
	

	

	

	

Sindhuja Ranganathan

Improvements to k-means clustering

Master’s Thesis

Examiner: Professor Tapio Elomaa, TUT
Teemu Heinimaki, TUT

Examiner and topic approved by Faculty Council of the Faculty of Com-
puting and Electrical Engineering

On 14 August 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250164316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i	

	

	

	

Abstract

TAMPERE	UNIVERSITY	OF	TECHNOLOGY	
Master’s	Degree	Program	in	Information	Technology	
Ranganathan,	Sindhuja:	Improvements	to	k-means	clustering	
Master’s	thesis,	42	
November	2013	
Major	Subject:	Software	Systems	
Examiner(s):	Professor	Tapio	Elomaa	
Keywords:	Algorithm,	Computational	Complexity,	Data	mining,	k-means	Clustering,	
Machine	Learning.	

Working with huge amount of data and learning from it by extracting useful infor-
mation is one of the prime challenges of the Internet era. Machine learning algorithms;
provide an automatic and easy way to accomplish such tasks. These algorithms are clas-
sified into supervised, unsupervised, semi-supervised algorithms. Some of the most used
algorithms belong to the class of unsupervised learning as training becomes a challenge
for many practical applications.

Machine learning algorithms for which the classes of input are unknown are called
unsupervised algorithms. The k-means algorithm is one of the simplest and predomi-
nantly used algorithms for unsupervised learning procedure clustering. The k-means
algorithm works grouping similar data based on some measure. The k in k-means de-
the number of such groups available. This study starts from the standard k-means algo-
rithm and goes through some of the algorithmic improvements suggested in the machine
learning and data mining literature. Traditional k-means algorithm is an iterative re-
finement algorithm with an assignment step and an update step. The distances from each
of the clusters centroids are calculated and iteratively refined. The computational com-
plexity of k –means algorithm mainly arises from the distance calculation or the so
nearest –neighbor query.

Certain formulation of the k-means calculations are NP hard. For a dataset with d
dimension and N values the computational complexity is ()kdNO for a single itera-
tion. Some of the k-means clustering procedures take several iterations and still fail to
produce an acceptable clustering error. Several authors have studied different ways of
reducing the complexity of k-means algorithm in the literature. Particularly, this study
focuses mainly on the algorithmic improvements suggested in the related works of
Hamerly and Elkan. These algorithmic improvements are chosen to be studied as they
generic in nature and could be applied for many available datasets. The improved algo-
rithms due to Elkan and Hamerly are applied to various available datasets and their
computation performances are presented.

	

ii	

	

	

	

Preface	

This thesis is submitted in partial fulfillment of the requirements for Master’s degree in
Software Systems. First I would like to thank my professor and supervisor Prof. Tapio
Elomaa for this opportunity to do this thesis as part of my studies at Tampere University
of Technology. I would also like to thank Teemu Heinimaki for his guidance in the
process of writing the thesis. Writing this thesis has been hard but in the phase of writing
I feel I have learned a lot about clustering. I would like to express my gratitude to my
husband, my parents, relatives, friends and almighty for providing such a wonderful
opportunity to study and also for being supportive throughout. I would like to thank my
son Anirudh Gopalan for cooperating with me to complete my degree. Finally I would
like thank my friends in Tampere for their support and cooperation during my studies.

Date: Signature:

iii	

	

	

	

Contents

1. INTRODUCTION .. 1

2. K-MEANS AND ITS VARIANTS ... 4

2.1 CLUSTERING: PRINCIPLE AND METHODS ... 4

2.2 OTHER APPROACHES TO CLUSTERING .. 7

2.3 NAÏVE K-MEANS .. 8

2.4 PARAMETERS FOR K-MEANS ALGORITHM..12

2.5 K-MEANS++ ...13

2.6 EM ALGORITHM ...13

2.7 K-MEDOIDS ..15

2.8 FUZZY K-MEANS CLUSTERING ..17

3. IMPROVEMENTS TO K-MEANS CLUSTERING ...19

3.1 CHALLENGES OF K-MEANS CLUSTERING ...19

3.2 THE BLACKLISTING ALGORITHM ...20

3.2.1 kd-tree ...21

3.3 ACCELERATING K-MEANS USING TRIANGLE INEQUALITY ..22

3.3.1 Triangle Inequality ..23

3.3.2 Application to the algorithm ...23

3.3.3 Use of Lemmas in the algorithm ...25

3.4 MAKING K-MEANS EVEN FASTER...27

4. EXPERIMENT RESULTS ...29

4.1 DATASETS ...29

iv	

	

	

	

4.2 EXPERIMENT ..30

4.2.1 Effect of dimensionality ..31

4.2.2. Effect of change in number of clusters ...33

4.3. DISCUSSION ON EXPERIMENT RESULTS ...38

5. CONCLUSION ...40

6. REFERENCES...41

	

1	

	

	

	

1. Introduction

Analyzing huge amounts of data generated in the social media, Internet and various walks
of life and extracting useful information is a nontrivial task and some parts of machine
learning and data mining are used to automate these tasks.

Machine learning can be classified broadly into two different types namely the in-
ductive learning and deductive learning. In deductive learning theory, learning happens
with existing knowledge and deduces new knowledge from the preexisting knowledge.
Deductive reasoning uses arguments to move from premises which are given and as-
sumed to be true to conclusions which must be true if the premise is true. In inductive
reasoning, rules and patterns are extracted out of sub class of large data sets which can
then be generalized. Inductive reasoning takes examples and generalizes rather than
starting with existing knowledge. In inductive reasoning the premise of an argument is
believed to support the conclusion but do not ensure that it’s true. In general, inductive
logic takes examples of a concept and tries to build the general description of the concept.
Mostly, the examples are described by using attribute- value pair. The other way of rep-
resenting objects in inductive learning is by using relational techniques. The most
common algorithms that are used for Inductive reasoning are the ID3, FOIL and ILP.

In a broader sense, Inductive methods are characterized as search methods over some
hypothesis space constraint by some biases. The hypothesis space are many at times big
and to effectively search them they are limited by relational learners introduce partial
order between the hypotheses and then this ordered space is searched according to the
bias of each inductive method.

Traditional Machine learning approaches use both the inductive and deductive steps.
In the inductive step the model is learnt from the unprocessed data and in the deductive
step the model is applied to predict the behavior of new data.

	

	

2	

	

	

	

	

Due to the random nature and non-availability of a prior information about such data
unsupervised techniques become a natural choice for these data. One of the important
methods in unsupervised learning is clustering. Clustering is defined as partitioning the
set of data points into subsets such that a specific criterion is optimized. Each data point is
assigned to a cluster and the criterion which is to be minimized is the average squared
distance between the data point and its corresponding cluster center.

Clustering is used in mining data, pattern recognition; applications like marketing for
example use it to find customers with similar behavior, biological applications use it to
classify plants and animal features, insurance to identify frauds, earth quake studies to
identify dangerous zones by clustering observed epicenters. A general approach to clus-
tering is to view it as density estimation problem. In density estimation based clustering
probability density function is estimated for the given dataset to search for the regions
that are densely populated. There are several algorithms to solve the problem. Some of
the widely used algorithms are EM algorithm and k-means clustering algorithm.

The k-means algorithms can be viewed as a special case of EM algorithm. The
k-means algorithm is explained elaborately later next chapter. The k-means algorithm
minimizes a distortion function in two steps, first by finding an optimal encoder which
assigns index of the cluster which can be viewed as the expectation step. Then the cluster
centers are optimized which can be seen as the maximization step. The generic EM al-
gorithm finds cluster for the dataset by mixture of Gaussian distributions. The mixture of
Gaussian distribution can be seen as a probabilistic interpretation of the k-means clus-
tering. As explained earlier, the EM algorithm alternates between two steps. In Expecta-
tion step, probability of each data point associated with the cluster is determined. In
Maximization step, parameters of the cluster are altered to maximize the probabilities.

Several other clustering algorithms which are related to the k-means are the geometric
k-center, Euclidean k-medians and other such location based algorithms, and most of
them do not have efficient solution as they are NP-hard. But asymptotically efficient

Deduction	Induction	

Predicted	output	Training	Data	

Model	

Figure	1:	Inductive	and	Deductive	Learning	

3	

	

	

	

approximation of such algorithms exists [1] [2]. Large scale factors make these algo-
rithms impractical. Given such complexity issues, still the attractiveness of the k-means
algorithm stems from the simplicity, convergence properties and its flexibility. Some of
the major drawbacks of the k-means algorithm are its slow speed, its scales poorly for
larger datasets and the solution may converge to a local minimum.

There have been many approaches to work around these issues mentioned above.
Pelleg and Moore in [3] propose a method of geometric reasoning for accelerating
k-means clustering. Pelleg and Moore in [4], Har-Peled in [5] and Kanungo in [6] have
proposed methods to efficiently implement k-means algorithm. Hamerly in [7], Hamerly
and Elkan in [8] have proposed algorithm to deal with the ‘k ‘in k-means and about
learning the number of clusters needed in k-means algorithm. Elkan in [9] discuss about
the speed and limitations related to the speed of the k-means algorithm. Stochastic global
optimization methods like simulated annealing, genetic algorithms have been developed
to solve the problem of initializing methods of k-means clustering. But these techniques
have not been widely accepted. In this thesis, we study the algorithmic improvements to
k-means clustering algorithm particularly the improvements made by Hamerly [7] and
Elkan [9]. The rest of this thesis is organized as follows: In Chapter 2 we review k-means
clustering algorithm in general and its variants. Chapter 3 deals with the methods to
optimize k-means. In particular we focus the work of Charles Elkan, Greg Hamerly. In
Chapter 4 we present an empirical evaluation of the algorithms in Chapter 3.In Chapter 5
we discuss on the speculation about further improvements to k-means clustering.

	

	

	

	

	

	

4	

	

	

	

2. k-means and its variants

This chapter discusses the principle of clustering and various ways of clustering and
about different k-means algorithm and its variants.

2.1 Clustering: Principle and methods

Clustering aims at grouping data points that are close or similar to each other and to
identify such clusters in an unsupervised manner. Figure	 2 illustrates to identify four
clusters and its centers into which the input data is divided.

	

Figure	2:	Clustering	of	data	

 Two well-known methods of clustering are hierarchical clustering and the parti-
tioned clustering. Figure	3 gives the overall view of classifications in clustering methods.
Partitional clustering algorithms find all the clusters simultaneously as a partition of the
data and do not impose any sort of hierarchy. In many practical scenarios, there is an
inherent hierarchy. The clusters have sub classes within them, and the subclasses might in
turn have their own subclasses. Such classifications are hierarchical and they can be
partitioned properly by hierarchical clustering. For example, automobiles form a class

5	

	

	

	

and passenger automobile is a subclass and cars are a subclass of the passenger automo-
bile and various manufacturer of this car can be a subclass of cars. Figure	 4 shows such
an example.

	

Figure	3:	Classifications	of	clustering	

	

Figure	4:	Example	data	for	hierarchical	clustering	

6	

	

	

	

In hierarchical clustering, each data point is assigned a cluster and there is a hierarchy of
clusters which is built at the end of the clustering process. There are two approaches of
hierarchical clustering; agglomerative clustering and divisive clustering. In agglomera-
tive clustering, each data point is a cluster and pair of clusters is merged as it moves up in
hierarchy in bottom-up fashion. In contrast, divisive clustering works in top-down fash-
ion where it starts with one cluster and it is split recursive as it moves towards bottom.
The clusters closer to the leaf are recursively combined to form bigger clusters they then
are further combined recursively to form one final cluster at the top. Some of the
well-known hierarchical methods are single-link method and complete-link method. For
both single link and complete-link method of hierarchical clustering, in the beginning,
each data point is a cluster of its own. Figure	 5 depicts the single-linkage hierarchical
clustering example. Figure	 6 depicts the complete-linkage hierarchical clustering ex-
ample. The clusters are then sequentially combined into larger clusters, until all data point
end up in one cluster. The single-link method is different from the complete-link method
from the perspective of which two elements gets combined. For the single-link method
the nearest-neighbors gets combine and for the complete-link method the far-
thest-neighbors gets combined. In partition clustering, the dataset is divided into clusters,
such that each cluster has at least one data point and each data point has one cluster. The
well-known partitional algorithm is k-means. There are many variants of k-means. So to
avoid confusion, we refer to the original k-means algorithm as naïve k-means.

	

Figure	5:	Dendrogram	obtained	for	Single	linkage	hierarchical	clustering	of	a	random	dataset	with	3	
dimensions	

7	

	

	

	

	

Figure	6:	Dendrogram	obtained	for	complete	linkage	hierarchical	clustering	of	a	random	dataset	with	3	
dimensions	

2.2 Other approaches to clustering

Even though, k-means and extensions to k-means are some of the most popular algo-
rithms for clustering, several other methods of clustering exist. Here in this section they
are briefly stated and relevant publications are listed for deeper and more thorough dis-
cussions of these methods.

The other well-known clustering algorithms can be broadly classified under three
themes they are probabilistic or density based methods, graph theoretic methods and the
information theoretic methods [10]. The Density based methods are attractive due to their
inherent ability to handle arbitrarily shaped clusters. The performance of the density
based algorithms is poorer while handling high-dimensional data. When the data is
high-dimensional the feature space is sparse and the differentiation between high density
regions from low-density regions becomes difficult.

The graph theoretic clustering also known as the spectral clustering, uses weighted
graphs to represent data points as nodes. The edges are weighted by their pair-wise sim-
ilarity. The main idea is to partition the nodes into two subsets A and B such that the cut
size is minimized. The algorithm used initially to solve this problem is the minimum cut
algorithm. Using this algorithm results in imbalanced cluster sizes. The ratio cut and the

8	

	

	

	

normalized cut algorithms improve upon the minimum cut algorithm. More information
on this can be found in [10].

The information theoretic method like the entropy method assumes that the data is
generated by using a mixture model and each cluster is modeled using a semi parametric
probability density. In these methods, the expected entropy of the partitions over the
observed data is minimized. The other popular method is the information bottleneck
method which is a generalization of the rate-distortion theory. This method adopts a lossy
data compression view. When a joint distribution over two random variables is given, this
algorithm compresses one of the variables while retaining the maximum amount of mu-
tual information with respect to the other variable. For example, let us assume we have a
document and let the words be the two variables, the words are clustered first such that
the mutual information with respect to documents is maximally retained, and using the
clustered words, the documents are clustered such that the mutual information between
the clustered words and the clustered documents is maximally retained [10].

2.3 Naïve k-means

Given a set = { , , … , } of N instances and each instance is a vector of d at-
tribute values	 = 〈 , , … , 〉, naïve k-means groups them in to k clusters		 =
{ , = 1, … . , }	. For simplicity, we assume all the attributes have a numerical value i.e.

, ∈ ℝ ∀ , , 1 ≤ ≤ , 1 ≤ ≤ . If we want to find some structure among the in-
stances in S, then one of the unsupervised learning approaches that can be used is to
cluster the instances by ordering. Several approaches exist to perform clustering but
predominantly used algorithm is the naïve k-means algorithm [11].

The algorithm partitions the dataset so that the empirical mean of squared errors
between the data points and the cluster is reduced. This method of minimizing has been
proved to be NP hard. There are three parameters on which the algorithm depends on.
They are cluster initialization, number of clusters, k and a distance metric. Initialization of
clusters is an important parameter because the stability and quality of the final clustering
depends on the initialization of the clusters. Improper initialization methods may lead to
the problem of k-means converging to local minimum. Consider a dataset having k
clusters and k-means is initialized with ′ clusters. If there is at least one center in each
cluster here and if = then the initial centers tend to remain in the same cluster where
it has to be placed. If > then this leads to different clustering which results in in-
stability. If < then there are some clusters without centers and centers does not
move between clusters. There have been several methods for cluster initialization. Most
commonly, the algorithm initializes the clusters by randomly choosing data points from
the dataset before updating and randomly partitioning the dataset. The other commonly

9	

	

	

	

used method is random restart. It is an empirical way where the algorithm is executed
with different number of clusters and the resulting sum of squares is measured. Based on
the measurement the clustering with minimum squared error is selected to avoid the
problem getting stuck with local minimum. One of the recent methods for cluster ini-
tialization is k-means++. A detailed summary of this algorithm is given in Algorithm	1.

Choosing a right value for k had been a critical issue. Wrong choice of k may result to
incorrect clustering that is why k-means algorithm is run with different value of k and the
partitions which are most relevant to the domain are selected. Finally, the choice of metric
plays an important role in naive k-means clustering. The distance metric that is usually
used is Euclidean distance metric to find the distance between the data point and the
cluster centers. Using any other metric other than Euclidean metric may prohibit the
algorithm from converging. Generally metric space is defined as set that has the notion of
distance between the elements in the set. Let = { , , … , }	and = { , , … , }
be vectors in ℝ then, Euclidean distance is defined as, 	 (,) = ‖ − ‖ =
∑ (−) . Some of the well-known modifications of k-means clustering obtained

using various other distance metrics are spherical k-means and k-medoid. Error! Ref-
erence source not found. describes the k-means algorithm. The main steps in the algo-
rithms described in plain English are

1. Select an initial partition with k clusters
2. Generate a new partition by assigning each pattern to its closest

cluster center.
3. Compute new cluster centers.
4. Continue to do steps 2 and 3 until memberships finalize.	

10	

	

	

	

	
	

Input: k (Number of Clusters), X =	{ , … , }(N data points in d dimension), the in-
itial locations of the centers C= .

Output: 	 C

(∈ ℝ, × , ,)

1. while any change location do

 2. 		 ∈ {1 … }

 3. () ← −

 4. end for

 5. 		 ∈ {1 … }	

6. ← ∑ ((() =)())/∑ (() =), (is the indi-
function)

 7. end for

 8. end while

9. return C

Algorithm	1:	Naïve	k-means	

11	

	

	

	

Example: Consider the random data set X of 100 two-dimensional instances	and k =2. On
applying k-means for the dataset, we obtain 2 clusters illustrated in Figure 7 with their
corresponding centers marked with a black “X” which is obtained after few iterations
until which the centers does not move.

	

Figure	7:	Dataset	after	k-means	clustering	

Figure 8, shows how an improper choice of k in k-means would cluster the data points.
The quality of the result obtained in Figure 8 can be improved by using a cluster initial-
izing method k-means++ to initialize the data cluster and then apply k-means.

12	

	

	

	

	

Figure	8:	Result	of	wrong	clustering	due	to	incorrect	value	of	k	

The k-means algorithm is simple and efficient because only point-center distances are
calculated and not point-point distances.	 The running time of a single iteration
is	 (). 	

2.4 Parameters for k-means algorithm

The k-means algorithm needs three different parameters which are defined by the user
namely, the number of clusters k cluster initialization and the distance metric. A correct
choice of k results in better clustering with a smaller number of iterations for the centroids
to converge. But a bad choice of k increases the number of iterations for the centroids to
converge and reduces the performance. Therefore it is not efficient to run the algorithm
for large datasets and with bad choice of k since it requires several iterations. Sometimes
in last few iteration the centroids move little. Since continuing such expensive iterations
reduces the performance drastically, there must be some convergence criteria so that the
iteration stops when the criteria is met.

k-means algorithm typically uses Euclidean distance metric for computing the dis-
tance between data points and the cluster centers. This results in k-means finding spher-
ical or ball-shaped clusters in data. k-means might also use several other distance
measures such as the L1 distance, Itakura-Saito distance or Bergman distance or Ma-

13	

	

	

	

halanobis distance. In case of using Mahalonobis distance metric the clusters become
hyper-ellipsoidal. 	

2.5 k-means++

k-means++ is a method to initialize the number of cluster k which is given as an input to
the k-means algorithm. Since choosing the right value for k in prior is difficult, this al-
gorithm provides a method to find the value for k before proceeding to cluster the data.
More on this algorithm can be found in [12]. The algorithm is presented as Algorithm	2.

	

Inputs: Dataset X(N number of data points in d dimension)

Step 1. Choose one center uniformly at random from the dataset X.

Step 2. Choose another center	 , = ∈ 	with probability ()
∑ ()∈

 where v()
is the shortest distance between the data point x and its closest center which is chosen.

Step 3. Repeat 2 until k centers are chosen.

Step 4. Perform k-means clustering using the k centers as the initial centers.	

Algorithm	2:	k-means++	

2.6 EM Algorithm

It is well known that the k-means algorithm is an instance of Expectation Maximization
(EM) algorithm which is a general algorithm of density estimation. This algorithm is
based on distance. EM algorithm is model based iterative algorithm for solving the
clustering problem where the data is incomplete or considered incomplete. EM algorithm
is an optimization algorithm for constructing statistical models of the data. In this algo-
rithm each and every data instance belongs to each and every cluster with a certain
probability. EM algorithm starts with initial estimates and iterates to find the maximum
likelihood estimates for the parameters. Closely following reference [13] EM algorithm is
shown here in this section.

Given a dataset	{ } the task of assigning a cluster for each instance in the dataset,
is the goal that we aspire for. Let there be data points in the dataset and let us assume
that the number of clusters is k. Let the index of the cluster be modeled as a random
variable = and let its probability be given by a multinomial distribution satisfying

14	

	

	

	

∑ = 1, Such that

= (=), ∀ , = 1,⋯

It is assumed that	 (| =)~ (,) is a Gaussian distribution. denotes the
identity matrix of order	 . The unknown parameters of the model namely the mean	 ,
varianceS = diag , ⋯ and the distribution function are estimated.

θ = , S ,

1 1
(|) (| ,) (|) (| ,)

k k

j
z j

p x p x z p z p x z jq q q q p
= =

= = =å å ,

where z is an unknown hidden variable. The total log likelihood of all data is given by

(,) = log exp −
−
2

The parameter values that maximize the likelihood function (,) are the ones that
are chosen. Here	 denotes the data. This optimization is complicated and to solve this
some of the unknowns are assumed to be known, while estimating the others and vice
versa [13].

For each class, the conditional expectation of = given the data and the parameters

1

(| ,) (|) (| ,)
(| ,)

(|) (| ,)

j j j j
j k

i i i
i

p x z j p z j N x
p z j x

p x N x

q p p m
w q

q p m
=

= = S
= = = =

Så

Since each point contributes to in some proportion, for particular we have

1

(| ,)

(| ,)

j i j j
ij k

i i i i
i

N x

N x

p m
w

p m
=

S
=

Så
.

The optimization algorithm is called EM and has the following steps: Assume we
have some random initial estimates of the means and variances of the

el	 (), S
()

, () . Algorithm	3, describes the EM algorithm.

15	

	

	

	

EM Algorithm

Initialize: means and variances of the model	 (), S
()

, ()

Step 1. Expectation: Using the estimates of parameters	 () = (), S
()

, () ,
compute the estimate of

()
() ()

()

1

(| ,)
(| ,)

(| ,)

t t
j i it t

ij i k
t t
m m m

m

p x z j
p z j x

p x z m

p q
w q

p q
=

=
= = =

=å

Step 2. Maximization: Using estimates of (), update the estimates of the
model parameters

()

(1) 1

()

1

N
t

ij i
t i

j N
t

ij
i

xw
m

w

+ =

=

=
å

å
2

()

(1) 1

()

1

N
t

ij i i
t i

j N
t

ij
i

xw m
s

w

+ =

=

-
=
å

å

(1) ()

1

1 N
t t

i ij
iN

p w+

=

= å
· Step 3. Repeat steps expectation and maximization until the parameter change

gets small enough.

Algorithm	3:	EM	algorithm	

	

2.7 k-medoids

The k-medoids is also a partition algorithm like k-means. The k-medoids algorithm is
briefly described here. For a detailed discussion of the k-medoids algorithm please see
[14] and the references quoted in there. This algorithm clusters data points based on
closest center like the k-means algorithm. Unlike k-means algorithm, which replaces each
center by the mean of points in the cluster, k-medoids replaces each center by the medoids
of points in the cluster. Medoids are defined usually as the centrally located data point of
the cluster. Therefore in k-medoids, the cluster centers are found within the data points

16	

	

	

	

themselves. k-medoids is less affected by noise and other outliers as compared to k-means
clustering [14]. This can be attributed to the cluster formation based on medoids.

The k-medoids algorithm has the same properties as k-means.
o The algorithm always converges and
o It converges at local minimum.

The k-medoids algorithm is shown in Algorithm	4.

	

Algorithm: k-medoids

Inputs: k, number of cluster;	 , number of data points.

Output: Set of k clusters which minimizes the dissimilarity measure of all the
data points to their nearest medoid.

Step 1. Randomly select k data points as initial medoids m.

Step 2. Assign remaining data points to the cluster with closest medoid.

Step 3. Determine new medoid
· For each medoid m and data points x associated to that medoid

swap m and x and find the distance between the remaining data
points and data points associated to the medoid. Select that data
point with minimum distance as new medoid.

Step 4. Repeat steps 2 and 3 until there is no change in the assignment.

Algorithm	4:	k-medoids	

 Some of the key disadvantages of k-medoids algorithm are,

· The value of k is required in advance,
· k-medoids is not efficient.

17	

	

	

	

2.8 Fuzzy k-means clustering

The traditional k-means clustering algorithm suffers from serious drawbacks like diffi-
culty in finding the correct method for the cluster initialization, making a correct choice
of number of clusters (k). Moreover k-means is not efficient for overlapped data set.
There have been many methods and techniques proposed to address these drawbacks of
k-means. Fuzzy k-means is one of the algorithms which provide better result than
k-means for overlapped dataset.

Fuzzy k-means was introduced by Bezdek [15].The fuzzy k-means algorithm is also
called fuzzy c-means. Unlike naive k-means which assigns each data point completely
belonging to one cluster, in fuzzy c-means each data point has the probability of be-
longing to a cluster. This allows data point of data set X to be a part of all centers of set C.
For example, points on the edges of the clusters might belong to a cluster with lesser
degree than those data points belonging to the same cluster at its center. This algorithm is
mainly used for datasets in which the data points are between the centers. The algorithm
works on the objective to minimize the following function,

(,) = ∑ ∑ |	 − | .

Here m is any real number greater than 1. , is the degree of membership of data
point 	to the cluster center	 with the limitation that ≥ 0	and ∑ = 1	 ∀ .
Iterative procedure of optimizing the objective function (,) by updating the degree
of membership of the data point to the center 	 and the cluster center 	results in
the clustering of the data.

=
∑ | − |

∑ − |

=
∑ .
∑

As the value of m increases the algorithm becomes fuzzy. At m around 1 the sharing
centers among data points becomes less and it behaves like standard k-means [15]. For
example consider a one dimensional dataset as depicted in Figure	9.

	

Figure	9:	Input	mono-dimensional	data

18	

	

	

	

We could find two clusters A and B based on the data points associations. On ap-
plying k-means to the above dataset, each data point is associated to the centroid close to
it as depicted in Figure	10.

	

Figure	10:	Clustered	using	k-means

If fuzzy k-means clustering approach is used on the dataset, the data point does not
exclusively belong to a cluster instead it is in the middle way.	There is a smoother line to
indicate that every data point may belong to more than one cluster as in Figure	11. More
information on this example can be found in [16].

	

Figure	11:	Clustered	using	fuzzy	k-means

19	

	

	

	

3. Improvements to k-means clustering

3.1 Challenges of k-means clustering

Naïve k-means algorithm suffers from the problems that were discussed in the previous
section. One of the main disadvantages is the high time complexity. In any distance based
clustering approaches like k-means, all data points or existing cluster are inspected in the
same manner irrespective of their distance in order to make a decision over clustering.
This scanning of all data points or the clusters does not have linear time scalability and it
fails for big datasets. The k-means is inherently slow because k-means clustering algo-
rithm takes () for single iteration. Thus algorithm becomes impossible to be used
for large datasets as it would take several iterations. Distance calculations are one of the
reasons which make the algorithm slow. Determining the number of clusters in advance
has been a challenge in k-means. Increasing the value of k reduces error resulting in
clustering. The error is the sum of the squared Euclidean distances from data points to the
cluster centers of the partitions to which data points belong. In extreme case there is a
possibility of zero error if clustering is performed by considering each data point as its
own cluster. Usually value of k is chosen by mostly assumptions, prior knowledge.

There have been several methods proposed to determine the value of k or overcome
the disadvantages related to the choice of k value. Bischof [17] tried to solve the selection
of the k parameter by formulating the problem as a model selection problem using the
minimum description length (MDL) framework. The algorithm starts from a large value
of k and removes centers whenever that choice reduces the description length. Pelleg and
Moore [3] used information theoretic criterion like the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) to choose the value of k. The algo-
rithm searches over many values of k and scores each clustering model using the BIC. In
[18] Steinbach and other authors propose combining agglomerative clustering with
k-means to get the best of both worlds. This method is called the bisecting k-means
technique. In this method, initially there is a single cluster which is assumed to be en-
compassing all the data points and then this cluster is split until there is a cluster for each
data point. The process of split can also be stopped at any time by defining a termination
criterion for the bisection process.

Several researchers have been looking the k-means clustering problem and there have
been many approaches to accelerate k-means. As a result several elegant and simple
methods have been introduced towards scalability and reducing time complexity of
k-means algorithm. Some of the notable works that this thesis is based on are the algo-
rithms proposed by Pelleg and Moore in [4], Hamerly in [7] and Elkan in [9]. Pelleg and

20	

	

	

	

Moore [3] have proposed a method called X-means. The idea of this method is to split the
some centroids into two when a fit to the data is achieved. The decision over the split is
based on Bayesian Information Criterion (BIC). To accelerate k-means with large date
sets X-means caches information which remains unchanged over iterations. X-means
algorithm has been proved to be more efficient than k-means in [3].This method is not
without any disadvantage. BIC based on which the split is made chooses too many cen-
troids when data is not strictly spherical.

Gaussian-means algorithm proposed by Hamerly and Elkan in [8] aims to determine
the number of clusters. The idea behind this algorithm is to split the clusters into two. The
decision to split the center is based on a statistical test. If not the center is split. Experi-
mental results have demonstrated this algorithm to be more efficient than X-means by
determining correct number of clusters and also the location of its center. Gaussi-
an-means does not require any other parameter as input except the significance level of
the statistical test. In this thesis we are not dealing with the intricate details of determining
the number of clusters in k-means. More information on this can be found in reference
[8].

Pelleg and Moore [4] used geometric reasoning to accelerate k-means clustering. In
this work they use the mrkd-tree data structure which is a special type of kd-tree to store
the centers of the clusters and hence the savings achieved will be a function of the clusters
and not the number of points or data in the dataset. Kanungo in [6], use kd-tree based
‘filtering’ where the points which are further away from the centers are ‘filtered out’ and
only the nearest neighbor are clustered together. Elkan in [7] propose an algorithm to
avoid distance calculations by using one lower bound thereby avoiding inner loop of
k-means. In [9] the author uses triangle inequality to avoid the distance calculations
between the point and the center. In Chapter 3 we concentrate in the work contributed by
Elkan, Hamerly, Pelleg and Moore to accelerate k-means.

3.2 The Blacklisting Algorithm

Several methods have been proposed to find the nearest center of the data point in
k-means. One of the methods is to organize the data points into trees. This approach is to
update the cluster in groups or bulk instead of updating it point by point. The data points
in the group or bulk belong to the hyper-rectangle in the kd-tree by nature. To make sure
of the correctness of those groupings, we need to make sure that all the points in a given
hyper-rectangle belong to a specific center before the sufficient statistics are added to the
kd-node. According to Pelleg and Moore [4], this gives rise to the idea of owner. In this
algorithm, we find those centers that will never be the owner of the hyper plane h. If c has
been identified that it will never become the owner then it eliminates the need to check c

21	

	

	

	

for the descendants of the hyper-rectangle h. The hyper-rectangles are the decision re-
gions for cluster. Hence it is named blacklisting algorithm.

Each and every node of the kd-tree stores a set of statistics and “any point associated
to the node should have c (center) as its neighbor” as stated in [4]. This eliminates the
need to perform certain arithmetic operations to update the centroids of the cluster, since
they are pruned. This increases the speed of the algorithm drastically. Before proceeding
to the algorithm in detail, we need to know some theorems, definitions and basics of
kd-tree for better understanding which is detailed in [4].

3.2.1 kd-tree

The kd-tree is a data structure to store finite set of data points from a d-dimensional space.
It has following characteristics: It is a binary tree. The node is split along a plane into two
parts, left subtree and right subtree. The sub trees are split recursively until a leaf is ob-
tained. There are many variants of kd-tree based on the splitting plane. The type of kd-tree
used in blacklisting algorithm is mrkd-tree where, the region of node is rectangles or
hyper-rectangles with two vectors 	ℎ , 	ℎ . The root node represented by hy-
per-rectangle contains all the data points in the set. Each node contains information about
all the other nodes in the hyper-rectangle h. The statistics that are stored are number of
other nodes in the hyper-rectangle, center of the mass and sum of Euclidean norms of the
points in the hyper-rectangle. See [19] for more information on kd-tree.	

Definition 1:	 Given a set of centers C and a hyper-rectangle h, we define by
() a center ∈ such that any point in h is closer to c than to any other

center in C, if such a center exists [4].

Theorem 1: Let C be a set of centers, and h a hyper-rectangle. Let ∈
be	 (). Then, (,) = (,) .	Here, (,) is the distance be-
tween the hyper-rectangle and the center	 [4].

According to this theorem the center which influences the hyper-rectangle is closest
to the hyper-rectangle. If there is more than one center in the hyper-rectangle then the one
with shortest distance to the hyper-rectangle ℎ is the owner. If both the centers share
minimal distance to ℎ then no unique owner exits. So this results in splitting of nodes to
find unique owner among the descendants. The following definition defines the owner in
case of two centers in a hyper-rectangle.

Definition 2: Given a hyper-rectangle 	 , and two centers 	 and 	 such that
(,) 	< 	 (,), we say that 	dominates with respect to h if every point

in	 	is closer to 	than it is to	 [4].

22	

	

	

	

Lemma 1:	Given two centers 	, and a hyper-rectangle such that (,) 	<
	 (,), the decision problem "does 	dominate	 with respect to	 ?" can be
answered in () time, where d represents the dimensionality of the dataset [4].

Step 1. All the centers are assigned to the root node.

Step 2. Find the center 		which is closest to the hyper-rectangle	ℎ. Using Theo-
rem1 and Lemma 1, center 	 	of the node is checked if it influences the hy-
per-rectangle	ℎ.

Step 3. Using Lemma 1, verify if the center	 	dominates all other centers.

Step 4. If step 3 is satisfied, assign all the data points in that hyper-rectangle to the
center	 .	Update the statistics of the node.

Step 5. If step 3 is not satisfied then, the center	 ,	centers dominated by	 	and the
auxiliary centers are moved down the tree to the child nodes.

Step 6. Repeat step 2 to step 5 for the child nodes until there is only one center
which is the owner. Update the statistics of the node.

Algorithm	5:	Blacklisting	algorithm	

Algorithm	5 has been proved to be efficient if the dimensions of the data are within a
specific range [4]. If the dimensions increase after a particular value then this method
becomes slow. Threshold dimension for blacklisting algorithm is reported as 8.The rea-
son behind that is, as number of dimensions increase distances between data points and
centers increase. Therefore, there is little filtering of centers. There are many other dis-
advantages like constructing a kd-tree non-linear data structure increase the memory cost
and updating the data set to reflect the changes in data set is expensive.

3.3 Accelerating k-means using triangle inequality

The inefficiency of traditional k-means algorithm stems from the fact that k-means do
not pass information from an iteration of the algorithm to another. As stated by Kanun-
go in [6] the centers of the clusters do not change for most of the clusters. Using this
information coherently would improve the efficiency of the algorithm. Elkan’s [9] pro-
posed an algorithm, which uses these findings to avoid unnecessary distance calcula-
tions between data point and those cluster centers, which are far away from each other
in the k-means algorithm, using triangle inequality. The decrease in computations is
achieved by avoiding redundant distance calculations. The reduction in distance calcu-

23	

	

	

	

lation is achieved by avoiding distance calculation to the points which are further away
from the center of the cluster. Conversely, if a point is closer to the center than any oth-
er point then calculating the distance can be avoided. The intuitive idea behind the sav-
ings in calculation is explained with triangle inequality. The proposed algorithm satis-
fies the following properties

· It can be used with any initialization methods,
· Result of this algorithm is same as the standard k–means algorithm with

improved efficiency and it can be used with any distance metric.

Before explaining the algorithm, the concept of triangle inequality which is used in
this version of the k-means algorithm due to Elkan [9] is briefly shown below.

3.3.1 Triangle Inequality

According to the triangle inequality, for any 3 points , , .
(,) ≤ (,) + (,) where, d(.,.) is the distance metric between any two

points	 , , ∈ ℝ .

3.3.2 Application to the algorithm

Consider x to be a data point. Let y and z be the centers. Data point x can be assigned to
any of these centers based on its distance calculation. Consider	 (,) ≥ (,), then
distance calculation between the point x and center z can be avoided since it is far away
or almost the same as the distance between x and y.

 Following two lemmas are needed to derive lower bounds from the triangle ine-
quality to avoid unnecessary distance calculations as triangle inequality gives only up-
per bounds.

	

x	

y	

z	

24	

	

	

	

Lemma 2

If x is a data point and y, z are the centers and (,) ≥ 2 ∗ (,) then,
(,) ≥ (,)

Proof
According to triangle inequality

(,) ≤ (,) + (,).

Therefore, (,) − (,) ≤ (,)
(,) − (,) ≥ 2 ∗ (,) − (,) = (,)

Hence, (,) ≤ (,). Figure	12 explains Lemma 2.

	

Figure	12:	Pictorial	representation	of	Lemma	2

Lemma 3
Consider x is a data point. y, z are the centers then, (,) ≥ {0, (,) −

(,)}

Proof

(,) ≤ (,) + (,).

So,

	 (,) ≥ (,) − (,).

Moreover, (,) ≥ 0. Figure	13 explains Lemma 3.

25	

	

	

	

	

Figure	13:	Pictorial	representation	of	Lemma	3

3.3.3 Use of Lemmas in the algorithm

Use of Lemma 2: Let x be a data point, and z is the center to which it is assigned to.
Let ′ be the other center. According to the Lemma 1, (, ′) ≥ 2 ∗ (,) then,

(, ′) ≥ (,). Hence, the distance (, ′) can be avoided.

Use of Lemma 3:
Let be the data point, be some center and ′ be the previous version of

the same center. If in the previous iteration, we know a lower bound ′ such that dis-
tance (,) ≥ ′ from lemma 3 the lower bound for the current iteration is,

(,) ≥ {0, (, ′) − (, ′)} which means,

(,) ≥ {0, − (,)} = 1

26	

	

	

	

Step 1. Initialize all center distances and find the minimum distance calculation
per center in order to apply Lemma 2 which means for all centers 	and	 ′. Find the
distance (, ′)	and for each center	 , find () = 0.5 (,) .

Step 2. Remove those points which cannot change their center according to
Lemma 2 which means that those data points whose distance between it and to its
closest center(upper bound value) is less or equal to	 { ()} (distance from center
of 	 to its other closest center).

Step 3. The remaining data points are candidates for cluster reassignment.

• Take into account only centers into which is not currently assigned to i.e.
≠ ().

• Upper bound ()	of distance to own center	 ()	is strictly larger than the
lower bound on the distance between 	and	 .i.e.	 () 	> (,).

• The condition derived from Lemma 2 holds for 	 	 and 	 such that
() 	> ((),).

Step 3a. Let	 () be a Boolean indicator indicating whether () (upper
bound of) is out-of-date. If it is true, then the distance between 	and its own cen-
ter needs to be recomputed. Otherwise the distance is simply set to its upper bound
value.

Step 3b. If ≠ () or 	 () 	> (,) holds, we compute the distance
(,)	 between 	and	 . Reassign 	to center 	if it closer to	 	than its previous

center	 ().

Step 4. Compute the mean	 ()of points assigned to center .

Step 5.Update lower bounds according to Lemma 3.

Step 6. Update the upper bound 	 () to reflect the change in the
mean	 ()value. Now set () to be true to indicate that	 () has changed and
needs to be recomputed.

Step 7. Finally, replace by the mean	 ()computed in step 4.

Algorithm	6:	Elkan’s	Algorithm	on	k-means	using	triangle	inequality	

	

27	

	

	

	

Algorithm	 6 is made efficient from the start by making the upper and lower bound
tight which means that the whenever a center	 is found close to a data point , then it
is assigned to that center. This assignment is repeated until the upper and lower bound is
exact for each and every data point. This assignment requires many distance calcula-
tions. There can also be another method of upper and lower bound assignment by start-
ing from an arbitrary center and proceed with the algorithm but in the later stages it
leads to the many distance calculations.

3.4 Making k-means even faster

This algorithm was proposed by Hamerly. He had proposed an algorithm [7] which
produces the same result as k-means which is much faster than k-means. Like the pre-
viously discussed Elkan’s algorithm [9], it avoids unnecessary distance calculations by
using triangle inequality and distance bounds. This algorithm is simpler and faster than
the Elkan's algorithm. Hamerly’s algorithm avoids the inner loop which is the loop that
iterates over the k centers and it does not maintain the distance between the data point
and second closest center which is called as lower bound as maintained in Elkan's algo-
rithm. This reduces the time complexity of the algorithm thereby making the algorithm
fast. This algorithm is fast for the data sets with low dimensions.

The parameters used in the algorithm are described below,
()- cluster center (where	1 ≤ ≤)
()- data point i

b(j)- Distance from	 () to its closest other center
′()- vector sum of all points in cluster

()- distance between () and its assigned center (())

()- distance between	 () and its second closest center
()- index of the center to which () is assigned

28	

	

	

	

Step 4 of the Algorithm	 7 is the major difference between Elkan's algorithm and
Hamerly's algorithm. The inner loop of this algorithm finds the distance between the
point and center except for the assigned center. It does not perform the check against
lower bounds for each center to find if the distance calculation between the point and
center is necessary or not like Elkan’s algorithm. The inner loop is avoided by making
sure that the condition in step 3 is greater than	 () by performing first bound test and
second bound test. These two test checks for the same condition twice. So, this algo-
rithm has more possibility to avoid inner loops. This makes the algorithm fast.

	

	

	

	

	

	

Step 1. Initialize , , , ', , ,c x q c ub lb a .

Step 2. Update b: For each center find the minimum of the distance between it-
self and the closest other center.

Step 3. For each data point, find the t, which is the maximum of its lower bound
and the half (b). ← max	(() /2, ())

Step 4. First bound test: If the t value is less than upper bound of the data point
then tighten the upper bound with that center that is, () ← ((), (())and
also compute the inner loop by finding the distance between the data point

()		and all the centers to find the correct one. If the value of t is greater than the
upper bound he inner loop is avoided

Step 5. Second bound test: Again check if	 < (). If true then find distance
between the data point () and all the centers.

Step 6. Based on the number of data points assigned the center and the distance
the center has moved, move the center.

Step 7. Update the lower and upper bound as the centers move.

Algorithm	7:	Hamerly's	algorithm	

29	

	

	

	

4. Experiment Results

This chapter discusses the results generated by running accelerating algorithms as de-
scribed in the Chapter 3. The experiments are performed to compare the time consump-
tion of the following algorithms: naïve -means,	 -means based on kd-tree, Elkan’s
algorithm based on triangle inequality [9]and Hamerly’s algorithm [7] by varying vari-
ous parameters. The parameters include the number of clusters	 , dimensions	 . The
experiments are conducted on	 Linux	machine	 at	 Lintula	 laboratory.	 The	 programs	
used	to	implement	the	algorithms	are	in	C++.	The	results	were	collected	and	plot-
ted	in	Matlab.	

4.1 Datasets

There are two types of datasets used in this experiment: synthetic data which is gener-
ated using Matlab and some known datasets like KDD Cup, Wine taken from the stand-
ard machine learning repositories like the University of California, Irvine, and Machine
learning repository. The wine dataset is a multivariate dataset with integer and real val-
ues. The dataset are the results of chemical analysis of wine grown in different regions
of Italy. The synthetic data is generated using the Matlab’s rand function which gener-
ates uniform data in the unit interval. The synthetic dataset gives the worst scenario
compared to the other datasets available. It is due to the fact that the dataset is not
structured properly. In synthetic data sets, most of the data points are at the edge of the
cluster than being close to the cluster centers. Results for Pelleg & Moore’s algorithm
on kd-tree are obtained for low dimensional uniform datasets, Wine dataset and KDD
Cup dataset. The algorithms are tested against 6 different datasets listed in Table	1.

Table	1:	Dataset	used	for	the	experiment	

DATASET CARDINALITY DIMENSIONALITY
Wine 178 14
Random 100000 2
Random 100000 8
Random 100000 32
Random 100000 64
KDD Cup 95413 56

	

30	

	

	

	

4.2 Experiment

The algorithms discussed in Chapter 3 are implemented using C++. The results for all the
algorithms are obtained for six different values of k the initial number of clusters for
every dataset. Each and every algorithm in this experiment is run 10 times for a combi-
nation of k and a dataset. The mean value of the 10 trials is tabulated in Table	 2. The
Error! Reference source not found. is used to determine the time consumption of the
accelerating k-means algorithms, and standard k-means algorithm. The results of these
experiments are then compared and analyzed from their performance point of view. The
time listed in the Table	 2 represents the time to calculate the number of point to center
distances for the respective algorithms in CPU seconds. One of the primary goal of the
algorithms discussed in this thesis, especially the ones by Elkan [9] and by Hamerly [7] is
to speed up the traditional naive k-means algorithm. It can be easily inferred that when we
have more number of distance calculations the time needed will be greater and lesser
number of calculation shall result in lesser time consumed. This can be explicitly ob-
served in the tabulation. The dimensions used for the experimentation are 2, 8, and 32 for
the uniform dataset and for the Wine & KDD Cup datasets the dimensions are 14 and 56
respectively.

31	

	

	

	

Table	2:	Experimental	results	obtained	by	running	standard,	kd-tree,	Elkan’s	and	Hamerly’s	algorithm	 	
are	under	the	heading	standard,	kd-tree,	Elkan’s	and	Hamerly’s	for	both	synthetic	datasets	and	2	common	
datasets	and	for	different	k	values.	

Time in CPU seconds

Dataset Algorithm k =3 k = 10	 k = 30 k = 50	 k = 70	 k =100	

KDD Cup
n =95413
d =56

Standard
Elkan’s
Hamerly’s
kd-tree

86.7
36.0
34.2
98.1

387.3
106.1
108.3
507.7

2235.1
414.8
429.8
3747.4

3896.7
426.2
428.2
5543.1

4708.5
727.4
794.3
7496.1

7848.9
904.2
1119.3
10682.3

Uniform
random
n=
100000
d = 2

Standard
Elkan’s
Hamerly’s
kd-tree

9.8
13.5
7.8
2.0

39.3
53.4
15.6
6.6

252.1
302.9
44.3
37.1

459.0
564.7
66.7
72.9

617.2
749.2
80.7
104.0

1137.4
1339.6
121.8
201.7

Uniform
random n=
100000
d = 8

Standard
Elkan’s
Hamerly’s
kd-tree

20.8
16.7
11.2
90.7

418.8
324.7
93.3
1118.9

626.7
489.5
104.2
3101.6

1793.0
1461.9
327.9
4884.1

1946.5
1630.3
420.7
5280.2

2480.2
1062.0
321.7
6697.8

uniform
random
n= 100000
d = 32

Standard
Elkan’s
Hamerly’s
kd-tree

121.8
58.7
53.3
478.3

2475.6
781.6
479.1
3338.44

3217.6
976.7
568.2
18160.2

9305.4
2770.9
1781.1
17080.1

11191.5
3365.6
2445.1

10678.5
629.9
1424.3

Wine
n=178
d= 14

Standard
Elkan’s
Hamerly’s
kd- tree

0.0128
0.0127
0.0124
0.0248

0.0461
0.0410
0.0392
0.0822

0.0656
0.0570
0.0622
0.2134

0.1802
0.1605
0.1666
0.3086

0.2244
0.2171
0.2102
0.3410

0.2800
0.1530
0.1469
0.3798

uniform
random
n= 100000
d = 64

Standard
Elkan’s
Hamerly’s
kd- tree

578.0
124.1
126.2
1216.17

3393.4
610.9
528.8
4161.56

6555.6
1133.7
1149.0
11630.9

8530.0
1467.3
1709.8
13738.6

10927.7
1834.3
2312.7

11296
1834.3
2312.7

4.2.1 Effect of dimensionality

The effect of varying the dimensions on the time complexity of the algorithms is	 evalu-
ated. Figure 14 is plotted for the datasets with 100000 data points and number of clusters
k=50. The total time taken by algorithms for dimension d=2, d=8, d=32, d=64 are plotted
in Figure 14. The inference made from the result is that naïve k-means has the high time
consumption compared to other algorithms that are used in the experiment. Generally,
as the dimensions increases the time taken by naïve k-means also increases. There is a
negligible decrease in the time for 64 dimensional data which could be attributed to the
statistical averaging of the values obtained by 10 trials. In case of kd-tree as the dimension
is small it consumes less time but still poorer than Hamerly’s algorithm as in Figure	 14.
As the dimension increases it performs the worst among naïve, Elkan’s and Hamerly’s

32	

	

	

	

algorithm. Similar to naïve k-means there is a decrease in time consumption for kd-tree
for 64 dimensional data which could be attributed to the statistical averaging of the values
obtained by 10 trials. According to Figure	 14, Elkan’s algorithm initially performs
poorly compared to Hamerly’s as the time consumption increases but in the later as the
number of dimensions increases Elkan’s algorithm becomes efficient whereas for
Hamerly’s algorithm it is the reverse. Initially it consumes less time when dimensions are
small. After a particular value of dimension Hamerly’s algorithm performs poorly when
compared to Elkan’s. As per our experimental result, when dimensions are between 30
and 35 the performance of Hamerly’s algorithm starts decreasing. Therefore, Elkan’s
algorithm can be used for high dimensional data and Hamerly’s algorithm for low di-
mensional data.

	

Figure	14:	effect	of	dimensionality	for	uniform	random	dataset	with	2,	8,	32	and	64	dimensions	

	

33	

	

	

	

	

4.2.2. Effect of change in number of clusters

The effect of variation of the number of centers on the time complexity of the algorithm is
seen in this experiment. The result obtained in Figure 15 is for uniform random dataset
with dimension 2 and 100000 data points. As we could observe in Figure 15, as the
number of clusters increases the time consumption also increases in case of naïve
k-means. This is due to the increase in number of distance calculations. Even in case of
kd-tree the situation is better to naïve k-means. In case of Elkan’s algorithm, the per-
formance is poor than naïve k-means. This due to the effect of dimensionality, that it
performs poor for low dimensional dataset. Hamerly’s algorithm performs the best
among other three algorithms with least time consumption.	

	

Figure	15:	Effect	of	number	of	clusters	for	uniform	random	data	with	2	dimensions	

	

The result obtained in Figure 16 is for uniform random dataset with dimension 8 and
100000 data points. As we could observe in Figure 16, as the number of clusters increases

34	

	

	

	

kd-tree performs poorly. Naïve k-means performs better than kd-tree but still poor com-
pared to Elkan’s and Hamerly’s algorithm. Elkan’s algorithm performs better compared
to naïve k-means and kd-tree. Hamerly performs the best compared to Elkan’s algorithm,
naïve k-means and kd-tree.

	

Figure	16:	Effect	of	number	of	clusters	for	uniform	random	data	with	8	dimensions	

The result obtained in Figure 17 is for uniform random dataset with dimension 32 and
100000 data points. As we could observe in Figure 17, naïve k-means performs the worst
with highest time consumption with to the increase in the number of clusters and di-
mensions. In case of Elkan’s algorithm, as the number of clusters increase the perfor-
mance becomes better which is evident when k value is greater than 70. This is because as
the number of centers increase, the data points get clustered to its closest center. So, the
data points do not move a lot in comparison to their previous k value which are less than
70. This avoids unnecessary distance calculations and reduction in time consumption. In
case of Hamerly’s algorithm, like Elkan’s algorithm the time consumption decreases as
number of clusters increases but it performs better than Elkan’s algorithm because the
Hamerly’s algorithm performs better for low dimensional data than Elkan’s algorithm.

	

35	

	

	

	

	

	

Figure	17:	Effect	of	number	of	clusters	for	uniform	random	data	with	32	dimensions	

Figure 18 shows the result obtained for the uniform random dataset with dimen-
sion 64. From the results, we observe that naïve k-means performs poorly compared
to Elkan’s algorithm and Hamerly’s algorithm. Hamerly’s algorithm and Elkan’s
algorithm performs similarly until the number of clusters k is around 30. But as k
increases we observe that Elkan’s algorithm out performs Hamerly’s algorithm by
consuming less time. When k is 70 for both Hamerly’s algorithm and Elkan’s algo-
rithm time consumption starts to reach saturation.

36	

	

	

	

	

Figure	18:	Effect	of	number	of	clusters	for	uniform	random	data	with	64	dimensions

The result obtained in Figure 19 is for KDD Cup dataset with dimension 56 and 95413
data points. As we could observe in Figure 19, kd-tree performs the worst with highest
time consumption with to the increase in the number of clusters. Naïve k-means performs
better than kd-tree but still poorer than Elkan’s and Hamerly’s algorithm. In case of
Hamerly’s algorithm, it performs best when k is small, and as the k increases, it is com-
parable to Elkan’s algorithm. In case of Elkan’s algorithm, it performs the best of all the
other three algorithms. This is due to the fact that Elkan’s performs best for those data
which are structured and are with more number of clusters.

37	

	

	

	

	

Figure	19:	Effect	of	number	of	clusters	in	KDD	Cup	dataset	

In Figure 20, effect of increasing the number of clusters for the algorithms on Wine
dataset is illustrated. In case of kd-tree, the time consumption is the highest. Naïve
k-means consumes more time as the k value increases. Elkan’s and Hamerly’s algorithm
seems to have very small difference in their time consumption. Comparatively Hamerly’s
algorithm does best to Elkan’s algorithm and naïve k-means. Elkan’s algorithm performs
similar to naïve k-means but at the end it performs better than naïve k-means with a very
small difference.

38	

	

	

	

	

Figure	20:	Effect	of	number	of	clusters	in	Wine	dataset

4.3. Discussion on Experiment Results

From the experimental results obtained, we observe that Hamerly’s algorithm is faster
than naïve k-means. As a matter of fact, Hamerly’s algorithm is the fastest of all the
algorithms in the experiment, conducted for 8 dimensional and 32 dimensional uniform
datasets. For 2-dimensional uniform dataset Hamerly’s algorithm is fast but kd-tree
performs better and it is the fastest for this case. The kd-tree’s performance starts to de-
teriorate fast as the dimensions increase. For KDD Cup dataset, Hamerly’s algorithm
outperforms all the other algorithm when the k value is small. As the value of k increases,
the performance of Hamerly’s algorithm is comparable to the Elkan’s algorithm. In
summary, Hamerly’s algorithm performs better compared to Elkan’s algorithm as long as
the dimension is less than or equal to 32. It can be seen clearly that Hamerly’s algorithm
suits the best for low dimensional datasets.

Observation from the results on Elkan’s algorithm suggests that, it is efficient for data
with increasing number of clusters k. This is because as the number of clusters increase

39	

	

	

	

there is decrease in the movement of data points every time and hence the number of
distance calculations decreases. Since redundant distance calculations are reduced, the
algorithm becomes faster. Another striking observation is that the algorithm performs
better for datasets with higher dimensions. From the results obtained and shown in Table
2, Elkan’s algorithm performs better for high dimensional data such as the KDD Cup and
uniform data with dimension 64. The performance clearly improves with the number of
clusters. The performance of Elkan’s algorithm for two dimensional uniform dataset is
very inefficient. Elkan’s algorithm and Hamerly’s algorithm complement each other as
each of them are efficient for data sets with different dimensions.

In case of kd-tree, it works at its best for the datasets within a particular set of di-
mension value. As per our results it works best only for 2 dimensional dataset. As the
dimensions of data increases, its performance decreases. It can be easily observed that
kd-tree is even slower than naïve k-means for most of the cases.	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

40	

	

	

	

5. Conclusion

In this thesis we have studied the improvements to k-means clustering. k-means clustering
algorithm is a simple algorithm but, it is time consuming . The k- means algorithm suffers
from problem of converging to local minimum. There have been various algorithms
which aims to improve the k-means algorithm and to work around the limitations of the
k-means algorithm. Some of such algorithms are discussed in this thesis. The focus of
the thesis is mainly on the algorithms which decrease the time consumption of the
k-means algorithm. Apart from this, the initialization of the cluster centers also plays an
important role in the convergence of the algorithm. Incorrect initialization leads to in-
correct results. Earlier researches have been directed at solving this issue and a huge
amount of results are available in the literatures. Some of the results and methods are
discussed in this thesis. All the algorithms, which have been compared in our study, are
sensitive to initialization of the centers. Usually, in the k- means algorithm is run with
different initialization and the one with the minimum mean squared distance is selected.

 It is also seen that as the datasets size increases, naïve k-means and kd-tree based
algorithm fail to scale and deliver the same performance and efficiency as it did for the
lower size datasets. The simulations and the experiments are performed on naïve k-means
and other accelerating algorithms of k-means proposed by Pelleg and Moore, Elkan and
Hamerly. The improvements made to the k-means by Elkan and Hamerly reduces the
number of required distance calculations using the triangle inequality. The algorithm by
Pelleg and Moore uses geometric reasoning and this approach is also studied in this the-
sis. The time complexities of those algorithms are of primary concern in this thesis. It is
seen that Elkan’s algorithm is better for high dimensional data. Hamerly’s algorithm
performs well for low dimensional data.

The open questions that need further investigation from this thesis point of view are,
can there be a bound for the minimum number of distance calculation for k-means clus-
tering. There are also the questions of how to perform better clustering and how to find
the local optima. The other things that can be investigated is, are there any other ine-
qualities by which the clustering process speed-up.	 	 	

	
	
	
	
	
	
	

41	

	

	

	

6. References	

[1]	 	S.	Arora,	P.	Raghavan	and	S.	Rao,	"Approximation	schemes	for	Euclidean	
k-median	and	related	problems,"	in	Thirtieth	Annual	ACM	symposium	on	
Theory	of	Computing,	Dallas,	1998.	 	

[2]	 	T.	Kanungo,	D.	Mount,	S.	Netanyahu	N,	C.	Piatko,	R.	Silverman	and	A.	Wu,	
"A	Local	Search	Approximation	Algorithm	for	k-Means	Clustering,"	in	
Elsevier	special	Issue	on	the	18th	Annual	Symposium	on	Computational	
Geometry,	2004.	 	

[3]	 	D.	Pelleg	and	A.	Moore,	"X-means:	Extending	k-means	with	efficient	
estimation	of	the	number	of	clusters,"	in	Proceedings	of	the	Seventeenth	
International	Conference	on	Machine	Learning,	Palo	Alto,	CA,	July	2000.	 	

[4]	 	D.	Pelleg	and	A.	Moore,	"Accelerating	exact	k-means	algorithms	with	
geometric	reasoning	(Technical	report	CMU-CS-00105),"	Carnegie	Mellon	
University,	Pittsburgh,PA.	

[5]	 	S.	l	Har-Peled	and	B.	Sadri,	"How	fast	is	the	k-means	Method,"	in	ACM-SIAM	
Symposium	on	Discrete	Algorithms,	Vancouver,	2005.	 	

[6]	 	T.	Kanungo,	D.	Mount,	S.	Netanyahu	N,	C.	Piatko,	R.	Silverman	and	A.	Wu,	
"An	Efficient	k-means	clustering	algorithm:	analysis	and	implementation,"	
In	IEEE	Transactions	On	Pattern	Analysis	And	Machine	Intelligence,	no.	7,	
pp.	881-892,	July	2002.	 	

[7]	 	G.	Hamerly,	"Making	k-means	even	faster,"	in	proceedings	of	the	2010	SIAM	
international	conference	on	data	mining	(SDM	2010),	2010.	 	

[8]	 	G.	Hamerly	and	C.	Elkan,	"Learning	the	k	in	k-Means,"	in	Neural	
Information	Processing	Systems,	MIT	Press,	2003.	 	

[9]	 	C.	Elkan,	"Using	the	Triangle	Inequality	to	Accelerate	k-means,"	in	
Proceedings	of	the	Twentieth	International	Conference	on	Machine	Learning	
(ICML-2003),	Washington	D.C,	2003.	 	

[10]	K.	Anil,	"Data	Clustering:	50	years	beyond	k-means,"	Journal	on	Pattern	
recognition	Letters,	vol.	31	,	no.	8,	pp.	651-666,	June,2010.	 	

[11]	 J.	MacQueen,	"Some	methods	for	classification	and	analysis	of	multivariate	
observations,"	in	proceedings	of	fifth	Berkeley	Symposium	on	Mathematics,	
Statistics	and	Probaility,	Berkeley,CA,	1967.	 	

[12]	D.	Arthur	and	S.	Vassilvitskii,	"k-means++:	The	Advantages	of	Careful	
Seeding,"	in	Society	for	Industrial	and	Applied	Mathematics	,	Philadelphia,	
2007.	 	

42	

	

	

	

[13]	 J.	Kosecka,	"EM	Algorithm	Statistical	Interpretation,"	George	Mason	
University,	Virginia,	2005.	

[14]	L.	Kaufman	and	P.	J.	Rousseeuw,	Finding	Groups	in	Data:	An	Introduction	
to	Cluster	Analysis,	NewJersey:	Weily,	1990.	 	

[15]	 J.	C.	Bezdek,	Pattern	Recognition	with	fuzzy	objective	function	algorithms,	
Newyork:	Plenum,	1981.	 	

[16]	M.	Matteucci,	"A	tutorial	on	clustering	algorithms,"	[Online].	Available:	
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/cmeans.ht
ml.	[Accessed	24	10	2013].	

[17]	B.	Horst,	A.	Leonardis	and	A.	Selb,	"MDL	principle	for	robust	vector	
quantization,"	Pattern	analysis	and	applications,	vol.	2,	pp.	59-72,	1999.	 	

[18]	M.	Steinbach,	G.	Karypis	and	V.	Kumar,	"A	Comparison	of	document	
Clustering	methods,"	in	KDD	conference,	2000.	 	

[19]	A.Moore	and	M.S.Lee,	"Cached	Sufficient	Statistics	for	Efficient	Machine	
Learning	with	large	datasets,"	Journal	of	Artificial	Intelligence	Research,	
vol.	8,	pp.	67-91,	1998.	 	

	

	

	

