TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Ahmed Rabee Sadik

Design and Implementation of an Expert System for
Monitoring and Management of Web-Based Industrial
Applications Master of Science Thesis

Examiner: Professor José L.
Martinez Lastra

Examiner and topic approved in
the Automation, Mechanical
and Materials Engineering Fac-
ulty Council meeting on

5 December 2013

"Life Is So Mysterious, We Do Not Know When,
Why Or Where We Begin Or End It. But We
Do Know We Need To Struggle To Keep
It Goes Forward"

Abstract

Tampere University Of Technology

Master Degree Programme in Machine Automation

Sadik, Ahmed: Design and Implementation of an Expert System for Monitoring
and Management of Web-Based Industrial Applications

Master of Science Thesis: 91 pages, 21 appendices pages

Tampere — Finland — April 2013

Major: Factory Automation

Examiner: Prof. Jose L.Martinez Lastra

Keywords: Industrial Information Technology — Artificial Intelligence — Expert Sys-
tem — Web-Services — WSDL — SOAP — Service Oriented Architecture — Drools Rule
Engine — Web Based SCADA — Monitoring System— Complex Event Processing —
ANSI/ISA9S — Industrial System Integration - CAMX IPC-2541 — Message Oriented Ar-
chitecture — E-Business — Industrial Management

Human is an intelligent creature — intelligent in design and behaviour. From the human
first second on the earth, he is trying to collect the knowledge and use it for surviving and
extending his own kind. Human knowledge collection is all based on his observations and
discovering for his own environment, the information with time turns to be the human
experience which is the main sort of his intelligence of dealing with different situations.

Expert system is one branch of artificial intelligence science which the human inspired
from his own being. Human always tries to inherit his own experiences to the next gener-
ations. But with the vast wide spreading of the information in the present century, a new
need imposed itself to emulate the human experience and behaviour in a similar way; from
this point expert computer systems have been invented.

Expert system is mainly transforming the human experiences into software forms. To
act in a similar manner the human behaves. The expert system is always collecting a huge
amount of information from its domain, and transform them to knowledge, using those
rules the human assigned based on his own experiences [1].

In industry we try to apply the same concept to have intelligent automated system, but
for this purpose; all the information should be in an easy form of industrial language and
follow a reliable industrial protocol to communicate in an efficient way.

As the internet is the main source of the data on our planet currently, it was so conven-
ient to structure all the industrial data in same language the internet use and follow similar
communication protocols. From industrial point of view a web based monitoring systems
[2] — should be the base of information for the mentioned expert system.

During this master thesis we achieve this goal, by dividing the problem into two main sub
problems.

The first part is to implement a web based monitoring system on PLC controlled produc-
tion line made by FESTO and used for teaching purpose in TUT - Tampere University of
Technology — FASTory lab facilities.

The second part is to design and implement a convenient industrial expert system to pro-
cess this web based monitored information for managing from the business point of view.

Preface

The actual working in this thesis started in June 2012, the thesis work has been done at
Tampere University Technology — production department — FASTory lab and it was
funded as one of the packages of PLANT Cockpit project, under the direction of Prof.
Jose L.Martinez Lastra.

I have been always interested in Artificial Intelligence, and I am very happy that my
thesis work was related to it. Actually, the thesis work was the inspiring force to pushing
to start my own business for developing a social network based on expert system core.
The project aims are individuals’ self-improvement, open source innovation and strategic
management for the big enterprises, A Beta version of the platform has been already re-
leased under the domain Novogenie.com, however still the final product under develop-
ing.

I would love to thank all the members in FASTory lab, who supported me with help
and effort for finishing my thesis, I would love specially to thank my teamwork Johannes
Minor, Jorge Gracia, Luis Gonzalez and Borja Ramis, also I would love also to thank
Prof. Jose L.Martinez Lastra for his support all the time I studied in Machine Automation
master program.

I would love to mention that I really enjoyed the experience of studying and working
in multinational environment. I got a lot of new and different talents from living and un-
derstanding the different cultures, either they are similar or different from my original
culture.

Finally I would love to send my greeting and respect for my own family and my home

land Egypt.

In Tampere, April 3™, 2013
Ahmed Sadik

Table of Contents

ADSIIACE ..ttt et sttt sttt ae e 3
PrETACE ..ot 5
Table Of CONLENLScouveiieiieiieiieceee ettt 6
LSt OF FIGUIS ..ottt ettt ettt et et e bt essbeeseesabeens 8
List Of ADDIEVIATIONS ...cuvieiieiiieiieeiieeiie ettt ettt teesae et esaaeebeesaeeenbeeeene 10
CHI — INIOAUCTION ..ottt sttt st st sae e s 11
Back@roundcc.ooiiiiiiiieeee et 11
Industrial implementation of the thesis WOrk...........cccooeriiniiiiniiniiniiecce 12
Problem StatemeNt...........ceouiiiiriiiiiiiieeeeee e 13
Proposed solution and thesis WOTK...........cccoeeuiiviiiniieiiiiniieiee e 13
Preliminary design CONCEPLSeevuiieuieriieeiieeiieetteeiie ettt et saeebeesaeeeseesaeeenbeeeene 14
The state of art - Literature SUIVEYccccuieriieriiieiieeieeiee et 15
WOTK ODJECTIVES ..evieniiiiiiieiieeiieeiie ettt ettt ettt ettt e eteesiaeenbeesaseenseessaeenseennns 16
TRESIS LAYOULcooiiieiieiiieiiecie ettt ettt ettt e et e e ebe e b e e sneenneas 17
CH2 — The Case Study — FESTO MPS 500.......ccccceiiiriirenienieniinieieeeeee e 18
Line components and OPErationc.eecueereeeriienieeniienieenieesreeseesveesseesseeesseennns 18
DISHIDULING UNTE ...ttt ettt siae et esaaeeseesaeeenseeenne 20
TESTINZ UNIE ..eeevtiiiiieiiecie ettt ettt e st e et eesateesbeessbeesbeesnbeenseessseenseas 20
HaNAIING UNL...c..oiiiiiiiieieeie ettt sttt eebeesabeenbeeeene 21
PrOCESSING UNILcuiieiiiiiieiie ettt ettt et e et esae et e e e ensaesnaeenseeeene 21
Assembling and rODOt UNIL.........oocuieiiiiiiieiieeieerie et 22
AS/RS20 WaTChOUSEcoviiuiiiiiiieieeiiesieeieee ettt st 22
ANSI/ISAOS StaNdardcc.eeviieiiieiieeiieie ettt 24
CH3 — WED-SEIVICES ...ttt ettt sttt ettt saeen 27
INEEOAUCLION ..ottt et sttt et a e 27
Service Oriented Architecture (SOA)ooooviiiciiieeieeeeee et 28
Service Oriented Architecture COMPONENLScc.eererreriieriieeiiieniieeiieniieeeeeneeeeeens 29
What is the Web-ServiCe?.......cocuoririiiiiiiiienieeeeeeeee e 30
Web-Service Core ProtOCOLSoiiiiiieriieiieie ettt 33
EXtensible Markup Language — XML.......cccociviiiiiiiiniiniieiecieeeeeeeeen 33
Web-Service Description Language — WSDLcccooiiiiiiiiiiiiiniiieeee 34
Simple Object Access Protocol — SOAP.........ccoocvieiiiiiiieiiiieieee e, 37
Universal Description, Discovery, and Integration UDDI.......................... 40

The difference between message oriented architecture and service oriented
ATCHITECIUTE ...ttt sttt st b et sbt ettt e b e e b enee 41
CH4 - Design and implementation of web-based monitoring system for the case study43

INEEOAUCTION ...ttt et et ae et e s e eseeeaeeenseeenne 43
Web-Service hardWarec.eooiieiieiiieiieie e 44
Design of the XML SChemMacccuiviiiiiieiieieeitee e 45
Design of the WSDL doCumentcccoocuieiiiiiiieniieiieeieeieeee et 48

Sending and receiving SOAP messages between the stations - Web-Service

PLOZTAIMNINE «.eevvveeetiieeieeeeieeeetreesteeesseeessseeessseeassseeassseeesseeessseesssseesssseessseeesseesnnses 55
Monitoring the Web-Services applicationcccccveeeieeenieeeniieerieecee e 57
CHS5 — Design and implementation of the Expert system using Drools shell................. 59
Artificial intelligence definition, branches and applicationscccccccvveveuveenenn. 59
Expert system definition and evolutionccceeevvieeriieeniie e, 60
Components of the eXPert SYStEMcccueieiiieeiiieeiie et evee e 61
The applications of eXPert SYSTEIMScecvvieriiieeiiieeeieeeeieeeeree et e eaeeeereeereeeeaeees 65
Advantages of the EXpert SYyStem........cccciiiriiieiiiieciee et 67
Disadvantages of the EXpert SYStemccccviiiiiiieiiiiieciie e 68
Drools expert system Shellcooooiiiiiiiiiiiice e 68
Drools implementation over Apache ServiceMiX........cccveevieeeriieeiiieeieeceeeeeenn 69
Programming of the rules based on key production indicators (KPI)..................... 73
Drools deployment over Apached ServiceMiXccceeevieevieeeriieeiiieeieeeee e, 75
CHG6 — Discussions of the results, conclusion and future Work...........cccccccovvvvvvvvennnennn. 77
Discussion Of the TeSUILScccuiiiiiiiiiii e 77
Summary of thesis work and Conclusionccceeeeviieiiiieeiiiiecieeceee e 81
FULUIE WOTK ..ot 83
RETEIENCES ...ttt ettt et e 86
Appendix 1— XML schemas from CAMX IPC-2541ccooovviiiviieeiiieeieeeieeeeee e 88
Appendix 2— The results of chapter 3oooviieeiiieeee e 97
Appendix 3 — XML instances used for simulating the machines Web-Services messages
102
Appendix 4 — Java code used for chapter S.........ccceeviieeiiiieiiiieeeeeee e 103

List of Figures

FIGURE 1 —ISA-95 DIFFERENT LEVELS HIERARCHY
FIGURE 2 — FESTO MPS 500

FIGURE 3 — THE LAYOUT OF FESTO MPS 500 LINE
FIGURE 4 — THE ASSEMBLED CYLINDER AND ITS COMPONENTS
FIGURE 5 — DISTRIBUTION UNIT

FIGURE 6 — TESTING UNIT

FIGURE 7 — HANDLING UNIT

FIGURE 8 — PROCESSING UNIT

FIGURE 9 — ASSEMBLY STATION

FIGURE 10 - WAREHOUSE UNIT

FIGURE 11 - LAYERS TASKS IN ANSI/ISA95 STANDARD
FIGURE 12 — SERVICE ORIENTED ARCHITECTURE ONION

FIGURE 13 — SERVICE ORIENTED ARCHITECTURE MAIN COMPONENTS
FIGURE 14 — THE PROTOCOL STACK OF WEB-SERVICE APPLICATION

11
18
19
19
20
21
21
22
22
23
24
28
29
32

FIGURE 15 — AN EXAMPLE OF ONE INSTANT OF XML IN ACCORDANCE WITH ITS SCHEMA

34

FIGURE 16 — THE MAIN WSDL DOCUMENT ELEMENTS AND HOW THEY ARE RELATED TO

EACH OTHER
FIGURE 17 — AN EXAMPLE OF WSDL DOCUMENT

FIGURE 18 — COMMUNICATION OF XML WEB-SERVICE MESSAGES USING SOAP

FIGURE 19 — SOAP MESSAGE EXAMPLE
FIGURE 20 - ONE WAY SOAP MESSAGE EXCHANGE PATTERN

FIGURE 21 - TWO WAY ASYNCHRONOUS SOAP MESSAGE EXCHANGE PATTERN
FIGURE 22 — REQUEST/RESPONSE SOAP MESSAGE EXCHANGE PATTERN
FIGURE 23 — WORKFLOW ORIENTED SOAP MESSAGE EXCHANGE PATTERN
FIGURE 24 — PUBLISH/SUBSCRIBE SOAP MESSAGE EXCHANGE PATTERN

FIGURE 25 — COMPOSITE SOAP MESSAGE EXCHANGE PATTERN
FIGURE 26 — MIDDLEWARE MESSAGE ORIENTED ARCHITECTURE

FIGURE 27 — THE DISTRIBUTION OF THE INICO S1000 DEVICES OVER THE ETHERNET

NETWORK
FIGURE 28 — THE CASE STUDY OBJECT ORIENTED MODEL
FIGURE 29 -WORKSTATION OBJECT ELEMENTS
FIGURE 30 - CAMX EQUIPMENT STATE DIAGRAM
FIGURE 31 - WORKPIECE OBJECT ELEMENTS

FIGURE 32 — A PRESENTATION FOR THE LABOURER OBJECT ELEMENTS

35
36
37
38
38
39
39
39
40
40
42

44
45
45
46
47
47

FIGURE 33 — A COMPLETE VIEW OF THE PROJECT XML SCHEMA ELEMENTS AND TYPES 48
FIGURE 34 — WORK STATION STATUS TYPE INCLUDED IN THE GENERIC WSDL DOCUMENT

49

FIGURE 35 — WORK STATION EVENT TYPE INCLUDED IN THE GENERIC WSDL DOCUMENT

49

FIGURE 36 — WORKPIECE STATUS TYPE INCLUDED IN THE GENERIC WSDL DOCUMENT 50

FIGURE 37 — WORKPIECE PROPERTIES TYPE INCLUDED IN THE GENERIC WSDL

DOCUMENT

FIGURE 38 — OPERATOR INPUT TYPE INCLUDED IN THE GENERIC WSDL DOCUMENT
FIGURE 39 — THE FIVE EVENT MESSAGED DEFINITION INSIDE INICO S1000
FIGURE 40 — THE INPUT MESSAGE AND ITS RESPONSE DEFINITION INSIDE THE INICO

S1000

FIGURE 41 — THE OUTPUT MESSAGE AND ITS RESPONSE DEFINITION INSIDE THE INICO

S1000

50
51
52
52

53

FIGURE 42 — AN EXAMPLE OF ONE OF THE FIVE EVENT MESSAGES 53

FIGURE 43 — THE PORT TYPE DEFINITION INCLUDED INSIDE THE WSDL FILE 54
FIGURE 44 — SOAP MESSAGES EXCHANGE BETWEEN THE STATION AND THE
MONITORING SERVER 56
FIGURE 45 — INICO VARIABLES HMI FOR THE DISTRIBUTION STATION 57
FIGURE 46 — DPWS EXPLORER WEB-SERVICES MONITORING 58
FIGURE 47 — SOME COMMON APPLICATIONS OF ARTIFICIAL INTELLIGENCE 59
FIGURE 48 — EXPERT SYSTEM COMPONENTS 62
FIGURE 49 - FORWARD CHAINING REASONING MECHANISM 63
FIGURE 50 - BACKWARD CHAINING REASONING MECHANISM 64
FIGURE 51 — BASIC INTERACTIVITY BETWEEN OBJECTS AND RULES 69
FIGURE 52 — APACHE SERVICEMIX PLATFORM ERROR! BOOKMARK NOT DEFINED.

FIGURE 53 — SENDING XML MESSAGES TO APACHE SERVICEMIX USING FIDDLER CLIENT
70
FIGURE 54 — IMPLEMENTATION MECHANISM OF DROOLS ENGINE OVER APACHE
SERVICEMIX 71
FIGURE 55 — INITIALIZATION OF DROOLS EXPERT SYSTEM 75
FIGURE 56 — FIRING A RULE AFTER RECEIVING OF XML MESSAGE FROM FIDDLER CLIENT
75

FIGURE 57 — PERIODIC CALCULATIONS OF KPIS 76
FIGURE 58 — NOVOGENIE EXPERT PLATFORM CORE 84
FIGURE 59 — EQUIPMENT CHANGE STATE XML SCHEMA DUE TO CAMX IPC-2541 88
FIGURE 60 — EQUIPMENT ALARM XML SCHEMA DUE TO CAMX IPC-2541 89
FIGURE 61 - EQUIPMENT ALARM CLEAR XML SCHEMA DUE TO CAMX IPC-2541 89
FIGURE 62 — EQUIPMENT BLOCKED XML SCHEMA DUE TO CAMX IPC-2541 90
FIGURE 63 — EQUIPMENT UNBLOCKED XML SCHEMA DUE TO CAMX IPC-2541 90
FIGURE 64 — EQUIPMENT STARVED XML SCHEMA DUE TO CAMX IPC-2541 91
FIGURE 65 — EQUIPMENT UNSTARVED XML SCHEMA DUE TO CAMX IPC-2541 91
FIGURE 66 — EQUIPMENT ERROR XML SCHEMA DUE TO CAMX IPC-2541 92
FIGURE 67 — EQUIPMENT ERROR CLEARED XML SCHEMA DUE TO CAMX IPC-2541 92
FIGURE 68 — EQUIPMENT WARNING XML SCHEMA DUE TO CAMX IPC-2541 93
FIGURE 69 — EQUIPMENT WARNING CLEARED XML SCHEMA DUE TO CAMX IPC-2541 93
FIGURE 70 - EQUIPMENT HEART BEAT XML SCHEMA DUE TO CAMX IPC-2541 94
FIGURE 71 — ITEM INFORMATION XML SCHEMA DUE TO CAMX IPC-2541 94
FIGURE 72 — ITEM TRANSFER IN XML SCHEMA DUE TO CAMX IPC-2541 95
FIGURE 73 — ITEM TRANSFEROUT XML SCHEMA DUE TO CAMX IPC-2541 95
FIGURE 74 — OPERATOR INFORMATION XML SCHEMA DUE TO CAMX IPC-2541 96
FIGURE 75 — OPERATOR ACTION XML SCHEMA DUE TO CAMX IPC-2541 96
FIGURE 76 — THE VALUES FOR THE DISTRIBUTION STATION WEB-SERVICE MONITORING
VARIABLES 97
FIGURE 77— THE VALUES FOR THE TESTING STATION WEB-SERVICE MONITORING
VARIABLES 98
FIGURE 78 — THE VALUES FOR THE HANDSELING STATION WEB-SERVICE MONITORING
VARIABLES 98
FIGURE 79 — THE VALUES FOR THE RUBBING STATION WEB-SERVICE MONITORING
VARIABLES 99
FIGURE 80 — THE VALUES FOR THE ROBOT AND ASSEMBLY STATION WEB-SERVICE
MONITORING VARIABLES 100
FIGURE 81 — THE VALUES FOR THE BUFFER STATION WEB-SERVICE MONITORING
VARIABLES 101

List of Abbreviations

Al
A2A
ANSI
API
AS/RS
BRMS
CAMX
ES
ESB
FIFO
H2A
HTML
HTTP
/O
ICD
IEEE
IETF
IP

ISA
JBI
JTEC
KPI
LAN
MathML
MES
PLC
RPC
RSS
SCADA
SOA
SOAP
UDDI
URL
W3C
WSDL
WWWwW
XML

Artificial intelligence

Application to application

American National Standards Institute
application programming interface
Automatic Storage and Retrieval System
Business Rule Management System
Computer Aided Manufacturing using XML
Expert System

Enterprise Service Bus

First In First Out

Human to application

HyperText Markup Language

Hyper Text Transfer Protocol
Input/Output

Industrial Control Domain

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Internet Protocol

Industry Standard Architecture

Java Business Integration

Japanese Technology Evaluation Centre
Key Product Indicator

Local Area Network

Mathematical Markup Language
Manufacturing Execution Systems
Programmable Logic Controller

Remote Procedure Call

Really Simple Syndication

Supervisory Control and Data Acquisition
Service Oriented Architecture

Simple Object Access Protocol

Universal Description, Discovery and Integration
Universal Resource Locator

World Wide Web Consortium
Web-Service Description Language
World Wide Web

Extensible Markup Language

10

CH1 - INTRODUCTION

Background

Automation nowadays is one key of success of every industry or firm. However automa-
tion layer is linked to other layers within the same firm such as manufacturing operations
management and business planning and logistics. This means all the layers should be well
bind together from the information point of view, to enable everyone in each layer to
obtain the amount of information needed in the right format. Therefore, a flexible solution
and model has been developed to define a standard of integration the manufacturing and
business layer within the same project. This Standard has been known as ISA-95 [3], the
standard schematic levels and tasks can be summarized in Figure 1

Level 4 4 - Establishing the basic plant schedule -
production, material use, delivery, and shipping.
Determining inventory levels.

Time Frame

Months, weeks, days

Business Planning
& Logistics
Plant Production Scheduling,
Operational Management, etc

J

LE-N—] —N-N]

Level 3

ALl
1A

&

3 - Work flow [recipe control to produce the desired
end products. Maintaining records and
optimizing the production process.

Time Frame
Days, shifts, hours, minutes, seconds

TAN -4

—— NN]

Manufacturing

Operations Management
Dispatching Production, Detailed Production
Scheduling, Reliability Assurance, ...

LR=N—1]

' Level 2

2 - Monitoring, supervisory control and automated
control of the production process

Time Frame
Hours, minutes, seconds, subseconds

Discrete
Control

Continuous
Control

J

Level 1

1- Sensing the production process, manipulating
the production process

Figure 1 — ISA-95 different levels Hierarchy

In this model it is obvious that every layer has different needs from the kind of required
information from the shop floor i.e., level 1, also the time frame is different due to every
layer responsibilities — ISA-95 proposed XML language as a standard language to ex-
change the information from sensory and automation level to the business planning and
logistics [4].

XML is different from other process automation industrial languages such like Modbus,
Fieldbus, Profibus, Hart and others [5] as in those protocols the messages are more or less
a serious of bits, which every bit has a certain meaning due to the protocol definition,
however XML is a textual structured presentation of a certain domain as it will be clarified

11

later in more details in chapter 3 of the thesis. XML not only gives the advantage of inte-
gration of different enterprises of the project but also to get access to the project from the
WWW — World Wide Web — or in other words the internet over the regular Web browsers
as XML format can be easily displayed as HTML format.

From this prospective, a new need to evolve the old automation systems to a web based
automated system, process all the information obtained with intelligent approach to mon-
itor /control them.

During this thesis work, we try to apply the mentioned concept on a fully automated pro-
duction line which will be described in details in next chapter of this thesis

Industrial implementation of the thesis work

The thesis work has been done as a validation case study for a PLANT Cockpit project
[6] which launched by the European commission as a part of (Factories of the Future)
partnership,

The partners of the project are belonging to well-known five industrial firms which are
(Acciona, BMW Group, Comau, Doehler Group, Intel) working with highly qualified re-
search team from many four different European universities which are Ecole Polytech-
nique Fédérale de Lausanne, Politecnico di Milano, Tampere University of Technology,
Technische Universitit Dresden) plus one research centre (Tecnalia).

The following points summarize the overall objectives of the project

e Real-time visibility extending from the shop-floor level to the business level

e Continuous monitoring and control of material flow and resource utilization

e Continuous increase of operational excellence

e The avoidance of shortage situations (e.g. material, staff)

e The identification of abnormal situations (e.g. rising energy use indicating a
problem)

¢ Identification and quantification of bottlenecks and optimization potentials (e.g.
energy use)

e Multi-objective decision making,

e Fast re-configurability of production processes due to unplanned events or mar-
ket demands

e Seamless communication between all stakeholders in the process (e.g. produc-
tion manager, foremen...)

12

Problem statement

The most already existing infra-structure automation systems are controlled by the mean
of Programmable logic controllers or any other similar controllers, which are the main
elements of automation level in every factory or firm.

However the new technological requirements push us for searching for a new methods, to
integrate this existing first layer of the shop floor to second layer of ISA-95 model, using
the latest technology for factory information system, which in our case is a Web-Service
technology. Designing a monitoring system based on a XML related standard is the first
problem part we are concerning about in this thesis work.

Furthermore, the second problem part is located in the third layer of ISA-95.As we are
trying to process the XML messages we already generated in the second layer as a Web-
Service messages, to manage and analysis them with a rule engine which is containing all
our experience and knowledge about our case study and able of executing a certain rea-
soning.

Proposed solution and thesis work

Due to ISA-95 description for the second and the third layer in its model

For the first part of the problem, the proposed solution was to select a PLC automated
system, then add a new Web-Service device for every PLC or controller, to acquire all the
sensors events and the controller actions and reformat them into XML messages using
Web-Service technology.

A FESTO production line has been selected to be our case study for the problem we try
to solve during the thesis work. Every station of the line is controlled by SIMENS step 7
PLC which is one of the most common industrial controllers in all the factories.

An INICO S1000 controller has been selected to be the Web-Service standalone control-
ler, to use it as our hardware shell, enables us to design and implement our Web-Service
solution within every FESTO station.

Following a Web-Service standards to design required appropriate services for our

case study. Design our events types based on an analogy with CAMX IPC-2541 standard
which is defining a generic XML schemas for electronic manufacturing, thus we can mon-
itor all the events we can get from our Web-Service XML message over the internet or
any network.

13

The other part of the proposed solution, is to create an expert system using Drools soft-

ware as a rule engine to process all the XML events acquired from the low automation

level. Imply new knowledge and store them based on the knowledge basement of our

system. Convert them to key product indicators — KPIs — to enable the people who work

in management and business level to give them useful information from their prospective

about what is going on in the shop floor.

Preliminary design concepts

Some main concepts design have been into consideration, the whole implementation was

following those concepts as pillars of design.

The first design consideration is to follow industrial automation system architec-
ture standard, to form the overall frame of work during the thesis.

The second concept, is to find a convenient way to upgrade the old PLC automa-
tion technology — which already exists in most of the industrial premises — the
way should be non-destructive.

The third concept, all the work cannot stop during installation and programming
the new technology hardware/software. In another words, no time wasting from
the production should be into consideration.

The forth concept, is that the new technology should be as generic as possible to
fit the case study and all the similar cases. In same time, the design itself should
follow a certain known reliable standard.

The fifth concept, is to use smart system for monitoring and managing the appli-
cation, separate the level of the technical details from business and production

information during the monitoring.

The last concept, is to reduce the cost as much as possible for applying the new
technology.

14

The state of art - Literature Survey

Rathwell, Gary — IEEE 2006 “ISA-95- Setting the Stage for Integration of MES and
ICD Systems”. This paper discusses the developing of other standard like ISA88 to
ISA95. In addition to, the reasons for its existence. Clarify the different layers of the
model, how to use it, and the advantages of using it. Finally, gives a good real case study
of using the recommendation of ANSI/ISA-95 for integrating the industrial enterprise, to
provide an overall master planning approach for ICD (industrial control domain) and MES
(manufacturing execution systems) [7].

Doug Tidwell - James Snell - Pavel Kulchenko “Programming Web-Services with
SOAP” First edition - December 2001. This book discusses in details, providing practical
examples about the technical side for the Web-Services, how to create a SOAP Web-
Service and exchange the SOAP messages. Implementation of UDDI to write a dynamic
Web-Service, how to secure your web page. Finally the future of the Web-Service appli-
cations from the point of view of the authors.

Ahmad Yasseen Al-Obaidy Master thesis — 2006 — computer science “Design and Im-
plementation of Web based SCADA System”. This master thesis gives a detailed de-
scription for the SCADA system components and implementation. The new concept of
merging the old SCADA technology to communicate over the Web-Service technology.

Edward Feigenbaum Chair - Peter E. Friedland - Bruce B. Johnson - H. Penny Nii -Her-
bert Schorr - Howard Shrobe — First edition — May 1993 “KNOWLEDGE-BASED SYS-
TEMS IN JAPAN” This book produced by JTEC (Japanese Technology Evaluation
Centre). Starting by the history of the artificial intelligence and the expert system as a
branch of it. Then the book is expanding to show how to build an expert system in details.
After going through the theoretical part of the expert system, it shows a really successful
studying case in Japan of applying an expert system to manage the business process.

Goran Simica, Vladan Devedz — Expert Systems with application, Elsevier Science — 2003
“Building an intelligent system using modern Internet technologies”. [8] The paper
gives detailed case study for implementing a Java based expert system shell with Apache
JServ Java package. To support the dynamic interoperation the Web-Service technologies
over the internet. The case study was concerning the radio frequency field. The final ex-
pert system form is working as a code tutor to give the user recommendations to the learn-
ers who are interested in this field.

RJ St Jacques - 2008 — white papers “XESS the XML Expert Shell”. [8] This white

paper explains and compares in details the difference between the different ES (Expert
system) Shows the advantages and the disadvantages of them. Moreover, the language

15

interpreter used to program the knowledge base and the reasoning engine. The main sub-
ject of the white paper is XESS Expert System shell, the way the shell use to deal with
XML messages as an input for the shell reasoning engine. Furthermore, processing those
messages. How to use Java language to write the rules and parse the XML messages.
Supporting the explanation by guiding examples.

Work Objectives

e Integrating the old automation technologies which exist in shop floor to the cur-
rent factory information technology, specifically Web-Service technology with-
out destroying the shop floor infra-structure or interrupt the production process.

e Applying the model of ISA-95 on our case study at layer two and three, using the
current standards and protocols to implement them on those two layers.

e Designing Web-Service messages based on the World Wide Web Consortium —
W3C — standards.

e Designing generic XML events based on analogy with CAMX standard.

¢ Monitoring the Web-Service messages and XML events as indicators for the
technical event they need to be shown in layer two of ISA 95.

e Defining the convenient key product indicators — KPIs — in a generic way to fit
most of similar production lines to our case study.

e Translating those KPIs as Drools software rules, for management of the system
in layer three of ISA-95 model.

16

Thesis Layout

Chapter 1 is introduction for the general and brief concepts of design, the main
problems we try to solve, the proposed solution, the thesis literature survey, and
the main objectives we try to obtain during this work.

Chapter 2 is description for the study case system which in this thesis has been
used as a practical automated system to apply the concept of web based monitor-
ing system to process the data captured from by the implemented Expert system.
Also it goes briefly through the structure of ANSI/ISA9S5 standard as it is the
framework of the thesis work.

Chapter 3 is discussing the concepts of Web-Services and Web-Service architec-
ture, go in details what is the XML, WSDL, SOAP and UDDI.

Chapter 4 is to show the implementation of the Web-Services for our case study
and showing the results we got from it.

Chapter 5 is introducing the concept of the artificial intelligence and relate it to
expert system, utilization of droll software as a rule engine with Java as a
knowledge base, designing and implementing the system and illustrating the re-
sults.

Chapter 6 is focusing of integration of all the thesis results to imply a rigid con-
clusion — purposing the future work.

17

CH2 - THE CASE STUDY - FESTO MPS 500

Line components and Operation

Our practical study case is FESTO MPS 500 fully automated assembly line
used in Tampere University of Technology — production department —
FASTory lab for educational purpose.

MPS 500 system is a successively expandable system consisting of individual
stations [7]. Each one has its own PLC controller and its own description and use
manual. However, the central unit is always the transport system. As shown

in Figure 2 below

Figure 2 — FESTO MPS 500

The current layout of the line as shown in
Figure 3 contains the following units

Distributing unit

Testing unit

Handling unit

Processing unit
Assembling and robot unit

AR S o

Automatic Storage and Retrieval System (AS/RS) warehouse

18

Stock ‘ Assembly

b
B M s Small parts stock

Pre-sorting

Product input Processing

Figure 3 - The layout of FESTO MPS 500 line

The final product of FESTO MPS 500 line is a plastic cylinder which is composed from
cylinder body, cover, spring and piston. The assembled cylinder and its components can
be seen in Figure 4

| BY Y

Figure 4 - The assembled cylinder and its components

In complete set up of a MPS 500 system standard sequence, the cylinder bodies are sep-
arated from the distribution station to be transferred to the testing station. The testing
station checks the condition of the cylinder bodies, ejects the junk in case of occurrence
and transfers the faultless pieces to the transport system. Consequently, the product in-
put into the system takes place from the distribution station.

The cylinder bodies are transported to the processing station thanks to a PIC-alfa
station. Then, the cylinder bodies should be processed, followed by testing. The PIC-

alfa station returns the cylinder bodies to the transport system.

The robot station assembles a model cylinder from a basic body. Finally, the AS/RS
warehouse is able to store assembled cylinder

19

Distributing unit

Figure 5 shows the distribution unit, the main function of the Distributing station is to
separate the cylinder bodies from the Stack magazine. 8 different cylinder bodies can
stored in the magazine stack, at least one cylinder body shall be exist inside the maga-
zine tube in order the unit can start.

A single acting cylinder pushing the cylinder bodies sequentially to be picked up by the
swinging arm via the vacuum gripper fixed on the end of the arm to deliver it to the next
station which is testing.

Figure S - Distribution unit

Testing unit

Figure 6 shows the testing unit, the main function of the Testing unit is to determine the
different characters of the cylinder bodies such as colour and height. The unit can differ-
ent between coloured red or silver cylinder bodies and black one, In same time analogue
height sensor will measure every cylinder base transport by the testing unit from the dis-
tribution to the main conveyor system.

Figure 6 — Testing unit

Handling unit

The main function of the handling unit to manipulate the cylinder bodies from the con-
veyor system to the processing unit to be processed then back again to the conveyor sys-
tem, Figure 7 shows the different components of the handling unit, it is equipped with a
flexible twin-axis handling device, which retrieves the cylinder bodies by means of a
pneumatic gripper. A colour detection sensor is attached to that gripper to distinguish
between 'black' and 'non black' cylinders. The cylinders can be transfer again to the con-
veyor system or deposited based on customized sorting criteria defined by the PLC pro-
gram.

Figure 7 — Handling unit

Processing unit

The function of the processing unit is to emulate the process of rubbing the cylinder inside
holes. The unit contains a rotating table which takes the cylinder first to check if it is

21

flipped or in right position, if the cylinder is not flipped it will move to the next position,
thus the rubbing tip will go down to rub the cylinder hole. Figure 8 shows the different
components of the Processing unit.

Figure 8 - Processing unit

Assembling and robot unit

The main function of the assembly station is to provide the small parts of the cylinder to
the robot to assemble it to the cylinder body.

Figure 9 shows the arrangement of the assembly station which contains a stack tube for
springs and another for covers, dedicated pallet for two different colours pistons.

Figure 9 — Assembly station

AS/RS20 warehouse

The main function of the warehouse is to store/retrive the final assembled cylinders,
In our case study the warehouse is the final destination of the assembled cylinder, no
retrieve process is executed during this production cycle.

22

The capacity of the warehouse is for 35 assembled cylinder. The warehouse has three
axes Cartesian robot to pick up the cylinders from the conveyor system to the warehouse
shelves. The principle of storing the cylinder is FIFO — first in, first out — principle as
shown in Figure 10.

Figure 10 — Warehouse unit

23

ANSI/ISA9S standard

The previous description of the project case study represents the physical automation
layer of ANSI/ISA9S standard. Before getting to the next chapter — which will discuss
the theoretical part of the Web-Service technology — That will be used in designing the
third layer of the model. As ANSI/ISA9S5 standard is the main skeleton of the project, it
would be good to explain more, the details of the ANSI/ISA95 standard shown in Figure
11

Level 4

4 - Establishing the basic plant schedule -
production, material use, delivery, and shipping.

Business Planning Determining inventory levels.

& Logistics
Plant Production Scheduling,
Business Management, efc

Time Frame
Months, weeks, days, shifts

Level 3

3 - Work flow / recipe control to produce the
desired end products. Maintaining records and

Manufacturing ired |
optimizing the production process.

Operations Management

Dispatching Production, Detailed Production
Scheduling, Reliability Assurance, ...

Time Frame
Shifts, hours, minutes, seconds

Level 2 2 - Monitoring, supervisory control and automated

Manufacturing Control control of the production process

Basic Control, Supervisory Control,
Process Sensing, Process Manipulation,...

Level 1 1- Sensing the production process, manipulating

the production process

Level 0 0 - The physical production process

Figure 11 — Layers tasks in ANSI/ISA95 standard

ANSI/ISA9S5 is an American ANSI standard created by an ISA committee called SP95.
ISA-95 is the international standard for the integration of enterprise and control systems
A group of volunteer industrial experts worked for developing the standard, this why it
used later as an open source standard for structuring an industrial firm due to common
agreed standard. The standard is divided into the following sections

e [SA-95.01 Models & Terminology

e [SA-95.02 Object Model Attributes

e ISA-95.03 Activity Models

e [SA-95.04 Object Models & Attributes

e ISA-95.05 B2M Transactions

Proceeding from the concept of modularity, ANSI/ISA9S is dividing the industrial enter-
prise into many different modules, every module called layer
The layers of ANSI/ISA95 are

24

Layer 0: this layer describes the actual physical process

Layer 1: the activity of sensing the physical process and pass the sensing data to
the controller devices

Layer 2: the activity of monitoring and supervision of the controlled process
Layer 3: the activity of monitor the work flow from the manufacturing point of
view, such as the recipe control, production and defection rate

Layer 4: the activity of management the manufacturing level from the business
point of view

The different sections of the standard contains

Definitions for the different domain tasks in the industrial firms

Definitions for the time frames of every layer to be proportional with those tasks
assigned for every layer.

Definition for the information flow and exchange models between the different
layers in the hierarchy.

The standard defined the XML message format as the recommended format for exchang-

ing the information between the different level in the model
The main target of ANSI/ISA95 standard is to

Ease and decrease the time and the cost of the integration process between the
control system, manufacturing system and business during the whole life cycle
of the enterprise

Upgrade the existing industrial premises to fit the existing model and improve

the organization overall performance by giving more manufacturing and man-

agement capabilities

Ability of expansion of the integrated project, from both the hardware and the

software prospective, without destroying the old infrastructure

One of the main concepts in ISA95 section 1 and 2 is to analysis the project into resource

objects and process measuring criteria

The resource object can be

1.

2.
3.
4

Personal resource
Equipment resource
Material or energy resource
Process segments

The process measuring criteria are

1.

2.
3.
4

Capabilities and capacities of the work force
Product and recipe definition

Production schedule

Production performance

25

In the next chapters, the previous mentioned point will be always be into consideration
either during designing the Web-Services for layer 2 of the model or the expert system
for layer 3.

26

CH3 — WEB-SERVICES

Introduction

Web-Service is one of the most grown technologies in our current area, because of the
strong trend of using the current IT technology for the sake of business integration as a
new market demand to share the information as open sources over the internet.

The Web-Service technology started to flourish, whenever the internet became available
for normal users in the nineties; the public users started utilizing it in everyday activities,
as it became later the main aid for everyone to collect whatever information wanted from
any place in the world, that motivate the different related computer and information tech-
nology world societies to produce a standard internet protocols, to enable the normal user
to access the internet whatever the platforms they are using.

In middle of the ninetieth century, it was clear that the WWW standards can simply and
successfully provide any internet user by any information, presented by any browser over
the network; this was called H2A — Human to Application — scenario. However people
thought as the internet infrastructure already exists they can use it for exchanging the
information between the different applications.

The idea found a lot of support and encouragement and it has been named later as A2A —
Application to Application — scenario. But the idea was only studied from the hardware
infrastructure not from the software wise, till this point HTTP was all the way successful
to retrieve information between human and application, even it was able to exchanging
information between two different simple application following a simply way of linking
two document paths using hypertexts. This simple way did not provide any applicable
solution for complex A2A process.

In the end of the ninetieth century SOAP — Simple Object Access Protocol - has been
introduced by Mircrosoft and it was supported by IBM — the protocol depended on ex-
change the information in a form of structured text or in other words XML — Extensible
Markup Language. The SOAP became the most common protocol to deal with Web-Ser-
vices applications, not long time after IBM, Microsoft and Ariba successfully imple-
mented the WSDL — Web-Services Description Language, then the UDDI - Universal
Description, Discovery and Integration.

27

XML, WSDL, SOAP and UDDI has been improved and still improving to fit the new
applications requirement [8].

In this chapter we will discuss briefly the definition of Web-Service, the components of
Web-Service and architecture, the benefits and the challenges to use.

Service Oriented Architecture (SOA)

A service-oriented architecture (SOA) is a set of business-aligned services that collec-
tively fulfil an organization’s business process goals and objectives. These services can
be choreographed into composite applications and can be invoked through Internet-based
open standards and protocols. [9]

As it is clear from the definition of the SOA, it is a collection of many protocol and tech-
nologies together, encapsulated in one stack to let the business staff in an enterprise able
to connect to their customers and explore them and being easy explored by them, deal
with the partners and competitors in same business field of in related fields and also to
monitor and control the enterprise of a portion of it.

In same time the SOA is a standard model for those who work in technical customs such
as programmers or web developers who design the applications to link the enterprises
using the web technology.

Business process

Foundation standards

(XML, HTTP etc)

Figure 12 — Service Oriented Architecture Onion

Figure 12 shows the different layers of the SOA as every layer contains specific protocols
for executing certain tasks.

28

Service Oriented Architecture components

The main components in the SOA are shown in Figure 13. In this figure three main entities
are exist which are [10]

1. Service provider

2. Service registry/ broker

3. Service customer / requestor

Service
Registry
(uDDI)
i Publish
Discover (WSDL)
Use
Service - - Service
Consumer (SOAP) Provider

Figure 13 — Service Oriented Architecture main components

The service provider is this one who owns the services and can publish or offer them on
the web, deciding which services list can be exposes, or published by the web broker.
Moreover the agreement type with the service requestor, the service provider uses the
WSDL protocol to enable him to publish his services.

The service broker is this entity which announces the different service lists allowed to
publish by the providers for the whole service requestors in the domain. The broker can
be follow different trend for marketing his services depending on the business model it
has been used to build this broker. But most of the brokers will use UDDI protocol to be
discovered and discover the service consumer. Moreover it still use the WSDL protocol
to process the published message from the service provider and publish the service offers
for it.

The service consumer is the end user who is searching for a certain service over the net-
work from those services it can discover dynamically from the service broker. Whenever
the service consumer will find his service, the agreement shall be obtained between it and
the broker, which in turn will inform the service provider about certain consumer asking
for a certain service. At this moment the service broker role has been ended and the ser-
vice consumer and provider will start to exchange the agreed services in a direct way
using SOAP protocol.

29

The service oriented architecture mechanism is superior than message oriented architec-
ture mechanism which has been used for CAMX standard. The difference is that the bro-
ker in message oriented architecture still involved after delivering the messages for the
consumer even after agreement, which in turn makes the broker is the narrow bottle neck
of the architecture. However this problem does not exist at all in the service oriented
architecture.

One important information about the SOA components, that every component is not
bounded by a certain role. In other words a service provider can act as service consumer
as well as a broker; it depends on the need of the component to offer, demand or manage
the services.

What is the Web-Service?

Web-Service architecture has been discussed in the previous, but what about the Web-
Service definition.

A Web-Service is a software system designed to support interoperable machine-to-ma-
chine interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web-Service in a manner
prescribed by its description using SOAP messages, typically conveyed using HTTP with
a XML serialization in conjunction with other Web-related standards [11].

If we try to put the Web-Service in few words the Web-Services are self-contained, mod-
ular applications that can be described, published, located, and invoked over a network.
[12].

The Web-Service technology is the most suitable choice fits the Web-Service architec-
ture, as the properties of it works as advantages that aimed to be obtained using the service
oriented architecture.

The properties or advantages can be summarized in the following points [13]

Self-contained application and independency of the language of the operating sys-
tem

The Web-Service applications are only needed XML client and HTTP client to be pro-
cessed on the client side. Or SOAP server and HTTP server on the server side.

Those protocols are commonly essential within any existing operating system or platform
which made Web-Service technology is independent and self sufficient.

30

Self-describing application

As the core of the Web-Service application is XML which marked as a structure language
to organize data in a text like format as will be discussed later in more details.

This property makes Web-Service is so easy to be readable even by any non-professional
programmers.

Encapsulated, modularity, integrity and expandability

Designing a Web-Service application is like designing a piece in a puzzle which can be
integrated with more pieces to give more complicated services, thanks that all the Web-
Services already designed based on a well-known architecture.

The Web-Service applications can extend so easily, moreover the new services can inherit
a lot characteristics from the parent services.

Interoperability
As the Web-Service does not need a certain platform, this eliminate the problem of ex-
changing of services among the different operating systems.

Discoverability

Other important core protocol for Web-Service application is UDDI which will be dis-
cussed more in this chapter; this protocol aids publishing and discovering the service
within the network domain.

Open source and standard language

All the standards involved in designing a Web-Service application are open and free
standards, which made it easy for anyone to create his own application. On other hand,
sharing the information.

Dynamic language

Web-Service applications are meant to be published, invoked, deployed and discovered
because the characteristics it inherited from WSDL and UDDI protocols.

That eases establishing the e business process over the internet.

Loosely coupled application
No configuration is needed for Web-Service applications data exchange, which allow the
coordination and accordingly flexibility of integration.

Security

Due to the fact that Web-Service applications are meant to be invoked on a certain net-
work which mostly the internet, security is a crucial issue for any Web-Service applica-
tion. XML-Encryption and XML-Signature has been specified clearly by different W3C

31

and IETF recommendations. WS-Security policy language and WS-Trust defines a com-
plete model for all the required syntax for a secure data exchange and integrity over the

internet.

Those advantages/ properties above are all inherited from other protocols the technologies
have been involved for designing a Web-Service application, as it is clear in Figure 14.

The figure shows the protocol stack of the Web-Service protocol stack. As it can be seen
easily every layer of the protocol concern certain task and provide the Web-Service ap-

plication with a new point of strength.

Web Services for Remote Portlets

L L T e —————

‘l‘il'li.i'li'lllllﬂl-.

: W5-Federation

TEREEEEE RS

Liberty | SAML 2.0 SAML WS5-Security
federated identity family

Foundation

N]

i WS-Notification } |
L]

rmmenw

HTTPIS i Other transports
.‘- A ————— =

..u""""".. -------- T T LT
WS
. WS5-Discovery :l W5-Palic W5-Inspection ME H
“-i-t---i----—'---- =
=]

p— mamasase simsssrsssssssssssssssssans,

Business Process H Y 1

Execution Lunnuaga] :. R j) i E
J—— S —

— R iancacaca, mEm st

L4

PoAsaP 1 WS-Transactions {1 ws.Coordination
LT T—— . -Ql-....'......-.-...-.......'.--- e T T
e e e e en e e e .-,: ATy
: WSRM : WS-ReliableMessaging '
- e

"y

-

z
B
-
g
E
B
§
z
@
:

.
g . pecificati .|| Reachis \ ed
NDtatIDn - Eir| prng'“uun E . l‘ﬂ E:-fclillri::tmn
S — [e ——

T —
-

m
m
=
H
=]
=+

Figure 14 — The protocol stack of Web-Service application

32

Web-Service core protocols

EXtensible Markup Language — XML

XML is an extensible markup language, originally invited to store the data and the infor-
mation in structured text way to describe electronic text — in simple words XML is meant
to be the metalanguage for the electronic text.

XML is an extansible language that means you can always extend the old files, as the
language is simply composed of customized tags and elements, which named flexibly due
to the creator of the file choices. This feature of the XML to describe annotation or other
marks within a text in form elements — which on contrary with HTML can be defined —
made XML a flexible markup language. [14]

However XML is not just a language but it is metalangue, which means you can create
and define new languages using it. On other words, it is a core language for many other
languages such as RSS or MathMI. [15]

XML facilitates the data sharing and transfer as it is based on simple text format, that
gave it much stronger privilege which is platform independency, as with XML you can
easily change, store or transfer files among different operating platforms, that solved a
curtail concern for internet application developers, as in internet world many different
operating systems are connected in same time.

From the same prospective of object oriented language. XML object or element can have
many instances all of them follow the definitions of the element, having the same attrib-
utes but with different values, all those definitions should be written in a separate file
which used to know as XML schema or shortly XSD file.

A XML Schema [16]:
o defines elements that can appear in a document
e defines attributes that can appear in a document
o defines which elements are child elements
e defines the order of child elements
e defines the number of child elements
o defines whether an element is empty or can include text
o defines data types for elements and attributes
e defines default and fixed values for elements and attributes

33

<xs:element name="Customer">
<x3:complexType> .
<X3:3equence> <Customer>
type="x3 <Dob> 2000-01-12T12:13:14Z </Dob>
3" type="x3s <Rddress>

<xs:element name

S. <xs:element name

</x3:sequence> 34 thingy street, someplace, sometown, wlwSuu
</x3:complexType> S. </Address>
</xs:element> </Customer>
10. <xs:element name="Supplier"> <Supplier>
<xs:complexType> <Phone>0123987654</Phone>
<X3:sequence> 10. <Address>

22 whatever place, someplace, sometown, ssl égy
</Address>

<xs:element name="FP type="xs
33" type="xs

15. </x3:sequence> </Supplier>

<xs:element name="A

</x3s:complexType>
</xs:element>

Figure 15 — An example of one instant of xml in accordance with its schema

Figure 15 is a sample of a textual presentation of one XML instant of predefined complex
type element in the adjacent schema.

In the schema there are two different elements, the first one is a description of a customer
and the other for a supplier. Every element of them have other two sub elements or chil-
dren elements. Every individual child has its own attributes which appear have some val-
ues in the XML files.

Web-Service Description Language — WSDL

WSDL is a XML originated language that describes and defines a plenty of services struc-
ture that can be offered as a service provider or requested as a service consumer. To be
more precious, WSDL is describing the communication in the network in a structured
way using XML.

Moreover exchanging the messages between the end points, those messages can be either
document oriented or procedure oriented messages. Inside the WSDL file, the end points
shall be explicitly well defined. Furthermore, the binding between the messages and used
protocol sending or receiving those messages, mainly SOAP and HTTP GET/POST pro-
tocols will used for sending/receiving XML messages.

WSDL has similar properties to XML, as it is a network topology independent, and easy
to expand it by adding new end points or services within the same file.

The main elements to construct a WSDL document are [17]
e Types a container for all the data type using standard way such as XML schema
e Message an abstract, typed definition of the data being communicated
e Operation an abstract description of an action supported by the service
e Port Type an abstract set of operations supported by one or more endpoints

34

e Binding a concrete protocol and data format specification for a particular port
type

e Port a single endpoint defined as a combination of a binding and a network ad-
dress

e Service a collection of related endpoints

1 n 1 1 1/
WSDL N 2 Ay Protocol
Document Extensions
1 I'n
1 Protocol style/transport
1 1 Extensions 1lm action
> Binding R | style
n 1 Operation |1
n | Binding |1
- Message |encoding
1" 11 1.3] Binding
\1 n . ™
> Port Type |—"3 Operation
n
n
Vod ' "1y |
Nt on N i
-] Message |—1 Part Binding
n N
0.1 In Instance
Nn
= Type XML
n
! y 1 contains
XML 1N _
Schema —>| XSD Type points to

Figure 16 — The main WSDL document elements

Figure 16 illustrates an example for a WSDL document. The diagram is telling that every
WSDL file can contain zero or more services. Every service can target a zero or many
end points, in other words ports.

Every port can use certain protocols for communication which already defined into the
bind. The port type will contain zero or many operation that can be processed by a certain
port with a certain communication protocol or bind.

The operation define some action that will be token by the service, this operation or action
i1s more or less a set of XML messages that already defined by the XSD ,An example of
a complete WSDL documentation can be shown in

Figure 17

35

<¥xml wersion="1.0" encoding="UTF-8"7>

<wsdl :definitions targetNamespace="http://address.jaxrpc.samples"
xmins:apachesocap="http://xml.apache.org/xml-socap”
xmins:impl="http://address.jaxrpc.samples"
xmins:intf="http:/S/address.jaxrpc.samples"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins :wsdl="http:/Sschemas.xmlsoap.org/wsdl /"
xmins :wsdlsocap="http://schemas.xmlsoap.org/wsdl fsoap/,/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<wsdl :types=>
<schema targetMamespace="http:/faddress.jaxrpc.samples"
xmins="http://www.w3.org/2001/XMLSchema™>
<import namespace="http://schemas.xmlsoap.org/scap/encoeding/" />
=complexType name="AddressBean">
<segqguences
zglement name="street™ nillable="true" type="xsd:string"/,/>
=glement name="zipcode" type="xsd:int"/=>
=/seguence>
</complexType>
<element name="AddressBean” nillable="true" type="impl:AddressBean" />
</schema=
<import namespace="http:// Twww.w3.org/2001/XMLSchema" />
</wsdl : types>

<wsd]l :message name="updateAddressRequest™>
<wsdl :part name="in0" type="intf:AddressBean" />
<wsdl:part name="inl" type="xsd:int"/>
</wsd] :message=>
<wsd]l :message name="updateAddressResponse">
<=wsdl :part name="return" type="xsd:strimg",/>
</wsdl :message>
<wsd]l :message name="updatefAddressFaultInfo"=>
<wsdl:part name="fault" type="xsd:strimng"/>"
=/wsd] :message>

“wsd]l :portType name="AddressService"=>
=wsdl :operation name="updateAddress" parameterOrder="in0 inl">
<=wsdl :input message="intf:updateAddressReguest™"
name="updatefAddressRequest™ />
<wsdl toutput message="intf:updateAddressResponse"™
name="updateAddressResponse™ />
<wsdl:fault message="intf:updateAddressFaultInfo"
name="updateAddressFaultInfo= />
</ wsdl :operation=>
</w=d] : portType>

<wsdl :binding name="AddressSoapBinding™ type="intf:AddressService">
<wsdlsocap:binding style="rpc"
transport="http: //schemas.xmlsocap.org/scap/http=/>
<wsdl :operation name="updateAddress"™>
<wsdlsoap:operation soapAction=""/>
<wsdl :input name="updateAddressRegquest”>
<wsdlsoap:body
encodingStyle="http://schemas .xmlsoap.org/soap/encoding/"
namespace="http://faddress.jaxrpc.samples"” use="encoded" />
<Swsdl : input>
<wsdl :output name="updatefAddressResponse">
=wsdlsoap:body
encodingStyle="http://schemas .xmlsoap.org/soap/encoding/™"
namespace="http://address.jaxrpc.samples" use="encoded" />
</ wsdl :output=
<wsdl : fault name="updateAddressFaultInfo"™>
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://faddress.jaxrpc.samples” use="l11iteral",/>
<Swsdl:fault>
=</wsdl :operation=
</ wsd1 : bimding=>

<wsdl :serwvice name="AddressServiceService">
<wsdl :port binding="intf: AddressSoapBinding” name="Address">
<wsdlsoap:address
lTocation="http:// lTocalhost:8080/axis/services/Address" />
<=/ wsdl : port=
</wsdl : service>

</wsdl :definitions>

Figure 17 — An example of WSDL document

36

Simple Object Access Protocol — SOAP

SOAP is a simple object access protocol is standard communication protocol for exchang-
ing structured information between applications in a distributed decentralized network
over HTTP protocol as a mean of transport. SOAP is XML based protocol this why it is
platform independent and can be simply extended.

SOAP became the standard protocol of message exchange concerning Web-Services. As
it is a light weight protocol, which mainly do two different tasks. [18]

1- Sending requests or receiving responses over HTTP transport layer
2- Processing, encoding and decoding of XML messages

Figure 18 shows the message exchange between Web-Service applications

Web service Web service
requestor provider

Ol

®

Web service
implementation

infrastructure
SOAP message

XML document SOAP server

Network transport Network transport
protocol protocol
(HTTP) (HP)
Y \ K Vi
I D Firewall P /
| - Ll
................ v-----\.\.------------------.‘A----./s---------------.--.

Figure 18 — Communication of XML Web-Service messages using SOAP

A SOAP message is an ordinary XML document which contains four main parts:

e An Envelope part to encode the XML message in SOAP format
e A Header part which contains header information

e A Body part which contains call and response information

e A Fault part in case of error it should contain error information

37

A simple SOAP message is shown in Figure 19

<?xml version='1.0' ?>

1 Envelope

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope” >

<env:Header>

<t:transactionID Header
xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next”
env:mustUnderstand="true" =

57539
</t:transactionID>
</env:Header> e
> Blocks
<env:Body> ~
<m:orderGoods /’/’

env:encodingStyle="http://www.w3.0rg/2002/06/scap-encoding”
xmlns:m="http://example.com/procurement"”>
<m:productItem> Bﬂdy
<name>ACME Softener</name>
</m:productItem>
<m:quantity>
a5
</m:quantity>
</m:orderGoods>
</env:Body>

</env:Envelope>

Figure 19 — SOAP message example

The services message exchange using SOAP can be done using many different patterns

One-way

Asynchronous two-ways
Request-response
Workflow-oriented
Publish-subscribe
Composite

AN e

In one way message pattern, SOAP messages are transferring in only one direction as it
is shown in Figure 20. This pattern is suitable for certain applications such as resource
monitoring applications.

Service Service
Requestor - Provider
(source) (destination)

Figure 20 — One way SOAP message exchange pattern

In asynchronous two ways message pattern shown in Figure 21, the service requestor
always expects a response from the provider. However there is not any certain time frame
or limits as it is asynchronous.

38

Service 1 @—-’

Consumer

Service 1
Producer

Service 2

Producer T_E’_

Figure 21 — Two way asynchronous SOAP message exchange pattern

The most common used mode in SOAP communication protocol is request — response
pattern or sometimes called a remote procedure call — RPC as it is shown in Figure 22.
A synchronous response is always expected every time there is a communication between

the requestor and the provider.

Service —= Service
Requestor <} Provider

Figure 22 — Request/response SOAP message exchange pattern

In workflow oriented SOAP message exchange mode, is always implemented in case
many service providers are cooperating to integrate a services package, as it is clear in
Figure 23 the message cross from one service provider to another to build finally the
whole work package.

Service —p»| Service 1
Requestor Provider

Y

Service 3 - Service 2
Provider Provider

Figure 23 — WorkFlow oriented SOAP message exchange pattern

The publish subscribe SOAP message exchange mode is even based mode, and useful in
case of informing many providers, regardless which provider will get the request first as
it is shown in Figure 24.

39

Service 2
Provider

Service 3
Provider

Service | Service 1
Requestor ﬁ Provider

Service 4
Provider

RN

Service 5
Provider

Figure 24 — Publish/subscribe SOAP message exchange pattern

The last SOAP message exchange pattern is a composite mode which is a bit similar to
publish subscribe pattern. The difference is the existence of a new component call a com-
posite service provider which is controlling the requests for different providers based on
the business logic. This pattern is shown in Figure 25.

Service 1
Provider

p Composite .
Service _ﬁ : ‘_@ p| Service 3
Requestor > Service Provider

Provider R

\ Service 2

Provider

Figure 25 — Composite SOAP message exchange pattern

Universal Description, Discovery, and Integration UDDI

Universal Description, Discovery, and Integration (UDDI) is a standard protocol use the
SOAP communication protocol to link the service client side application programming
interface (API) side to the SOAP server, UDDI main function is to store or retrieve back
the information between the different entities in the Web-Service paradigm. WSDL file
is contains the UDDI to describe the appropriate Web-Service interfaces.

40

In the Web-Service world many different Web-Services nodes are running in different
places by different providers. UDDI protocol is gathering all those Web-Services nodes
into so called a UDDI registry.

The main aim of using UDDI was to simplify the process of electronic commerce, as it
eases for the different Web-Service clients, with different set of information presentation
protocol to discover provider. In other words, it concerns solving the problems that usu-
ally occurred during business to business (B2B) interaction, because it defines the struc-
ture of the Web-Service registries and those APIs, who are willing to access those regis-
tries. It can be seen that UDDI is a search engine protocol for those clients who are seek-
ing for certain applications.

The implemented UDDI protocol will define if the Web-Service application either dy-
namic or static. In static Web-Service usually both the service provider and the service
customer will get to know each others in advance during the design stage. The addresses
of the service provider and requestor will be will included within the WSDL file, which
in turn will be the access points for every partner during the runtime.

However the dynamic Web-Service does not really require that the service provider and
customer should know each others in advance in the design stage. More complicated ex-
ploring mechanisms at the runtime have to be applied to enable every client to call a
certain interface and finding one or more provider for it.

In this thesis, a static Web-Service will be implemented for designing the Web-Service
based monitoring system for the mentioned case study; this will be described in details in
the next chapter.

The difference between message oriented architecture and service ori-
ented architecture

During the next chapter, the design of XML schema for the project will be based on the
recommendation of CAMX IPC. Therefore, it would be useful to briefly understand the
concept of a middleware message oriented architecture and how it can differ from service
oriented architecture.

As it can be seen in Figure 26, the middleware message oriented architecture can have
two kinds of messaging model [19], either point to point communication mode or pub-
lish/subscribe communication mode. In point to point communication mode a direct asyn-
chronous message exchange mechanism will be involved between the message producer
and consumer.

41

A middleware broker should be managing the message exchange between the different
software entities. The most common managing procedure that the broker will follow in is
FIFO — First In First Out — queue, to deliver a certain message to only one consumer.

The other utilized message communication mode is publish/subscribe. In this mode, all
the message consumer will subscribe from the broker the message list they are willing to
receive, in same time the all the publisher will publish their messages to the middleware
broker.

The broker will follow the same mechanism of FIFO queuing to distribute the messages
for the subscriber. One message can be send to many consumers

| Producer 1 /v{ Consumer 1

| Producer .. Point-to-Point Queue i———{ Consumer ..

| Producer N Consumer N |

e

| Publisher 1 /.-I Subscriber 1
| Publisher .. FuBliSE S ubsenbs Subscriber ..
opic
| Publisher N Subscriber N
| Message Producer 1 Message Consumer 1 |
First In First Out Queue
| Message Producer .. |»—E ‘ MM ‘ M‘ M ‘ M Message Consumer .. |

mM
| Message Producer N |/ M| = Message Message Consumer N |

Figure 26 — Middleware message oriented architecture

The difference between the middleware message oriented paradigm and service oriented
paradigm, is that the first one always involving the broker in the message exchanging
either in point to point mode or in publish/subscribe mode, which makes a lot of commu-
nication traffic and waste a plenty of time during the communication process.

This cons does not exist in service oriented architecture, as the service registry which
plays the role broker, only guide the service consumer to the service provider or many
providers who can provide with a needed service. This way a direct peer to peer commu-
nication will be established between the service provider and consumer without wasting
the registry time for managing a lot of messages in the network.

For designing our Web-Services for this project, we will use the advantage that CAMX
IPC standard already defined standard XML schemas for electronic shop floor equipment
communication messages, which used to be used under the concept of middleware mes-
sage oriented architecture. But we are going to modify them and use them under the con-
cept of service oriented architecture. This way we still follow a reliable standard in same
way avoiding the cons of the middleware architecture.

42

CH4 — DESIGN AND IMPLEMENTATION OF WEB-
BASED MONITORING SYSTEM FOR THE CASE
STUDY

Introduction

The aim of this chapter is to show the designing and implementing the web-based moni-
toring system for our case study, which has been explained how it works in chapter two
of this master thesis. The design of the web-services and message exchanging patterns
will be based on the theoretical discussion for the Web-Service technology in the previous
chapter. Finally showing the results of the monitoring system.

It is important to emphasize that the main concept of design of the web-based monitoring
system we are implementing here is built on the recommendation of ISA-95 standard,
which means two crucial points had been into consideration from the very beginning.

The first point is that the implemented monitoring system will be used in layer two of
ISA-95 model, which is more concerning with technical data about the process in a rela-
tively short time period. This time period can be seconds, minutes or hours.

The second point is that this web-based system will be a base for the expert system, which
located due to ISA-95 model in layer three.

In this layer the technical information captured from layer two should be interpreted into
more business like information, to fit the project planners and managers who are meant
in this layer. The rate of information monitoring is a bit longer than the previous layer, it
can be one hour, one working shift, day or week.

43

Web-Service hardware

As it was mention in the previous chapter, the Web-Service is software designed to sup-
port interoperable machine-to-machine interaction over a network. That means that there
should be certain hardware in accordance with this software to contain it, and execute all
the services from the physical point of view. For this purpose in our project we used Web-
Service hardware used to be known as INICO S1000.

The S1000 is a programmable Remote Terminal Unit (Smart RTU) device which offers
process control capabilities, as well as a Web-based Human-Machine Interface (HMI),
support for Web-Services. The S1000 is designed to operate in typical industrial settings
and is compatible with most industrial signal types and levels [20].

Figure 27 clarify the idea of distributing the different Web-Service devices over the Ether-
net LAN. The same idea already applied over our case study, as there is a dedicated IN-
ICO S1000 Web-Service controller attached to every PLC controller for every machine
in our case study, described in chapter 2 of this thesis.

Even the S1000 has the same ability of the regular PLC to control the process itself, it
was sufficient only to hardwire it to the exciting PLC for many reasons as mentioned in
the problem station. That approach will save money and time as we do not need to stop
the process, or reprogram the new controller again. This was from the very beginning one
target of the this thesis work.

Monitoring,
Supervisory Control

<xml /> i

Ethernet LAN _ ————————

///

<xml/>

'/IIIIIMMIIIIIIII

'/llllllltllllllll/
. fanenny

Figure 27 — The distribution of the INICO S1000 devices over the Ethernet network

44

Design of the XML schema

The XML schema is the first milestone in designing a Web-Service. From the same pro-
spective of the object oriented programming, the XML schema can be seen as a container
for all the definition of the objects in the project has been written as XML script. While
all the XML messages will be some instances of this object contained inside this XML
schema.

Every object can be created as a complex element which contains many other simple
elements inside and organise them in a convenient way. An object oriented model shown
in Figure 28, expresses the three objects which our case study or any other production
line. The model contains three objects, the workstation, the workpiece and the labourer.

‘

Figure 28 — The case study object oriented model

The first object we are going to discuss in details in the schema is the workstation object

1- Alarm/Alarm_Cleared

as show in Figure 29

2- Warning/Warning_Cleared

3-Error/Error_Cleared

Station_Event a 4-Blocked/UnBlocked

5-Starving/UnStarving

6-HeartBeat/HeartBeat_response

7- No_Event

Event_Source_Component 1-Processing
2-Waiting
Station_Status :

5-Started
6-Stoped
7-Rested

Figure 29 —Workstation object elements

45

As we have many stations in the case study, a child element Station ID should contain
every station name. The second child element for workstation schema is the time stamp
which is quite important element for understanding the time of every event sent by dif-
ferent stations. The station event element can be one of those thirteen events, which listed
in the previous figure. Those event statuses are following the recommendation of CAMX
IPC- 2541 standard [20] which defines many XML schemas for generic requirement for
electronic shop floor equipment communication messages.

Figure 30 shows the original CAMX states diagram which has been used to drive the
different statues included in the Workpiece object.

Off 0*[Setup
|)
| 2
4 i |
Ready 7 8
Idle ’
OCKC ¢ '
(w h:j (im).
3 4 —6 Down
¥ |
Processing
(;\ctivc) chculing]

0
7

Figure 30 - CAMX Equipment State Diagram

An analogy has been done from those XML schemas which they are already defined into
this standard to make them fitting our case. In other words we used XML schemas which
meant to be used in message oriented architecture to be used for building the schema for
the service oriented architecture. The same procedure has been done for selecting the
station status. The last child element in the workstation object is the source component of
event, this element should be associated with the station event as it should be the compo-
nent inside the workstation that cause the event.

The second object in the schema is the workpiece. Similar to the workstation object, the
workpiece has an identification number and time stamp child elements for every event
occurred by or to any work piece. To understand the location of the workpiece within the
production line, every message from the workpiece should have the workstation ID that

46

processing it. The workpiece schema also has two child elements to contain some prop-
erties of the work piece, the first element is the workpiece color which either black or
non-black. The second element based on the first element as if the workpiece color is
black that means it is defected workpiece, otherwise it is undetected.

The final child element is the workpiece statuses which are also following the recommen-
dation of CAMX IPC- 2541 standard. Shows a schematic for XML schema of the work-
piece object.

Station_ID

Time_Stamp

WP_Color ——

1- Black

2- Non_Black

. 1- Defected
WP_Quality — 9 OK

1-In_Processing

Work_Piece

2-Transfering_IN
WP_Status

5-No_Work_Piece

Figure 31 — Workpiece object elements

The final object in the project schema is the labourer object, as shown in

Figure 32. Similar to workstation and workpiece objects every labourer has an identifica-
tion number child element, time stamp child element for expressing the timing, station ID
child element to express the location of the labourer over the production line. And finally
labourer action child element which followed the CAMX standardization.

Labourer_ID
Station_ID
Labourer 1- Manual_Start

- 3- Manual_Stop

4- Alram_Clear
Labourer_Action o
5- Error_Clear

6- Warning_Clear

7- Blocking_Clear
8-Starving_Clear

Figure 32 — A presentation for the labourer object elements

47

Figure 33 is collecting all the elements for the project XML schema; we have discussed
earlier in details in one chart.

WP_ID

Station_ID Station_ID

Time_Stamp

Time_Stamp R Biack
- blac
Labourer > Non Black
Labour_ID WP_Color on_Blac

1- Manual_Start
2- Manual_Reset
3- Manual_Stop
4- Alram_Clear

. 1- Defected
Labour_Action ’ WP_Quality

WP_Status 1-In_Processing

5- Error_Clear

6- Warning_Clear
7- UnBlock_Clear
8-UnStarving_Clear

2-Transfering_IN

Station 3-Transfering_Out

4- Pause
5-No_Work_Piece

Station_Status Event_Source_Component j§ Station_Event § Time_Stamp Station_ID

1-Processing 1- Alarm/Alarm_Cleared
2-Waiting 2- Warning/Warning_Cleared
3-Ready 3-Error/Error_Cleared

4-ldle 4-Blocked/UnBlocked

5-Started
6-Stoped
7-Rested

5-Starving/UnStarving
6-HeartBeat/HeartBeat_response
7- No_Event

Figure 33 — A complete view of the project XML schema elements and types

It is worth to emphasize that one of main design concepts during this thesis work was to
design the work as generic as possible, to fit as a wide range of cases not only our case
studies .In same time, to save time and effort inside the same project. As the description
of the case study in the second chapter of this thesis work, every machine will deal with
the same objects we created, which means this XML schema will fit the whole assembly
line.

All the original schemas that has been used from the CAMX IPC- 2541 standard can be
found in Appendix 1

Design of the WSDL document

Web-Services as mentioned in its definition, should be described by a WSDL document,
The WSDL document is built on the roots of the XML schema. As the XML schema
define the types included inside the WSDL file

The same concept of designing a generic XML schema for the case study was followed
to design the WSDL document.

48

In the project WSDL file we have five different message types

1. Work Station Status Type

The first type in the project WSDL document is shown in Figure 34, it contains three
main elements as it is clear in the graphical presentation. The station ID which is a
string expressing the name of the station. Every station should have a unique name. The
timestamp is to indicate the time whenever the service will use this type included in any
message. The station status could be ready — starting — idle — rested —processing — wait-
ing or stopping. Those statuses originate from the definition of the work station object
which discussed earlier.

=
| WorkstationStatusType D‘[E Reference : tns:StationId éa
O status %E

Type | tnz:WorkstationStatu=sCode |

D‘[EReference] tns:Ti_mest.ampéa

<?xml version="1.0"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XML3chema™>
<xsd:complexType name="WorkstationStatusType">
<xsd:sequence’>
<xsd:element ref="tns:StationId"/>
<xsd:element name="Status" type="tns:WorkstationStatusCode"/>
<xsd:element ref="tns:Timestamp"/>
</x=sd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 34 — Work Station Status Type included in the generic WSDL document

2. Work Station Event Type

The second type in the project WSDL document is shown in Figure 35, it contains three
main elements as it is clear in the graphical presentation. The work station event could be
alarm — alarm cleared — warning — warning cleared — error — error cleared — unblocked —
starving — unstirred — heartbeat — heartbeat response or no event.

|
|@Workstation]3vent‘l‘gpe D‘[gReference : tns:StationIdélE
O EE'vent
|Ty‘pe | tns:EventType
o EReference z tns:Timest'.ampélE

<?xml wersion="1.0"2>
<xsd:schema xmlns:xsd="http://www.w3.org/2001l/XMLSchema">
<xsd:complexType name="WorkstationEventType">
<xsd:seguence>
<uxsd:element ref="tns:StationTd"/>
<msd:element name="Event" type="tns:EventType"/>
“xsd:element ref="tns:Timestamp"”/>
</x=sd:sequence>
</zad:complexType>
</xsd:schema

Figure 35 — Work Station Event Type included in the generic WSDL document

49

3. Workpiece Status Type

Similar to work station status type, the third type is workpiece status type show in

Figure 36, every workpiece has a unique ID and should be identified by the station ID as

well, as the workpiece is moving from work station to another. With time stamp for every

change in the workpiece status. The workpiece status should be in processing — trans-

ferred in — transferred out — paused or no workpiece.

I | WorkpieceStatusType

D'[E Reference : tns:StationId ¢|
D'[E Reference : tns:WorkpieceId ¢|
078 status

| Tvpe [tns:WorkpieceStatusCode |

D‘[EReferenc.e -3 tns:Timest.amp$

<?mml wversion="1.0"72>

<msd:schema xmlns:xsd="http://vwww_.w3_org/2001/XMLSchema™>
“<xsd:complexType name="WorkpieceStatusType">

<x=sd:sequence>
<xnsd:element
<msd:element
<masd:element
<xsd:ielement

</msd:seguence>

</rmad:complexType>

</mad: schema>

ref="tns:StationId" />
ref="tns:WorkpieceId" />
name="Status"

type—"tns:WorkpieceStatusCode" />

ref="tns:Timestamp"/>

Figure 36 — Workpiece Status Type included in the generic WSDL document

4. Workpiece Properties Type

The workpiece properties type is similar to the workpiece status type in the workpiece
ID, the station ID and the time stamp. The different two elements are the work piece
color which is either black or nonblack and the workpiece quality which either ok or de-
fected. Figure 37 shows the workpiece properties type.

|
=AEE) ?7 | @ WorkpiecePropertiesType

D‘[g Reference : tns:StationTd ¢|

D‘[E Reference : tns:WorkpieceId ¢

g F

Twpe | tns:ColorTyvpoe

S ouality |1E|

T wEe | ==s=iPDualitcyTyoe

D—[g Referaence 1 tns i Times tamps é}l

= Zmml wersion—="1._.0"

g

“msd:schema xmlns:xsd="http:z// f www._. w2 . org// 2001/ H¥NMLSchema ">
“—msd:ocomplexTypoe name="WorkpiecePropertiesType">

~—msd: sseguence>>
=mxms=sdselement
<m=sd:elem=ent
“~msd:element
=xsdielement
“<mxms=sd-element

= /Smad:seguence>

ref="tns:StationITd™., >
ref="tns:WorkpieceId"™ >

name="Color" type—"tns:ColorType"/ >
name="Cuality" TtCype——"=xms:CualityTypos"/>
ref="tns: Timestamp ™./ >

</ msdrocomplexTypoe>

=/ mad: schema>|

Figure 37 — Workpiece Properties Type included in the generic WSDL document

50

5. Operator Input Type

The last type has been used in the WSDL document is the operator input type which
shown in Figure 38 . The Operator input type can be manual start — manual stop — manual
reset — alarm clearing — error clearing — warning clearing — blocking cleaning — starving
cleaning. Also every operator should has a unique ID.

Do | .
tH | OperatorInputType D'[E Reference : tns:S5tationId é}

D'[E OperatorInput
Type | tns:fperatorInputCodeType |

D'[ERefezence : tns :'I'i_mestampéa

3 Insync

<?xml version="1.0"2>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XML3chema">
<xsd:complexType name="CperatorInputType">
<xsd:sequence>
<xsd:element ref="tns:StationId"/>
<xsd:element name="OperatorInput" type="tns:CperatorInputCodeType"/>
<zsd:element ref="tns:Timestamp"/>
</xsad:sequence>
</xsd:complexType>
{/xsd:schemaﬂ

Figure 38 — Operator Input Type included in the generic WSDL document

After defining the types from the schema, the different messages can be defined based on

those types. Three different kinds of messages can be defined for the Web-Services using
INICO S1000

* Event messages: these are messages that are sent fromthe S1000 to one or more
PC applications. Typically, these messages will report events such as the completion of a
process, a significant change in a process parameter, or a fault/error/warning condition.
In order to receive a copy of these messages, server application must subscribe to the
S1000, so that an internal list of interested applications can be maintained. The number
of subscribed applications for an event message can be zero, one, or many. [20]

The five events messages have been defined inside the INICO S1000 as shown in Figure
39

51

ALIAS ACTION I
WorkstationStatus hitp:/fwww plantcockpit euffast/festo/FestoStationServiceP Save | Edit Remove
Operatorinput http:,fhwwv.pIantcocl{piteujfast{festofFestoStationServiceF’| Save | Edit Remove
WorkstationEvent http:/fwww plantcockpit euffast/festo/FestoStationServiceP Save | Edit Remove
WorkpieceStatus http:/fwww plantcockpit euffast/festo/FestoStationServiceP Save | Edit Remove
WorkpieceProperties http:/fwww plantcockpit euffast/festo/FestoStationServiceP Save | Edit Remove

Figure 39 — The five event messaged definition inside INICO S1000

* Input messages: these are messages that are sent from the server application to the

S1000. Typically, these messages will convey commands to execute a particular action,

or can also be used to transfer configuration data. They can also be used to request data,

such as the state of a process that is being executed or the value of a measured parameter.

A response message (S1000 =» server application) can be configured, or not depends on

the need of the response. [20]

There is one input request message and one input response message have been defined in

input message section inside the INICO S1000 as shown in Figure 40

INPUT MESSAGES

Transfern

Remaove

ST Program: TransferinProg

Request action: | hitp:ffwww. plantcockpit euffast/feste/FestoStationServiceP Edit bady
Respaonse action: | hitp:ffwww.plantcockpit euffastffeste/FestoStationServiceP Edit bady

Save

Figure 40 — The input message and its response definition inside the INICO S1000

The purpose of this message is to receive the workpiece ID coming from the previous

station to keep tracking the workpiece and add new properties to it.

52

* Output messages: these are messages that are sent from the S1000 to a server appli-
cation. As with input messages, they may or may not use a response message. [20]
There is one output request message and one output response message have been defined

in output message section inside the INICO S1000 as shown in Figure 41

[.‘. LA

TransferinNext Request action: | hitp:/fwww.plantcockpit euffast/festofFestoStationServiceP Edit body
Remove Response action: | hitp/fwww.plantcockpit euffast/festofFestoStationServiceP Edit body

Figure 41 — The output message and its response definition inside the INICO S1000

The purpose of this message is to send the workpiece ID to the next station to continue
processing it

Regarding that every individual message of the previous either event, input or output
messages should contains a XML instance of the previous types we discussed before
For example the WorkStationStatus message should look like the following XML format
showed in Figure 42 inside the WSDL file

<WorkstationStatus xmlns="http://www.plantcockpit.eu/fast/festo">
<Stationld xmlns="http://www.plantcockpit.eu/fast/festo">$WORKSTATION_ID</Stationld>
<Status xmlns="http://www.plantcockpit.cu/fast/festo">§ WORKSTATION STATUS</Status>
<Timestamp xmlns="http://www.plantcockpit.eu/fast/festo">$TIMESTAMP_ WSS</Timestamp>

</WorkstationStatus>

Figure 42 — An example of one of the five event messages

As it is clear every element inside the XML message should have some parameter which
defined inside the ST logic and the global variables of INICO S1000.Many instances can
be generated from this message depends on the values of the inside variables

After all the messages are already defined, those messages will be combined into opera-
tions and can be gathered into so called port type as shown in Figure 43

53

<portType name="FestoStationServicePortType" wse:EventSource="true">

<operation name="TransferIn">

<input message="tns: TransferInMessage"/>

<output message="tns: TransferInResponseMessage"/>
</operation>

<operation name="WorkstationStatus">
<output message="tns:WorkstationStatusMessage"/>
</operation>

<operation name="WorkstationEvent">
<output message="tns: WorkstationEventMessage"/>
</operation>

<operation name="OperatorInput">
<output message="tns:OperatorInputMessage"/>
</operation>

<operation name="WorkpieceStatus">
<output message="tns: WorkpieceStatusMessage"/>
</operation>

<operation name="WorkpieceProperties">
<output message="tns: WorkpiecePropertiesMessage"/>
</operation>

</portType>

Figure 43 — The port type definition included inside the WSDL file

In this port definition we have only one operation called Transferin, however we have
two messages are using the same operation. The first one is input message transfer to the
station itself and the second one is the output message transfer from the station to the next
one.

After defining the port types, the only thing left is to define the binding which is the
protocol used to exchange the messages, which in our case is HTTP

The service can contain many ports. However in our project it contains only one port

Publish subscribe SOAP message exchange pattern mode has been used during the im-
plementation of the project. This because in this project many providers for similar ser-
vices. Thus, it would be easier if there are many clients for those services to subscribe

54

whatever they want, depending on their need. In our case the client is any computer con-
nected to the same network which all the INICO S1000 connected

Downloading the WSDL file on INCO S1000, will enable every INICO of publishing
those services over the network. The server application should subscribe every needed
service from every station over the case study. In designing of the our project, the Web-
Service can be discovered dynamically, it means that any client on the network, has dy-
namic UDDI can subscribe those services from any machine, without any need for know-
ing in advance all the service providers — in our case every machine — to subscribe them.
This concept has been explained in details at the end of the previous chapter.

Sending and receiving SOAP messages between the stations - Web-Ser-
vice programing

The next step after downloading the generic WSDL document on every S1000 to program
the controller itself to use the services included inside document. As it was shown in
designing the WSDL, the core of the services is XML messages which include some pa-
rameters to be shown or subscribed by the service requestor.

As the INICO S1000 device is hardwired to SIMENS PLC for every station, all the sen-
sory information and the PLC control actions can be acquired to the INICO S1000 device.
By defining global variable inside the S1000, those values which already included inside
the XML messages as it was already shown in Figure 42.

This message holds three global variables; SWORKSTATION-ID, SWORKSTATION-
STATUS, and $STIMESTAMP-WSS.Those variables also can be changed from the ST
logic inside the PLC.

For instance in this case, the time stamp should be changed every time by the ST logic
every time for initializing this service. The most important part in the ST logic was to
pass the workpiece ID, workpiece quality and color from station to another.

Every station INICO S1000 already has its own IP. By this mean definition of neigh-
bours(s) of every station can be done inside the global variables of every S1000.

The following commands has been used to send, receive, respond or publish the mes-
sages. [20]

* WS _SEND(msg_alias, destination address): an output message is sent to destina-

tion_address. Any variable data should be set/copied to the corresponding string
variables before this command is invoked.

55

* WS RESPOND(msg alias): aresponse to an input/command message is generated and
sent back. Any variable data should be set/copied to the corresponding string variables
before this command is invoked.

* WS GET RESPONSE(msg alias): Returns a response code according to the status
of the output message transmission.

* WS PUBLISH(msg alias): an event message is generated and sent to every subscribed
a server application. Any variable data should be set/copied to the corresponding string
variables before this command is invoked.

For tracking the workpiece ID from station to another, a certain message exchange logic
has been implemented. As in the very beginning of the process, whenever there is a new
workpiece been fed into the distribution station, a random ID will be assigned to it. In
same time, this ID will be broadcasted to all the stations. Every station has ID buffer or
array composed from eight IDs, as the capacity of the case study is eight pallets.

The ID will be stored in the appropriate place of this software buffer, till the previous
station send to the next station a workpiece output message and confirmed by workpiece
input message. At this time the workpiece ID will move from the current station software
buffer, take the place of the previous ID. The soap message exchange is shown in Figure
44

Testing
Station

Handling
Station

Distribution Processing

Station Station

Robot
Station

Warehouse
Station

Figure 44 — SOAP messages exchange between the station and the monitoring server

56

Monitoring the Web-Services application

There are two different ways can be followed to monitor the Web-Services. The first way

is to access any of the stations INICO S1000 by any PC connected to the same network

.By any known browser.

By accessing the device IP, every INICO S1000 has a user friendly HMI, which enable
the user to see online the changes in every variable included within every service.

Figure 45 shows the different values of the variables inside the INICO S1000 for the

distribution station

INICOs*s

SYSTEMINFO ~ MOMITOR CONFIGURE

VARIAELES

Log [ALTAS VALUE 1

Apps workstation_id "DISTRIBUTION"

1/0 view workstation_status "PROCESSING"

Variables workpiece_status "IN PROCESSING"

Web Services operator_input "START"

Network timestamp_op "a6660"

Statistics timestamp_wse "103950"
timestamp_wss "103950"
timestamp_wps "103950"
timestamp_wpp "g"
timestamp_wsa "80070"
operator_input_value "PRESSED"
workstation_event_type "ARM"
workstation_event_value "LEFT"
workstation_alarm_type "MAGAZINE_ALARM"
workstation_alarm_value "EMPTY"
workpiece_event_type b
workpiece_event_details
workpiece_id g
workpiece_id_out g
transfer_in_response "REJECTED"
workpiece_id_in "12345"
transfer_next_response "ACCEPTED"

neighbour_1 "http://192.168.3.2:80/dpws/ws01"
neighbour_2 "http://192.168.3.3:80/dpws/ws01"
neighbour_3 "http://192.168.3.4:80/dpws/ws01"
neighbour_4 "hittp://192.168.3.5:80/dpws/ws01"
neighbour_5 "http:f/192.168.3.6:80/dpws/ws01"
workpiece_num 0

start_prev false

reset_prev false

stop_prev true

Figure 45 — INICO variables HMI for the distribution station

The Web-Services variables values for every station can be seen in Appendix 2

57

However the previous way to monitor the services need to watch different stations on
different windows of the internet browser. Which is not so practical solution for monitor-

ing.

Another tool was used to monitor all the services from all the stations in the same time,
DPWS explorer, can discover any WSDL document running through any device in the
network. When you run the tool over the server, all the service clients will be discovered
automatically by the tool the same as it is clear in

Figure 46

In this figure, it is clear that every station from the six mentioned stations in our case
study are discovered. Every station has a unique IP, and all of them offer the same services
with different parameters values, as the WSDL document for all the station was generic
from the very beginning. The user should subscribe the services he is interesting to mon-
itor; different services from different stations can be monitored in the same time.
However, whenever the user is not interested in some services to monitor he can still
unsubscribe them from the monitoring window

DPWS

SCAN Devices Found: 6

Tinestanp (long) :

Tinestanp (long) :

< m

StationId (string) :
Status (WorkstationStatusCode) :

WorkstationStatus (WorkstationStatusType)

DISTRIBUTICN

1458810

(22:54:30) EVENT: 192.168.3.1 - (FestoStationService) Wo
WorkstationAlarm (WorkstationAlarmType)

StationId (string) : DISTRIBUTION
AlarnType (string) : MAGAZINE ALARM
Value (string) : EMPTY
Timestanp (long) : 1468820

(22:54:30) EVENT: 192.168.3.1 - (FestoStationService) Wo
WorkstationStatus (WorkstationStatusType)

StationId (string) :

Status (WorkstationStatusCode) :

DISTRIBUTICN

1468820

192. 168.3.2:80)

[active]:

Bufferstation (152.168.3.6) FestoStationService —
DistributionStation (192.168.3.1) :
HandlingStation (192. 168.3.4) [WorkpiecePropertes (evt) Input: WorkpieceStatus
RobotStation (192. 168.3.5) Sfe:z:"p;‘;ﬁm - ouf kpieceStatus
RubbingStation (132. 168.3.3) W::lsm::ﬂm:((sﬂ - s
TestingStation (192.168.3.2) e
WorkpieceStatus (evt)
Transferin
> | H
ul [http:/f |
o Subscriptions
(22:54:20) EVENT: 192.168.3.1 - (FestoStationService) Wo [ENDED]: D ion(192. 168.3.1:60)
i 1 perties [ENDED]: Dis ion(192. 168.3. 1:80)
Workstationhlarn (Workstationhlarmlype) i o e res iy
Stationld (string) : DISTRIBUTION [0 sl
AlarnType (string) : MAGAZINE ALARM ‘ent [ENDED]: D tidy i i e
Value (string) : EMPTY [ENDED]: D& jon(192. 168. 3. 1:80)
Timestamp (long) : 1458810 [started): TestigStation(192. 166.3.2:60)
perties [active]: 92, 168.3.2:80)
(22:54:20) EVENT: 182.168.3.1 - (FestoStationService) Wo [active]: jon(192. 168..3.2:80)
rent [active]: jor(192. 168. 3.2:80)

Figure 46 — DPWS explorer Web-Services monitoring

58

CHS — DESIGN AND IMPLEMENTATION OF THE
EXPERT SYSTEM USING DROOLS SHELL

Artificial intelligence definition, branches and applications

Artificial Intelligence (A.]) is a growing branch of computer science that aims to extract
the human way of thinking and trends of behaviour to comprehend it into a software pro-
gram [22].A detailed definition for the artificial intelligence can be seen as following
A.L is the study of the computations that make the machine able to reason, perceive and
act [23] to perform functions that require intelligence and experience of the human being
[24]. These computation intents to express the people intelligence and senses into math-
ematical forms and logical models [25] .

A lot of branches are originally descended from Artificial Intelligence. Knowledge
presentation and interference, common sense knowledge and reasoning, pattern recogni-
tion, search and logical Al, epistemology, ontology, heuristics and generic programming
.One or more of the previous branches can be involved together to produce one applica-
tion, the most common known applications of the previous branches of A.l.are Games,
search engines, neural and fuzzy networks, speech recognition, image processing and
computer vision and expert systems [26]. Figure 47 shows the most known common ap-
plications of A.I.

Expert

systems

Computer
vision

|mage Search

processing engines

Speech
recognitio
n

Neural

networks

Figure 47 — Some common applications of artificial intelligence

59

Expert system definition and evolution

Expert system is one of the most attracting applications for the Al researchers. Expert
system is a software program that tries to encapsulate the knowledge and experience of a
human expert — in another words — it tries to mimic the knowledge and experience of a
human expert. An expert system is designed to provide reasonable answers when given a
set of conditions about the problem in hand. They are processing the symbolic infor-
mation with non-algorithmic interference [27].

Expert system shell is that software program, which is encoded by a certain programming
language, to contain all the knowledge or the facts that the expert feed to the system before
the system run. Acquire new information from the system, process them and interfere
new facts

Expert system principal appeared for the first time by researchers in the Stanford Heuris-
tic Programming Project. Meanwhile in 1972 a programming language called Prolog in-
vented by the French programmers have a great influence on the expert system technol-
ogy, as the language tends to use first order logic to process the facts with so called rules
form in a declarative form. The drawback of this language that it was not user friendly
interfaced.

With the appearance of the IBM personal computer in the beginning of the nineteen eight-
ies, the software companies started to produce more expert system software shells using
programming languages like Lisp or Prolog to process symbolic facts.

Later there was no need for programming the expert system using very complicated sym-
bolic programming language, as the companies developed their shells to use more plain
text like language. New tools like Guru, Nexpert Object and VP Expert was the first to
develop this kind of plain language. However the expert systems did not involve into the
business operations till 1986, when at this year GSI-TECSI Software Company has intro-
duced a more reliable expert system shell which includes its own knowledge base and use
zero order logic to reason the facts and the premises.

Nowadays a lot of expert shells are used, every shell is different from the other in the way
they can be programmed, and the way for reasoning the information. Some of those shells
that still use till the moments are
¢ Prolog which has its own programming language and needs its own Prolog inter-
preter
e Amazi Prolog which can be programmed by C# and needs C# interpreter
e C(Clips and RT Expert which can be programmed by C++ and needs C++ inter-
preter
e Jess and Drools which can be programmed by Java and needs Java interpreter

60

Components of the expert system

Expert system is including many different main components [31], as it is shown in
Figure 48.

The first component of the expert system is the expert human who has a lot of knowledge
and experience about the system, which is going to be presented by the expert system
software.

The second component is the knowledge base. This data base where all the factual and
heuristic knowledge is stored.

Factual knowledge is the domain knowledge, which can be shared by all the objects with
the same knowledge base domain.

Heuristic knowledge is the knowledge the expert system obtains from its experimental
judgment of different situation. The learning curve of that kind of knowledge is growing
exponentially due to the trend of the system, the heuristic knowledge can assist the expert
to expect the system behaviour in the future, based on similar trends in similar situations
of the system [32] .

One of the most common ways to present either the factual or heuristic knowledge is a
unit presentation. Every unit included within the domain has a list of various properties
That can be static or dynamic. Static properties are fixed values; however dynamic prop-
erties can have different values due to the behaviour of the unit. Also the unit can either
be a parent of a child in the knowledge domain hierarchy, every child unit can inherit
main characters from the parent unit.

For this reason, object oriented programming was a suitable tool to represent the facts
inside the knowledge base as objects, using known object programming languages such
as C++, C# or Java. Moreover some expert system shells support including rules inside
the knowledge base.

Since the facts in the expert system knowledge base are not absolute - in other words —
some facts cannot be sure completely it can happen. Thus expressing the fact in more
accurate expert system will be based on the probability of every fact. One of the most
famous ways used to express the uncertainty of the knowledge is the fuzzy presentation,
which is a direct application of the artificial intelligence.

A knowledge acquisition subsystem will be always needed to collect the information ei-
ther from the expert or from the working memory of the expert system shell

61

Knowledge Working Reasoning
Base I Memory engine

Figure 48 — Expert system components

The third component and the most important component of the expert system shell is the
reasoning engine or the inference engine [32].The reasoning engine is a problem solver,
which solves a certain problem based on a preprogramed problem solving model. It or-
ganises and controls the flow of the solving steps for the problem, and can approach every
problem solution from different solution routes, smart reasoning engine will always try
to optimize between the needed time and the processing power to find a problem solution
route.

More smart way to provide a solution route using fuzzy or probability notations, as the
knowledge itself in most of knowledge presentation data base can be presented on the
probabilities bases, an uncertainty factor will be given for every fact and rule in the
knowledge base. This can finally give many different solutions for the same problem with
different probability values. The most common method the expert system shells use to
drive the accumulated values of the probability of the final goal is Bayesian Belief Net-
work [34].

The reasoning paradigm is formed from different rules. The rules can interact with one
another and with the facts in the knowledge base, either to drive new facts or to find the
final goal. One of the simplest and powerful common ways to present the rule is [F-THEN
presentation. As the expert system acquires data from the system, in case the IF condition
is matching with one of the acquired data from the expert system, it is said that the rule is
fired, the THEN conclusion will be driven as a new fact. A new fact will be stored in the
expert system.

62

All the instantaneous operations and data will be temporary stored in the expert system
working memory. The reasoning engine will add or delete a fact instances from the work-
ing memory during the processing.

Three methods of reasoning are used in an expert system. Forward chaining reasoning,
backward chaining reasoning and hybrid chaining reasoning.

In forward chaining reasoning, the expert system starts with the initial facts, and drives
new facts whenever a rule matches a fact, the Expert system will go through a conse-
quence of rules firing, till finding the answer of a certain goal, it is searching for.

facts data base

Rules data base

Figure 49 — Forward chaining reasoning mechanism

Figure 49 shows an example for the forward chaining reasoning mechanism, in this ex-
ample. When the fact A achieved in the facts data base, that implied to fire the third rule
in the rules data base, to drive a new fact D. The fact D will be stored in the facts data
base again. In the next step when C and D are occurred in same time, the second rule will
be fired. A new fact F will be stored in the facts data base. The reasoning engine will go
through this iteration, till finding the final goal of the rules chaining.

The forward chaining reasoning assumes that all the initial facts are exists and the rules

will be fired one after one till reaching one goal. However the reality is not that ideal, it
can happen that either the initial facts are not exist in the very beginning or the rules will

63

reach to a dead end track. This why another reasoning approach needed in such circum-
stances.

In backward chaining reasoning, the expert system will assume some hypothesis or a main
goal, and then find which rule should be fired to achieve this hypothesis. It will discover
a new other fact needed to reach this main goal. Thus a new sub-goal has been defined
for the search engine, which will search for the rules to fire it. The system will go this
way till find the very initial facts that achieve the main goal. In same time the rule path
already will be known.

To figure out more about the idea of the backward chaining reasoning, Figure 50 shows
an example how the mechanism works.

facts data base

(3

If you want If you want If you want

to get Z to get F to get D. A

and you and you should exist
have B you| have C you | to fire rule

need F need D three

Rules data base

Figure 50 — Backward chaining reasoning mechanism

In the previous example, the expert system starts by defining its main goal. In our case,
the main goal is the first rule conclusion which is Z. The reasoning engine will find out
that the rule that imply Z needs both F and B, when the reasoning engine searches the
facts data base, it will find that B is exist but not F. Thus it will create a new sub-goal,
and will go to the rules data base to search for the rule which should be fired to obtain
this new sub-goal. The reasoning engine will go through those iterations, till find the
initial fact that will fire all the rules consequently to reach the main goal Z.

Both of the forward chaining reasoning and the backward chaining reasoning has ad-

vantages and drawbacks. Forward chaining reasoning is a rule driven track following,
however the backward chaining reasoning is a goal driven track following.

64

Both of the two methods can work faster and more efficient, depending on the givens and
the goals, the nature of the rules triggering events and the user way of thinking.

In case there are a big number of goals to be achieved in the system, in same time, the
initial facts are limited and known. And there are a lot of rules paths which finally will
obtain the same goals; forward chaining reasoning will work faster and efficient in this
case.

However in the opposite case, if the number of goals is limited and the number of the
initial facts are limited. There are definite rule paths to reach every goal; backward chain-
ing reasoning will be faster and more efficient.

From the triggering event point of view, if the triggering of the rule will occur due to the
arrival of a new fact, forward chaining reasoning will be suitable to be used. However in
case of arriving of a query will trigger the rule, backward chaining will be more viable
Finally the user nature of thinking will help to indicate which kind of reasoning is more
suitable; majority of people will spontaneously use forward chaining reasoning to solve
a problem.

Therefore, some expert system shells prefer to use both of forward and backward chaining
reasoning, this called a hybrid reasoning engine. It is more complicated reasoning engine
as it hides another reasoning tasks in behind. To judge which reasoning method will be
used, which is not that easy task. And can waste time in some cases more than saving it
[35].

The applications of expert systems

The applications of the expert systems technology can be wide, depending on the function
needed by the expert system. They can expend from Microsoft word spelling and gram-
mar correcting, to NASA design and assembly expert system to build a space shuttle
The applications are implemented into three different domains. The industrial domain,
the social domain and the commercial and financial domain.

Procedure planning and scheduling expert system

This can be considered one of the most common clusters of the expert systems. It can be
fall also under system analysis cluster, as the expert system to define a set of interacting
goals, try to find an optimum solution to reach the system goals.

Optimising the time, the effort, the distance or combinations of them, could be the goal
of this expert system.

65

The procedure planning and scheduling expert system is more involved in commercial
and social life section. Such as air plans scheduling system or the underground train or
buses advising system.

Process monitoring and control expert system

This cluster of the expert systems mainly used in industrial section. The most important
feature about the process monitoring and control expert system is the real time data anal-
ysis, the real time boundaries in every expert system is different from the other, depending
on the target industry.

The control goal of the expert system should be to prevent the system failure, in addition
of increasing the productivity of the system. The most direct applications of this expert
system can be found in oil refinery, metal mining and steel manufacturing industries.
Those industries are very accurate with high safety factors, which tells that process mon-
itoring and control expert system is very reliable in this field.

Diagnosis and troubleshooting expert system

This expert system is applied either in industrial or social domain. In the industrial field
most probably it will be integrated module for the process monitoring and control expert
system. The expert system will always try to prognosis, diagnosis and solve the system
errors, compromise the performance in case of a device malfunction to obtain hardware
configurability.

However, this application of the expert system was more elite in the social domain. EMY-
CIN Medical expert system can be considered the first successful expert system [36], the
goal of the system was to diagnosis the people disease without a doctor, especially in the
low population areas of the world.

Design and manufacturing expert system

This expert system also located in the industrial field expert systems, used to help the
manufacturing in the product design, starting from the high level conceptual design, ends
with the detailed.

Product assembly expert system

Product assembly expert system can be either considered one form of the previous type
of the design and manufacturing expert system, or an integrated module with it. It is one
of the most important and famous expert system application exists, as it has been used by
the McDeromtt Company starting from 1981 to facilitate the manufacture of semi-custom

66

minicomputers, then most of the computer manufacturing companies used the same tech-
nique. Later, the technique has been implemented in other industries such as modular
home building.

Financial decision making expert system

The financial market is a vigorous client of the financial decision making expert system,
as the nature of the financial system is already build on the probabilities and uncertainties.
The expert system can give many recommendations for people who work in stock or for-
eign exchange market to decide the buying and the selling decisions, for the bankers to
decide the loan giving and for the insurance companies to assess the risk.

Knowledge publishing expert system

This can be considered the most new application of the expert system. The Knowledge
publishing expert system is belonging to the social domain expert systems. The main goal
of this expert system is to recommend and correct the user knowledge. The most famous
expert system from this type is the error correction on the word programs or suggestion
of the words while writing a text on a cell phone.

Advantages of the Expert system

e Speeding up the learning curve for the human, to candidate him or her to an ex-
pert in his domain, the learning factor can be start from 10 to 100 faster than the
normal teaching curve

e Expert system can work around the clock and used by many users in same time

e As the main target of the expert systems is mostly to optimize the solution, they
can save a big amount of money for the big firms, by saving the effort and the
time

e Improving the quality, the performance and the decision making

e Capturing the instantaneous experiences from the system and feeding it to the
knowledge base, that knowledge can be wasted away without existing of an ex-
pert system

¢ Avoiding of the experience losing in case of the human expert left his position
within the firm

e In hazardous working environment, expert system will be obligoutly solution for
the human expert

e Consistency as the final decision of the expert system will be far away from
emotions and other factors like exhaustion for instance

67

Disadvantages of the Expert system

e Decision error probability due to lack of the common human sense in decision
making

e Not fast respond to the unexpected situation as the human expert

e Expert system cannot investigate the original feeding knowledge in the
knowledge base, which can create a wrong decision making

e (Cannot adapt to the environment change, unless the knowledge base changed

e Unlikely to come up with a creative solution

e Most expert systems are menu driven which does not deal very well with ambig-
uous problems [37]

Drools expert system shell

Drools is a business rule management system (BRMS) has been developed by jboss or-
ganisation used to be known as a production rule system. A production rule system orig-
inates from formal grammars where it is described as "an abstract structure that describes
a formal language precisely, i.e., a set of rules that mathematically delineates a (usually
infinite) set of finite-length strings over a (usually finite) alphabet [38].

Business Rule Management Systems (BRMS) build additional value on top of a general
purpose Rule Engine by providing business user focused systems for rule creation, man-
agement, deployment, collaboration, analysis and end user tools. Further adding to this
value is the fast evolving and popular methodology "Business Rules Approach", which is
a helping to formalize the role of Rule Engines in the enterprise.

Drools is a forward chaining interference engine. Use Rete algorithm for pattern matching
The Drools Rete implementation is called ReteOO, signifying that Drools has an en-
hanced and optimized implementation of the Rete algorithm for object oriented systems.
It combines Object Oriented (OO) Paradigm entities with rules in order to let them inter-
act in a transparent way [39].

The following Figure 51 shows the interactivity between object entities and the objects in
Drools are classes written in Java language, the rules are a text like sequence. Every rule
is composed from an IF condition and THEN conclusion. Due to the value of one or more
variables of any object, the rule will be fired. When the rule will be fired the conclusion
part most probably will assign some value to one or more object variable value.

68

(ObjectA) (ObjectR)

public class Applicant {
private String name;
private int age;

}

public class Application {
private Date dateApplied;
private boolean valid;

H

(Rule)

«

rule *Is of valkd age”
when

Applicant(age < 18)

$a : Application()
then

$a.setvalid(false);
end

rule "Applicaton was made this year®
when
$a : Application(dateApplied > "01-)an-2009°)
then
$a.setvalid(false);
end

Figure 51 — Basic interactivity between Objects and Rules

Drools implementation over Apache ServiceMix

In our project, the written rules inside Drools rule engine should be fired based on the
XML messages coming from the services we created in the last chapter. For this task we
will need an enterprise service bus (ESB), An ESB is a software architecture model used
for designing and implementing the interaction and communication between mutually
interacting software applications in service-oriented architecture.

Apache ServiceMix is an open source enterprise service bus has been used in this project
to be the environment that Drools can communicate with XML messages

CXF Camel
NMR NMR
Servicemix NMR 1.2.0 J Camel J ActiveMQ J

Apache Felix Karaf 1.4.0 J

Figure 52 - Apache ServiceMix platform

69

Figure 52 shows the other frameworks that integrated inside Apache ServiceMix

The most important two frameworks for us in this project are Apache Camel and service
Java Business Integration (JBI) layer.

Apache Camel is a rule-based routing and mediation engine which provides a Java object-
based implementation of the Enterprise Integration Patterns using Java DSL, spring XML
DSL or Scala DSL. In our project Apache Camel will act as the gate to communicate with
Drools or the event consumer end point.

The other important framework is Java Business Integration which contains Drools as
one component of it. JBI is a frame using the WSDL message exchange model for system
interoperation, and contains Drools as a reasoning engine for business applications.

The last component that we will deal with in implementation of the project is an even
producer client, to simulate the XML messages coming from the machines, the purpose
of using the client are to save the effort and the time of the process. However, the mes-
sages generated by the client is typically the same we receive from the machines in our
case study

For this task Fiddler software has been, Fiddler can send/receive the XML over HTTP
protocol. The interface of Fiddler client is shown in Figure 53

Parsed |Raw I Scratchpad I Option5|

POST - tp: fflocalhost:8003 | HITRf1.1 -
Request Headers [Upload file...] Help...
User-Agent: Fiddler -~

Host: localhost: 8008
ContentLength: 251

“ F

Request Body
<WaorkPiece xmins="http: ffwww. tut. fiffast/plantcodpit™= -~
<WPID>2=WPID >
=StationID =3 </StationID =
=TimeStamp =2« TimeStamp =
=W PColor =MonBladd< AP Color =
<WPQuality =Defected <fwWPQuality >
=W PStatus =MNoWorkPiece </ WPStatus =
< fnorkPiece =

Figure 53 — Sending XML messages to Apache ServiceMix using Fiddler client

70

Figure 54 shows a flow chart to the implementation mechanism of the Drools rule engine

over Apache ServiceMix.

After launching Apache ServiceMix, it will execute the algorithm included in the pro-

ject.jar

Project Schema

(.xsd file)

JXB schema
compiler

n
(V]
n
n

i

(8]
S
©

&g

Drools

Knowledge

Base

Event Producer Client

Project rules
(.drlfile)

Event Consumer end point

Java file algorithm

Setting up the JAXB xjc schema compiler

Setting up Apache Camel, including all the communication routes
Initializing Drools block over Apache ServiceMix

Setting up the knowledge base/ knowledge session

Compiling the Schema file into Java class

Storing the classes into Drools knowledge base

Converting the incoming XML messages into java objects
Injecting the Java object into Drools working memory

Evaluate all the rules in the received Drools file

Refreshing the session when a new schema or Drools file is received

Drools

Knowledge [Nl 5p Drools Working
Memory

Session

Drools Reasoning engine

Results on ServiceMix Console

Figure 54 — Implementation Mechanism of Drools engine over Apache ServiceMix

71

First the algorithm is initializing and configuring the different frameworks

The first framework that should sit up is the JAXB compiler, the rule of JAXB in our
project is to convert the schema has been done for building the Web-Services schema to
Java classes. This way we will be able to deal with the Web-Services messages as objects
or instances from those classes.

The second task is setting up Apache Camel event consumer communication routes to be
able to receive the XML messages from the events producer

The third task is to launch Drools framework inside Apache ServiceMix and prepare the
knowledge basement and session of the expert system, to be ready of storing the Java
classes whenever it will be converted.

In the beginning, the schema file (project.xsd) should be loaded manually to ServiceMix
deployment folder, and every time a modification or change is happened to it. When the
schema file will be loaded, all the objects will be complied by the JAXB complier to Java
classes and stored in Drools knowledge basement.

Also the rule file (project.drl) should be manually loaded to ServiceMix deployment
folder, in the beginning and every time a modification or change is happened to it. When
the rules file will be loaded, all the rules should be loaded to the rule engine and ready to
execute them, whenever receiving an event matching one condition part of those rules
written inside.

Every time the event producer sends a XML message, the java file should convert them
to Java instances of the classes have been stored in the knowledge basement, and inject
them into Drools working memory crossing by the knowledge session.

When Drools reasoning engine detects a match case between one of those objects and the
condition part in one of the rules, it will fire this rule and show the result on Apache
ServiceMix console.

Finally the algorithm should refresh the working memory, the knowledge basement, the
knowledge session and Drools reasoning engine. Every time either the schema or the rule
file be loaded to Apache Web-Service deployment folder. Please refer to appendix 4 for
reading the Java code that contain the previous algorithm.

72

Programming of the rules based on key production indicators (KPI)

Key production indicators (KPI) are a standard method to measure the performance and
the quality of the production or the process. On other words, evaluation of how much the
organization is successful. Usually success of an organization is defined in terms of
achieving progress to a certain strategic goals. Those goals can be divided into many sub-
goals; every sub-goal can has its own KPIs, this way KPIs can be divided into [39]

¢ Quantitative indicators which can be presented with a number.

¢ Qualitative indicators which can't be presented as a number.

e Leading indicators which can predict the future outcome of a process

e Lagging indicators which present the success or failure post hoc

e Input indicators which measure the amount of resources consumed during the
generation of the outcome

e Process indicators which represent the efficiency or the productivity of the pro-
cess

e Output indicators which reflect the outcome or results of the process activities

e Practical indicators that interface with existing company processes.

¢ Directional indicators specifying whether an organization is getting better or
not.

e Actionable indicators are sufficiently in an organization's control to affect
change.

¢ Financial indicators used in performance measurement and when looking at an
operating index.

A very important point to mention, is that Drools is just an expert system software, it can
be used in many different ways, and it can process many different level of details, depends
on the main concept of design that it was implemented under. Our main concept of design
is to use Drools as an expert system for layer 3 in ISA-95 which is concerning the manu-
facturing operation management.

This point will directly reflect on designing the KPIs of Drools. The same deployment of
Drools can be used in level of ISA-95, in this case, different set of KPIs definition and
rules should be formulated.

In our case study we selected a few of every of the mentioned KPIs, to measure the whole
over performance on the management level. The main point was to proof that we can
program those KPIs with Drools ES. For this reason, one object — the workpiece - in our
Schema has been selected to process its related KPIs.

73

Those KPIs are

number of undefected products from the line

1- Rate of accepted production per hour = hour

number of undefected products from the line

2- Rate of accepted production per target =
pted produ p g target

number of defected products from the line

3- Rate of rejected production =
hour

per hour (scrap)

number of undefected products from the line

4- Rate of rejected production per target =
) p p & target

number of black workpieces from the line

5- Rate of black workpieces per hour = e

number of non black workpieces from the line

6- Rate of nonblack workpieces =
hour

per hour

7- Average undefected product units time per hour =
an hour

number of undefected products from the line in an hour
1

Rate of undefected production per hour

8- Average real product unit cost per hour =
Rate of production per hour X cost of the product unit

9- DPMO (Defects per million opportunities) or PPM (part per million) = expressing the
Rate of rejection per hour 106

uality of the production line =
q Y p Rate of production per hour

10- Profit per unit per hour =
Average real product unit cost per hour — Average cost for producing the product per hour

74

Drools deployment over Apache ServiceMix

The initialization of Drools expert system, after loading the project schema and rule file
(project.xsd and project.drl) is shown in
Figure 55

karaf@root> [Drools] New File Tloaded: Project.dr]
Rule Engine Initialized!
[Drools] New File Tloaded: Project.xsd

Target Per Hour = 500 workPieces Per hour
Cost of one product = 5 euro
Profit of one product = 9 euro
Production = 0 workPieces Per hour
of Rejection = 0 WorkPieces Per hour
of Black workPieces = 0 WorkPieces Per hour
of Non Black WorkPieces = 0 WorkPieces Per hour
Prodution per Target = 0.0 Per hour
Defection per Target = 0.0 Per hour
time of prodution of a Workpiece = No production yet
Production Cost = 0.0 Euro Per hour
Defect ratio = not available

Overall Profit = 0.0 euro

Figure 55 — initialization of Drools expert system

The values of the KPIs are zeros before receiving any XML message from the client, only
the constant values like the cost of the product, the profit of one product and the target
per hour.

Whenever a XML message from Fiddler matches the rule condition, it will be fired as

showing in Figure 56, indicating the main element in the received XML message on
apache ServiceMix console

Recieved Element: fi.tut.fast.plantcockpit.workPiece

WorkPiece ID [2] : Color 1is [BLACK] : Origin Station [4]

Figure 56 — Firing a rule after receiving of XML message from Fiddler client

75

Drools will use internal timer included in the project rule file to show the results of the

KPIs every pre-defined period as it is shown in
Figure 57.

arget Per Hour = 500 WorkPieces Per hour
Cost of one product = 5 euro
Profit of one product = 9 euro
of Production = 48 WorkPieces Per hour
of Rejection = 15 WorkPieces Per hour
of Black WorkPieces = 20 WorkPieces Per hour
of Non Black WorkPieces = 43 WorkPieces Per hour
Prodution per Target = 0.096 Per hour

Defection per Target = 0.03 Per hour

time of prodution of a Workpiece = 75.0 Seconds per work piece

Production Cost = 315.0 Euro Per hour
Defect ratio = 0.3125

overall Profit = 117.0 euro

Figure 57 — Periodic calculations of KPIs

76

CH6 — DISCUSSIONS OF THE RESULTS, CONCLU-
SION AND FUTURE WORK

Discussion of the results

During this thesis work the following points was excessively highlighted. So it would be
a good idea to discuss them to see their direct impact on the project work

ISA-95 model recommendations

From the very beginning of the thesis work, model of ISA-95 standard was the main
skeleton for creating the project concept design. The standard was used basically to divide
the different phases of the project work, understanding the limits of every phase either
from the tasks point of view or from the time domain prospective.

ISA-95 model can be defined as a strategic project plan for most of the automation prem-
ises.

CAMX IPC- 2541 standard

The next standard has been used in an indirect way during the thesis work was CAMX
IPC- 2541. Even CAMX standard meant to be dedicated for generic requirements for
electronic shop floor equipment communication messages, but during this thesis work we
used it as a reference guide to define the communication messages on our case study.

The idea of using CAMX analogy came from the question, why shall we use unknown
new message formatting, if we with little modification to CAMX standard will be unsure
about its results

Web-Service technology

During the thesis work it has been shown that, the Web-Service technology is very suc-
cessful to upgrade the old PLC automation technology, to more flexible and easy to con-

figure from hardware or software prospective.

Also it was proven by the results of chapter four, that it could be one of the best ways to
conduct the industrial information to higher business processing level

77

Object oriented schema

A new concept has been introduced during this thesis work in designing the Web-Service
XML schema, from the point of view of object oriented programming. This methodology
was the main technical core of thesis work, as all the communication on the Web-Service
level was based on this concept.

The project Schema has been designed once in a generic way. Every machine, workpiece
or labourer in the case study was only an instance of these generic objects. That saved a
lot of time and effort in customized programming and downloading the projects on the
different hardware. Also the approach itself eased the communication process.

Moreover the implementation of Drools expert system depended on this analogy between
the XML Schema and the Java language programming. Converting the project Schema
using JAXB to Java objects and store them into Drools knowledge base was a smart way
to save the programming time and effort. The same issue for converting the XML mes-
sages coming from Fiddler client into Java instances to fire the rules.

Another benefit beyond saving the programming time and effort was to guarantee the
compatibility and to support integrity between the Web-Service messages and Drools rea-
soning engine framework.

Business rule management system — Drools BRMS

It is very important to emphasize, that we used Drools during this thesis work in layer 3
of ISA-95 model, Layer 3 of the model concern, manufacturing operation management,
the level of details we need to monitor and process due to the standard recommendations
,should not step outside that domain to the next layer of the ISA-95.

While, the same implementation of Drools can be used in layer 4 of ISA-95 to give more
extensive details about the business process. The main goal of using Drools was not to
establish a prefect manufacturing operation management system, which is transacting
every small action happened in the automation level into a conclusion. But to structure an
expert system able to do that, to proof that Drools is a perfect choice for supporting this
task. In the last chapter of this thesis work it has been shown that Drools BRMS is a very
flexible and strong expert system, which can easily integrated with the Web-Service tech-
nology

During the implementation of the expert system, it was taken into consideration one type

of the objects we have in the project Schema, which is the workpiece, success of analysis
the workpiece messages on the business level can be done.

78

Monitoring the results of the expert system done on the real time — depending that the real
time boundaries here are defined can stretch to hour, which is always less than the re-
sponse of Drools to any received XML from the even producer.

The rules that have been used and the KPIs that have been taken into consideration can
be more complicated and advanced, the design of the system was always putting into
consideration the extendibility and the scalability of the rules without mentioned effort.
By editing the project schema and the project rule file and deploying them into Apache
ServiceMix, will produce more detailed analysis with different sophisticated scenarios.

Generic Web-Service format

The structure of the Web-Services has been done in a generic way, only minor customi-
zation like the machines IP-addresses needed to be modified for every machine. Plus
some different modification related to the process of every machine. However, the Web-
Services have been almost the same. This for saving the time and the effort plus obtaining
the censurability.

Open Source concept of design

During implementation of this thesis work, an open source concept of design was always
been into account.

All the software tools have been used during the thesis were open source software
The following are a brief list of most of the software tools that has been implemented and
the function of every tool

e Notepad++ for editing the WSDL and the XML documents

e Web browser for monitoring the Web-Services variables for every station indi-
vidually

e DPWS explorer — open source customized application implemented by Java to
discover the WSDL files running over the network and subscribe the needed ser-
vices, in order to monitor them

e Fiddler 2 — free HTTP client — to send XML message over HTTP application

protocol — to simulate the Web-Service messages coming from the each machine
in the case study

79

Drools Expert — an open source business rule management system (BRMS) pro-
duced by JBoss, used to analysis the XML messages coming from the Fiddler
client

Apache ServiceMix is an enterprise-class open-source distributed enterprise ser-
vice bus (ESB) and service-oriented architecture (SOA) toolkit. Apache Service-
Mix is a container for Drools Expert. It receives the XML messages from the
Fiddler and executes the Drools rules as a part of it. Shows the results over its
console.

80

Summary of thesis work and Conclusion

The thesis work is offering a detailed methodology for designing and implementing of an
expert system for monitoring and management of web-based industrial applications.

The work has been done in two connected phases; under ISA-95 model recommendations,
the first phase of the thesis work located in level 2 of the model, concerning the manu-
facturing operation control.

The first task in this phase was a non-destructive upgrading of old existing PLC technol-
ogy to web-service technology, by connecting a web-service module to every machine
PLC.

The next task was to design the required web-services for every machine. A generic
schema was designed to be able to be replicated on every machine, for the ease of down-
loading and programing the Web-Services.

The Web-Services were designed based on the object oriented concept, and the commu-
nication events and messages have been formed based on modification of CAMX IPC-
2541 standard.

The second phase is locating in level 3 of ISA-95 model; it is more concerning in the
manufacturing operation management.

The first task in this phase was to integrate the different software tools together, starting
from generating the XML messages on the machine side, passing by converting them to
other format and process them, and finally firing the rules over the BRMS.

The second task was to define the appropriate KPIs for our case and convert them to a
rule form.

All the thesis work has been done under the umbrella of the main objectives and goals of
have been mentioned in the first chapter of thesis, the main columns of the work was

To use known trusted standards either by using ANSI/ISA9S5 standard to define the main
framework of the project or by using CAMX IPC- 2541 standard for developing the de-
tailed structure of the Web-Service. Plus the other W3C standards have been used to write
the XML messages and schema.

Some well-known concepts like object oriented programming has been used from a new

prospective of the Web-Service and the rule engine, to achieve the integrity between the
two platforms.

81

Other new concept was to convert the KPIs to business management rule, which is the
main aim of the expert system to stream the experts into software format.

A generic approach was always used to cover as much as possible from similar cases for
time, effort and cost saving.

And finally all the used software tools were open source to make it easier for everyone to
continue working in the same subject.

82

Future work

On academic side

During the first task of the first phase of the thesis work, the non-destructive upgrading
for the old PLC automated case study to a Web-Service technology was by parallel hard
wiring of every machine PLC inputs and outputs to the Web-Service module. However,
more flexible data communication either by CANopen protocol or Modbus communica-
tion protocols.

The Web-Service hardware module has been used already can communicate by those two
protocols, However still the question about the ability of the old technology to connect
via those protocols is not always viable.

Another point can be done in the future by adding more objects for the XML schema; that
would be very easy task, as from the first place the schema has been designed in a generic
way.

The third point can be enhanced is defining new KPIs, with more complicated formulas
and converting them to rule form. Trying to build more intelligence in the BRMS by
adding new rules to understand the trend of the business process and may recommend
some suggestions. Furthermore, using the same deployment of Drools we discussed in
the chapter 5 in level 4 of ISA-95, level 4 will require more business oriented rules to be
processed as it recommended in ISA-95 model.

The last point can be done in the future work is providing a more handy graphical user

interface for Drools end user, which can be done using Java programming, Drools results
should contain more graphs and charts about the production process.

83

On Personal side

In February 2013, I became one of the founders of NovoGenie project; NovoGenie is an
online expert Platform for entrepreneurs and companies to develop their capabilities for
creativity and innovations. It helps the individuals to focus on their needs to be developed,
get the best out of their talent and time through our personalized informal development
process.

NovoGenie has two main levels of services. The first level is public (B2C) which serves
individuals, teams and coaches. The second level is a professional cloud service for or-
ganization (B2B) functioning as their intranet service and is closed within the organiza-
tion.

On the individual side, it helps the users to interact with other members to build balanced
and dynamic teams matched with the end mission, optimizing team collaboration, espe-
cially innovative teams where the team members come from different locations, organi-
zations or disciplined. NovoGenie helps the teammates to quickly identify their roles in
the team with the least conflict and bring the best of their ideas.

On the B2B side, NovoGenie helps companies to accelerate their business and generate
quality and quantity innovations. It provides more disciplined approach for the manger to
predict the outcomes of the different teams, plan their resources, minimize the risk of
innovation’s investment and motivate their subordinates.

Data Organisation
Base

NovoGenie User interface

HIT lab l ”

experts

Figure 58 — NovoGenie expert platform core
84

The main idea of the NovoGenie expert platform to stream the experiences of the experts
in Carl Jung field in an online from, the smartness in the system come from the reasoning
engine of the software shell which is shown in Figure 58,

The reasoning engine is combination of two branches of artificial intelligent techniques;
the first technique is an expert system which is responsible of verification of the data
coming from the user, converting them into a weighted knowledge, giving to draw a road
path for the user by recommending him/her by the advices and consultations.

The next technique is an cognitive system which should always follow the reaction of the
user with the others inside the site, correct the previous results of the cognitive test

HIT (human information technology) Lab is a Finnish company based in Tampere, re-
sponsible for feeding the platform with the needed experience and science

The project still in the developing phase, the existing platform is Beta version. In the

current time, we are coordinating now with a lot of international companies and Finnish
universities to produce a complete version

85

REFERENCES

[1] K. Darlington, The essence of expert systems, Prentice Hall, 2000.

[2] B. Q. a. H. B. Gooi, “Web-Based SCADA Display Systems (WSDS),”
IEEE TRANSACTIONS ON POWER SYSTEMS, vol. 15, no. MAY 2000, pp. 681-686,
2000.

[3] L c.R.A.GE Fanuc Ameriicas, “Standards for Manufacturing Systems Integration,”
2006.

[4] ANSIL “ISA95.00.03 - Enterprise-Control System and Integration part 3:
Model of Manufacturing Operation Management,” 2005.

[5] S.M. W. Deon Reynders, Practical Industrial DataCommunications —
Best Practice Techniques, IDC Technologies, 2005.

[6] “Plantcockpit - Production Logistics and sustainability cockpit,” 31 8 2012. [Online].
Available: http://plantcockpit.eu/.

[71 G. Rathwell, “ISA-95 Tool for Enterprise Modelling,” I[EEE Conference ,
pp- 113 - 114, 23-23 Nov. 2006.

[8] V.D. Goran Simic, “Building an intelligent system using modern Internet
technologies,”
expert systems with applications - Elsevier Science , pp. 231 - 246, 2003.

[9] J. RobertJ. St. Jacques, “XESS: The XML Expert System Shell,” 2008.

[10] F. D. GmbH, CIROS ADVANCED MECHATRONICS, Germany , 2008.

[11] T. K. R. S.-J. S. S. W. Ueli Wahli, WebSphere Version 6 —
Web Services Handbook Development and Deployment, Germany : IBM, July 2005.

[12] O. Z. Olaf, “Architectural Decisions as Service Realization Methodology in
Model Methodology in Model--Driven SOA Driven Construction,” in 4th
IEEE European Conference on Web Services, Zurich, Switzerland, December 4 — 6,
2006.

[13] S. H. Seungjin Choi, “WS-BPEL Monitoring System,” International Journal
of Web Services Practices, vol. 6, pp. 18-20, 2011.

[14] W3C, “W3C Working Group Note,” 11 February 2004. [Online]. Available:
http://www.w3.org/TR/ws-arch/.

[15] Y. V. R. N. Manan Shah, “AN AUTOMATED END-TO-END MULTI-AGENT
QOS BASED ARCHITECTURE FOR SELECTION OF GEOSPATIAL
WEB SERVICES,” in International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Melbourne,
Australia, 01 September 2012.

[16] J. L. L. -. I. M.Delamer, Factory Information Systems in Electronic Production,
Tampere - Finland : JuvensPrint, 2005.

[17] T. organisation, “The XML Version of the TEI Guidelines —
A Gentle Introduction to XML,” [Online].
Available: http://www.tei-c.org/release/doc/tei-p4-doc/html/SG.html.

86

[18] T. Myer, “A Really Good Introduction to XML,” 24 August 2005. [Online]. Available:
http://www.sitepoint.com/really-good-introduction-xml/.

[19] w3school, “Introduction to XML Schema,” [Online]. Available:
http://www.w3schools.com/schema/schema_intro.asp.

[20] Erik Christensen-Francisco Curbera-Greg Meredith-Sanjiva Weerawarana, “Web
Services Description Language(WSDL) 1.1,” MicroSoft - IBM , 15 March 2001.

[21] M. P. Papazoglou, Web Services: Principles and Technology, Pearson Education
Limited 2008.

[22] N. U. o. L. -E. Curry, “Message-Oriented Middleware,”
John Wiley & Sons, Ltd, Galway, Ireland, 2004.

[23] INICO, S1000 user manual datasheet.

[24] L L f. L. a. P. E. Circuit, “IPC-2541 - Generic Requirements for
Electronics Manufacturing Shop-Floor Equipment Communication
Messages (CAMX),” October 2001 .

[25] W. A. S. George F. Luger, Artificial intelligence - structures and strategies
for complex problem solving, Benjamin/Cummings Pub. Co. (Redwood City, Calif.) ,
1993.

[26] P. H. Winston, Artificial Intelligence, Addison Wesley, 1992.

[27] R. Kurzweil, The age of intelligent machines, MIT Press (Cambridge, Mass.) ,
1990.

[28] R. J. Schalkoff, Artificial Intelligence Engine, McGraw-Hill, 1990.

[29] R. A. Brooks, Intelligence Without Reason, Sydney, Australia: Morgan Kaufmann,
1991.

[30] Y. Kumar, “Research Aspects of Expert System,”
International Journal of Computing & Business Research, 2012.
[31] E. R. &. K. Knight, Artificial Intelligence, McGraw Hill, Second Edition,
1991.
[32] R. A. Frost, Introduction to Knowledge Base Systems, Collins, 1986.

[33] F. v. Harmelen, Meta-level Inference Systems, Pitman & Morgan Kaufmann,
1991.

[34] H. L. D. &. S. E. Dreyfus, Mind over Machine, The Free Press, 1986.

[35] M. Kerber, “Introduction to AL 24 April 2005. [Online]. Available:
http://www.cs.bham.ac.uk/~mmk/Teaching/Al/.

[36] E. H. Shortliffe, Computer-based medical consultations, MYCIN, 1976.

[37] “Teach-ICT,” [Online]. Available: http://www.teach-ict.com/as_a2 ict new/ocr/
A2 G063/334 applications_ict/expert_systems/miniweb/pg9.htm.

[38] J. team, “Drools Expert User Guide,” jboss, [Online]. Available:
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-
docs/html_single/index.html.

[39] airgroup.com.ar, “airgroup.com.ar,” [Online]. Available:
http://wiki.aigroup.com.ar/ci/expert-systems/a-brief-introduction-about-expert-system-
rules-in-drools.

87

APPENDIX 1- XML SCHEMAS FROM CAMX IPC-
2541

EquipmentChangeState

URI: hitp:/iwebstds.ipc.org/2541/EquipmentChangeState xsd
Extands: htip:/webstds.ipc.org/2501/Envelope.xsd (Message Elements)

Graphical Representation:

[0 dateTime o '# currentState # previousStats [- “““ﬂdq
daleTime igiring ! “fstring =rifeg
O‘Equlpmemcnznnosmeﬁ e OEmnslens#

Schema:

=7?xaml wersion = "1.0" encoding = "UTF-8"7=
<xad:echema xmlng:xad = "hbobp://wine . w3 org/ 2001/ XMLEchemna =
«xed:element name = "EguipmentChangefState"s
=xsd i complexType:=
wxad: sequences
cxed:element ref = "Extensione" mindccurs = "0"/=
< /xXed: sequence>
xgd:atbribute name = "dabeTime" use = "required" bype = "xad:dateTime"/=
«xed:attribute name = "currentState" use = "reguired"s
=xed: simpleType:
<xad:restriction base = "sxad:string”=
exed:enumeration value = "0OFF"/=
=xsd:enumeration value = "SETUR"/=
cxgdrenumeration value = "READY-IDLE-STARVED"/ >
exed:enumeration value "READY-IDLE-EBLOCKED" />
=xgdienumeration value = "READY-FROCESSING-ACTIVE"/=
<xad:enumeration value = "READY-FROCESSING-EXECUTING"/»
sxed:enumeration value = "DOWN" /=
< fxwsdirestriction=
«fxad:aimpleTypes
efxed:attributes>
«xsd:attribute name = "previousState" use = "reguired"s
wxad: gimpleTypes
«xed:restriction base = "xed:etring"s
zxsd:enumeration value = "OFF"/=
«xad:enumeracion value "SETUE" /=
exed:enumeration value "READY-IDLE-STARVED" />
exsdenumeration value "READY - IDLE- BLOCKED" / =
cxad;enumeration valus "READY - FROCESSING-ACTIVE" /=
«xed:enumeration value "READY - PROCESSING- EXECUTINGY /=
xed:enumeration value DOWHY =
</xad:restrictions
< /xed: eimpleTypes
=fxsd:aktributes
cxgd:atbribuce name = "eventId® use = "required” type = "sad:atring"/s
</ xed: complexTypes
=/nedielement >
<xad:elament name = "Extensions"/s
< /¥ed:echemas

Figure 59 — Equipment Change State XML schema due to CAMX IPC-2541

88

EquipmentAlarm

URI: hitp:iiwebstds.ipc.orgl2541/EquipmentAlarm.xsd

Extends: hitp://websids ipc.org/2501/Envelope xsd(Message Elements)

Graphical Representation:

[. datoTlmeq‘ I. alam|64 i # alarminstanc oldq (@ 1IzrmT’ppo#
dateTime |string string Pistring
® |aneList] ' ® zonelist j
| gbringlList (stringlist
* EquipmenmlarrnE * E:tensions‘!i
Schema:
=%yml wersion = "1.0" encoding = "UTF-8"%=
< |--Generated by XML Authority. Conforms to wic htbp:/Swww.w3.orgs/2001/XMLSchema--=>
<xad: achema xmlns:xad = "htobp:///wew.wi.org,/ 2001,/ XMLEchema -
«xed:element name = "EquipmentAlarm®s

=xsd s complexTypes
wxed 1 SegUenoe .

zxed:element ref = "Extensione" minOccurs = "0"/=
=/xsd: sequence s
wxad:atcribuce nams = "daceTime" uge = "regquired" Cype = "xad:daceTime"/=
«xgd:attribute name = "alarmId" use = "reguired" type = "wed:string"/=

=xsdiatbribute name "alarmInstanceId" use = "reguired" type = "xsd:string"/»>
cxgd:attribute name = "alamType" use = "regquired"s

«xed: simpleType

zxsdirestriction base = "msd:istring"s
cxad:enumeration value = "PERSONALSAFETY"/
«xed:enumeration value = "BEJUIPMENTSAFETY"/ =
<xsdienumeration value = "ITEMSAFETY"/=>

<xad:enumeration valus = "PARAMETERCONTROLALARM"/ =
e /wed:regtrictions>
=« /xed:simpleType>
o /fuad:accributes
=xed:attribute name = "lanelist" use = "reguired" type
exsd:attribute name = "zoneList" use = "required" bype
</ xad: complexTypex
</xed:element s
=xedelement name = "Extensions"/=
< /wad: echemas

"erringlist" /=
"seringlist" />

Figure 60 — Equipment Alarm XML schema due to CAMX IPC-2541

EquipmentAlarmCleared

hitp:f'webstds.ipc orgf2541/EquipmentAlarmCleared xsd

- Message Elemeants)

Graphical Representation:

- dateTime@ [* alarmlnstanceldq
dateTims =tring

+ EquipmentAlarmCleared % + Extensions 4

Schema:

<?xml wersion = "1.0" encoding = "UTF-8"7>

wxad: achema xmlns:xsd = "hoop: //www. w3 .org/ 2001/ XNMLSchema™»
«xed:element name = "EguipmentflarmCleared" s

=xsd: complexTypes
cxad : seguence s
exed:element ref = "Extensions" mindOccurs = "0"/=
</ xed: seguence >
cxgd:acbcribute nams = "daceTime" use = "regquired" oype = "xad:dateTime"/»
=xed:attribute name = "alarmInstanceld" use = "reguired" type = "xed:etring"/=
=/ x=d: complexType:=
= fxadelement s
exed:element name = "Extensions"/>
</xsd: schema=

Figure 61 — Equipment Alarm Clear XML schema due to CAMX IPC-2541

EquipmentBlocked

URI: hitp:liwebsids.ipc.org/254 1/EquipmentBlocked.xsd

Extends: Jfw i 1 lgpe,xsd (Message Elements)

Graphical Representation:

dateTime
dataTime

+ EquipmentBlocked | %) + Extensions g

Schema:

<?xml version = "1.0" encoding = "UTF-8"7x
<?xml wversion = "1.0" encoding = "UTF-8"7=
=xsd: schema xmlns:xsd = "hbbp: /S Swww. w3 org/ 2001 /XML chema >
«xad:elemnent name = "EquipmentcilarmsCleared”s
<xed: complexTypes
<x5d: sequence>
wxgd:elemnent ref = "Extensions" minOccurs = "0"/=>
< fxed: eequences
=xsdiattribute name = "dateTime" use = "reguired" type = "xsd:daceTime"/=
< Juad: complexTypes
< /xed: element =
zxsd:element name = "Extensions®/=
« fxad: achemas

Figure 62 — Equipment Blocked XML schema due to CAMX IPC-2541

EquipmentUnBlocked

URI: hitp:iiwebstds.ipc.orgf254 1/EquipmentUnBlocked. xsd

Extends: i i 1 lgpe, {Message Elements)

Graphical Representation:

dateTime

+ EquipmentUnBlocked %) + Extensions

A,

£

Schema:

<?xml wersion = "1.0" encoding = "UTF-8"7=
=xed:schema xmlns:xsd = "htbp: //JSwww.wd . org/2001/XMLEchema =
cxad:element name = "EguipmentinBlocked"s
«xed: complexTypes
=x5d: seguences
cxad:element ref = "Extensions® mindcours = "0"/x»
< fxed: eequence:
zxsdiatkribute name = "dateTime" use = "reguired" type = "xsd:dateTime"/=
= fuad comp lerType s
< /xed:element >
zxsd:element name = "Extensions"/>

=fxsd:schema

Figure 63 — Equipment Unblocked XML schema due to CAMX IPC-2541

90

EquipmentStarved

URI: nup:r i rel 2541 i niSiany
Extends: hitpitwebstds ipc grg 250 1/Envelgpe x5d (Message Elemants)
Graphical Representation:
® dateTime
daleTime
+ EquipmentStarved * Emnilﬁh!#

Schema:

«?xml version = "1.0" encoding = “UTF-8%7»
=xgdschema xmlns:xsd = “http:/feew.wl org/2001/XMLEcChema ™ »
cxpdielement name = *BquipmentStarved®s
wxied: complexTypes
xud : pequUence s
ckid:élement refl « "Exténgions” alndedsirg = "0%/>
« /nd = BEqUEnce =
=xpd:actribute name = “dateTime® use = “"required® Lype = “xpd:daceTime®/»
< fxid: complexTypes
< fxed:elemants
expd:element name = "Extensions®/s
=/ wpd : pehema s

Figure 64 — Equipment Starved XML schema due to CAMX IPC-2541

EquipmentUnStarved

URI: hitp:/iwebstds.ipc.org/2541/EquipmentUnStarved xsd
Extends: : i y (Message Elemenis)

Graphical Representation:

dateTime

+ EquipmentUnStarved %) + Extensions o

h

Schema:

«?xml wersion = "1.0" encoding = "UTF-8"7=
«xedischema xmlns:xsd = "htep://www. w3 org/ 2001/ XMLSchema ">
«xad:element name = "BEguipmentinsStarved"s
«xed: complexTypes
=M5d: SegUeEnCe>
«xad:element ref = "Extensiona" minOccurs = "0"/=
< /xed: eeqUEnces
exsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
o /xad: complexTypes
</xed:element >
zxsd:element name = "Extensicns®/»

< fxad: achemas

Figure 65 — Equipment UnStarved XML schema due to CAMX IPC-2541

91

EquipmentError

URI: J i
Extends: hiip.iwebsids ipe org/2501/Envelope xsd (Massage Elemeanis)

e 3

Graphical Representation:

+ EquipmentError * Emmlqmq

Schema:

«Pxml version = *1.0" encoding = *UTF-8"7»
<xgd: schema xmlns:xsd = *heep:)/ Mwene . wd . oog/ 2001/ 3.5 chema ™ >
expd:element name = "EquipmentError®s
«xgd ; complexTypes
<xid ; pequences
oxpdrelement ref = *Extenaione® mimdocura = *0%/»
« fxad: sequences
cxpdrateribute name = "daceTime® use = "réequired® eype = "sedrdateTime*/s
expd:attribute name = "errorld® use = "required® type = "xsd:string®/s
«xpd:atcribute name = "errorinstanceld® use = "required® type = “xsd:strimg®/f»
cxpdattribute name = "lansliat” use = "required” Cype = "xad:atringList"/>
<xXgd:atoribuce name = "romelist® use = "required® cype = "xad:ecringliec®/»
« fxed: complexTypes
o faoid s el emant »
wxmd: glement name « "Exténsicna®/s

= /med : schema >

Figure 66 — Equipment Error XML schema due to CAMX IPC-2541

EquipmentErrorCleared

URI: hitp,//websids.ipc.orgl2541/EquipmeniErrorCleared. xsd

Extends: ¢ i x5d (Message Elements)

Graphical Representation:

clateTime

. dateTime@

* errorlnstanceldq
2fring

%

+ EquipmentErrorCleared 3 + Extensions

Schema:

<?xml version = "1.0" encoding = "UTF-8"%=
cxad:achema sxmlng:xad = "hoop://www . wi . org/2001/¥MLEchema " »
«xed:element name = "EguipmentErrorCleared"s
=xsd: complexType:
<xgd: gequencex
cxed:element ref = "Extensicnse" mindccurs = "0"/=
=/xed: sequences
«<¥gd:attribute name « "dateTime" use « "reguired" Cype « "xad:dateTime"/=
«xed:attribute name = "errorInetanceld" use = "reguired" type = "xed:string"/=
</ xed: complexType=
«/xad: element »
cxed:element name = "Extensicns"/x
«/xed: schemas

Figure 67 — Equipment Error Cleared XML schema due to CAMX IPC-2541

92

EquipmentWarning

URI: hitp:/iwebsids.ipc.org/2541/EquipmentWarning. xsd

Extends: i i 1 lope.xsd (Message Elements)

Graphical Representation:

» d!‘liﬁl‘l‘llq C warningldq [i warningln:urlcildq
dateTime | string string
(o zonnu;tq

* Equlpmemwarnlngi | * Emnsions#

Schema:

<?¥ml wersion = "1.0" encoding = "UTF-8"7x
«xed:echema xmlne:xed = "hetp: [/ /fwww. w3 . org/2001/XMLEchema
<xsd:element name = "EguipmentWarning®=
cxad : pomplexType:s
«¥ed: EegUences
<xgd:element ref = "Extensions" minQcours = "0%/=
</®ed: sequance:
«xed:attribute name
=xed:atbribute name
«xgdiattribute name
«xed:attribute name
=xed:atbribute name
</ xed: complexType:
< fxed:element =
zxgd:element name = "Extensions"/>
= fxad:schemas»

"dateTime" use = "required" type = "xed:dateTime"/=
"warningld" use = "reguired" type = "xsd:string"/>
"warningInatanceld" use = "required" type = "xad:string"/-
"laneList" use "required" type "yed: etringList" />
"zoneList" use "regquired" type "xed:stringlist"/>

Figure 68 — Equipment Warning XML schema due to CAMX IPC-2541

EquipmentWarningCleared

URI: htip:/iwebstds.ipc.org/254 1/EquipmentWarningCleared. xsd

Extends: il w i 1 lppe, {Message Elements)

Graphical Representation:

|' warninglnstanceld%
dataTime atring

+ EquipmentWarningCleared %) + Extensions

e

Schema:

=Pwml wersion = "1.0" encoding = "UTF-8"7»
wxad: achemna xmlng:xad = "hobp:/ Swew . wl . org/ 2001,/ XMLECchema " =
«xed:element name = "EguipmentWarningCleared"s
=xed: complexType:=
wxad: seguences
<¥ed:element ref = "Extensions" mindccure = "0"/)=
< /xed: sequence:
cxgd:accribuce name = "dateTime" use = "required" cype = "xad:daceTime"/»
<xed:attribute name = "warningInstanceld" use = "reguired" type = "xed:string"/=
= /xed: complexType>
< fxad:elemant s
«xed:element name = "Extensions"/=
=/ned: schema=

Figure 69 — Equipment Warning Cleared XML schema due to CAMX IPC-2541

93

EquipmentHeartbeat

URI: hitp://webstds.ipc.org/2541/Hearlbeal. xsd

Extends: hitp\iwebstds.ipc,org/2501/Envelope xsd (Message Elements)

Graphical Representation:

‘0 dateTime@ |0 interval %
clataTime nantegativelnteger

W,

+ E-quipnmn=.~ntHn=.-atrtbn=.-attIE %) + ExtensionsE

Schema:

«%yml wversion = "1.0" encoding = "UTF-8"%=
<xsd: schema xmlne:xed = "http://www.w3.org/2001/5MLEchema” >
<xsdielement name = “"BquipmentHeartbeat's
«xed: complexTypes
<xE5d: seguences
=xgdielement ref - "Bxtensions" minQccurs - "0"/=
< /xed: equences
«xsd:attribute name = "dateTime" use = "reguired" type = "xsd:daceTime"/=
exgdiattribute name = "interval" use = "reguired" type - "xsd:nonNegativeInteger"/»
</ xed: complexType:
</xed:ielement >
exsd:elament name = "Extensions"/=
«/xed: echemax

Figure 70 — Equipment Heart Beat XML schema due to CAMX IPC-2541

Iteminformation

URI: hitp:iwebstds.ipc. org/2541/Iteminformation.xsd

Extends: il ipc, {Message Elements)

Graphical Representation:

® dateTime # jteminstanceld # informationid
dateTime string string
+ Iteminformation + Extensions #

Schema:

<?yml wersion = "1.0" encoding = "UTF-8"7s
<xsd:echema xmlnes:xsd = "http:/Swww.w3 . org/2001/¥MLSchema ™ =
<xsd:element name = "ItemInformation”=
«wxed: complexTypes
<xed: EEQUENCE:>
exsdielement ref - "Bxtensions" mindecurs = "0"/ =
< fxed: eequence s
«xed:attribute name = "dateTime" use = "required" type = "xed:dateTime"/=
exsd:attribute name = "itemInstanceld" use = "required" type = "xsd:string"/>
cxed:attribute name = "informationId" use = "reguired® type = "sad:string"/=
</ xed: complexTypes
< /asd: element >
<xad:element name = "Extengiona"/s
<« /x=d:schema>

Figure 71 — Item Information XML schema due to CAMX IPC-2541

94

ItemTransferln

URI: nttp:iiwebstds.ipc.org/2541/ItemTransferin.xsd

Extends: g ipc,org/2501/Envelope xsd (Message Elements)

Graphical Representation:

® Ianeldq
Etring

dateTime r itemlnstanceldq
dataTime atring

+ ItemTransferInE C + ExtensmnsE

5

Schema:

<?xml wergion = "1.0" encoding = "UTF-8"7=
=xsd: schema »mlns:xsd = "htkep://www. w3 . org/2001/XMLSchema® =
cxadrelement name = "ItenmTransferIn”s
<xed : complexTypes
=x5d: BeQUence>
cxad:element ref = "Extensions" mindccurs = "0"/»
< /xed: eeguence:
=xgd:atbribute name = "dateTime" use = "regquired" type = "xsd:dateTime"/=
cxad:atbribuce name = "itcemInstanceld" use = "required" Cype = "wad:sbring"/s
«xed:attribute name = "laneld" use = "reguired" type = "xed:etring"/»
=/ ned i complexTypes=
< fuad:elemant.
<xed:element name = "Extensions"/>
< /xed: schemas

Figure 72 — Item Transfer in XML schema due to CAMX IPC-2541

ItemTransferQut

URI: nttp://webstds.ipc.org/2541/1tem TransferQut. xsd

Extends: Jw Jipc. {Message Elemants)

Graphical Representation:

& itemlnstanceldq # |aneld
dataTims 2ring ztrin

+ ItemTransferGutE O + ExtensionsE

5

Schema:

<?xml wersion = "1.0" encoding = "UTF-8"7=x
=xedischema xmlns:xsd = "htbp://Swww.w3 . org/2001/ XMLEchema® -
cxgd:element name = "ItemTransferiut®s
«xed: complexTypes
=xed: sequence =
cxad:element ref = "Extensions" mindccurs = "0"/»
< /xed: eequence

=xsdiatbribute name = "dateTime" use = "reguired" type = "xsd:dateTime"/=
cxagd:acbribute name = "icemInstanceId" use = "regquired" cype = "xad:string"/s
<xed:atktribute name = "laneld" uee = "reguired" type = "xed:string"/s

=/ ned: complexTypes
o/ xad: elemnsnt -
zxed:element name = "Extensions"/=
</ned: schemas

Figure 73 — Item TransferOut XML schema due to CAMX IPC-2541

95

Operatorinformation

URI: hifp:! jpc_orgl 1 ratgrinformation xsd

Extends: f ipc.or {Message Elemants)

Graphical Represantation:

r ﬂmﬂmtq r operaterid # nformationid
dateTime string
+ Operatorinfermation * Eutnn:lnm#

Schema:

<Fxml version = "1.0" encoding = *UTF-8*7>
=xpd: achema xmlng:xed = "http:/fewww, w3 . org/2001 MLSchema™
«xpd:element name = "Operatorinformation®s
«<xad: complexType>
<xid ; Baguence:»
«xpdielement ref = "Extensiona” minmdccurs = "0/»
3 £ BeqUenoe =
wxgdraceribute name = “daceTime® use = "required® cype = “xad:daceTime=/»
axpd:ateribute name = "operatorld® use = "required® type = "xpd:string®/ s
«xgd:atkribute name = "informationld® use = *required® bype = "xsd:string®/»
2 xcmd : complexTypes
< /xpd: element >
<xgd:;element name = "Extensions®/>
«fxed; schenax

Figure 74 — Operator information XML schema due to CAMX IPC-2541

WaitingForOperatorAction

URI: nhitp:/iwebstds.ipc.org/254 1/WaitingForOperator Action.xsd

Extends: : i _xsd (Message Elements)

Graphical Representation:

® dateTime = @ description =
dateTime string

* WaitingforOperatorAction %) ¢ Extensions

Schema:

<?xml vergion = "1.0" encoding = "UTF-8"7=x
sxed:echema xmlne:xed = "http://www.w3.org/2001/XMLEchema >
«xsdielement name = "WaitingforlperatorAction"s
wxad: complexTypes
«¥ed: BequUences
zxsdielement ref = "BExtensions® minOccurs = "0%/=
</x8d: sequence:
«xed:attribute name
zxsd:;attribute name
« fxad: complexTypes
< /xed:element>
zxsd:element name = "Extensions®/=
</xed:schemas

"dateTime" use = "reguired" type = "xed:dateTime"/=
"description® use = "required® type = "xsd:string“/>

Figure 75 — Operator Action XML schema due to CAMX IPC-2541

96

APPENDIX 2—- THE RESULTS OF CHAPTER 3

INICO.*

SYSTEMINFO ~ MONITOR CONFIGURE

Log

Apps

1/0 view
Variables
Web Services
Network
Statistics

VARIABLES

!2 [TAS

I

workstation_id
waorkstation_status
workpiece_status

"DISTRIBUTION"
"WAITING FOR A WO"
"IN PROCESSING"

operator_input "START"
timestamp_op "845060"
timestamp_wse "916230"
timestamp_wss "925260"
timestamp_wps "016230"
timestamp_wpp 0"
timestamp_wsa "925260"
operator_input_value "PRESSED"
workstation_event_type "ARM"
workstation_event_value "LEFT"

workstation_alarm_type
waorkstation_alarm_value
workpiece_event_type

"MAGAZINE_ALARM"
"EMPTY"

workpiece_event_detais

workpiece_id "88"
workpiece_id_out 88"
transfer_in_response "REJECTED"
workpiece_id_in "12345"
transfer_next_response "ACCEPTED"

neighbour_1 "http://192.168.3.2:80/dpws/ws01"
neighbour_2 "http://192.168.3.3:80/dpws/ws01"
neighbour_3 "http://192.168.3.4:80/dpws/ws01"
neighbour_4 "http://192.168.3.5:80/dpws/ws01"
neighbour_5 "http://192.168.3.6:80/dpws/ws01"
workpiece_num 0

start_prev false

reset_prev false

stop_prev true

Figure 76 — The values for the distribution station Web-Service monitoring variables

97

INICO«

SYSTEMINFO ~ MONITOR CONFIGURE

VARIABLES

Log ALTAS VALUE |
Apps workstation_id "TESTING"

1/0 view workstation_status "PROCESSING"
Variables warkpiece_status "IN PROCESSING"
) operator_input "START"

Web Services timestamp_op "122110"
Hetwork timestamp_wse "259020"
Statistics timestamp_wss "258720"
timestamp_wps "258720"
timestamp_wpp "258220"
operator_input_value "PRESSED"
warkstation_event_type "PUSH_CYLINDER"
workstation_event_value "RETRACTED"
warkpiece_event_type "COLOR"
workpiece_event_details "BLACK"
warkpiece_id "66"
warkpiece_id_1 "49"
warkpiece_id_2 "2t
workpiece_id_3 "g5"
workpiece_id_4 "69"
warkpiece_id_5 "64"
warkpiece_id_6 "8g"
workpiece_id_7 "g5"
warkpiece_id_8 "66"
warkpiece_id_out "
transfer_in_response "ACCEPTED"
workpiece_id_in "a3"
transfer_next_response "
wp_cl 0
wp_c2 8
start_prev false
reset_prev false
stop_prev true
Figure 77— The values for the testing station Web-Service monitoring variables
II'III:Ol'l' SYSTEMINFO MOMITOR CONFIGURE
Log |ALTAS VALLE 1
Apps voorkstatian_d "HANDLING™
1O viaw viorkstaton_status "PROCESSING”
variables wiorkpiece_stats "IN PROCESSING™
N _c!pzra‘tt:r_i'lput CSTART™
tmestamp_op “48190”
Betwoik trmestarmp_wse “196550"
Statistics Bmestamp_wis "1965507
Hmestamp_wps 1965507
bmMestamp_wpp o
aperater_input_value PRESSED”
workstation_event_type “LIFTER"
waorkstation_event_vale o uer =
workpece_svent_type =
warkpece_event_detais -
vorkpiece_id anT
viorkpiece_id_1 49"
warkpece_d_2 12"
viorkpiece_id 3 as"
workpiece_d_4 69"
worpece d 5000000000 0000000000000
workpiece_d_& “as”
vrkpiece_d_7 -
viorkpece_d_8 -
workpece W owt -
transfar_in_response “WCCEPTED™
workpiece_d_n “a5*
transfer_next_response -
wp_cl g
Wp_c2 3
start_prev felse
reset_prewv false
stop_prev truse

Figure 78 — The values for the handseling station Web-Service monitoring variables

98

INICO««

SYSTEM INFO MONITOR CONFIGURE

Log

Apps

1/0 view
Variables
Web Services
Network
Statistics

VARTABLES

workstation_id "Rubbing"
workstation_status "READY"
workpiece_status "IN PROCESSING"
operator_input "RESET"
timestamp_op "316060"
timestamp_wse "306480"
timestamp_wss "316060"
timestamp_wps "306490"
timestamp_wpp 0"
operator_input_value "PRESSED"
workstation_event_type "RUBBING_MOTOR"
workstation_event_value "up"
workpiece_event_type "
workpiece_event_details "
workpiece_id "64"
workpiece_id_1 49"
workpiece_id_2 "12"
workpiece_id_3 "gg"
workpiece_id_4 "69"
workpiece_id_5 "g4"
workpiece_id_6 "88"
workpiece_id_7 "gg"
workpiece_id_8 "66"
workpiece_id_out "
transfer_in_response "ACCEPTED"
workpiece_id_in "g3"
transfer_next_response

wp_cl 0

wp_c2 5
start_prev false
reset_prev false
stop_prev true

Figure 79 — The values for the rubbing station Web-Service monitoring variables

99

INICO e

SYSTEM INFO

MONITOR

CONFIGURE

Log

HMI

1/0 view
Variables
Web Services
Network
Statistics

VARIABLES

AL TAS

V E

|

workstation_id
workstation_status
warkpiece_status

"ROBOT AND ASSEMB"

"READY"

"IN PROCESSING"

operator_input "RESET"
tmestamp_op "258610"
timestamp_wse "g"
timestamp_wss "258610"
timestamp_wps "154130"
timestamp_wpp "o"
operator_input_value "PRESSED"
waorkstation_event_type "
workstation_event_value
workpiece_event_type "
workpiece_event_details "
workpiece_id "49"
workpiece_id_1 49"
workpiece_id_2 "12"
workpiece_id_3 "g5"
workpiece_id_4 "69"
workpiece_id_5 "64"
workpiece_id_6 "gg"
workpiece_id_7 "g5"
workpiece_id_8 "66"
warkpiece_id_out "
transfer_in_response "ACCEPTED"
workpiece_id_in "g3"

transfer_next_response
neighbour

"http://192.168.3.6:80/dpws/ws01/FestoStationService"

wp_cl
wp_c2
start_prev
reset_prev

0
1
false
false

Figure 80 — The values for the robot and assembly station Web-Service monitoring var-

1ables

100

INICO:*

SYSTEM INFO

WMONTOR

CONFIGURE

Log

Apps

1/0 view
Variables
Web Services
Network

Statistics

VARIABLES

workstation_id "Buffer"
workstation_status "READY"
warkpiece_status "NO_WORKPIECE"
operator_input "START"
timestamp_op "25470"
timestamp_wse "25490"
timestamp_wss "25490"
timestamp_wps gt
timestamp_wpp 0"
operator_input_value "PRESSED"
waorkstation_event_type "BUFFER"
workstation_event_value "EMPTY"
waorkpiece_event_type i
warkpiece_event_details =
workpiece_id Ea
waorkpiece id 1 "4g"
workpiece_id_2 "2"
waorkpiece_id_3 "g5"
warkpiece_id_4 "gg9"
waorkpiece_id_5 64"
warkpiece_id_6 "ag"
workpiece_id_7 "g5"
waorkpiece_id_8 "66"
warkpiece_id_out "
transfer_in_response "ACCEFTED"
workpiece_id_in "g3"

transfer_next_response
neighbour

"http://192,168.3.46:80/dpws/ws01"

wp_cl 0
wp_c2 0
start_prev false
reset_prev false
stop_prev true
storage_counter 0
storage_counter_str "
publish_req "
publish_resp "
no_workpiece_str "NO_WP"
id_str

Figure 81 — The values for the buffer station Web-Service monitoring variables

101

APPENDIX 3 — XML INSTANCES USED FOR SIMU-
LATING THE MACHINES WEB-SERVICES MES-
SAGES

<Labourer xmlns=""http://www.tut.fi/fast/plantcockpit'>
<LabourerID>1234</LabourerID>
<StationID>5678</StationID>
<TimeStamp>46556</TimeStamp>
<LabourerAction>ManualReset</LabourerAction>
</Labourer>

<WorkPiece xmlns=""http://www.tut.fi/fast/plantcockpit'>
<WPID>1</WPID>
<StationID>1</StationID>
<TimeStamp>4</TimeStamp>
<WPColor>NonBlack</WPColor>
<WPQuality>Defected</WPQuality>
<WPStatus>Pause</WPStatus>

</WorkPiece>

<Station xmlIns=""http://www.tut.fi/fast/plantcockpit'>
<StationID>1</StationID>
<TimeStamp>4</TimeStamp>
<StationEvent>Alarm</StationEvent>
<EventSourceComponent>arm</EventSourceComponent>
<StationStatus>Idle</StationStatus>

</Station>

<tns:OperatorInput xmins:tns=""http://www.plantcockpit.eu/fast/festo'>
<tns:Stationld>BU</tns:Stationld>
<tns:Type>STOP_BUTTON</tns: Type>
<tns:Value>anything</tns:Value>
<tns:Timestamp>41256</tns: Timestamp>

</tns:OperatorInput>

<tns:WorkpieceStatus xmins:tns=""http://www.plantcockpit.eu/fast/festo'>
<tns:Stationld>PU</tns:Stationld>
<tns:Workpieceld>8</tns: Workpieceld>
<tns:Status>TRANSFERIN</tns:Status>
<tns:Timestamp>42073</tns: Timestamp>

</tns:WorkpieceStatus>

102

APPENDIX 4 — JAVA CODE USED FOR CHAPTER §

package fi.tut.fast.smx;

import java.io.File;

import java.io.FileFilter;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.StringWriter;

import java.net.MalformedURLException;

import java.net. URL;

import java.util. ArrayList;

import java.util. Arrays;

import java.util. List;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBElement;

import javax.xml.bind.JAXBException;

import javax.xml.bind.JAXBIntrospector;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import javax.xml.namespace.QName;

import org.apache.camel.Exchange;

import org.apache.camel.Processor;

import org.apache.commons.io.IOUtils;

import org.drools.KnowledgeBase;

import org.drools.KnowledgeBaseConfiguration;
import org.drools.KnowledgeBaseFactory;

import org.drools.KnowledgeBaseFactoryService;
import org.drools.builder.KnowledgeBuilder;
import org.drools.builder.KnowledgeBuilderError;
import org.drools.builder.KnowledgeBuilderFactory;
import org.drools.builder.KnowledgeBuilderFactoryService;
import org.drools.builder.ResourceType;

import org.drools.builder.help.KnowledgeBuilderHelper;
import org.drools.conf.EventProcessingOption;
import org.drools.io.ResourceFactory;

import org.drools.io.ResourceFactoryService;
import org.drools.runtime.Channel;

import org.drools.runtime.StatefulKnowledgeSession;
import org.osgi.framework.BundleContext;
import org.xml.sax.InputSource;

import com.sun.tools.xjc.Language;

import com.sun.tools.xjc.Options;

public class DroolsTest implements Processor {

private static final transient Logger logger = Logger.getLogger(DroolsTest.class.getName());// System ID used for compiling
schema types
public static final String JAXBSYSTEM_ID = "DROOLSXSD";
// Constants to define expected file extensions for schema and rules files
public static final String XSD_FILE EXT = "xsd";
public static final String DRL_FILE EXT = "drl";
/I Output Channel Name
public static final String OUTPUT_CHANNEL_NAME = "PC_OUTPUT_CHANNEL";

103

sage());

private StatefulKnowledgeSession ksession;

private Marshaller marshaller;

private Unmarshaller unmarshaller;

private JAXBIntrospector introspector;// For interacting with servicemix private BundleContext context;

/I Shutdown DroolsTest

public void destroy() throws Exception {

logger.info("OSGi Bundle Stopping.");

ksession.dispose();

}

/I Setting up JAXB Schema Compiler Options

private Options getOptions() throws IOException {

/I Configure XJC options

/I Simple Binding for adding XMLRootElement annotations to Elements.
URL bindingUrl = context.getBundle().getResource("/types/binding.xjb");
InputSource bind = new InputSource(ResourceFactory.newUrlResource(bindingUrl).getInputStream());
bind.setSystemId(JAXBSYSTEM _ID);

Options xjcOpts = new Options();
xjcOpts.setSchemalanguage(Language. XMLSCHEMA);
xjcOpts.compatibilityMode = Options. EXTENSION;
xjcOpts.addBindFile(bind);

return xjcOpts;

// Initialize the drools Block
public void init() throws Exception {

System.out.println("Rules Block Started...");
try {
refreshRulesSession();
} catch (JAXBException e) {
System.out.println("Error Parsing Schema. Check logs...\n" + e.getMessage());
logger.log(Level. SEVERE,"Error Parsing Schema. Check logs...\n" + e.getMessage() , ¢);
} catch (Exception e) {
System.out.println("Exception Caught while refreshing rules. Check logs...\n" + e.getMes-

logger.log(Level. SEVERE,"Exception Caught while refreshing rules. Check logs...\n" +

e.getMessage() , €);

1

/I Process an incoming XML message from the HTTP Endpoint
@Override
public void process(Exchange exchange) throws Exception {

// Convert XML to Java object
Object o = unmarshaller.unmarshal(exchange.getn().getBody(InputStream.class));

// Inject the object into the Drools Working Memory
if(o instanceof JAXBElement){
System.out.println("Recieved JAXB Element: " + ((JAXBEle-

ment)o).getDeclaredType().getCanonicalName());

ksession.insert(((JAXBElement)o).getValue());

telse{
System.out.println("Recieved Element: " + o.getClass().getCanonicalName());
ksession.insert(0);

// Evaluate all rules
ksession.fireAllRules();

104

// Send output response
exchange.getOut().setBody(" Accepted.");

// Refresh rules session when new XSD or DRL files are received.
private void refreshRulesSession() throws IOException, JAXBException, Exception {

// Dispose of the old session if it exists.

if(ksession != null){
ksession.dispose();
ksession = null;

// Get all the cached files
List<URL> modelFiles = getCachedFiles(XSD_FILE EXT);
List<URL> rulesFiles = getCachedFilestDRL_FILE EXT);

/I If there is no schema, do nothing.

if(modelFiles.isEmpty()) {
System.out.println("No schemas loaded.");
return;

// If there are no rules, do nothing.

if(rulesFiles.isEmpty()){
System.out.println("No Rules loaded.");
return;

// Loading XSDs with Type Definitions
KnowledgeBuilder builder = KnowledgeBuilderFactory.newKnowledgeBuilder();
List<String> classList = new ArrayList<String>();
for(URL url : modelFiles){

String[] classNames = KnowledgeBuilderHelper.addXsdModel(ResourceFactory.newUrlResource(url),

builder,
getOptions(),

JAXBSYSTEM ID);
classList.addAll(Arrays.asList(classNames));

/I Set Up Knowledge Base
KnowledgeBaseConfiguration kbaseConfig = KnowledgeBaseFactory.newKnowledgeBaseConfiguration();
kbaseConfig.setOption(EventProcessingOption.STREAM);

KnowledgeBase knowledgeBase = KnowledgeBaseFactory.newKnowledgeBase(kbaseConfig);

// Add Rules Definitions Files
for(URL url : rulesFiles){
builder.add(ResourceFactory.newUrlResource(url), ResourceType.DRL);
// Check Errors
for(KnowledgeBuilderError err : builder.getErrors()){
System.err.println(err);

// Set up knowledge session
knowledgeBase.addKnowledgePackages(builder.getKnowledgePackages());
ksession = knowledgeBase.newStatefulKnowledgeSession();

105

/I Get Marshaller, Unmarshaller, and Introspector.

JAXBContext jecontext = KnowledgeBuilderHelper.newJAXBContext(classList.toArray(new String[]{}), knowledgeBase);
introspector = jcontext.create] AXBIntrospector();

Channel: " + obj);

Name(obj);

marshaller = jcontext.createMarshaller();
marshaller.setProperty(Marshaller JAXB_FORMATTED OUTPUT, Boolean. TRUE);
unmarshaller = jcontext.createUnmarshaller();

System.out.println("Rule Engine Initialized!");

// Set up Output Channel to recieve and marshall objects and messages from rules
ksession.registerChannel("PC_OUTPUT CHANNEL", new Channel(){
@Override
public void send(Object obj) {

if(obj instanceof String){
// Simple String
System.out.println("Message Receieved on Output

else{
// Object to be unmarshalled
StringWriter writer = new StringWriter();
QName name = introspector.getElement-

if(name == null){
name = new

QName(obj.getClass().getPackage().getName(),obj.getClass().getSimpleName());

1

try {
marshaller.marshal(new JAX-

BElement(name,obj.getClass(), obj), writer);

System.out.println("Object

Recieved on Output Channel:");

Sys-

tem.out.println(writer.toString());

} catch (JAXBException e) {
logger.log(Level. SEVERE,

"Cannot Unmashall object on Output Channel.", ¢);

s

ksession.fireAllRules();

// Store Schemas and rules in folder

private void cacheFile(Exchange exchange) throws FileNotFoundException, IOException {

1

System.out.println(Arrays.toString(exchange.getIn().getHeaders().keySet().toArray(new String[]{})));
File rulesFile = context.getDataFile(exchange.getIn().getHeader(Exchange.FILE NAME, String.class));
if(rulesFile.exists()){
rulesFile.delete();
}
InputStream filels = exchange.getIn().getBody(InputStream.class);
10Utils.copy(filels, new FileOutputStream(rulesFile));
filels.close();

// Handles new DRL and XSD files dropped into the hot folder
public void newFileDropped(Exchange exchange) {

try {

106

cacheFile(exchange);
} catch (FileNotFoundException el) {
System.out.println("FileNotFoundException caught while caching file. Check logs...\n"+
el.getMessage());
logger.log(Level. SEVERE,"FileNotFoundException caught while caching file. Check
logs...\n" + el.getMessage() , el);
return;
} catch (IOException el) {
System.out.println("IOException caught while caching file. Check logs...\n" + el.getMes-
sage());
logger.log(Level. SEVERE,"IOException caught while caching file. Check logs...\n" +
el.getMessage() , el);

return;
}
System.out.println("[Drools] New File loaded: " + exchange.getln().getHeader(Exchange. FILE NAME,
String.class));
try {
refreshRulesSession();
} catch (JAXBException e) {
System.out.println("Error Parsing Schema. Check logs...\n" + e.getMessage());
logger.log(Level. SEVERE,"Error Parsing Schema. Check logs...\n" + e.getMessage() , ¢);
} catch (Exception e) {
System.out.println("Exception Caught while refreshing rules. Check logs...\n" + e.getMes-
sage());

logger.log(Level. SEVERE,"Exception Caught while refreshing rules. Check logs...\n" +
e.getMessage() , e);
}

// Search cache for files of a certian extension
private List<URL> getCachedFiles(final String ext){
List<URL> files = new ArrayList<URL>();

File dir = context.getDataFile("");

for(File f : dir.listFiles(new FileFilter(){
@Override
public boolean accept(File pathname) {
return pathname.getName().endsWith(ext);

}
I
try{
files.add(f.toURI().toURLY());
}catch(MalformedURLException ex){
logger.log(Level. WARNING, "Ignoring File: ", ex);
}
}
return files;
}
// Clear the file cache
public void clearCachedFiles(Exchange ex){
clearFileCache();
ex.getOut().setBody("CACHE CLEARED.");
}

private void clearFileCache(){
File dir = context.getDataFile("");

for(File f : dir.listFiles(new FileFilter() {
@Override
public boolean accept(File pathname) {

107

return pathname.getName().endsWith(XSD_FILE EXT)
Il pathname.get-

Name().endsWith(DRL _FILE EXT);

INA
f.delete();

public BundleContext getContext() {
return context;

public void setContext(BundleContext context) {
this.context = context;

108

