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ABSTRACT 

Anssi Kaakkomäki: PLANNING OF ROBOT WORK CELL - COMPARISON 
OF ALTERNATIVE SCENARIOS 
Tampere University of technology 
Master of Science Thesis, 79 pages, 7 Appendix pages 
May 2017 
Master’s Degree Programme in Mechanical engineering 
Major: Production Engineering 
Examiner: Professor Minna Lanz 
 
Keywords: Production automation, robot work cell, FMS, human-robot collabo-
ration  

The purpose of this thesis was to research the possibilities of adding automation on the 

product finalization stage of the production of plastic products in Finncont Oy. At the 

beginning of this thesis work practically all of the finalization work was conducted 

manually with mostly hand held tools. On the same time, the company was starting to 

feel pressure to automate some of the production processes; partly due to financial con-

cerns and partly due to company image concerns. Some customers had even expressed 

their wishes for more automation in Finncont’s production system. 

During the project, product and production system analysis was conducted on the prod-

ucts of Finncont Oy. The analysis included reviewing product data such as drawings, 

work instructions and production data, mainly production volumes. A time study was 

performed for 10 most potential products. Concurrently to the product analysis a litera-

ture review was conducted on production systems, layouts and production processes. 

Based on the results of the analyses and the literature review, two product groups were 

formed and three work cell designs were made. Two for group 1 and one for group 2. 

For group 1 a multi-product work cell and a single-product work cell were created. The 

multi-product work cell can process multiple products with one industrial robot in the 

centre of the work cell and turn tables around it. The single-product work cell is similar 

to the multi-product work cell, but has only one turn table, less tools and can process 

only one type of a product. Both group 1 work cell designs are able to cut, drill and 

measure. For group 2 a collaborative work cell was designed. In this work cell an indus-

trial robot is used to held and manipulate a product while a human operator does all of 

the actual processing to the product. The work cell operates with speed and separation 

monitoring safety method. 

The three designs were analysed and compared to each other and it was found out that 

with different criteria any of the designs can be a good choice. The main criterion for 

the automation system imposed by Finncont was a payback period of less than 4 years. 

The multi-product work cell achieved a payback period of 4.75 years or 4.25 years de-

pending on the products. The single product work cell achieved a payback period of 11 

years and the collaborative work cells achieved a payback period of 15.5 years with the 

current production volumes. With higher production volumes the payback period would 

be shorter. The payback periods are affected by large error margins caused by small 

number of observations during time study and high degree of variation in working 

methods among the company’s employees.  
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Tämän diplomityön tavoitteena oli tutkia muovituotteiden viimeistelytyövaiheiden au-

tomatisointimahdollisuuksia Finncont Oy:n tuotannossa. Diplomityötä aloitettaessa 

kohdeyrityksen lähes kaikki viimeistelytyövaiheet olivat manuaalisia. Yritykselle oli 

kuitenkin kasaantunut paineita automatisoida joitakin työvaiheita. Automatisointipai-

neet johtuivat osin käsityön kalleudesta ja osin firman halusta parantaa imagoaan poten-

tiaalisten asiakkaiden silmissä. Jotkut asiakkaat olivat jopa ilmaisseet toiveensa auto-

maatioasteen lisäyksestä Finncontin tuotannossa. 

Diplomityön aikana toteutettiin tuoteanalyysi Finncontin tuotteista, sekä tuotanto-

analyysi näiden tuotteiden tuotantojärjestelmästä. Analyysissä tutkittiin tuotedataa, ku-

ten piirustuksia ja työohjeita, minkä lisäksi analysointiin tuotantojärjestelmän tietoja, 

etenkin tuotantovolyymejä.  Kymmenelle lupaavimmalle tuotteelle tehtiin työaikatutki-

mus. Tuote- ja tuotantoanalyysin kanssa samanaikaisesti tehtiin kirjallisuustutkimus, 

jolla selvitettiin erilaisia layout-vaihtoehtoja ja tuotantoprosesseja ja niiden automa-

tisointia. Tutkimusten tulosten perusteella tuotteista muodostettiin kaksi tuoteryhmää. 

Ryhmälle 1 suunniteltiin kaksi tuotantosolu vaihtoehtoa ja ryhmälle 2 yksi tuotantosolu.  

Ryhmälle 1 suunnitellut solut ovat monituotesolu, sekä yksituotesolu. Molemmat solut 

rakentuvat teollisuusrobotin ympärille, joka pitelee työkaluja ja työstää tuotteet. Soluja 

erottaa kääntöpöytien ja työkalujen lukumäärä, joka on suurempi monituotesolussa, 

jonka ansiosta se pystyy työstämään useita eri tuotemalleja. Yksituote solu pystyy työs-

tämään vain yhtä tuotemallia. Kumpikin solu pystyy sekä leikkaamaan, poraamaan, että 

mittaamaan tuotteita. Ryhmälle kaksi suunniteltiin yhteistoimintasolu. Tässä solussa 

käytetään tavallista teollisuusrobottia pitelemään ja siirtelemään tuotteita niin, että ih-

mis-operaattorin on mahdollisimman helppo työstää niitä. Solu operoi nopeus- ja etäi-

syysmonitorointitekniikalla.  

Suunniteltuja kolmea solua analysoitiin ja verrattiin keskenään, sekä kohdeyrityksen 

antamiin reunaehtoihin. Solut ovat niin erilaisia, että reunaehdoista riippuen mikä ta-

hansa niistä voi olla paras. Tärkein kohdeyrityksen antama reunaehto oli neljän vuoden 

takaisinmaksuaika, jota yksikään solu ei täyttänyt. Monituotesolun takaisinmaksuaika 

nykyisillä tuotantovolyymeillä on 4,75 - 4,25 vuotta riippuen sillä työstettävistä tuotteis-

ta. Yksituotesolun takaisinmaksuajaksi työssä saatiin 11 vuotta ja yhteistoimintasolun 

takaisinmaksuajaksi 15,5 vuotta nykyisillä tuotantovolyymeillä. Tuotantovolyymejä 

nostamalla takaisinmaksuajat lyhenisivät. Takaisinmaksuaikoihin vaikuttaa suuret vir-

hemarginaalit, jotka johtuvat vähäisistä tarkkailukerroista työnaikatutkimuksessa, sekä 

työskentelymetodien vaihtelusta Finncontin työntekijöiden joukossa. 
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1. INTRODUCTION 

Modern production automation can be considered a megatrend that began in 1950’s (Y. 

Nof 2009). Production automation is seen by the industries as method of gaining ad-

vantage in competition and lately it has be seen as a way for developed countries to 

keep their industries. The automation began from automotive and aerospace industries 

and has been fast to spread in mass production industry. (Y. Nof 2009) However, the 

introduction of automation to small companies has been slow and the production of low 

volume products has been found to be especially difficult to automate. 

This is also the case for the target company of this thesis, Finncont Oy located in Virrat 

Finland. The company produces rotationally moulded plastic products. It has both sub-

contracted and own products in production. The rotationally moulded products often 

need some finalization work before they are ready for shipping to customers. Currently 

that finalization work is almost completely manual. The company would like increase 

the automation level of the finalization stage. One reason is the high cost of manual 

work and the other is company image. Some customers have even expressed their hopes 

of higher automation level in Finncont’s production system. The purpose of this thesis 

is to research about the automation possibilities in the finalization stage. 

According to Bellgran & Säfsten (2010, p. 185) requirements specification guides the 

development process and is therefore important. For this thesis there was only one re-

quirement which was given by the management of the target company: a payback peri-

od of less than four years. Constraints for the design are: 

 Scope of the cell is in product finalization (ie. not in moulding machine tending, 
packaging or other) 

 Not exceeding maximum investment cost 

 Economically risky plans should be avoided 

 Products chosen for processing in the system should be chosen from the list pro-

vided by the company management 

While this thesis has been written in linear order, the actual research was somewhat 

iterative. Therefore some motivations and reasons for decisions done during the making 

of this thesis may come later in the text than the decisions themselves and not vice versa 

as would be logical. For example, research about production processes was done partly 

simultaneously to product analysis and the choice of products for time study and pro-

duction mixes was affected by this.  
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The thesis begins with a literature review which builds the theoretical background of the 

thesis. Theories and industry practises of production system planning, layouts, produc-

tion automation and production processes are studied among other topics. Theoretical 

background is followed by company introduction and description of products and the 

current state of the production process. Description of the product analysis on the fourth 

chapter comes after those. In the fifth chapter the basic layouts of the work cells are 

made and different production processes researched. That is followed by descriptions of 

the final work cell plans in chapter six. The planned work cells are further analysed and 

compared against each other’s in chapter seven. In chapter eight the future possibilities 

and research topics are discussed which is followed by conclusion and closing thoughts 

in chapter nine. 

In brief the assignment from the target company for this thesis consists of: 

 Bring automation to plastic products production 

 Choose type of the automation 

 Choose the type of the cell 

 Choose the process of the cell (where it will be located in value stream and what 

it will do to the products.) 

 Choose the products for the cell 

 Create preliminary layout plan for the cell 

 Calculate Payback period for the cell 

Focus of this thesis is on the general preplanning of the work cells. Hence detailed de-

signs are mainly not considered. I.e. the exact shape and size of the work cell compo-

nents and their locations are not considered but left out from this work. 

The main results of the thesis are planned the three work cell designs. On the compari-

son chapter it can be seen that all of the designs have their strengths and weaknesses and 

depending on the criteria any one of them can be a good choice. The main criterion for 

the target company is a payback period of less than four years. None of the designed 

work cells reached this limit, but one came close. Nevertheless the thesis still provides 

valuable information for Finncont on the topics of production automation and work cell 

design. The future possibilities chapter presents topics for further research that can help 

lowering payback periods.    

This thesis work can be helpful for other readers as well as it gives the reader new ideas 

and solutions for problems related to planning and designing of robotic work cells. The 

contribution to scientific community is the comparison of three different types of work 

cells, traditional single-product, FMS type multi-product and state of the art collabora-

tive work cell, on the same general settings. 
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2. PRODUCTION SYSTEM PLANNING 

In all projects and smaller tasks, it is good to base important decisions on solid theory. 

For a complex project like this, several theories are required. For this thesis a literature 

review was conducted on the topics related to production automation. This was used as 

a basis for the rest of the thesis. First the general outlines of production system design 

are discussed. 

Production system design is a wide area task that depends on many sub tasks (Chryssol-

ouris 2006, p. 329-330). Production system design has several stakeholders and influ-

encing factors as can be seen from Figure 1. 

 

Figure 1. The aspects influencing production system development. Based on (Bell-

gran & Säfsten 2010).    

A background study is a necessary pre-requirement for production system design pro-

ject. It should include existing production system study and study about other possible 

production systems (Bellgran & Säfsten 2010, p. 172). The existing production system 

can influence the design of the new system for example by giving ideas, restrictions and 

a starting place. The influence is great especially when equipment from the old system 

is be used in the new system. (Bellgran & Säfsten 2010, p.173) In this thesis the back-

ground study was conducted. The theory behind it is explained in more detail in chapter 

2.1 and the background study is presented in chapters 3 and 4. 
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The planning phase of production system design project can be divided into three parts. 

According to (Scallan 2003, p. 37; Bellgran & Säfsten 2010) they are: 

1. Conceptual design 

2. Evaluation of alternative designs 

3. Detailed design of the chosen plan 

The scope of this thesis is restricted to the first two parts. Conceptual design is the phase 

in which alternative conceptual production system designs for are developed. Activities 

during conceptual design include choosing processes, defining capacity, deciding 

equipment, planning of layout and defining automation level among other things. (Bell-

gran & Säfsten 2010, p. 195-214) Theories related to conceptual design are explained in 

chapters 2.2 to 2.8. The conceptual design done in this thesis is described in chapters 5 

and 6.  

Conceptual designs should be evaluated and compared against each other. The design-

ing phases and evaluation phases are iterative and the ideas are constantly evaluated. 

(Bellgran & Säfsten 2010, p.214-221) Requirements specification can be used as evalu-

ation criteria (Bellgran & Säfsten 2010, p.186). In this thesis the conceptual designs 

were evaluated in chapter 7 and the evaluation is based on the theory in chapter 2.9 

Detailed design takes place after one of the created conceptual plans has been chosen. 

Detailed design includes roughly the same activities as conceptual design, only at a 

more detailed level. (Bellgran & Säfsten 2010, p. 221-230) Detailed design is out of the 

scope of this thesis, and the target company is planning to involve system integrator for 

that part. 

2.1 Background study 

As said, the Background study is important because, the existing production system can 

influence the design of the new system for example by giving ideas, restrictions and a 

starting place. In addition production system design is influenced most by the product 

and intended production volume (Bellgran & Säfsten 2010, p.85). 

In this chapter some background study methods are described. They are product analy-

sis, work measurement and time study. First, product analysis is introduced.  

2.1.1 Product analysis 

Product analysis denotes the analysis of products for some certain purpose. Product 

analysis is a general term and the actual analysis can be conducted in many different 

ways depending on the case. One method suitable for analysing products for production 

is by listing their attributes based on criteria. The criteria can be freely chosen by the 
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design engineer. Examples of analysis criteria include: size, material, production vol-

ume, parts count, manufacturing location, weight etc.  

The information of the products can be gathered from multiple sources. Some good 

sources are product drawings and work instructions. Product analysis is written on chap-

ter 4. 

2.1.2 Work measurement 

In order to be able to improve their production, companies have to know how the pro-

duction is being performed currently and how effective it is. Work measurement is a 

tool created for this task (EK-SAK tuottavuustyöryhmä 2011, p.7). Goal of work meas-

urement is to find out working methods, time usage and ergonomic aspects of the work 

(EK-SAK tuottavuustyöryhmä 2011, p.6). For being able to give and keep delivery 

promises for customers, companies have to know how long it takes to complete a spe-

cific job and how many workers are needed for it. With work measurement these ques-

tions can be answered. Other topics that benefit from work measurement are employee 

compensation programs and productivity monitoring. (Rowbotham et al. 2007, p.123) 

In this thesis work measurement is used as means to find out the actual cost of current 

production. 

Work measurement can be conducted in several ways. According to (Aft 2016), there 

are three methods for conducting work measurement: Time study, work sampling study 

and physiological measurement study. As its the name suggests, time study involves 

measuring time taken to perform a specific task. It is applicable for measuring cyclical, 

well defined jobs. (Rowbotham et al. 2007, p.124; EK-SAK tuottavuustyöryhmä 2011, 

p.25; Aft 2016) In work sampling study the work task being measured is observed ir-

regularly over a period of time to obtain information on how time is divided on different 

work tasks. Work sampling study can be done also for irregular and not well defined 

tasks. (Rowbotham et al. 2007, p.126-128; Aft 2016) The third option presented by Aft 

is the physiological measurement study. It differs from the other two greatly in that in-

stead of observing how tasks are performed, workers physiological condition is ob-

served. The observed condition can be for instance heart rate or oxygen consumption. 

Physiological measurement study is useful for measuring physical strain tasks inflict on 

workers. (Aft 2016) 

In product finalization in Finncont Oy, work tasks are mainly cyclical and well defined. 

For this reason time study was chosen as the method used in this thesis. EK-SAK tuot-

tavuustyöryhmä states that time study measurements can be used for planning invest-

ments and layout (EK-SAK tuottavuustyöryhmä 2011, p.8). 
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2.1.3 Time study 

As it was stated before, time study is used for measuring the time taken to complete a 

specific task or a set of tasks. Standard time is the time consumed by normal worker to 

complete well defined normal work at normal speed and using normal methods (EK-

SAK tuottavuustyöryhmä 2011, p.18).  Standard time is the result of time study. 

In time study the time taken to complete the task is measured with a stopwatch or a sim-

ilar device. First part of the study is examining the task and dividing it to sub tasks 

called elements. An element is a small part of a task and it repeats in every cycle of the 

task. It needs to have clear starting and ending point in order for it to be reliably meas-

ured. (Aft 2016) The actual measuring is conducted by an engineer by observing a 

worker performing the job and clocking time taken for each individual element. The 

worker performing the work should be familiar with the work and skilled. However, no 

one can always work at constant pace and people tend to change their working intensity 

while being observed. Work intensity rating is used to normalize the working speed to 

achieve more reliable results. Normal speed is a speed at which the worker can keep up 

for whole day. The rating is done by the engineer subjectively; hence the engineer needs 

training and experience to give consistent ratings. (Rowbotham et al. 2007, p.124-126; 

EK-SAK tuottavuustyöryhmä 2011; Aft 2016) 

To get reliable results, it is advisable to measure the tasks several times (Aft 2016). The 

measurements should also be done with several different persons to average the meas-

ured times (Rowbotham et al. 2007, p.124). To obtain a standard time a few calculations 

are made. First the measurements are averaged and multiplied with the rating for each 

measurement. Then several allowances are added to get the standard time. The allow-

ances are time the workers use for something else than the task itself during the day. 

The allowance time can consists for example of personal rest, toilet breaks, search of 

tools, talks with supervisors, quality related abruptions and time used for cleaning for 

example. 

Conducting time study can be costly if very accurate results are wanted (Malakooti 

2013, p.974). The amount of observations needed depend on the desired level of confi-

dence and accuracy for the result. The number of observations can be calculated with 

the formula, 

  
    

     
  (1) 

where n is the number of observations, s is the standard deviation of the sample, z is a 

confidence level variable, k is the accuracy and x is the average of the sample (Aft 

2016). A small sample observation has to be made first to acquire the average and the 

standard deviation. According to Aft, the calculation is made for each of the elements of 

the task independently and the highest result is chosen for the final number of observa-
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tions. The confidence level variable z can be taken from the table in appendix a.(Aft 

2016)  

However, as it can be seen in chapter 4.2, to get reasonable 90% confidence level with 

10% accuracy for one example product as many as 60 observations would have to be 

made. This was caused by variations in the work tasks that occurred during the sample 

observation. According to management the workers often differ from the work instruc-

tions and hence variations occur. Due to the limited time for the project and production 

schedules, it was not possible to conduct the required level of observations. This com-

bined with the fact that the author does not have experience on work intensity rating 

means that the usual way of conducting time study cannot be used in this thesis. Instead 

a modified version of the study was performed. Only five observations of each task 

would be performed, no work intensity rating would be made and allowances would not 

be added to the acquired standard time. To counterbalance this all of the delay time 

would be added to the standard time which is normally left out. 

2.2 Layout 

As said above, choosing the layout type is one design phase. Layout characterises the 

production system and affects rest of the planning. There are roughly four layout cate-

gories for discrete part manufacturing: Fixed position layout, functional layout, cell lay-

out and line layout. Each layout type suits different products and production volumes as 

can be seen from Figure 2. (Scallan 2003, p. 11-12; Spinellis et al. 2009, p. 4; Bellgran 

& Säfsten 2010, p. 202-204; Hales 2016) 

 

Figure 2. Layout categories and with respective production volumes and flow types. 

In fixed position layout all production phases are carried out in one place. Work is often 

mostly manual. The product is stationary and the operators and material move. Fixed 
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position layout is appropriate for the production of large products in low volumes, such 

as ships. (Scallan 2003, p. 12; Chryssolouris 2006, p. 333; Bellgran & Säfsten 2010) 

Functional layout is usually used for producing products with high degree of variation 

on low to medium volumes. Machines and workstations are organized in groups with 

similar machines close to each other. The machines can be automatic or manual. Prod-

ucts can be routed in the system in multiple ways. The benefit of functional layout is the 

high degree of flexibility it offers and potentially high machine utilization level. The 

bad is the complex management, long lead times and high WIP. (Scallan 2003, p. 12-

13; Chryssolouris 2006, p. 333; Bellgran & Säfsten 2010, p. 205-206) 

Cell layout is based on the idea of grouping the workstations and machines in groups 

according to the products they are used to produce. Goal is to gain as good production 

flow as possible. Cell layout is used with medium production volumes with medium 

product variation. The whole production cell is considered as one entity from the point 

of production management which makes it easier to manage than functional layout. 

Batch production layout is similar to cell layout. Difference between the two is that in 

batch production layout one worker performs all of the work to the product, whereas in 

cell layout the work is divided to smaller tasks and one worker only performs one or a 

few tasks. (Scallan 2003, p. 14; Chryssolouris 2006, p. 333-334; Bellgran & Säfsten 

2010, p. 206-207) 

Line layout is the traditional mass production layout. In Line layout the product is 

moved from on specialized station to another on a transfer line. Degree of automation is 

typically very high. Line layout suits for high volume production of only one or a few 

similar products. Capital cost is high. (Scallan 2003, p. 13-14; Chryssolouris 2006, p. 

334; Bellgran & Säfsten 2010, p. 207-209) 

2.3 Production automation  

Production automation has been common since the industrial revolution. Basically with 

automation it is possible to produce more products with less human interaction in-

volved. Traditional production automation involves more or less dedicated automatic 

machines inter connected by transfer lines. This sort of automation is widely used in car 

industry. It is efficient and often the best solution when production volumes are high, 

when there are only a few product variants and when product life-cycles are long. These 

kinds of automation systems have to be designed exactly for the given situation. Often 

this results in low variance tolerance and flexibility. 

In general the strengths of automation are: 

 Humans can be relived from dangerous and repetitive tasks. 

 Tasks that require strength or accuracy can be made with machines. 

 Increases in production volumes can be achieved. 
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 Cost per unit can be lowered in some cases. 

 Standardisation of work is easier, resulting in higher quality and more consistent 
production development.(Bellgran & Säfsten 2010, p.211; Lamb 2013) 

Automation does also have weaknesses, such as: 

 Tasks requiring dexterity are difficult to automate. 

 Starting investment is often high and it is not easy to know beforehand the actual 
cost of the automation system due to complexity of development. 

 Automation needs constant maintenance and adds to the costs of running the 

production. Critical component break down can stop the whole produc-

tion.(Lamb 2013) 

Since the starting investment is quite high, either the payback period is long or produc-

tion volumes have to be quite high to justify the investment of automation. Many manu-

facturing businesses however, do not fulfil the requirements (high volumes, few varia-

tions, long life-cycles) for transition to automatic production. For example many in-

vestment products manufacturers have relatively low production volumes and high 

product variation. For the majority of 20
th

century such companies couldn’t justify the 

investment to automation, but for the last 50 years flexible manufacturing has been de-

veloped for these kinds of companies (Lenz 2016).  

2.4 Group technology and cellular manufacturing 

Group technology is manufacturing principle which helps to improve productivity of a 

company. Group technology is based on a rather simple idea that similar products 

should be processed similarly and possibly with the same machines. (Debnárová et al. 

2014, p. 78) Grouping of the products is often done on one of the two grouping options: 

grouping based on design attributes (such as part geometry, raw material and physical 

size) or grouping based on manufacturing process (Malakooti 2013, p.652). Advanced 

coding systems exist to help with the creation of product groups and they are beneficial 

when there is a large amount of products to be grouped. With only a few products visual 

inspection and manual grouping is often enough. (Debnárová et al. 2014, p. 79-80) 

The improvement of productivity from grouping of products stems from similar tasks 

being done together, higher resource utilization and easier information management. In 

manufacturing these turn into faster setup times, less WIP, better quality, fewer tools 

needed and easier production management. (Curry & Feldman 2009, p. 178; Debnárová 

et al. 2014, p. 79; Wang 2015, p. 5) 

Using group technology to form product groups based on manufacturing process also 

produces groups of machines based on the products they are used to produce (Malakooti 

2013, p.651). Situating the machines within the factory according to these groups effec-

tively leads to a factory layout where machines are grouped into cells based on the 

products they are used to produce. This kind of layout is called cellular manufacturing.  
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(Curry & Feldman 2009, p.177; Malakooti 2013, p.651). Group technology can be 

thought of as a perquisite for cellular manufacturing (Wang 2015, p. 1-7). Some posi-

tive arguments for cellular manufacturing include: (Malakooti 2013, p.651) 

1. Minimizing manufacturing area 

2. Minimizing the need of material handling 

3. Decreasing the level of Work in Process (WIP) 

4. Shortening lead times 

5. Adding flexibility to manufacturing 

 

Manufacturing cells are often compact which may lead to decrease in floor space re-

quirement of the production system. Because material is moved inside the cell directly 

from one work station to the next, the need for material handling and WIP storages is 

smaller than in traditional job shops. Additional advantages of the reduced WIP are the 

shortened lead times. Because cells operate independently from each other, a manufac-

turing system with many cells is flexible for re-routing and production mix changes 

(Malakooti 2013; Hales 2016). Flexibility is explained in more detail in the next chap-

ter. 

2.5 Flexible manufacturing 

Flexible manufacturing system (FMS) is a development in production technology to 

maintain the high productivity of transfer line based automation while making the pro-

duction system flexible. An FMS could be considered as high automation cell layout 

(Bellgran & Säfsten 2010, p. 209). According to Gunasekaran et al (1995), An FMS 

system consists of one or more flexible machine tools and an automatic transportation 

system connecting them to each other. Lenz (2016) states, that any manufacturing sys-

tem capable of manufacturing five or more different products without setup times can 

be considered an FMS system. There is always a limit to flexibility however; the type of 

the machine tool varies depending of the type of production done and one machine can-

not produce both crank-shafts and silicon wafers for example (Terkaj et al. 2009). GT is 

applied in FMS. A typical FMS can only process one product group and a change of 

group may need change of system components. (Spinellis et al. 2009, p. 4-5; Bellgran & 

Säfsten 2010, p. 209-210) 

To understand what FMS means, we have to define the F, “Flexibility”. Basically some-

thing can be called flexible, when it is easily able to adapt to new situations. Definition 

of flexible from Oxford dictionary: “Able to be easily modified to respond to altered 

circumstances” (Oxford Dictionary of English). There are several types of flexibility. 

There is some consensus that the types of flexibility in manufacturing are (Corrêa 2001, 

p. 16; Shivanand 2006, p. 22; Spinellis et al. 2009, p. 8): 
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 Product mix flexibility 

 Production volume flexibility 

 Product flexibility 

 Delivery time flexibility 

Product mix flexibility means that the system is capable of processing varying mixtures 

of products fed to it. Production volume flexibility means that the system can process 

varying production volumes cost efficiently. Product flexibility means that the system 

can process several different kinds of products. Delivery time flexibility means that the 

system can be easily adapted to respond to demand. 

High level of flexibility can be reached when the production system consists of flexible 

machine tools, transportation system and computerised control system (Lenz 2016). An 

FMS system can consist of several CNC machines, loading/unloading stations and stor-

ages. They are all connected to each other via automatic transfer system. Transfer can 

be done with conveyors or with robots. The transfer system has to also be computer 

controlled. To make subsystems of an FMS to work together, An FMS has central con-

trol system which controls each individual subsystems control system. (Shivanand 

2006, p. 22-23) Usually an FMS system is built to tolerate products that have some re-

semblance to one another. 

Flexibility can also be expressed at component level. FMS systems are often built in the 

way that the products in the system are fixtured on pallets and the pallets are moved on 

transfer system and to the machines. One kind of flexibility is then pallet flexibility, 

which means that the pallets in the system are interchangeable e.g. any product specific 

fixture can be mounted on any pallet. Machine flexibility means that any product can be 

processed on any machine of the FMS system. In machine tools the flexibility is ac-

quired by computer numerical control (CNC) (Shivanand 2006, p. 22-23). CNC control 

over the machines enables fast change of programs, thus making them flexible. Com-

plex products might require the processing to be done in steps. Routing flexibility is the 

possibility to do any of the steps on any of the machines and with any of the pal-

lets.(Lenz 2016)  

One advantage of FMS is that FMS systems have defined storage sizes. Some FMS sys-

tems have automatic storage, where there is limited space for work in process (WIP). 

Other systems might have no storage at all and all of the WIP present is currently in 

production or in movement in transfer system. This ensures that WIP levels in FMS 

systems can never get out of hand (Lenz 2016). Having an FMS does not mean that 

whole production is WIP free though. There can be WIP outside of the FMS, waiting 

entry to the system, or waiting post processing.  

Disadvantages of FMS are that FMS systems are relatively expensive; CNC machines 

can cost millions and automatic transfer lines are expensive as well (Gunasekaran et al. 

1995, p. 8; Shivanand 2006, p. 32). It is also said that capacity utilisation in FMS might 
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not be high. Many FMS systems operate at only about 60% of their design capacity. 

(Lenz 2016) This aspect of FMS should be taken into account before an investment. 

High flexibility level of the system is also costly especially if it remains unused (Terkaj 

et al. 2009, p. 2).  

Companies involved in non-niche, low volume production, like subcontractors, are 

more likely to invest in FMS. FMS systems allow them to react to market demand time-

ly and cost effectively. (Terkaj et al. 2009, p. 23) 

2.6 Collaborative robotics 

Collaborative robotics (Cobots) is a rather new field of robot usage. A collaborative 

work cell represents modern automation philosophy where human workers and industri-

al robots work collaboratively. Robots and humans can even work with the same work 

piece simultaneously. (Bloss 2016; Lawton 2016) The rationalisation behind cobots is 

the notation that robots are good in some tasks while humans are good in other tasks. 

Dexterous and non-constant tasks are difficult or uneconomical for robots and repeti-

tive, physically heavy tasks are difficult for humans. By bringing robots and humans 

together it is possible to achieve a human – robot team that is able to do changing, dex-

terous, high strength, repetitive tasks (Maurice et al. 2017). 

Collaborative robotics is actually a general term for several types of robot uses that in-

clude some form of collaboration. ISO standard 10218 allows 4 types of collaboration 

between humans and robots (ISO 10218-1:2011 2011): 

 Safety rated monitored stop 

 Hand guiding 

 Speed and separation monitoring 

 Power and force limiting 

The degree of co-operation increases gradually from safety rated monitored stop to 

power and force limiting. In safety rated monitored stop the robot may work autono-

mously until a human enters its work space, e.g. through a door. The control system will 

then stop the robot and monitor its stage until the human leaves the work space. The 

robot can then automatically resume operation (ISO 10218-1:2011 2011). Safety rated 

monitored stop is relatively easy to implement even to existing robot systems, since the 

robot itself does not have to be modified. The robot controller or separate safety control-

ler can be used to ensure the safety of the robot process.  

In hand guiding a human operator may guide the robot by holding a guiding device on 

the robot arm. The robot will only move according to the input from the guiding device 

and will enter safety rated monitored stop when the operator releases the guiding device. 

(ISO 10218-1:2011 2011) Hand guiding is mainly used as an alternative teaching meth-
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od for programming robot. The idea is that instead of having to write G-code or using 

teach pendant the operator can just guide by hand the robot to the desired position. 

In speed and separation monitoring the work space around the robot is constantly moni-

tored and if an object enters the monitored envelope the robot will decrease its speed 

near the object. If the object reaches a pre-determined separation distance the robot will 

completely stop its movement until the object has moved away. (ISO 10218-1:2011 

2011) Speed and separation monitoring is useful when there is need to use standard, 

high load industrial robots in situations where some collaboration with human workers 

is needed. The system can be built with a safety controller and a safety rated scanning 

system for tracking the work space area. The ISO / TS 15066 allows for both constant 

and variable safety zones. The zones may be varied according to relative speeds and 

locations of the robot and human workers. (ISO/TS 15066 Robots and robotic devices 

— Collaborative robots 2016, p. 11)  

Power and force limited robots are designed to be inherently safe. Their maximum 

power and movement speeds are low so that they cannot harm a human being even if a 

collision would occur on full speed. Power and force limited robots are also designed 

with round features and covered joints to prevent injuries. (ISO 10218-1:2011 2011)  

Because the robot has to be designed safe, an existing industrial robot usually cannot be 

used in power and force limited mode safely. Power and force limited robots are per-

haps the most famous collaborative robots. Some examples of power and force limiting 

collaborative robots are ABB Yumi, Universal robots line up and Fanuc CR-35iA. 

2.7 Safety of a collaborative robot 

Safety is important in every industrial robot use scenario. With traditional robots the 

safety is easy to take care off by building a cage around the robot and ensuring that hu-

mans cannot enter the robot work cell while the robot is moving. Ensuring safety with 

collaborative robots is more difficult however because the human and robot share the 

same work space occasionally or continuously. In order to ensure the safety of the col-

laborative work cell a risk assessment has to be performed. Several standards regulate 

the safety of collaborative robots: 

 ISO 12100 (ISO 12100 Safety of machinery — General principles for design — 

Risk assessment and risk reduction 2010) 

 ISO 10218-1 (ISO 10218-1:2011 2011) 

 ISO 10218-2 (ISO 10218-2 Robots and robotic devices — Safety requirements 
for industrial robots — Part 2: Robot systems and integration 2011) 

 ISO / TS 15066 (ISO/TS 15066 Robots and robotic devices — Collaborative ro-
bots 2016) 

These standards should be used as a basis for the risk assessment. It is also important to 

note that the whole robot process has to be evaluated. Evaluating only the robot by itself 
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is not enough. (Mathieu 2016) The risk assessment has to be application specific: the 

process, parts, grippers, surroundings etc. have to be taken into account.  The risk as-

sessment can be done by the user, integrator or a third party. A risk assessment is re-

quired for a CE marking. 

2.8 Process planning 

The design task continues with process planning which includes choosing the actual 

manufacturing process, designing production capacity and choosing of the equipment. 

The choice on the manufacturing process depends especially from on the material of the 

products and knowledge of the manufacturing processes is needed. Other factors affect-

ing the choice are part size and weight, required processing accuracy, surface finish, 

production volume and the cost of the process.(Scallan 2003, p. 41-42) In this thesis the 

process planning is written in to the chapter 5.2.   

2.9 Economic analysis of investment 

Economic analyses give information on the economic aspects and profitability of an 

investment. Two types of analyses exist: relative and absolute analyses. Relative anal-

yses can be used to for comparison of several investments and absolute analyses give 

information on the absolute value of the investment.(Götze et al. 2008; Crundwell 2008) 

Some analysis methods account for time value of money and some do not. Present value 

or time value of money is nowadays important to take into consideration in profitability 

investment analysis (Crundwell 2008, p. 21). It basically means that one unit of curren-

cy is more valuable today than it is tomorrow. Three reasons exist for this: liquidity, 

inflation and risk. The combined effect of the three almost always causes money to lose 

its value when time passes and for that reason it should be considered in analysis as 

well. (Crundwell 2008, p. 125-127) It is calculated with the help of discounted cash 

flows (Crundwell 2008, p. 124). 

Because many analysis methods exist, it is difficult to pick on over another. It has been 

said that more than one analysis is often needed to cover various aspect of the profitabil-

ity of an investment (Crundwell 2008, p. 124; Wiggins 2014, p. 68-69). Therefore three 

different analyses are used in this thesis. Descriptions of the analyses follow. 

2.9.1 Payback period 

Payback period tells how long it takes for an investment to pay itself back (Baker & 

English 2011, p. 81; Wiggins 2014, p. 70). It is best used as a limit on how long some 

specific investments can take for the payback, but it is not very good for giving infor-

mation on deciding which investment to make among many. That is because it does not 

convey any information of the value of the investment. (Crundwell 2008, p. 164-167; 
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Götze et al. 2008, p. 44) Götze et al (2008) even state that payback period should only 

be used as a supplementary method in investment decisions. Using average values, pay-

back period is calculated with the formula 

               
  

   
  (2) 

where IT is total cost of the investment and CFA is the average yearly cash flow after the 

investment (Götze et al. 2008, p. 44).  

The advantage of payback period is that it is easy to understand and to calculate. It also 

gives information of the liquidity of an investment which can be important for compa-

nies that have liquidity problems. (Crundwell 2008, p. 166) 

Disadvantage is that cash flows beyond the payback period are not estimated (Wiggins 

2014, p. 70). Payback period does not account for time value of money which will af-

fect investment profitability especially in long payback periods. (Crundwell 2008, p. 

166-167) 

2.9.2 Return on investment 

Another analysis method is return on invest (ROI). ROI is a ratio analysis that can be 

used to compare alternative investment possibilities to each other (Crundwell 2008, p. 

83-85). ROI can be calculated in several ways (Crundwell 2008, p. 167). One possibility 

is to calculate it with average cash flows as in 

    
   

  
  (3) 

where ROI is return on investment percentage, IT is total investment and CFA is the av-

erage yearly cash flow. 

ROI is well used in comparing alternative investments to each other’s because it is a 

relative analysis and the size of the investment does not affect ROI. The method itself 

does not give indication of what is a good ROI, but some idea could be acquired by 

comparing it on bank account interest rate. A disadvantage of ROI is that time value of 

money is not considered in ROI. (Crundwell 2008, p. 168) 

2.9.3 Net present value 

Third analysis method used in this thesis is Net present value (NPV). It expresses the 

net value of the investment in present time using discounted cash flows. The cash flows 

of the investment are all discounted to present value with the use of discounting rate. 

The idea is to take in to account the time value of money and give more accurate esti-
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mate for investment decision. (Baker & English 2011, p. 60-61; Wiggins 2014, p. 70) 

NPV equation is 

    ∑
   

(    )
  

  
    (4) 

where t is time period, nt is the total number of time periods, CFt is cash flow per period 

t and kd is the discount rate. (Crundwell 2008, p. 168-172) 

An advantage of NPV is that it gives absolute values that convey information about how 

profitable an investment is. It also includes the idea of time value of money and the re-

sults are easy to interpret. The disadvantage of NPV is that the discount ratio could be 

difficult to estimate and it affects the result of the calculation greatly. (Crundwell 2008, 

p. 170-172) One possibility is to use inflation rate as the discount ratio. Another possi-

bility is to use government bond interest (Baker & English 2011, p. 61).  

Common for all of the analyses is that total costs of the investment and yearly cash 

flows have to be estimated. The investment costs are the sum of all the equipment, inte-

gration, and setup and training costs related to the investment. (Crundwell 2008, chapter 

4) The yearly cash flow represents the sum of the money spent and received yearly on 

the project. In manufacturing the yearly cash flow can be calculated as savings per part. 

That is the future cost subtracted from the past cost of manufacturing a part multiplied 

by yearly production of the part. The manufacturing costs consist of maintenance, la-

bour cost, down time and fault part cost. (Lenz 2016) 
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3. THE COMPANY AND CURRENT STATE OF 

PRODUCTION 

The target company of this thesis, Finncont Oy, is the biggest rotational moulder in 

northern Europe (Finncont Oy , 2016) and the biggest Intermediate bulk container (IBC) 

manufacturer in Finland. Finncont’s own product portfolio contains products such as 

fuel tanks, IBC’s and waste collection products. Furthermore Finncont is also a subcon-

tractor, and manufactures rotationally moulded products for a variety of other compa-

nies. The company is located in Virrat Finland and its two factories are located there. 

One of the factories is specialised in steel IBC’s and the other in plastic rotationally 

moulded products. The company has roughly 150 employees in 2016. (Finncont Oy , 

2016) 

The company was founded in 1974 in Virrat Finland. First products were steel IBC’s 

mainly for the domestic market. The company grew along the years. Rotational mould-

ing was added to Finncont repertoire when the need arise to produce plastic inner bot-

tles to half steel half plastic IBC’s in 20
th

 century. Use of this new manufacturing tech-

nology was quickly expanded and soon Finncont began a new business segment as a 

subcontractor. Finncont also changed its name and owners a few times as well. Current 

name Finncont Oy has been in use since 2004. These days a large proportion of sales go 

to export with main markets in Nordic countries, UK, Germany, Belgium and Holland. 

In the next chapter, the current production process is described and followed by intro-

duction to some of the products and their processing phases. Since this thesis work is 

focused in the automation possibilities in the plastic producing factory, only the process 

in that factory are considered here.  

3.1 Current state of production 

All of the products studied in this thesis are rotationally moulded from plastic. The basic 

steps in the production are as follows: 

1. Add plastic powder to mould 

2. Insert the mould to oven 

3. Remove the product from the mould and let it cool down 

4. Perform any finalizing work on the product 

5. Pack the product ready for shipment. 

Common for all of the products is the beginning three steps during which the product is 

moulded and attains its shape. There’s variation mainly to the amount and type of the 
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raw material used, settings of the moulding machine and the instance of the moulding 

machine. From step four onwards the process steps vary heavily. The now moulded 

unfinished products all require different amounts of finalizing work before they can be 

packed and shipped to customers. The usual types of finalizing work are listed below in 

no particular order. 

 Cutting of features only needed during moulding. 

 Separating products moulded together from each other. 

 Drilling holes and cutting open other shapes. 

 Deburring parting lines. 

 Performing leak tests. 

 Quality inspections. 

 Varying assembly tasks. 

All of finalizing work is currently done manually and most of it is done by using basic 

handheld tools such as knives, screwdrivers and handheld millers. For some tasks dedi-

cated machinery is used. For example, for some products the leaking test is done by 

sealing any openings in the product, pressurizing the product and then submerging it to 

pool filled with water. The pools have pneumatic cylinders strong enough to submerge 

even high buoyancy products. 

As it was seen in paragraph 2.3, tasks requiring high dexterity are hard to automate. In 

Finncont’s processes assembly and leak testing were deemed to be high dexterous and 

for this reason they are largely left out from the scope of this work. Main effort is fo-

cused on researching automation potential in the other tasks (Cutting, drilling, deburring 

and quality inspections). These tasks should benefit from automation.  

3.2 Products 

In this chapter products that are analysed in this work are introduced. As it was stated 

earlier, Finncont produces several kinds of products of which only the rotationally 

moulded plastic products are considered here. The company produces close to a hun-

dred different rotationally moulded products. However, many of these have rather low 

production volumes, not much finalizing work or short life-cycles. Based on these re-

strictions Director of operations, Hannu Ranta-Lassila, had already worked out a list of 

possible products for automation analysis. The list contained 19 products but was later 

enlarged with five additional products. Both the original 19 and added five products can 

be seen in Table 1 below. 
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 List of the 24 products considered for automated production. Table 1.

1 Product A Lid for portable fuel tank 

2 Product B  Oil tank for forklift 

3 Product C Lid for waste container 

4 Product D Lid for waste container 

5 Product E Lid for waste container 

6 Product F Fuel tank for  

7 Product G Cargo box for  

8 Product H Cargo box lid  

9 Product I Cargo base lid for all terrain vehicle 

10 Product J Composting toilet 

11 Product K Waterless toilet 

12 Product L Composting toilet 

13 Product M Composting toilet 

14 Product N Sand box 

15 Product O Waste water management tank 

16 Product P Light frame for trailer 

17 Product Q Installation panel for 

18 Product R Water pipe intersection 

19 Product S Waste container 

20 Product T1 Fuel tank for tractor 

21 Product T2 Fuel tank for tractor 

22 Product T3 Fuel tank for tractor 

23 Product T4 Fuel tank for tractor 

24 Product T5 Fuel tank for tractor 

 

The first 19 products in Table 1 are the products originally considered potential for au-

tomated production. The last five products emphasized with grey background colour are 

the products later added to the list. These products are analysed in chapter 4. 
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4. PRODUCT ANALYSIS 

Main research part of this thesis was begun by making product analysis. The goal of the 

analysis was to identify potential products to build the automation system for and to 

gather information required for designing the production system. The product analysis 

is divided into two parts: general analysis and time study. Analysis begins with the gen-

eral analysis. The reason the general analysis was performed, was to gather some basic 

information about the products. With the general information, the products for more 

detailed time study analysis could be chosen. The general analysis was done by reading 

work instructions, going to see the products in the factory and by unofficial conversa-

tions with the employees and management of Finncont Oy. The second part of the anal-

ysis, the time study, was performed to find a standard time for the products. The stand-

ard time is needed for deciding which products benefit most from automatic production 

and are what kind of processing the automatic work cell should be capable of. Econom-

ic analyses of the work cell designs also require information of the standard time of cur-

rent production.  

As it was stated in chapter 3.2, in total 24 products were considered for automatic pro-

duction during this project. 19 of these were known to have cutting and drilling as one 

production process since they were chosen by the management and that was one of the 

requirements for the selection. The last five of the products were later added to the 

scope of the project. These five are from the same product family and they are similar to 

each other in size, geometry and processing steps. They were included to the project 

because their combined production volume is on the higher side among Finncont’s 

products and since the customer of those products has requested processing improve-

ments to be made. General analysis was only performed for the 19 original products, 

because the five extra products were added to the project after the analysis had already 

been completed. Consequently, only time study was performed for the five products 

added later. 

4.1 General analysis 

The general analysis is based on mainly the information acquired from work instruc-

tions and product drawings. These sources are supplemented by observations of the 

production and by estimated yearly production volumes. The yearly production volume 

information was supplied by the director of production. 

First 19 products in the Table 1 were analysed. First basic info about the products was 

gathered into an Excel workbook where it was easy to analyse. The information gath-
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ered included names of the products, sizes, tasks needed to be performed on them, list 

of features to be cut out if any, Tool approach directions, yearly production volumes, 

length of the cut to be performed if any, sizes and amount of holes to be drilled if any, 

measurements to be performed is any, tools needed and other notices if applicable. A 

sample of the information gathering sheet can be seen in appendix b. 

The products were then compared in several categories to find out any similarities be-

tween them and also dissimilarities. The categories, which can be seen in the list below, 

were mainly the same as the types of information collected, mentioned in last para-

graph.  

1. Physical size 

2. Work tasks performed 

3. Tool approach directions 

4. Tools needed 

Analysis on category 1, physical size was straightforward. Information of the size avail-

able was length, width, height and approximate weight of the parts. From drawings, 

some knowledge of the geometry of the products was also acquired. Since the geome-

tries were complex on many products, it was decided that the size comparison should be 

made by comparing the actual maximum length, width and height, rather than volume. 

Based on the analysis it was thought that the biggest products are so large that the au-

tomation system would become unnecessary large and it would be better to exclude 

them. The size of a EUR-pallet (1200*800 mm) was used as the limit. Figure 3 below 

presents a chart of the dimensions. 
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Figure 3. Product dimensions. For each product the smallest dimension is regarded 

as width, and the second smallest as length. The width and length of standard 

EUR-pallet are visualized with lines. 

As can be seen from the Figure 3, there is one product that has a width greater than the 

width of a EUR-pallet and three products that have length higher than the length of 

EUR-pallet. The rest of the products fit to the dimensions when height is left uncon-

strained.  

Category 2 analysis was about work tasks performed for each product in finalization. 

Information on work tasks was acquired from finalization work instructions which shop 

floor workers use as a guide. All high dexterity tasks were skipped for reasons stated 

earlier. The rest of the work was divided to tasks roughly by the character of it. Differ-

ent tasks identified were cutting and drilling, deburring (including deflashing), measur-

ing, marking, chamfering and grinding. Deburring and cutting and drilling were com-

mon tasks for all of the products. Other tasks were less common. Task occurrence fre-

quency can be seen in Figure 4. 
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Figure 4. Occurrences of different work tasks. Tasks are sorted high to low.  

As shown in 23Figure 4, all 19 products have deburring and cutting and drilling tasks. 

Measuring is also done for almost half of the products. Marking and chamfering are 

only done for four and two of the products respectively. 

Tool approach directions were the third analysis category. Motivation for analysing ap-

proach directions is the fact that parts that need processing on many or all of their sides 

would have to be rotated or turned during the processing in order for the tool to reach 

obscured areas. For approach direction analysis the products were thought as cubes with 

6 sides, where 1 side corresponds to 1 approach direction. Therefore one product can 

have a maximum of 6 tool approach directions.  Information on approach directions was 

gathered from work instructions. For one product however, there was no information 

and it was skipped. On Figure 5 a chart is displayed on which approach directions need-

ed per product can be seen. 
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Figure 5. Approach directions on the products. Columns in the chart display the 

numerical value of approach directions. Line with markers displays the cumula-

tive percentage of approach directions, with axis on the right. Note, for one 

product no information of the process tasks was available (Produck K). 

If products are fixtured from all sides it would be almost impossible to do any pro-

cessing on them. Therefore fixturing should be designed so that it hinders processing of 

the product as little as possible. Within the 19 products there are four products that need 

some kind of processing from all six sides and two products that need it from five sides, 

as we can see from Figure 5. Together they represent about one third of the products 

total. These products will be hard to fixture. On the other hand, 50% of the products 

need processing from only one or two approach directions which makes them easy for 

fixture designing. For one product (Product K) there was no information available of the 

processing required. It was therefore omitted from the figure above. 

Category 4 of the analysis is about tools. Tools needed depend on the work task per-

formed. As we have already identified five different work tasks shown in Figure 4, we 

base our tool analysis on it. For deburring we need one or more tools depending on the 

type of burr and surface geometry of the products. Many of the products do have com-

plex geometries so deburring tool needs further research. For now it can be concluded 

that one or more deburring tools are needed. 

Cutting and drilling operations could be done with several different technologies. Possi-

bilities are at least laser cutting, water jet cutting, cutting with knives and cutting with 

rotational tools. Currently all cutting in Finncont is done with rotational tools, more 

specifically with pneumatic hand drills/mills. Cutting with rotational tools needs several 
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tools based on the sizes of the holes to be drilled and corner radiuses of the cuts to be 

made. Finncont has gained empirical knowledge about cutting plastic for years and they 

were able to confirm that for high speed cutting with rotating tools a tool diameter less 

than 10mm would easily result in the edges becoming welded back together after the 

tool has passed on. For this reason it was decided that if cutting would be made with 

rotating tools the diameter of the tool would be minimum 10mm. Holes on the other 

hand would preferably be made with right sized drill bits for better quality, although it 

would be possible to make bigger holes with smaller diameter milling/drilling tools. 

Information on circular hole sizes was gathered from product drawings and is presented 

in Table 2.   

 Circular hole sizes in products, their instances and products in which they Table 2.

occur. 

Size Instances Products 

3mm 3 9,13 and 16 

3,8mm 1 13 

4mm 1 7 

5mm 3 7, 12 and 14 

6mm 2 7 and 13 

8mm 1 13 

10mm 1 9 

12mm 1 2 

13mm 1 19 

15,5mm 1 10 

16mm 1 15 

17mm 1 15 

21mm 1 15 

27,5mm 1 14 

44,5mm 1 6 

78mm 1 6 

80mm 1 10 

100mm 1 12 

110mm 1 17 

 

As it can be seen from Table 2, the products have a variety of different hole features. In 

fact, many of the hole sizes occur in only one product. Likewise there is several prod-

ucts that have several unique hole sizes. If cutting and drilling operations are to be made 

with rotational tools it would be cost effective to decrease the amount of different tools 

needed. Since smaller hole cannot be made with bigger tool but other way around is 

possible, it might be best to have several smallest size tools available for the automation 

system. Some of the bigger holes could then be made with the smaller tool by first drill-

ing a centre hole and then enlarging it with a milling operation. Another option to de-

crease the amount of tools is to filter out some of the products. For example by eliminat-
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ing products needing at least two unique sized tools (products 6, 7, 10, 13 and 15) 

would decrease the amount of tools needed from 19 to 8. 

The four types of analyses were combined and some limits were devised to recognize 

the most potential products. For size, it was decided that the products would have to fit 

on a standard EURO-pallet. This requirement was based on findings on the process and 

work cell design that was done simultaneously to the product analysis. Process and 

work cell design is described in chapter 5. On tool approach directions, products that 

have processing on all six different sides were left out. This decision is based on the fact 

that fixturing such products would be difficult. Hole sizes and processing needed was 

not used as filtering factors at this stage but one product (Product K) was filtered out 

because no information of processing required was available. A total of eight products 

were filtered out. The remaining eleven products were chosen for time study.  Detailed 

results of the analysis can be seen in appendix c. Table 3 has a list of products that were 

chosen for the time study from the original 19 products. 

 List of the products chosen from the original 19 products with qualitative Table 3.

analysis for time study. The numbering of the products is the same as in Table 1. A 

total of eleven products were chosen. 

List of the products chosen for time study 

1 Product A Lid for portable fuel tank 

2 Product B  Oil tank for forklift 

6 Product F Fuel tank for  

7 Product G Cargo box for  

8 Product H Cargo box lid  

10 Product J Composting toilet 

12 Product L Composting toilet 

14 Product N Sand box 

15 Product O Waste water management tank 

16 Product P Light frame for trailer 

17 Product Q Installation panel 

 

4.2 Time study 

In this thesis time study was used to find out how much work time each of the products 

needs for completion. This data can be used to sort the products to argument investment 

for automation, but it can also be used for improving the work methods without invest-

ment to automation. This is what MTM is usually used for (EK-SAK tuottavuustyöry-

hmä 2011).  

For most of the products analysed in this thesis, production schedules are either cyclic 

or otherwise non-continuous. In other words, not all of the products are always in pro-

duction. During the making of the general analysis, production schedules for all of the 
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products were not yet known. When the analysis was finished it was found out that 

some of the products chosen for time study would not be in production within the time 

limit of the project. Therefore those products had to be left out of the time study. Table 

4 has a list of the products for time study, where the products that could not be meas-

ured are marked with red background colour (grey in black and white prints). 

After the general analysis had already been completed, one major customer expressed 

their hopes of production improvements to the management of Finncont. None of that 

particular customer’s products had been analysed in the general analysis. Thus, it was 

decided to include their products directly to the time study to see if it would be possible 

to make improvements to their production processes either with automation or some 

other means. Because some of the products chosen for time study with general analysis 

could not be measured, the inclusion of extra products for time study did not cause 

problems for the schedule of the project. The extra products can be seen in Table 4 with 

a * sign in front of their index number. 

 List of the products chosen for time study with a red background colour on Table 4.

those products that could not be measured during the project because of timing. 

The products included in time study 

1 Product A Lid for portable fuel tank 

2 Product B  Oil tank for forklift 

6 Product F Fuel tank for  

7 Product G Cargo box for  

8 Product H Cargo box lid  

10 Product J Composting toilet 

12 Product L Composting toilet 

14 Product N Sand box 

15 Product O Waste water management tank 

16 Product P Light frame for trailer 

17 Product Q Installation panel for 

*20 Product T1 Fuel tank for tractor 

*21 Product T2 Fuel tank for tractor 

*22 Product T3 Fuel tank for tractor 

*23 Product T4 Fuel tank for tractor 

*24 Product T5 Fuel tank for tractor 

 

As it was stated in chapter 2.1.3, the task studied is first separated into elements. To do 

this the production process of each of the products were first inspected and elements 

were identified. Because the products and work tasks related to them vary, the elements 

of the tasks also varied from product to product. Elements for each task are shown in 

appendix d. After the elements had been identified a sample observation of each task 

was made to acquire average and standard deviation for the calculation of the number of 

observations that would have to be made. Measurements were made with a computer 
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program called EasyTime. 20 elements can be defined for one task in EasyTime, which 

was sufficient for this study.  

The first product that was measured was the product with index number 14, Product N. 

A sample of five cycles was measured and during the measurement it was soon obvious 

that a normal time study would not work very well since there was considerable varia-

tion in the work. Even though the company has made work instructions the product, the 

worker who was measured did alter from the instructions somewhat. For instance, at 

one point the product should be placed on work table for cutting and after being cut it 

should be cleaned from inside with a vacuum cleaner. The worker however did the cut-

ting with the product on floor and cleaned the product by forcefully pulling it up, turn-

ing it upside down and shacking heavily. Apparently the worker diverted from the in-

structions because she found her way of doing the job more suitable for her. 

Diversion from the work instructions is problematic because not all of the workers di-

vert from the instructions. Therefore a standard time calculated for the worker measured 

would not apply to every worker and because of time limitations there was no time to 

measure more than one worker’s performance. The sample measurement for product 

number 14, Product N can be seen in Table 5 . 

 Sample measurement results for the product number 14, Product N. All Table 5.

measurements are in seconds.  

 

In Table 5 the left most column has the elements of the task, columns titled unit1 to 

unit5 have the measured time for the elements for each unit in order, column titled lot 

has the element times that occurred once for every five products, column titled whole 

pallet has the element times that occurred once for every 10 products which was a full 

pallet and last the column titled Grand Total has the total time for each element. The last 

row has the total time for each unit measured. 

Another problem arouse as well. Not all of the cycles and elements recurred identically 

each cycle. From Table 5 it can be seen that for some of the elements the measured time 

varies substantially, like for the first element “taking of new part” and the element 

“packing”. During the first element, “taking of new part”, the worker walks from the 

unit1 unit2 unit3 unit4 unit5 lot whole pallet Grand Total

Taking of new part

Deburring of parting lines

Drilling of water holes

Opening of axel holes

Cutting lid off

Removing sharp edges and cleaning the cutting line

Packing

Cutting the extra part off

Vacuuming 

Delay

Grand Total
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packing area to WIP conveyor, picks up a new unit and carries it to the working area. 

The units on the WIP conveyor do not move automatically however, and therefore the 

worker has to walk longer distance each time to pick up a new unit. The first measure-

ment for this element on unit1 is an error, but on the other measurements we can clearly 

see this trend of lengthening element time. The short five seconds time measured for 

unit5, results from the worker picking up this particular unit from next to the close end 

of the conveyor. The unit had been placed there because earlier the conveyor had been 

full. If we calculate number of observations for each element based on this sample with 

a 90% confidence and 10% accuracy we end up with following result: 58 cycles would 

have to be observed. This was a problem because there was no time or chance to meas-

ure this many cycles during the project. Full calculation results can be seen in appendix 

e. 

These problems make the calculation of standard time with the usual method meaning-

less. It was then decided to only measure five cycles of each product and neglect inten-

sity rating and allowances. A standard time acquired like this is not ideal and cannot be 

used for wage or employee evaluation (EK-SAK tuottavuustyöryhmä 2011, p. 24). For 

the purposes on this project it is acceptable and can be used for a rough comparison of 

the element times of the products to each other and for approximate economic analyses. 

All the rest of the products were then measured and five or more cycles were observed 

of each. The results of these measurements are gathered to appendix f. Small reliability 

analysis made for the measurements by calculating accuracy for the measurements with 

function (1). For the calculation the actual measured number of cycles was used as n 

and confidence was chosen as 95%. Resulting accuracy (how much the time measured 

can differ from real element time) for each element varies between 4 % and 41000 %. 

For most elements the accuracy is several hundred percent. For example it can be said 

with a 95 % certainty that the real processing time for an element with an accuracy of 

200 % and an average processing time of 15 s is between 0 s and 30s. This means that 

the accuracy of the measurements is low which is mainly caused by the relatively small 

number of observations (5 to 9) and a high degree of variance in the work tasks in 

Finncont Oy. Detailed results of time study reliability analysis can be seen in appendix 

f.  

4.3 Formation of product groups 

Although in the beginning all of the products seemed rather different with different kind 

of production steps, after the analysis and time study it was noticed that there are mean-

ingful similarities in the products. It was decided to form product groups. Like it was 

said in chapter 2.4, product groups can be formed with the help of group technology and 

the forming can be based on design attributes or production processes. Because only the 

products that were chosen for time study were considered for grouping, there were only 

16 products to group. Thus visual inspection was sawn to be adequate. 
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First, similarities were looked within design attributes, namely from size and shape both 

of which affect fixturing. It was easy to see that the products number 20 to 24 were sim-

ilar in shape and size and that gave one grouping option. No meaningful similarities 

were found on the other products. Material, weight or intended use were not thought of 

being important in finalization work and were therefore not used as grouping points. 

Then similarities were looked from production processes. The breakdown of the pro-

duction processes to elements was useful for this search. The elements of each product 

were compared to one another and it was found out that the products number 20 to 24 

had very similar production processes that only differed a little bit. This was expected 

because the products are finalized at the same work site. When compared with the rest 

of the products it was found out that products 20-24 do not include any cutting or drill-

ing operations whereas the other products all have those. The other products were after 

all chosen for the project based on the fact that they do include cutting or drilling opera-

tions. Based on these findings two product groups were formed. Products 1, 2, 6, 7, 8, 

10, 12, 14, 15, 16, 17 in group one and products 20-24 in group two. Breakdown of the 

groups can be seen in Table 6.  

 Formation of product groups. Table 6.

  Product groups 

Group Index Name Description 

Group 
1 

1 Product A Lid for portable fuel tank 

2 Product B  Oil tank for forklift 

6 Product F Fuel tank for  

7 Product G Cargo box for  

8 Product H Cargo box lid  

10 Product J Composting toilet 

12 Product L Composting toilet 

14 Product N Sand box 

15 Product O Waste water management tank 

16 Product P Light frame for trailer 

17 Product Q Installation panel for 

Group 
2 

20 Product T1 Fuel tank for tractor 

21 Product T2  Fuel tank for tractor 

22 Product T3 Fuel tank for tractor 

23 Product T4 Fuel tank for tractor 

24 Product T5 Fuel tank for tractor 

 

The two groups in Table 6 were formed based on production process similarities. In 

addition the products group 2 share similar size and shape attributes. These similarities 
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can be exploited on the work cell design for planning efficient work cells as stated in 

chapter 2.4. The theory of group technology proposes to group machines to groups 

based on the products they are used to produce. It was decided to follow this proposition 

and plan separate solutions for each product group. 
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5. WORK CELL PREDESIGN 

With product analysis completed, work continued on work cell design. Due to iterative 

and simultaneous nature of production system design, work on this part had already 

been started before the product analysis had been completed. 

As it was stated earlier, the work cell design was decided to perform separately for both 

product groups. This decision was made because it was seen that the two groups differ 

on the processing they need. The study of work cell design was thus conducted bearing 

in mind the differences of the product groups while choosing layouts and actual pro-

cessing tasks and equipment. 

On this chapter steps on conceptual work cell design are told. The task of work cell de-

sign is divided to two parts: first part discussed is the choice on layout. And after that 

the research and choice on production processes is presented.  

5.1 Formation of layout plans 

It is important to study the existing production system according to Bellgran & Säfsten 

(2010, p. 172-173) as was said in chapter 2.1. For the purpose of developing new layout 

for the production of group 1 products and group 2 products, the old layout is first stud-

ied. 

Finalizing work is currently completely manual and consists of work phases listed in 

chapter 3.1. Not all of the products need every kind of processing however, as was 

found out in chapter 4.1. Currently all of the products in group 1 are finalized in their 

own dedicated workstations, whereas products of the group 2 are all finalized in the 

same workstation. There is only one workstation for each product and all of finalizing 

work is conducted on that work station. Consequently, all of the work stations contain 

all of the tools and equipment needed for finalizing the products meant to be produced 

there. Production in the factory as a whole represents both functional layout and batch 

production layouts. The layout seems like a functional layout because the rotational 

moulding machines are all located next to the side walls of the factory and thus grouped 

together. The finalizing work stations are located next to the moulding machines and 

also grouped together. On the other hand the layout represents batch production layout 

because the moulding machines produce from one to several products simultaneously 

each time an arm finishes its cycle. The products are then placed in WIP buffer storage 

from where the finalizing worker picks them up one by one and begins finalizing work. 

For most of the products all work tasks are done in nonstop manner by one worker. If 
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only finalizing is considered, the layout is effectively a project oriented layout. The 

workstation for products of group 2 resembles cell layout in its present form.   

Research on different layout types was conducted on chapter 2.2. For a reminder the 

layout types are project layout, functional layout, batch/cell layout and line layout. As 

was seen in chapter 2.2, the choice of the layout depends mainly on product variety and 

production volume. In case of product group 1 the number of products is eleven and 

their combined yearly production volume was x last year (2015). There are five prod-

ucts in Group 2 with a combined volume of y per year (estimated 2016).  

   Product groups with yearly production volumes and totals. Note: the Table 7.

production volume for product 20 consists of the actual production volume for 

product 20 which is and of the volume  for a product which production has already 

ended (T11). 

  Product groups and volumes 

Group Index Name Volume (pc/y) 

Group 
1 

1 Product A  

2 Product B   

6 Product F  

7 Product G  

8 Product H  

10 Product J  

12 Product L  

14 Product N  

15 Product O  

16 Product P  

17 Product Q  

Total   11  

Group 
2 

20 Product T1 + T11  

21 Product T2   

22 Product T3  

23 Product T4  

24 Product T5  

Total 
 

5  

 

Because of the product variety and relatively low production volumes, line layout is not 

a good solution for either of the product groups. Project layout on the other hand is used 

for stationary, one at a time -production, so it does not suit the production of multiple 

products very well. Both the functional layout and the cell layout would suit both of the 

product groups, production volume and variety wise. Functional layout is however con-

sidered to be difficult to manage and easily causes high WIP (Bellgran & Säfsten 2010, 

p. 205-206). Cell layout on the other hand offers less flexibility than functional layout 
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and often needs higher production volume to be profitable. Because the products have 

already been grouped, the lost flexibility factor should not be an issue. Cell layout is 

also seen as offering better chance for production automation than functional layout. 

That is important because the objective of this thesis is to increase the automation level 

of the production system. Production volume on group 1 should also be high enough for 

cell layout. Based on this reasoning cell layout was chosen for group 1.  

The current workstation for group 2 was seen as a good basis for the future production 

system. It is currently organized as production cell and it was therefore decided to use 

cell layout in the future production system as well, even though the production volume 

of group 2 is lower than that of group 1. 

5.2 Process planning 

Production processes suitable for product groups 1 and 2 that could be used in automat-

ic work cells were researched next. Because the goal of this project was to add automa-

tion to the finalization phase of the production stream in Finncont, only processes relat-

ed to this part were researched. 

In product analysis it was found out that the products require five different kind of pro-

cessing, when high dexterity tasks are left out. These processes are: deburring, cutting 

and drilling, measuring, marking and chamfering. Every product does not require every 

type of processing however. Figure 6 shows how many products of group 1 needs each 

type of processing.  

 

Figure 6. Finalization work tasks on products of group 1. 
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As can be seen from the Figure 6, none of group 1 products requires marking. Thus the 

work cell for group 1 does not have to be fit with marking equipment. Figure 7 has 

same information for group 2. 

 

Figure 7.  Finalization work tasks on products of group 2. 

From the Figure 7 it can be easily seen that the products of group 2 all require complete-

ly the same work tasks. The processing of group 2 products consists only of deburring, 

measuring and chamfering tasks. Chamfering and cutting and drilling operations may 

hence be left out of research of production processes for group 2.  

5.2.1 Cutting & drilling 

Cutting and drilling methods were researched first. Three main technologies exist for 

cutting plastic. They are laser, water-jet and mechanical cutting. (Rosato et al. 2004; Ion 

2005, chapter 14; Biron 2013, p. 750) All of the technologies have their own processing 

characteristics that have to be taken into account in production planning.  

In laser cutting a laser beam is utilized for cutting purposes. According to (Ion 2005) an 

air assisted CO2 laser suits the cutting of both PE and PP plastics (Ion 2005, p. 371). 

The laser is often mounted on an industrial robot. Advantages of laser deburring are the 

fact that it is a rather fast process (Dahotre & Harimkar 2008, p. 144) and that it does 

not produce chips (Rosato et al. 2004, p. 568). In addition laser beam is very narrow and 

can therefore reach areas on difficult locations. The narrowness of the beam also means 

that it is possible to make very thin cuts. (Dahotre & Harimkar 2008, p. 145) By focus-

ing the laser beam with lenses, holes from 2 to 50mm in diameter can be made without 

circular movement. (Rosato et al. 2004, p. 568) Because of laser’s non-contact nature it 

does not require the work piece to be rigidly fixtured (Dahotre & Harimkar 2008, p. 

144). 
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Laser cutting has also its downsides. The quality of the cut may deteriorate on thick 

sections and striations can occur on the cutting edge on thin sections as well (Dahotre & 

Harimkar 2008, p. 171-175). Often dross forms on the back side of the cut surface (Da-

hotre & Harimkar 2008, p. 176-179). Laser cutting of polymers creates a fine particle 

fume that has to be taken in to account in the work station design (Ion 2005, p. 370).  

Because laser beam does not stop before hitting obstacle, some damage might occur on 

the opposite wall of hollow work pieces when the beam cuts through the front wall. 

This has to be taken into account especially in laser drilling. Drilling hollow products 

with laser might cause damage to the opposite wall (VanderWert 2006). Laser drilling 

without damage to the opposite wall is only possible if it can be protected from the laser 

beam. One option is to place a beam blocker underneath the front wall that is cut to pre-

vent damage to the opposite wall. Another option is to use a detector to detect when the 

laser has cut through the first wall and then switch off the beam (Ho et al. 2013). (Oka-

sha et al. 2010, p. 199). However, the blocker method cannot be used on the products of 

either group 1 or group 2 because of their closed form. The detection method on the 

other hand is rather new technology and adds to the cost of the system. (VanderWert 

2006) 

Cost aspects might be the biggest obstacle for utilizing laser cutting in low to medium 

production environment like Finncont has. Laser cutting systems are expensive and 

have high running costs because of low efficiency (Davim 2008, p. 312). A CO2 laser 

has an energy efficiency of 20%. (Black et al. 1996, p. 420-422) According to John Ion, 

laser cutting system is economical when it is used at least 16 hours per day (Ion 2005, p. 

354).  

The second option, water-jet cutting, utilizes high pressure jet of water for cutting pur-

poses. The water-jet pressure is typically about 400MPa and the speed of the jet can 

reach 900m/s. An advantage for water-jet cutting is that it does not create HAZ. Water-

jet cutting does not heat the work piece and thus there is no danger of melting (Ion 

2005, p. 353). Cutting efficiency can be enhanced by adding abrasive particles to the 

stream. (Black et al. 1996, p. 426-428) Like laser cutting, water-jet cutting is also a non-

contact cutting method that does not need rigid fixturing for the work piece (Dahotre & 

Harimkar 2008, p. 144). (Davim 2008, p. 304-306) 

Water-jet cutting needs dedicated machinery and the work piece has to be fixtured on 

top of pool. A great disadvantage of water-jet cutting is that because it employs a water 

stream it does not suit the cutting of hollow products. The reason is that the water used 

for cutting would be trapped inside the product (Davim 2008, p. 306). Even if some 

drain holes would be provided there is still a danger of damaging the opposite wall 

when cutting hollow products just the same as in laser cutting. 



37 

Mechanical cutting utilizes a rigid tool for shearing pieces off the surface being cut. 

Plastic products can be cut with mills, knives and saws. Milling is the most versatile of 

these methods because milling tools can be used to drill holes and round corners of var-

ying radii.  

The machining parameters are important when cutting or drilling plastic mechanically. 

Because plastics used in the products of group 1 (PE and PP) are good thermal insula-

tors the machined area heats up locally, which can lead to melting and surface defects. 

(Kaddeche et al. 2012; Biron 2013, p. 750) Some of the heat transmits to the metallic 

cutting tool reducing its lifetime. According to (Vasile & Pascu 2005, p. 149) some 

thermoplastics like PP and HDPE are easy to machine, but LDPE is more difficult. 

Generally a good surface finishing can be achieved on PE with high cutting speeds and 

low feed rates. Water cooling could be applied for higher feed rates. (Vasile & Pascu 

2005) 

Experimenting with the processing parameters might be needed in order to find out 

which settings give the best result. Wrong settings can even damage the work piece. 

(Ivan et al. 2016) In addition, thermo plastics like polyethylene (PE) tear and melt easily 

under high stress that might occur during drilling or milling. Milling induces stress to 

the work piece, so to prevent damage the work piece has to be rigidly fixtured so that it 

cannot bend while processed. Another important point is to use only sharp tools and 

minimize contact forces. (Harper 2000; Rosato et al. 2004, p. 565-567) 

On the contrary to laser and water-jet cutting, mechanical cutting is suitable for cutting 

of hollow sections without the need for special protection technology. Mechanical cut-

ting is also the easiest to implement on most production systems for the same reason. 

The investment cost of mechanical cutting is also quite low compared to both laser and 

water-jet cutting, but the additional costs like tool wear, need of cleaning of cutting 

chips and the more rigid fixtures needed add to the cost in time. 

5.2.2 Deburring 

Deburring (including deflashing) operation was the second operation studied. As a re-

minder, deburring is the act of removing excess burr formed during machining (Aurich 

et al. 2009, p. 520). Deflashing is the act of removing flash that materialize during 

moulding. (Bralla 1999, chapter 50) Here deburring is used to refer to both deflashing 

and deburring. 

Burrs form especially on parting lines and on inserts. Figure 8 has an example of burr 

formed on mould parting line. This kind of burr has to be removed from the product 

surface for three reasons. First, it is cosmetically bad and the product looks unfinished if 

burr has not been removed. Second, the burr might cause the product to not to fit its 

dimension tolerances because of large burs. Third, sometimes pores develop underneath 
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the burr, like in Figure 9, which is a problem if the part should be air tight. With the 

burr removed the surface can be inspected for spores.  

 

 

Figure 8. Example of burr formed on a parting line between mould segments.  

 

Figure 9. Pores underneath burr. Some of the pores are visible before deburring but 

some are revealed only after deburring. Section A-A displays a pore that can po-

tentially result in a leak under physical stress. 

As can be seen from figure 5, the flash on the products is sometimes on hard to reach 

and curved areas. Especially the parting lines tend to be rather complex and hard to ac-

cess. Parting lines go around the products and include corners with varying radii and 
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dual curved faces. Other locations include flash on through holes and on top of inserts. 

The deburring tool would have to be versatile and slim to reach all of the locations. The 

flash is also non uniform and its length and thickness varies. The flash is stronger on the 

areas where the used mould is the most worn. Products moulded with good new moulds 

can have no flash at all, whereas some products moulded with old moulds may have 

heavy flash thorough.  

There is rather small amount of scientific writings about burr removal from large plastic 

parts. Most of the writings address burr removal in blow and injection moulding where 

the parts are relatively small and production volumes are high (Lee 2006, p.165-167). 

For these kind of parts tumbling with or without abrasive material is recommended. 

Cryogenic tumbling is also possible. (Harper 2000) For the rather large and hollow 

products that Finncont produces tumbling is not suitable so other methods have to be 

considered.  

For metallic parts many methods for deburring exist. Such as tumbling, water-jet debur-

ring, brush deburring, mechanical deburring, chemical deburring, ultrasonic deburring, 

electrochemical deburring, robotic deburring, laser deburring and edge rolling (Bralla 

1999, chapter 50). Among these methods laser deburring, water-jet deburring and me-

chanical deburring are also suitable for plastic parts (Rosato et al. 2004, p. 568; Lee 

2006, p. 165-167). These three methods can be used in deburring much the same way as 

they can be used in cutting. Because work piece size does not affect the usability of the-

se methods, all three could be used for deburring of both group 1 and group 2 products. 

In both laser and water-jet deburring, the cutting beam is moved parallel with the burred 

work piece edge. This means that both methods are unsuitable for deflashing of inside 

corners or other features where there is no free path for the beam before and after the 

flash or burr. With Finncont’s products this requirement presents a major problem. 

In mechanical deburring the burrs and flash are removed mechanically with knives, 

brushes, mills or by grinding. The process can be automated with CNC machines or 

industrial robots. With mechanical deburring tools it is possible to reach also areas like 

inside corners but the tools and the machining parameters affect the resulting surface 

quality considerably. 

All three deburring methods can be used with either dedicated CNC machines or indus-

trial robots like in cutting as well. Both laser and water-jet deburring produce good sur-

face quality and they do not generate small cutting chips like mechanical deburring 

does. Mechanical deburring tools are cheaper than lasers or water-jet systems, but on 

the other hand if the work cell is built with laser or water-jet cutting capability, the same 

system can be used in deburring as well, by only changing the machining settings. In the 

case of mechanical cutting, dedicated deburring tools would have to be added to a tool 

changer which increases to the total cost of the system. 
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One difficult problem for the deburring process is that the moulded products tend to 

shrink after moulding at varying rates and as a result the exact shape and size is un-

known. Three solutions have been developed to counter this problem. According to re-

search by (Burghardt A. et al. 2016, p. 988)  if the contact forces are low, for example 

spring loaded, contact active tools can be used to ensure constant contact with the work 

piece. With higher contact forces in excess of 10 Nm, robot force control is used. Alter-

natively pre-processing measurements can be used to generate a modified tool path that 

follows the part contours as wanted. (Burghardt A. et al. 2016, p. 988) All of the meth-

ods are available with mechanical deburring, but because both contact active tools and 

robot force control rely on contact force feedback to control the deburring process they 

cannot be used with water-jet or laser based deburring. Those two processing methods 

can only be used with measurement modified tool path generation. 

As a summary, deburring could be done automatically by water-jet cutting, laser cutting 

or mechanically. They all have their strengths and weaknesses, but laser and water-jet 

share a particularly problematic weakness which is that they require obstruct free path 

for the cutting beam or jet. The capital cost factor also favours mechanical deburring 

which hence seems most suitable for Finncont’s products. Automating the deburring 

process would allow a lot of work to be switched from worker to a machine but it is also 

risky part of the finalization work to automate due to its complexity.  

5.2.3 Measuring 

As was said in chapter 4.1, some of the products have some quality inspections involv-

ing measurements. There are several methods for measuring: touch measurement, opti-

cal measurement with cameras or lasers and several microscopy methods (Leach 2011, 

p. 1-11). Touch measurement uses a stylus that is moved toward the part measured and 

location information is read upon contact. Dedicated measurement devices exist for one, 

two and three dimensional measuring. It is also possible to attach a measurement head 

to industrial robot’s wrist and create a robot measuring platform. The information ac-

quired with touch measurement are contact point coordinates. Feature dimensions can 

be calculated from point measurements. Hence, if several dimensions have to be meas-

ured a considerable amount of time will be consumed. Touch measurement system can 

be very cheap if an industrial robot is used and only the measurement head has to be 

bought and robot program programmed. 

A degree of more information of the work piece can be collected with optical measure-

ments systems. For a very detailed and thorough measuring, 3D scanning can be used. 

3D scanning is done with lasers taking measurements of the whole work piece, one sec-

tion at a time. Another possibility is to use machine vision. With machine vision it is 

possible to locate the work piece and determine its outer boundaries. With machine vi-

sion and laser scanning some level of surface topology information can also be re-
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trieved. Both machine vision system with a camera and laser scanning systems are more 

expensive than point measurement system.  

Microscopy methods are the most accurate measuring methods and they can give de-

tailed information of the surface topology of the part (Leach 2011). For the current 

products of Finncont such high detailed information of part surface is not needed. 

For the group 1 and group 2 products the measures that have to be performed are mainly 

dimensions like length, height and diameter of some holes. Surface topology infor-

mation is not generally needed. However, as was noted in earlier in chapter 5.2.2 pores 

tend to form underneath the flash line. Currently the worker can inspect the flash line 

for pores while deburring and separate inspection phase is not needed. In automated 

work cell this kind of simultaneous quality control might be possible with visual or laser 

based topology measuring. With touch measurement system it is not possible. Alterna-

tively the quality inspection can be left outside the work cell for a human worker to per-

form. However, that should be avoided because if the human worker would have to in-

spect the whole flash line, the overall cycle time of the production process might not be 

any shorter than it currently is. It is also an industry trend to automate quality control 

because machines make fewer mistakes than humans and because quality control checks 

are uninteresting and rather monotonous tasks.  

5.2.4 Marking  

As was noted in chapter 5.2, none of the products in group 1 need marking. On the other 

hand all of the products of group 2 have marking performed on them in finalization. 

Marking of plastic products can be performed in several methods. The methods can be 

classified into permanent and non-permanent marking. Permanent marking methods 

include dot peening, scribing, laser marking and indenting (Ion 2005, chapter 15). Non-

permanent marking methods are inkjet printing, offset printing and stickers (Biron 2013, 

p. 754). The permanent marking methods are almost never able to produce colours, 

whereas non-permanent methods can. However, by adding special additives to the raw 

material of the product before moulding, a one colour laser marking is possible (Sa-

breen 2012).  

The permanent marking methods physically alter part surface. Dot peen marking pro-

duces small punch dots that form symbols or codes. Scribing produces scratches and the 

process resembles drawing. In laser marking the marked surface is grooved and an-

nealed so the marked area is of different colour than surroundings. Intending methods 

include impact and hot stamping. Impact stamping works by hitting a stamp on the sur-

face, thereby producing mark. Hot stamping utilizes a heated stamp that is pressed 

against part surface to produce the mark.  
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The non-permanent methods add a layer of other material on the part surface, usually 

paint. Inkjet printing utilizes a printing head similar to office printers. Ink is sprayed 

from the printing head to part surface. Offset printing is an old form of printing in which 

the printed picture is transferred from the printing head to part surface by pressing the 

printing head to the surface. Offset printing can usually produce only one coloured 

markings, whereas inkjet printing can do multiple coloured markings. Third option on 

non-permanent marking is to use stickers. 

5.2.5 Chamfering 

One product in group 1 has chamfering task. Chamfering means the act of cutting an 

edge to an angle. Chamfering can be performed with a variety of milling tools like coni-

cal, ball end and straight milling tools. Knives, saws and laser can also be used for 

chamfering by performing cutting act on a desired angle. 

Chamfering is basically same process as cutting, but the resulting edge is not perpen-

dicular to neighbouring edges. Hence the cutting method considerations earlier hold true 

on chamfering as well. 
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6. DETAILED PLANNING OF WORK CELLS 

After process planning had been completed, detailed layout planning commenced. It 

was decided to make a separate plan for both group 1 products and group 2 products. At 

first the planning was conducted with a focus on minimum payback period. However, 

since it was found out that the accuracy of the minimum payback period calculation 

varies largely on the estimation of saved work time of human workers, an additional 

plan was devised for group 1 products with a focus on minimal capital cost. The ra-

tionale behind this decision was that even if the payback period calculations or work 

cell design fail, the losses for the company would be lower than in the original plans.  

The original, minimum ROI, plan for group 1 is presented first. It is followed by a 

presentation of the second, minimum investment, plan for group 1. Last the plan for 

group 2 is presented. 

6.1 Group 1, FMS 

Earlier it was found out that FMS type of production system will suit the production of 

group 1 products. The group 1 consists of 11 products that share similar work tasks and 

noteworthy have significant amount of cutting and drilling tasks. 

In the following sub-chapters the products chosen for processing on the cell are de-

scribed, the detailed layout of the cell is created and production processes chosen. Last 

the work cell plan is analysed.  

6.1.1 Products 

The work cell is planned for the products of group 1, the list of which can be seen in 

Table 8 below. However, only five products were measured in time study and thus reli-

able payback period estimations for only them can be made, the work cell is planned 

around those five products. The five measured products are marked with * in front of 

the index number in Table 8. 
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 Products of group 1 and production volumes. Products with * after index Table 8.

number were measured in time study.  

Group 1 products 

Index Name Volume (pc/y) 

1* Product A  

2* Product B   

6* Product F  

7* Product G  

8 Product H  

10 Product J  

12 Product L  

14* Product N  

15 Product O  

16 Product P  
17 Product Q  

Total    
 

As can be seen from the Table 8, the five products chosen for production in the cell 

have a combined yearly production volume of x. This is roughly 70% of the combined 

production volume of all group 1 products. With this information the layout can be de-

signed. 

6.1.2 Layout design 

Layout design is probably the most important phase of the construction of any compli-

cated production system. For this thesis an earlier robot work cell design work done for 

Finncont during the course Design of Robot System was used as a foundation. On that 

work the task was to build a reference work cell for processing of plastic products. 

Hence, the layout conceived during that work was usable for reference for this thesis as 

well. The reference layout can be seen in Figure 10 . 
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Figure 10. The reference work cell designed for Finncont during the course 

Design of robot system. 

This reference design incorporates an industrial robot with a reach between 2.1 and 2.9 

meters for optimum processing capability. All tooling would be carried by the robot. 

The parts would be placed on three turntables marked A to C in the Figure 10. A and B 

turn 360° degrees and have only two positions, 0° and 180°. They have a protective wall 

as space divider in the middle of the table which enables the operator of the cell to load 

and unload parts on the outer side of the table while robot is processing parts on the 

other side. In the design a pallet is first placed on the table A or B and then a part specif-

ic fixture is attached on top of the pallet. The part can then be connected to the fixture. 

The pallet takes the whole half area of a table and can accommodate parts 1200 mm 

long and 700 mm wide with height unspecified. In case of small parts several fixtures 

can be connected to a single pallet to house several parts.  

Table C can be turned 360° continuously and acts as an auxiliary axel for the robot con-

troller. It does not have a diving wall and with a diameter of 2 meters it can accommo-

date very large parts. The table is mounted on rails for part loading and unloading pur-

poses.  

This reference layout was seen as a suitable layout for the group 1 products and the final 

layout is based on it. Final layout can be seen in Figure 11. 
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Figure 11. Figure 1. 3D model of the flexible work cell. Here the cell is built 

with three turntables. 

The work cell is built around an industrial robot in the centre. The robot is surrounded 

by turn tables that can be set to two positions. The number of turn tables can be adjusted 

depending on the need. In front of each turn table there are light curtains and fences are 

placed in between of the tables. 

The tables are similar to the tables A and B in the reference work cell in Figure 10. 

They measure 1300 x 1630 mm and have a separating wall that cuts the table surface in 

half. The resulting size is 1300 x 800 mm which is sufficient for standard sized EURO 

pallet. It was though that the pallets used in the work could be made to match the size of 

EURO pallet. By also providing fork lift holes pallet manipulation can be made easier 

compared to a pallet of arbitrary size. The pallets are placed on top of the table which 

has guiding rails on both sides. Underneath the pallet stand there are two boxes side by 

side for collection of cutting waste. The boxes are emptied manually. The work cell can 

be built with either manually or automatically rotated tables. Automatically rotated ta-

bles can be powered either pneumatically or electrically. For this thesis automatically 

rotated tables were chosen.  
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The processing for this work cell and products was chosen to be mechanical machining 

with conventional rotating tools. Even though laser cutting would have been advanta-

geous especially because it produces no chips, the investment cost was seen as too high. 

The work cell is capable of cutting, drilling, chamfering and measuring. Cutting, drill-

ing and chamfering are done with rotating milling tools of varying size and shape. Laser 

cutting might be faster and cleaner, but as was shown in chapter 5.2, laser cutting 

equipment is expensive which is why mechanical tools were chosen for this work cell.  

The mechanical tools can be powered either pneumatically or electrically. Electric tools 

are more expensive but offer greater control over the machining process as a result of 

rpm control. An automatic tool changer is located next to the robot, making it possible 

to select a suitable tool for each task. The tools needed for processing group 1 are at 

least one cutting tool, and several drilling tools. The cutting tool should be as large as 

possible to allow high feed speed and to minimize the danger of the cut edges rebinding 

right after cutting. Small radius corners on the other hand are not possible with a large 

tool. Therefore a 10mm cutting mill and a 6mm cutting mill are proposed here. In total 

the products in group 1 have round holes in 19 different sizes, whereas the five products 

measured in time study have 15 hole sizes. The number of different sized drills needed 

depends on the roundness requirements for the holes. The drill for the smallest 3mm 

hole could be used for drilling the bigger ones as well with reduced quality. For perfect-

ly round holes right sized drills have to be used. In this work cell design it is assumed 

that only the 3mm drill is needed and the bigger holes are made with it or with the 6mm 

and 10mm mills. For chamfering a single 45° degree chamfer mill should be sufficient. 

Measuring tasks are performed with a measuring laser. A non-contact measuring laser 

was chosen over a contact measuring tool because non-contact measuring consumes less 

time than contact measuring. The measuring laser can be fixed to the robot arm, as its 

small size should not interfere with other operations. In addition to doing the actual 

measurement tasks the measuring tool will be used for locating the work piece edges 

and for determining the exact size of the work piece. The robot will first try to locate a 

predefined point of the work piece according to its programming by approaching the 

work piece from certain direction. After getting a measurement the robot will continue 

to a next predefined point and take another measurement. The amount of measurements 

needed varies from product to product and can be minimized by clever fixture designing 

that takes into account the processing tasks for each product. When enough measure-

ments have been gathered, the coordinates in the robot program are automatically scaled 

to match the size of the work piece being processed. Only after scaling, the robot can 

continue on to perform the actual work tasks. The scaling of the robot program has to be 

done for each individual work piece. All of the measurements taken from each product 

can be automatically saved to a higher level system. The robot can also be programmed 

to reject and inform the operator of products that exceed dimension tolerances. 
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Deburring capability was left out of this version of the work cell because it was seen as 

too risky addition. All of the products on group 1 have deburring task, but according to 

the literature review in chapter 5.2.2, plastic work pieces deburring has to experimented 

and tested before suitable deburring process can be chosen on. Another problem is the 

size variation of the work pieces that is especially important to counter in deburring 

operations where tolerances are very small, and the actual location variances high. The 

size variations are not uniform in each direction and some of the products have highly 

complex shapes. Those two facts combined with the information that the flash lines cir-

culate the products on their edges means that a large amount of measurements would 

have to be taken in order to locate the flash line. A faster method for part measuring 

would thus be needed, but laser scanning and accurate feature recognizing machine vi-

sion systems are expensive. Contact active deburring tools allow a certain amount of 

uncertainty, but usually only to the direction of the normal of the part surface. However, 

deburring can be experimented with the work cell by acquiring some contact active tool. 

If deburring can be made working with even one of the products processed with the 

work cell, it can reduce the payback period of the whole system and also increase the 

capacity usage of the work cell.  

6.1.3 Processes and functionality of the cell 

The work cell will be manned by one person or more persons at a time depending on the 

load. By judging from the production volumes from Table 8, one operator should be 

enough. The operators’ working cycles vary depending on the number of operators, 

products arriving to the input storages and locations and availability of product fixtures. 

Figure 12 has a drawing of the work cell with input storages, manual working tables, 

tool racks and packaging areas.  
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Figure 12. Outline of the work cell for group 1 with dimensions (in mm) and 

proposed locations for input buffer storages, work tables for manual finishing 

work, tool racks and packaging areas. 

Next is a description of one possible working cycle with one operator, steady inflow of 

every kind of products and one fixture per product per table. The basic working cycle 

begins with the operator unloading a processed product from a fixture and dropping it to 

nearby table. The operator then proceeds to pick up a new product from the input buffer 

storage and loading it to the same fixture on the same table from where the last product 

was unloaded from. Then the operator chooses the right robot program from control 

console next to turn table. After that the operator picks up the unloaded product, walks 

to the manual work table, conducts manual finishing and moves the product to packag-

ing area. The operator will then walk to a turn table that has a robot processed product 

ready and the cycle starts over. In this cycle computers will control the turntables so the 

operator does not have to spend time turning them.  

6.1.4 Analysis 

Three different aspects of the work cell design are analyzed: investment cost, payback 

period and production capacity. First one will be the investment cost. 
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The investment cost of a work cell consists on the cost of the components and the cost 

of buildup, and testing. For this work cell, several Finnish integrators were quoted for a 

price and based on the lowest offer the cost for the work cell was determined. Table 9 

has a breakdown of the total investment cost. 

 Cost analysis for group 1 work cell with five products. Left column has Table 9.

components, second from left has number of components, third from left has cost per 

component, fourth has the sum per component and the right column has additional 

explanation.  

Components 
Amount 

Cost per 
piece 

Sum 

 
Robot [€] 

1 pc    

Fixtures [€] 5 pc    

Rotating tools [€] 5 pc    

Safety [€] 
3 pc    

Turn tables 3 pc    

Other Peripherals [€] 
3 pc    

Physical Barriers [€] 1 pc    

Robot to Machine 
Interface [€] 1 pc    

Integration and setup 
[€] 1 pc    

Integration per prod-
uct 5 pc    

Integration per addi-
tional device 4 pc    

Taxes, Transporta-
tion Fees, … [€] 1 pc    

Training [€] 1 pc    

Robot programs 
5 pc    

     
Starting  

Investment     73 000 € 
  

The cost of 73 000 € includes both components setup. Noteworthy is that the robot cho-

sen for the work cell is a used model which is more than 50% cheaper than a new one 

would be. This helps bringing the cost of the work cell down. The cost does not include 

the auxiliary equipment depicted in Figure 12 such as storages, tool racks or manual 
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working tables. These are left out because it is thought that the existing equipment in 

the factory could be used with only small modifications. 

The yearly cash flow generated by the investment can be calculated with the combined 

information of the general study and time study. The calculations are done with averag-

es of the time study results. 

 Key figures of current production of the five measured group 1 products. Table 10.

Current situation 

                      Product 
    Aspect                                

Product A Product N Product G Product F Product B 

Yearly production      

Manual work per part [min]      

Employee hourly salary & 
benefits [€/h] 

     

Scrap Part Cost per year [€] 1000 1000 1000 1000 1000 

Jig and Process Enhance-
ment Cost [€] 

500 500 500 500 500 

Hours per Shift [hours] 8 8 8 8 8 

Break time per Shift [min] 55 55 55 55 55 

Shifts per day [unit] 2 2 2 2 2 

Working days per year 
[days] 

220 220 220 220 220 

 

 Key figures of estimated future production of the five measured group 1 Table 11.

products. 

Future situation 

                      Product 
    Aspect                                

Product A Product N Product G Product F Product B 

Yearly production      

Manual work per part [min]      

Employee hourly salary & 
benefits [€/h] 

     

Scrap Part Cost per year [€] 600 600 600 600 600 

Jig and Process Enhance-
ment Cost [€] 

1000 1000 1000 1000 1000 

Hours per Shift [hours] 8 8 8 8 8 

Break time per Shift [min] 55 55 55 55 55 

Shifts per day [unit] 2 2 2 2 2 

Working days per year 
[days] 

220 220 220 220 220 
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From the numbers in tables 10 and 11 savings per product per year and total savings per 

year can be calculated. By adding up the operating costs of the robot work cell the aver-

age yearly cash flow is calculated. 

 Running costs of a robot work cell. Table 12.

Running costs of a robot 
Estimated Yearly Mainte-

nance Cost 
1 000 € 

Downtime cost 2 000 € 

 

 Savings per product, total savings and combined yearly cash flow. Table 13.

                   Product 
    Aspect                                

Product A Product N Product G Product F Product B 

Yearly savings per prod-
uct [€] 

535 4447 1925 9953 1607 

Yearly savings total [€] 18467 

Yearly average cash flow 
[€] 

15467 

 

Now payback period can be calculated with the equation (2). With 73 000 € investment 

and 15 500 € yearly average cash flow the payback period is approximately 4 years and 

9 months. That is over the company management induced requirement of maximum 

four years payback period. To get the payback period under 4 years the work cell plan 

has to be modified. By leaving out the product number 1, Product A the investment cost 

can be lowered to 63 800 €. The cheaper investment is due to the work cell having only 

2 tables, one less robot program has to be created and fixtures for the Product A can be 

removed from the calculation. With this modification the payback period is lowered to 4 

years and 3 months. The company has a long term goal of increasing revenue by more 

than 10% every year. Based on that a general 5 % yearly production volume increase 

can be assumed for group 1 products as well. With that the payback period reaches the 

required 4 years.  

The production capacity and capacity usage of the work cell can be calculated with the 

values on tables 11 and 12. If an assumption is made that the robot cell is used on three 

sifts 220 days per year, the total machine time would be 5280 hours per year. According 

to (Lenz 2016) a practical limit on the usable capacity of an FMS system is 80% of the 

theoretical capacity. The usable yearly capacity is then 4224 hours. Results of the ca-

pacity calculation in Table 14 are based on that assumption. 
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 Capacity figures of the group 1 FMS work cell.  Table 14.

Capacity 
Maximum usable (three sifts) [h] 4224 

Capacity used (five products) [h] 560 

Capacity used (five products) [%] 13,3 % 

Capacity used (four products) [h] 540 

Capacity used (four products) 
[%] 

12,8 % 

 

As can be seen from the table, producing the proposed five products on the robot work 

cell will only use about 13 % of its capacity on current production volumes. Dropping 

one of the products of, Product A, as was done to get payback period under 4 years does 

not change the situation much; the average capacity used remains at roughly 13%. 

Overall the proposed work cell has a lot of unused capacity and the production volumes 

could be eight fold of the current. 

The yearly cash flow and payback period calculations above are highly dependent on 

the amount of manual work time saved per part. The above calculations are done with 

average values, but as can be seen from the time study reliability analysis on appendix f, 

the reliability of individual element time measurements is low. In order to roughly esti-

mate the error of processing a whole product, the half of minimum processing time and 

maximum processing time for each product was calculated from the time study meas-

urements presented on appendix f. The results of the calculation can be seen in Table 15 

 Reliability analysis showing the effect that the time study error has on the Table 15.

manual work time saved and on yearly savings. 

Reliability analysis 
            Product 
 Aspect                                

Product A Product N Product G Product F Product B 

Saved manual 
work time per part 

with error [min] 
     

Yearly savings per 
product with error 

[€] 
535 ± 117 4447 ± 201 1924 ± 122 9953 ± 1586 1606 ± 789 

 

As can be seen from the Table 15, the error on yearly savings caused by the time study 

unreliability differs by the product ranging from % for Product N to % for Product B. 

The payback period calculated with minimum yearly savings would be 5 years and 9 

months and with maximum yearly savings it would be 4 years. The payback period cal-

culated with averages is 4 years and 9 months. 
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It could be argued that the minimum yearly savings and longest payback period should 

be used as the basis on robot work cell investment decision making. This is because by 

standardising working methods and teaching the workers, the minimum measured pro-

cessing time could be made a standard. However, the company is aware of this and has 

been trying to create work instructions and uniform working methods, but in spite of 

their efforts high variations in working methods and time was observed during time 

study. Thus it is debatable if the teaching of employees and standardization of working 

methods is easier or cheaper than investing to a robot work cell.   

6.2 Case 2. Minimum investment 

Because it was found out that the first work cell plan ended up being more costly than 

the company would have liked it to be and because the payback period of the work cell 

is difficult to lower to less than four years, an alternative plan was made. The new plan 

has an emphasis on minimum cost of the investment while maintaining the flexibility of 

the work cell and a possibility for future capacity upgrade. The financial risk the in-

vestment poses to the company is also smaller with cheaper investment. The easiest way 

to lower the investment cost is to use less equipment, which in turn is possible by reduc-

ing the amount of products to be processed in the work cell. 

The new cell is focused around one product. The company representatives chose the 

product number 14, Product N, as the product for the work cell. The Product N was 

chosen because it is rather large product that has a lot of cutting and the company hopes 

to increase its production volumes in the near future. Product N needs deburring and 

cutting & drilling process tasks. There is no measuring, chamfering or marking tasks 

which potentially reduces the amount of equipment needed in the work cell. However, 

measuring tool is needed for work piece size measurement. For cutting, a single 10 mm 

milling tools should be sufficient. The holes on the product have sizes of 5 mm and 27.5 

mm. The 5 mm holes will need a 5 mm drill, but the bigger 27.5 mm holes could be 

made with the 10 mm mill as well. One good reason for not including the 27.5 mm drill 

is that the work cell will not contain a tool changer. Instead all tools will be carried by 

the robot constantly. The fewer tools there is connected to the end effector the less they 

are in the way during processing. Therefore the work cell is designed to have only 10 

mm cutting mill and 5 mm drill. 

6.2.1 Layout 

The layout was kept similar to the earlier design with only a smaller number of turn 

tables and other equipment. The resulting size of the work cell is smaller than the first 

work cell plan because the space for the additional turn tables is freed and fences moved 

closer to the robot. On both sides if the turn table there are light curtains. A visualiza-

tion of the work cell can be seen in Figure 13 below. 



55 

 

Figure 13. 3D model of the minimum investment work cell. Comparison to the 

FMS work cell in Figure 11 reveals that this work cell is smaller, has less turn 

tables and does not contain a tool changer. 

The new layout plan consists of only one turn table, has fewer tools and does not con-

tain a tool changer. The table is of same size and shape as in the FMS plan and also in 

this plan the products are attached to fixtures. With only one product processed with the 

work cell there is no need for having removable pallets, and instead the fixtures are 

bolted directly to the tables. If more products are introduced to the cell in the future, 

pallets can be added. To save costs, the turn table is manually rotated. 

Processing is performed with rotating tools like in the earlier plan and the cutting capa-

bility is similar to the FMS plan, but chamfering tools are not included. Even though the 

Product N does not include measuring tasks, the robot programs have to be scaled to 

match the size variations of the individual products. Therefore, a basic distance measur-

ing laser or contact measuring head is needed. In this design a distance measuring laser 

is used. 

6.2.2 Work cycle 

This work cell will be manned by one operator and on the contrary to the FMS plan, 

there is not much variation in the work content and number of operators. The size of the 

work cell and the placement of the auxiliary equipment can be seen in Figure 14. 
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Figure 14. Outline of the basic work cell with main dimensions and locations 

of auxiliary equipment like storages, tool racks, tables for manual finishing work 

and packaging area. 

The work cycle differs only a little from the FMS work cell work cycle. Here one possi-

ble work cycle is described. In the beginning of the cycle the operator stands in front of 

the turn table, releases its lock and turns it 180° degrees and locks it again. Then the 

operator starts the robot program by pressing a button and the robot begins to cut the 

product that entered the work cell. The operator will then unload the product processed 

earlier, place it to manual work table, takes a new product from the input storage and 

loads it on the turn table. After that the operator conducts finishing work on the unload-

ed product and when finished, moves the ready product to the packaging area. After 

packing the product the operator walks back to the turn table and the cycle repeats. 

6.2.3 Analysis 

Three different aspects will be analyzed: investment cost, payback period and produc-

tion capacity. First one will be cost. 

The investment cost of a work cell consists of the cost of the components and of the cost 

of buildup and testing. The cost of this work cell was estimated from the quotes re-

ceived for the FMS work cell by taking into account the smaller number of equipment 

needed and lower level of automation. The cost breakdown can be seen in Table 16 be-

low. 
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 Cost analysis for single product, minimum investment work cell. Left col-Table 16.

umn has components, second from left has number of components, third from left 

has cost per component, fourth has the sum per component and right column has 

additional explanation. 

Robot Investment Amount 
Cost per one 

piece 
Sum 

 
Robot [€] 

1 pc    

Part Presentation Jig 
[€] 2 pc    

Robot tools [€] 3 pc    

Safety [€] 
1 pc    

Turn tables 1 pc    

Other Peripherals [€] 1 pc    

Physical Barriers [€] 1 pc    

Robot to Machine 
Interface [€] 1 pc    

Integration and setup 
[€] 1 pc    

Integration per prod-
uct 1 pc    

Taxes, Transporta-
tion Fees, … [€] 1 pc    

Training [€] 1 pc    

Robot programs 
1 pc    

     Starting Invest-
ment     31 900 € 

  

The total cost for the minimum investment work cell is estimated to be 31 900 €. This 

cost includes equipment, setup and operator training fees. It is worth to note that the 

robot chosen for the work cell is an old used model that might not have all of the func-

tions of newer robots. Other equipment is also the cheapest possible. The milling motor 

is pneumatic, turn table is manually operated and there is no tool changer. All tools are 

fixed to the robot wrist.  

Payback period is calculated next. For payback period calculation some basic infor-

mation of the products is needed. The information is gathered in Table 17 below. 
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 Key figures of current and future production of Product N. The left most Table 17.

column contains the production aspects, second from left contains the figures of the 

current production and the right column contains the figures of the designed work 

cell.  

Key figures 

                     Case 
    Aspect                                

Current Future 

Yearly production volume   

Manual work per part [min]   

Employee hourly salary & 
benefits [€/h] 

  

Scrap Part Cost per year [€] 1000 600 

Jig and Process Enhancement 
Cost [€] 

500 1000 

Hours per Shift [hours] 8 8 

Break time per Shift [min] 55 55 

Shifts per day [unit] 2 2 

Working days per year [days] 220 220 

 

As can be seen from the table 17, for this analysis the same yearly production volume is 

used for both the current and the future scenarios. The current and future scenarios dif-

fer on the amount of manual work required which is smaller in the future scenario. The 

scrap part cost is expected to be lower in the future scenario, but the jig and process 

enhancement costs are expected to rise. Now the yearly cash flow can be calculated. 

Results of cash flow calculation can be seen in table 18 below. 

 Values for payback period calculation for the minimum investment work Table 18.

cell. 

                      Product 
    Aspect   

Product N 

Yearly savings per product [€] 4447 

Estimated Yearly Maintenance 
Cost 

1 000 € 

Downtime cost 500 

Yearly average cash flow [€] 2 947 € 

 

With an investment of 31 900 € and yearly average cash flow of 2 900 € the payback 

period for this work cell is a long 11 years. It is so long actually, that Product N might 
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even face the end of production earlier before the work cell has paid itself back. How-

ever, if the production volume of the target product increases like Finncont has planned 

the payback period shortens radically. By doubling the production volume of the Prod-

uct N the payback period goes down to 4 years and 3 months. With a production volume 

of  units per year, the payback period would be just about 4 years. 

Capacity can be calculated the same way as for the FMS work cell. By assuming the 

same setting as earlier, (220 days per year, three sifts) the values on the table 19 can be 

calculated. 

 Calculated capacity for the minimum investment work cell. The used ca-Table 19.

pacity is calculated with current yearly production volume. The maximum capacity 

calculation assumes production in three shifts. 

Capacity 
Maximum usable (three sifts) [h] 4224 

Capacity used [h] 134 

Capacity used [%] 3,2 % 

Maximum capacity (year) [pcs] 
 

Maximum capacity (day) [pcs] 
 

 

As can be seen from the table 19, only 3.2 % of the capacity of the work cell is used 

with x pcs yearly production volume on three shifts. The work cell would be capable of 

producing almost x pcs yearly on three shifts. The work cell has a lot of unused capacity 

which partly explains the long payback period of 11 years calculated earlier. 

As is the case with the FMS work cell, the yearly cash flow and payback period calcula-

tions for the minimum investment work cell are also dependent on the amount of manu-

al work time saved per part. The above calculations are done with average values, but as 

can be seen from the time study reliability analysis on appendix f, the reliability of indi-

vidual element time measurements is low. In order to roughly estimate the error of pro-

cessing a whole product, the half of minimum processing time and maximum pro-

cessing time for Product N was calculated from the time study measurements presented 

on appendix f. The results of the calculation can be seen in table 20. 
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 Reliability analysis showing the effect that the time study error has on the Table 20.

manual work time saved and on yearly savings. 

Reliability analysis 
              Product 
 Aspect                                

Product N 

Manual work time saved per 
part with error  [min]  

Yearly savings per product 
with error [€] 

4447 ± 201 

 

As can be seen from the table 15, the error on yearly savings caused by the time study 

unreliability is 4.5% for Product N. The payback period calculated with minimum year-

ly savings would be 11 years and 7 months and with maximum yearly savings it would 

be 10 years and 1 month. The payback period calculated with averages is 11 years. 

It could be argued that the minimum yearly savings and longest payback period should 

be used as the basis on robot work cell investment decision making. This is because by 

standardising working methods and teaching the workers, the minimum measured pro-

cessing time could be made a standard. However, the company is aware of this and has 

been trying to create work instructions and uniform working methods, but in spite of 

their efforts high variations in working methods and time was observed during time 

study. Thus it is debatable if the teaching of employees and standardization of working 

methods is easier or cheaper than investing to a robot work cell.   

6.3 Case 3. Collaborative work cell 

As it was seen in chapter 5.2, the products in the group 2 have only three work tasks 

performed on them: deburring, measuring and marking. Because deburring was consid-

ered too risky task to base the work cell on and measuring and marking tasks are light 

and fast tasks, normal or traditional work cell design was deemed unsuitable. Therefore 

research was conducted on alternative automation possibilities. 

Because of the dexterity and variety of task elements performed for the group 2 prod-

ucts and the low yearly volume, adding automatic processing machinery was deemed 

un-economical. During the time study it was observed that the workers used a signifi-

cant amount of time and effort to move the products around the work area. The products 

were lifted from gravity conveyor to work table and from the table to leak test pool, 

from the pool back to the table and finally from the table to EUR pallet for packing. The 

lifting is done with an overhanging chain hoist that is operated from hanging controller. 

The lifting takes considerable amount of time and is completely non-productive. On the 

work table workers often have to turn and move work pieces in order to reach all sides. 



61 

Manual handling of the products is tiresome for the workers as they weight from 20 kg 

to 40 kg as can be seen from Table 21 below. 

 Weights of the group 2 products currently in production. Name of the Table 21.

Product is on the left column and weight on the right column. Weights are in kilos 

(kg). 

Name Weight (kg) Combination Combination weight 

Product T3 28 1 
36 

Product T3 addon 8 1, 2 

41 
Product T4 33 2 

Product T5 33,5 3 
42,8 

Product T5 addon 9,3 3 

Product T2 22 4 
26,8 

Product T2 addon 4,8 4 

Product T1 19   

 

For the reasons above it was thought that using a robot for product manipulation would 

be beneficial. The robot would pick up a product from the feeding conveyor and present 

it to the operator who will do all of the actual processing tasks for the product. On this 

way of working the flexibility and dexterity of human operator and the strength of an 

industrial robot could be combined.    

6.3.1 Layout 

As it was stated in chapter 2.6, there are 4 operation modes for collaboration: Safety 

rated monitored stop, hand guiding, speed and separation monitoring and power and 

force limiting. Hand guiding is mainly used for teaching the robot and not for normal 

operation although it could be used as assistive technology. In safety rated monitored 

stop the work space can be shared, but the robot cannot move if human is present. Pow-

er and force limiting robots on the other hand do not offer high enough payloads for 

manipulation of group 2 products. The only solution left is speed and separation moni-

toring which allows the use of standard industrial robots and occasional sharing of work 

space. Speed and separation monitoring was thus chosen as the operation mode and the 

layout of the work cell, that can be seen in Figure 15, is designed accordingly. 
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Figure 15.  A rendered image of the proposed layout for the collaborative 

work cell. 

As can be seen from the figure above, the robot is in the centre of the work cell and oth-

er equipment is placed around it. The robot should have load capacity of over 100 kg, 

preferably 150 kg. This is to ensure that the robot has the strength to hold and manipu-

late the products even if the centre of the gravity of the product is far from the end of 

the robot arm. The robot reach has to be at least 2.2 m, but no more than 2.5 m. The 

other equipment in the work cell has not been changed from the existing ones. The two 

gravity conveyors, tool rack, leak test pool and EUR pallets for packing are all currently 

in use. Only the chair for the worker and the fence behind the leak test pool are new 

additions. The sensors, end effector, safety controller and robot controller are not shown 

in the Figure 15. 

The end effector could be either finger gripper type or vacuum gripper type. The back 

side of the products could be used as the gripping area because, all of the products have 

rather even and straight back side that does not have many features needing finalization. 

The gripper has to be able to hold two products at the same time so that the robot can 

switch the product from the leak test pool to a new one easily. The size of the work cell 

can be seen in Figure 16  below. 
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Figure 16. Outline and size of the work cell design for group 2 products. The 

physical size of the work cell is bigger than the size of the minimum investment 

work cell for group 1 but smaller than the minimum payback time work cell for 

group 1.   

As can be seen from the Figure 16, the work cell does not contain any light curtains or 

other traditional safety measures for the robot. Only the leak test pool is protected with 

a small fence from the back side. Instead the work cell is made safe with safety control-

ler laser scanners and cameras that monitor the area around the work cell. The moni-

tored area is not depicted in the figure. More description of the safety features of the 

work cell is written in chapter 6.3.3. 

6.3.2 Work cycle 

The work cell will be manned by one operator per shift. For most of the time two prod-

ucts will be present in the work cell: one in the leak test pool and one in robot end effec-

tor.  During one work cycle a single product will be finished.  
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The work cycle begins with the operator signaling the robot to pick up a new product 

from one of the conveyors. The robot will locate the part, pick it up and present it for 

the operator, sitting in the work chair, who then proceeds with finalization. During the 

finalization the worker may push a button signaling the robot to rotate the product ac-

cording to preprogrammed instructions to better reach around it. After preparation for 

leak testing is done, the operator inspects the previous product currently in the leak test 

pool and if he or she finds no leak, operates the pool to lift up the product and unchains 

it. Then the operator signals the robot to pick up the unchained product to the other side 

of its gripper and releasing the prepared product on to the pool. The operator then chains 

the product to the pool and lowers it under water. Next the operator walks back to the 

work chair and signals the robot to present the leak tested product for removal of leak 

testing gear and for last finalization tasks. When finalization is ready the operator sig-

nals the robot to move the product on to the packing area and to release it on one of the 

EUR pallets. The operator will then pack the product on the pallet after which the cycle 

begins anew.  

6.3.3 Safety 

In order to ensure safety in the above mentioned layout and work cycle, speed and sepa-

ration monitoring is used. The safety aspects of this kind of operation are instructed 

with a few ISO standards as was noted in chapter 2.7.In case of constant separation dis-

tance, it is possible to set up multiple safety zones, each with different maximum al-

lowed speed for the robot. That is because the standards state that the robot may not 

approach nearer to human than predefined separation distance that is depended on the 

movement speed of the robot and the human and of the reaction time of the whole sys-

tem. The minimum separation distance can be calculated for each case with equations 

that can be found on ISO / TS 15066 (ISO/TS 15066 Robots and robotic devices — 

Collaborative robots 2016). If only one zone is used the robot will stop when separation 

distance becomes lower than allowed. With two or more zones the maximum allowed 

speed for the robot is lowered in steps when individual zones separation distances are 

crossed until the last zone when the robot is stopped. For the constant separation dis-

tance worst case scenarios have to be used in separation distance equations. (ISO/TS 

15066 Robots and robotic devices — Collaborative robots 2016) 

Another possibility is to use dynamic safety zones where the separation distances are 

continuously changing. Dynamic operation can be achieved by constantly monitoring 

the speeds and locations of all robots and humans in the working area and vicinity. 

(ISO/TS 15066 Robots and robotic devices — Collaborative robots 2016) Dynamic 

safety zones have the advantage that they allow the robot to move faster in areas where 

there are no humans present. Unfortunately the sensors and control systems currently 

available are struggling to achieve satisfactory performance on this (Anandan 2013). 
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Research groups have demonstrated some working configurations like Fraunhofer insti-

tute’s “SAPARO” (Fraunhofer Institute ).  

Because of the unfinished status of the dynamic safety zone technology, constant safety 

zones were chosen for this work cell. It was seen that two or more safety zones will be 

needed in order to allow collaborative working. One of the important considerations is 

that to realize the above mentioned work cycle where the operator periodically signals 

the robot to move to next point on its program, the worker would actually have to leave 

the vicinity of the robot. If the worker stays in the stop zone the robot will not move. 

For smooth operation the separation distance of the stop zone would have to be as small 

as possible so that the operator does not have to move far. By adding more zones with 

lower maximum speeds for the robot it is possible to lower the separation distance of 

each underlying safety zone.  

The robot system has to be equipped with two redundant safety systems so that a failure 

in one of the safety systems can be noticed and the robot can be brought to stop. (ISO 

10218-1:2011 2011) One possibility is to use a combination of laser scanners and cam-

eras. 

The standards state that the safety has to be ensured with a risk assessment as was noted 

in chapter 2.7. The risk assessment has to take into account all possible normal usage 

scenarios and in addition also miss use scenarios. The risk assessment has to cover the 

whole operation of the work cell, but small, equipment specific, details do not have to 

be covered. For those the equipment manufacturers’ documentation can be referred to as 

was stated in chapter 2.7.   

6.3.4 Analysis 

As with other two cases, three different aspects will be analyzed: investment cost, pay-

back period and production capacity. First one will be cost. 

Equipment costs on the collaborative work cell are relatively low because there is no 

turn tables or tool changers in the design. On the other hand, the safety features and test-

ing fees are costlier than for the other two designs, but because they are mostly services 

the actual costs depends highly on the integrator offering the service and on the cover-

age of the service. The novelty technology needed for the collaboration also means that 

estimating the investment cost of the work cell is difficult. For this thesis the costs in 

Table 22 below are based on the knowledge gained by the author with unofficial discus-

sions with robot integrators and researchers.  
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 Investment cost breakdown for collaborative robot work cell. Table 22.

Robot Investment Cost 

Robot [€]  

Gripper [€]  

Part Presentation Fixture [€]  

Safety Monitoring System [€]  

Physical Barriers [€]  

Integration [€]  

Training [€]  

Taxes, Transportation Fees [€]  

Robot program  

    

Starting Investment 75 500 € 

 

As can be seen from the table, the total cost of the work cell is expected to be 75 500€. 

The robot chosen for the calculation is a used model with a price of 40 000€ including a 

safety controller for the robot. If a new robot is chosen, the cost can be expected to be at 

least double. The part presentation fixture refers to the fixtures, or more accurately 

feeders, on the gravity conveyors that present the work pieces in correct orientation for 

the robot. The safety system cost includes all of the monitoring devices and emergency 

stop buttons. The following figures in Table 23 are used in the calculation of yearly 

cash flow. 

 Production figures of current situation and proposed future situation. Table 23.

Key figures 

                     Case 
    Aspect                                

Current Future 

Yearly production volume   

Manual work per part [min]   

Employee hourly salary & 
benefits [€/h] 

  

Scrap Part Cost per year [€] 1000 600 

Jig and Process Enhancement 
Cost [€] 

500 1000 

Hours per Shift [hours] 8 8 

Break time per Shift [min] 25 25 

Shifts per day [unit] 2 2 

Working days per year [days] 220 220 
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As can be seen from the table above, roughly x minutes of work time can be saved with 

the proposed new system. This figure is a weighted average, based on data gathered 

from time study and independent production volumes of each product in group 2. The 

cost of scrap parts is estimated to drop by 40 %. Savings from less sick leaves due to 

less physically demanding work are not estimated because of a lack of data. With this 

information the yearly cash flow can be calculated. Result of the calculation is show in 

Table 24. 

 Yearly cash flow for the collaborative work cell.  Table 24.

                      Product 
    Aspect   

Product T1-
5 

Yearly savings [€] 5865 

Estimated Yearly Maintenance 
Cost [€] 

1 000 € 

Downtime cost [€] 1 000 € 

Yearly average cash flow [€] 3 865 € 

 

Now that the yearly cash flow has been acquired, the payback period can be calculated 

with the equation (2). With a yearly cash flow of approximately 3900 € the payback 

period will be a long 15 years and 6 months. It is possible that the work cell will never 

be able to pay itself back because of end of production of the products of group 2 or 

failure of some of the equipment of the work cell. For a less than 4 years payback period 

the production volume would have to triple from the current. 

Capacity is calculated for the work cell with similar assumptions as with the other two 

work cells. Maximum capacities are calculated with an assumption of three shift pro-

duction on 220 days per year, 25 min break time per shift and 80 % utilization of the 

theoretical maximum capacity. Used capacity is calculated with a production volume of 

x pcs per year and y minute capacity used per product 

 Capacity calculation for the collaborative work cell. Table 25.

Capacity 
Maximum usable (three sifts) [h] 4004 

Capacity used [h] 1664 

Capacity used [%] 41,5 % 

Maximum capacity (year) [pcs]  

Maximum capacity (day) [pcs]  

 

As can be seen from the table above, maximum production capacity of the work cell 

would be about x pcs yearly. The currently used capacity is about y pcs or 41.5 %, i.e. 
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the work cell has a sufficient amount of unused capacity. As was noted earlier, the year-

ly production volume would have to reach x pcs in order for the payback period to stay 

within the four years target. For such a high production figure to be possible the produc-

tion days would have to be increased from 220 to 280 by introducing Saturday work and 

dividing holidays so that not every operator is on holiday at the same time. 

Like with the other two work cells, the yearly cash flow and payback period calcula-

tions are dependent on the amount of manual work time saved per part. The above cal-

culations are done with average values, but as can be seen from the time study reliability 

analysis on appendix f, the reliability of individual element time measurements is low. 

In order to roughly estimate the error of processing a whole product, the half of mini-

mum processing time and maximum processing time for Products T1-5  were calculated 

from the time study measurements presented on appendix f. The results of the calcula-

tion can be seen in Table 26. 

 Reliability analysis showing the effect that the time study error has on the Table 26.

manual work time saved and on yearly savings. 

Reliability analysis 
                        Product 
    Aspect                                

Product T1-5 

Manual work time saved per part 
with error  [min]  

Yearly savings per product with 
error [€] 

6865 ± 1535 

 

As can be seen from the Table 26, the error on yearly savings caused by the time study 

unreliability is 22% for Products T1-5 . The payback period calculated with minimum 

yearly savings would be 22 years and 8 months and with maximum yearly savings it 

would be 11 years and 10 months. The payback period calculated with averages is 15 

years and 6 months. 

It could be argued that the minimum yearly savings and longest payback period should 

be used as the basis on robot work cell investment decision making. This is because by 

standardising working methods and teaching the workers, the minimum measured pro-

cessing time could be made a standard. However, the company is aware of this and has 

been trying to create work instructions and uniform working methods, but in spite of 

their efforts high variations in working methods and time was observed during time 

study. Thus it is debatable if the teaching of employees and standardization of working 

methods is easier or cheaper than investing to a robot work cell. 
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7. COMPARISON 

All of the planned work cells are technically possible to implement and all would im-

prove the production system of the target company. In this chapter the three work cell 

designs are compared to find out the best alternative for Finncont’s current circumstanc-

es. The comparison is focused on the economic aspects of the investments but some 

physical and operational comparison is also included. 

First area of comparison is economics. This includes comparisons of investment cost, 

payback period, return on investment and net present value calculated for each work 

cell. 

7.1 Economic comparison 

Investment cost and payback period were already calculated in the previous chapter and 

can be used as is. Return on investment can be calculated for each work cell with the 

equation (3). The base values and resulting ROI for each work cell are presented in Ta-

ble 27. 

  Calculation of ROI. Table 27.

ROI calculation 

  FMS Min investment Collaborative 

Investment 73 000 € 31 900 € 75 500 € 

Yearly average cash flow 15 467 2 947 € 4 865 € 

Return on investment 21 % 9 % 6 % 

 

The FMS work cell has the highest ROI, which is over two times higher than the ROI of 

the minimum investment work cell which is the second highest with a ROI of 9 %. The 

collaborative work cell has a ROI of 6%. All of the work cells are profitable on absolute 

values, because the ROI is over 0 % and higher than interest paid on bank deposits cur-

rently (2016-2017).  

Next, the NPV is calculated with equation (4). The starting values and result of the cal-

culation can be seen from Table 28. 
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 Calculation of NPV. Calculation period is 10 years and the discount rate Table 28.

is 1.8 %. 

NPV calculation 

  FMS Min investment Collaborative 

Total number of time periods (n) 10 10 10 

Average cash flow per period (CFt)     15 467 €                 2 947 €             4 865 €  

Discount rate (k) 1,8 % 1,8 % 1,8 % 

NPV   142 900 €               27 200 €           45 000 €  

 

The NPV was calculated for a period of 10 years. The discount rate (1.8 %) was chosen 

as the estimated inflation rate in Finland for the year 2017. Constant average cash flows 

were used for each period and they are based on the calculations on chapter 6. The FMS 

work cell has the highest NVP of 143 000 € and the collaborative work cell has the se-

cond highest NPV of 45 000 €. Minimum investment work cell has the lowest NPV of 

27 200 € A summary of the comparison of the economics is presented on Table 29. 

 Summary of the comparison of the economic aspects of the work cells. Table 29.

Economic comparison summary 

  FMS Min investment Collaborative 

Investment cost 73 000 €  31 900 €  75 500 €  

Payback period 4,75 y 11 y 15,5 y 

ROI 21 % 9 % 6 % 

NPV (10 years) 142 900 €  27 200 €  45 000 €  
 

As can be seen from the table both the NPV of the minimum investment work cell and 

of the collaborative work cell are lower than their investment costs. This is also reflect-

ed on the payback period which is over 10 years for both work cells The NPV was cal-

culated for 10 years. Based on the comparison the FMS work cell is the best option for 

Finncont’s current situation from the economic point of view. 

7.2 Size comparison 

On technical aspects the work cells are compared on size and technical complexity. The 

size of the work cells is calculated from the 3D models that were presented in chapter 6. 

A comparison of the sizes can be seen in the Table 30 below. 
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 Size comparison of the work cells in square meters. The core cell refers to Table 30.

the area occupied by the actual robot cell equipment, excluding storages, manual 

work areas etc. The whole cell refers to the whole work cell size including storages 

and other equipment. 

Work cell sizes 

  FMS Min investment Collaborative 

Core cell (m2) 24.9 9.1  -  

Whole cell (m2) 67.3 40 32,1 
 

From the comparison, it can be seen that the FMS work cell requires the largest floor 

space with 67 m2 total area. On the other hand the collaborative work cell is the most 

compact, requiring only 32 m2. The absence of turn tables and fences degrease the size 

of the work cell. However, the safety system monitored area will reach outside of the 

work cell boundaries.  

7.3 Operation comparison 

On operations side the work cells are compared on the number of products they are able 

to process and on the processing capabilities they possess. First is the number of prod-

ucts they can process. The FMS work cell is designed for processing the group 1 prod-

ucts. The group 1 consists of 11 products, but other products filling the requirements of 

group 1 could also be processed in the work cell. For each new product a fixture and 

robot program has to be added. With the current design the work cell can process 5 

products. 

The minimum investment work cell can process one product. The work cell is designed 

similarly to the FMS work cell which means that adding more products is possible as 

long as they are of the same general size as the Product N and require the same pro-

cessing tasks. 

The collaborative work cell can processes, or handle, one product family. Currently that 

product family contains five products. The work cell could handle even more products, 

as long as they share the same design features as the existing ones. However, the han-

dling capability is mostly depended on the gripper design which has not been done in 

this thesis. Therefore it cannot be said yet how difficult or easy it is to add more prod-

ucts to be processed in the work cell. Table 31 below has a summary of the number of 

products each work cell design is able to process in current plans.  

 Number of different products each work cell can process.  Table 31.

Number of products each work cell can process 

  FMS Min investment Collaborative 

Products 5 1  5  
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Both the FMS work cell and the collaborative work cell are able to process 5 kind of 

products while the minimum investment work cell can only process a single product 

type. For the FMS work cell it is easy to increase product types. The collaborative work 

cell can process all the products from one product family and it is easy to increase the 

product types as long as they are from the same product family.  

The second operation comparison point is the processing capability of the plans. The 

summary can be seen below in Table 32. 

 Process capabilities of the work cells. Y means that the work cell includes Table 32.

the processing capability.  

Process capabilities of the work cells 

Processes  FMS Min investment Collaborative 

Cutting Y Y   

Measuring Y Y  

Chamfering Y   

Drilling Y Y  

Handling   Y 
 

As can be seen from the Table 32, the group 1 work cells are able to do machining pro-

cesses to the produces. The FMS work cell includes an automatic tool changer and more 

tools so it can do more versatile processing than the minimum investment work cell. 

The collaborative work cell is only able to manipulate the products and not process 

them.  

7.4 Summary of the comparison 

A summary of the comparison is presented in this chapter. The summary is presented in 

Table 33.  Each of the three plans has its strengths and weaknesses and it is not possible 

to define a clear all-around winner.  
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 Summary of the comparison of the planned work cells. Table 33.

 Multi-product Single-product Collaborative 

Investment cost 73 000 € 31 900 € 75 500 € 
Payback period 4.75 y 11 y 15,5 y 

ROI 21 % 9 % 6 % 
NPV (10 years) 142 900 € 27 200 € 45 000€ 

Capacity utiliza-
tion 

13,3% 3,2% 41,5% 

Core size 24.9 m2 9.1 m2 -  
Whole size 67.3 m2 40 m2 32,1 m2 
Number of 
products 

5 1 5 

Production pro-
cesses 

4 3 1 

 

As can be seen from the Table 33, with different criteria a different plan will be the best. 

For example, if whole work cell size is used as decision criteria, the collaborative work 

cell is the best. If minimum investment of capital is used as the criteria, then the mini-

mum investment work cell best fulfils that criterion.  

For Finncont, the main criterion is the payback period and the FMS work cell has the 

shortest payback period. The second criterion for Finncont is the positive image the new 

work cell can bring to the company. In this respect collaborative work cell might be the 

best, since it represents most state of the art technology among the planned work cells. 

The final decision remains on the company. 
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8. FUTURE POSSIBILITIES 

During the making of this thesis several potential future prospects were identified. 

Common for all of the future prospects is that they need some testing or maturing of 

technology to be reliable. Some of the future possibilities would make the correspond-

ing work cell much more desirable than with the current designs. 

Automatic packing cell 

The task for this thesis was to add automation for the product finalization phase. Early 

on packing was left out of the research because it was thought that adding automatic 

packing would not be economical because of low production volumes and varying 

packaging methods for different products. During the work measurements and time 

study it was noticed however, that a considerable amount of the packing time on some 

products is used by the worker for picking up a wooden pallet and installing pallet col-

lars for it and wrapping up a pile of boxes and transferring the pile out of the work sta-

tion for a forklift to move to storage. In some cases the pile of the boxes reaches over 2 

m high which makes it difficult for the shorter workers to lift the last boxes on top of 

the pile. It was thus though that in case of box packed products a system of overhanging 

conveyors from the workstations to a new designated packing area could be constructed. 

The workers would pack the products to boxes, put the boxes on the conveyors which 

transfer them to a palletizing robot which reads barcodes on the boxes and automatically 

constructs piles of boxes on pallets according to the information on the barcodes. The 

robot could also automatically wrap the piles. 

Possibility to add products to the cells 

The capacity usage of the work cells could be increased by adding more products for 

processing in the work cells. For example, in the general analysis 11 products were 

identified as suitable for production in the multi-product cell. Due to time constraints 

only 5 of them was eventually measured in time study and used in the calculations of 

the economics of the cell. It is possible that adding the other 6 products for production 

in the cell, the utilization would increase and payback period decrease, and make the 

cell more economical. Completely new products could also be designed with a consid-

eration of the capabilities of the robot work cell. 

Addition of deburring 

In time study it was noticed that deburring accounts for a significant amount of the 

whole finalization time for many products in both groups 1 and 2. Deburring capability 
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was omitted from the designs because of a lack of reliable information and data of suit-

able deburring method for hollow plastic products. More detailed research should be 

conducted on the deburring methods. With the addition of deburring capability, both 

work cell designs for group 1 products would have shorter payback periods. Based on 

rough approximation from the time study results, the payback period of the minimum 

investment work cell would drop from 11 years to 9 years. The FMS work cell’s pay-

back period would drop from 4.75 years to just 2 years. For minimum investment work 

cell the added deburring capability is estimated to increase the total investment cost by 

15 000 €. For FMS work cell it is expected to cost 30 000 € extra on the total invest-

ment cost of the work cell. 

Non chip producing cutting method 

Rotating tools were chosen for cutting process for both multiproduct work cell and sin-

gle product work cell. The drawback of this choice is the large amount of cutting chips 

produced. The work cells employ waste collection boxes underneath the pallets, but it is 

highly likely that the small chips spread to a large area partly outside the work cell. 

Some of the chips will also remain inside the products. Cleaning of the chips will con-

sume valuable working which should be avoided. A non-chip producing cutting method 

would be beneficial and laser cutting might be the answer. However, some open ques-

tions remain such as, damage inflicted on opposite wall, possibility of the cut edges to 

reattach while still hot and the economics of laser cutting.   

Addition of colour capable marking method for the sake of implying 

graphics to products 

Currently none of the analysed products have coloured markings or graphics added in 

finalization. The colour and texture of the products is controlled with the raw material 

and mould coating. These methods can usually only produce mono coloured products. 

By adding a colour capable marking method for the work cells it could be possible cre-

ate permanent or almost permanent coloured marking and graphics on the products. 

Inkjet printing is one possibility but there are other options as well and some testing 

should be conducted for determining the best option for Finncont’s products. Also a 

market research should be conducted in order to find out if demand for such production 

capability exists.  

Advances in safety devices could improve the performance of the collabo-

rative work cell 

The collaborative work cell could be made more productive with the advancements in 

safety systems. The separation distances could be made shorter with variable separation 

distance control. Shorter separation distances would allow the worker to approach closer 

to the robot in some situations and could increase productivity at least in theory. Esti-

mating the actual productivity gain remains a topic for further research. However, some 
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technological advancement is still required for bringing the variable separation distance 

systems to market. 

Another possibility to increase the productivity of the collaborative work cell is to com-

bine speed and separation operation with hand guiding. This way it might be possible to 

set the last joint of the robot arm free for the operator to hand guide to desirable position 

on the course of normal operation. The advantage is that when the product held by the 

robot has to be turned around the operator would not have to step out from the stop safe-

ty zone, which has to be done in normal speed and separation monitoring operation. 

This way a more natural feeling towards the robot control could also be provided for the 

operator that could make psychological aspects of collaborative robotics easier. 
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9. CONCLUSION AND CLOSING THOUGHTS 

The purpose of this thesis was to research about the possibilities of adding automation 

on the product finalization stage of the production of plastic products in Finncont Oy. 

At the beginning of this thesis work practically all of the finalization work was conduct-

ed manually mostly with hand held tools. On the same time, the company was starting 

to feel pressure to automate some of the production processes; partly due to financial 

concerns and partly due to company image concerns. Some customers had even voiced 

their wishes for more automation in Finncont’s production system. From that setting 

this thesis was started. 

As said, product finalization stage was the area of the production system in focus in this 

thesis. The research began by analysing the current production methods and products in 

production. The types, volumes and other information about the products and the work 

tasks performed on them were acquired from observations of the production, product 

drawings and work instructions. Based on the information, 14 products were chosen for 

the time study though later 5 more were added on the wish of Finncont’s staff. The pur-

pose of the time study was to identify individual work tasks performed on each product 

and to quantify the time consumed for each task on each product. During the time study 

it was noticed that it would not be possible to measure each product because of time 

concerns. Two product groups were formed based on the product analysis and time 

study. 

On this thesis 3 work cell plans were composed. Two plans for group 1 and one for 

group 2.  The two plans for group 1 both include an industrial robot which holds the 

tools required for cutting, drilling and measuring the products. Difference between the 

two designs is that one of them is aimed for minimum payback period and can process 

multiple products. The other one is aimed for minimum investment cost and can only 

process one type of product. The two plans represent a traditional robot work cell design 

and build on earlier research done for the company.  

A collaborative work cell was planned for the group 2. In this work cell an industrial 

robot is used to hold and manipulate products and the actual finalization work is done 

by human operator. Speed and separation monitoring was chosen as the collaborative 

operation method on which the safety systems are based on. This work cell plan has a 

high originality value and represents a new way of thinking in robot work cell design, 

made possible by the new safety standards. 
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The work cell designs were analysed and compared to each other on economic basis. 

None of the work cell plans meet the 4 years payback period requirement imposed by 

the company management, although the multi-product, minimum payback period design 

for group 1 comes close with a payback period of 4,75 years with five products or 4,25 

years if Product A is left out. The other two designs have payback periods of over 11 

years and over 15 years with current production volumes.  A summary of the work cell 

design is presented in Table 33 in chapter 7.4. 

Each work cell design has its advantages and weaknesses as was noted in the chapter 7. 

Depending on the criteria any one of the designs can be chosen. For Finncont the 4 year 

payback period was the most important criteria which imply that the multi-product work 

cell is the best option even though it did not reach the 4 year limit either. With some 

design changes, increase in the production volume or addition of other products to the 

work cell it is possible to lower the payback period to 4 years. 

It was noticed during the making of the thesis that the financial calculations for the 

work cells are sensitive on the manual work time saved per part. The time study results 

for some parts have high errors which translate to high error margins for payback period 

and other calculations. The unreliability of the time study results is caused by the small 

number of observations during time study and by high variations in working methods 

among Finncont employees. It is advised to conduct a more thorough time study before 

to making investment decision on any of the planned work cells. 

Like many projects, this thesis underwent some changes during the making due to 

changes in task description or requirements. For example the products that form the 

group 2 were added to the scope of the thesis after product analysis had already began 

due to customer wishes for upgrading the production system of those products. An un-

fortunate change came after the actual work of the thesis had already finished. Infor-

mation came from a customer that one of their products will no longer be produced. 

That product is Product F, which is one of the products in group 1 and with the removal 

of it the payback period of the multi-product work cell grows to 7 years. A payback 

period of 7 years is definitely too long for Finncont and some changes in the design of 

the work cell, for example addition of other products, is needed. Other possibility would 

be to investigate the possibility of deburring in more detail and add it to the work cell. 

The information came so late however, that there was no time to conduct time study and 

other research required. Thus it remains a topic for future studies.  
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APPENDIX A VARIABLE Z VALUES FOR TIME STUDY 

CALCULATION 

 Variable Z values for time study calculation of number of observations for Table 34.

various confidence levels. Adapted from (Aft 2016). 

Variable Z values 
Confidence Level (Percent) Z Value (Approximate) 

50 0.67 

60 0.84 

70 1.04 

75 1.15 

80 1.28 

85 1.44 

90 1.645 

95 1.96 

99 2.575 
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APPENDIX B SAMPLE OF INFORMATION COLLECTION 

SHEET FOR PRODUCT ANALYSIS 

 Example of information collection sheet and the information collected for Table 35.

product analysis. 

Product Product B            

Size (LxWxH) (mm) 390x216x315           

Work tasks Cutting, measuring, deburring  and leak testing       

Features to be cut out Front opening and refill hole         

Length of the cut 0,556 m 
+ 1 hole 
(M12) Number of holes 1 Number hole sizes 1 

Approach directions 2, Front and back (180°)         

Production volume 
 

            

Measurements Height               

Tools  12mm drill, 10mm or bigger mill       

Notes Leak test. Can all of the cuts be performed before the leak test?   

  Quality check on the correct location of inserts.       
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APPENDIX C PRODUCT ANALYSIS TABLE 

 A table used in product analysis. Table 36.
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APPENDIX D REGOGNIZED ELEMENTS FOR EACH 

PRODUCT 

 Elements for each product that was measured in time study. Table 37.
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APPENDIX E CALCULATION OF NUMBER OF OBSERVA-

TIONS FOR TIME STUDY 

 Calculation of number of observations for product number 14. Accuracy Table 38.

used was 10% and confidence level was 90% that corresponds to z value 1,645.  
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APPENDIX F TIME STUDY RELIABILITY ANALYSIS 

 Reliability analyses of the products calculated with a confidence level of Table 39.

95%. Unit for each figure is second except for accuracy the unit is percentage. 

 

 

 

 

 

 


