 

error close to zero. The optimal weights for the task should be learned by the network’s 

learning algorithm while minimizing the error. 

Our MLP in Figure 7 had only one input vector x. To train the network make useful 

predictions we naturally need a massive amount of these vectors. This set is called our 

training data. In Figure 8 we see an illustration of all the input vectors {x(1), x(2), x(3),… , 

x(n)} as they are fed into our network one after the other. The network first makes its 

predictions for our training data using its initial random parameters (weights and biases).  

In the end, it has gained some total error in its predictions, and this error should be mini-

mized. To minimize the error, we must indicate it in the form of a differentiable function, 

since the most common learning algorithms for feedforward networks are gradient based. 

These functions are called loss functions or cost functions. For simplicity, we could use 

squared error 𝐿 = ∑
1

2
(𝑦𝑟𝑒𝑎𝑙  −  𝑦𝑝𝑟𝑒𝑑)2 as our loss function in this case. Various good 

loss functions exist, and the choice remains task specific. For example, in the case of 

multiclass classification of words, the negative log-likelihood is often used (Bengio et al., 

2003; Mikolov, Corrado, et al., 2013).  The minimum error will be in one of the critical 

points of the loss function, i.e., where its gradient is zero. The guiding idea of the learning 

algorithm is to gradually get closer to this minimum by adjusting the weights and biases 

of the network in small steps. Gradient of loss tells us whether we are moving towards 

the minimum or away from it. Naturally we hope to find the global minimum of the loss 

function, but this is usually difficult (see Figure 9). Goodfellow et al. (2017) introduce 

ways for learning algorithms to avoid poor local minima. 
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Figure 9. Minima of loss function. (Goodfellow, Bengio and Courville, 2017, p. 85) 

The network knows how much each weight and bias should be adjusted by using a dif-

ferentiation technique called back propagation (Rumelhart, Hinton and Williams, 1986). 

In back propagation the information from the loss L flows backwards through the network 

in order to compute the gradient needed for minimizing the error. This procedure is the 

backward phase of our network training. The forward phase calculated the values for 

every neuron in the network, and the backward phase calculates partial derivatives of the 

loss L with respect to every parameter (weight and bias) in the network step by step, 

starting from the last parameters.  

Since back propagation is an essential part of the learning process, we will illustrate this 

with an example. In what follows we will consider updating the weight W’1 in Figure 7 

(N.B. not in Figure 8 for the sake of simplicity). To find out the effect of W’1 in the total 

loss L = ∑
1

2
(𝑦𝑟𝑒𝑎𝑙  −  𝑦𝑝𝑟𝑒𝑑)2 we can calculate its partial derivative exploiting the chain 

rule of calculus in the following way 

 𝐿

 𝑊′1
=

 𝐿

 𝑦𝑝𝑟𝑒𝑑

 𝑦𝑝𝑟𝑒𝑑

 𝑊′1
. 

If we calculate both factors on the right, we get 

 𝐿

 𝑦𝑝𝑟𝑒𝑑
=
 

1
2 (𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑)

2

 𝑦𝑝𝑟𝑒𝑑
= (𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑)(−1) = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑟𝑒𝑎𝑙 

 𝑦𝑝𝑟𝑒𝑑

 𝑊′1
 =

 𝑊′1ℎ1

 𝑊′1
 =  ℎ1 

and the final partial derivative 
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 𝐿

 𝑊′1
 =  (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑟𝑒𝑎𝑙) ℎ1. 

Our network computed and stored all the needed values in its forward phase, so this can 

be computed using them. If the calculated gradient is positive, we are going upwards 

away from the critical point, hence the weight should be decreased (and respectively in-

creased if the gradient is negative). As mentioned before, we want to get closer to the 

minimum with small steps (to avoid missing it). Hence, we have a learning rate (ex-

tremely small factor) , which controls the updates. The updated W’1 will be  

𝑤1 = 𝑊′1  
 𝐿

 𝑤1
. 

Other weights are updated respectively. For example, to find out the impact of the weight 

W11 on the loss L we compute the partial derivative 

 𝐿

 𝑊11
=

 𝐿

 ℎ1

 ℎ1

 𝑊11
 =

 𝐿

 𝑊′1

 𝑊′1
 ℎ1

 ℎ1

 𝑊11
 

We have already calculated the first factor in the chain, i.e., the derivative with respect to 

the weight w1 (the last parameter of our network). We can exploit these already computed 

derivatives while moving backward in our back propagation.  Calculations become natu-

rally much more complicated when our network has activation functions and biases and 

several output neurons, since we must update every parameter (every weight, every bias) 

in our network accordingly. The principle remains the same, though: we compute the 

partial derivative of the total loss with respect to the parameter and update the parameter 

so that we will gradually move closer to the minimum of the loss. We can control our 

progress by reducing our speed, which means gradually decreasing our learning rate .  

Finally, we will reach the point our loss does not decrease significantly, and we can stop. 

Using the above-mentioned techniques, feedforward neural network will become a uni-

versal function approximator (Goodfellow, Bengio and Courville, 2017). Given at least 

one hidden layer with enough neurons, it will be able to learn any function possible from 

its vast training data with its rectified linear functions. However, the neural network is 

not only supposed to memorize what it has seen, but to generalize to data totally unfamil-

iar to it. Hence, we must have a test set of examples our network has never seen. Usually, 

while training our network, the input set is divided into the training set (e.g., 80 %) and 

the test set (e.g., 20 %). This gives us the opportunity to test the generalization of our 

network to unknown examples with the test set. Naturally, our objective is to reduce the 

error for the test set. A trade-off between training error and test error will often remain: 

while reducing the test error, the training error will increase and vice versa. Goodfellow 

et al. (2017) propose several techniques, such as weight penalty or dropout, to accomplish 

good generalization of the network during the training. 
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In a nutshell, the network learns like this: first we train and optimize the network with our 

training set and back-propagation, then we test the network with our test set. This round 

is called epoch. We will repeat these epochs until our test error does not decrease signif-

icantly anymore. During the process, the network will learn proper parameters. 

Neural network language models use above introduced feedforward neural networks (as 

well as other implementations, such as recurrent neural networks) for their next word 

predictions. The architecture for the model presented by Bengio et al. (2003) can be found 

in Figure 10. The general idea is to feed a sequence of previous n words into a network 

as an input, and make the network compute the next word probabilities as an output. The 

input words are fed into the network as one-hot vectors and projected to continuous dis-

tributed vectors by the mapping C. While the network learns the best possible next word 

predictions, the projection C simultaneously learns a feature vector (see Chapter 3.5.1) 

representation for every word. The network uses tanh (a rescaled sigmoid) activation 

function in the hidden layers to break the linearity and softmax in the output layer to give 

a proper probability distribution for the next word predictions. The network uses penal-

ized log-likelihood as its loss function. 

 

Figure 10. Neural network architecture for the language model presented by Bengio et 

al. (2003, p. 1142) 
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3.5.4 Word2vec word embeddings 

The word feature vectors are often called word embeddings. Tomas Mikolov  (2013) and 

his research team at Google introduced two efficient neural network architectures for 

learning word embeddings: continuous bag-of-words (CBOW) model and continuous 

skip-gram model. They are both often referred to as word2vec model. 

Word2vec has achieved a very stable position in NLP tasks since.  There are at least two 

reasons for its popularity: word2vec is rather simple and as an open source product ac-

cessible to anyone (Church, 2017). Hence, word2vec is implementable for everyone with 

adequate skills, and without skills one can utilize various easy-to-use implementations 

for different programming languages, such as Java/Scala, Python or C, for example.  

Network architecture 

Word2vec architecture was groundbreaking in a sense, that it enabled effective training 

on much more data compared to the earlier neural network language models. Word2vec 

tries to minimize the complexity of the preceding models (like the one in Figure 10) by 

removing the non-linear hidden layer. Only one hidden layer remains, and it has no acti-

vation function. On the output layer the model has softmax as an activation function, in 

other words, as a classifier. The architecture is illustrated in Figure 11. 

 

Figure 11.  Word2vec CBOW bigram model predicting the next word (output) given the 

current word (input) (Rong, 2014, p. 2). 

The architecture is based on a model Mikolov et al. (2009) presented in a conference 

article considering neural network based language models for highly inflected languages.  

Finnish is one of these. Hence, word2vec is very interesting from our perspective. 

Training the model 

The idea of word2vec is easiest to understand explained by CBOW model and bigrams 

(pairs of sequential words). The model visualized in Figure 11. We can illustrate this with 
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a simple example.  We have a training data of one sentence: “My pet cat meows”. Hence, 

our four-word vocabulary is {my, pet, cat, meows} and we will denote its size as V = 4.  

The data have three bigrams: “my pet”, “pet cat” and “cat meows”. Let us choose the 

word cat as our input word and N = 3 as our hidden layer size, which will produce us 3-

dimensional word embeddings. Input words are fed into the network as one-hot-vectors 

of size V. Since cat is the 3rd word in our vocabulary, its one-hot representation is [0 0 1 

0]T. The hidden layer representation for cat will be formed in a following way 

𝒉𝑐𝑎𝑡  =  𝑾T𝒙 = [

𝑊11 𝑊12 𝑊13

𝑊21 𝑊22 𝑊23

𝑊31 𝑊32 𝑊33

𝑊41 𝑊42 𝑊43

]

T

[

0
0
1
0

] = [
𝑊31

𝑊32

𝑊33

] 

The resulting vector is the transpose of the 3rd row of the weight matrix W. Likewise, in 

general case each row Wk: of the weight matrix W (each column WT,k of its transpose 

WT) gives the N-dimensional hidden layer representation for the given input word wk 

𝒉 =  𝑾𝑇𝒙 =  𝑾𝑇
,𝑘 𝒙 = 𝑾𝑘, 𝒙. 

The purpose of the hidden layer is to ensure that words predicting similar probability 

distribution will also share some of this hidden representation (Mikolov et al., 2009). 

When the training is complete, the final weights Wk, will construct the feature vector for 

the input word wk, i.e., its word embedding. 

In Figure 11, weight matrix W’ maps the hidden layer representation to the output layer. 

In our example 

𝑦𝑐𝑎𝑡  =  𝑾′T𝒉𝑐𝑎𝑡 = [

𝑊′11 𝑊′12 𝑊′13 𝑊′14

𝑊′21 𝑊′22 𝑊′23 𝑊′24

𝑊′31 𝑊′32 𝑊′33 𝑊′34

]

T

𝒉𝑐𝑎𝑡 =

[
 
 
 
 
𝑾′𝑇,1 𝒉

𝑐𝑎𝑡

𝑾′𝑇,2 𝒉
𝑐𝑎𝑡

𝑾′𝑇,3 𝒉
𝑐𝑎𝑡

𝑾′𝑇,4 𝒉
𝑐𝑎𝑡]

 
 
 
 

. 

The vector on the right gives a score for every word in our 4-word vocabulary. The first 

row of the weight matrix W’ (the first column of its transpose W’T) contributes to the 

score of the 1st word in our vocabulary, and other columns do respectively.  In general, 

we can denote 

𝑠𝑐𝑜𝑟𝑒𝑤𝑗
= 𝑾′𝑗, 𝐡 = 𝑾′𝑇,𝑗  𝐡, 

where wj is the jth word in our vocabulary. With random initial weights these are just 

random scores. However, our objective is to get the scores to represent the probability 

distribution for the next words (denoted yj in Figure 11) given the input word. In other 

words, all the scores must be squashed between 0 and 1. Softmax obtains a multinomial 

distribution for the next word probabilities as follows   
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𝑦𝑗 = 𝑝(𝑤𝑗|𝑤𝑖𝑛𝑝𝑢𝑡) =
exp(𝑠𝑐𝑜𝑟𝑒𝑤𝑗

)

∑ exp(𝑠𝑐𝑜𝑟𝑒𝑤𝑗′
)𝑉

𝑗′=1

=
exp(𝑾′𝑇:𝑗 𝐡)

∑ exp(𝑾′𝑇:𝑗′ 𝐡)𝑉
𝑗′=1

, 

where yj is the output of the jth neuron in the output layer (Rong, 2014).  

The network gives a probability distribution vector y = [y
1
 … y

V
]T as an output. Our 

ground truth (the “actual output”) is the desired one-hot vector d = [0 … 1 … 0] T calcu-

lated directly from the input data, with the value of the most probable next word given 

the input word as 1 and all other elements as 0. In our example we had only one sentence, 

“my pet cat meows”, as our training data, hence the probabilities for the next word given 

the input word cat are: p(my|cat) = 0, p(pet|cat) = 0, p(cat|cat) = 0 and p(meows|cat) = 1. 

That gives us the desired vector d = [0 0 0 1]T for the input word cat. 

According to Rong (2014) word2vec maximizes the probability of predicting the desired 

output word wj* given the input word x by minimizing its negative log-likelihood. Hence, 

the loss function used is 

𝐿 = − 𝑙𝑜𝑔 𝑝(𝑤𝑗∗|𝑥) = −(𝑠𝑐𝑜𝑟𝑒𝑤𝑗∗
−  𝑙𝑜𝑔 ∑ exp(𝑠𝑐𝑜𝑟𝑒𝑤𝑗′

))𝑉
𝑗′=1   

=   𝑙𝑜𝑔 ∑ exp(𝑠𝑐𝑜𝑟𝑒𝑤𝑗′
) − 𝑠𝑐𝑜𝑟𝑒𝑤𝑗∗

𝑉

𝑗′=1

, 

where j* is the index of the desired output word. The loss function L is back propagated 

through the network using standard back propagation algorithm (the idea is explained in 

Chapter 3.5.3). Weights of the hidden layer are updated accordingly. After each training 

epoch, the network computes the probability for the test data and if it does not improve 

enough, the learning rate is halved. No generalization such as weight decay is needed, 

since it has been noticed to give only slight improvement of the result (Mikolov et al., 

2009). 

Training can be speeded up by merging very rare words into one symbol. This should be 

done for another reason also: extremely rare words do not have enough training examples 

to be mapped as meaningful word vectors and they could only confuse the model. In the 

experiments of Mikolov et al. (2009) merging all words occurring less than five times 

reduced the vocabulary size and hence the training time to 25 % of the original. 

CBOW bigram model predicting the next word given the current word is the simplest 

implementation of word2vec but lacks in performance compared to more complicated 

implementations. CBOW n-gram model predicts the current word given the surrounding 

words (e.g., 2 preceding words and 2 following words, word order is insignificant). Skip-

gram, on the contrary, predicts the surrounding words given the current word (e.g., 2 

preceding words and 2 following words in the right order). The idea of the model archi-

tectures is illustrated in Figure 12. Model implementation and learning, especially skip-
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gram model with negative sampling (sampling the words not among the desired context 

words), can be studied in more detail from Mikolov et al. (2013). 

 

Figure 12. Word2vec CBOW and skip-gram models with four word context windows 

(Mikolov, Corrado, et al., 2013, p. 5) 

If the hidden layer projection includes 300 neurons, these models give us a 300-dimen-

sional word embedding for every input word. Each of these dimensions represent some 

latent feature of the word. Features can be morphological, syntactic or semantic. Some of 

them (or their combinations) might be quite understandable for us, for example, how an-

imal-like the word is or is it plural or singular. Some features might not be interpretable 

at all. 

Word2vec algebra 

Calculating the analogies between words using word2vec embeddings is extremely inter-

esting. Church (2017) considers this an important reason for the popularity of the model. 

The algebraic analogy hook is promising enough and encourages the NLP community to 

find new ways to exploit it and improve it. 

Word2vec, as other word embeddings, measure the similarity between words by how 

close their embedding vectors are to one another. The distance is measured by cosine 

similarity (Mikolov, Corrado, et al., 2013; Mikolov, Yih and Zweig, 2013). In other 

words, the angle between the word feature vectors (all normalized to unit norm) determine 

the similarity between the words (see the cosine similarity formula in Chapter 3.5.2). The 

most used word analogy task is to give an example word and find its most similar word(s), 

like cat is similar to dog and other furry 4-legged animals. However, we do not have to 

stick to these simple similarities with word2vec. Cosine similarity is very effective in 

solving also more complex similarity tasks by algebraic equations. For example, we can 
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solve the question “What word is similar to king like man is to woman?” In algebraic 

form this can be expressed as follows 

 𝒎𝒂𝒏  −  𝒌𝒊𝒏𝒈 = 𝒘𝒐𝒎𝒂𝒏 −  𝒙  

𝒙 =  𝒌𝒊𝒏𝒈 −  𝒎𝒂𝒏 +  𝒘𝒐𝒎𝒂𝒏, 

where all the elements are word vectors. It is rather impossible that vector x was exactly 

the embedding of a particular word in our corpus. Hence, we need to find the word em-

bedding closest to x according to cosine similarity. i.e., the embedding x’ with the highest 

cos(𝒌𝒊𝒏𝒈 −  𝒎𝒂𝒏 +  𝒘𝒐𝒎𝒂𝒏, 𝒙′). 

The result will be x’ = queen. This vector shift is illustrated in Figure 13. The word em-

bedding succeeds in capturing the gender of the word, one of the word features. 

 

Figure 13. Vector shift (relation) between man and king is the same as between woman 

and queen (Mikolov, Yih and Zweig, 2013, p. 749) 

According to Mikolov et al. (2013), same algebra can be applied to many other kinds of 

analogies between words: semantic, syntactic and morphologic. Gallay and Simko (2016) 

used it in a fascinating context, namely to obtain the lemma for the word from its inflec-

tion. The approach is similar to the gender relation above. The question is now “What 

word is similar to happines like ill is to illness?” giving us the equation 

𝒊𝒍𝒍𝒏𝒆𝒔𝒔  −  𝒊𝒍𝒍 = 𝒉𝒂𝒑𝒑𝒊𝒏𝒆𝒔𝒔 −  𝒙 

𝒙 =  𝒊𝒍𝒍𝒏𝒆𝒔𝒔 −  𝒊𝒍𝒍 +  𝒉𝒂𝒑𝒑𝒊𝒏𝒆𝒔𝒔. 

Again, probably there are several word vectors near the direction of the expected lemma 

vector x. These are all lemma candidates, which are illustrated as a dotted circle in Figure 

14. The correct lemma of all candidates must have certain connection with the input word 

happiness based on common letters and other morphological factors. 
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Figure 14. The expected lemma is in the surroundings of the vector shift, hence all can-

didates must be investigated (Gallay and Šimko, 2016, p. 535). 

The popularity of word2vec in NLP tasks can best be realized by doing a literature search 

by the keyword word2vec in some scientific search engine or simply by googling. Trained 

word2vec embeddings are available on the web for numerous languages, for example 

Finnish16. Another highly referenced modern word embedding technique GloVe17 is also 

worth exploring while considering corpus-based word similarity measuring. 

3.5.5 FastText character n-gram embeddings 

Up to this point, all introduced word feature vectors have based solely on word occur-

rences in corpus. However, there are no words without letters. Bojanowski et al. (2016) 

introduced fastText to tackle the limitation of word level models that assign a distinct 

vector to each inflection of the word. In fact, fastText is word2vec extended with subword 

information. It learns distributed vector representations for character n-grams and each 

word is represented as the sum of its n-gram vectors. Actually, already Schütze (1993) 

tried slightly similar approach with 4-grams and SVD. 

FastText model is derived from continuous skip-gram model introduced by Mikolov et 

al. (2013). The illustration of the model can be seen in Figure 12. Each word is supple-

mented with < as a beginning symbol and > as an end symbol. Hence, in case n = 3 we 

can present the word wheel by character 3-grams as 

<wh, whe, hee, eel, el> 

In addition, the word itself is always included in the set of n-grams (no matter how long 

it is) to learn a representation for it as well 

<wheel> 

Note, that the beginning/end-notation helps us distinguish eel, the subword of wheel, 

from the word eel, which as a full word is presented as a 5-gram <eel>. 

                                                 
16 Turku BioNLP Group Finnish Internet Parsebank: http://bionlp.utu.fi/finnish-internet-parsebank.html  
17 GLObal VEctors for word presentation: https://nlp.stanford.edu/projects/glove/  

http://bionlp.utu.fi/finnish-internet-parsebank.html
https://nlp.stanford.edu/projects/glove/
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According to Bojanowski et al. (2016) the practical approach uses extraction of all 3-

grams, 4-grams, 5-grams and 6-grams from the words. If we have a dictionary of size G 

of these character n-grams g, the given input word x is constructed of an n-gram-set Gx  

{g1, g2, …, gG}, where subscripts 1, 2, …, G denote the indices of the n-grams in the 

dictionary. Each n-gram g is associated with a vector representation g. The network tries 

to predict the desired context word d (vector d) for the input word x (vector x). The input 

word is now represented as a sum of all its n-grams. Hence, the scoring function for the 

given input word x and a desired context word d can be given as follows  

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑑) = ∑ 𝒈𝑇𝒅

𝑔𝐺𝑥

. 

While learning the right surrounding context word(s) d the network will learn a distrib-

uted vector representation for every character n-gram. Using these character n-gram em-

beddings, word representations can be computed for words not appearing in the training 

data (Bojanowski et al., 2016). 

There exist many other interesting approaches that use embeddings for different kinds of 

NLP tasks. For example, character embeddings are used in text normalization (Chrupała, 

2014) and POS-tagging (Ling et al., 2015). Embeddings can even be constructed for re-

lations between words in an ontology (Goodfellow, Bengio and Courville, 2017). 
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4. PRACTICAL IMPLEMENTATION: HARNESS-

ING AI TO EXTRACT SKILLS FROM TEXT 

DATA 

The introduced practical AI implementation is empowered by a Finnish AI company 

Headai18, the enterprise that commissioned the practical part of the thesis. The aim of the 

implementation is to solve the complex concept matching problem. The application is 

mostly considered as a black box and viewed only in terms of its input (text data) and 

output (skills) without diving deeper into its internal details or algorithms. However, some 

observations will be considered. 

4.1 Input data  

The two principal data domains used in the setting of this thesis were curriculum data 

from higher education institutions and job data from the labor market. 

4.1.1 Curriculum data resources 

The thesis writer’s contribution to the application was programming a web scraper for the 

curriculum data. The data were scraped from three Finnish Universities of Applied Sci-

ences: Laurea, Metropolia and Haaga-Helia. Together these institutions form a co-opera-

tion partnership called The Helsinki Metropolitan Universities of Applied Sciences, ab-

breviated as 3UAS (3AMK in Finnish). According to Moiso (2018), the partnership has 

specific strategic co-operation areas, such as education export, research & development, 

student mobility, innovation, business co-operation and entrepreneurship. However, each 

institution has its unique educational profile and identity, and strengthening this is also 

an important objective of the partnership. The distinctive profiles combined with co-op-

eration in focus areas strive to respond to Helsinki metropolitan area’s future skills de-

mand. One of the actions taken is using AI and data driven curriculum development to 

make the institutions’ curriculums meet the labor needs in the best possible way. In addi-

tion to identifying possible gaps in skills supply, this can help to detect unnecessary over-

laps in curriculums. 

The content of the education a school supplies is described in its curriculum.  Thus, it acts 

as a student’s tool for planning studies and teacher’s tool for planning teaching. The cur-

riculum defines the competence targets and the learning outcomes for a whole degree and 

the studies it includes. The degree consists of core competence and complementary com-

petence modules, which in turn are implemented as study units (usually called courses) 

                                                 
18 Headai Ltd web site: http://www.headai.com  

http://www.headai.com/
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or projects. The learning outcomes of a module describe the expertise of the entire com-

petence area and the outcomes of courses and projects have their own, more specific tar-

gets. The contents of the curricula are constantly evolving and are reviewed annually. 

(Kokko, 2018; Laurea, 2018; Metropolia, 2018) 

The most valuable and relevant data for the skills extraction are the goals and learning 

outcomes of the modules, courses and projects in the curricula. They should tell us the 

competencies students possess after completion. By these competencies we can construct 

the skills supply of the school. Matching that information against the demands on the job 

market reveals whether the supply meets the demand: perhaps some relevant competen-

cies needed in the labor market are not sufficiently present in the curricula, or some new 

skills might lack altogether. On the other hand, some traditional focus areas of the school 

might not be interesting anymore from the labor market’s point of view. In turn, evaluat-

ing the curricula of the 3UAS universities against each other, we can spot if there exist 

any unnecessary overlaps. The universities have a strategic partnership, which aims to 

strengthen their own distinctive profile. Data driven curriculum development provides a 

strong basis also for this objective. 

By the time of writing this thesis, no API helpful enough to make the information extrac-

tion process easier was available. Therefore, web scraping was the best choice for imple-

mentation. Two of the three universities followed a coherent structure on their web cur-

ricula and one had a more customized solution. Hence, the programmed web scraper took 

advantage of all three elements of Massimino’s (2016) categorization: using embedded 

identifiers, tree-based navigation and searching for contextual identifiers (see Chapter 

2.2.1). 

The scraping strategy was to gradually drill down deeper into details of curricula and 

store all the relevant information on the way. Process began from the school level, con-

tinuing via the degree and the degree programme level to the most detailed module and 

course level. It finally contained the learning outcomes, the main information for our task.  

From these learning outcomes can the skills be extracted by the help of AI and NLP. To 

facilitate the job of AI and further processing, all relevant information concerning the 

modules and courses was stored into the database. In addition to the learning outcomes 

this involved, for example, 

 titles of schools, degree programmes, modules and courses,  

 teaching language,  

 course and module URLs, 

 course-lists for the modules. 

URLs are important for interactivity and transparency, when we want to evaluate the out-

put of the application. 
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It is also possible to enrich the curriculum data with other relevant data resources that 

describe the focus and profile of the university, such as university strategy. Albeit there 

is a solid expectation that this information has found its way to curricula already and does 

not give any additional benefit to our task. Various publications of the staff can be ex-

ploited as well to gain knowledge about the skills the schools have potential to supply 

their students with. 

4.1.2 Job data resources 

The information describing the demands of the current and future job market was gath-

ered from several job service sites and enriched with additional information from other 

relevant sources. Headai had already accomplished collecting the job data, so there was 

no contribution from the thesis writer. 

The job service sites for the task were chosen on the basis of their coverage, both inter-

nationally and locally. The most significant international service used was Monster. Mon-

ster is a global online employment solution for people seeking jobs and employers seek-

ing employees. Besides traditional matching of job seekers with jobs, Monster provides 

career and talent management and a vast array of related products and services in more 

than 40 countries. Monster is continually developing its services with intelligent digital, 

social and mobile solutions,  and aims to renew the whole recruiting industry. (Monster, 

2018) 

The other important service for the task was the Public employment and business services 

(TE Services), which has been a powerful local actor in the job seeking field in Finland 

for a long time. Ministry of Economic Affairs and Employment of Finland (2018) is re-

sponsible for employment, entrepreneurship and labor policy in the country, and thus di-

rects, steers and monitors how TE Services provide their resources for individual custom-

ers, enterprises and organizations. In addition to these two main job services, information 

has been extracted from other job sites as well. 

If the only job data gathered was limited to current job announcements, there could be a 

risk of the data being not enough future oriented. Of course, the skills listed in announce-

ments reflect the competencies needed in the future, but this information can still be en-

riched to gain even better results. In this case, the enriching was carried out by using data 

from several other relevant business-related sites in Finland, including Statistics Fin-

land19, Business Finland20 and Business Information Systems (BIS)21. By the information 

extracted from these sources we gain knowledge about, for example, what kind of projects 

                                                 
19 Statistics Finland is a public authority established for statistics: https://www.stat.fi/org/index_en.html   
20 Business Finland supports and funds Finnish innovations: https://www.businessfinland.fi/en/  
21 BIS finds basic information on all companies that have a Business ID: https://www.ytj.fi/en/  

https://www.stat.fi/org/index_en.html
https://www.businessfinland.fi/en/
https://www.ytj.fi/en/
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have been funded. This, in turn, tells us what skills will be needed in the future and we 

can truly emphasize the future focused approach to the demands of the labor market. 

4.2 Visualized output: How does skills supply correspond to 

demand? 

The introduced application is based on an AI service called Microcomptencies22. Micro-

competencies is an expert service currently at its beta version offering diverse and broad 

skills reports based on public data. The skills supply and demand are visualized into skills 

maps. 

In the case of data driven curriculum development, the service first reads a large number 

of public curriculum data and an immense amount of public job market data, which have 

been gathered into databases by web scraping. Then the skills are extracted from this input 

data using text mining and NLP. Skills are initially just words, and AI must find their 

meaning to be able to compare their similarity. Same skills are commonly expressed with 

various words. 

Skills clearly have a structure that forms an ontology, for example, Java is_a program-

ming language, Python is_a programming language, programming language belongs_to 

programming, programming belongs_to software engineering. They are also parts of 

natural language sentences in texts describing job requirements, curriculum objectives, 

course contents and encyclopedia entries. So, both knowledge-based and corpus-based 

approaches can be exploited in computing semantic similarity between words. Micro-

competencies service uses a dynamic ontology created by Headai’s own AI, which links 

skills and their validation to internationally recognized standards such as ESCO23 (Euro-

pean Skills, Competences, Qualifications and Occupations) and O*net24 (The Occupa-

tional Information Network) among other ontologies (Headai, 2018). 

Skills are just small fractions of the whole data fed into the application. Regarding the 

knowledge extraction, most of the input data can be considered as noise. This emphasizes 

the text preprocessing phase. The usual stop word list of too frequent meaningless words 

or characters is not enough for text cleaning in this case. Other ways for noise removal 

must be used, too. This often requires a combination of manual and computational effort. 

The same applies to the ontologies. Field of skills (and occupations) is constantly evolv-

ing, and even though an exhaustive ontology of the domain could be constructed today, 

it will not remain exhaustive for very long. Continuous evaluation, both manual and com-

putational, must be performed. However, we do not want to take a closer stand on the 

used methods or guess how they are utilized in this particular application. 

                                                 
22 Microcompetencies skills report service: https://www.microcompetencies.com  
23 Esco classification: https://ec.europa.eu/esco  
24 O*NET taxonomy: https://www.onetonline.org  

https://www.microcompetencies.com/
https://ec.europa.eu/esco
https://www.onetonline.org/


55 

The information discovered by text mining and processed by NLP cannot be considered 

as knowledge until it is understandable by the user. Successful visualization is the key to 

proper interpretation of the results. Usually this means some effective case specific graph-

ical presentation. At its best, the presentation is interactive, and hence provides means to 

refine the results as well as to picture the discovered knowledge from different angles and 

at different conceptual levels (Jambhorkar and Jondhale, 1999). 

Microcompetencies service uses semantic skills maps for visualization. According to Ket-

amo (2009) semantic skills map is inspired by Kohonen’s (1982, 1990) Self-Organizing 

Map (SOM). Skills map creates clusters of related skills locating the most relevant cluster 

at the bottom left of the map and uses color density coding to express the importance of 

skills. In Figure 15 we can see the bottom left parts (6x6 cells) of two skills maps. The 

map on the left is created from the skills supplied by a Finnish University of Applied 

Science and the map on the right is created from the skills demanded by the job market 

in the Helsinki region in 2018. The skills in the maps are in Finnish and the values inside 

the brackets denote the word hits in the data. 

            

Figure 15. Parts of semantic skills maps (in Finnish) created from the core skills sup-

plied by a school (left) and the core skills demanded by the job market in 

Helsinki region (right). 

Figure 16 merges the previous skills maps to visualize how the skills supply meets the 

demand. The base map shows the skills demanded by the job market, and the color density 

coding shows how the skills supply of the school matches it. The redder the skill, the 

deeper the gap in the skills supply of the school. The values inside the brackets denote 

the combined word hits in the data. 
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Figure 16. Merged map of the skills demand in the labor market and how the skills sup-

ply of the school responds to it.  

Similar merged map could be created from the skills supplied by two schools and compare 

their similarities and differences. In this case, the color encoding would tell whether the 

skill is special for one school or common for both schools. 

The 6x6 cell fractions of the maps introduced here demonstrate the output of the applica-

tion. They concentrate only on the most frequently mentioned skills. The full maps could 

include hundreds of cells and they show the marginal skills as well. The application learns 

all the time while processing new data and will be able to create more and more detailed 

skills maps from the input data drilling deeper into the supplied and demanded micro 

skills (microcompetencies) on certain fields. Clusters created by different skills could 

give interesting hints about the interfaces needed in the future curriculums. For example, 

we might spot a demand for a completely new degree programme combining diverse 

fields. 
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5. CONCLUSIONS 

During the thesis we pursued answers to three research questions. The first one was to 

consider the impact of natural language processing (NLP) in data driven curriculum de-

velopment. The role of NLP is crucial for text-related AI tasks, such as data driven cur-

riculum development. Otherwise, the words would be just character strings without mean-

ing for a computer. In fact, the whole thesis dealt with this subject more or less. 

We approached the problem by studying the path of data refining step by step from HTML 

coded content on a web page to knowledge gained via AI application. The initial data was 

collected by web scraping. Web scraping is one of the most independent methods for 

gathering public text data to be used as an input in AI tasks. However, data ownership 

and terms of use must always be taken into consideration while processing web scraping. 

Scraping data from badly organized or tightly protected web content might sometimes 

require a great effort. Fortunately, there exist many helpful tools to ease the process. With 

these tools we can retrieve the HTML code from a website, parse it into an object, and 

isolate and process the desired data. 

To refine our data further, we had to supplement our scope with the second research prob-

lem, which reviewed the processes needed in extracting semantics from words. Semantics 

extraction by linguistic computing methods sets some requirements for the input data. 

These requirements are met by preprocessing the text before semantics extraction. We 

can use tokenization to split text into smaller, meaningful, text parts, such as words. These 

so-called tokens are then processed to make text easier to understand for a computer. All 

NLP tasks benefit from thorough text cleaning, where all redundant information (i.e., 

noise, like punctuation and irrelevant words) is removed from the text before further pro-

cessing. In fact, sometimes most of the input text could be considered as noise regarding 

knowledge extraction.  

Another important preprocessing step is text normalization, which finds one unique form 

to represent all inflections of the word in text. Words could be normalized by stemming 

or lemmatization. Stemming relies on chopping the suffix and keeping the stem of the 

word, whereas lemmatization tries to find the basic form of the word (the lemma). Pre-

processing is a critical task especially considering morphologically rich languages, such 

as Finnish. There exists no common framework for preprocessing. The steps taken usually 

depend on the given NLP task and the language.  

To understand natural language, computer must learn to evaluate semantic relatedness 

between words, which is a critical part of semantics extraction. Semantic similarity is a 

type of semantic relatedness, that concentrates on taxonomic (hierarchical) likeness of 
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words. Our third research problem, the major one, concentrated on different methods se-

mantic relatedness and similarity computation could be performed with.  

The approaches to word similarity computing can mainly be divided into two categories, 

knowledge-based methods and corpus-based methods. Word representation and similar-

ity computation differ totally between the two methods. Knowledge-based methods rely 

on ontologies that represent the hierarchical structure of concepts and the relations be-

tween them. Concepts are represented as nodes of the directed ontology graph and edges 

are the relations between them. Knowledge-based methods traverse the ontology graph 

and measure the path length between the compared concepts. Basically, the shorter the 

path length, the more similar the concepts are. The methods can also explore the relations 

between the concepts and the nearest common ancestors of them, as well as their depth 

in the ontology. In addition, some knowledge-based methods compute the importance of 

the word according to its frequency in the corpus, i.e., large collection of text. 

The actual corpus-based methods, in turn, rely solely on the information retrieved from 

corpora. They exploit statistical information about the words and their contexts (the sur-

rounding words). Corpus-based methods are mostly based on calculating the context word 

probabilities for a given word (or vice versa). The most effective modern approaches use 

neural networks for predicting the context words. During the process the network learns 

a distributed continuous vector representation for every word, called word embedding. 

Every dimension of the embedding represents one feature of the word. Word similarity 

can be measured by the angle between the word embeddings in vector space. The smaller 

the angle, the more related (and in some cases similar) the words are. Knowledge-based 

and corpus-based methods can also be combined to gain better results. 

However, the ability to give the words a semantic representation and measure the simi-

larity between them is not enough for an AI application. At this stage, the gained 

knowledge is not visual for a user. A proper full stack AI application is able to visualize 

the results in a human understandable way. Only then we can talk about true knowledge 

and wisdom supporting decision making. The practical AI application considered in this 

thesis used semantic maps for visualization. 

While reviewing all these aspects of NLP, the scope of the thesis became quite large. Still, 

some important subjects, such as word sense disambiguation, had to be left out. Content 

had to be kept at rather general level. A stricter scope would have made it possible to 

explore the subject from every relevant perspective and dive deeper into details. 
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