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Nowadays, with the rapid development of communication technology, plenty of new ap-

plications of 5G and IoT have appeared which requires high accuracy positioning skills. 

Wi-Fi based fingerprinting method is one of the most promising approaches for indoor 

positioning. Crowdsourcing is an appropriate fingerprint data collecting method on one 

hand. However, it is vulnerable to different kinds of crowdsourcing errors which add er-

rors to the fingerprint database and can decrease the accuracy of positioning on another 

hand. 

The main target of this thesis is to statistically analyze the behavior of the crowdsourcing 

data collected by different devices, and the effects of different kinds of intentionally or 

unintentionally added errors through MATLAB. 

From the analysis results, it can be concluded that two different kinds of manually added 

errors perform complete differently. Data modified with all constant RSS values, out of 

author’s expectation, achieves a decent accuracy similar to the original data. While data 

modified with only position error shows a behavior that the positioning accuracy drops 

with the increase of modified data proportion. Most of the distributions are closest to the 

Burr type XII distribution, which is particularly useful for modeling histograms. 
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1. INTRODUCTION 

1.1 Introduction 

Positioning is becoming a more and more significant part in wireless communication. The 

development of 5G and Internet of Things (IoT) in the near future has set new require-

ments, such as accuracy and reliability, for positioning technology. Mobile communica-

tion technology is rapidly developing as well as mobile devices, in which smartphones 

are especially pervasive to the whole world. Location-based services (LBS), at the same 

time, offer targeted services with geographic position, are also widely used in almost 

every field, and can provide extra value of exiting devices. Positioning with high accuracy 

is significant in 5G communication. Accuracy is required to be at one meter or even below 

[5]. Existing Global Navigation Satellite System (GNSS) and wireless fingerprinting po-

sitioning method can only achieve the accuracy of 3 to 4 meters [5]. With the development 

of Internet of things (IoT), a growing amount of applications which require location-based 

services have emerged [7]. Nowadays Global Navigation Satellite System is ubiquitous 

all around the world and is able to offer outdoor positioning services with good accuracy. 

However, it has a poor performance for indoor positioning, the accuracy of which is in-

tensively affected by three main factors:  

1. There is usually a large quantity of obstacles at indoor environment, such as doors, 

walls and floors, which causes serious blockage of the signal.  

2. Multi-path effect is common for indoor environment, which causes large fluctuation of 

the signal. 

3. The signal received from satellites in indoor scenarios is quite weak, thus the indoor 

operational carrier-to-noise ratio is fairly low. 

Thus, other positioning methods should be considered when applying indoor positioning. 

There are some solutions, such as Infrared Positioning (IR) [16] and Ultrasound Position-

ing (US) [22], which are extremely accurate, but are not widely adopted and limited by 

the effective range. As mentioned in [33], about 70% of the positioning systems uses 

standard wireless network technologies, including Wi-Fi, Bluetooth, Radio Frequency 

Identification (RFID) and Ultra High Frequency (UHF). Among them, Wi-Fi is the one 

with the largest amount of existing infrastructure, and Wi-Fi fingerprinting-based ap-

proaches are the most popular solutions [23]. 

From the perspective of system topology, there are two types of positioning system as 

self-positioning and remote-positioning [20]. Mobile device acts as the measuring unit in 
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a self-positioning system. Some transmitters with known positions send signal to mobile 

device and the positioning is done through mobile device. On the other way around, in a 

remote-positioning system, the mobile device acts as the transmitter whereas some fixed 

measurement units receive the signal from the mobile device and calculate the position 

of the mobile device. There is always a requirement for the measurement unit, thus the 

advantage of a self-positioning system is with a cheap existing infrastructure and the ad-

vantage of a remote-positioning is with power efficient mobile device [20]. The priority 

of selection between these two systems depends on the real scenario in which cost may 

vary greatly.  

In this thesis, Wi-Fi fingerprinting with RSS method is used for indoor localization. How-

ever, since it requires huge amount of fingerprint data to achieve high accuracy, the big-

gest challenge for Wi-Fi fingerprinting-based approach is to lower the cost and time of 

fingerprint data collecting.  

Crowdsourcing, as a way to distribute the tasks to undefined crowd can be utilized to save 

labor cost and increase the data collecting efficiency [9]. During the process of 

crowdsourcing data collecting, erroneous data caused by different reasons intentionally 

or unintentionally will inevitably occur, which will decrease the accuracy of the position-

ing result and decrease the reliability of the positioning system. With appropriate quality-

control of crowdsourcing data, the result can be greatly improved. The target of this thesis 

is to statistically analyze the behavior of different potential errors caused by crowdsourc-

ing as well as the impact of erroneous data on the positioning system.  

1.2 Thesis objectives 

This thesis focuses on the crowdsourcing impact on indoor fingerprinting positioning ac-

curacy. The specific objectives are as follows: 

1. Collect fingerprint data of all floors in a building of TUT with different crowdsourcing 

devices by using an Android application.  

2. Build a MATLAB project to simulate the Wi-Fi positioning of the building, and get 

Cumulative Density Function (CDF) of errors of the result as the positioning accuracy 

with different crowdsourcing dataset. 

3. Manually add different types of errors to the dataset to simulate crowdsourcing errors. 

4. Statistically analyze the performance of crowdsourcing data with and without errors by 

comparing CDF error curves, power maps and KL divergence result in MATLAB. 

1.3 Author’s contribution 

Author’s contributions are as follows: 
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 Author performed state-of-the-art review about RSS based indoor positioning 

methods and crowdsourcing. 

 Author has collected some measurements to the fingerprint database, and used 

MATLAB code to convert the original downloaded json format file to sorted read-

able data. 

 Author analyzed the fingerprint data by comparing positioning estimation results 

with different datasets as training data. The positioning result is shown in the fig-

ures of CDF error curves from Chapter 6. 

 Author added synthetic error data to fingerprint data to analyze error impact on 

positioning result.    

 Author utilized the Kullback-Leibler Divergence (KLD) to find the best distribu-

tion for histograms of different datasets and distribution for histograms of power 

map differences.  

 Author has published two scientific papers [54][55] based on the measurements 

and analysis of this thesis. 

1.4 Organization 

Organization of the thesis is as follows: 

Chapter 2 briefly introduces some available indoor positioning methods and metrics of 

positioning, and mainly focus on the explanation of basic principle of RSS fingerprinting-

based approach.  

Introduction of crowdsourcing is presented in Chapter 3. The content is about the basic 

meaning of crowdsourcing and how it is related to and used in location based service. 

Also, the main error sources in crowdsourcing for positioning are mentioned, as well as 

some scenarios of unintentional and intentional errors occurrence in crowdsourcing. 

Chapter 4 is about the explanation of Wi-Fi positioning error calculation or how the ac-

curacy of positioning is attained, and the algorithm used for positioning. 

Chapter 5 explains the process of measurement campaign. It gives a brief introduction 

about the Android application used in data collecting and the cloud server used for data 

storing. Here, the procedure of erroneous data creation is also mentioned, and the further 

analysis is based on these data.  

Then, the main analysis of data is presented in Chapter 6. Here, several different methods 

to analyze different crowdsourcing dataset and the results are shown. 

Finally, Chapter 7 summarizes the thesis and presents the conclusions. The open chal-

lenges for this topic are also presented. 
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2. LOW-COST SCALABLE INDOOR POSITIONING 

METHODS 

2.1 Approaches to indoor positioning 

There are different available technologies for building an indoor positioning system as 

well as different methods for positioning estimation. Due to the limitation and complexity 

of indoor environment, the solution to build an indoor positioning system with high ac-

curacy and stability remains open. This section presents a brief overview of indoor local-

ization technologies and measurement techniques. 

2.1.1 Technologies for indoor localization 

There are a lot of wireless technologies that can be applied for indoor positioning and 

they can be sorted by the frequency they use and the transmit distance they can achieve. 

As long distance wireless technologies, Frequency Modulation (FM), Global System for 

Mobile Communication (GSM) and Code Division Multiple Access (CDMA) have been 

used for a long time.  

FM is used in radio broadcasting and the frequency of the radio spectrum is usually from 

87.5 to 108.0 MHz. FM signal has a good penetration ability and it can transmit through 

the wall easily, thus there is no complicated requirement for the receiver. But since FM 

signal has a long wavelength, signal strength does not vary drastically with the position 

change in short distance, thus it’s not suitable for indoor positioning. There is one exam-

ple in [2], the accuracy is only around 50 meters when the cumulative density function of 

error curve reaches 70%.  

GSM/CDMA is used in cellular network communication. GSM is applied in Second Gen-

eration (2G) communication and CDMA is in Third Generation (3G) communication. 

The frequency GSM uses varies from 850 MHz to 1900 MHz and up to 2100 MHz in 

CDMA. Although the existing infrastructures of them fulfill the location based service 

requirement, the development of them in positioning area is limited by the heavy patent 

[3]. 

Wi-Fi, as one of the most ubiquitous wireless technology, is widely used in building to 

provide wireless network service. There are two license-exempt bands as 2.4 GHz and 5 

GHz utilized in Wi-Fi [19]. Since Wi-Fi infrastructure exists in most building and the 

signal can cover most part of the whole building, and the mobile device such as mobile 

phone or laptop is available for everyone, indoor positioning with Wi-Fi technology can 

be implemented easily and without heavy cost. Thus, it has attracted plenty of research 

focus and it is one of the most promising method for indoor positioning.  
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ZigBee is a specification based on IEEE 802.15.4 protocol. It is used in short distance 

duplex transmission. It is characterized by low complexity, low power consumption, low 

cost and low transmission rate. It’s usually used in automatic-control and remote- control 

area. Fang et al [4] has introduced a ZigBee indoor positioning method with good accu-

racy. 

Bluetooth uses same band as Wi-Fi, and is a personal area network standard. Bluetooth 

low energy (BLE) is one technology which has lower power consumption and cost com-

pared to classical Bluetooth. As mentioned in [10], propagation of BLE and WLAN signal 

are similar and positioning with BLE technology is completely feasible.   

In Ultra-Wide-Band (UWB), pulses of very short duration are transmitted through high 

frequency band. The transmission of UWB does not interfere with other narrow band and 

carrier wave transmission [11].  

Radio Frequency Identification (RFID) is a technology that has been widely used by com-

panies in warehouse management for scanning and picking goods [12]. Also, it’s used for 

identifying books in library. One problem in RFID-based positioning, which character-

izes in fact most of the Received Signal Strength (RSS)-based positioning approaches, is 

that the RSS fluctuates easily with the dynamic variation of environment [15]. 

Narrow band IoT (NB-IoT) and Ultra-Narrow band IoT (UNB-IoT) are important brands 

of IoT and new technologies in IoT and 5G communication area as well. They are Low 

Power Wide Area Network (LPWAN) radio technology standards and have advantages 

as low power consumption requirement and can extend the battery life of devices [14]. 

The authors in [13] study the performance of UWB and Narrow Band (NB) propagation 

of indoor positioning. The result shows that both UWB and NB are promising technolo-

gies for indoor positioning. Some characteristics of the technologies mentioned above are 

listed in Table 1. 

According to [19], there are two fields of indoor positioning methods: the first one is 

based on 2D model and the second one is based on 3D model. The previous one includes 

Bluetooth, ZigBee and Wi-Fi. They are some technologies network of which has already 

been widely distributed. The latter one includes infrared, UWB and ultrasonic. 
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Table 1. Different technologies for indoor positioning 

2.1.2 Measurement principles 

According to [8][20], there are general four measurement principles for indoor position-

ing: Time of Arrival (ToA) or Time Difference of Arrival (TDoA), Angle of Arrival 

(AoA), Received Signal Strength (RSS) and hybrid techniques [49]. 

1. Time of Arrival (ToA) or Time difference of Arrival (TDoA) 

ToA method measures signal’s transmission time from the transmitter to the receiver. 

Then the distance between transmitter and receiver can be easily attained by simply mul-

tiplying transmission time by the speed of light.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑐 ∗ 𝑇𝑜𝐴     (2.1) 

c represents the speed of light in this equation. However, to get a high accuracy, wide 

bandwidth is required, which results in expensive hardware cost [2]. Instead of absolute 

time of arrival, TDoA method measures time difference between departing from a trans-

mitter and arriving a receiver. 

2. Angle of Arrival (AoA) or Angle Difference of Arrival (ADoA) 

AoA method measures the transmission direction of received signal. Usually, it is imple-

mented with an antenna array. By calculating the Angle Difference of arrival (ADoA) of 

Wireless Tech-
nology 

Range Dedicated In-
frastructure 

Power con-
sumption 

Disadvantages 

FM 100 km No Low Signal varies lit-
tle in small dis-
tance 

GSM/CDMA 100 m~10 km No Moderate Highly patented 

Wi-Fi 10-100 m No (for most 
places) 

High High variance 
signal 

ZigBee 10~100 m (line-
of-sight) 

Yes Very low Cover range is 
limited 

Bluetooth 10 m Generally, no Moderate Cover range is 
limited 

UWB 4-20 m Yes Low Cover range is 
limited 

RFID Usually 10 cm-1 
m 

Yes Low Cover range is 
limited 
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individual antennas, the incident angle of received signal can be estimated. But consider-

ing the impact of multi-path transmission in line of sight situation, it is still hard to get an 

accurate AoA result without other hardware device [2]. 

3. Received Signal Strength (RSS) and fingerprinting 

RSS represents the power of received signal typically in dBm form. Basically, stronger 

RSS means a shorter transmission distance when the transmission power of transmitter is 

stable. From this aspect, RSS can be directly used as a distance parameter to estimate the 

distance, and then, trilateration method can be utilized to implement positioning. Trilat-

eration is a conventional method for estimating position, which is used in GNSS. To 

achieve positioning, coordinates of three or more transmitters or Access Points (AP) and 

the distances between each AP and the mobile user (MU) are required [3]. The most im-

portant procedure is the measurement of the Signal Strength (SS), and convert it to re-

sponding distance with accuracy. For indoor positioning, because of multi-path fading 

and fluctuation of signal power, there is no stable linear relation between RSS and the 

transmission distance, thus, high accuracy cannot be typically achieved with trilateration. 

In general, TOA, AOA and RSS based trilateration methods are not available for non-

line-of-sight (NLOS) environment [46]. To provide a better performance of indoor posi-

tioning, combinations of RSS and fingerprinting are proposed to offer better accuracy.   

   

(a)           (b) 

  

(c)         (d) 

Figure 1. Four basic approaches for indoor localization: a) Time of Arrival, b) An-

gle of Arrival, c) Hybrid ToA and AoA, d) Received signal strength and finger-

printing [8]  
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4. Hybrid techniques  

Hybrid techniques which combine ToA, AoA and RSS is possible. For example, hybrid 

ToA/AoA technique uses data from both ToA and AoA. It can reduce the requirement for 

nearby anchors [2] and positioning is possible with only one anchor. Authors in [7] have 

introduced a practical hybrid ToA/AoA appliance with only one anchor in an UWB po-

sitioning system. The above mentioned four basic measurement principles for indoor po-

sitioning are also shown in Figure 1. 

Among these positioning methods, ToA and TDoA requires strict time synchronization 

and AoA requires access point which is equipped with special hardware to estimate the 

angle, while the hybrid method requires both. The distance between transmitter and re-

ceiver cannot be directly attained through RSS, and even if the location of the receiver 

keeps still, RSS can also vary for shadowing effects as shown in Figure 2. There are 8 

RSSs in each subplot heard from an AP measured at different time but at the same meas-

urement location. It is clear that the RSSs heard from all 4 APs fluctuate with time. 

 

Figure 2. Example of RSS fluctuation of static position with different time 

The above-mentioned effect may be also due to the non-stationary characteristic of the 

RSS value. Although RSS heard by each AP might vary with time, the mean value of 

RSSs of a same group of APs would not fluctuate as much as [43] mentioned. 

Thus, to mitigate the error effects caused by RSS fluctuation, one available solution is to 

use a database with large amount of data as the fingerprint data, and RSS with finger-

printing is such another way to implement positioning. The idea is: if RSS of all locations 

are known, it is possible to create a power map of the building, which has each locations’ 

RSS from all access points. For the estimation phase, by comparing the RSSs data col-

lected by the user’s device with the power map database, the data in which RSSs match 
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best can be used as the estimated result. RSS with fingerprinting is the cheapest method 

since it does not require other additional hardware than a smartphone. However, it cannot 

perform well in a dynamic environment since the fingerprint data changes with the envi-

ronment. In addition, when the value of RSS does not vary considerably with the change 

of location, the accuracy will also be bad. 

In addition, ToA/TDoA, AoA/ADoA, and hybrid ToA/AoA based technologies can be 

designated as Time and Space Attributes of Received Signal-Based Positioning Technol-

ogy (TSARS) which is distinguished from RSS based positioning according to the clas-

sification done in [19]. The common feature of TSARS based positioning is using time 

and space attributes of received signal. In this way the classification of indoor positioning 

can be drawn as in Figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3. Indoor positioning classification [19] 

From the perspective of [17], Wi-Fi indoor positioning algorithm can be sorted into three 

categories: proximity algorithm, triangulation algorithm and scene analysis algorithm. 

Triangulation algorithm is mentioned as ToA, AoA and hybrid ToA/AoA above. Prox-

imity algorithm is similar with the RSS fingerprinting method, but it’s more intuitive, 

which just uses the RP with highest RSS value as the estimated location. The third one, 

scene analysis algorithm is the data matching method and fingerprinting is one ubiquitous 

approach of it. 

2.2 Access Point 

An AP is a device which has the tasks of a centralized unit in a Wireless Local Area 

Network (WLAN), and it performs as a transmitter and receiver or simply called as trans-

ceiver in the WLAN. This transceiver connects a wired backbone LAN with wireless 

clients and provides wireless clients with wireless connections service. 

According to [5][6], Multiple MAC addresses might come from the same location or the 

same AP since the AP can be with multiple antennas or a physical AP can support several 

MAC addresses. It is possible to remove some APs in training phase to mitigate the cal-

culation complexity and at the same time provide good accuracy. In the measurement 

Indoor Positioning 

Technology based 

on Wi-Fi 

RSS Based 

TSARS Based 

Trilateration 

Approximate perception 

Scene analysis 

AoA/ADoA 

ToA/TDoA 

Hybrid Techniques 
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campaign of this thesis, a large number of APs are heard, and some MACs are from the 

same AP. Besides, there might be some rogue APs, such as the hotspot of laptop or mobile 

device, which are also measured and can be one of the reason for having such large num-

ber of MACs in the building. 

2.3 Fingerprinting 

Fingerprinting-based positioning refers to the positioning approach using a database with 

collected data from known locations [18]. The collected data usually is the RSSs, but the 

devices used as transmitter and receiver varies with the communication technology uti-

lized for positioning. No matter what technology is used, the basic process of fingerprint-

ing is compatible for all. 

There are two phases in fingerprinting method including offline training phase and online 

positioning phase [25]. The target of offline training phase is to build a fingerprint data-

base which covers the positioning area. The fingerprint data is made up of coordinate of 

the location and the RSSs heard from all APs at this location as well as the Media Access 

Control (MAC) addresses of all available APs. Each location corresponds to a unique 

fingerprint data. Fingerprint data is collected at Reference Points (RPs), which are se-

lected out from the indoor map and they are usually evenly distributed on the map to 

provide a good coverage of the positioning area.  

 

Figure 4. Example figure of fingerprint data on floor map 

Then, the online positioning phase or estimation phase is conducted based on the finger-

print database. At this phase, user at a location collects RSSs heard from all available APs 

at that location, and the positioning is conducted by comparing the collected RSS meas-

urements with the database with an algorithm [1]. Fingerprint data with closest RSSs will 

be selected out, and its coordinate is the estimated result. Large amounts of measurements 

and calculations are needed to guarantee good positioning accuracy [2]. Figure 4 shows 
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an example of the fingerprint data on the map from an overlook vision. Each blue circle 

represents for a fingerprint data collected in training phase, and it is point-wisely collected. 

Each red cross represents an estimated position. Figure 5 shows the training and estima-

tion process of fingerprinting method. 

 

Figure 5. Training and estimation process of fingerprinting method [1] 

In this thesis, the positioning estimation is done based on a log-Gaussian likelihood 

method [10]. Let’s denote 𝑅𝑆𝑆0 as one of the observed RSS values, 𝑢 as the index of 

fingerprint data, and 𝑅𝑆𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑢) as one RSS value from the training dataset. 

𝐹(𝑢) = 𝑙𝑜𝑔 (
1

√2𝜋 ∙ 𝜎2
∙ 𝑒

−
(𝑅𝑆𝑆0−𝑅𝑆𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑢))

2

2𝜎2 )    (2.2) 

The comparison is done under the premise that compared observed RSS and training data 

are from the same AP, which means with same MAC address. 𝜎 in the equation is a con-

stant value representing the shadowing standard derivation. Here 𝜎 is a fixed value as 7 

dB. After all values of RSS heard from APs are computed through this calculation, one 

final matrix of data can be attained by sum all log Gaussian likelihood values of one 

observed point. 

𝐹 = ∑ 𝐹(𝑢)     (2.3) 

𝑢

 

By sorting the values in the matrix from highest to lowest, the first training point is se-

lected out as the estimation result. To reduce the effect caused by noise, K Nearest Neigh-

bor (KNN) method is used, which is widely used in data mining and machine learning 

[50]. Instead of simply using one best fit point as the estimation result, KNN takes the K 

best fit points out and exploits the average value of the K data as the estimation result. In 
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this thesis, 3 best estimation results are used, and the final estimation coordinate is the 

average of the 3 points coordinate.     

RSS based fingerprinting method can offer a high accuracy for indoor positioning with 

existing infrastructure. Four RSS based fingerprinting methods are compared in [52], and 

all four methods can reach the accuracy of 2-3 meters for 90% of the estimation result. 

However, the attainable accuracy is to a great extend based on the amount of data in the 

training database. It’s time consuming and laborious to collect data to build such a data-

base which is also one of the biggest challenge for fingerprinting method. Thus, 

crowdsourcing, as a feasible solution to relieve the burden of site survey is selected here 

and utilized in the fingerprinting collecting. 

2.4 Wi-Fi positioning metrics 

Usually, accuracy is the main metric that we look at when evaluating a positioning system. 

Besides positioning accuracy, there are still some other benchmarks which are important 

to a positioning system. Thus, it’s necessary to consider all metrics together when build-

ing a positioning system [20]. The metrics are as follows: 

1. Accuracy/Measurement uncertainty 

Still, accuracy is one of the most significant metric for a positioning system. It intuitively 

shows how well one positioning system performs. Accuracy is often represented by the 

mean distance error [19] which is the average Euclidean distance between true position 

and estimated location. An accuracy with smaller value of distance indicates better posi-

tioning result. Different systems have different requirements for accuracy, and the one 

with best accuracy may not be the best choice since all the facts should be considered. 

Measurement uncertainty is now sometimes used instead of accuracy, and it shows the 

quantification of a standard deviation [19]. 

2. Precision 

CDF is usually used for measuring the precision of a positioning system. It tells about 

how well the accuracy a specific variable proportion of data can reach. The difference 

between accuracy and precision is that precision shows more detail about the positioning 

result, and the robustness of the system can be observed through precision rather than 

accuracy. Thus, in this thesis the analyze is mostly based on the precision of the system, 

but accuracy is still denoted.  

3. Complexity 

Complexity of a positioning system can be divided into three aspects: hardware complex-

ity, software complexity and operation complexity [20]. Take Wi-Fi RSS based finger-
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printing system for example, existing infrastructure greatly reduced the hardware com-

plexity, and the Android or IOS based software also has low complexity. Usually the 

complexity is directly related to the cost of the system, which to a great extent decides 

whether this system is practical or implementable, thus it’s also an important criterion. 

4. Robustness 

A highly robust system has the ability to function well even if error occurs. The robustness 

of RSS based system is mentioned in this thesis. 

5. Scalability 

The scalability of a positioning system represents its adaption to new environment, 

whether the system can resist the impact of space extension. For indoor environment, the 

further the distance between AP and mobile device, the worse it performs for positioning. 

Dimension of space is also the measurement of the scalability, usually with 2D and 3D 

spaces. 

 

 

 



14 

3.  CROWDSOURCING FOR POSITIONING  

This chapter will introduce the concept of crowdsourcing and about how it works in and 

is related with fingerprinting indoor positioning. The calibration issue and the existing 

challenge for crowdsourcing field are also referred.  

3.1 Crowdsourcing 

Crowdsourcing is a portmanteau of crowd and outsourcing. It refers to the process that 

tasks are outsourced to undefined crowd and solved through crowd’s effort. As project’s 

size expands and becomes increasingly complex, new paradigms and concepts including 

crowdsourcing are needed. Jeff Howe first introduced this concept in 2006: crowdsourc-

ing represents the act of a company or institution taking a function once performed by 

employees and outsourcing it to an undefined network of people in the form of an open 

call (Howe, J., 2006) [4]. 

Since in this thesis, fingerprinting method is used in indoor positioning, there is a need 

for a database with large amount of data to ensure the accuracy of the positioning.  

Crowdsourcing is one efficient way to maintain the database, which saves time, reduces 

the workload and increases the efficiency of the data collecting job. Besides, since fin-

gerprinting positioning accuracy can be drastically affected by the change of environment, 

data updating of fingerprint database becomes a significant task and crowdsourcing acts 

as one good solution to deal with data updating problem.  

The biggest difference between crowdsourcing and outsourcing is that, in crowdsourcing, 

the work can be allocated to undefined public, whereas in outsourcing, tasks are distrib-

uted to experts or well-trained people [39]. Thus, as one of its biggest advantage, 

crowdsourcing is much cheaper and nevertheless the result could be as good as the out-

sourcing one if the result is appropriately filtered [39], and this is also the motivation of 

this thesis, to find methods to separate error data from the crowdsourced data. 

There are two approaches for crowdsourcing as automated crowdsourcing and dedicated 

crowdsourcing. The difference between these two approaches is the way they report feed-

back data. In automated crowdsourcing, feedback is sent automatically through the device 

and without the aid of manual operation, while in dedicated crowdsourcing, feedback data 

is collected or supplemented with manual operation. In this thesis, dedicated crowdsourc-

ing is used, and all crowdsourcing appears in the rest of the paper refers to dedicated 

crowdsourcing. 
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In crowdsourcing approach, Wi-Fi fingerprints are collected by multiple contributors, so 

each contributor only needs to collect a small amount of data which add up to total fin-

gerprint data, and as the number of contributors increase, the effort each one needs to take 

will further decrease. In a positioning and data collection system used in this thesis, users 

also play the role of contributor. A mobile app can be used to collect fingerprints in an 

indoor positioning system. An Android app is used in this thesis and thus all mobile de-

vices involved in this thesis are based on Android system. There is a feedback system in 

the android app which sends user feedback to the server in real-time. User can share fin-

gerprint data after each positioning operation. With correct positioning result, user click 

the correct button and he or she records this measurement point as the correct one and 

save it to training data. If the result is incorrect, the user can click the correct position on 

the map, and the coordinate of this point on the map is recorded with the true RSS re-

ceived from each available access point as one measurement point data. In this way, the 

training data will be continuously filled, and the positioning error will be decreased and 

get close to a threshold value. Since the work is distributed to unknown sources, the qual-

ity of work cannot be insured. Different errors may occur for various reasons.  

First, different mobile devices report RSS differently because there is no strict range of 

RSS Indicator (RSSI) which is used for RSS measurements [34]. Thus, there is a scenario 

that the devices used to collect training data differ from the devices used as positioning 

devices, and it’s hard to attain a good match when comparing the training data with the 

estimation data. 

Secondly, the error may occur by operational accident. As explained previously, contrib-

utor needs to click the true floor and location on the map when it shows wrong estimated 

position. This manual operation error is inevitable but can be avoided as much as possible 

by improving the quality of the user interface (UI). The qualities for a great UI includes 

clarity, concision, familiarity, responsiveness, consistency, aesthetics, efficiency and for-

giveness and all these are aimed at offering a user-friendly UI.  

Besides, the error can be caused by the device itself when collecting data.   

(1) With the distance from AP to mobile device increase, the received RSS from that 

AP will be weaker. Thus, far away APs can cause larger estimation errors whereas 

nearby APs can offer high accuracy estimation. 

(2) Signal strength fluctuates for multipath effect and blockage caused by human 

body 

(3) Usually the RSS is real-time measured, but if the received RSS is outdated due to 

the delay of scan, the error can occur [40].  
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3.2 Calibration in RSS-based positioning 

The positioning accuracy with RSS-based localization system is affected by multipath 

and fading effects as well as temporal propagation dynamics such as temperature, humid-

ity and movement of people [47], [48]. Thus, calibration for such system is needed to 

ensure the accuracy. Besides, when the device used for positioning differs from the one 

for training data collecting, calibration is also needed for the new device to be compatible 

with the existing radiomap.  

3.2.1 Log-distance path model 

As mentioned in [41], in RSS-based localization, log-distance path model is one of the 

mostly used PL models. The formula of this model is as: 

𝑃 = 𝐴 − 10𝑛 ∗ log10 𝐷 + 𝑊    (3.1) 

In which 𝑃 is the RSS value, 𝐷 is the distance between transmitter and receiver, 𝑛 is an 

environment coefficient and 𝑊 is the noise parameter which includes natural noise, shad-

owing effects and RSS fluctuation. According to [41], 𝐴 is the RP’s RSS at 1m from the 

transmitter. Then it can be simply seen as the only parameter affected by the RSSI of 

mobile device. If the effects caused by 𝐴 can be wiped out or at least decreased, then the 

diversity of different device can be mitigated. 

3.2.2 Calibration-free methods 

The idea of calibration-free method is to wipe out the effects of device dependent param-

eter 𝐴, and the simplest approach is to use difference of RSS instead of absolute values 

of RSS as the fingerprint data [34]. In this way, the new fingerprint data only consists 3 

device-not-related parameters. 

𝑃∆ = −10𝑛 ∗ log10 𝐷 + 𝑊    (3.2) 

However, the fact is that crowdsourcing devices have different value of A at same location, 

thus the parameter A cannot be calibrated between devices by simple subtraction. For 

crowdsourcing scenario, there is a requirement that the subtraction of RSS should be done 

between possible AP pairs heard by the same device. This has added more difficulty to 

data collecting process, and has set a minimum limit for data collected per device. Also, 

as the number of APs grows, the dimension of fingerprint data would be drastically in-

creased [34]. One reference AP can be selected out to decrease the computing complexity. 

By subtracting the reference AP’s RSS with all other RSS values, the fingerprint data size 

is narrowed down.  
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Besides above problems presented, because noise effect is amplified during subtraction, 

the differential fingerprinting will have a less accurate positioning result comparing to 

normal fingerprinting method regard less of device diversity [34].  

As mentioned in [34], the Hyperbolic Location Fingerprinting (HLF) [26] and RSS rank-

ing [27] method are other two methods aimed at reducing the device-dependent compo-

nent, but both turn out to be not adoptable for some reason. 

3.2.3 RSS data fitting methods 

According to [34], the manual calibration and automatic calibration are two approaches 

in data fitting method. For manual calibration, no matter the relationships between the 

RSS of different devices are linear or not, there are various algorithms to create a mapping 

between different devices. But in all the algorithms, the user is required to collect some 

RSS data at some specific known location, which is not always feasible in real scenario, 

and is not suitable for a large number of devices. For automatic calibration, it’s feasible 

to collect RSS data at unknown places but is with expensive computational fitting. 

In this thesis, no calibration is adopted, thus the estimation result may be of larger error, 

averagely around 10 m’s CDF error. But since the target of this thesis is to analyze the 

crowdsourcing impact, the comparison happens among all uncalibrated data and the result 

will not be greatly affected by calibration factor (possibility of influence caused by cali-

bration is not excluded). Future work in the indoor positioning area could be to study the 

impact caused by calibration on crowdsourcing data. 

3.3 Challenges for fingerprinting crowdsourcing-based indoor 

localization 

Although crowdsourcing has relieved the burden of fingerprint data collecting, there are 

still some challenges for crowdsourcing based indoor positioning, and some are intro-

duced by crowdsourcing itself. There are two main challenges as fingerprinting annota-

tion and device diversity/heterogeneity [25].   

The fingerprinting annotation is about how the coordinate information of the user is col-

lected. There are two types of approaches as active fingerprinting crowdsourcing and pas-

sive fingerprinting crowdsourcing [25]. The active fingerprinting crowdsourcing is the 

traditional way of annotating fingerprints. The collector manually annotates the RP loca-

tion with usually Cartesian coordinates, which is utilized in this thesis. One biggest prob-

lem is that it requires a precise floor/radio map to decrease the error of annotation made 

by the crowdsource contributor, and the accuracy of manual annotation is always limited. 

Another challenge is the intentional and unintentional mistakes made by the crowdsource 

contributor when reporting the coordinates. Passive fingerprinting crowdsourcing, as an-

other annotation method, is implemented without user intervention. The movement track 
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of the user is recorded based on the sensors such as accelerometer and magnetometer on 

the mobile device. Compared to the active method, there is no requirement of an accurate 

map with high reliability. On the contrary, one physical map can be drawn with the com-

bination of all measured trajectories [25][28][30]. There is an algorithm which automati-

cally construct radio map based on crowdsourcing introduced in [29] and has presented a 

good accuracy performance. However, there is a privacy issue about passive fingerprint-

ing crowdsourcing that the offline site survey process can cause some potential location 

privacy leakage [31].   

Device diversity already exists without crowdsourcing method when fingerprints are col-

lected by one device throughout the fingerprinting collecting process while users still use 

different devices for positioning. But with crowdsourcing, device diversity happens at the 

beginning of off-line measurement phase. Different mobile devices have different RSS 

measurement result of the same AP even if at the same location. Thus, calibration is 

needed to modify the RSSs received by different devices to a same range, and it increases 

the complexity of fingerprint database at the same time. 

  



19 

4. WI-FI POSITIONING ERRORS 

Among the positioning metrics referred to in Chapter 2, positioning accuracy is normally 

the most important one. Error distance of positioning is used in this thesis as the accuracy. 

This Chapter will introduce the algorithm used for positioning and about calculation of 

positioning error distance.  

4.1 Positioning algorithm 

K-Nearest Neighbor (KNN) algorithm for indoor wireless local area network (WLAN) 

positioning is widely used [35]. The Euclidean distance can be calculated as follows:  

𝐷𝑖 = ‖𝑟𝑖 − 𝑟𝑢‖     (4.1) 

𝑟𝑖 is the RSS of index i in the radio/power map, index i varies from 1 to the size of the 

radio map. 𝑟𝑢 is the RSS from AP of u index as the estimation data. The idea of KNN 

algorithm is to find K fingerprints in the radio/power map database which offer K lowest 

value of 𝐷 as 𝐷𝑚𝑖𝑛. After the K fingerprint data are determined, it’s intuitive to choose 

the mean value of the coordinates of these K fingerprints as the positioning result: 

C(x, y, z) =
1

𝐾
∙ ∑ 𝐶𝑖(𝑥, 𝑦, 𝑧)     (4.2)

𝐾

𝑖
 

C(x, y, z) is the coordinate of the result as the positioning location, and 𝐶𝑖(𝑥, 𝑦, 𝑧) is the 

ith KNN data. 

Besides basic KNN, there are some improved algorithms such as Weighted KNN 

(WKNN) [36], Enhanced Weighted K-Nearest Neighbor (EWKNN) [36] and Cluster Fil-

tered KNN (CFK) [36]. In WKNN, different neighbors have different weights and thus 

the result is not the simple mean value of all K neighbors. Some noisy fingerprint data 

might be presented with low weight value and in this way the effect of noise can be de-

creased. But it’s hard and complex to assign corresponding weight to all the neighbors. 

When the fingerprint data grows significantly, it becomes even worse. Similar with 

WKNN, EWKNN mitigates noise effects by changing the value of K, which is to make 

the parameter K a variable. CFK is another advanced KNN algorithm. Instead of taking 

all the K nearest neighbors into calculation, it selects some neighbors from the K nearest 

neighbors and outperforms KNN [37].    

All the advanced KNN algorithms mentioned above can offer better positioning accuracy 

than basic KNN algorithm. However, since the complexity raises with those algorithms, 

and the main focus of this thesis is on the comparison among data collected through 

crowdsourcing, which should not be affected by the practical accuracy the system can 
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achieve, it’s reasonable to simply utilize KNN as the positioning algorithm. In this thesis 

3NN is used through the analysis. 

4.2 Positioning error calculation 

With labeled training and estimation data (here, 3-D coordinate as the label), the posi-

tioning can be implemented without knowing the estimation data’s coordinate. The posi-

tioning error is the Euclidean distance between estimated coordinate and reported true 

location’s coordinate. It can be calculated as follows: 

D𝑒𝑟𝑟 = ‖√(𝑥𝑒 − 𝑥𝑡)2 + (𝑦𝑒 − 𝑦𝑡)2 + (𝑧𝑒 − 𝑧𝑡)2‖     (4.3) 

𝑥𝑒, 𝑦𝑒 and 𝑧𝑒 are estimated 3-D coordinates result, and 𝑥𝑡, 𝑦𝑡, 𝑧𝑡 are the true 3-D coordi-

nates of fingerprint estimation data.  

4.3 Probability distribution fitting 

To statistically analyze different dataset’s behavior, the RSS histograms of datasets are 

compared with 11 theoretical distributions including Gaussian, Exponential, Lognormal, 

Extreme value, Rayleigh, Gamma, Weibull, Logistic, Burr, Generalized pareto and Gen-

eralized extreme value. The comparison is based on Kullback-Leiber divergence (KLD) 

criterion which is also called relative entropy in mathematical statistics [56]. The value 

of KLD varies from 0 to infinity. When KLD gets close to 0, it indicates that the behavior 

of the two distributions are similar. When KLD increases, it indicates that two distribu-

tions are different. So, in this case, the distribution out of the 11 theoretical ones with 

smallest KLD value will be selected out as the best distribution. 

The CDF of Gaussian distribution is also called Normal CDF (NCDF): 

𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
∫ 𝑒

−(𝑡−𝜇)2

2𝜎2 𝑑𝑡    (4.4)
𝑥

−∞

 

𝜇 is the mean of the distribution, 𝜎 is the standard deviation and 𝜎2 is the variance. 

The Exponential CDF is: 

𝐹(𝑥|𝜇) = ∫
1

𝜇

𝑥

0

𝑒
−𝑡
𝜇 𝑑𝑡 = 1 − 𝑒

−𝑥
𝜇     (4.5) 

Here, 𝜇 is the exponential factor. 

The Lognormal CDF is: 



21 

𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
∫

𝑒
−(ln(𝑡)−𝜇)2

2𝜎2

𝑡
𝑑𝑡    (4.6)

𝑥

0

 

𝜇 and 𝜎 are the mean and standard deviation, respectively. 

The Extreme value CDF is: 

𝐹(𝑥|𝜇, 𝜎) = 1 −  𝑒
(−𝑒

𝑥−𝜇
𝜎 )

     (4.7) 

𝜇 and 𝜎 are the mean and standard deviation, respectively. 

The Rayleigh CDF is: 

𝐹(𝑥|𝑏) = ∫
𝑡

𝑏2
𝑒

(
−𝑡2

2𝑏2)
𝑑𝑡    (4.8)

𝑥

0

 

𝑏 is the scale parameter of the distribution. 

The Gamma CDF is: 

𝐹(𝑥|𝑎, 𝑏) =
1

𝑏𝑎𝛤(𝑎)
∫ 𝑡𝑎−1ⅇ

−1
𝑏 ⅆ𝑡

𝑥

0

    (4.9) 

a is a shape parameter and b is a scale parameter. 

The Weibull CDF is: 

𝐹(𝑥|𝑎, 𝑏) = 1 − 𝑒−(𝑥/𝑎)𝑏
 (x>0)     (4.10)     

Parameters of a and b are shape parameter and scale parameter, respectively. 

The Logistic CDF is: 

𝐹(𝑥|𝜇, 𝜎) =  
1

1 + 𝑒−
𝑥−𝜇

𝜎

     (4.11) 

𝜇 and 𝜎 are the mean and standard deviation, respectively. 

The Burr CDF is: 

𝐹(𝑥|𝑎, 𝜃, 𝑘) = 1 −
1

(1 + (
𝑥
𝑎)

𝜃

)
𝑘  , 𝑥 > 0, 𝑎 > 0, 𝜃 > 0, 𝑘 > 0     (4.12) 

𝜃 and k are shape parameters and a is a scale parameter. 
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The Generalized pareto CDF is: 

𝐹 = 1 − (1 + 𝑘 ∗
𝑥 − 𝜇

𝜎
)

−
1
𝑘

     (4.13) 

𝜇 and 𝜎 are location and scale parameters, k is the shape parameter. 

The Generalized extreme value CDF is: 

=  𝐹(𝑥|𝑎, 𝑏) = {𝑒
−(1+𝑘∗(

𝑥−𝜇
𝜎

))
−

1
𝑘

, 𝑘 ≠ 0

𝑒−𝑒−(𝑥−𝜇)/𝜎
, 𝑘 = 0

     (4.14) 

𝜇 and 𝜎 are location and scale parameters, and k is the shape parameter. 

 

Figure 6. Example PDF curves of some distributions 

PDFs of all the distributions mentioned above are shown in Figure 6. The parameters of 

the distributions are given in Table 2. 
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Table 2. Distributions parameters for Figure 6 

 

Distribution Parameters 

Gaussian (Normal) 𝜇 = 0.5, 𝜎 = 0.5 

Exponential  𝜇 = 0.6 

Lognormal 𝜇 = 0, 𝜎 = 1 

Extreme value 𝜇 = 0.5, 𝜎 = 0.5 

Rayleigh 𝑏 = 0.5 

Gamma 𝑎 = 1, 𝑏 = 0.8 

Weibull 𝑎 = 1, 𝑏 = 1 

Logistic 𝜇 = 0.5, 𝜎 = 0.5 

Burr 𝑎 = 1, 𝜃 = 1, 𝑘 = 2 

Generalized pareto 𝑘 = 1, 𝜇 = 1, 𝜎 = 1 

Generalized extreme value 𝑘 = 1, 𝜇 = 1, 𝜎 = 1 



24 

5.  DATA COLLECTION DURING THE MEASURE-

MENT CAMPAIGNS 

The first process of fingerprinting positioning is to collect fingerprint data, and it is also 

mentioned as the offline training phase in Chapter 2. There is a measurement campaign 

during the research, and the analysis presented in this thesis in following chapter is based 

on measurements attained in this campaign. The processes of data collecting, storing and 

downloading are introduced in the following sections. The creation of synthetic erroneous 

data is also explained here. 

5.1 Data collecting process 

Two different types of fingerprint data collecting methods are utilized: pointwise col-

lected crowdsourcing data and systematically collected data. Also, two different Android 

applications are used for these two methods. 

5.1.1 Crowdsourcing data 

The data collecting process is implemented through the Android application ‘TUT Wi-Fi 

Positioning’. This application looks for all APs available and reads the MAC addresses 

and RSSs from all APs. There is already a fingerprint database in this application, so this 

application can offer position estimation function, which provides an initial reference po-

sition for the user feedback. In this application, each floor’s map of one TUT building is 

available and the map of first floor is at the first sight of user’s view. The user interface 

of the application can be seen in Figure 7. On the bottom side of this application interface, 

there are two function buttons ’ESTIMATE’ and ‘CENTER’. The estimation of user’s 

position starts as soon as the ‘ESTIMATE’ button is clicked. After the mobile device 

scans for a while, the estimation result will be shown on the map as a small green circle. 

At the same time, a text box will appear on the bottom of the interface, above the two 

buttons mentioned before. If with correct result, user ought to click ‘yes’, and the data, 

including the coordinate of the position, the floor number and all the received RSS values 

as well as MAC addresses is reported. If the result position is not correct, user ought to 

click ‘no’, and then the application allows the user to freely click the correct position on 

the map (the chosen position will appear as a small pink circle) to report the data. All 

reported data will be instantly transmitted to a Google cloud server and stored in the cloud. 

The schematic of Google cloud server architecture is presented in Figure 8 below. User 

can also choose the floor number on the top of the interface when the result is with wrong 

estimated floor.  
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Figure 7. Screenshots of application positioning process 
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Figure 8. Schematic client server architecture 

There are 4648 collected fingerprint data in total, and they are collected from 21 different 

mobile devices. The histogram which shows the numbers of measurements per device is 

shown in Figure 9. The data is plotted in descending order of numbers. 992 MACs in total 

are detected through the measurement. Multiple APs can be heard from the same location 

or transmitters, which results in such large number of MACs. 

 

Figure 9. Histogram of 21 devices fingerprint data 

 

 

Google cloud 

Mode 1: server-based position estimate 

Mode 2: client-based position estimate

 Optional client correction (feedback)

 

User device with 

Android app 
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5.1.2 Systematically collected data 

Apart from the 4648 fingerprint data, there are 2220 fingerprints collected with another 

application by three different mobile devices including HuaweiT1 tablet, Huawei Y360 

phone and Nexus tablet as three tracks, which are used as estimation data. The number of 

measurement per device is shown in Figure 10.  

 

Figure 10. Histogram of estimation fingerprint data 

These data are systematically collected with specific track. Most of these measurements 

are taken by Nexus tablet. To take full advantage of them, all three devices data together 

are utilized as the estimation data or the footprint track for testing. 

5.1.3 Environment of the positioning area 

Real environment of the building can be seen in Figure 11. There is an open space corridor 

of first and second floor as the two left pictures show which is linked to an entrance. Map 

of first floor can also be seen in Figure 4. Long office corridors take most of the space of 

upper floor. Wi-Fi signal covers most part of the building besides some small part of the 

office on upper floor which is vacant recently which might decrease the positioning ac-

curacy but in an acceptable range.   
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Figure 11. Example pictures of environment, long corridors of first floor and 

office. 

5.2 Data downloading 

After the data is stored in the cloud server, it can be accessed through a webpage as Figure 

12 shows. The webpage is only accessible with administrator rights. On this webpage, the 

collected crowdsourcing data can be downloaded by clicking ‘Download User Feedback 

Database’. The fingerprint database of the application can also be downloaded or up-

loaded if needed.  

 

Figure 12. The webpage interface of the data adminstration system 
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All the data is saved in the form of .json file. MATLAB is used to read the data and extract 

the values of RSS and coordinates and sort the data in chronological order and with dif-

ferent mobile device models. 

5.3 Creation of synthetic erroneous data 

To statistically analyze the behavior of positioning accuracy when erroneous reporting 

happens, the author created errored data or malicious data, and modified the original fin-

gerprint database with different proportion of errored data. Two types of error are consid-

ered in this thesis: first one is the malicious data with erroneous position, and the second 

one is data with incorrect RSSs reported. After erroneous data is constructed, the impact 

of the error is analyzed by comparing the positioning accuracy of using data with different 

proportion of error and without error. 

5.3.1 Data with position error 

Since the fingerprint data is collected through crowdsourcing, there are inevitable manual 

operating errors when using the Android application to report the data. The error may 

occur when user intentionally or unintentionally click the wrong position or more likely 

it happens when user click the position without choosing the floor number. 

In this thesis, the position error data is modified in such a method as follows: First, ac-

cording to the error proportion, a part of the data is chosen randomly from the database 

as the error data to be modified. The error proportions chosen here are 25%, 50%, 75% 

and 100%. To modify floor error, the floor number is changed to another one randomly. 

For example, if one data vector is obtained at floor number 2, then it will be changed to 

1, 3, 4 or 5 (all the data measurement is done on floor 1 to 5 of this building). Then, to 

further modify the coordinate of the error data, the mid coordinate of x and y coordinates 

are computed, and the modified points are in symmetry to this midpoint. 

The 3-D map with modified error points are shown in Figure 13, Figure 14 and Figure 15 

for different percentage of position error, respectively. The red circles represent correct 

points and blue crosses represent modified error points. To make it clear for readers to 

see the relation between original correct points and modified error points, the data showed 

in these figures are just part of the complete database, since the full database with 4648 

points will occupy most space of the map. 
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Figure 13. Database without error 

 

Figure 14. Database with 50% position error 

 

Red: correct points 

 
Blue: modified points 

Red: correct points 

 
Blue: modified points 
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Figure 15. Database with 100% position error 

After different proportions erroneous data positions are attained, each new dataset is used 

as a set of training data for the estimation process. Here, the systematically collected data 

are used as estimation data.  

5.3.2 Data with incorrect RSS values 

Besides incorrect position report, error may happen when the reported RSS values are 

incorrect. Because of human blockage and movement, multipath effect causes large RSS 

fluctuation [45]. Noise is another factor that can influence the RSS values [45]. In addition, 

faulty or malicious devices can report incorrect RSS data. 

It’s simple to modify error data with incorrect RSS, just by altering original data’s RSS 

to desired new values. There are basically two schemes to alter the RSS values: 

1. change the collected RSS values to new random values, the values should be within 

the limit of original data’s RSS. For the 4648 fingerprint data, the maximum RSS value 

is -14dBm and minimum is -102 dBm. 

2. change all values to constant values such as -70 dBm. 

In this thesis, author adopted the second scheme, which is to set original RSS values to 

constant incorrect values. RSSs of -90 dBm, -65 dBm and -40 dBm are chosen as the 

modified values, among them, -65dBm is the value which is closest to the average RSS 

as shown in Figure 16. 

Red: correct points 

 
Blue: modified points 
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Figure 16. Upper plot: original RSS values; lower plot: modified (incorrect) 

RSS values 
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6. ANALYSIS OF DATA AND RESULTS 

This Chapter presents the analysis of the crowdsourcing data. The analysis is conducted 

from several aspects. First, the positioning accuracy is analyzed by comparing the CDF 

of error curve of different dataset. Then, behavior of RSSs of different dataset is analyzed 

by comparing the best fitted distribution through KLD. Besides, the RSSs difference of 

different devices at the same AP is presented. Finally, the impact of two types of errone-

ous data is analyzed. 

6.1 Analysis of crowdsourcing data 

First analysis is based on the position estimation which is done by taking all 4648-

crowdsourcing data as training data and the systematically collected data as estimation 

data, and the position is attained through 3-Nearest Neighbor (3NN) algorithm. The over-

all result is shown in CDF of error form in Figure 17. It can be observed from the blue 

curve that the positioning result is not so good, less than 70% of data can attain the accu-

racy of 10 m and up to 90% of data can get around 20 m’s accuracy. From author’s point 

of view, this is caused by multiple factors such as device heterogeneity, 2 different appli-

cations are used to collect training and estimation data, multipath effects, shadowing and 

fading, etc.  

 

Figure 17. CDF of error with overall crowdsourcing data 
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Besides, the red curve which represent the inverse result with systematically collected 

data as training data and all crowdsourcing data as estimation data, presents a worse ac-

curacy, which is reasonable since the number of training data has been declined from 

4648 to 2220. To get an estimation result with high accuracy, a large quantity of training 

data is necessary from machine learning field’s perspective [53]. This again clarifies the 

significance of crowdsourcing in data collecting.  

The crowdsourcing data is collected with 21 different devices. It’s feasible to analyze the 

dataset with different device separately. The estimation data keeps still, and each device’s 

full data is selected out one by one as the training data. In Figure 18, CDF of error of 

different device is presented with various shape of line and with different color, and all 

CDFs are plotted in one figure.  

 

Figure 18. CDF of error with all data sorted by device 

The number in the bracket after each device name represents the number of measurement 

points of corresponding device. There are 6 curves far away from the rest curves in this 

figure. These curves represent the datasets of devices with few measurement points. Thus, 

the focus is on the rest of the curves. The CDF error curve of HUAWEI T1 device which 

is drawn with purple asterisk shows the best accuracy. 70% of the positioning result is 

within 5m’s accuracy and 90% can attain 10 m’s accuracy. It performs much better than 

the overall crowdsourcing one as well as other devices positioning result. It’s reasonable 

that device with a smaller amount of training data performs worse, but when the number 

of training points grows beyond a threshold value, for example 100, the positioning ac-

curacy seems to be affected by other factors which of course include the diversity or het-

erogeneity of mobile devices. The device with the highest accuracy is HUAWEI T1 Tab-

let, whereas the one with largest number of measurement points is Letv-x600 device, and 

the measurement points of the latter one (790) are much more than the former one (261). 

Data with 

small 

number of 

points 

Data with 

large 

number 

of points 
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6.2 Power map and distribution 

The RSSs and differences between the power maps are analyzed here by comparing the 

best fitted distribution of different datasets. 

6.2.1 RSS distributions 

First, the simply RSS histogram of dataset is compared with the 11 theoretical distribu-

tions with KLD. KLD calculation formula is: 

𝐷𝐾𝐿(𝑃𝐷𝐹1‖𝑃𝐷𝐹2) = ∑ 𝑃𝐷𝐹1(𝑖) ∗ log (
𝑃𝐷𝐹1(𝑖)

𝑃𝐷𝐹2(𝑖)
)    (6.1)

𝑁

𝑖

 

𝑃𝐷𝐹1 is the PDF of analyzed fingerprinting RSSs and 𝑃𝐷𝐹2 represents the theoretical 

distribution fitted to the fingerprinting RSSs. N is the segment number of histogram, and 

here 36 segments of histogram are used. 𝑃𝐷𝐹1(𝑖) represents the probability of ith seg-

ment appearance and 𝑃𝐷𝐹2(𝑖) is the probability of ith segment appearance of fitted dis-

tribution’s curve. Since 0 value is not allowed for neither PDF, each 0 value of probability 

is replaced by a small value as 10−4. When 𝑃𝐷𝐹1(𝑖) equals to 𝑃𝐷𝐹2(𝑖), the KLD value 

becomes 0 for this segment which shows the similarity of this segment. 

 

Figure 19. Example of the RSS distribution for Letv-x600 device 

The best distribution among the 11 distributions is the Burr Type XII distribution. As 

shown in  Figure 19, this is the RSS distribution of one random AP for Letv-x600 device 
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which is the one with most measurement points (790 measurement points out of total 

4648 points). The distribution is not symmetric and is in skewed right shape (the right tail 

is much longer than the left tail). This shape fits Burr distribution, which usually also fits 

to real medical field data [51]. The cumulative distribution function (CDF) of Burr is: 

𝐹(𝑥|𝑎, 𝜃, 𝑘) = 1 −
1

(1 + (
𝑥
𝑎)

𝜃

)
𝑘  , 𝑥 > 0, 𝑎 > 0, 𝜃 > 0, 𝑘 > 0    (6.2) 

The probability density function (PDF) is: 

𝑓(𝑥|𝑎, 𝜃, 𝑘) =

𝑘𝜃
𝑎 (

𝑥
𝑎)

𝜃−1

(1 + (
𝑥
𝑎)

𝜃

)
𝑘+1  , 𝑥 > 0, 𝑎 > 0, 𝜃 > 0, 𝑘 > 0    (6.3) 

where 𝜃 and k are the shape parameters of the distribution and a is presented as the scale 

parameter. It is a very flexible distribution that it basically can express any distribution 

shapes and can fit a wide range of empirical data as shown in Figure 20. Here 𝜃 is re-

placed by c.  

 

Figure 20. Burr Type XII distribution examples, different parameters effects. 

Table 3 shows examples of best distribution and the KLD value of it and parameters of 

some datasets. Besides the best fit, the second-best fit belongs to Generalized extreme 
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value (GEV) distribution. Since the GEV distribution also consists of 3 parameters (Only 

GEV and Burr Type XII are made up of 3 parameters), it can fit a wide range of data as 

well. 

Table 3. Best distribution of RSS histograms for different dataset 

 

 

Figure 21. Example power map of one AP for Sony E5823 (floor 2) 

Figure 21 and Figure 22 are the power maps of all fingerprinting RSSs heard from one 

same AP. Two figures respectively show the power map of two devices as Sony E523 

Dataset Best distribu-
tion and KLD 
value 

𝒂 𝜽 𝒌 

crowdsensed dataset Burr (0.5314) 2.4170e-07 4.0351 0.4201 

estimation dataset Burr (0.2740) 4.0024e-07 2.6310 0.9277 

Huawei T1 only (from 
estimation dataset) 

Burr (0.8581) 1.2806e-04 1.2724 2.3877 

Nexus only (from es-
timation dataset) 

Burr (0.2492) 4.1997e-07 3.2654 0.8205 

Sony E523 only (from 
training dataset) 

Burr (0.4452) 2.5648e-06 6.0779 0.2315 

Letv-x600 only (from 
training dataset) 

Burr (0.9422) 1.6750e-08 6.9034 0.6715 
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and Letv-x600. As can be seen from the figures, the coordinate of the point with largest 

RSS value (shown in red circle on the figures) is the same for the two devices (x around 

90 and y around 20). This should be the location of the AP, thus it’s also feasible to locate 

all APs of the building with the RSS fingerprinting. Power maps of different devices are 

correlated but span over different space. The further comparison between these two power 

maps are presented in following section. 

 

Figure 22. Example power map of one AP for Letv-x600 device (floor 2) 

6.2.2 Distribution of power map difference 

Next, the power map is compared by analyzing the distribution of power map differences. 

The power map difference is attained through 2 different power maps with same AP and 

at the same floor to build an interpolated and extrapolated power map. There is the same 

limit of the floor area computed for both power maps to make sure both power maps have 

the same spatial area and the subtraction between different power map can be smoothly 

processed. Then, the histogram of this difference is computed as the analysis object, in 

which the value is in dB form (addition and subtraction between dBm). The histogram is 

also compared with the 11 theoretical distributions in the same way as previously ex-

plained. 

As shown in Table 4, the best distribution is still Burr distribution for all power map 

difference, and the KLD value is obviously much smaller than the ones presented in Table 

3. 
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Table 4. Best distribution of power map difference 

 

Figure 23 has shown an example histogram of power map difference between Letv-x600 

device and Sony E5823 device. Although the Burr distribution fits best with lower than 

0.1 KL value, the distribution curve is with good symmetry and the peak is located around 

0 on x axis from observation. 

 

Figure 23. Example of the distribution of power map difference (between Letv-

x600 and Sony E5823 devices) 

From data presented in [52], there is a stable relation between RSS values attained with 

different device. In this way, the histogram of power map difference should be with con-

stant values. However, in this thesis example, the power map difference value is varying 

from -15dB to 20dB, and it can be seen clearer from Figure 24, RSS difference varies 

with area. From author’s point of view, measurements with a small number of APs and 

Dataset Best distribution and 
KLD value 

𝒂 𝜽 𝒌 

comparing Huawei T1 estimation 
data with all crowdsensed data 

Burr (0.1730) 4.6295 1.3756 1.5065 

comparing Nexus estimation 
data with all crowdsensed data 

Burr (0.0874) 13.4109 1.4326 1.8845 

comparing Huawei T1 and Nexus 
data 

Burr (0.1219) 2.0019 1.9125 2.3529 

comparing Sony E523 and Letv-
x600 data 

Burr (0.0766) 9.5142 1.8192 1.4457 
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with a smaller district like in [52] are not as affected by noise as in this thesis scenario. In 

real occasion, noise effects might be even bigger, thus the RSS difference value of diverse 

devices could be further away from constant.  

 

Figure 24. Example Power map difference between Letv-x600 and Sony E5823 

devices 

6.3 Analysis of erroneous data 

To analyze the effect of error data on fingerprinting positioning, the most intuitive method 

is to use the errored data as training data and implement position estimate with it and 

compare the result with the one without error. The estimation result is shown in figure 

with CDF of error curves. Each curve shows how well the accuracy is attained with ac-

cording set of data and higher curve indicates higher accuracy.   

6.3.1 Data with incorrect position 

As shown in Figure 25, the result with incorrect position data performs as expected. With 

higher proportion of error data, the estimation result looks worse. The dataset with no 

error obviously performs best in positioning among all the tested data. The modifying 

method of erroneous data is explained in chapter 4. The motivation to modify data with 

such huge error is to intuitively show the influence caused by 3-D position error. In real 
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scenario, big incorrect position error is usually caused by manual operation of selecting 

wrong floor and more often the error only varies within meters for imprecise clicking on 

the map.   

 

Figure 25. CDF error figure of data with incorrect position 

6.3.2 Data with incorrect RSS values 

Unlike the data with position error, to author’s surprise, data with incorrect RSS values 

performs well in positioning, even similar with the original data without error. As Figure 

28 shows, no matter how the proportion of modified data changes, the positioning accu-

racy just seems similar with the one without error. The curves have only little fluctuation 

even if the modified constant RSS value changes from -90 dBm to -40 dBm. 

To make it clear to see, all the curves in Figure 26, Figure 27 and Figure 28 are drawn 

with different colors and markers. But since most parts of them are overlapped, it’s still 

hard to distinguish them from each other. The overlapping happens most obviously for 

the first figure which is with -65 dBm RSS modified data. -65 dBm is the mean value for 

all the RSSs in the original fingerprint data, and -90 dBm and -40 dBm are the minimum 

and maximum value of the RSSs value of the whole fingerprint database. So, from this 

point of view, the impact of errored RSS data with different errored RSS value can be 

concluded as: errored RSSs close to mean value of original data keeps the accuracy at a 
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good level, while RSSs with big fluctuation value compared to the original data will de-

crease the positioning accuracy. 

 

Figure 26. CDF error figures of data with incorrect RSS values (-65 dBm) 

 

Figure 27. CDF error figures of data with incorrect RSS values (-90 dBm) 

 



43 

 

Figure 28. CDF error figures of data with incorrect RSS values (-40 dBm) 

The reason why RSS values hardly affect the positioning accuracy is actually hidden in 

the estimate method. In fact, in the process of positioning estimation, the observed RSS 

is only compared with training data which is heard from the same access point. For those 

not matched points, the value in the log bracket is replaced by 10-6 to make sure that the 

calculation runs smoothly (the original value in the log bracket would be NaN if not re-

placed). 

𝐹(𝑢) = 𝑙𝑜𝑔(
1

√2𝜋∙𝜎2
∙ 𝑒

−
(𝑅𝑆𝑆0−𝑅𝑆𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑢))

2

2𝜎2 ) (6.4) 

When RSS is incorrect, but MAC address is correct and known, the Gaussian likelihood 

metric becomes close to rank-based metric and it is still able to estimate the user position 

only based on the number of commonly heard MAC addresses in the training and estima-

tion phase. Thus, the estimation first compares the MAC addresses of the observed point 

with fingerprint data. The training data with most same MAC addresses would be selected 

out, and if multiple training data are chosen out, only then the Euclidean distance is 

needed for further comparing. Since the amount of APs or MAC addresses heard in this 

4648 training data are as large as 992, the estimation result highly relies on the MAC 

addresses heard by the observed point instead of RSSs. It shows that RSS fingerprinting 

positioning system has good robustness. Besides, there is another conclusion that Gauss-

ian likelihood metric might not be the most suitable metric to be used with crowdsourced 

data. Future research is needed to investigate the best positioning metrics with 

crowdsourcing data collection.  
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7. CONCLUSIONS 

This thesis analyzed several different indoor positioning technologies and introduced 

some positioning measurement approaches. Wi-Fi based RSS fingerprinting is used as 

the positioning method and crowdsourcing is utilized in training phase to collect finger-

print data. Main target of this thesis is to analyze the impact of different crowdsourcing 

effects on Wi-Fi based indoor fingerprinting localization. The RSS fingerprints were col-

lected through Android application with radio map of the building. Altogether 21 devices 

and 2 different applications as well as multiple participants were involved in the meas-

urement campaign. In total, 4648 crowdsourcing fingerprint data samples were collected 

in the building through the campaign, and another 2220 systematically collected finger-

print data was used as the estimation data for positioning.  

This thesis analyzed histogram distribution of RSSs in different dataset and the power 

map difference between data collected by different devices. Also, the thesis has analyzed 

the crowdsourcing impact by looking at the accuracy of positioning result with different 

dataset as training data. The positioning simulation is done through MATLAB. Different 

crowdsourcing errors were manually modified into the original database, and the behavior 

of errored data was observed through CDF figures. From the results it can be concluded 

that training data with higher proportion of 3-D position error has a worse positioning 

accuracy. However, fingerprint data modified with different proportion of constant RSS 

values can achieve almost similar positioning accuracy as the unmodified fingerprints. 

With enough IDs or MACs of AP correctly reported, RSS based fingerprinting localiza-

tion can have a good positioning accuracy even if the RSSs fluctuate drastically.  

Considering the non-stationarity of RSS, calibration in fingerprinting positioning can im-

prove the positioning accuracy, thus, one of the future work is to analyze the crowdsourc-

ing impact on calibrated fingerprint data, or the calibration impact on crowdsourcing fin-

gerprinting positioning. Another future work is to investigate better positioning metrics 

with crowdsourcing data collection. Furthermore, in future 5G IoT standard, positioning 

with UNB RSS is more stable than with traditional Wi-Fi RSS, and the research can be 

continued on this new area. 
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