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The use of lighter construction materials is desirable in robotic arms and manipulators
alike due to their cost advantage and high payload to weight ratio. Lightweight materials
also lead to increasing structural flexibility, which induces challenges to the control prob-
lem of endpoint positions of flexible arms. This is caused by the complex dynamics of
flexible links.

In this thesis a single-link flexible beam was studied, which is a part of a 1-degree-of-
freedom assembly, actuated by a hydraulic cylinder. The beam’s dimensions are 60×
60× 3 mm and its length is 4.5 m, while a load mass of 60 kg is bolted near the tip.
Therefore, the system at hand is highly flexible.

The objective of this thesis was to build and implement a VDC (Virtual Decomposition
Control) type controller to the system and test its performance. The VDC approach is a
model-based, nonlinear control method, developed especially for robots with high num-
bers of degrees-of-freedom. The VDC approach is subsystem based, enabling individual
control of each of the subsystems. The dynamics of each subsystem remain relatively
simple, no matter how complex the entire robot is. A finite element model of the boom
was also created in order to simulate the system before real-time implementation. The
FEM (Finite Element Method) is a popular method in modeling structural flexibility.

The VDC controller was implemented with success. The L2 and L∞ stabilities of the
subsystems were mathematically shown, leading to the guaranteed stability of the en-
tire system. The results of this thesis show promise in the use of the VDC approach in
controlling flexible arms with hydraulic actuation.
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Entistä kevyempien rakennusmateriaalien käyttö robottikäsivarsissa sekä muissa manipu-
laattoreissa vähentää kustannuksia sekä kasvattaa manipulaattorin hyötykuorman ja painon
suhdetta. Kevyet materiaalit luonnollisesti lisäävät rakenteen joustoa, mikä aiheuttaa
haasteita erityisesti manipulaattorin kärjen tarkan asemasäädön näkökulmasta.

Tässä opinnäytetyössä tarkastellaan yksivapausasteista manipulaattoria, joka koostuu jous-
tavasta puomista sekä jäykästä tukirakenteesta. Puomin dimensiot ovat 60× 60× 3 mm
ja kokonaispituus 4.5 m. Puomin päähän on kiinnitetty 60 kg:n massa ja kääntönivelen
liike on toteutettu hydraulisylinterillä.

Työn tarkoituksena on toteuttaa VDC (Virtual Decomposition Control) tyyppinen säädin
ja testata sen suorituskykyä joustavan rakenteen säädössä. VDC on mallipohjainen ja
epälineaarinen säätötapa, joka on kehitetty erityisesti huomattavan määrän vapausasteita
omaavien robottien tarkkaan säätöön. Perusajatus VDC:ssä on monimutkaisen robotin
jako alisysteemeihin, jolloin kunkin alisysteemin dynamiikka pysyy suhteellisen yksinker-
taisena. Puomille muodostettiin myös osaelementtimalli (finite element model) simuloin-
titarkoituksia varten.

Säädin toteutettiin menestyksekkäästi ja sen suorituskykyä testattiin reaaliaikajärjestelmässä.
Alisysteemien L2 ja L∞ stabiiliudet osoitettiin matemaattisesti VDC teorian mukaisesti,
johtaen koko järjestelmän taattuun stabiiliuteen. Mittaustulosten perusteella VDC:n käyttö
hydraulisesti aktuoitujen joustavien manipulaattoreiden säädössä näyttää lupaavalta.
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ẋr required piston velocity
YA regressor matrix related to frame {A}



1

1. INTRODUCTION

Steel is perhaps the single most important material of the humankind. It has been used
avidly ever since its mass production began in the 19th century. Mainly composed of
iron and carbon, steel can be combined into numerous alloys with different substances.
Adding chromium results in stainless steel, for example. Steel alloys are heavily used in
construction and machinery. The most considerable improvement in structural steel over
the years has been increasing its strength. Two material-specific variables are used: The
yield strength is the limit, after which a structural deformation is permanent, while the ten-
sile strength is the point, where the tension is enough to break the structure. The type of
steel used in this work has a yield strength of 700 MPa and a tensile strength of 750−950
MPa. Young’s modulus, also known as elastic modulus, is a measure that describes ma-
terial’s ability to resist elastic deformation applied by a force. An non-permanent defor-
mation is called elastic, while a permanent one is called plastic. Relative deformation can
be defined as the quotient of the strain and the total length of a given object. Very strong
steel, like the one used in this work, is highly flexible due to the fact that as the strength
increases, the elastic modulus hardly changes. Thus, the structure will flex more.

Robotic manipulators with lightweight, flexible links are becoming common in the man-
ufacturing industry. The trend is to build lighter, more efficient robot manipulators that
have a high payload to weight ratio. This is achieved by using lighter materials, which
understandably increases structural flexibility. However, using lightweight and especially
long links causes the tip end to vibrate, along with deflection. Tip deflections and vi-
bration are both very problematic, when it comes to control. With less flexing links it is
typical that the vibration is simply waited out, but with truly flexible links the controller
needs to be able to effectively dampen the vibration.

Modeling flexible structures is a well developed field of engineering. The finite element
method (FEM) used in this work being perhaps the most common one. There are many
commercial softwares for generalized formulation of the finite elements. Another popular
method for modeling flexible structures is the assumed modes method (AMM), used for
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example in [10] to model a flexible crane structure and in [4] along with the Langrange ap-
proach to derive an infinite dimensional dynamic model of a single-link flexible manipu-
lator. The FEM and AMM are distributed parameter systems (DPS), which are considered
infinite dimensional and are described by partial differentiation equations. Hence, there
are variables of interest as a function of time and one or more spatial variables. Lumped
parameter systems can also be used to model flexible systems. These are simple spring
and mass models, generally based on ordinary differential equations and the variables of
interest are as a function of time only. Flexible links can be considered continuous, or
infinite dimensional dynamical systems. Building a model or designing a controller for a
system with infinite degrees of freedom is not practically possible. The systems are dis-
cretized using finite elements, assumed modes or lumped parameter methods, which gives
an estimate of the infinite dimensional system. An extensive literature review on dynamic
analysis of flexible manipulators was conducted in [2]. In a more recent literature review
[12], intelligent control techniques for flexible manipulators were studied in addition to
dynamic analysis. The control techniques under review were fuzzy logic, neural network
and genetic algorithm.

Control of single-link flexible manipulators has been under research in the recent years.
A relatively simple method was explored in [14], where strain feedback and acceleration
feedback, separately, were used in combination with a PID controller. Both control de-
signs improved the stability and yielded a faster system response. Backstepping control
schemes for tip tracking of a single-link flexible manipulator were developed in [15] and
[4], with good results. An approximation of the tip position was utilized in both papers.
A flexible beam in a gravitational field was studied in [9] and [11]. In [17], the virtual de-
composition control (VDC) approach was applied for the first time to the control problem
of flexible link robots, in simulation, with success.

Dynamics based control takes advantage of the mathematical representation of robots,
which can be relatively easily formed by using for example Denavit-Hartenberg param-
eters to derive forward kinematics. Known dynamics of a robot can be utilized to apply
feedforward control to the given system. An ideal feedforward loop’s transfer function
would be the exact inverse of the system to be controlled, which would make the perfect
controller. Inverse kinematics of a robot can be derived by using the Lagrangian for-
mulation, for instance. In the real world, however, feedforward is never fully accurate.
A feedback loop can be paired with the feedforward to increase the controller’s perfor-
mance. In this kind of dynamics based control, the feedforward loop should be designed
as close to the real system as possible for it to be useful. The VDC approach is dynamics
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based, utilizing both feedforward and feedback.

The target system of this master’s thesis is a 1-degree of freedom (DOF) flexible beam
attached to a rigid base structure. A hydraulic cylinder is used to actuate the rotating
joint of the system. The flexible beam is modeled using the FEM and connected to a
model of the hydraulic circuit. A dynamic controller is developed for driving the system,
while simultaneously dampening vibrations. For this, the VDC approach is applied. The
stability of the control system is proven via the VDC theory. The goal of this thesis is to
apply the VDC approach to the target system and effectively control the tip position of
the flexible beam, while guaranteeing the L2 and L∞ stability of the system. Due to the
complexity of the controller, simulation is used in the development.

In scope of this thesis, parameter adaption in the VDC formulation is not implemented.
Furthermore, only the necessary presentations of the load distribution factor and internal
force vector formulation, associated with the VDC, are given. The modeling of the hy-
draulic circuit, the cylinder and the servo valve, are not presented, as their presence in this
thesis is trivial and their formulations are easily found in the literature. Despite this, the
hydraulics are modeled in the context of the VDC formulation.

The structure of the thesis is outlined as follows: The studied system is first introduced,
followed by the presentation of mathematical preliminaries necessary to understand this
thesis. The modeling of the system for simulation purposes is then formulated using the
FEM procedure. After this, the VDC approach is applied to the system. The virtual
stability of the system is also shown. Results are then presented, along with discussion.
Finally, a conclusion is given.
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2. TARGET SYSTEM

The target system of this thesis is presented in Fig. 2.1. A single beam of steel, 4.5 meters
in total length, is attached to the base structure that is assumed rigid. The type of steel used
is Strenx Tube 700MH, manufactured by SSAB, which is a high frequency welded cold-
formed structural hollow section made of hot-rolled high-strength steel with a minimum
yield strength of 700 MPa. The dimensions of the beam cross-section are 60×60×3 mm.
A load mass of 60 kg is bolted near the tip end. The system is interpreted as a single-link
flexible manipulator.

Figure 2.1 The 1-DOF boom.



2. Target system 5

The dimensions of the base structure are given in Fig. 2.2. Unlike in the figure, the boom
can not reach a fully horizontal level. The minimum length of the hydraulic cylinder is
570 mm, which leads to a boom angle of 22.68◦ at rest.

Figure 2.2 Geometric dimensions of the base structure.

Table 2.1 presents the numerical values of the angles. The hydraulics are composed of
a hydraulic cylinder of size �35/25− 300 mm, manufactured by Konepaja Ketola. The
servo valve used is model 4WRPEH by Bosch Rexroth, with nominal flow of 2−40 l/min
at ∆p = 70 bar and a maximum supply pressure of 315 bar.

Table 2.1 Base structure angles.

a1 a2 q
17.82◦ 40.16◦ 32.02◦

The hydraulics are powered by a machinery by Bosch Rexroth, composed of three 200
kW pumps. Only one of the pumps is in the same circuit with the target system. The
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maximum supply pressure of the machinery is 320 bar, while the maximum produced
flow is 260 l/min. A pressure relief valve is also part of the machinery.
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3. MATHEMATICAL PRELIMINARIES

In this chapter the most important mathematical concepts are introduced and defined,
which are used throughout this thesis. These concepts are mainly used in formulating the
VDC, hence this chapter is based heavily on [16] and [6].

First, a basic coordinate system is introduced along with vectors, followed by expressing
orientation via rotation matrix. Then, definitions for linear/angular velocity and force/mo-
ment vectors in a body frame are given. The duality of these vectors is also established.
Next, the formulation for rigid body dynamics is given, along with a linear parametrized
form. After that, virtual cutting points and oriented graphs are introduced. Finally, the
concept of virtual stability is explored.

3.1 Frames and orientation

For simplicity, the coordinate systems used in this thesis are called frames. These frames
are constructed by three mutually orthogonal three-dimensional unit vectors as bases.
Such a frame can be represented as {A}= [~x, ~y, ~z]. [16, p. 24].

Rotation matrices are used for coordinate transformations and in this thesis frames are
needed to rotate only about their~z-axis. This type of rotation matrix is defined as [5, p.
36]

ARB =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (3.1)

which describes the rotation of frame {B} with respect to frame {A}. The θ denotes the
orientation angle between the two frames.
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3.2 Linear/angular and force/moment vectors

Let Av ∈ R3 and Aω ∈ R3 be the linear and angular velocity vectors of frame {A}, also
expressed in frame {A}. Similarly, let A f ∈ R3 and Am ∈ R3 be the linear force and
moment vectors applied to frame {A}. The linear/angular velocity and force/moment
vectors of frame {A} are now defined as follows [16, pp. 28-29]:

AV =

[
Av
Aω

]
∈ R6, AF =

[
A f
Am

]
∈ R6. (3.2)

Vectors of these formats are used throughout the VDC formulation.

3.3 The duality of linear/angular velocity and force/moment
transformations

Consider a rigid body moving freely and being subject to a pair of physical force and
moment vectors. Also, let frame {A} and frame {B} be fixed to the rigid body. The dual
nature of the linear/angular and force/moment transformations entails that

BV =A UT
B

AV (3.3)
AF =A UB

BF (3.4)

hold. Here
AUB =

[
ARB 03×3

(ArAB×)ARB
ARB

]
∈ R6×6 (3.5)

is a transformation matrix that transforms the force/moment vector measured and ex-
pressed in frame {B} to the corresponding force/moment vector measured and expressed
in frame {A}. The expression (ArAB×) denotes a skew-symmetric matrix that is defined
as follows:

(ArAB×) =

 0 −Arz
Ary

Arz 0 −Arx

−Ary
Arx 0

 , ArAB ∈ R3. (3.6)

The denotation ArAB depicts a vector from the origin of frame {A} to the origin of frame
{B}, expressed in frame {A}. [16, p. 26-29]
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3.4 Rigid body dynamics in a body frame

First, similar to (3.2), the net (summation) force/moment vector measured and expressed
in frame {A} is defined as

AF∗ =

[
A f ∗
Am∗

]
∈ R6, (3.7)

where A f ∗ and Am∗ are the net force and moment vectors that are applied to the rigid
body. Again, let frames {A} and {B} be fixed to a rigid body. The dynamics of the rigid
body are expressed in frame {A}, while frame {B} is located at the center of mass of the
body. [16, p. 30] The equation for rigid body dynamics using the net force is written as:

AF∗ = MA
d
dt
(AV )+CA(

A
ω)AV +GA, (3.8)

where MA denotes the mass matrix, CA(
Aω) denotes the centrifugal and Coriolis forces

and GA denotes gravity terms of the rigid body. The mass matrix is formulated as

MA =

[
mAI3−mA(

ArAB×) −mA(
ArAB×)

mA(
ArAB×) IA−mA(

ArAB×)2

]
∈ R6×6, (3.9)

IA =A RIIo(t)
IRA (3.10)

in which I3 denotes a 3×3 identity matrix and mA ∈R denotes the mass of the rigid body.
The moment of inertia expressed in frame {A} is defined in ( 3.10), where the moment
of inertia matrix around the center mass is denoted by Io(t) ∈ R3×3. The centrifugal and
Coriolis terms are derived as follows:

CA(
A

ω) =

[
C11 C12

C21 C22

]
∈ R6×6, (3.11)

where

C11 = mA(
A

ω×)
C12 =−mA(

A
ω×)(ArAB×)

C21 = mA(
ArAB×)(A

ω×)
C22 = (A

ω×)IA + IA(
A

ω×)−mA(
ArAB×)(A

ω×)(ArAB×).
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Here (Aω×)∈R3×3 is a skew-symmetric matrix containing angular velocities. The grav-
ity terms are presented as

GA =

[
mA

ARI g
mA(

ArAB×)ARI g

]
∈ R6, (3.12)

where g = [0; 9.81; 0]T ∈R3. The gravity vector may vary, depending on how the frames
are chosen. Finally, a linear parametrized expression, based on (3.8), is defined:

YAΘA = MA
d
dt
(AVr)+CA(

A
ω)AVr +GA, (3.13)

where AVr ∈ R6 is the required vector of AV ∈ R6. [16, pp. 31-32] Velocity vectors
and their required counterparts are a key aspect in the design of the VDC. The regressor
matrix YA ∈ R6×13 and the parameter vector ΘA ∈ R6×13 are detailed later in the virtual
decomposition control chapter.

3.5 Virtual cutting points and oriented graphs

According to Zhu [16, p. 34]: "The concept of the virtual cutting point is central to
the VDC approach." Practically this concept means that a complex robot is divided into
subsystems by placing virtual cutting points in suitable positions along the robot. The
precise definition for a virtual cutting point is given by Zhu in [16, p. 34]:

Definition 3.1. A cutting point is a directed separation interface that conceptually cuts
trough a rigid body. At the cutting point, the two parts resulting from the virtual cut
maintain equal position and orientation. The cutting point is interpreted as a driving
cutting point by one part and is simultaneously interpreted as a driven cutting point by
another part. A force vector f ∈ R3 and a moment vector m ∈ R3 are exerted from one
part to which the cutting point is interpreted as a driving cutting point to the other part to
which the cutting point is interpreted as a driven cutting point.

In other words, the robot is virtually decomposed into sub-domains that all have their own
dynamics and control equations. This will be shown later in the virtual decomposition
chapter. After a robot is virtually cut into subsystems, the entire system’s structure is
depicted by using a simple oriented graph, which represents the topological structure and
control relations of the system. The concept of a simple oriented graph is an important
aspect of the VDC formulation and its definition is also given by Zhu in [16, p. 34]:
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Definition 3.2. A graph consists of nodes and edges. A directed graph is a graph in which
all the edges have directions. An oriented graph is a directed graph in which each edge
has a unique direction. A simple oriented graph is an oriented graph in which no loop is
formed.

A node represents a subsystem and a directed edge represents a cutting point. The direc-
tion of an edge defines the reference direction of forces and moments passing through the
corresponding cutting point. The forces and moments are exerted from the subsystem of
which the cutting point is interpreted as a driving cutting point to the adjacent subsystem
to which the cutting point is interpreted as a driven cutting point. Some nodes also act as
source or sink nodes, which only have pointing-away or pointing-to edges, respectively.
[16, pp. 34-35]

3.6 Virtual stability

Being divided into subsystems, the stability of the entire complex system becomes a con-
cern. Suitable properties for each subsystem must be determined in order to achieve
stability of the entire system. In this section virtual stability, which is another central
concept of the VDC approach, is defined.

First, Lebesgue space is introduced, followed by non-negative accompanying functions.
Virtual power flows are then presented, along with the virtual stability. In scope of this
thesis, only shortened versions of the concepts necessary for understanding the VDC ap-
proach are presented.

3.6.1 Lebesgue space

Two definitions concerning Lebesgue space are given by Zhu in [16, p. 15]:

Definition 3.3. Lebesgue space, denoted as Lp with p being a positive integer, contains
all Lebesgue measurable and integrable functions f (t) subject to

‖ f‖p = lim
T→∞

[∫ T

0
| f (t)|pdτ

]
1
p <+∞. (3.14)

Two important cases are given:
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(a) A Lebesgue measurable function f (t) belongs to L2 if and only if
limT→∞

∫ T
0 | f (t)|

2dτ <+∞.

(b) A Lebesgue measurable function f (t) belongs to L∞ if and only if
maxt∈[0,∞)] | f (t)|<+∞.

Definition 3.4. A vectored Lebesgue measurable function

f(t) = [ f1(t), f2(t), ..., fn(t)]T ∈ Lp, p = 1,2, ...,∞, implies fi(t) ∈ Lp (3.15)

f or all i ∈ {1,n}.

Lebesgue spaces, namely L2 and L∞, have substantive roles in the concept of virtual
stability.

3.6.2 Non-negative accompanying functions

Non-negative accompanying functions are used as a tool in stability and convergence
analysis. Zhu provides the following definition in [16, p. 35]:

Definition 3.5. A non-negative accompanying function ν(t) ∈ R is a piecewise differen-
tiable function possessing the following properties:

(i) ν(t)≥ 0 for t > 0, and

(ii) ν̇(t) exists almost everywhere.

Every subsystem (or node in a simple oriented graph) is assigned a non-negative accom-
panying function.

3.6.3 Virtual power flow

The definition of virtual power flow is presented by Zhu in [16, p. 35]:

Definition 3.6. With respect to frame {A}, the virtual power flow (VPF) is defined as
the inner product of the linear/angular velocity vector error and the force/moment vector
error, that is

pA = (AVr−AV )T − (AFr−AF), (3.16)
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where AVr ∈ R6 and AFr ∈ R6 represent required (design) vectors of AV ∈ R6 and AF ∈
R6, respectively.

Again, let two frames {A} and {B} be attached to a rigid body. Assuming that the
required linear/angular velocity and force/moment vectors are subject to the same con-
straints as the linear/angular and force/moments, it is evident that

BVr =
A UT

B
AVr (3.17)

AFr =
A UB

BFr (3.18)

hold. From (3.3), (3.4) and (3.16)-(3.18) it follows that

pA = pB (3.19)

also holds.

3.6.4 Virtual stability analysis

Considering the Lebesgue spaces, non-negative accompanying functions and VPFs, Zhu
presents the following definition for virtual stability [16, p. 36]:

Definition 3.7. A subsystem that is virtually decomposed from a complex robot is said
to be virtually stable with its affiliated vector x(t) being a virtual function in L∞ and its
affiliated vector y(t) being a virtual function in L2, if and only if there exists a non-negative
accompanying function

v(t)≥ 1
2

x(t)T Px(t) (3.20)

such that
v̇(t)≤−y(t)T Qy(t)− s(t)+ ∑

{A}∈Φ

pA− ∑
{C}∈Ψ

pC (3.21)

holds, subject to ∫
∞

0
s(t)dτ ≥−γs (3.22)

with 0 ≤ γs < ∞, where P and Q are two block-diagonal positive-definite matrices, set
Φ contains frames being placed at the driven cutting points of this subsystem and set Ψ

contains frames being placed at the driving cutting points of this subsystem, and pA and
pC denote the virtual power flows in Definition 3.6.
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The definition is followed by a lemma, which shows that two adjacent subsystems that
are virtually stable are equivalent to a single subsystem that is virtually stable.

Lemma 3.1. Every two adjacent subsystems that are virtually stable can be equivalent
to a single subsystem that is virtually stable in the sense of Definition 3.7. Every virtual
function in Lp affiliated with any one of the two adjacent subsystems remains to be a
virtual function in Lp affiliated with the equivalent subsystem for p = 2,∞.

Lemma 3.1 and proof for it can be found in [16, p. 37]. If every subsystem of a complex
robot is virtually stable with regard to Definition 3.7, the following thorem, presented by
Zhu in [16, p. 38] with proof, ensures that the L2 and L∞ stability of the entire complex
robot can be guaranteed.

Theorem 3.1. Consider a complex robot that is virtually decomposed into subsystems
and is represented by a simple oriented graph as in Definition 3.2. If every subsystem is
virtually stable in the sense of Definition 3.7, then all virtual functions in L2 are functions
in L2 and all virtual functions in L∞ are functions in L∞.

The theoretical background for proving the virtual stability of a VDC-type controller is
now given. The virtual stability of each subsystem will be proven individually, which
leads to the virtual stability of the entire system.
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4. MODELING THE FLEXIBLE BEAM

This chapter presents the procedure of modeling the target system as a flexible structure.
The FEM along with the Euler-Bernoulli beam theory are used to derive the system equa-
tions for the rotating flexible beam.

The chapter is sectioned as follows: firstly, the FEM is described at a general level. Then,
the mathematical equations for modeling a rotating flexible beam are given, followed
by the system matrix formulation and diagonalization. Finally, the system equations are
expanded by adding gravity and damping to the model.

4.1 The finite element method

Modeling systems is an essential aspect of modern engineering science. Mathematical
equations are derived in order to model a system’s behavior. With complex systems, these
are often partial differential equations, which are challenging to solve. Along with mod-
ern computational power, different numerical solution techniques have been developed
in attempt to solve these equations. The FEM is one such technique and it is a popular
and powerful tool in analyzing systems. Most often the FEM is used for deformation and
stress analysis of all kinds of mechanical structures, for example buildings, bridges, cars
and aircraft. Another type of application is field analysis that includes fluid flow, magnetic
flux and other problems related to flow. [1, p. 1]

The fundamental idea of the FEM is to discretize a complex region defining a continuum
into simple geometric shapes called finite elements. The material properties, such as
density and elasticity, along with governing relationships are considered over the elements
and expressed in terms of unknown values at element corners. The element corners are
also called nodes. Global governing equations are formed by assembling the elements
together, while considering loading and constraints of the system. The solution of the
global governing equations give an approximate behavior of the continuum. [1, p. 1]
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A major advantage of the FEM is that its formulation can be developed into a general pur-
pose software [8, p. 1]. For example ANSYS and Autodesk Software are such programs.
In this thesis, however, a general purpose software is not used. Instead, the modeling and
the FE procedure are conducted using Matlab, since from a structural point of view the
target system is quite simple.

4.2 Euler-Bernoulli beam

The flexible beam of the target system is modeled by using Euler-Bernoulli beam theory,
which incorporates the following assumptions [16, p. 354]:

• The beam is slender with uniform geometric and inertial characteristics.

• The beam is flexible in the lateral direction and stiff with respect to the axial force
and to the axial torsion.

• The beam has no shear deformation or distributed moment of inertia.

• The beam is restricted in a plane with no motion in the x-axis.

• No gravity is considered.

The beam is divided into elements that each has two nodes, one at each end. A single
beam element is presented in Fig. 4.1. Slope ϑ , also called rotation angle, and vertical

Figure 4.1 A beam element [8, p. 236].

deformation υ are the nodal variables. This ensures that any two neighboring elements
have a continuous slope and deflection between them, which is a requirement from a
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theoretical standpoint [1, p. 242]. The nodal variables contain the information of the
magnitude of the beam’s deformation. Equations for a rotating Euler-Bernoulli beam are
presented in the next section.

4.3 Rotating flexible beam

Modeling of the beam and applying the FEM is done in accordance with [8, pp. 465-
467]. A rotating flexible beam in planar coordinates can be described by its equations of
motion:

Icθ̈ +
∫ l

l0
ρx(ẅ+ xθ̈)dx+mtipl(lθ̈ + ẅ(l, t))+ It(θ̈ + ẅ′(l, t)) = u (4.1)

ρ(ẅ+ xθ̈)+EI
∂ 4w
∂x4 = 0, (4.2)

where ρ denotes mass per unit length, E denotes Young’s modulus, I denotes cross-
sectional area moment of inertia of the beam about its neutral axis, θ denotes the beam
angle, Ic and It are the moments of inertia of the center body and tip mass, lθ is the radius
of the center body, l is the length of the beam excluding the center body and mtip is the
load mass. The boundary condition for the beam end with rotating joint is

w =
∂w
∂x

= 0, at x = l0 (4.3)

and for the tip respectively

EI
∂ 2w
∂x2 =−It(θ̈ + ẅ′), EI

∂ 3w
∂x3 = mtip(lθ̈ + ẅ), at x = l. (4.4)

The denotation (̇) is a partial derivative with respect to time t and ()′ is a partial derivative
with respect to spatial variable x. The extended Hamilton’s principle is applied for each
element [8, p. 465] ∫ t2

t1
(δL+δW )dt = 0, (4.5)

where L = Te-Ve is the Lagrangian for an element, which is the difference between kinetic
and potential energies. External work done in the system is denoted by W . The kinetic
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energy Te and potential energy Ke can be presented as follows

Te =
∫ xe+h

xe

ρ(ẇe + xθ̇)2dx (4.6)

Ke =
∫ xe+h

xe

EI
(

∂ 2w
∂x2

)2
dx, (4.7)

where h denotes the length of an element and w denotes a cubic polynomial function that
is used for spatial interpolation of the transverse deflection of the beam. This function can
be written as

we(x, t) = Φ1(x)q1(t)+Φ2(x)q2(t)+Φ3(x)q3(t)+Φ4(x)q4(t), (4.8)

where q1 and q3 denote the vertical displacements at the left-end and right-end of the
element. Similarly, q2 and q4 denote the slopes, or rotations, of the element at each end.
The shape functions Φn,n ∈ [1,4] are known as Hermite polynomials and are defined as
follows:

Φ1(x) = 1− 3x2

h2 +
2x3

h3 (4.9)

Φ2(x) = x− 2x2

h
+

x3

h2 (4.10)

Φ3(x) =
3x2

h2 −
2x3

h3 (4.11)

Φ4(x) =−
x2

h
+

x3

h2 . (4.12)

Substituting the Hermite polynomials into (4.6) and (4.7) and integrating by parts gives

Mi
eq̈e +Ki

eq̇e = 0 (4.13)

for the ith element. The element mass matrix is denoted by Me and the element stiffness
matrix by Ke. This procedure can be applied to each element, which eventually leads to
the global governing equations

Mq̈+Kq̇ = Fu, where q = [θ ,q1,q2, ...,qn−1,qn]
T . (4.14)
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The number of elements is denoted by N. The global mass and stiffness matrices take the
following forms:

M =

[
Ic +Mθθ

~Mθq
~Mqθ Mqq

]
(4.15)

K =

[
0 ~0
~0T Kqq

]
. (4.16)

Here Mqq and Kqq denote the flexible terms, ~Mqθ and ~Mθq denote the coupling terms and
Ic +Mθθ denotes the rigid term. The flexible terms are the only non-zero terms in the
global stiffness matrix. The vector~0 is of size 1×N.

4.4 Element matrices and combining them

In this section the construction of element matrices and combining them to global matrices
as in ( 4.15)-( 4.16) is presented in view of [8, pp. 467-468]. Matrices for each element
can be expressed as follows:

Mi
e =

Mi
11 Mi

12 Mi
13

Mi
21 Mi

22 Mi
23

Mi
31 Mi

32 Mi
33

 , Ki
e =

0 0 0
0 Ki

22 Ki
23

0 Ki
32 Ki

33.

 , Mt =

[
Mt

11 Mt
12

Mt
21 Mt

22

]
, (4.17)

where Mt is a mass matrix associated to the rigid body portion of the beam. The matrix
elements of the element mass matrix can be written as follows:

Mi
11 =

ρ

3
(xi + l0)2 +(xi + l0 +h)(xi + l0)+(xi + l0 +h)2 (4.18)

Mi
12 = [Mi

21]
T = ρh

[
3

20 +
1
2(xi + l0) 1

30h2 + 1
12h(xi + l0)

]
(4.19)

Mi
13 = [Mi

31]
T = ρh

[
7

20h+ 1
2(xi + l0) − 1

20h2− 1
12h(xi + l0)

]
(4.20)

Mi
22 =

ρh
420

[
156 22h
22h 4h2

]
, Mi

33 =
ρh
420

[
156 −22h
−22h 4h2

]
(4.21)

Mi
23 = [Mi

32]
T =

ρh
420

[
54 −13h

13h −3h2

]
. (4.22)
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The elements of the stiffness matrix can be written as:

Ki
22 =

EI
h3

[
12 6h
6h 4h2

]
, Ki

33 =
EI
h3

[
12 −6h
−6h 4h2

]
(4.23)

Mi
12 = [Mi

21]
T =

EI
h3

[
−12 6h
−6h 2h2

]
. (4.24)

Finally, the elements of the rigid mass matrix can be expressed as

Mt
11 = Jt +mt(l0 + l)2, Mt

12 = [Mt
21]

T
[
mtip(l0 + l) It

]
(4.25)

Mt
22 =

[
mtip 0

0 It

]
. (4.26)

After forming the elements as described, they are combined to global governing matrices.
First, the rigid term of the global mass matrix given in Eq. (4.14) is as follows:

Mθθ =
N

∑
i=1

Mi
11 +Mt

11. (4.27)

Then, the coupling terms of the global mass matrix are formulated as

Mθq =
[
M1

13 +M2
12 M2

13 +M3
12 · · · MN−1

13 +MN
12 MN

13 +Mt
12

]
(4.28)

Mqθ = [Mθq]
T . (4.29)

Finally, the flexible terms are assembled in the following way

Mqq =



M1
33 +M2

22 M2
23

M2
32 M2

33 +M3
22 M3

23

M3
32 M3

33 +M4
22 M4

23
. . .

MN−1
32 M̄ MN

23

MN
32 MN

33


(4.30)

where M̄ =MN−1
33 +MN

22. The formulation is the same for both mass and stiffness; stiffness
is acquired by substituting M with K in (4.30). The global mass and stiffness matrices for
a rotating flexible beam are now known.
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4.5 Mass matrix diagonalization

The solution to the FEM problem is acquired by solving the nodal acceleration vector
from (4.15), which is integrated in order to obtain nodal velocities and positions. Solving
the equation requires inverting the global mass matrix M. For simulation purposes, the
flexible terms Mqq of M are diagonalized with the following steps [8, p. 241]:

(a) The diagonal components of the consistent mass matrix associated with transla-
tional degrees of freedom, vertical deformation in this case, are summed together.

(b) Each diagonal component is then divided by the sum and multiplied by the ele-
ment’s total mass.

(c) All off-diagonal components are set to zero.

This matrix is called the diagonal mass matrix, which conserves the mass for the trans-
lational degrees of freedom. The procedure is conducted in order to achieve an easily
invertible global mass matrix M. In accordance with the steps described, the sum of
respective diagonal components is first calculated:

Sdiag = ∑Mii
qq, i = 1,3,5, . . . ,2N−1 (4.31)

Then, according to step two, division and multiplication is applied to the diagonals:

Mii
qqd =

SdiagMii
qq

me
, i = 1,3,5, . . . ,2N−1 (4.32)

The element’s total mass is denoted by me. Finally, the third step of the diagonalization is
seen through by setting all off-diagonal components to zero.

4.6 Force vectors and damping

To make the model more accurate, damping and gravity terms are added to the equation
of motion (4.14) and then the equation is solved with respect to acceleration:

q̈ = M−1(F−G−Kq−Cq̇), (4.33)
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where G denotes the gravity vector and C denotes the damping matrix. The force vector
F has two non-zero components; a positive force at the cylinder attachment point and a
negative force caused by the load mass near the tip of the boom.

Gravity is incorporated to the model as a uniform pressure load for each element [8, p. 238]

Ge =
meg
12

[
6h h 6h −h2

]T
, (4.34)

where g denotes gravitational acceleration. The alignment of the gravity vector for each
element is adjusted for each time step. The global gravity vector is then assembled as a
standard finite element procedure.

Damping is also incorporated to the model, otherwise the system would not naturally
compensate any vibration. Rayleigh damping is used [8, p. 406], in which the damping
matrix is formulated as follows:

C = αrayM+βrayK. (4.35)

The two constants αray and βray are called Rayleigh damping coefficients. As can be
seen from ( 4.35), in this method the damping is proportional; the damping matrix is a
linear combination of the system mass and stiffness matrices. Having only two constant
variables results in this method being convenient and easy to configure.

Boundary conditions of the FE model are realized by setting the nodal acceleration at the
cylinder attachment point to zero. This forces the transverse deflection and slope to zero
at this point. This implies that the beam model is flexible from the first nodal point after
the attachment point till the boom tip.
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5. VIRTUAL DECOMPOSITION CONTROL

In this chapter the full formulation of the VDC approach is applied to the studied system.
The VDC approach is a nonlinear, subsystem based control method that utilizes the dy-
namics of these subsystems. An important feature of the VDC approach is maintaining
the L2 and L∞ stability and convergence of the entire complex robot, which leads into a
stability-guaranteed system. Especially with hydraulic robots, there has been a lack of
stability proof for proposed control laws, when nonlinear and model-based control are
considered [7, p. 1]. The idea is to enable decentralized control of complex robots by
forming dynamics and designing control equations for each subsystem separately. Prac-
tically this means that if an electric actuator is substituted for a hydraulic one, only the
dynamics and respective control equations of the given actuator subsystem would need
to be changed. This also opens up a possibility for modularity in the controller design.
[16, p. 9]

The first step in this process is to virtually decompose the system into subsystems, i.e.,
open chains and objects, by placing conceptual virtual cutting points. An object is a
rigid body on which the motion and force control specifications are given. An object also
connects with multiple open chains and can be in contact with the environment. An open
chain comprises of rigid links and connects with two objects at most. In contrast with
objects, open chains may not be in touch with the environment. [16, p. 64, 68]

Virtual power flows are then used to define the dynamic interactions between subsystems
and are in a key role in the definition of virtual stability. The ultimate control objective
in the VDC approach is to design a velocity controller that takes care of the dynamics
of the entire system [7, p. 2]. Other control objectives, such as motion control, internal
force control or optimizations can easily be implemented into the control laws, without
restrictions on the target system. [16, p. 9]
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5.1 Decomposing the target system

The decomposed structure is presented in Fig. 5.1. The hydraulic actuator is separated
from the rest of the manipulator by placing virtual cutting points to both ends of the
actuator. The actuator itself consists of two rigid links, cylinder and piston, while the
actuator assembly also consists of two rigid links that are connected by the hydraulic
cylinder.

Figure 5.1 Decomposed structure of the boom.

As can be seen, the target system is virtually decomposed into two main components:
a closed chain and a flexible link. The closed chain is composed of four rigid links
and has three unactuated rotational joint and one actuated prismatic joint. In hydraulics,
the friction is mostly dominated by the friction between the piston seal and the cylinder
[16, p. 169]. Thus the friction torques of the unactuated rotational joints are assumed to
be zero, for simplicity. Modeling of the flexible link in the context of the VDC formulation
is based on the Euler-Bernoulli beam theory.

The closed chain structure needs to be further decomposed into open-chains as described
Fig. 5.2. This is achieved by adding two zero-mass objects to the system, along with four
subsidiary cutting points. No motion control specifications are derived for the zero-mass
objects; they are merely tools used in decomposing the closed chain.
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Figure 5.2 Decomposing closed-chain into open-chains.

Frames {Tcc}, {T1} and {T2} are coinciding with each other. Frame {B22} is attached to
the piston. Respectively, frames {Bcc}, {B1} and {B2} coincide with each other. Frame
{B} denotes the inertial frame. Link lengths of the actuator assembly are denoted by L1

and L2. The initial cylinder length is denoted by x0 and the cylinder stroke by x. Angles q,
q1 and q2 denote the closed chain angles. Due to geometry, for a given x, all q, q1 and q2

can be computed. Alternatively, for a given q, all x, q1 and q2 can be computed. A simple
oriented graph of the system is given in Fig. 5.3.
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Figure 5.3 A simple oriented graph of the boom.

Based on Figs. 5.1, 5.2 and 5.3, the virtual cutting points of the system are as follows:

• The zero-mass object 1 has one driven cutting point associated with frame {Bcc}
and two driving cutting points associated with frames {B1} and {B2}

• The jth open chain has one driven cutting point associated with frame {B j} and
one driving cutting point associated with frame {T j}, for all j ∈ {1,2}.

• The zero-mass object 2 has two driven cutting points associated with frames {T1}
and {T2} and one driving cutting point associated with frame {Tcc}.

5.2 Flexible link

Being a fully model-based control method, the VDC approach uses the Euler-Bernoulli
beam theory in modeling the flexible link; the assumptions presented in Section 4.2 stand.
However, the equations differ from the ones used in the finite element modeling, be-
cause here rotating of the beam is neglected. The flexible link, virtually decomposed as in
Fig. 5.1, is depicted in Fig. 5.4.
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Figure 5.4 A flexible link virtually decomposed from a planar flexible robot.

According to the figure, there is a virtual cutting point at each end of the flexible link.
The cutting point at point B is interpreted as the driven cutting point of the link and the
cutting point at point T is interpreted as the driving cutting point of the link, respectively.
Applied shear force at point B is denoted by fB and bending moment by mB. Similarly,
applied shear force at point T is denoted by fT and bending moment by mT . Link length
is denoted by l. [16, p. 339] The load mass situated at the boom tip is incorporated into
fT and mT .

5.2.1 Dynamics

Following the Euler-Bernoulli beam theory, the energy equations for the flexible link are
written in view of [16, pp. 339-340] as follows:

EK =
1
2

∫ l

0
ρ ẏ(x, t)2dx (5.1)

EP =
1
2

∫ l

0
EIy′′(x, t)2dx, (5.2)

where EK denotes the kinetic energy and EP denotes the potential energy.

Applying (5.1) and (5.2) to the extended Hamilton’s principle (4.5) eventually yields the
flexible link dynamic equation as

ρ ÿ(x, t)+EIy′′′′(x, t) = 0, for all x ∈ [0, l], (5.3)
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subject to the following boundary conditions:

fB = EIy′′′(0, t) (5.4)

mB =−EIy′′(0, t) (5.5)

fT = EIy′′′(l, t) (5.6)

mT =−EIy′′(l, t). (5.7)

5.2.2 Control equations

In view of ( 5.3)-( 5.7) and [16, p. 341], the model based control for the flexible link is
designed as:

ρ ÿr(x, t)+EIy′′′′r (x, t)+ kv[ẏr(x, t)− ẏ(x, t)] = 0, (5.8)

for all x ∈ [0, l] and kv ≥ 0 being a velocity gain. The design is subject to the following
boundary conditions:

fBr = EIy′′′r (0, t) (5.9)

mBr =−EIy′′r (0, t) (5.10)

fTr = EIy′′′r (l, t) (5.11)

mTr =−EIy′′r (l, t). (5.12)

5.2.3 Control implementation

The control implementation is conducted in view of [17, pp. 4-5]. The goal of the control
algorithm is to obtain fBr and mBr from given fTr and mTr, which is equivalent to finding
yr(0, t), y′r(0, t), y′′r (0, t) and y′′′r (0, t) from given yr(l, t), y′r(l, t), y′′r (l, t) and y′′′r (l, t), sub-
ject to the control equation (5.8). Having knowledge of y′′r (0, t) and y′′′r (0, t), fBr and mBr

are given by (5.9)-( 5.10). Respectively, knowing fTr and mTr gives y′′r (l, t) and y′′′r (l, t)
from (5.11)-(5.12).

The flexible link is divided into N > 0 discrete sections with the following limits: x(0) = 0
and x(N) = l. Backward differentiation is utilized for calculating derivatives of both time
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and spatial variables:

ẏ(x,k) =
y(x,k)− y(x,k−1)

∆T
(5.13)

y′(x( j), t) =
y(x( j), t)− y(x( j−1), t)

∆x
, (5.14)

where ∆T denotes the sampling period, k is a positive integer and ∆x = l/N denotes
the length of a discrete section with j ∈ {1,N}. The main computational algorithm is
presented as follows:

Step 1: Using (5.8) and a given ÿr(l,k), compute

y′′′′r (l,k) =−ρ ÿr(l,k)+ kv[ẏr(l,k)− ẏ(l,k)]
EI

. (5.15)

Step 2: For given yr(l, t), y′r(l, t), y′′r (l, t) and y′′′r (l, t), compute

y′′′r (x(N−1),k) = y′′′r (x(N),k)−∆xy′′′′r (x(N),k) (5.16)

y′′r (x(N−1),k) = y′′r (x(N),k)−∆xy′′′r (x(N),k) (5.17)

y′r(x(N−1),k) = y′r(x(N),k)−∆xy′′r (x(N),k) (5.18)

yr(x(N−1),k) = yr(x(N),k)−∆xy′r(x(N),k). (5.19)

Step 3: Update the required velocity and acceleration at x(N−1) by computing

ẏr(x(N−1),k) =
yr(x(N−1),k)− yr(x(N−1),k,1)

∆T
(5.20)

ÿr(x(N−1),k) =
ẏr(x(N−1),k)− ẏr(x(N−1),k,1)

∆T
. (5.21)

Step 4: In an iterative manner, repeat steps 1-3 from x(N−1) to x(0) to determine yr(0, t),
y′r(0, t), y′′r (0, t) and y′′′r (0, t). Then fBr and mBr can finally be obtained from (5.9)-(5.10).

5.2.4 Control objective

First, an arc approximation for the boom tip position is defined as [15, p. 2]

p = Lθ + yt , (5.22)

where L denotes the length of the flexible beam, θ denotes the rotation angle of an un-
deformed beam, yt denotes tip deflection with respect to the undeformed beam and p
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denotes the arc approximation of the tip position.

In this case it is assumed that only the tip positions, y(0, t) and y(l, t), and angles, y′(0, t)
and y′(l, t) are measurable. The velocity gain kv in (5.8) is zero, as ẏ(x, t) for x ∈ (0, l) is
not available. In view of [17, p. 4], equations for controlling the tip position and the tip
angle are as follows:

ẏr(l, t) = ẏd(l, t)+λ f [yr(l, t)− y(l, t)] (5.23)

ẏ′r(l, t) = ẏ′d(l, t)+λm[y′r(l, t)− y′(l, t)], (5.24)

where λ f > 0 and λm > 0 are two control parameters, ẏd(l, t) is the desired velocity and
ẏ′d(l, t) is the desired angular velocity. The desired values at the boom tip are obtained
from a designed reference trajectory. Based on the virtual power flows, the fact that fT

and mT are measurable and that fB and mB are controllable, the boundary conditions given
earlier can be expressed in the following form:

fTr = k f v[ẏr(l, t)− ẏ(l, t)]+ k f I

∫ t

0
[ẏr(l, t)− ẏ(l, t)]dt (5.25)

mTr = kmv[ẏ′r(l, t)− ẏ′(l, t)]+ kmI

∫ t

0
[ẏ′r(l, t)− ẏ′(l, t)]dt (5.26)

fB = fBr + k f B[ẏr(0, t)− ẏ(0, t)] (5.27)

mB = mBr + kmB[ẏ′r(0, t)− ẏ′(0, t)], (5.28)

where k f v > 0, k f I > 0, kmv > 0, kmI > 0, k f B > 0 and kmB > 0 are six control parameters.
The force/moment vector and its required counterpart in frame {B3} are formulated as

B3F =



0
fB

0
0
0

mB


, B3Fr =



0
fBr

0
0
0

mBr


. (5.29)

In view of ( 3.4) the force/moment vector of frame {B3} is expressed in frame {Tcc},
which is situated at the driving cutting point of the closed chain:

TccF =Tcc UB3
B3

F (5.30)
TccFr =

Tcc UB3
B3

Fr (5.31)
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The transformation matrix, TccUB3 , in this case is constant due to the mechanical structure.

5.3 Closed chain - kinematics and dynamics

5.3.1 Kinematics

Kinematics of the closed chain are presented in view of [16, pp. 170-172]. The first step
is to determine the closed chain angles q, q1 and q2. The boom angle, θ , with respect to
the inertial frame {B} is measured, which is converted into q as follows:

q = Φq +θ (5.32)

q̇ = θ̇ , (5.33)

where Φq is a conversion factor based on geometry. The angular velocity q̇ is obtained
simply by taking the time derivative of θ . Knowing q, the rest of closed chain variables
can also be obtained by using the law of cosines:

x =
√

L2
1 +L2

2 +2L1L2 cos(q)− x0 (5.34)

q1 =−cos−1
(

L2
2− (x+ x0)

2−L2
1

−2(x+ x0)L1

)
(5.35)

q2 =−cos−1
(

L2
1− (x+ x0)

2−L2
2

−2(x+ x0)L2

)
. (5.36)

Respective joint velocities are obtained by taking the time derivatives of (5.34)-(5.36):

ẋ =−L1L2 sin(q)
(x+ x0)

q̇ (5.37)

q̇1 =−
(x+ x0)−L1 cos(q1)

(x+ x0)L1 sin(q1)
ẋ (5.38)

q̇2 =−
(x+ x0)−L2 cos(q2)

(x+ x0)L2 sin(q2)
ẋ. (5.39)

Again, only ẋ or q̇ is needed to solve all of the closed chain velocities. As can be seen
from (5.37)-(5.39), it is possible for the denominators to reach zero values, which would
cause singularities. To avoid this, the motion trajectory should be planned so that q, q1

and q2 never reach zero.

In view of (3.3) and Fig. 5.2, the linear/angular velocity vectors of the closed chain can
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be written as follows:

BccV =B1 V =B2 V (5.40)
B11V = B1UT

B11
B1V + zτ q̇ (5.41)

T1V = B11UT
T1

B11V (5.42)
B21V = B2UT

B21
B2V + zτ q̇1 (5.43)

B22V = B21UT
B22

B21V +x f ẋ (5.44)
T2V = B22UT

T2
B22V + zτ q̇2 (5.45)

TccV =T1 V =T2 V, (5.46)

where

x f = [1,0,0,0,0,0]T ∈ R6 (5.47)

zτ = [0,0,0,0,0,1]T ∈ R6. (5.48)

Notably, frame {Bcc} is fixed and cannot move, which gives BccV =~0 ∈ R6.

5.3.2 Dynamics

In this subsection the dynamics of the closed chain are presented in view of [16, pp. 172-
173]. In uniform with (3.8), the dynamics of the four rigid links of the closed chain are
expressed as follows:

B1F∗ = MB1

d
dt
(B1V )+CB1(

B1ω)B1V +GB1 (5.49)

B11F∗ = MB11

d
dt
(B11V )+CB11(

B11ω)B11V +GB11 (5.50)

B21F∗ = MB21

d
dt
(B21V )+CB21(

B21ω)B21V +GB21 (5.51)

B22F∗ = MB22

d
dt
(B22V )+CB22(

B22ω)B22V +GB22. (5.52)

The force resultant equation of the zero-mass object 2, located at the virtual cutting point
2, can be written as:

TccF =T1 F +T2 F, (5.53)

where T1F and T2F are the forces exerted from the open chains. Let Tccη ∈ R6 be the
internal force/moment vector between open chain 1 and 2, having its reference direction
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pointing from the cylinder to link 2, expressed in frame {Tcc}. From (5.53) it follows that

T1F = α1
TccF +Tccη (5.54)

T2F = α2
TccF−Tccη (5.55)

hold with α1 +α2 = 1, where α1 and α2 are called load distribution factors. Equations
for both internal force/moment vector and load distribution factors will be provided in the
next section. The force resultant equations associated with the rigid bodies in the open
chain 1 are formulated as

B11F =B11 F∗+B11UT1
T1F (5.56)

B1F =B1 F∗+B1UB11
B11F . (5.57)

Respectively, the force resultant equations of the rigid bodies affiliated with the open
chain 2 are written as

B22F =B22 F∗+B22UT2
T2F (5.58)

B21F =B21 F∗+B21UB22
B22F . (5.59)

Furthermore, the force resultant equation in frame {B2} is formulated as

B2F = B2UB21 +
B21 F. (5.60)

Finally, the force resultant equation of the zero-mass object 1 is

BccF =B1 F +B2 F. (5.61)

The actuation force of the cylinder is expressed by using the force in frame {B22}, which
is attached to the piston, as

fc = xT
f

B22F . (5.62)

Assuming the frictions of the three unactuated rotational joints as zero, the constraints can
be written as follows:

zT
τ

T2F = 0 (5.63)

zT
τ

B11F = 0 (5.64)

zT
τ

B21F = 0. (5.65)
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The constraint equations are essential in deriving the internal force vector. The moment
element Tccηz is obtained from ( 5.63), while the force elements Tccηx and Tccηy are ob-
tained from (5.64)-(5.65). [16, p. 173]

5.4 Closed chain - load distribution factors and internal force
vector

In this section the equations for determining the load distribution factors and the internal
force vector are given in view of [6, Appendix D and Appendix E]. In scope of this thesis,
only the necessary equations are presented.

5.4.1 Load distribution factors

The load distribution factors are two coefficients that define the magnitudes of the forces
exerted from rigid links. In case of a closed chain, the load distribution between open
chains 1 and 2 is needed. The distribution itself is dependent on the current geometrical
configuration of the closed chain and is bound to change as the piston moves.

First, the direction of the reaction force −TccF ∈ R6 is computed as follows:

βld = tan−1
(TccF(2)

TccF(1)

)
, (5.66)

where TccF(n) denotes the nth element of TccF. Next, two additional angles are defined as

γld = sign(βld)|q2| (5.67)

∆ld = π− γld. (5.68)

Considering a case, in which the direction angle βld ≥ 0, the load distribution factors are
derived as

θld = γld−βld (5.69)

α1 = cos(βld)
sin(θld)

sin(∆ld)
(5.70)

α2 = cos(θld)
sin(βld)

sin(∆ld)
. (5.71)
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Considering a case, where the direction angle βld < 0, the load distribution factors are
derived as

θld =−π− γld−βld (5.72)

α1 = cos(βld)
sin(θld)

sin(γld)
(5.73)

α2 = cos(θld)
sin(βld)

sin(γld)
. (5.74)

For an appropriately defined closed chain structure, only the equations presented above
are needed for solving the load distribution factors. Thorough formulation can be found
in [6, Appendix D].

5.4.2 Internal force/moment vector

Having specified the load distribution factors and using ( 5.55) and ( 5.63), the moment
element Tccηz of the internal force vector can be expressed as follows:

Tccηz = α2zT
τ

TccF. (5.75)

After Tccηz is solved, the force element Tccηy is obtained through ( 5.50), ( 5.54), ( 5.56)
and (5.64) as

B11UT1
Tccη =−B11F∗−α1

B11UT1

TccF = Fηy (5.76)

Tccηy =
Fηy(6)−Tcc ηz

B11UT1(6,2)
, (5.77)

where B11UT1(x,y) denotes a matrix element located at (x,y). Having Tccηz and Tccηy

solved, the force element Tccηx can now be acquired from ( 5.54), ( 5.58), ( 5.59) and
(5.65) as

B21UB22
B22UT2

Tccη =B21 F∗+B21UB22

B22F∗+α2
B21UB22

B22UT2
TccF = Fηx (5.78)

Tccηx =
Fηx(6)−Tcc ηz− (B21UB22

B22UT2)(6,2)
Tccηy

(B21UB22
B22UT2)(6,1)

. (5.79)
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The internal force vector can now be expressed as

Tccη =



Tccηx
Tccηy

0
0
0

Tccηz


∈ R6. (5.80)

The complete formulation with more detail can be found in [6, Appendix E].

5.5 Closed chain - control equations

5.5.1 Required velocities

In accordance with (5.37)-(5.39), the required velocities of the kinematic structure can be
expressed as

ẋr =−
L1L2 sin(q)
(x+ x0)

q̇r (5.81)

q̇1r =−
(x+ x0)−L1 cos(q1)

(x+ x0)L1 sin(q1)
ẋr (5.82)

q̇2r =−
(x+ x0)−L2 cos(q2)

(x+ x0)L2 sin(q2)
ẋr. (5.83)

Respectively, the required velocity transformations can be written in accordance with
(5.40)-(5.46) as

BccVr =
B1 Vr =

B2 Vr (5.84)
B11Vr =

B1UT
B11

B1V r + zτ q̇r (5.85)
T1Vr =

B11UT
T1

B11V r (5.86)
B21Vr =

B2UT
B21

B2V r + zτ q̇1r (5.87)
B22Vr =

B21UT
B22

B21V r +x f ẋ (5.88)
T2Vr =

B22UT
T2

B22V r + zτ q̇2r (5.89)
TccVr =

T1 Vr =
T2 Vr. (5.90)

Frame {Bcc} is non-moving, which gives BccVr =~0 ∈ R6. Having q̇r ∈ R or ẋr ∈ R and
BccVr ∈R6 specified, all of the linear/angular velocity vectors of the closed chain assembly
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can be determined from (5.81)-(5.90). [16, pp. 173-174]

5.5.2 Regressor matrix and parameter vector

Consider the fact that the target system and its frames are restricted to an xy-plane, while
all rotational movement is about z-axis. From this it follows that any velocity vector in
the system, denoted by AV ∈ R6, will always have three zero values, namely AV( j) = 0
for j ∈ {3,4,5}. Due to this the regressor matrix and parameter vector can be simplified
to cover only 2-DOF (degree-of-freedom) movement. The simplification is presented by
Koivumäki in [6, Appendix B].

Let frame {A} be attached to a rigid body. The 2-DOF regressor matrix takes the follow-
ing form:

YA =



yA(1,1) yA(1,2) yA(1,3) 0 0 0
yA(2,1) yA(2,2) yA(2,3) 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 yA(6,2) yA(6,3) yA(6,4) yA(6,5) yA(6,6)


∈ R6×6, (5.91)
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where the nonzero matrix elements are given as

yA(1,1) =
d
dt
(AVr)(1)−A V (6)AVr(2)+A g(1) (5.92)

yA(1,2) =−AV (6)AVr(6) (5.93)

yA(1,3) =−
d
dt
(AVr)(6) (5.94)

yA(2,1) =
d
dt
(AVr)(2)−A V (6)AVr(1)+A g(2) (5.95)

yA(2,2) =
d
dt
(AVr)(6) (5.96)

yA(2,3) =−AV (6)AVr(6) (5.97)

yA(6,2) = yA(2,1) (5.98)

yA(6,3) =−yA(1,1) (5.99)

yA(6,4) = yA(2,2) (5.100)

yA(6,5) =−yA(1,3) (5.101)

yA(6,6) =
d
dt
(AVr)(6). (5.102)

Here Ag(n) denotes the nth element of ARIg, in which g = [0 9.81 0]T ∈ R3 [16, p. 388].
The corresponding 2-DOF parameter vector is given as

ΘA =



mA

mA
Armx

mA
Army

mA
Ar2

mx

mA
Ar2

my

IAzz


∈ R6, (5.103)

where mA denotes the mass of the rigid body, Arm = [Armx
Army

Armz]
T ∈ R3 denotes a

vector pointing from the origin of frame {A} toward the center of mass and expressed in
frame {A} and IAzz is an element of IA [16, p. 389].

From a simulating point of view, every simplification possible is desirable. This is due
to the fact that in case of four rigid bodies, four regressor matrices and four parameter
vectors need to be calculated during each time step. Because of this the matrix and vector
have been designed as elemental as possible. Full 3-DOF regressor matrix and parameter
vector formulations can be found in [16, Appendix A].
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5.5.3 Required net force/moment vectors

Having the regressor matrix and parameter vector defined, the required net force/moment
vectors of the rigid links are computed as

B1F∗r = YB1ΘB1 +KB1(
B1Vr−B1 V ) (5.104)

B11F∗r = YB11ΘB11 +KB11(
B11Vr−B11 V ) (5.105)

B21F∗r = YB21ΘB21 +KB21(
B21Vr−B21 V ) (5.106)

B22F∗r = YB22ΘB22 +KB22(
B22Vr−B22 V ), (5.107)

where YAΘA ∈ R6 is a model-based feedforward term defined in (3.13) and KA ∈ R6×6

is a positive-definite gain matrix, with a given frame being substituted for frame {A}.
[16, p. 174]

5.5.4 Required force/moment vector transformations

In view of [16, p. 176], given a required force/moment vector, TccFr, located at the driving
cutting point of the closed chain, the required force/moment vectors at the two driven
cutting points of the zero-mass object 2 can be formulated similarly to ( 5.54)-( 5.55) as
follows:

T1Fr = α1
TccFr +

Tccηr (5.108)
T2Fr = α2

TccFr−Tccηr, (5.109)

where the load distribution factors α1 and α2 are obtained from ( 5.66)-( 5.74) and the
required internal force/moment vector from ( 5.75)-( 5.80) by substituting force/moment
vectors to required ones.

Next, the required force/moment vectors of the open chain 1 are formulated as

B11Fr =
B11 F∗r +B11UT1

T1Fr (5.110)
B1Fr =

B1 F∗r +B1UB11
B11Fr (5.111)

and the required force/moment vectors of the open chain 2 can be computed as

B22Fr =
B22 F∗r +B22UT2

T2Fr (5.112)
B2Fr =

B2UB21
B21F

∗
r +

B2UB22
B22Fr. (5.113)
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The required force/moment vector, TccFr, situated at the driven cutting point of the closed
chain is now computed as

BccFr =
B1 Fr +

B2 Fr (5.114)

In accordance with ( 5.62), the required actuation force of the hydraulic cylinder is ex-
pressed as

fcr = xT
f

B22Fr. (5.115)

Similar to (5.63)-(5.65), the closed chain is bound by the following constraints:

zT
τ

T2Fr = 0 (5.116)

zT
τ

B11Fr = 0 (5.117)

zT
τ

B21Fr = zT
τ

B21UB2
B2Fr = 0. (5.118)

These constraint equations are applied, while deriving the required internal force vector
Tηr.

5.6 Hydraulic cylinder dynamics and control

5.6.1 Friction model

The friction model for the hydraulic cylinder is given in view of [18, pp. 2-6]. First, a
selective function is defined as

ε(x) =

1, if x > 0

0, if x≤ 0
(5.119)

and a differentiable function g(z,zss) as

g(z,zss) =


1, if z≥ zss

z
zss
, if 0 < z < zss

0, if z≤ 0,

(5.120)

where z denotes the average deformation of bristles in a friction model and zss > 0 is
a constant. A Coulomb-viscous friction model with dc offset is used to model friction
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during sliding motion and can be expressed as follows:

fc f = kcpg(z,zss)ε(z)− kcng(−z,zss)ε(−z)+ k0

+[kvpε(ẋ)+ kvnε(−ẋ)]Φ(ẋ)ẋ.
(5.121)

The two first terms on the right-hand side are affiliated with the Coulomb friction, while
k0 denotes the dc offset. The last term is associated with the Stribeck and viscous friction.
The parameter Φ(ẋ) is chosen as −1. The time derivative of z is written as

ż = ẋ− |ẋ|
zss

z, (5.122)

where ẋ denotes the velocity. Friction during presliding motion can be formulated as a
function of the output force:

fs f = [k f pε(Fout + k f nε(−Fout)]ϕ(Fout), (5.123)

where Fout denotes the output force and ϕFout is a monotonic function defined as

ϕ(Fout) =
Fout

1+δ |Fout|
. (5.124)

Here δ > 0 is a constant. The total friction force of the piston can now be presented as

f f = [1−L (t)] fc f +L (t) fs f , (5.125)

in which L (t)∈ [0,1] is a differentiable switching function, with L (t)→ 1 for presliding
motion and L (t)→ 0 for sliding motion. In scope of this thesis, L (t) is defined in view
of [18, p. 6] as

L (t) =
1

1+(δ1 ˙̃x)3 , (5.126)

with
¨̃x = 10(|ẋ|− ˙̃x), (5.127)

where δ1 > 0 and ˙̃x(t) ≥ 0 if ˙̃x(0) = 0. The chamber pressure force of the cylinder can
now be expressed as the sum of the piston friction force and the cylinder output force as

fp = fc + f f . (5.128)
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A linearized parametrization form for the piston friction force is presented as

f f = Y f θ f . (5.129)

The differentiable regressor Y f is given as

Y f =



(1−L (t))g(z,zss)ε(z)
−(1−L (t))g(−z,zss)ε(−z)

(1−L (t))
(1−L (t))ε(ẋ)Φ(ẋ)ẋ
(1−L (t))ε(−ẋ)Φ(ẋ)ẋ

ε(Fd)L (t)ϕ(Fd)

ε(−Fd)L (t)ϕ(Fd)


∈ R1×7, (5.130)

where Fd is the desired output force. Finally, the parameter vector is defined as

θ f = [kcp kcn k0 kvp kvn k f p k f n]
T ∈ R7 (5.131)

Parameters kcp and kvp correspond to the positive velocity, while kcn and kvn correspond
to the negative velocity, respectively.

5.6.2 Hydraulic fluid dynamics

In view of [16, p. 181], the control valve’s spool position is considered to be proportional
to its control voltage within a frequency range of interest. With this simplification it is
recommended to use a high-bandwidth servo valve. The control arrangement of the cylin-
der used in this thesis is identical with [6, pp. 50-54], which differs from the arrangement
presented in [16]. The differences are mainly in notation.

The valve used is a 4/3-servo valve, thus there are four control edges that can be modeled
as orifices. Based on the Bernoulli’s static flow equation, the rate of flow through an
orifice is proportional to the product of the valve control voltage and the square root of
the pressure drop across the orifice, which is written as

Q = c
√

∆pu, (5.132)

where c > 0 is a constant flow coefficient, given by the valve specifications, ∆p = p1− p2

denotes the difference in pressure across the valve orifice and u is the valve control volt-
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age. Fluid compressibility inside a cylinder chamber can be expressed as

ṗ =
β

vc
(Q− v̇c), (5.133)

in which β denotes the fluid bulk modulus, p denotes the chamber pressure, vc denotes
the chamber volume and Q denotes the rate of fluid flow flowing into the chamber.

A sign function is defined as

sign(x) =


1, if x > 0

0, if x = 0

−1, if x < 0,

(5.134)

along with a pressure-drop related function

υ(x) =
√
|x|sign(x). (5.135)

Let Qa and Qb denote the rates of flows entering the respective cylinder chambers. Sim-
ilarly, let pa and pb denote the chamber pressures. From (5.132) and applying (5.119) it
follows that

Qa = cp1υ(ps− pa)uε(u)+ cn1υ(pa− pr)uε(−u) (5.136)

Qb =−cn2υ(pb− pr)uε(u)− cp2υ(ps− pb)uε(−u), (5.137)

hold, where cp1 > 0, cn1 > 0, cp2 > 0 and cn2 > 0 are constants and ps > 0 pr > 0 denote
supply and return line pressures. Note that ps � pr. Next, using ( 5.133) the dynamic
equations for the pressure drop in each cylinder chamber is written as

ṗa =
β

Aax
(Qa−Aaẋ) (5.138)

ṗb =
β

Ab(l0− x)
(Qb +Abẋ), (5.139)

where Aa and Ab denote the piston areas at both sides of the cylinder chambers with
Aa > Ab. Net pressure force of the cylinder can now be expressed as

fp = Aa pa−Ab pb, (5.140)

which is used for determining the current cylinder force by using pressure measurements.
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Premultiplying Aa and Ab to ( 5.138)-( 5.139), while using ( 5.136) ,( 5.137) and ( 5.140)
yields

ḟp = β

[
u f −

(
Aa

x
+

Ab

l0− x

)
ẋ
]
, (5.141)

in which

u f =
Qa

x
− Qb

l0− x

=

(
cp1υ(ps− pa)

x
+

cn2υ(pb− pr)

l0− x

)
uε(u)

+

(
cn1υ(pa− pr)

x
+

cp2υ(ps− pb)

l0− x

)
uε(−u)

= Yv(u)θ v.

(5.142)

Here

Yv(u) =


υ(ps−pa)

x uε(u)
υ(pa−pr)

x uε(−u)
υ(ps−pb)

l0−x uε(−u)
υ(pb−pr)

l0−x uε(u)


T

∈ R1×4 (5.143)

and
θ v = [cp1 cn1 cp2 cn2]

T ∈ R4. (5.144)

It is assumed that the following relationship holds: 0 < x < l0, which states that the piston
will never reach either of its two ends. In view of this assumption and (5.142), univalence
between u and u f exists, if

cp1υ(ps− pa)

x
+

cn2υ(pb− pr)

l0− x
> 0 (5.145)

cn1υ(pa− pr)

x
+

cp2υ(ps− pb)

l0− x
> 0 (5.146)

hold. A unique valve control voltage for a given u f can be expressed as

u =
1

cp1υ(ps−pa)
x + cn2υ(pb−pr)

l0−x

u f ε(u f )

+
1

cn1υ(pa−pr)
x +

cp2υ(ps−pb)
l0−x

u f ε(−u f ),

(5.147)

granted that (5.145)-(5.146) are satisfied.
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5.6.3 Cylinder control equations

In view of (5.145)-(5.147) and [16, p. 184], for a given u f d a unique valve control voltage
u can be designed as

u =
1

cp1υ(ps−pa)
x + cn2υ(pb−pr)

l0−x

u f dε(u f d)

+
1

cn1υ(pa−pr)
x +

cp2υ(ps−pb)
l0−x

u f dε(−u f d).

(5.148)

Considering the friction model and the fluid dynamics defined by ( 5.141), the cylinder
control equations are designed as follows:

u f d =

(
1
β

)
ḟpr +

(
Aa

x
+

Ab

l0− x

)
ẋ

+KF p( fpr− fp)+Kx(ẋr− ẋ)

= Ycθ c +KF p( fpr− fp)+Kx(ẋr− ẋ),

(5.149)

where

ẋr = ẋd +λx(xd− x) (5.150)

fpr = fcr + f f (5.151)

Yc =

[
ḟpr

ẋ
x

ẋ
l0− x

]
∈ R1×3 (5.152)

θ c =

[
1
β

Aa Ab

]T

∈ R3. (5.153)

Here fcr is the required cylinder force obtained from (5.115), f f is the friction force and
fpr is the required piston force, which takes the friction into account. Two feedback gains
are denoted by KF p > 0 and Kx > 0. The piston velocity is denoted by ẋ and its required
counterpart by ẋr. Desired piston velocity and position are denoted by ẋd and xd , with
λx > 0 being a control gain. It should be noted that the valve control voltage obtained
from (5.148) may have to be scaled down, depending on where it is used.

5.7 Virtual stability analysis

Theorems 5.1-5.5 given in this section ensure the virtual stability of the flexible link,
the zero-mass objects and the open chains, each combined with their respective control
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equations, in the sense of Definition 3.7. Therefore, in view of Lemma 3.1, the entire
system is virtually stable.

The stability analysis of the VDC approach is presented in detail in [16]. All the Theo-
rems, Lemmas and equations are taken from the aforementioned book.

5.7.1 Flexible link

Theorem 5.1. The uniform flexible beam described by the Euler-Bernoulli equation (5.3)
subject to its boundary conditions (5.4)-(5.7), combined with its respective control equa-
tions (5.8)-(5.12), is virtually stable in the sense of Definition 3.7.

Proof: Subtracting (5.3) from (5.8) yields

ρ[ÿr(x, t)− ÿ(x, t)]+EI[y′′′′r (x, t)− y′′′′(x, t)]

+kv[ẏr(x, t)− ẏ(x, t)] = 0.
(5.154)

Next, a non-negative accompanying function assigned to the flexible link is chosen as

ν = νK +νV , (5.155)

where

νK =
1
2

∫ l

0
ρ[ẏr(x, t)− ẏ(x, t)]2dx (5.156)

νV = EI
∫ l

0
ρ[y′′r (x, t)− y′′(x, t)]2dx. (5.157)
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With integration by parts, it follows from (5.154) and (5.156) that

ν̇K =
∫ l

0
ρ[ẏr(x, t)− ẏ(x, t)][ÿr(x, t)− ÿ(x, t)]dx

=−
∫ l

0
[ẏr(x, t)− ẏ(x, t)]EI[y′′′′r (x, t)− y′′′′(x, t)]dx

−
∫ l

0
kv[ẏr(x, t)− ẏ(x, t)]2dx

=− [ẏr(x, t)− ẏ(x, t)]EI[y′′′r (x, t)− y′′′(x, t)]|l0

+
∫ l

0
[ẏ′r(x, t)− ẏ′(x, t)]EI[y′′′r (x, t)− y′′′(x, t)]dx

−
∫ l

0
kv[ẏr(x, t)− ẏ(x, t)]2dx

=− [ẏr(x, t)− ẏ(x, t)]EI[y′′′r (x, t)− y′′′(x, t)]|l0
+[ẏ′r(x, t)− ẏ′(x, t)]EI[y′′r (x, t)− y′′(x, t)]|l0

−
∫ l

0
[ẏ′′r (x, t)− ẏ′′(x, t)]EI[y′′r (x, t)− y′′(x, t)]dx

−
∫ l

0
kv[ẏr(x, t)− ẏ(x, t)]2dx

(5.158)

holds. Next, (5.158) and the time derivative of (5.157) into the time derivative of (5.155)
gives

ν̇ =−
∫ l

0
kv[ẏr(x, t)− ẏ(x, t)]2dx

+ pB− pT,

(5.159)

where

pB =[ẏr(0, t)− ẏ(0, t)]EI[y′′′r (0, t)− y′′′(0, t)]

− [ẏ′r(0, t)− ẏ′(0, t)]EI[y′′r (0, t)− y′′(0, t)]

=[ẏr(0, t)− ẏ(0, t)]( fBr− fB)

+ [ẏ′r(0, t)− ẏ′(0, t)](mBr−mB)

(5.160)

pT =[ẏr(l, t)− ẏ(l, t)]EI[y′′′r (l, t)− y′′′(l, t)]

− [ẏ′r(l, t)− ẏ′(l, t)]EI[y′′r (l, t)− y′′(l, t)]

=[ẏr(l, t)− ẏ(l, t)]( fTr− fT)

+ [ẏ′r(l, t)− ẏ′(l, t)](mTr−mT)

(5.161)
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denote the virtual power flows at the ends of the beam, in view of (5.4)-(5.7) and (5.9)-
(5.12). Finally, consider the fact that the flexible link has one driving cutting point asso-
ciated with point T and one driven cutting point associated with point B. Using (5.155)-
(5.157), (5.159) and Definition 3.7 completes the general proof. [16, pp. 341-343]

Furthermore, in view of [17, pp. 3-4], in case the force and moment at point T are
measurable and their respective counterparts at point B are controllable, the following
design is convenient to apply:

fTr = fT + k f T [ẏr(l, t)− ẏ(l, t)] (5.162)

mTr = mT + kmT [ẏ′r(l, t)− ẏ′(l, t)] (5.163)

fB = fBr + k f B[ẏr(0, t)− ẏ(0, t)] (5.164)

mB = fBr + kmB[ẏ′r(0, t)− ẏ′(0, t)], (5.165)

which gives

ν̇ =−
∫ l

0
kv[ẏr(x, t)− ẏ(x, t)]2dx

− k f B[ẏr(0, t)− ẏ(0, t)]2

− kmB[ẏ′r(0, t)− ẏ′(0, t)]2

− k f T [ẏr(l, t)− ẏ(l, t)]2

− kmT [ẏ′r(l, t)− ẏ′(l, t)]2.

(5.166)

From ν ≥ 0 it follows that

ẏr(0, t)− ẏ(0, t) ∈ L2

ẏ′r(0, t)− ẏ(′0, t) ∈ L2

ẏr(l, t)− ẏ(l, t) ∈ L2

ẏ′r(l, t)− ẏ′(l, t) ∈ L2.

(5.167)

Reference signals and their respective derivatives being bounded, the continuity of the
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states is ensured by the flexibility of the link. This leads to the asymptotic stability

ẏr(0, t)− ẏ(0, t)→ 0

ẏ′r(0, t)− ẏ(′0, t)→ 0

ẏr(l, t)− ẏ(l, t)→ 0

ẏ′r(l, t)− ẏ′(l, t)→ 0.

(5.168)

Adding the integral terms to the control equations ( 5.25) and ( 5.26) does not affect the
stability result [17, p. 5].

5.7.2 Zero-mass object 2

Theorem 5.2. The zero-mass object 2 described by (5.46) and (5.53)-(5.55), combined
with its control equations (5.90), (5.108), and (5.109), is virtually stable in the sense of
Definition 3.7.

Proof: It follows from (5.53) and the summation of (5.108) and (5.109) that

TccFr−Tcc F = (T1Fr−T1 F)+(T2Fr−T2 F) (5.169)

holds. Let the non-negative accompanying function be zero. Premultiplying ( 5.169) by
(TccVr−Tcc V )T and using (5.46), (3.16) and (5.90) yields

0 = pT1 + pT2− pTcc. (5.170)

Noting that the zero-mass object 2 has one driving cutting point associated with frame
{Tcc} and two driven cutting points associated with frames {T1} and {T2}, the theorem
is proven in view of Definition 3.7. [16, p. 177]

5.7.3 Open chain 1

Theorem 5.3. The open chain 1 described by (5.41), (5.42), (5.49), (5.50), (5.56), (5.57),
and (5.64), combined with its respective control equations (5.85), (5.86), (5.104), (5.105),
(5.110), (5.111), and (5.117) is virtually stable with its affiliated vectors B1Vr−B1 V and
B11Vr−B11 V being virtual function in both L2 and L∞ in the sense of Definition 3.7.
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Proof: Select the non-negative accompanying function of the open chain 1 as

ν = νB1 +νB11, (5.171)

where

νB1 =
1
2
(B1Vr−B1 V )T MB1(

B1Vr−B1 V ) (5.172)

νB11 =
1
2
(B11Vr−B11 V )T MB11(

B11Vr−B11 V ) (5.173)

are the non-negative accompanying functions assigned to the two rigid links affiliated
with the open chain 1. In view of [16, pp. 76-77] and with appropriate frame substitution,
it follows from (5.49), (5.50), (5.104) and (5.105) that

ν̇B1 ≤−(
B1Vr−B1 V )T KB1(

B1Vr−B1 V )

+(B1Vr−B1 V )(B1F∗r −B1 F∗)
(5.174)

ν̇B11 ≤−(
B11Vr−B11 V )T KB11(

B11Vr−B11 V )

+(B11Vr−B11 V )(B11F∗r −B11 F∗)
(5.175)

In view of (3.16), (5.41), (5.42), (5.56), (5.57), (5.64), (5.85), (5.86), (5.110), (5.111),
and (5.117), it results in

(B1Vr−B1 V )(B1F∗r −B1 F∗) = pB1− pB11 (5.176)

(B11Vr−B11 V )(B11F∗r −B11 F∗) = pB11− pT1 . (5.177)

Substituting (5.176) and (5.177) into (5.174) and (5.175) yields

ν̇ = ν̇B1 + ν̇B11

≤ − (B1Vr−B1 V )T KB1(
B1Vr−B1 V )

− (B11Vr−B11 V )T KB11(
B11Vr−B11 V )

+ pB1− pT1.

(5.178)

Consider the fact that the open chain 1 has one driving cutting point associated with frame
{T1} and one driven cutting point associated with frame {B1}. The proof is complete
using (5.171)-(5.173), (5.178) and Definition 3.7. [16, pp. 177-179]
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5.7.4 Open chain 2

Lemma 5.1. The open chain 2 described by (5.43)-(5.45), (5.51), (5.52), (5.58), (5.59),
( 5.62), ( 5.63) and ( 5.65), combined with its respective control equations ( 5.87)-( 5.89),
(5.106), (5.107), (5.112), (5.113), (5.115), (5.116) and (5.118). Let

ν2 = νB21 +νB22, (5.179)

be the non-negative accompanying functions assigned to the open chain 2, where

νB21 =
1
2
(B21Vr−B21 V )T MB21(

B21Vr−B21 V ) (5.180)

νB22 =
1
2
(B22Vr−B22 V )T MB22(

B22Vr−B22 V ) (5.181)

are the non-negative accompanying functions assigned to the two rigid bodies, piston and
cylinder, affiliated with the open chain 2. The time derivative of (5.179) is written as

ν̇2 = ν̇B21 + ν̇B22

≤ − (B21Vr−B21 V )T KB21(
B21Vr−B21 V )

− (B2Vr−B22 V )T KB22(
B22Vr−B22 V )

+ pB2− pT2

+(ẋr− ẋ)( fcr− fc),

(5.182)

where pB2 and pT2 denote the two virtual power flows by Definition 3.6 at the two cutting
points of the open chain 2.

Proof: In view of [16, pp. 76-77] and from ( 5.51), ( 5.52), ( 5.106), ( 5.107), ( 5.116),
(5.118), (5.49), (5.49), and (5.105), it follows that

ν̇B21 ≤−(
B21Vr−B21 V )T KB21(

B21Vr−B21 V )

+(B21Vr−B21 V )(B21F∗r −B21 F∗)
(5.183)

ν̇B22 ≤−(
B22Vr−B22 V )T KB22(

B22Vr−B22 V )

+(B22Vr−B22 V )(B22F∗r −B22 F∗)
(5.184)

hold. In view of (3.16), (5.43), (5.45), (5.58), (5.59), (5.62), (5.63), (5.65), (5.87)-(5.89),
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(5.112), (5.113), (5.115), (5.116) and (5.118), it results in

(B21Vr−B21 V )(B21F∗r −B21 F∗) (5.185)

= pB2− pB22 +(ẋr− ẋ)( fcr− fc) (5.186)

(B22Vr−B22 V )(B22F∗r −B22 F∗) (5.187)

= pB22− pT2 . (5.188)

Substituting ( 5.185) and ( 5.187) into ( 5.183) and ( 5.184) yields ( 5.182). The term
(ẋr− ẋ)( fcr− fc) in (5.182) prevents the virtual stability of the open chain 2 from being
held. Next, the virtual stability of the hydraulic actuator assembly is examined, which
will complete the virtual stability proof of the open chain 2. [16, pp. 179-180]

5.7.5 Hydraulic actuator assembly

A non-negative accompanying function for the fluid dynamics is given by the following
lemma:

Lemma 5.2. Consider the hydraulic cylinder dynamics described by ( 5.128), ( 5.129),
(5.141), and ( 5.142) and combined with the control equations ( 5.149) and ( 5.151)-
(5.153). The time derivative of

νc =
1

2β
( fpr− fp)

2 (5.189)

is
ν̇c ≤−K f p( fpr− fp)

2−Kx( fcr− fc)(ẋr− ẋ). (5.190)

Theorem 5.4. The open chain 2 described by (5.43)-(5.45), (5.51), (5.52), (5.58), (5.59),
(5.62), (5.63), (5.65), (5.128), (5.129), (5.141), and (5.142), combined with the control
equations ( 5.87)-( 5.89), ( 5.106), ( 5.107), ( 5.112), ( 5.113), ( 5.115), ( 5.116), ( 5.118),
( 5.149) and ( 5.151)-( 5.153), is virtually stable with its affiliated vectors and variables
B21Vr−B21 V , B22Vr−B22 V , and fpr− fp being virtual functions in both L2 and L∞, in the
sense of Definition 3.7.

Proof: The proof follows from Lemmas 5.1 and 5.4. Define the non-negative accompa-
nying function of the open chain 2 as follows:

ν = ν2 +
νc

Kx
, (5.191)
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in which ν2 is defined by (5.179) and νc is defined by (5.189), respectively. From (5.182)
and (5.190) if follows that

ν̇ = ν̇2 +
ν̇c

Kx

≤− (B21Vr−B21 V )T KB21(
B21Vr−B21 V )

− (B22Vr−B22 V )T KB22(
B22Vr−B22 V )

−
K f p

Kx
( fpr− fp)

2 + pB2− pT2

(5.192)

holds. Finally, consider the fact that the open chain 2 has one driving cutting point as-
sociated with frame {T2} and one driven cutting point associated with frame {B2}. Using
(5.179), (5.189), (5.191), (5.192), and Definition 3.7 completes the proof. [16, pp. 185-187]

5.7.6 Zero-mass object 1

Theorem 5.5. The zero-mass object 1 described by (5.40) and (5.61), combined with its
control equations (5.84) and (5.114), is virtually stable in the sense of Definition 3.7.

Proof: It follows from (5.61) and (5.114) that

BccFr−Bcc F = (B1Fr−B1 F)+(B2Fr−B2 F) (5.193)

holds. Let the non-negative accompanying function be zero. Premultiplying ( 5.193) by
(BccVr−Bcc V )T and using (5.40), (3.16) and (5.84) yields

0 = pB1 + pB2− pBcc. (5.194)

Noting that the zero-mass object 1 has two driving cutting point associated with frames
{B1} and {B2} and one driven cutting point associated with frame {Bcc}, the theorem is
proven in view of Definition 3.7. [16, pp. 180-181]
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6. EXPERIMENTAL IMPLEMENTATION

The designed controller was tested out in simulation with the FE model. As the con-
troller was seemingly functioning, it was implemented into the real-time environment us-
ing dSPACE CP1103 PPC Controller Board with ControlDesk 3.7.1 software as the user
interface. The sensors and filters used in the real-time setup are collectively presented in
Appendix A.

6.1 Sensors

The boom angle is measured from the rotating axis of the joint with an incremental en-
coder. The encoder used is Sick Stegmann DGS60, which is designed for rough environ-
mental conditions. The encoder can send 10000 pulses per 90◦, which gives a measuring
step of

encres =
360◦

4×10000
= 0.009◦. (6.1)

Three pressures are measured: the supply pressure and both cylinder chamber pressures.
The supply pressure is measured with a Trafag 8891.74 pressure sensor, with a measuring
range of 0−250 bar. For the chamber pressures A and B, Unik 5000 pressure sensors are
used, with the same measuring ranges.

The boom also has three MEMS (microelectromechanical system) sensors containing
IMUs (inertial measurement units), which measure linear accelerations and angular veloc-
ities with respect to three different axis. The sensors are mounted so that their placement
correspond to the nodal points in the created FE model of the boom.

The tip displacement is required for ( 5.22) and the tip angle for ( 5.24). These are hard
to measure directly, especially the tip displacement. In this thesis, the two variables are
obtained as estimates, from a dynamic observer. The observer is detailed in Appendix B.
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6.2 Signal conditioning

It is necessary to calculate derivatives using the signal values of previous time steps. Tra-
ditional backward differentiation is problematic due to the method causing noisy signals.
Therefore a real-time estimation of the derivatives of motion, presented in [3], is used to
obtain most of the derivatives required as follows:

ẋ(kh) =
5x(kh)+3x(kh−h)+ x(kh−2h)− x(kh−3h)−3x(kh−4h)−5x(5h)

35h
. (6.2)

Here x is the original signal, ẋ being its derivative and h being the sampling time.

In addition, GMA (Geometric Moving Average) filtering is applied to the pressure mea-
surements, calculated piston forces and piston velocities. The equation for the filter is
presented [7, p. 13] as

y(k) = (1−αgma)y(k−1)+αgmau(k), (6.3)

where αgma is a filter constant, for which a value of 0.04 was used. The signal to be
filtered is u.

6.3 Applied parameters and control gains

The parameters of the four rigid bodies associated with the closed chain were obtained
from a 3D CAD (Computer Aided Design) model and are presented in Table 6.1.

Table 6.1 Rigid body parameters.

Body frame mA [kg] rx [m] ry [m] IAzz [kgm2]
{B1} 58.22 0.10 0.14 5.88
{B11} 5.01 0.17 0.03 0.21
{B21} 2.32 0 0 0.22
{B22} 2.30 0 0 0.21

The mass of a rigid body, expressed in body frame {A}, is denoted by mA. The distance
from body frame {A} to the center of mass along x-axis, expressed in frame {A}, is
denoted by rx. Respectively, the distance along y-axis is denoted by ry. The moment of
inertia, expressed in frame {A}, around the center of mass about z-axis is denoted by IAzz.
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The four valve flow coefficients were determined from the valve specification sheet and
are presented in Table 6.2.

Table 6.2 Valve flow coefficients.

cp1 2.1e−8 cn1 2.1e−8

cp2 2.1e−8 cn2 2.1e−8

The friction parameters associated with the cylinder friction model are presented in Table
6.3.

Table 6.3 Friction parameters.

kcp 600 k f p 800
kcn 600 k f n 800
kvp −1800 zss 0.0001
kvn −1800 δ 1
Φ −1 δ1 500

The control gains for both the closed chain and flexible link are given in Table 6.4.

Table 6.4 Control gains.

Closed chain Flexible link
KF p 5e−8 k f v 19.3
Kx 0.025 kmv 5
λx 6 k f i 0.6

KB1 0 kmi 5
KB11 0 k f b 204
KB21 0 kmb 2022
KB22 0 λ f 180

λm 180

Other parameters include Young’s modulus of 210 GPa, bulk modulus of 1200 GPa and
the amount of discrete sections the flexible link is divided in was N = 5. Finally, a sam-
pling period of 2 ms was used.
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6.4 Path planning

A cubic function presented in [5, pp. 729-730] is used to generate a predefined trajectory
for the boom. A rest-to-rest path can be written as

q(t) = a0 +a1t +a2t2 +a3t3, (6.4)

where

a0 =−
q1t2

0(t0−3t f )+q0t2
f (3t0− t f )

(t f − t0)3 − t0t f
q′0t f +q′1t0
(t f − t0)2 (6.5)

a1 = 6t0t f
q0−q1

(t f − t0)3 +
q′0t f (t2

f + t0t f −2t2
0)+q′1t0(2t2

f − t2
0 − t0t f )

(t f − t0)3 (6.6)

a2 =−
q0(3t0 +3t f )+q1(−3t0−3t f )

(t f − t0)3 −
q′1(t0t f −2t2

0 + t2
f )+q′0(2t2

f − t2
0 − t0t f )

(t f − t0)3 (6.7)

a3 =
2q0−2q1 +q′0(t f − t0)+q′1(t f − t0)

(t f − t0)3 (6.8)

with

q(t0) = q0 (6.9)

q(t f ) = q f (6.10)

q̇(t0) = q′0 (6.11)

q̇(t f ) = q′f . (6.12)

Here q0 is the starting point and q f the final point. Respectively, t0 denotes the initial time
and t f the final time. Fig. 6.1 shows example trajectories for the boom angle and boom
velocity, designed using the cubic path algorithm. The rest-to-rest path starts from 22.68
degrees rising to 50 degrees, the transition time being 3 seconds.
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Figure 6.1 The designed path used in measurement 1.

The path presented was used in measurement 1, while for other measurements the transi-
tion time was increased to 10 seconds.
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7. RESULTS AND DISCUSSION

In this chapter measurement results using the designed VDC controller are presented. The
parameters and control gains used in the measurements are presented in section 6.3.

In measurement 1, the controller’s ability to dampen vibration was studied. For this pur-
pose a cubic path was generated using a fast transition time of 5 seconds. For comparison,
the same path was driven using a P-controller. Measurement 1 results are presented in
Figs. 7.1- 7.3. The results are presented so that first the reference and measured boom
angles are given, along with the tracking error between the two. Respective figures are
given for the tip position, piston velocity, piston position and piston force. As a reminder,
the tip position refers to the tip arc approximation (5.22) that uses the estimated tip dis-
placement obtained from the dynamic observer. The valve control signal is also given.
The comparison results for measurement 1, using P-control, are presented in Fig. 7.4.

In both control cases, the reference appears to be too fast, since both controllers struggle
to keep up with the reference. This was intended however, so that the differences between
the two control methods would be visible. As it is evident, with P-control the boom tip
starts vibrating around the desired steady state value. With the VDC, the tip vibration is
dampened relatively swiftly. The tracking error is also much smaller during the rise time
and steady state with the VDC.

In measurements 2-4, a longer transition time was applied to achieve better performance
during the transition. A sine wave was also added to the reference signal, starting from
around 30 seconds of running time. An amplitude of 2 degrees was used with each mea-
surement, while the frequency was varied. With measurement 2 a frequency of 1 Hz was
used, with measurement 3 a frequency of 3 Hz and with measurement 4 a frequency of
10 Hz was used. The results for measurement 2 are presented in Figs. 7.5- 7.7, while
measurement 3 is presented in Appendix C and measurement 4 in Appendix D.
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Figure 7.1 Measurement 1 results (1/3).
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Figure 7.2 Measurement 1 results (2/3).
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Figure 7.3 Measurement 1 results (3/3).
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Figure 7.4 P-control comparison for measurement 1.
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Figure 7.5 Measurement 2 results (1/3).
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Figure 7.6 Measurement 2 results (2/3).
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Figure 7.7 Measurement 2 results (3/3).
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During the sine reference the tracking errors increase considerably, which appears to be
caused mainly by a phase shift between the reference and measured variables. It can also
be seen from the piston forces and piston velocities that there is room for improvement,
as the respective reference and measured variables differ from each other. It is possible
to improve the equivalency of these signals by tuning the parameters and control gains.
The stability of the boom and the effectiveness of vibration dampening are lost relatively
easily, however. Because of this, the controller’s ability to track the boom angle and
tip position were prioritized, when tuning the controller. The operational range of the
target system can be defined as the cylinder stroke, which is between 0−0.3 m. Stability
of the system is able to be maintained in the whole operational range, with appropriate
parametrization. The accuracy of control results seem to depend on the operational point.
To address the controller’s inability to track a sine reference well, it was experimented
with in simulation also, with similar results. This may indicate an issue in the feedforward
design of the controller.

A lot of filtering was also required to obtain acceptable signals that would keep the system
stable. By no means can it be stated that the filtration is optimal, thus it also may have
an effect on the results. The derivate approximation given in (6.2) was used to avoid the
need of filtering backward differentiated signals. The value of the constant αgma, used in
the GMA-filter in (6.3), was also a compromise between disturbance attenuation and low
phase lag [7, p. 13].

Due to the strong, inherent nonlinearities of the dynamics of hydraulics and flexible
structure, controlling the target system proved to be a challenging task. Especially the
parametrization process was very iterative and required compromises. Getting accurate
results on the whole operational range, using the same control gains and other parameters
did not seem plausible. That being said, an important aspect of the VDC approach was
disregarded in the scope of this thesis. This aspect is parameter adaption, which could
potentially improve the control behavior across the board, including during a sine refer-
ence. The implementation of parameter adaption would add approximately 40 lower and
upper bounds for parameters, along with the same amount of control gains. This increases
the difficulty of the parametrization process, which already is a tedious task. However, to
achieve more accurate results in other points of the operational range, implementing the
parameter adaption can be treated as a necessity and should be the next step in future re-
search. Using non-constant friction parameters and effective bulk modulus, for example,
naturally makes sense due to the nonlinear nature of friction and hydraulics.
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8. CONCLUSIONS

This thesis was a part of an experimental research project at the department of Intelligent
Hydraulics and Automation (IHA) in Tampere University of Technology (TUT). The in-
stallation under review was a single-link flexible manipulator attached to a rigid base
structure and actuated using a hydraulic cylinder. The flexible link was made out of a
strong steel hollow section, dimensioned 60× 60× 3 mm and 4.5 m in total length. A
load mass of 60 kg was attached near the tip to achieve static bending and a low natu-
ral frequency. The objective of this thesis was to first build a simulation model for the
rotating flexible beam using the finite element method (FEM) in Matlab and Simulink
environment. Then a controller for the system was to be built using the virtual decompo-
sition control (VDC) approach. The designed controller was also to be implemented into
the real-time environment using dSPACE and ControlDesk software. The ultimate goal
was to study the VDC’s performance in the target system.

A predefined trajectory was planned for the system by using a cubic polynomial. First,
the VDC’s ability to dampen vibration was tested. A fast rest-to-rest path was generated
for this purpose. The same path was then driven by using a simple P-controller. This was
mainly to verify that the boom tip would start vibrating. The VDC succesfully dampened
any vibration and outperformed, not surprisingly, the P-control. The VDC’s dynamic
capabilities were then tested by adding a sine reference, which was delayed by 30 seconds
with respect to the running time of the control system. It was noticed that the VDC has
difficulties to follow a sine reference accurately, which was mainly caused by a phase
shift between the reference and measured variables. This likely indicates an inaccuracy
in the feedforward portion of the controller.

An important aspect of the VDC approach, namely parameter adaption, was not imple-
mented in the scope of this thesis. Considering the highly nonlinear dynamics of the target
system, adding adaptive capabilities to the designed VDC could potentially improve its
performance considerably. The greatest challenge in implementing the parameter adap-
tion is parametrization, due to a large number of additional control gains along with lower
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and upper bounds for each parameter to be adapted.

Another future challenge is the validation of the tip position. In this thesis an arc approx-
imation was used as the tip position. Furthermore, this approximation was formed by
using an estimate of the tip displacement, obtained from a dynamic observer. The con-
troller tracks a given tip position reference, but there is no knowledge of the validity. This
is a fundamental problem, when it comes to the tip position control of flexible arms.

Despite the challenges, the results of this thesis demonstrate the effectiveness and po-
tential of the VDC approach in controlling flexible arms with hydraulic actuation. At
the core, the most problematic side of the VDC approach is the parametrization. Future
work should include the implementation and tuning of parameter adaption into the control
structure. Improving the tip position approximation, along with its validation, should also
be areas of future consideration.
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APPENDIX A. SENSORS AND FILTERS USED

This appendix details the measurements and respective sensors, along with the filters used.
Table 1 presents the sensors.

Table 1 Sensors used.

Measured parameter Sensor
Supply pressure Trafag 8891.74

Chamber A pressure Unik 5000
Chamber B pressure Unik 5000

Boom angle Sick Stegmann DGS60
Ang. velocity and lin. acceleration 3×MEMS

Table 2 presents the filtered signals. The filter assoaciated with the optimal estimation of
derivative refers to (6.2), while GMA-filter refers to (6.3).

Table 2 Filters used.

Description Signal Filter
Ref. tip arc velocity ẏd(l, t) Optimal estimation of derivative

Tip arc velocity ẏ(l, t) Optimal estimation of derivative
Ref. tip angular velocity ẏ′d(l, t) Optimal estimation of derivative

Tip angular velocity ẏ′(l, t) Optimal estimation of derivative
Boom angular velocity θ̇ Optimal estimation of derivative

Change in the req. piston force ḟpr Optimal estimation of derivative
Supply pressure ps GMA

Chamber A pressure pa GMA
Chamber B pressure pb GMA

Required piston force fpr GMA
Piston force fc GMA

Measured piston force fp GMA
Required piston velocity ẋr GMA

Piston velocity ẋ GMA
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APPENDIX B. DYNAMIC OBSERVER

A dynamic observer is a well known mathematical algorithm in modern control theory
that is used for state estimation. In practice, the observer is a mathematical model of a
given system. In this case the model is a FE presentation of the beam, similar with the
one given in chapter 4. Measured angular velocity of the boom tip, obtained from an IMU
sensor, is used as the first input to the observer. The observer then gives estimates of all
the nodal variables. The accuracy of the observer was evaluated by comparing measured
angular velocities from the IMU sensors to their respective estimates, obtained from the
observer. The load force at the tip was the second input to the observer. The force was
implemented as a function of the tip angle using a simple lookup table. Design of the
observer can be found in [8, pp. 485-490]. Constructing the dynamic observer was not
part of this thesis. More details on the implementation can be found in [13], although the
mathematical formulation is also given in this appendix.

A dynamic system can be presented using the state-space formulation:

{ẋ}= [A]{x}+[B]{u} (1)

{y}= [C]{x}+[D]{u}. (2)

Considering ( 4.33), the equation of motion corresponding to the FE model of the boom
can be written as:

[M]{q̈}+[C]{q̇}+[K]{q}= F{u} (3)

The second order system is transformed into a first order system using the state-space
presentation. The presentation can be written as [8, p. 441]

{ẋ}= d
dt

{
q
q̇

}
=

{
q̇

−[M]−1[C]q̇− [M]−1[K]q+[M]−1[F ]u

}
(4)

=

[
0 I

−[M]−1[K] −[M]−1[C]

]{
q
q̇

}
+

[
0

[M]−1F

]
u (5)

≡ [A]{x}+[B]{u} (6)
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A dynamic observer can then be expressed as

{ ˙̂x}= [A]{x̂}+[B]{u}+[L]({y}−{ŷ}) (7)

{ŷ}= [C]{x̂}+[D]{u}, (8)

where [L] contains observer gains and {y} denotes the sensor output that is provided into
the observer dynamics. The variables with (̂) denote the estimated variables.

LQR (Linear Quadratic Regulator) algorithm is used for deriving the observer gains. This
is made possible by treating ([A]T , [C]T ) as if they were ([A], [B]) in the control law design.
This is due to the fact that the eigenvalues of a transpose matrix are equal to those of the
respective original matrix, written as follows:

λi([A]− [L][C])≡ λi([A]T − [C]T [L]T ), (9)

where λi contains the eigenvalues. The observer gains are obtained by solving the ARE
(Algebraic Riccati Equation):

[A][S]+ [A]T [S]− [S][B][R]−1[B]T [S]+ [Q] = 0, (10)

where R and Q denote positive definite or semidefinite weighting matrices, which are
given design variables. The Riccati matrix, denoted by S, is solved using the ARE. Then
the feedback gain matrix can be solved from

[G] = [R]−1[B]T [S]. (11)

To obtain the observer gain matrix [L] from ( 11) instead of the LQR gain matrix [G],
([A], [B]) are replaced with ([A]T , [C]T ) in the ARE (10). [8, pp. 472-477]
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APPENDIX C. MEASUREMENT 3 RESULTS

This appendix presents the results of measurement 3.

Figure 1 Measurement 3 results (1/3).
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Figure 2 Measurement 3 results (2/3).
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Figure 3 Measurement 3 results (3/3).



78

APPENDIX D. MEASUREMENT 4 RESULTS

This appendix presents the results of measurement 4.

Figure 4 Measurement 4 results (1/3).



APPENDIX D. Measurement 4 results 79

Figure 5 Measurement 4 results (2/3).
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Figure 6 Measurement 4 results (3/3).
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