
TOMMI RATAMAA
GENERIC DATA TRANSFER OBJECT AND ENTITY MAPPING
Master of Science Thesis

Examiner: Prof. Tommi Mikkonen (TUT)
The examiner and the subject were
approved by the Faculty of Computing
and Electrical Engineering on 8 May
2013.

ii

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
RATAMAA, TOMMI: Generic Data Transfer Object and Entity Mapping
Master of Science Thesis, 62 pages, 26 Appendix pages
December 2013
Major: Software engineering
Examiners: Professor Tommi Mikkonen, M.Sc. Janne Sikiö
Keywords: DTO, ORM, JPA, Web application development, Java EE

Layered architecture in Java EE web applications is one example of a situation
where parallel, non-matching class hierarchies need to be maintained. The mapping
of Data Transfer Objects (DTO) and entities causes manual overhead, more code to
maintain and the lack of automated solution may lead to architectural anti patterns.
To avoid these problems and to streamline the coding process, this mapping process
can be supported and partially automated.

To access the problem, the solutions and related techniques to the mapping
process are analyzed. For further analysis, a runtime mapping component approach
is chosen. There are multiple techniques for mapping the class hierarchies, such as
XML, annotations, APIs or Domain-Specific Languages. Mapping components use
reflection for mapping but for actual copying of the values, dynamic code generation
and caches can be used for better performance.

In this thesis, a comprehensive Business Process Readiness (BRR) analysis was
performed. Analyzed categories included features, usability, quality, performance,
scalability, support and documentation. The requirements for a generic purpose
mapping component were derived from the needs of Dicode Ltd. Out of the eleven
found implementations, six were chosen for the complete analysis based on feature
category.

Finally, a rating in range from 1 to 5 was assigned to each of the components
as a weighted average of the results in each category. There are notable differences
related to usability, measured as the amount configuration needed, between the
implementations. Additionally, components using dynamic code generation perform
better compared to others but no scalability concerns were noted for a real application.
Overall, based on the analysis, we found that there exists very good solutions to
support the mapping process for Dicode Ltd. that can be recommended to be used
in future projects.

iii

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
RATAMAA, TOMMI: Yleiskäyttöinen muunnos tiedonvälitysolioiden ja enti-
teettien välillä
Diplomityö, 62 sivua, 26 liitesivua
Joulukuu 2013
Pääaine: Ohjelmistotuotanto
Tarkastajat: professori Tommi Mikkonen, DI. Janne Sikiö
Avainsanat: DTO, ORM, JPA, Web-sovelluskehitys, Java EE

Rinnakkaisia, toisistaan rakenteeltaan poikkeavia luokkahierarkioita tarvitaan
muun muassa kerrosarkkitehtuurilla toteutetuissa Java EE -pohjaisissa websovel-
luksissa. Tiedonvälitysolioiden (engl. Data Transfer Object) ja entiteettien välinen
muunnos aiheuttaa manuaalista työtä ohjelmoijalle, lisää ylläpidettävää koodia ja
toisaalta automatisoidun ratkaisun puuttuminen voi johtaa arkkitehtuurin kannal-
ta haitallisiin piirteisiin. Näiden haasteiden välttämiseksi tämä muunnosprosessi on
osittain automatisoitavissa.

Tekniset ratkaisut ongelman ratkaisemiseksi analysoitiin ja tarkempaan käsitte-
lyyn valittiin lähestymistapa, jossa muunnos suoritetaan ajonaikaisesti. Luokkahie-
rarkioiden rakenteen kohdentamiseen voidaan käyttää useita eri tekniikoita, kuten
XML:ää, annotaatioita, ohjelmointirajapintoja tai toimialueeseen sidonnaisia kieliä
(engl. Domain-Specific Language). Kohdentamisessa käytetään Javan reflektointia
mutta varsinaiseen arvojen kopiointiin voidaan saavutettujen tehokkuusetujen vuok-
si hyödyntää ajon aikana tuotettua ohjelmakoodia sekä välimuisteja.

Toteutusten vertailuun käytetään Business Process Readiness -arviointia, josta
on käytössä toiminnallisuuden, käytettävyyden, laadun, tehokkuuden, skaalautu-
vuuden, tuen ja dokumentaation osa-alueet. Toiminnalliset vaatimukset on johdet-
tu Dicode Oy:n tarpeista. Näiden pohjalta yhteensä yhdestätoista arvioidusta to-
teutuksesta kuusi valittiin kattavamman arvioinnin vaiheeseen, jossa kokonaisarvio
muodostui kaikkien arvioitujen osa-alueiden painotetusta keskiarvosta välille 1-5.

Käytettävyyttä mitattiin vaaditun konfiguraation määrällä, ja tällä osa-alueella
toteutusten välillä havaittiin merkittäviä eroja. Ajon aikana ohjelmakoodia tuotta-
vat toteutukset erottuivat tehokkuusmittauksista, mutta todellisen sovelluksen ta-
pauksessa mitattavissa olevia skaalautuvuuseroja ei havaittu. Vertailun pohjalta voi-
daan todeta, että Dicode Oy:n tarpeisiin on olemassa erittäin hyviä toteutuksia ja
niiden käyttöä voidaan suositella tulevissa projekteissa.

iv

PREFACE

One of the main reasons why I like doing software is that possibilities and innovations
can only be constrained by limitations derived from real world. As it happens,
this thesis work was actually initiated as a result of a powerful and many times
challenging phrase ‘It just can’t be done’ left in the air in an internal development
meeting at Dicode in late 2011 after I had just asked: ‘Couldn’t this be automated?’
The current topic was the conversion between DTO and entity objects that we all
were so bored having to do. As a result, I wrote first version of the Generic DTO
Converter and released it in late December the same year.

The second motivation was the notation of multiple implementation with most
being developed around 2011 and 2012 with still no publications on the topic apart
from benchmarks, blog entries and debates over if DTO pattern should be used or
not. Doing this thesis work has largely enlightened me on the topic and pointed a lot
of places for improvement in my implementation. The reason behind me authoring
an open-source component and writing this thesis in English is the will to share this
information to and ease the pain of the rest of the developers trying to tackle the
same problem.

I want to thank my colleges at Dicode for great support and suggestions for
improvement. Especially, I want to thank my supervisor, Janne Sikiö and my
examiner, professor Tommi Mikkonen.

At Tampere 10th Dec 2013

Tommi Ratamaa
Atomikatu 3 B 43
33720 TAMPERE
+358 45 123 9353
tommi.ratamaa@gmail.com

tommi.ratamaa@gmail.com

v

CONTENTS

1. Introduction . 1
2. Environment and Use Cases . 2

2.1 Java EE Web Application Architecture 2
2.2 Java EE Application Frameworks . 3
2.3 Java Persistence API and Entities . 4
2.4 Data Transfer Object Pattern . 5
2.5 DTO Usage Scenarios . 6

2.5.1 Creating, Viewing and Modifying Entity Groups 7
2.5.2 Listings and Reports . 9
2.5.3 Findings From Previous Projects 10
2.5.4 The Scope of DTO and Entity Mapping 11

2.6 Other Generic Use Cases . 12
2.6.1 XML Class and DTO Mapping 12
2.6.2 Data Model Migrations . 13

3. Implementation Techniques . 15
3.1 The overall mapping process . 15
3.2 Mapping technologies . 17

3.2.1 XML . 17
3.2.2 Annotations . 18
3.2.3 Dynamic Proxies . 19
3.2.4 Domain-specific languages . 21
3.2.5 Application Programming Interfaces 22

3.3 Reflection . 22
3.3.1 Fields and Methods . 22
3.3.2 Generics . 23
3.3.3 Performance . 24

3.4 Caches . 26
3.4.1 Early-Work and Lazy Initialization pattern 27
3.4.2 Thread-safety with Singleton Caches 28

3.5 Dynamic Code Generation . 29
4. Requirements . 31

4.1 Maven Support . 31
4.2 Spring Support . 32
4.3 JPA and Hibernate Support . 32
4.4 Ease of Use . 33

4.4.1 Annotation-driven Configuration 33

CONTENTS vi

4.4.2 Convenience in Mapping . 35
4.5 Feature Requirements . 36

4.5.1 Bi-directional Mapping . 36
4.5.2 Aggregation Mapping . 36
4.5.3 Type Support . 37
4.5.4 Type Conversions . 38
4.5.5 Collection and Array Support . 39
4.5.6 Field and Getter/Setter Support 40
4.5.7 Immutable Object Support . 41
4.5.8 Support for Graphs and Two-way Linking Structures 41

4.6 Customizability . 42
4.6.1 Mapping Directions and Prohibiting Mapping 42
4.6.2 Multiple Mappings . 43
4.6.3 Customized Conversions . 44
4.6.4 Extendability . 44

5. Comparion . 45
5.1 Implementations . 45

5.1.1 Dozer . 45
5.1.2 Generic DTO Assembler . 47
5.1.3 Generic DTO Converter . 48
5.1.4 jDTO Binder . 48
5.1.5 JMapper . 49
5.1.6 Modelmapper . 49
5.1.7 Moo . 49
5.1.8 Nomin . 50
5.1.9 OMapper . 50
5.1.10 Orika . 50
5.1.11 Spring Object Mapping . 51

5.2 Maturity Model . 51
5.2.1 Functional Requirements . 53
5.2.2 Usability . 55
5.2.3 Performance . 56
5.2.4 Scalability . 58
5.2.5 Other Categories . 59

5.3 Evaluation of Results . 60
6. Conclusions . 61
References . 63
A. Appendix: Functional Requirements . 70

CONTENTS vii

B. Appendix: Functional Requirements Evaluation 72
C. Appendix: Usability Test Results . 74
D. Appendix: Performance Test Results . 75
E. Appendix: Scalability Test Results . 78
F. Appendix: Scalability Test Results - Behavior 79
G. Appendix: Evaluation Criteria for Other Categories 83
H. Appendix: Results for Other Categories 84
I. Appendix: Total Scores . 90

viii

LIST OF ABBREVIATIONS

API Application Programming Interface

BRR Business Readiness Rating

DAO Data Access Object

DSL Domain-specific Language

DTO Data Transfer Object

EJB Enterprise JavaBeans

ESB Enterprise Service Bus

GPL General Purpose Language

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IoC Inversion of Control -pattern

Java EE Java Enterprise Edition

JAXB Java Architecture for XML Binding

JDBC Java Database Connectivity

JIT Just-In-Time

JPA Java Persistence API

JRE Java Runtime Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

LGPL GNU Lesser General Public License

MVC Model-View-Controller

OpenBRR Business Readiness Rating for Open Source

List of Abbreviations ix

ORM Object-Relation-Mapping

PDF Portable Document Format

POJO Plain Old Java Object

RMI Remote Method Invocation

SOA Service Oriented Architecture

UI User-Interface

XML Extensible Markup Language

1

1. INTRODUCTION

Some software architecture related decisions, such as the use of server-client
architecture or layered architecture, introduce a requirement for maintaining
multiple class hierarchies that usually have similarities but are used for different
purposes. For the client object hierarchies usually reflect the presentation whereas
server side hierarchies reflect the underlying data model or database schema.

In its most generic level a web application consists of a client, a server and
usually a database. In this thesis the focus lies on the server side of a Java EE web
application. More specifically, we focus on mapping the class hierarchies between
the layers within the application. Mapping the object hierarchies between these two
layers is usually a straightforward programming task. However, doing it manually
consumes time that could be spent in more productive tasks, creates more code
to be tested and maintained, reduces flexibility, introduces new bugs or leads to
architectural anti-patterns when avoided.

In this thesis the aim is to find a general technical solution to support the mapping
of object hierarchies between the architecture layers of Java EE web applications.
This solution is targeted for the needs of software company Dicode Ltd. The ideal
solution would be practical to use, minimize the amount of manual work and cover
most of the typical use scenarios while still maintaining high customizability. The
solution should also maintain relative efficiency and scalability.

In Chapter 2, the problem domain and environment are introduced. Different use
scenarios are analyzed. In Chapter 3, technical solutions, implementation techniques
available and their possible limitations or challenges are analyzed. In Chapter 4, the
requirements for the solutions are described and derived from practice to match the
need of Dicode Ltd. In Chapter 5 the different solutions are compared based on a
comprehensive maturity model. Finally, in Chapter 6 the results of the comparison
are concluded.

2

2. ENVIRONMENT AND USE CASES

In order to specify the requirements related to the different use cases for a generic
Data Transfer Object (DTO) and Entity mapping solution, we first need to analyze
the usage environment and related patterns. In Section 2.1 we will first look at
the general architecture of a Java EE web application and the used frameworks in
Section 2.2.

After describing the environment, we will more specifically determine the different
patterns and technologies related to the usage of Entity and DTO classes in Sections
2.3 and 2.4. Finally, we will look at the most typical use cases for DTO and Entity
mapping in Section 2.5 and other possible use cases in Section 2.6.

2.1 Java EE Web Application Architecture

A typical Java EE web application server is based on a multi-tier architecture where
components on a certain tier may only access the components of the same or lower
layer and shall usually not skip the layers in between. While different applications
of the common the Model-View-Controller (MVC) pattern are used in various web
frameworks, such as Ruby On Rails, a Java EE setting typically consists of View,
Controller, Service and Data Access Object (DAO) tiers (see Figure 2.1). [1]

Views are responsible for representing the Graphical User Interface (GUI) and
passing the user actions to Controllers. Controllers on the other hand retrieve the
data from Services to be presented in Views and handle the user input and pass them
to Service-level APIs for further processing. Services are responsible for the business
logic related to different actions, processing the data, transactions and data retrieval
from the DAO layer. DAO level is responsible for creating an abstraction over the
actual data storage implementation, typically a database management system. DAO
level APIs use entity classes which present the data of the underlying data storage
typically working as an Object Relation Mapping (ORM) [2] style meta model of
the data.

Views and Controllers are usually closely coupled and created for a specific
purpose or an user interaction with specific information needs, whereas Services
work on a richer data model, i.e. entities, representing the business logic of the
application. Retrieval of the entities, filtering and mapping of them to meet the

2. Environment and Use Cases 3

Application

architecture View

Controller

Service

DAO Model

Architecture

baseline Hibernate

Spring

JPA

J2EE

Resource

baseline PostgreSQL

Linux

Figure 2.1: A software architecture of a Java EE application using Spring and
Hibernate.

specific information needs of the Controller is related to the business logic and
therefore the responsibility of the service level. Service level APIs are thus designed
to match with the information needs of Controllers. This is done by the use of DTOs
instead of lower level Entities in the service level APIs, which sets DTO and Entity
mapping to be the responsibility of the service level.

Usually in Java EE applications the transaction scope of the application is limited
to service level. This makes perfect sense since this tier should be the only tier where
DAO methods resulting in database queries are to be called. Also the decision to
commit or roll back a transaction as well as the related error handling is depended
on the business logic and rules set to the domain model.

2.2 Java EE Application Frameworks

In a Java EE web application server individual component objects are referred
to as beans. A Java EE web application is a multi-threaded environment where
sharing of resources between requests, user sessions and the whole application is
controlled by the scopes of the beans. Beans may have different scopes and there
may be multiple simultaneously existing implementations for the same components
in different scopes. In Spring framework scopes may be restricted to e.g. the whole

2. Environment and Use Cases 4

application, a single user session or a single page request [3]. Typically controllers are
request or session scoped meaning that there may be as many duplicate components
as there are concurrent users for the application. On the other hand services and
DAOs are usually application scoped singleton beans that may be simultaneously
called from multiple Controllers.

A web application framework is responsible for the construction and initialization
of the beans and handling of the appropriate scopes and references between
the beans. This requires the use of inversion of control pattern to handle
inter-dependencies between the beans. Typically this is achieved by dependency
injection pattern using either setter or field injection with interface injection pattern.
Java EE frameworks, such as Spring [1] and JBoss Seam [4], usually also provide a
number of additional features such as handling of transactions, exceptions, security
aspects and so on by creating a middle-layer between bean method invocations
utilizing dynamic proxies or dynamic code generation [1].

2.3 Java Persistence API and Entities

Java Persistence API (JPA) [5] provides a standard way to do Object Relational
Mapping (ORM) in Java EE applications [2]. JPA specifies the entity mappings
between database schema and the entity model in both Extensible Markup Language
(XML) and Java annotation formats as well as an abstract query language tied
to these entity mappings [5]. The actual database layer abstraction itself in JPA
implementations is based on traditional Java Database Connectivity (JDBC) drivers
but JPA provides the industry standard of accessing these APIs in an object oriented
ORM manner.

As of today, multiple implementations of the JPA version 2 specification exist,
such as JBoss Hibernate [6], Oracle Toplink [7] or EclipseLink [8], Batoo JPA
[9] and Apache OpenJPA [10]. With the use of JPA the Java EE application is
not directly depended on any particular persistence implementation, which enables
higher interoperability. There also exists a vast tooling support for example for
generating entity classes from a database schema and vise versa.

Entities provide the way of reading, creating, updating and deleting database
data through directly accessing the entity objects. In practice, the entity classes are
simple Java beans for which the JPA implementation creates dynamic proxies for.
Modifications to persistent entities is automatically populated to database while
the relational entity mappings could be set to e.g. lazily fetch related entities when
reading the data sets properties of an entity object and cascading the deletions or
additions to these sets where necessary.

Traditionally the entity mappings have been done in separate XML files loosely

2. Environment and Use Cases 5

related to the actual entity classes but as of annotation support introduced in
Java version 1.5 [11], annotation mappings have become more and more popular.
Both XML and annotation mappings provide the means of mapping database
column, their types, type conversions, primary keys, table relations, inheritance,
sequence generation and some of the database layer constraints [5]. Initially, these
mappings are usually generated with tools while the differences between these
mapping techniques become almost irrelevant. However, when the application is
in maintenance state, the level of coupling becomes more important which tends to
support the choice of annotation mapping over XML mappings.

2.4 Data Transfer Object Pattern

DTO pattern is often used when two remote processes communicate with each
other to limit the communication overhead and network latency to one single call
instead of many targeted to a remote object. DTOs are usually simple, hierarchical
data containers with getters and setters but with no actual logic. They include
all the necessary data for one use scenario usually flattering the structure of more
complex domain entities. If anything, they should only be responsible for serializing
and deserializing themselves to other formats, such as XML. Assembler or Mapper
pattern is often used to transform domain entities or the remote objects to DTOs
and vise versa in order to avoid dependencies between DTO and entity classes, since
the classes should be serializable between system boundaries. [12; 13]

There are, however, justified use cases for the DTO pattern outside remote call
interfaces. DTOs are often used in a multi-tier architecture in APIs between the
business and presentation layers [14], just as in our Java EE architecture described
earlier. Actually, in this context domain entities might as well be thought as remote
objects since calls to their methods can cause lazy database queries, which in fact
crosses system boundaries.

The only simpler alternative solution for the usage of DTOs in service level APIs
would be passing entity models to views directly and vise versa. This, however,
creates multiple architectural concerns. These include tight coupling of views,
controllers and the business logic, bypassing the responsibility of the service tier
by giving the presentation direct access to domain entities, possibly problematic
and hard to customize data structure for the use scenario in hand and possible side
effects when accessing data related to entity objects in views. In fact, Dino Esposito
claims that the only drawback of using DTOs is the additional work related to
creating and managing them [14], which is even claimed to be impossible to generate
automatically [12].

The loose coupling between views and the service level is important for the sake

2. Environment and Use Cases 6

of both abstraction provided by the service interfaces and for the ability to have
multiple or replaceable view implementations using the same services. This loose
coupling allows the business model to evolve over time without directly affecting all
the views.

Service implementations might also change over time and there could be a
requirement to use external web services instead of a local database as the
application scales or environment changes. In this scenario the data might even
no longer be represented by entity classes but due the usage of DTOs classes the
service API may remain intact. Also, whereas entities are tied to the system they are
used in, DTOs may easily be serialized and deserialized over system boundaries [14],
and could thus be used directly in for example web service calls, Remote Method
Invocations or in a Service Oriented Architecture (SOA) setting.

Additionally, with most entity frameworks, there are also side effects while
accessing the properties of entity objects. The entity objects are usually actually
proxies and the simple getters could actually fire lazy database queries and thus start
multiple transactions in the background of processing the view. What is worse, being
not tied to an entity manager or a session provided by the entity framework, these
results may not be cached and thus could result in multiple queries as the getters
could be called multiple times during the rendering of a view. This could have severe
negative effects to the performance of the application.

As an attempt to fix these kind of issues the entity session could be kept open
during the view processing phase, but entity frameworks also automatically update
the existing data in the database while the entity is bound to a session or a manager.
Thus, modifying the entity in the view or controller, may then lead to bypassing
the service level, the related transaction handling, the business logic related actions
and validations or even security related aspects entirely. This would basically mean
that entities would provide an API outside of the service level for modifying all the
related data in the underlying database, data that in many cases should not be
modified by the user at all.

2.5 DTO Usage Scenarios

DTOs are used to represent the rich entity model for a specific purpose. These
purposes could be various and not all of the usage scenarios of DTOs can be known
beforehand nor analyzed but by looking at the most typical ones based on the
experiences in previous projects, we could access the most important features and
requirements for the mapping component.

The usage of DTOs is not limited to presenting data in a HyperText Markup
Language (HTML) rendered GUI alone but also extends to other representations

2. Environment and Use Cases 7

created using service level APIs, such as data transferred in a JavaScript Object
Notation (JSON) interface, XML files generated for and read from external systems,
Portable Document Format (PDF) or Excel reports or emails. It is not important,
however, to consider these representations separately for the structure of the data
and the feature requirements related are essentially the same.

In the past projects most typically DTOs have been used for presenting
sub-portions of the data of an entity in a specific report, viewing the data related
to an entity aggregation group, editing the whole entity aggregation group at once,
showing a simple listing of certain entities for selection. DTOs are also used in
more complex listings and reports. Notably the structure of the DTO classes, the
properties present as well as their names and data types might be different in each
of these usage scenarios.

2.5.1 Creating, Viewing and Modifying Entity Groups

Entities reflect the database columns and thus the business model of the application.
In this business model, certain groups of entities are more highly coupled, forming
aggregation entity groups. Such groups are usually edited, viewed and modified as
a whole. A simple example of such an entity group could be an order related to a
certain customer with a special delivery address and order items related to products
(see Figure 2.2).

This kind of structure might as well be represented in DTO classes with similar
structure as seen in Figure 2.3 for editing purpose. Notably in this setting, however,
part of the information in the richer entity model is not present and only references
to the primary keys of customer and product are used. In practice, a OrderEditDto
would contain a java.util.List of OrderItemEditDtos.

When fetched for editing, typically the Order entity would be fetched by its
primary key and there could be one actual query for the Order, one for the delivery
Address and one for the related OrderItems. With eager fetching mode, this could
be reduced to two queries, but since this kind of view would only require these
entities, the significance in performance would most likely be irrelevant.

For creation and modification purposes, the foreign key references of such related
entities that need not to be edited are stored in DTO classes. When the modifications
are saved, these related entities are fetched by their primary keys when necessary. In
this example we only have one to many and many to one relational mappings. For
many to many mappings lists or arrays of related entities’ primary keys are usually
stored instead.

Similar aggregation structure in DTO classes could be present for the viewing of
this entity aggregation group (see Figure 2.4). However, in this case OrderViewDto

2. Environment and Use Cases 8

Customer

id : Integer
name : String

Order

id : Integer
createdAt : DateTime
state : OrderState
deliveredAt : DateTime
additionalInfo : String

0..* 1

Address

id : Integer
streetName : String
city : String
postalCode : String
country : String

contact
0..*

0..1
billing
0..*

1

delivery0..*

1

OrderItem

quantity : Integer

1

1..*

Product

id : Integer
name : String

0..*

1

Figure 2.2: A simple entity aggregation group.

OrderEditDto

id : Integer
state : OrderState
additionalInfo : String
customerId : Integer

AddressEditDto

id : Integer
streetName : String
city : String
postalCode : String
country : String

delivery
1

OrderItemEditDto

quantity : Integer
productId : Integer

1

0..*

Figure 2.3: DTO presentation of the entity group for editing.

2. Environment and Use Cases 9

OrderViewDto

id : Integer
createdAt : DateTime
state : OrderState
additionalInfo : String
customerId : Integer
customerName : String
deliveryAddressStreetName : String
deliveryAddressCity : String
deliveryAddressPostalCode : String
deliveryAddressCountry : String

OrderItemViewDto

productName : String
productId : Integer
quantity : Integer

1 1..*

Figure 2.4: DTO structure for viewing the entity group.

also contains the name property of Customer and OrderViewDto contains the name
of the related Product.

Notably, the structure is now also flatterned so that OrderViewDto contains the
fields of Address. Again, assuming that only details of one order are viewed at once,
lazy queries performed by the property getters of JPA entities could be efficient
enough.

2.5.2 Listings and Reports

The use scenario of DTOs for listing or reporting purposes compared to viewing
or editing a single entity group differ in their performance requirements due to the
number of entities fetched. Additional queries for each fetched entity, O(N), should
be avoided. Thus accessing related data, such as the customer related to an order or
an address related to the customer, through entity properties is not usually possible
due the lazy O(N) queries related.

In some scenarios, though, O(N) queries could be avoided by the use of eager
fetching mode in entity mappings and the use of JPA query language or criteria
API. In such scenarios JPA implementations would do one query for the result
group fetching the primary keys of each ids and an additional query for each related
entity property. Hence the number of queries performed would be O(1). However,
since in most cases there exists other use scenarios for the same entities where eager
fetching is not desired, other means are necessary.

The related data could be included in the result sets of these database queries
by either selecting all the necessary entities in a container object or mapping
query results to a DTO class directly. The former is usually easier since JPA
implementations can automatically generate the listing of selected columns and map

2. Environment and Use Cases 10

result sets to entity objects with appropriate data type conversions in place whereas
with direct DTO mapping property by property mapping and explicit data type
specification is usually necessary. On the other hand, fetching all related entities
may result in more than necessary data to be fetched for the following DTO mapping.
For example, if only customer name if needed from customer entity, all the other
fields fetched are waste of database, network and memory resources.

In some cases, however, reports and listings may also contain summary or
aggregate information over larger data sets that can not be calculated efficiently
by fetching all the data from the database. In these cases only explicit mapping of
query results and DTO classes can be used. An example of such a report could be a
listing of the monthly total order quantities of each customer for certain products.

2.5.3 Findings From Previous Projects

Over the past few years, DTO pattern has been successfully utilized in many Java
EE projects having a multi-tier architecture at Dicode. We analyzed five of these
projects of different sizes and compared their usage of DTOs in relation to their
size in source files and entity model. The findings are presented in Table 2.1 where
Classes represent the total number of classes or interfaces in the project, entities
describe the total number of entity classes, DTOs the total number of DTO classes,
DTO-% the relational number of DTO classes in the total, DTOs/Entities the
relation between DTO and entity classes and DAO DTO-% the relational number
of DAO level DTO classes of all DTO classes.

Project Classes Entities DTOs DTOs-%
DTOs/

Entities

DAO

DTO-%

A 1053 104 180 17 % 1.8 5 %

B 1101 68 163 15 % 2.3 3 %

C 554 32 76 14 % 2.4 0 %

D 372 50 40 11 % 0.8 5 %

E 140 11 20 14 % 1.8 0 %

Average 14.2 % 1.8 2.6 %

Table 2.1: DTO usage in some of the past projects.

The findings suggest that the number of DTO classes used tends to be relative
to the size of the project with DTO classes representing roughly one 7th of all the
classes in the project. With project D as an exception, there also seems to be an
expected relation between the number of entity classes and DTO classes: for each

2. Environment and Use Cases 11

entity there exists on average two DTO classes. Also it can be concluded that DAO
level DTOs, related to DTO classes directly selected in special database queries,
represent only a minor portion (less than 3 % on average) of all the DTO classes. In
terms of simplifying the mapping process, Query and DTO mapping should therefore
not be considered as important as entity and DTO mapping.

As far as maintainability is concerned, it would be optimal to have separate
DTO classes for each use cases such as viewing, editing and listing a certain
entity. This would allow flexibility in the future so that any of these use cases
could be independently altered according to future needs. Considering this, the
DTO/Entity-relation figure is relatively low, taken that most of the entities with
some exceptions, are usually at least viewed and edited. This suggests, and by
further analysis could be verified, that DTO classes are being reused for multiple
purposes.

One cause for this anti-pattern is identified to be the amount of manual work
related to DTO and entity mapping, tempting a developer to take the easier way.
These kind of mapping tasks are often treated as boring and repetitive, taking
developers time from the productive work. They can usually involve mapping the
fields in both directions and having separate methods for collection conversions.

Project A was also further analyzed in order to determine whether DTO
conversions are done in assembler or mapper components that the DTO pattern
suggests. As there should be only single responsibility for each class for
maintainability, and because the same entities and DTOs could be used in different
services, there is a general architecture rule to place the DTO and entity mappings
related to an entity aggregation group to a specific converter component. However,
the findings from this analysis show that nearly half (47 %) of the DTO and entity
mappings was actually done inside service implementations. This is another concern
related to the overhead of doing DTO and entity mappings manually.

2.5.4 The Scope of DTO and Entity Mapping

For the different analyzed database related DTO use scenarios, there exist different
requirements for both data structure and application performance. Especially the
performance requirements specify both the DAO tier query result structure as well
as the tier in which DTOs are built as shown in Table 2.2.

Out of these scenarios, JPA implementations provide some support for query
result to DTO mapping in forms of query result transformers which are able to
bind selected query columns or aliases to bean properties [5]. However, this usually
requires the programmer to specify these mappings with the correct type mapping
explicitly in code. These operations could be further automated by query builders

2. Environment and Use Cases 12

Scenario
Mapping

tier
Query result Mappings

Create Service N/A DTO → Entity

View Service Entity Entity → DTO

Modify Service Entity Entity → DTO → Entity

Simple listing Service Entity list Entity → DTO

Complex listing Service Entity container list Entity container → DTO

Complex listing DAO DTO list Query result → DTO

Aggregate report DAO DTO / DTO list Query result → DTO

Table 2.2: DTO and entity mapping tier.

which hold the type and alias name information of the selected columns or aggregate
data. These kind of queries are, however, usually related to the most complex
minority of queries in the application and thus usually highly customized.

In most of the scenarios the mapping could be accessed with a DTO to entity
or entity to DTO mapping in the service tier of the application. Complex listings
may alternatively be mapped from entity container lists or query results directly
depending on the performance requirement in question.

2.6 Other Generic Use Cases

Given that the mapping of DTO and entity classes generalizes to the problem of
mapping any two Java classes with each other, other usage for this kind of mapping
component can also be found. Two of these use cases where a generic purpose DTO
and entity mapper component has been successfully utilized at Dicode for other than
a mapping between a DTO and an entity, are presented in this section. In these
cases DTO and JAXB classes and two different entity classes are mapped with each
other. Additionally, such a component could also be used in an easily customized
deep cloning of an object where a class would be mapped with itself.

2.6.1 XML Class and DTO Mapping

In Java EE applications, Web Services are commonly used to communicate
with external parties or to transfer data between system components in a SOA
architecture. In Web Services the data transferred is represented in XML format.
XML is also popular format for example for storing application settings or other data
records such as financial information. Typically, the data is mapped automatically

2. Environment and Use Cases 13

with an object model using techniques such as Java Architecture for XML Binding
(JAXB) [15]. Moreover, JAXB classes are usually automatically generated from
XML schema or Web Service descriptions.

Often the schemes for XML files or Web Service descriptions are provided by
external parties and might be subject to change. This means that whenever,
for example, an additional element or attribute is added to the scheme, the
automatically generated JAXB classes need to be regenerated. Basically, this makes
it impossible to make manual changes to these classes and discourages the direct
use of them in Service level interfaces due to easily spreading implications of their
uncontrolled modifications. Thus, although JAXB objects are DTOs themselves,
separate DTO classes might be used to provide stability to the system.

The structure of JAXB classes is essentially the same as that of a complex DTO
class. It is an hierarchical aggregation containing fields with basic data types or
single or ordered collections of elements. JAXB classes could be mapped with custom
DTOs if there exists a need for them in Service interfaces or they could be mapped
with entities directly. With the mappings specified in DTO or entity classes or
a separate mapping file, the code dependencies to schema dependent JAXB classes
could be close to zero and thus modifications to the application upon schema change
would be minimal or even none for new optional elements or attributes.

JAXB generated classes also use some custom types targeted for XML documents
specified in javax.xml.datatype package, such as XMLGregorianCalendar[15],
that are typically not used elsewhere in the application. The JAXB definition
also allows the use of public fields instead getter/setter methods specified by the
bean standard. Typically, in the generated classes arrays as are used instead of
java.util.Collection classes. Basically, these kind of differences require extra
manual work for the conversion and make JAXB classes impractical to be used for
anything other than XML mapping also encouraging the use of separate DTOs.
With the use of the generic mapper component the inconsistencies in data types
and the usage of fields could also be easily overcome.

2.6.2 Data Model Migrations

Sometimes data must be exchanged between two databases with different schemes.
These kind of scenarios are typical when a system replaces and earlier system.
During a certain period, these systems might also run in parallel and there could be
a need for two-way synchronization of data. When working with JPA, the easiest
solution is to generate entity models for both databases and map data between them.

In this setting, the mapping would occur between an entity class and other entity
class. There would most certainly exists cases where a custom conversion should be

2. Environment and Use Cases 14

implemented due to the non matching schemes but many of the mapping would be
similar to DTO and entity mapping where matching properties are mapped with a
possible name and data type and aggregate structure changes.

One of the most repeating general concern in matching two different databases
schemes is, however, the mapping of foreign key relations between these two
databases where the primary keys do not match with each other. However, while
a generic DTO and entity mapper component provided the possibility to define
custom converter between two data types, this problem could be generally solved
by storing the primary keys of the other database and defining conversion between
two interfaces, implemented by matched entities, each of which provided the data
type and primary key of the other database.

15

3. IMPLEMENTATION TECHNIQUES

The implementation techniques used in a generic DTO and entity mapping are
presented in this chapter. First, in Section 3.1 we will present an overall mapping
process with variations derived from existing implementations and discuss the
benefits and disadvantages related to each variation. After that, in Section 3.2
the different mapping techniques are presented.

At the end part of the chapter, in Section 3.3 we will focus more closely on
reflection capabilities in the Java programming language as well as its performance.
The use of caches and the related patterns are discussed in Section 3.4. Finally,
dynamic code generation for gaining performance advantage is covered in Section
3.5.

3.1 The overall mapping process

The different strategies for the overall process is described in Figure 3.1. It can be
divided into different stages: coding, compile time and runtime. There exists three
different strategies with which the mapping process can be supported. A plugin for
an Integrated Development Environment (IDE) can help a developer to generate the
mapping source code at the coding stage. A compile automation plugin, on the other
hand, could process the mappings on compile time. Lastly, a mapping component
bundled with the software can either use reflection or generate code to perform the
mapping in runtime. A combination of IDE plugin and a runtime component or a
compile automation plugin would also be possible. In such a scenario the IDE plugin
could be used to generate the mapping configuration to be used in later phase (see
Figure 3.1: path 1, 3, 6).

The coding phase includes analysis of the classes being mapped, which is
traditionally done manually (see Figure 3.1: path 2, 5, 4, 12). It could, however, be
supported by an Integrated Development Environment (IDE) plugin which would
use code time compiling and reflection of existing source code by providing mapping
options for the developer (see Figure 3.1: path 1, 3, 4, 5, 4, 12). An IDE plugin could
be used to generate the source code or a mapping configuration file (see Figure 3.1:
path 1, 3, 6). Both can then be edited manually. However, an IDE plugin generating
source code will most probably not be able to alter the source files after they have

3. Implementation Techniques 16

Figure 3.1: The process of mapping DTO and entity classes.

been manually edited, meaning that the support would only be partial compared to
the use of a configuration.

While IDE plugins and Compile automation plugins are presented here mainly
as theoretical approaches to automate DTO and entity mapping for completeness,
the majority of existing implementations are actually, in fact, runtime mapping
components. There exists at least one pure Eclipse IDE plugin based tool,
Modelbridge [16], which, unfortunately however, during the writing of this thesis
was unavailable for the at least two newest major versions of Eclipse. Some runtime
components may, however, provide additional IDE plugins. Pure IDE plugins
and Compile automation plugins alike would be highly dependent on the IDE or
build automation tool used, sometimes even on its version, thereby reducing their
generality in this problem domain. They would also not be able to access runtime
information, such as JPA mappings, and are thus, could only provide a partial
solution to the problem. They not focused further in this thesis.

There are several options available for the techniques used to define the mapping
configuration (see Figure 3.1: path 6, 7, 8, 9) which are explained in more details
in the next section. At some point, all of the approaches, except for the traditional
manual one, need to access the properties and data types of the classes being
mapped. This is highly based on the reflection capabilities provided by the Java

3. Implementation Techniques 17

Runtime Environment (JRE). When it finally comes to the phase of actual copying
of the values either reflection, code compiled from generated source code or dynamic
code generation can be used which is explained more closely in Section 3.5. These
are addressed more closely in the following sections.

3.2 Mapping technologies

Based on the analysis of existing implementations of mapping components the
mapping techniques used to define mappings between DTO and entity classes
in Java programming language include source code mapping done by using
proxy objects or other APIs, XML based configurations and annotation based
mapping configurations. It would also be possible to define the mappings using
a Domain-specific Language (DSL).

All of the mapping techniques have their advantages and disadvantages. While,
for example, XML mappings can be be more easily used with tools such as IDE
plugins, they can easily generate overhead to the coding phase especially if no
such tools exists. Annotation based mappings exists directly in the edited code
and therefore could have benefits over other options, especially when it comes to
maintenance. Mapping by proxy objects makes the mappings type and modification
save but, on the other, makes it difficult to add meta-data to the configuration.
DSL could be more expressive than XML or annotation mappings and may also
include some complicated custom logic which could otherwise only be expressed
in source code. Mapping techniques, however, are not exclusive and a single
mapping component could support multiple techniques and let user choose the most
appropriate.

3.2.1 XML

XML [17] has traditionally, among its countless other use purposes, been the most
popular format for storing persistent configuration data in Java EE applications.
Typed XML elements may contain attributes with standard or custom types.
Elements may have children and form recursive structures. This structure is
described in a schema file. The elements and attributes have a name-space, may
contain attributes and children from different name-spaces or even different schemes.
These schemes may refer to each other and multiple schemes may exist in a single
document. This makes the format both flexible, easily extendable and, at the same
time, with schema validation, formal enough to fit for almost any presentation of
structural concepts.

When it comes to application configuration data, choosing XML format can be
easily justified since it makes the configuration clearly separated from the application

3. Implementation Techniques 18

logic. Because of the schema this configuration can be formally validated both in and
outside of the application. There are also a great number of tools and technologies
that help to manipulate, transform, or present XML data. With JRE provided APIs,
such as the modern JAXB [15] implementation, it is also relatively straightforward
to read, to modify and to perform schema validation for data stored in XML format
with Java programming language. With JAXB, the XML element types can be
mapped directly to Java classes and the elements may be read and modified type
safely using these objects.

3.2.2 Annotations

Annotations were introduced in Java version 1.5 [11] for the purpose of providing
meta-data in source code to related code elements. This meta-data can then be used
by the compiler, software tools or frameworks using meta-programming. Annota-
tions have different retention policies for these different use cases: Annotations with
source-policy are removed at compile time while class and runtime policy annotations
remain in the compiled binary class file but only annotations with runtime retention
policy can be read at runtime using reflection. [18]

Annotations may have attributes which can be either required or have a default
value. Annotation types themselves are specified as interface-like Java types,
methods of which specifying the attributes. The data types for annotation
attributes must be either primitive types or their wrappers types, java.lang.Strings,
enumerations, Class-objects, other annotations or arrays of these. Null-values are
not allowed even as default values but it is often possible to circumvent this by
defining the type as an array with an empty default value or String with empty
default value. [18]

Annotations may be placed in the source code before target elements that are
allowed by the target specification of the annotation type. It may include any com-
bination of elements that are defined as java.lang.reflect.AnnotatedElements,
including fields, methods, parameters, constructors, local variables, packages and
other annotations. Only one annotation for a certain annotation type can be
specified for each source code element [18]. However, cases where multiple
annotations are needed can often be constructed by the use of an additional
container annotation with a single array value attribute holding these annotations.
Annotations can not be inherited but usually user specified annotations, that extends
the behavior of a framework based on its own configuration annotations, are created
by allowing annotation type as one of target elements of the annotation and reflecting
these one step further.

Certain more hierarchical structures can be presented with annotations but, as

3. Implementation Techniques 19

a considerable limitation, annotation types used in attributes can not directly or
indirectly refer to the original annotation type. In other words, a recursive structure
with a circular annotation reference is prohibited by the compiler. In practice, this
means that annotations cannot be used to present a recursive structure with the
complexity comparable to for example XML documents where an element node can
contain instances of the same element node.

The limitations of recursive structures and inheritance are most probably related
to the internal implementation of annotations which is basically a special kind of
interface, which leads to the limitations in the inheritance hierarchy of Java. In fact,
even though this was not intended as indicated with a compiler time warning, the
Java compiler even allows the creation of classes that implement an annotation.

3.2.3 Dynamic Proxies

The inbuilt dynamic proxy mechanism in Java was available since JRE version
1.3 [19]. It provides an automatic way for implementing the Proxy Object
pattern to handle method calls to a given object with an java.lang.reflect
.InvocationHandler object while the object is still accessible as it was an object
of given interfaces. However, the mechanism is limited to objects of classes that
implement interfaces only, and the generated proxy object will no longer be an
instance of the original class, and thus can neither be referred through this type.

Many DTO and entity classes are actual classes that do not implement an
interface with all the setters and getters they possess. This is why, in most cases,
the original proxy mechanism in Java would not be a solution for proxy objects.
Instead, a third-party library with dynamic code generation capabilities can be
utilized in order to generate proxy objects for any given non final classes. The
dynamic code generation libraries are focused more closely in Section 3.5. These are
usually also referred as dynamic proxies. The technique is well known and generated
dynamic proxies also work as of the mechanisms that JPA implementations use for
lazy loading of the data in entity object when properties other than the primary
key are first accessed [20]. Spring also uses these class proxies by default for the
implementation of its IoC mechanism to proxy beans for which interfaces injection
is not used.

Java 8 will provide a language concept for method reference but this, however, is
not a runtime concept. Instead, the implementation of method references as well as
the lambda expressions in general are both just a shorter syntax for an anonymous
class implementing a single method. Use of lambdas will be limited for single method
interface types only. Hence, even though tempting and convenient to the outside,

3. Implementation Techniques 20

the method references can not be used in runtime mapping of getters and setters.
[21]

Mapping with proxy objects can be made null-safe in a way that dto.
setStreeName(entity.getCustomer() .getContactAddress() .getStreeName()
) would never cause NullPointerExceptions since it would only define the property
path for resolving the mapping and each call would be handled and each return
value would actually be created with an InvocationHandler. In the case before the
entity and dto would be proxy objects and a call to getCustomer() would actually
be handled in an InvocationHandler that would return a new proxy object with
knowledge of the referenced path. Later on, the call to getContactAddress() would
also be handled similarly, returning a new proxy object, that in turn, would contain
a property path reference from the origin. These dynamic proxies can implement
an additional interface to which they can be casted in the invocation handler of the
setter method to access the mapped property path.

Even the dynamically code-generated proxies can not, however, extend final
classes. This applies to, for example, all the basic wrapper types in Java,
java.lang.Strings, enumerations and primitives. It goes without saying that this
concerns most of the types traditionally used in DTO classes’ fields. In order to
pass the information to the invocation handler of the setter method with these
types, there is, however, one option. For these final types, one can use statically,
thread-locally stored enumeration values as placeholders for the actual proxy objects.
This would mean that, for example, the first getter method returning an int would
return 0 and the second 1 and so on. The setter invocation handler may then access
this storage to access the actual proxy. This kind of enumeration can be used to all
basic Java types but it should be noted that some of them have very limited range
of distinct values: for example boolean type has two and enumerations theoretically
only one. Given the thread-local storage, these proxy references can not be mixed
with similar mappings performed in parallel, but because of limited enumeration
values, these proxy placeholders may not be stored in variables. This idea is based
and an implementation for such enumeration value based proxies can be found for
example in Lambdaj project [22].

As a limitation of the type safety provided by proxy mapping, in a situation where
inner conversion between non assignable types needs to be performed, dynamic
proxies can not be used without additional helper APIs. One possibility is to
introduce a simple static generic helper method that converts any type to required
type by generating a new proxy of that type with the property path from the original
proxy. Then the need for conversion would be determined by noted non-assignability
in the invocation handler of the setter method. Another considerable limitation is

3. Implementation Techniques 21

that with proxy objects, only properties available through getter and setter methods
could be mapped as it is not possible to proxy access to public fields.

3.2.4 Domain-specific languages

DSLs are used for their better expressiveness with more appropriate domain-specific
notation or possibly for their better error handling, analysis, verification, optimiza-
tion, parallelization or transformation capabilities compared to traditional General
Purpose Languages (GPL), such as Java [23]. DSLs can be used in vertical manner
to create whole applications for a specific domain but also in a horizontal manner to
access a certain technical domain, such as specifying behavioral test cases, building
database queries or, in our case, mapping DTO and entity classes.

Java programming language lacks the concept of a property, a combination of an
attribute, setter and getter, which is a core concept in DTO and entity mapping.
Because of this, properties can only be referred with java.lang.Strings, which
leaves room for errors since the referred property may be renamed or removed.
Secondly, as stated earlier, there neither exists a way to safely refer to a method in
a way that this reference could be used in meta-programming to refer to a getter or
setter.

Thirdly, there exists no expressive way to refer to a chain of getters or a property
path in a null-safe manner in Java programming language without the need to
include conditional structures and either repetitive references or introduction of new
variables. There was a proposal of adding a new ?. null-safe reference operator to
Java version 7 but it was rejected [24]. This either leads to a lack of expressiveness
or to a possiblity of NullPointerExceptions. If, for example, one would like to
map customer.contactAddress.streetName property path from entity object to
streetName property of dto object with the possibility in mind that any part of the
reference path might be null, the GPL Java code would look like the one in Listing
3.1.

Listing 3.1 A null-safe reference to a property path in Java programming language.
Customer customer = entity.getCustomer();
if(customer != null) {

ContactAddress contactAddress = customer.getContactAddress();
if(contactAddress != null) {

dto.setStreetName(contactAddress.getStreetName());
}

}

However, a DSL with concepts for properties and null-safe references, could be

3. Implementation Techniques 22

specified in a way that the syntax for the similar mapping would be just for example
dto.streetName = entity.customer.contactAddress.streetName, making it a
lot more expressive than the corresponding GPL expression. Some IDEs, such as
Eclipse, can be extended to support custom DSLs so that features such as syntax
highlight, autocomplete and automatic verification of property existence could also
be achieved [25].

Instead of a fully custom made DSL, an easier option could be to extend
some expressive dynamic languages directly. There also exists many such modern
languages, such as Groovy [26], Scala [27] or Clojure [28], which are compiled in the
very same Java intermediate byte language and run under the same JVM than the
Java application. This gives them the advantage to both use and access Java code
and utilize reflection for resolving type information.

3.2.5 Application Programming Interfaces

Mapping with Java APIs could be possible by using string references to properties
and property paths. Such an API could also be extended with proxy objects
to provide a more type and modification safe approach with the help of the
autocomplete features of the IDE. The API could also provide, for example, callbacks
for fully customizable logic where all the features of Java programming language
could be utilized.

This kind of Java mapping API could also be accessible to other JVM languages
but might lack some of their expressiveness, for example lambdas in Scala can not
be used directly to replace callback interfaces in traditional Java APIs. Sometimes
domain-specific Java APIs may also be referred to as DSLs.

3.3 Reflection

In this section we focus on the reflection API of the Java programming language
[29] which can be used to access Java language structures and annotation specified
meta-data in runtime. In addition to resolution of mappings, the Reflection API
may also be used for accessing the values in fields or through getter and setter
methods. These are covered in Subsection 3.3.1. Some limitations apply to the use
of generics which are covered in Subsection 3.3.2. The performance of the reflection
might also be a concern and is covered in Subsection 3.3.3.

3.3.1 Fields and Methods

The reflection API [29] provides name and type information for all the fields and
methods, including parameter types, in a Java class. However, for constructors and

3. Implementation Techniques 23

methods, parameter name information is not available. The reflection API also
allows invocation of methods and getting or setting field values. [30]

The reflection information is available from all visibility levels but for invocations
and setting or getting a field value, the visibility levels are obeyed by default. It
is, however, possible to circumvent the visibility restrictions by explicitly calling
java.lang.reflect.AccessibleObject.setAccessible(true) implemented in
both java.lang.Method and java.lang.Field, and thus forcefully break the
abstraction of an object. [30]

3.3.2 Generics

While the reflection API in Java provides the type information for arrays directly,
generic collections are a more complex case. Generics were introduced in Java
version 1.5 [11]. Basically, they function as nothing but extra compile time
type safety checks and extended class file metadata, since in byte-code level all
actions are still preformed on raw types because of a process that is known as
type erasure [31]. On the other hand, this ensures that there is no runtime
overhead and provides compatibility with earlier Java versions, making it possible
to utilize Java 1.5 [11] or newer software libraries with generics even in source
code targeted to Java 1.4 [32] or earlier versions. But it also means that at
runtime it is not possible to determine the actual type parameter values used for an
object of class having generic type parameters or within a method with a generic
signature. This means that if, for instance, a generic purpose component with a
java.uitl.Collection<?> interface parameter is handling instances of for example
java.util.Collection<Customer>at runtime, the Class<Customer> instance is
not accessible and must be determined explicitly. [33]

Having said that, however, the generic types and their bounds specified in classes,
methods and fields are accessible, meaning all the information available in class and
interface definitions at compile time, including method return types and parameters
types, can be determined by reflection [33]. This means that if, for instance, a class
Customer has a method with signature public java.util.Collection<Order>
getOrders(), the Class<Order> instance can be accessed using reflection. It
is still possible, however, not to use generics or only to specify bounds
for the generic type parameters. For example, the method signature could
be public java.util.Collection<? extends OrderInterface> getOrders()
where the actual type parameter could be any type extending or implementing
OrderInterface. Or the code could simply be written in Java 1.4 [32] style
omitting the type parameters as public java.util.Collection getOrders()
where reflection would only be able to suggest Object as the generic type.

3. Implementation Techniques 24

When reflecting through abstract classes or interfaces that have unspecified
generic type parameters, the actual parameter types are also not accessi-
ble at runtime but reflection does provide the same amount of information
which is available to the programmer at coding time, including the bounds of
those types. If we had, for instance, a generic Refund interface that might
have different RefundTarget interface implementing targets, such as classes
Order or Subscription, with signature interface Refund<Target extends
RefundTarget> and that had a method public Target getTarget(), the reflection
could only access the RefundTarget interface if we reflected the method through
the interface type directly. Only when reflecting the method through class
OrderRefund implments Refund<Order> class where the generic type is specified,
the Order class would become accessible, which is exactly what a programmer would
see as well.

3.3.3 Performance

Traditionally, in Java the method calls or field value access through reflection are
generally considered tens to hundreds times slower than direct call to methods or
fields [30]. This is caused by the additional steps the Java Virtual Machine (JVM)
needs to take including security manager calls and virtualization checks which it
could omit in verified byte-code. The performance has been stated to increase
slightly over the development of JVM from version 1.3.1 [34] to version 1.4 [32] [30]

In a modern HotSpot JVM architecture, however, in what is called Just-In-Time
(JIT) compilation, the code is initially interpreted and selectively optimized based
on runtime profiling analysis [35]. With JIT it is actually difficult to reliably
test the performance of method calls, since among a lot of other optimizations,
most simple method calls are actually eventually inlined into byte code on
the side of the caller. What is more, the JIT compiler also automatically
turns java.lang.reflect.Methods often invoked into proxies that actually call
dynamically compiled byte code, or it may be able to inline them as well, given that
this call repeats a certain number of times. The server version of the JIT compiler
provided by Oracle, used with most Java EE applications, is targeted to speed up
usually long running application with aggressive optimizations and needs up to 10
thousand profiled invocations prior this optimization in order to correctly analyze
the normal use of the application after the start-up and warm-up periods, whereas
the client version is targeted to fast start-up and will by default do the optimizations
based on just 1 500 calls observed through runtime profiling. Optionally, in so called
tiered mode, the JVM uses both of these compilers, first in client mode and later
on in the server mode. [35]

3. Implementation Techniques 25

Because of the inline optimization, a correct performance measurement should
access the internal state of the object, which is actually the case for all setter and
getter methods used with DTO and entity classes. Also, it should be noted that
creating objects and especially the caused garbage collection is a costly operation
and may affected the measurements, so creating new object instances should be
avoided during the test. In addition, the lookup for reflection elements should only
happen once, and because of the optimizations done by the JIT compiler, invocation
thresholds and lazy class loading used in Java on the other, there should be warm-up
phase with at least 10 000 calls that are not counted to the test results. Following
these guidelines with JVM version 1.7 in server mode, test results done for this thesis
with one million method calls show on average roughly a 660 times performance
difference (0.0180ns vs. 11.8ns per call) between direct method calls and reflection
calls with simple methods that the JIT compiler may inline, but only about a 6.4
times difference (1.95ns vs. 12.5ns per call) with methods that access the internal
state of an object. These measurements are supported by the measurements done
by Dimitry Buzdin where the mean time in server mode for direct method call is
measured to be around 3.92 ns and 24.0 ns with reflection, making roughly the same
6.1 times difference [36].

With the use of JVM options -server-XX:+PrintCompilation
-XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining the compilation and
inlining results of the JIT compiler may be analyzed [36]. For example, the final
compilation in the warm-up period for the test code is presented in Listing 3.2.
What is notable, is that most of the reflection related steps are inlined or intrinsic,
meaning they are replaced by native code supporting the best guess by profiling
[36], but access checks are considered too big for inlining. However, using the
java.lang.reflect.Method.setAccessible(true) will not reduce the runtime,
and will, in fact, result in a similar JIT compilation. Even if we would further fine
tune the execution by setting -XX:MaxInlineSize=100, the first too big call would
eventually resolve to not being executed at all and the second would be executed
fewer number of times than the minimum optimization threshold, even with it set
to a low value such as -XX:MinInliningThreshold=100.

All this indicates that the reflection call may not become any more optimized.
On the other hand, JIT optimization does reduce the reflection invocation runtime
significantly, since if we would prevent the JIT from inlining the invoke-call by set-
ting -XX:CompileCommand="exclude java.lang.reflect.Method::invoke", the
invocation would take 76.82 ns which is about 6 times more than with the JIT
optimization.

The measured, relatively low, about 6 times difference in optimized reflection

3. Implementation Techniques 26

Listing 3.2 The JIT compiler output for a reflection method call
TestReflectionPerformance::callReflectArgs (52 bytes)

@ 10 java.lang.Integer::<init> (10 bytes) inline (hot)
@ 1 java.lang.Number::<init> (5 bytes) inline (hot)
@ 1 java.lang.Object::<init> (1 bytes) inline (hot)
@ 29 java.lang.reflect.Method::invoke (63 bytes) inline (hot)
@ 15 sun.reflect.Reflection::quickCheckMemberAccess (10 bytes)
inline (hot)
@ 1 sun.reflect.Reflection::getClassAccessFlags (0 bytes)
(intrinsic)
@ 6 java.lang.reflect.Modifier::isPublic (12 bytes) inline (hot)
@ 22 sun.reflect.Reflection::getCallerClass (0 bytes) (intrinsic)
@ 37 java.lang.reflect.AccessibleObject::checkAccess (96 bytes)
too big
@ 50 java.lang.reflect.Method::acquireMethodAccessor (44 bytes)
too big
@ 57 sun.reflect.DelegatingMethodAccessorImpl::invoke (10 bytes)
inline (hot)
@ 48 java.lang.Integer::intValue (5 bytes) inline (hot)

based access compared to direct Java source becomes, of course, amplified by the
additional code and method calls needed for DTO and entity mapping compared
to a straightforward Java code solution. But since the implementations of getters
and setters are basically really simple, their cost is practically close to zero, and the
difference is linear, as high optimization as the 6 times difference is not to be expected
in real applications, but rather should be considered as the maximum performance
against pure Java code where the non inline-optimized 36 times difference could be
closer to the truth. This is because the JIT compiler balances the use of resources
with the running application and only focuses on the real, usually rare hot spots of
the application [36]. Although, probably, even a 100 times difference would hardly
be relevant or even noticeable in the total performance of a Java EE web application
where the largest portion of the runtime is generally consumed waiting for database
queries, other external services or rendering a view, the expectantly low priority for
optimization by JIT compiler actually makes performance tuning a more important
factor in a general purpose mapping component.

3.4 Caches

The Java programming language itself lacks the concept of a property. It is merely
based on Java Standards that a Java class should have getter and setter methods
named according to the attribute they provide access to. For example, the JPA

3. Implementation Techniques 27

standard [5] relies on this standard and involves reflection based property mapping.
The lack of language support basically means that there is no direct way of mapping
the getters and setters to property name or vise versa through reflection. To get
this information, one must therefore go through all the public methods of a class
and interpret their signature against the Bean property standard. It goes without
saying, that this kind of reflection is costly, should only happen once, and therefore
involves the use of caches.

Changes in class interfaces, interfaces, annotations, method signatures or fields
are not supported by the HotSpot feature in the JVM. Only the implementation
of already loaded class may be changed at runtime [37]. These changes do not
affect the type hierarchies, fields, getters, setters, annotations or other important
factors when resolving mappings between entity and DTO classes. Furthermore, if
we also consider other forms of configuration static, it is a safe assumption, that
the mappings remain unchanged throughout the whole runtime of the application
in a production environment. Based on this assumption, the performance of the
mapping should always be linear.

While this assumption will allays be justifiable in the production environment,
there are some exceptions, such as Dynamic Code Evolution VM related to the
HotSwap project of Oracle which extends the HotSpot technology used in the JVM
to allow dynamic code evolution in the means of adding and removing methods, fields
and supertypes during runtime [38]. There is also a commercial JRebel tool [39],
which can reload Java classes with class, interface or annotation changes occurring
even during runtime without using throwaway class loaders [40]. Rather than that,
JRebel integrates with the JVM as a plugin in order to avoid the delays caused by
application re-deployments during development time [39]. In order to avoid costly
repetitive reflections, many frameworks, including Spring and Hibernate, however,
use just the kind of class caches that would become invalid after the Java types. For
this purpose, JRebel uses byte-code level interception, cache invalidation and other
customized means for interacting with the most common frameworks. For smaller,
non-supported frameworks, JRebel provides a plugin mechanism, that can be used
to invalidate the cache entirely or for particular class [41]. Therefore, given that
the mapping component can provide a way to invalidate its class caches and other
depended caches, the assumption of type immutability can safely be made.

3.4.1 Early-Work and Lazy Initialization pattern

Because the results of resolution and possible code generation can be cached,
depending on how the mapping is done, the early work could be used in the resolution
phase and possible dynamic code generation. For compile-time components, this is

3. Implementation Techniques 28

the only possible way to perform the resolution and code generation. For runtime
components, this would shift the delay caused by resolution and possible code
generation from the actual use of a mapping component to its first initialization,
which could be done, for example, during the start-up of an application. For a large
application, this could possibly add some notable waiting time in the compilation
or start-up of the application, but on the other hand, by resolving all the mappings
at once, it would ease the testing of correctness of the mappings.

From the mapping configuration, early work requires the knowledge of all the class
pairs, which could possibly be mapped against each other during runtime. This can
be achieved by all the mapping techniques discussed earlier, although when doing
multiple mappings for the same type, mapping with annotations would turn more
complex by the need of wrapper annotations. As a tradeoff, for the most simplest
scenarios, mapping could be done automatically based on field names and types of
the two Java types and for these cases, introducing a need to explicitly define all the
class pairs in a mapping configuration could add an extra overhead to the coding
phase.

Alternatively, Lazy Initialization pattern, or Lazy Load pattern [12], may also be
used to resolve the mappings when they are first needed between two given Java
types. This option, of course, remains only for runtime mapping components. Lazy
execution adds some overhead to the first conversion, although the difference should
remain at most in milliseconds and would hardly be notable by the user. As well as,
with early work, the results would be cached so that the second time, a conversion
between the two types is needed, there would be minimal overhead. By shifting
the resolving phase up to first use, the Lazy Execution Pattern approach also shifts
the point of noticing an error in the mapping configuration, and thereby introduces
the need for comprehensive testing. These factors in mind, the choose between
these two patterns is primarily a tradeoff between the amount of needed mapping
configuration and its testability.

3.4.2 Thread-safety with Singleton Caches

In a Java EE component container, the singleton scoped beans are shared between all
requests, meaning a runtime mapping component is likely to be used simultaneously.
All caches used by the component should therefore be thread-safe. The easiest
possibility would be to utilize the inbuilt mechanism in Java, attribute or class
synchronization, but given that DTO and Entity mappings are to be used in most
service level methods, this methodology might reduce the overall scalability of the
application.

To avoid unnecessary synchronization in the Java programming language, two

3. Implementation Techniques 29

alternatives exits: static initialization and the double-checking idiom. The static
initialization blocks are called in thread-safe manner when the JVM first loads the
class. They can also be used in a lazy manner by introducing a field that references
another class containing the static initialization code which, because of the lazy
class loading used in Java, gets executed only when first needed. Static initialization
based class caches also work with HotSwap extending technologies that are based on
throwaway class loaders, since the static blocks are called, and cache hence refreshed,
every time a new class loader accesses the class.

Static initialization works for class cache and other collection initialization in a
static manner. However, for component configuration based mappings which may
vary based on object instance, static scope is limited. For object based caching
purposes, double checking idiom [42] can be used. It, however, requires the use
volatile keyword with the initialized field so that all threads can see the changes,
which in turn sets the minimum requirement for Java version to 1.5 [11].

3.5 Dynamic Code Generation

When it comes to the actual access of properties, through their setter and getter
methods, in the inevitable phase of copying of values during runtime, as discussed
earlier, significant performance losses are to be expected when using reflection based
method invocation, and the JIT compiler is most probably unable to optimize those
operations. One way to overcome this performance issue, which is also used by
the most component implementations, is to dynamically generate and compile the
code that does the actual copying of values in runtime. By doing so, not only does
the access to properties get optimized but the logic in between these operations
gets minimized as the generated code can more or less represent the result of a
straightforward manually written code used to map DTOs and entities.

For this task, there exists a variety of libraries, which differ mainly in the features
they offer and their APIs. Among these libraries the performance of the compiled
code, however, does not have a significant difference other than compared to use
of pure reflection [43] [44]. These tools include byte code provider libraries such as
Cglib [45] which has many byte code manipulation related projects depending on it,
such as Byte Code Engineering Library (BCEL) in Apache Common [46], Javassist
[47], ASM [48] and the standard java.tools.JavaCompiler [19] which has been
available in JDK since Java version 1.6 [49] through tools.jar but is not bundled
with JRE by default.

Some of the libraries, such as ASM, are very low level and possibly more efficient
but their use requires the knowledge of Java byte code structures. On the other
hand, for example, Javassist can compile method bodies directly from Java source

3. Implementation Techniques 30

strings presented in source level 1.4 [32] and the standard Java compiler will be
able to compile whole Java source files. In addition to compiling new classes, many
of the byte code providers are also able to instrument existing code. Because the
byte code providers depend on the Java byte code format, they also depend on
the .class file version and need to be updated as new Java versions are published
with new byte code format. For example, Spring Foundation needed to patch ASM
with Java 8 support to meet their delivery schedule for Spring Framework version 4
[50] and Hibernate needed to change from Cglib to Javassist in 2010 because Cglib
development had slowed down [51].

There are some challenges when using dynamic code generation. Firstly,
debugging the generated code might be really difficult unless the code can not
be represented in the original Java source code format and thus run and analyzed
separately. Other related issue is that the compiling errors these libraries produce, do
not necessarily specify the section of the code that produced the error. Exceptions,
such as NullPointerExceptions thrown from within generated code are also almost
impossible to trace because the stack trace will not have line numbers. The fact that
most byte code providers operate in early Java source code levels, usually 1.4, also
means that there is no direct support for generics and special attention must be paid
to explicit transformation between primitive and wrapper types. Therefore, caution
and practices that prevent such errors prior the actual dynamic compiling phase,
should be applied when writing code generating code.

A possible solution for overcoming the problems related to the use of byte code
providers is to introduce an intermediate, type and null-safe API for building the
code. Such an API would throw exceptions for the most typical errors before the
code gets compiled. This also serves as an layer of abstraction making it easier to
change the underlying byte code provider.

31

4. REQUIREMENTS

In this chapter the requirements for a generic DTO and entity mapping component
are specified based on the environment and use case analysis in Chapter 2. The
requirements are listed based on their urgency and occurrence in a software project
utilizing the component. The functional requirements for the component are listed
and their importance is weighted in Appendix A. In this chapter the requirements
are referred to with superscript numbers in round brackets.

In Sections 4.1, 4.2 and 4.3 the requirements related to the used frameworks and
techniques are discussed. After that, in Section 4.4 the requirements relating to ease
of use of the mapping configuration are discussed. In Section 4.5 the requirements
relating to different features in the mapping component are presented. Finally, in
Section 4.6 the requirements related to customizability are explained.

4.1 Maven Support

Maven is an industry standard build automation tool used by Dicode in most
of its Java EE projects. Among its other features Maven provides dependency
management for software packages. Single packages in Maven are called artifacts.
Artifacts may depend on other artifacts and it is the responsibility of Maven
to automatically download the required versions of these artifacts from different
repositories upon the build of the software based on the configuration file of the
Maven project. This provides flexibility in the build automation process and software
component deployment since all dependencies are defined and managed in a single
XML file rather than maintained as vast set of jar files with the project.

In order to provide this flexibility the component should be available as a Maven
artifact (1). This also serves as an easier method of customizing or branching the
component itself while the customized or fixed version could then easily be deployed
in an internal repository and taken in use simply by changing the version of the
component in a Maven configuration file. Since Dicode uses an internal Maven
repository to ensure the availability of certain Maven artifacts, the availability of
the mapper artifact in the central Maven repositories (2) is, however, not considered
as a strict requirement.

4. Requirements 32

4.2 Spring Support

The component must not have direct dependencies to any particular web framework
or EJB container, since this would largely limit the generality of the solution. Any
artifact dependencies to these frameworks should only be delivered in separate
artifacts or be optional with the ability to compile without these dependencies
available. For Dicode, Spring is the most commonly used web application framework
for Java EE application. Thus, the solution must be usable at least in a Spring
environment (3) but should be customizable enough to be used with any other
framework as well (4).

It can be safely assumed that mappings between existing DTO and entity classes
remain static throughout the whole runtime life cycle of the application. Thus, the
usage of application singleton scope would be the most preferable because of its
subtle use of memory resources and the ability to make single time lazy mappings
between these classes. The inversion of control (IoC) mechanism used in Spring
also makes it very easy to change this design decision afterwards if necessary [1].
Notably, in application scope the component will be used concurrently by multiple
users and must thus be thread-safe (5). However, this should not involve unnecessary
use of synchronization which could have a significant effect on the scalability of the
application [52].

Furthermore, the mapper component should be available as several customized
components for different purposes. For example, if the service level of the application
was divided in different packages based on entity aggregation groups of the domain
model, the most likely use scenario for the component would be to have a separate,
possibly customized, implementation of the mapper for each aggregation group.
This would be done in order to achieve better segmentation of responsibility as
well as minimizing the inter-dependencies between these packages. Since interface
injection is one of the most often used forms of autowiring required components in
the IoC mechanism of Srping for non XML based configurations, as a requirement
the component should implement an easily extendable interface (6), the variations of
which could then be injected as different customized components all still providing
the basic functionality.

4.3 JPA and Hibernate Support

Since mapping entities and DTO classes is not essentially different from mapping
any two Java classes, there are not many requirements that relate to JPA nor the
persistence implementation directly. However, when converting DTOs to entities,
there is a need to automatically fetch entities by their primary keys (7) which would

4. Requirements 33

otherwise involve a great deal of manual work. This involves determining which
class represents an entity and which property of it represents its primary key. The
mapper component should also separate cases where multiple entities are fetched by
array of collection of primary keys (8) in order to minimize the number of queries.

JPA itself specifies a common interface for fetching an entities by primary key
in javax.persistence. EntityManager-interface the current, e.g. thread-local,
version of which is provided by an implementation of javax.persistence.
EntityManagerFactory-interface. Through this API the primary key meta-
data information is also available [5]. These interfaces work as delegates for
JPA implementation specific interfaces such as the EntityManager correspond-
ing org.hibernate.Session obtained by org.hibernate.SessionFactory in
Hibernate or oracle.toplink.tools.sessionmanagement. SessionManager in
TopLink, for example [6][7].

For the purpose of generality, however, the mapper component could ideally define
an interface for the features it needs, which are determining the primary key property
and fetching entity by primary key or multiple entities by multiple primary keys, and
then provide a JPA specific implementation of this feature as a separate, optional
artifact (9). This way the implementation would not be directly JPA dependent,
the persistence and ORM implementation could be changed to other than JPA or a
possibly to a more efficient implementation dependent solution could be provided.
Because Dicode commonly uses Hibernate implementation in its Java EE projects
a readily existing Hibernate compliant adaptation (10) would be preferred but the
implementation should support any other JPA implementations (11) as well.

4.4 Ease of Use

The fundamental goal for the existence of the mapper component is to reduce the
amount of work a developer has to do when converting between DTOs and entities,
and by so doing avoiding boilerplate code and aligning architecture. In order to be
used and accomplish this goal, the mapper component must be easy and practical
to use minimizing the amount of code and configuration. Whenever possible the
need for configuration should be circumvented by providing defaults that work for
most scenarios and that can be overridden. This applies both to taking use of the
component and to using it in source code level.

4.4.1 Annotation-driven Configuration

As described in Section 3.1, there are multiple options for defining the mapping
configuration. Referring to practical experiences at Dicode over the past few years,
whenever there has been a chance to choose, we have found annotation-driven

4. Requirements 34

configuration much more convenient compared to XML-driven ones (12). This has
been shown with for example Spring and JPA where in previous versions for example
the bean definitions, transactional proxies and entity mappings needed to be defined
in separate XML files. Annotation-driven options have been used since they become
available. The inconvenience discovered was mostly caused by the separation of the
configuration from the related code, the configuration that, in many cases, is not
actual configuration at all, because there most likely exists only one way of doing it.

In practice, the XML configuration that could be replaced by annotation driven
one, meant that whenever there was a change in the code, for example a new
transactional service method or an injected bean dependency was added, the related
XML files needed to be searched for and changed. Especially when there were
multiple changes in code requiring changes in XML definitions, some of them were
easily forgotten resulting in run-time exceptions continued by a possible rerun
with new discoveries. This process was impractical, time consuming and therefore
also easily resulted in architectural anti-patterns, such as beans with multiple and
even non-related responsibilities simply due to the fact that extracting the added
functionality to a new, separate bean would have required defining it, the related
transactional proxy and dependencies in these XML configurations.

When it comes to domain-specific languages or source code mapping, many of the
features are shared with XML. They are as separate to the mapped source code as
are XML mappings and would cause additional maintenance burden. Additionally,
domain specific languages would add a learning curve by introducing a new language
the developer should learn in order to do a simple task. This could easily lead to
situation where only a handful of developers would utilize the mapping component
and lead to the same architectural concerns and before.

In an annotation-driven approach annotations get inserted as the related code
is written making it easier to remember. They are also much more likely the
be updated when changes in the related code occur as they exist right beside
the changed source code. Additionally, if the configuration causes changes in
the behavior of the application, which for example transactional proxies do, their
presence as annotations in explicit and visible form is much more likely to support
sense-making for a developer maintaining the project.

XML mapping (15), mapping by API (16) or DSL mappings (17) are preferable where
multiple configuration could co-exist. However, with DTO and entity mappings
there are only one way of mapping each particular DTO class with an entity class.
XML configuration could be argued over the two other since it could provide better
tooling support. On the other hand mapping with proxy objects (18) would make the
mappings change as code gets refactored which could slightly reduce maintenance

4. Requirements 35

and testing efforts. DSL or other scripting expressions could allow specification of
conditional mappings which may depend on the state of the mapped object (19) but
on the other hand this could also be achieved by a custom converter and these kind
of cases are rare.

One arguable impediment for the usage of annotations in DTO mappings could
be the additional created dependency to the library containing these annotations in
the case that the same DTO classes are used among multiple distributed systems
via serialized form such as with the Remote Method Invocation (RMI) technology.
The use of RMI in Java EE applications is, however, usually little, and dependencies
could be minimized by defining them in a separate artifact. Where this could be an
issue, XML configuration could be used instead.

4.4.2 Convenience in Mapping

When looking for a convenient way of doing DTO and entity mapping, we could
look for solutions used in JPA for a similar but ORM-related purpose. For example,
the mapping in JPA shows a good example of providing functional and overridable
defaults: Given that the property name and type of an entity matches those in
the database scheme, no configuration is needed. However, if the property name
differed or a more complex data type should be converted, this default behavior can
be overridden by annotations.

This kind of mapping of matching name and type would be the most likely case
in entity and DTO mapping as well and automatic mapping (13) could be similarly
expected by a developer used to working with JPA mappings. In practice this would
mean that adding a new property to an entity and those DTO classes in need for it
would be enough for making the mapping meaning basically zero configuration and
less forgotten mappings as new properties are added.

Especially with aggregate structures the camel-case property naming convention
widely used in Java could also be useful in discovering mappings (14). This
would mean that e.g. customerName would be mapped with a property
path customer.name and similarly customerContactAddressStreetName could
be mapped directly with customerc. contactAddress.streetName. With a
simple rule such as the shortest property name wins in path decisions, ambiguous
mappings such as customerProfileId mapping with either customer.profile.id
or customerProfile.id with the same type could be solved. Using camel-case
mapping as the default behavior, these kind of conflicts could always be solved by
overriding the mapping.

4. Requirements 36

4.5 Feature Requirements

Feature requirements were discovered based on the use case analysis in Chapter 2.
In this section these requirements are listed in the order of their importance.

4.5.1 Bi-directional Mapping

In editing use scenario the same DTO class is mapped with an entity in two
directions. In these cases both ends of the mapping posses necessary getters and
setters for bi-directional conversion and with the JPA support discussed earlier,
related entities could be fetched by their primary keys automatically. In order to
minimize the repetitive work and errors caused by it, mappings should be done only
once for each DTO and entity pair (20).

At the same time mappings must be customizable in such a way that mapping to
one way or the other or both can be prevented (21). This is to allow manual fetching
of related data and checks when some parts of the entity model must not be edited
freely. Also properties having only a visible getter or setter should automatically
make the mapping the suitable way only (22).

While annotations, as discussed earlier, are the preferable means of configuring
the mappings, there may also exists situations where DTO classes are defined in
external jar files and can thus not be edited with these mapping annotations. This
kind of need would occur when e.g. Service level provides presentation DTOs,
such as javax.faces.SelectItems directly. With the use of two-way mapping and
mapping annotations independent of the end they are defined in, these kind of
limitations could be overcome by defining the mappings in entities (23).

4.5.2 Aggregation Mapping

Multiple use scenarios for DTOs, such as viewing, creating and editing, include
flattering or altering the aggregation structure of an entity. This infers that rather
being single property pairs, mappings need to be property path pairs where e.g.
property named customerName could be mapped with customer.name resulting,
simply put, in getCustomer().getName() and getCustomer().setName(...
equivalent calls (24).

The getCustomer() example above, however, is not quite valid. The mapping
component can not expect the containers to be non null and should never throw
NullPointerExceptions in the case where the customer-property of the source
object was null (25). Actual causes for these kind of runtime exceptions in a generic
purpose component could be very hard if not impossible to trace. Instead, null
values should be handled in such a way that any null value within the conversion

4. Requirements 37

path should result in a null value in the end result without exceptions thrown when
reading the value.

Setting a value in a null container creates another story. When a new aggregation
group is created, related entities default to nulls and should be either fetched by
their primary keys (26) or created with default constructor (27) so that they would
be saved either manually or by cascades set to the JPA mappings. When editing an
aggregation group with a DTO having a property holding the primary key for the
container object, the appropriate option would be to load the entity for editing and
then update the fields mapped to its fields.

It is also possible that the structure of aggregations is not flattered but
rather repeated in DTO class. In such cases inner conversion (28) between the
DTO-property and related entity should be applied where requested. When building
such DTOs from entities, the null container problem is reversed: Now the contained
DTO should be created with its default constructor and properties set to match the
related entity. More likely than the DTO itself, its properties may be DTO classes
or value objects specified in external packages that can not be edited. Thus, when
using annotations, there should be a possibility to map these inner conversions from
the container (29).

4.5.3 Type Support

The component should allow the use of coding practices that prefer the use of
abstract types over concrete ones, for example the Dependency Inversion Principle
of SOLID Design Principles [53]. This requires the component to support interfaces
and abstract types in both DTO and entity classes so that the implementation type
can be specified.

The implementation type could be defined directly case by case with a concrete
Java type on mapped class pair basis (30) or indirectly with an type alias (31).
Especially with annotations, type alias and specific mapping of aliases to concrete
Java types would be preferable, since it would maintain this abstraction and
especially compared to defining a reference to a Java Class, removes the dependency
and makes the object more easily transferable over system boundaries. Additionally,
it would be convenient to be able to define general default implementations for given
abstract types (23) so that the amount of work put in these definitions would be
minimized in the quite typical case where there exists only one implementation for
given interface.

While the ability to define the implementation type also works as a solution for
generic classes with open type parameters that are used in properties, it would be
preferable if the typing system used in the component would maintain as much

4. Requirements 38

information on the actual generic type parameters as possible. This information is
not accessible in java.lang.Class objects because of the type erasure, as discussed
earlier in Subsection 3.3.2, and therefore introduces a need for an abstract generic
type implementation in the component. When anonymous implementations of such
generic class are used in mappings, the generic type information is available and
enables automatic determination of actual types of properties with an open generic
type (33).

4.5.4 Type Conversions

Data type decisions are usually consistent throughout an architecture tier but
sometimes there are differences between the tiers. Most obvious ones are the ones
related to the use of primitive or boxed types such as int vs. Integer. For
example the entity model might use boxed types because the values might be null
at certain point prior saving the entities but if not null constraints are in place, the
DTOs meant for viewing might hold primitive types. Similar differences might also
exists with more complex types, for example, through the use of an external date
library, such as Joda with org.joda.time.DateTime, org.joda.time.LocalDate
types versus java.util.Date equivalent in Java, or the use of java.lang.Long
vs. java.math.BigInteger. In some cases String values might be used instead of
enumeration values in entities or vice versa. Some external libraries such as JAXB
also require using their own types.

The actual type conversions over these kind of inconsistencies are usually handled
the same way between two given types throughout the application and are likely to
add some overhead if done manually. Thus, these conversions can be considered
as general concerns that can be centralized by automatizing them in a generic
DTO and entity mapping component. With the ability to define new type
conversions (34) this kind of feature also enables the user to easily extend the mapper
component with additional features such as automatic localization when converted
between a database internationalization entity or enumeration and a String or even
automatically saving entity related localization values when converting with DTO
holding the localizations.

The component should provide basic conversions such as conversions between
boxed and primitive types automatically (35), but should allow user-specified
conversions as well as replacement (36) of the readily defined ones. As with
aggregations the conversions should be null-safe so that null values should remain
null and ignored when converted to primitive properties (37). In order to avoid
accidental mapping errors the type conversions should only be applied when
specifically asked to. If the component would require explicit case-by-case definition

4. Requirements 39

of which type conversion to use with each property, which could sometimes be
necessary (38), the benefits of the centralized handling of this concern would be
at least partially lost and the manual overhead would remain considerable. The
component should therefore preferably allow defining general type conversion to use
automatically (39).

4.5.5 Collection and Array Support

Especially in creation, viewing and editing targeted DTOs, aggregation structures
often also contain collections of related data. Inner conversion should therefore
be applied also to related collections (40). In DTOs these are often represented
by ordered collections, such as various implementations of java.util.List or
primitive arrays. In entities, however, the data is often represented by non
ordered java.util.Sets. The generic converter should be able to automatically
convert content between different implementations of java.util.Collections and
primitive arrays alike (41) with inner conversions applied. When using primitive
arrays or java.util.Colelctions in a type-safe manner with generics the contained
type information can be automatically determined without explicit specification (42).

For the entity to DTO mapping direction the component should provide a way
to specify the ordering of the data (43) as if a java.util.Comparator was applied
to the collection of DTOs. This is needed in editing and viewing scenarios to show
the related data in a fixed order. To further automate this process, annotations
could be used to specify which properties of the DTO should be used as basis for
the comparison in certain relative order to each other and in either ascending or
descending order (44). This would be possible given that those properties implement
java.lang.Comparable, which most of the simple data types used in DTOs do.
In the most simple cases the DTO collections could only hold one property of the
corresponding entity, such as a String holding a name or an Integer representing a
primary key. Since these are java.lang.Comparable as well, such values could be
automatically compared to provide a fixed ordering. Such ordering should, however,
only be automatically applied when converting from a non-ordered source.

When creating a new entity, DTO is converted to an entity and the order in which
the data is added, is irrelevant. However, when editing an existing entity, the values
in such collections or arrays should be synchronized by using the primary key of the
entity and the corresponding property in the DTO class (45). Thus, when mapped,
to help with the most frequent synchronization need, the component could assume
that those related elements not found from the collection of the DTO should be
removed from entity and those not existing in the collection of the entity should be
added (46). It would be left to the cascade mappings of the JPA to decide whether

4. Requirements 40

to actually persist the new elements when added or delete when removed from the
collection. If the DTO would not contain the primary key property, when mapped,
all such related data should first be removed and then added as new, which would
in many cases lead to a similar result.

Instead of pure aggregations, collections and primitive arrays are also used to
connect the DTO to related entities by just their primary keys, especially when it
comes to many-to-many mapping. In these cases the collection or array is usually an
aggregate of a single property in the related entity. This could be mapped similarly
to paths in aggregation mapping. For example, a Long[] customerIds property in
a DTO cold be mapped to the Long id property of the Customer accessed through
Set<Customer> customers property of the related entity. This way, when converted
from a DTO to an entity, the related Customers would be automatically fetched by
their primary keys in a single query.

For viewing purposes these collection contained path aggregation properties
might also be other than primary key and mapping path could be longer than
just two parts. This is where collection projection is needed (47). An imaginary
OrderViewDto might, for example, contain a java.util.List<String> collection
property containing the full names of the ContactPerson of a related Vendor for each
OrderItems, i.e. path orderItems.vendor. contactPerson.fullName. Such
mappings could of course be applied in entity to DTO direction only.

Sometimes it would also be useful to be able to filter collection values (48). For
example, a contained entity could have a boolean property telling whether it is
actually deleted and should not be visible to the presentation layer. Such filtering
would need to happen in the source end before the actual conversion and should be
definable for both ends.

4.5.6 Field and Getter/Setter Support

Among stabilizability and the existence of a default constructor the Java Beans
specification demands the definition of getters and setter for all properties [54].
However, some techniques, such as JAXB, also allow the use of public fields as in
basic Java classes often referred to as Plain-Old-Java-Object (POJO) [15] [55]. Taken
that DTOs might be converted to JAXB classes and JAXB classes might be treated
as DTOs, the generic component should support POJOs meaning it should be able
to access properties through visible get, is and set prefixed accessor methods as
well as fields (49).

Although possible with reflection [30], the component should never attempt to
break encapsulation by making forced calls to non visible methods or altering non
visible fields (50). Because the accessor methods might alter or validate the data and

4. Requirements 41

are higher in abstraction, the component should use getters and setters if available
and only fall back to fields only if related getter/setter are not defined. If only
a getter method for property is defined, the property should be treated as only
readable, and accordingly only writable when only a setter method is available.
Visible fields can be considered readable and writable. However, if the property is
only mapped in one direction or not mapped, these rules must be respected above
the visibility of properties.

Where annotations are used for configuring the mapping component, they should
be equally applicable to either the getter method of a property or a field with the
property name (51). This applies also to private fields. This behavior would be
consistent to annotation configurations in JPA [5] and would thus be expected by
developers used to working with JPA.

4.5.7 Immutable Object Support

As with getters and setters, the component can not expect all the mapped objects
to have a default constructor. The enforced use of custom constructors is usually
related to immutable objects where the state of the object is initially created with
a constructor and all mutator methods return a new instance of the object. This
pattern is often useful and requires the component to support custom constructors
(52).

A class can have multiple constructors targeted for different kinds of use. It
should be possible to define which constructor to use by defining the data types of
the constructor arguments or marking the constructor to be used in DTO conversion
by an annotation (53). The immutable object could also be a value object defined
in external library that could not be altered. For this purpose the decision of the
constructor should also be possible from within the container DTO (54).

As far as the mapping is considered, the parameters for the constructor are
essentially similar to property mappings. All the features supported for properties
should also be available for constructor arguments (55). Similarly to the decision of
the constructor, also the parameter mappings should be possible outside the code
of the immutable class (54).

4.5.8 Support for Graphs and Two-way Linking Structures

Data structures with two-way linking, such as two-way linked lists, hierarchical
structures with parent reference, nets and so on, could easily cause infinite recursion
or, in practice StackOverflowExceptions, if not handled correctly. This is
especially notable with the aggregation related inner conversion support of the
mapper component. Although two-way linking is rare in DTOs, it is still a possible

4. Requirements 42

scenario and as with NullPointerExceptions the errors caused by it could be really
hard to trace in a generic component.

To overcome this challenge, the component should hold a per conversion tree
cache state of converted objects. A simple solution, that might not work with most
complex data structures, such as nets, but would not require much state information,
could be a special mapping to parent that would cause a reference upstream in the
conversion call tree (56). A preferable alternative solution that works for all kinds of
structures would be to link all converted source references to target references (57).
For each new conversion occurring within this tree the mapper component could
then check if the source has already been converted and use the readily converted
result instead of new conversion.

4.6 Customizability

Part of the customizability required from the mapping component relates to every
day use cases. Since DTO classes can be various, a fully generic solution might
be an impossible goal. In addition to these customization needs the component
should also be customizable for future unforeseen needs with interchangeable and
extendable implementation.

4.6.1 Mapping Directions and Prohibiting Mapping

As discussed in Subsection 4.5.1 the mappings should allow two-way mapping
from Entity to DTO and vise versa at once. However, in many cases some
of the properties should not be mapped in this two-way manner. For example
an EmployeeOwnInformationEditDto could hold information about the current
monthly payment but should not allow updating that to the model. The same
applies to some of the relations and their primary keys. On the other hand a
LoginUserEditDto would probably contain a password-property that would be
mapped to the setter-method of the entity hashing the password to be stored in
the database. But when reading this information from the entity, the hash value
should probably not be copied to the DTO and displayed in the view.

To also enable the two-way mapping, rather than specifying conversion direction
related restrictions, these kind of restrictions should be specified by customized
readability and writability of the property for the conversion purposes where the
visibilities of the properties should be obeyed. Some properties in the entities or
DTOs might also be preferred to be handled manually in the code even though
they could be automatically mapped. For these purposes it should be possible to
skip the conversion altogether (58). As these cases are more of an exception than
commonality, blacklisting the non-mapped properties still makes it a more practical

4. Requirements 43

approach for a developer than requirement to explicitly map all properties. Hence
newly added properties will also be automatically mapped.

4.6.2 Multiple Mappings

The reuse of DTOs for different purposes is usually an anti pattern. However, there
are cases where it is needed to map the DTO or entity to two or more classes at
the same time. This might be the case for example with JAXB object mapping,
data model migration with two separate entity models, or in the case where DTOs
are specified in external libraries, may not be edited and thus need to be mapped
from within the entity. Additionally, DTO classes might sometimes still be reused or
extended in inherited versions. For these purposes the mappings should be defined
against mapping with a certain class, or more specifically a type assignable from the
actual conversion target or source (59). Since in vast majority of cases the DTO is only
mapped with one entity only, the requirement for an explicit definition of the type
would create too much overhead. Instead, it could be assumed that if not defined the
mapping specified is targeted to mapping with java.lang.Object, assignable from
all types in Java. This would also enable specifying rules for whole type hierarchies
and especially defining mappings with inherited versions as necessary.

In some cases DAO methods return a container object of the entities needed
to create DTO for a specific purpose. However, the same DTO could be created
directly from the root entity by using its properties to access the related entities.
In this case the mapping would be the same for most of the properties in a DTO
class with an exception that with the entity container class those properties should
be prefixed by the path to the root entity and a few possible changes to inner
conversions properties that are now mapped from the container instead of the root
entity. In these cases explicitly defining multiple mapping for each property seems
like a lot of work especially when the changes are as simple as adding a prefix.

This kind of mapping could be done automatically by allowing a definition of
general search paths for all properties in the class (60). Then, if the properties in the
entity container would have the same names as those in the entity itself, they could
also be automatically mapped. This kind of solution would also help in flattering
the class structure into one DTO where some fields come from a related entity. For
example, the normalization rules in data model design might produce one-to-one
relations such as LoginUser and Person even though they could be visible to the
presentation layer as simply LoginUserViewDto.

4. Requirements 44

4.6.3 Customized Conversions

There will always be cases where a generic solution is not applicable for reason or
another. For example, some properties of DTOs might not be directly related to
an entities: For creation scenario some values might be set as base values or related
information fetched by a more complex quires than by the primary key specified
in the entity. Some properties might be aggregated, such as count of some related
items, sum of invoice rows and so on. Property values might also be formed by
joining different columns of an entity such as a name concatenated from first and
last name of a person.

For such cases it would be possible to skip the conversion and manually adjust
these properties after the actual mapping. However, the mappings this logic relates
to might also be part of an inner mapping used in another mapping or collection
value conversion. The logic in these adjustments and responsibility of the conversion
would hence be easily distributed in different portions of the code base which would
result in lowered maintainability and reusability. The mapping component itself
should therefore provide an ability to easily customize the logic for a conversion
between two given types or override it entirely by user provided implementation in
source code level (61). This implementation would then be used in all possible inner
conversions for those types without affecting the caller side of the component.

4.6.4 Extendability

Following the Open-Closed Principle and Dependency Inversion Principle of SOLID
software design principles [53] and preparing for unknown future requirements, the
components of the mapping component should be extendable and changeable. The
implementation should allow adding new mapping resolution implementations (62),
meaning that should a mapping component only provide mapping by annotations,
a mapping by XML could also be added. The existing mapping implementations
should also be extendable in a way that for annotation mappings, for instance,
it should be possible to introduce new user specified annotations. These custom
annotations could be used, for example, to access some repeating concerns in the
problem domain.

Also, given that the component offers features such as Hibernate support or
Code Generation support, the implementations of these should be encapsulated
with interfaces and replaceable (63). This way, should the JPA implementation need
to be changed or a code generation library is outdated for the newest Java version,
the component could still be used.

45

5. COMPARION

In this chapter the existing implementations of a generic DTO and entity mapping
component are first briefly introduced in Section 5.1 and then evaluated and
compared against each other. Based on a comprehensive maturity model presented
in Section 5.2 the analysis covers both the functional factors specified in Chapter
4 as well as non-functional factors such as usability, performance and scalability.
Finally the overall evaluation results are presented in Section 5.3.

5.1 Implementations

All the implementations of components that can perform runtime mapping of parallel
class hierarchies found at the moment of writing this thesis were included in this
comparison. The implementations chosen for the comparison are listed in Table 5.1
along with their version and responsible author. Each implementation is described
briefly in the following subsections in alphabetical order.

All the components are open-source licensed in a way that they can be used as
a part of a commercial software. Only the GNU Lesser General Public License
(LGPL), used by Generic DTO Assembler and OMapper, might be problematic in a
case where a class of the library would need to be extended by the software because
this would make the extending software a derivative work and would need to be
licensed under a compatible open-source license. [56]

The different mapping techniques supported by the implementations are listed in
Table 5.2. Annotations and mapping API are the two most commonly used with
only one implementation offering a purely DSL based mapping.

5.1.1 Dozer

Dozer is the oldest existing implementation of a Java Bean mapping component
originating from 2005. It support recursive structures, collection and array
conversions and bi-directional mapping. It is designed to work with JAXB and
it has built-in support for Spring and some built-in basic type conversions.

Originally Dozer was configurable with XML only but has since added an API
for mapping as well as an experimental support for annotation mapping in 2011,

5. Comparion 46

Component Version License Author

Dozer 5.4.0 Apache 2.0 Franz Garsombke, Matt
Tierney

Generic DTO Assembler 3.1.0 LGPL Denis Pavlov

Generic DTO Converter 2.0 MIT Tommi Ratamaa

jDTO Binder 1.4 Apache 2.0 Juan Alberto Lopez Cav-
allotti, Gustavo Gen-
ovese

JMappper 1.2.0 Apache 2.0 Alessandro Vurro

Modelmapper 0.6.1 Apache 2.0 Jonathan Halterman

Moo 1.3 BSD Geoffrey Wiseman

Nomin 1.1.1 Apache 2.0 Dmitry Dobrynin

OMapper 2.0 LGPL Sachin Magician

Orika 1.4.3 Apache 2.0 Matt DeBoer

Spring Object Mapping 1.0.0-
SNAPSHOT

Apache 2.0 Rossen Stoyanchev

Table 5.1: Compared implementations.

Component Annotations XML DSL API Proxy
Ob-
jects

Dozer X X X

Generic DTO Assembler X X

Generic DTO Converter X X X

jDTO Binder X X

JMappper X X

Modelmapper X X

Moo X

Nomin X

OMapper X

Orika X

Spring Object Mapping X

Table 5.2: Mapping techniques supported by the implementations.

5. Comparion 47

which does still, however, cover only a fraction of the features available by XML or
API mappings. The latest release is from the end of 2012. [57]

Dozer does not have code generation support, meaning it will use reflection for
copying the values. For immutable objects, Dozer does not offer support for custom
constructors but will regard the visibility rules by calling a private constructor when
necessary. It also supports custom bean factories which additionally make it possible
to use Dozer with abstract types and interfaces. [58]

5.1.2 Generic DTO Assembler

Generic DTO Assembler (GeDa) originates from 2009 with the first version
published in 2010. It currently has reached a stable phase but still had ongoing
development during 2013. GeDA supports recursive bi-directional bean mapping,
collection mapping, type conversions and is primarily focused on Entity and DTO
mappings. It has integrations for Spring and in 2013 introduced a support for OSGi
and multi-class-loader environments. GeDA has support for Annotation and API
mappings without type safe proxy objects. [59]

In the desing of GeDA, a lot of effort has been put on performance. It supports
a total of three different byte code providers including Javassist, BCEL and Java
integrated byte code generator as well as reflection. GeDA is currently the best
performing mapping component there is for Java entity and DTO mapping [60].
The use of byte code providers also means that GeDA respects visibility rules.[59]

GeDA also uses bean factories for creating instances of objects with an alias
name. This also makes is possible to specify implementations for abstract types
and interfaces. However, bean factories in Java code always need to be specified
for each mapped type: even default constructors are not used automatically. GeDA
does not do automatic mapping: in annotation mapping each mapped class and
each mapped field field needs to be marked with annotation and with the API
each field pair need to mapped explicitly unless entity and DTO classes are an
exact match. Additionally, for every component type used in collections, a specific
matcher component need to be created. [59]

GeDA has a support for fetching an entity by primary key by using its @DtoParent
annotation. For this purpose a specific EntityRetriever needs to be defined.
Hibernate or other JPA implementation can be used. However, the use of this
feature requires the reference in the DTO object to be a bean containing the actual
primary key as its property. Additionally, this approach does not work as a solution
for fetching collections of related entities. [61]

5. Comparion 48

5.1.3 Generic DTO Converter

Generic DTO Converter (GeDC) project originated from the needs of Dicode and
started in the end of 2011 as a free-time project by the author of this thesis work
without the knowledge of other existing implementations [62]. It also supports
recursive structures, collections and arrays, type conversions and has been designed
to be used as a Spring component. GeDC is designed to be extended in terms
of mapping techniques, currently supporting mapping by annotations, automatic
mapping by matching name and type, camel-case token matching and mapping by
API with proxy objects or String paths, or a combination of these techniques.

Version 2.0, released in 2013 introduced a support for dynamic code generation
by using Javassist and a wrapping layer, through which other byte code providers
could be utilized as well. Before version 2.0, only reflection was used and the most
complex parts of the implementation, such as collection mapping, still use reflection.
All custom type conversions can be specified in Java code and optionally provide a
code generating implementation.

GeDC allows the use immutable objects by specifying custom constructors while
and uses default constructors automatically. GeDC was designed to fetch the related
entities by primary key as well as collections of related entities by collection or arrays
of primary keys, which is not fully supported by any other implementation. JPA
annotations are used for specifying the primary keys of the entities. Built-in support
is offered for Hibernate only but other JPA implementations could also be used.
However, the support is partial as it currently can not use e.g. XML mappings of
entities or does not support multiple primary key columns. Automated collection
sorting is also implemented.

5.1.4 jDTO Binder

The jDTO Binder was first released in 2011 and has been under development during
2012. It provides bi-directional mapping and mapping over collections and arrays
and a wide range of type converters but for recursive mapping, each mapped instance
need to be passed explicitly to the interface. The component has support Spring
among others and can also be used with Mule Enterprise Service Bus (ESB). jDTO
Binder supports XML and annotation based mappings. [63]

The component uses reflection for field access with no dynamic code generation
support. While general type conversions are not supported, jDTO Binder supports
different kinds of mergers that can also be user defined. For example, one of the
built-in mergers supports Groovy scripting expressions to transform property values
which allows custom logic to be used in conversions. Immutable objects and custom

5. Comparion 49

constructors are also supported, but the component does not offer any kind of
support for fetching entities by primary keys. [63]

5.1.5 JMapper

JMapper was first released in the end of 2012 and current version is from the
beginning of 2013. The framework supports recursive structures, arrays, all the
collection types and custom logic in the conversions. The mappings can be defined
with annotations or XML files which define the mappings for one direction only.
Properties can not be mapped using a property path, which makes it impossible to
flatter entity aggregations to a single DTO. The framework includes an utility for
dynamically modifying the XML mapping files but not an actual API for defining
the mappings. [64]

JMapper is based on code generation and uses Javassist as its byte code provider.
The custom conversions can either be defined as Java methods in the converted type
or as blocks of code in the XML or Java file with replaced placeholders for types and
symbol names. These conversions are specified between two given types and used
globally, which the framework refers as static conversion, or defined case-by-case as
dynamic mappings. Fetching entites by primary keys is not supported. [64]

5.1.6 Modelmapper

Modelmapper was also first released in 2011 and in 2013 is still under development
with current version 0.6.1. It supports recursive mappings, type conversions as
well as collections and arrays but does require mapping both directions separately.
Modelmapper offers a wide range of integrations to other frameworks including
Spring. Modelmapper only provides mapping by API but also allows the use of
proxy objects and is able to map property pairs automatically based on name and
type or camel-case token matches with different strategies. [65]

Modelmapper uses reflection for copying the values. Default constructors are
used by default and support for immutable types is achieved by bean factories
called Providers. Modelmapper also has sophisticated support for generic types
and bound checks via its anonymous TypeToken but no support for fetching entities
by primary keys exists. [65]

5.1.7 Moo

Moo originates from 2009 its latest release version being from 2012 and is currently
in a release candidate phase for version 2.0. It supports bi-directional and recursive
mappings and collections with synchronization support. Moo uses annotation

5. Comparion 50

mapping with MVEL [66] expression language with similar property mapping
features to Groovy. [67]

Moo is based on reflection and runtime interpreted MVEL expressions. It lacks
support for immutable objects although private or protected constructors can be
called. Moo does not support fetching entities by primary keys automatically but as
explained in examples, named references to DAO objects may be passed to MVEL
expressions and fetching by primary key can be achieved this way. [67]

5.1.8 Nomin

Nomin has been developed during 2010 and 2011 with no recent releases. The
component provides bi-directional mapping capabilities with recursive and collection
and array support. Apart from the other implementation the mappings in Nomin
are written with Groovy scripts which functioning as a DSL language for the
property mappings. Nomin itself is also written in Groovy language which can
utilize reflection and can be used from Java applications as it defines Java interfaces
and is compiled to JVM byte language. It also has an integration for Spring. [68]

Nomin mappings can either be compiled with the rest of the application as Groovy
classes or parsed at runtime from separate script files. Since Grooby is a GPL,
mappings can easily be customized. However, a part from the Groovy language,
no support for specifying constructors or general type conversions exists, nor does
support for JPA or fetching entities by primary keys. [68]

5.1.9 OMapper

OMapper is a simple bean mapping component. It was first released in 2011 and
version 2.0 later in 2012. The source codes of the component are not available
and documentation is limited to basic use cases which do not cover mapping over
collections or arrays nor custom type conversions. Because little information was
available, some learning tests were made and rest of the features were assumed
non-existing. Mappings are annotation based and limited to one direction only.
The interface requires all inner conversion beans to be passed separately with no
possibility to construct objects. [69]

5.1.10 Orika

Orika project was started in 2012 and has had multiple releases in 2013. The mapper
component supports recursive mappings, custom converters as well as collection
and array conversions. The component has an inbuilt Type-system that supports

5. Comparion 51

generics. The mappings can be defined with an API bi-directionally. Orika also
provides an integration with the Spring framework. [70]

Orika uses dynamic code generation with Javassist as a byte code provider. Orika
supports immutable types with custom converters which may be registered globally
or used on case-by-case in basis. Custom constructors can also be specified either in
mappings or with a custom ObjectFactory. Orika is also highly customizable with
its internal parts, including byte code provider, mapping strategies and constructor
resolving strategies changeable. Fetching entities by primary keys is, however, not
supported. [70]

5.1.11 Spring Object Mapping

Spring Framework has a mapping project founded in 2010 but it is still in 1.0.0
snapshot version meaning that no release versions exists. The component utilizes
Spring SpEl language with which, for example makes it possible to build a null-safe
reference path can be presented using ?. operator, filtering conditions may be
applied to conversions and collections may be projected [71]. In addition, to SpEL
expressions the mapping API provides basic mapping by property names and allows
definition of custom converters. [72]

The performance of the component remains under question, since it does not
seem to use caches or generated code. Also, for further reading the documentation
suggests looking at Dozer, indicating that the component is not intended for the
most complex cases. [72]

5.2 Maturity Model

Koljonen (2008) has selected Intel’s proposal for Business Readiness Rating for Open
Source (OpenBRR) [73] to be used as an assessment model when evaluating an open
source software to be taken to use at Dicode Inc [74]. The model consists of multiple
categories which are independently evaluated based on sets of criteria. Each of the
category results are then scaled and get a score ranging from 1 to 5. The final
overall Business Readiness Rating (BRR) is the weighted average of these scores.
The categories with their description as in the OpenBRR white paper [73] and the
weights chosen for this comparison are shown in Table 5.3.

Functionality and usability are seen as the most important factors for choosing
the component since the sole purpose of using such as a component is to ease the
work of a developer. The component with higher number of features implemented is
more likely to support the mapping in most scenarios with minimized manual work
and thus achieve this goal. The functional requirements are covered in the next
subsection.

5. Comparion 52

Category Weight Description

Functionality 35,0 % How well will the software meet the average
users requirements?

Usability 20,0 % How good is the UI? How easy to use is
the software for end-users? How easy is the
software to install, configure, deploy, and
maintain?

Quality 10,0 % Of what quality are the design, the code, and
the tests? How complete and error-free are
they?

Security 0,0 % How well does the software handle security
issues? How secure is it?

Performance 10,0 % How well does the software perform?

Scalability 10,0 % How well does the software scale to a large
environment?

Architecture 0,0 % How well is the software architected? How
modular, portable, flexible, extensible, open,
and easy to integrate is it?

Support 5,0 % How well is the software component sup-
ported?

Documentation 10,0 % Of what quality is any documentation for the
software?

Acceptance 0,0 % How well is the component adopted by
community, market, and industry?

Community 0,0 % How active and lively is the community for
the software?

Professionalism 0,0 % What is the level of the professionalism of
the development process and of the project
organization as a whole?

Table 5.3: Business Process Readiness evaluation categories and their weights with
associated OpenBRR descriptions.

5. Comparion 53

Because there is no User-Interface (UI) in the components, usability is defined as
the amount of manual work needed to configure the component. This is measured in
lines of code as well as number of components and parameters needed to set up both
the component and the mappings. Performance and Scalability are also important
factors in the web application environment and are discussed further in the following
subsections.

On the other hand, security is not the major concern in these kind of components
but rather a concern of their environment. When it comes to architecture, very
similar solutions were seen in all of the components, and some of the related factors
concerning flexibility, extendability or integrations are already included as a part
of the functional requirements analysis. In general, all of the components access
the same issue and they all cause similar kind of concerns and benefits for the
application they are used in. This is way architecture was not included separately
in the OpenBRR evaluation.

Most of the components are based on a small community with a limited user-base.
This is why factors related to community, acceptance and professionalism are either
widely unknown or difficult to measure, and would supposedly result in similar end
comes with low margins between the implementations. This is why they are not
taken into account as a part of the total result.

Overall, the selection of the 7 categories out of the 12 provided by the OpenBRR
is aligned with the suggestion of choosing no more than 7 evaluation categories [73].

5.2.1 Functional Requirements

The functional requirements specified in Chapter 4, were evaluated in detail for
each of the compared component implementation. Requirements were rated with
importance ranging from 1 to 3 following the guidelines of OpenBRR. Features along
with their rating can be found in Appendix A.

Required features were given the importance of 3, nice-to-have features the
importance of 2 and less important features the importance of 1. For each
component, all features were evaluated based on either the documentation or static
code analysis of the component. For OMapper sources were not available so part of
the analysis was done based on learning tests. If no signs for the feature was found
from the documentation or code, it was considered that the feature does not exist.

Following the OpenBRR, components implementing a feature get as many points
as the importance of that feature, zero points if a not implemented feature has the
importance of 1 to 2 and -3 points if a required feature was not implemented. For a
partial implementation of a feature, less than the maximum points was given. The
results of this evaluation is presented in Appendix B. The overall total result for

5. Comparion 54

each component relative to the maximum number of points, 130, was set in to scale
from 1 to 5 based on normalization scale presented in Table 5.4.

Normalization scale % Result (1-5)

Excellent (> 96%) 96 % 5

Very good (90% - 96%) 90 % 4

Acceptable (80% - 90%) 80 % 3

Weak (65% - 80%) 65 % 2

Not acceptable (< 65%) 0 % 1

Table 5.4: Normalization scale for functional requirment points.

The normalization scale was chosen as suggested by the OpenBRR with 65 %
minimum and 96 % requirement for full points. The percentage was calculated
relative to the sum of required functional points, being 72, which means that
also negative scores lower than 0 % or higher than 100 % may exist. This puts
more weight on the required features and makes it possible to gain extra points for
additional features. [73]

Component Score % Result (1-5)

Dozer 66 92 4

Generic DTO Assembler 70 97 5

Generic DTO Converter 117 163 5

jDTO Binder 50 69 2

JMapper 45 63 1

Modelmapper 52 72 2

Moo 32 44 1

Nomin 41 57 1

OMapper -38 1) -53 1

Orika 75 104 5

Spring Object Mapping 32 44 1

Table 5.5: Compared implementations. 1) The existence of some of the features in
OMapper could not be verified since no source codes were available.

The total results are shown in Table 5.5 The components having 1 as a result were
considered unacceptable. Therefore, JMapper, Moo, Nomin, OMapper and Spring

5. Comparion 55

Object Mapping components were excluded from the rest of the maturity analysis.
This exclusion was also required for fair performance and scalability comparisons
since with simple cases all the features could not be compared and for more complex
scenarios, on the other hand, all the components could not be compared because of
the lack of features.

5.2.2 Usability

Usability was evaluated based on the amount of code or configuration needed to
initialize the component with an encapsulated instance where mappings are set for
both directions. For this comparison, in the higher level the number of necessary
classes interfaces and configuration files, annotations was taken into account.
Additionally, the number of lines of code without empty lines or comments, and
the number of XML elements and attributes, as well as the number of Annotations
and their parameters used were calculated.

The weighted totals were then compared to manual implementation in Java code.
Because the sole reason for using a mapping component is to reduce the amount of
work needed, the weighted total for manual mapping was set as a base value with
score of 1. A lower value means less work, and therefore the scores were evenly
distributed to the range down from the total for manual mapping. The results and
weights are included in Appendix C totals results are presented in Table 5.6.

Component Total Result (1-5)

Java Manual 197 1

Dozer 193 2

Generic DTO Assembler 311 1

Generic DTO Converter 47 5

jDTO Binder 122 3

Modelmapper 88 4

Orika 92 4

Table 5.6: The overall usability results.

The scenario analyzed was based on the DTOs and Entities mapped in the
same performance test code used by GeDA [60], the same scenario used later in
Performance testing. This way the usability results can directly be compared with
performance results, indicating a possible tradeoff where more lower level code and
configuration could be used to gain higher performance. The usability relating to

5. Comparion 56

fetching entities by primary keys was not measured because most of the components
do not support it.

It can be said, that GeDC, Modelmappera and Orika clearly reduce the amount
of work needed for the DTO and Entity mappings. The highest result was achieved
by combination of annotations, mapping by matching name and type and camel-case
convention based mapping. APIs and automatic mapping by matching name and
type were used with Modelmapper and Orika. Mapping by XML was expectedly
more verbose than mapping by annotations or an API, with the consequence that
mapping with Dozer actually caused approximately as much work as mapping
manually.

Interestingly, annotation based GeDA required more lines of code (72 lines)
distributed in 4 components than the manual mapping (64 lines) in a single
class, and on top of that added 12 annotations with 13 parameters. This is far
more than also annotation based GeDC with 8 lines of code in one component,
4 annotations and 2 annotation parameters. The reason for this is the need of
specifying a BeanFactory for all the class types instantiated, a DtoToEntityMatcher
for matching the collection elements and an annotation for every DTO class and
every field mapped. Considering that both manual and GeDA mappings were
written by the developer of the GeDA framework, the configuration overhead can
be considered to be as low as it can get, indicating that using GeDA may actually
add more work for the developer rather than reduce it.

5.2.3 Performance

Performance tests were based on test cases provided by GeDA [60] with mappings for
jDTO Binder and GeDC added. The basic test case included an aggregative mapping
of fields of a Person class to PersonDTO and vise versa with flatterning mapping of
Name and inner conversion of ContactAddress and flattering of its Country object.
Second test case included inheritance and an additional mapping over collection
of ContactAddresses. Both scenarios were run for both directions, from Entity
to DTO and from DTO to Entity, and tested with 100 and 10 000 mappings for
each scenario. The different number of mappings were used to validate whether the
results are linear.

Because mapping manually in Java code is the theoretical performance maximum
for the test cases, manual mapping was also tested and the runtime was used as a
base value against which to compare the performance of the components. The
comparisons were done in logarithmic scale as described in Equation 5.1. In the
equation α was used as a scaling factor for the manual mapping runtime. In the
basic scenario, it is likely that JIT compiler was able to optimize the manual mapping

5. Comparion 57

so that it is not directly comparable and thus a scaling of α = 40 was used. In the
complex scenario collection related operations ramped the manual runtime, so that
direct comparison with α = 1 could be used. This score is limited to the range from
1 to 5. The overall results are rounded from the average of all the test cases.

score = 5 − αlog10(tmanual/ns) + log10(tmeasured/ns) (5.1)

Tests were run with Caliper microbenchmark framework which runs the tests
multiple times until the deviation settles, trying to minimizes the impact of for
example warm-ups and JIT compiler optimization [75]. The test results along with
graphs for each scenario are shown in Appendix D. The overall results as averages
for the test cases are shown in Table 5.7.

Component Basic Score Collection Score Result (1-5)

Dozer 2.4 2.4 2

Generic DTO Assembler 3.9 3.9 4

Generic DTO Converter 3.6 3.0 3

jDTO Binder 3.1 3.4 3

Modelmapper 3.0 3.1 3

Orika 4.1 4.3 4

Table 5.7: The overall performance test results.

The results are in line with the performance results of GeDA [60] as well as test
results collected by Anatoliy Sokolenko with Dozer, Orika and Manual mapping
compared [76]. From the results, we can conclude that, as expected, all of the
components perform linearly when comparing the runtimes of scenarios with 100 and
10 000 mappings. It is also notable that components using dynamic code generation
perform roughly ten times as fast as the components using only reflection.

Overall, the performance for all of the components is in reasonable range. In
practice, none of the components would cause a bottleneck in the web application
where most of the time is spent waiting database queries. The number of mapped
objects during one request is rarely over 100 since for queries that need better
performance objects are often hydrated in the persistence layer directly. For the
more complex aggregation, converting 100 instances took less than 1 ms for most of
the components and around 2,5 ms with the slowest implementation, which is still
likely less than the database query would take.

5. Comparion 58

5.2.4 Scalability

For scalability tests, a Java EE Servlet environment was used. The environment was
intentionally as thin as possible, with no other framework than the standard Java
EE Servlet version 2.5 API with a scalable Jetty 6.10 [77] Servlet container with
minimal overhead used. For each of the components, a dedicated Servlet was used
with an initialized singleton reference to the corresponding mapping component.
Each request to the Servlet performed 10 000 mappings with a scenario equal to
the basic case used in performance tests. The tests were carried out with Apache
JMeter [78] version 2.10 test tool over HTTP protocol against a Jetty server running
on localhost with no delays caused by the network. For comparison, a Servlet
performing a manual mapping was also included.

Tests were first carried out with a single mapping operation and with 100
mapping operations, but these did not show any measurable differences between the
components. With 1000 concurrent threads and a ramp-up period of 10 seconds,
every Servlet could respond with less than 1 ms average response time for a single
mapping. With 2000 concurrent requests, on the other hand, the environment limits
were met and results showed nothing but noise with high deviations between each
round. This along should indicate, that normal use of the components will not cause
a bottleneck for the application that typically includes more overhead caused by the
Servlet container, framework and especially the persistence layer

An intentionally non-realistic number of 10 000 mappings per requests with
1000 concurrent threads over 20 seconds shows a difference in scaling. The tests
were carried out 3 times and averages were calculated. Results are presented in
Appendix E. The results for these setting show three kinds of behavior which can
be observed in graphs presented in Appendix F. Manual mapping, GeDA and Orika
responded with almost constant throughput through the whole test indicating that
the actual throughput would be more than the 30 000 request performed, while
for Modelmapper and GeDC the throughput was increasing linearly. For Dozer
and jDTO Binder the throughput decreased rapidly and finally reached the denial
of service state where server connections run out and errors were included in the
results. This is why for them, medium hit the maximum 30 seconds.

In the results the measured throughput was scaled from 1 to 5 relatively to the
manual throughput and 1 result point was reduced if the results showed errors
indicating a denial of service state. The results are shown in Table 5.8.

The results are in line with the performance results except for jDTO Binder
which outperformed Modelmapper in performance analysis but was now at the same

5. Comparion 59

Component Average throughput Errors Result (1-5)

Dozer 1161 req/min X 2

Generic DTO Assembler 2988 req/min 5

Generic DTO Converter 1649 req/min 3

jDTO Binder 1160 req/min X 2

Modelmapper 1372 req/min 3

Orika 2987 req/min 5

Table 5.8: The overall scalability results.

throughput as the slowest implementation, Dozer, in performance tests. This could
indicate a potential scalability problem with jDTO Binder.

5.2.5 Other Categories

Other chosen categories in the Business Process Readiness included Quality,
Documentation and Support. The criterion for these categories were selected based
on OpenBRR recommendations [73]. However, especially the requirements for
number of releases, reported bugs and number of messages in mailing lists were
reduced from the recommended values because the components do not expectantly
have a wide user community. The professionalism in Support section was replaced
by number of StackOverflow questions and answers. The selected criterion and
measures for results are listed in Appendix G. The evaluations for each component
are shown in Appendix H.

Component Qality Support Documentation

Dozer 4 4 4

Generic DTO Assembler 3 2 3

Generic DTO Converter 4 1 2

jDTO Binder 4 3 3

Modelmapper 3 4 3

Orika 3 4 3

Table 5.9: The overall results for other categories.

The overall results for these categories are listed in Table 5.9. The measures
selected did not show significant differences between the components other than

5. Comparion 60

relatively poor results for support and documentation for Generic DTO Converter.
However, the total weight for these categories in the overall BRR rating is only 25

As the support was measured by the number of messages in mailing lists, forums
and StackOverflow service, it prefers the components with wider user community.
The quality measures were strongly based on the number of issues and releases in
a given period of time where a high number is generally considered worse than
low. A component with wider user space and thus more issues reported and quick
fixes needed, might therefore have a disadvantage in this scale. When it comes to
documentation, except for Dozer having the documentation included in source codes,
other frameworks provided no framework for the users to extend the documentation.

5.3 Evaluation of Results

The total Business Readiness Ratings for the OpenBRR analysis are presented in
Appendix I for each of the anlayzed component as sums of weighted scores for each
analyzed category. The cumulative BRRs are listed in Table 5.10 ordered by the
rating.

Component BRR

Orika 4.3

Generic DTO Converter 4.0

Generic DTO Assembler 3.6

Dozer 3.2

Modelmapper 2.9

jDTO Binder 2.7

Table 5.10: The total Business Readiness Ratings.

Based on the ratings it can be said that there exists implementations of a generic
DTO and entity mapper component ready to be used for business. This evaluation
was based for the needs of Dicode Ltd. To satisfy those needs, Orika and Generic
DTO Converter are both very good solutions with Orika having the highest overall
rating. The usability results reduced the score of Generic DTO Assembler to only
acceptable level along with Dozer.

61

6. CONCLUSIONS

The goal for this thesis was to find a generic solution to support or to automate
entity and DTO mapping performed in between the application layers of a Java
EE web application. For Dicode Ltd. the absence of such a solution previously
caused overhead both in coding and maintenance phase of the application as well
as architectural concerns such as shift in the responsibility of components and the
reuse of DTO classes.

In this thesis several approaches were first recognized as possibilities for the
overall mapping process, including the use of a IDE plugin, mapping generation
with a build automation tool or a runtime mapping component. Based on existing
implementations and because of the dynamic nature of the problem, JPA mappings
in especial, a runtime component approach was chosen and further analyzed.

The runtime component may use different mapping techniques such as XML,
annotations, API mapping with or without proxy objects or mapping with DSL,
all having their advantages and disadvantages in terms of overhead caused and
stabilizability they provide. Patterns such as Early Work and Lazy Execution
Patterns along with Caches can be used to gain performance advantages. While
the actual mapping is based on reflection, the actual copying of values may be
performed more efficiently using dynamic code generation.

Requirements for a runtime mapping component were recognized and analyzed
based on the needs of Dicode Ltd. The component should integrate with currently
used techniques and frameworks such as Spring, Hibernate and Maven but, at the
same, be extendable enough to allow support for future changes. For a general
purpose component, there exist many requirements to cover the most common use
scenarios, but it should be noted that all needs can never be fully covered and
thus the component should allow custom mappings and conversions. Above all,
the component and mapping techniques used should cause minimal overhead to the
developer in terms of configuration since that was the original reason for the use of
such a component.

Eleven open source components were recognized as possible solutions for the
problem. For them, a comprehensive Business Process Readiness analysis including
total of seven weighted categories was performed. In the first stage, components
were compared in the most highly weighted feature category, and based on the

6. Conclusions 62

results, five components were ranked out of the comparison. For the rest six
components, usability, quality, performance, scalability, support and documentation
were analyzed.

In the second most weighted category, usability, measured in the amount of
configuration, two components received an unacceptable or a bad score, meaning
that they cause more configuration or coding overhead than manual mapping in
Java code in the measured scenario. On the other hand, three of the components
caused a relative overhead less than half compared to the manual mapping, while
providing flexibility for future changes and null-safety at the same time. Generic
DTO Converter caused least overhead cutting the manual overhead to less than one
fourth.

One of the important features would have been integration with Hibernate or
other JPA implementation to automatically fetch related entities by their primary
keys in the corresponding entity objects. Unfortunately, however, only Generic
DTO Converter implemented the feature even partially. Most of the compared
implementation did not implement this feature, and thus the usability related
aspects of could therefor not be compared.

When it comes to performance and scalability, all results were acceptable but the
components using dynamic code generation including especially Orika and Generic
DTO Assembler, were measured to both perform and scale better than the rest.
However, based on the scalability tests, no actual impacts could be measured for a
real web application with a reasonable number of mappings.

In the overall BRR ratings, two components, Orika and Generic DTO Converter
were above others achieving ratings in very good range, Orika having the highest
weighted score, 4.3 out of 5. This implicates that there exists generic solutions for
entity and DTO mapping based on the requirements of Dicode Ltd. Furthermore,
based on the analysis, the use of either of the two implementation can be
recommended for future projects.

63

REFERENCES

[1] Dhrubojyoti, K. Pro Java EE Spring Patterns: Best Practices and Design
Strategies Implementing Java EE Patterns with the Spring Framework. Apress,
USA, 2008. ISBN 978-1-4302-1009-2.

[2] Keith, M. and Schincariol, M. Pro JPA 2: Mastering the Java Persistence
API. Apress, USA, 2009. ISBN 978-1-4302-1956-9. URL http://library.
books24x7.com/assetviewer.aspx?bookid=33335&chunkid=1&rowid=2.
Referenced 21/10/2013.

[3] Johnson, R., Hoeller, J., and Donald, K. e. Spring Framework
Reference Documentation, 2013. URL http://docs.spring.io/
spring/docs/3.2.4.RELEASE/spring-framework-reference/pdf/
spring-framework-reference.pdf. Referenced 21/10/2013.

[4] King, G. and Muir, P. e. a. JBoss Web Framework Kit 2.1 - seam
reference guide for use with JBoss Web Framework Kit 2, 2013.
URL https://access.redhat.com/knowledge/docs/en-US/JBoss_Web_
Framework_Kit/2.1/html-single/Seam_Reference_Guide/index.html.
Referenced 24/03/2013.

[5] Sun Microsystems. JSR 317: Java Persistence API, Version 2.0, November
2009. URL http://download.oracle.com/otndocs/jcp/persistence-2.
0-fr-eval-oth-JSpec/. Referenced 01/03/2013.

[6] Hat, R. HIBERNATE - Relational Persistence for Idiomatic Java, March
2013. URL http://docs.jboss.org/hibernate/orm/4.1/manual/en-US/
html_single/. Referenced 24/03/2013.

[7] Oracle. Oracle Fusion Middleware Developer’s Guide for Oracle TopLink 11g
Release 1, 2013. URL http://docs.oracle.com/cd/E14571_01/web.1111/
b32441/undtl.htm#CHDGCDDB. Referenced 24/03/2013.

[8] Understanding EclipseLink - 2.4, March 2013. URL http://www.eclipse.
org/eclipselink/documentation/2.4/eclipselink_otlcg.pdf. Referenced
24/03/2013.

[9] Batoo JPA Documentation, 2013. URL http://batoo.jp/documentation/.
Referenced 24/03/2013.

http://library.books24x7.com/assetviewer.aspx?bookid=33335&chunkid=1&rowid=2
http://library.books24x7.com/assetviewer.aspx?bookid=33335&chunkid=1&rowid=2
http://docs.spring.io/spring/docs/3.2.4.RELEASE/spring-framework-reference/pdf/spring-framework-reference.pdf
http://docs.spring.io/spring/docs/3.2.4.RELEASE/spring-framework-reference/pdf/spring-framework-reference.pdf
http://docs.spring.io/spring/docs/3.2.4.RELEASE/spring-framework-reference/pdf/spring-framework-reference.pdf
https://access.redhat.com/knowledge/docs/en-US/JBoss_Web_Framework_Kit/2.1/html-single/Seam_Reference_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/JBoss_Web_Framework_Kit/2.1/html-single/Seam_Reference_Guide/index.html
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/
http://docs.jboss.org/hibernate/orm/4.1/manual/en-US/html_single/
http://docs.jboss.org/hibernate/orm/4.1/manual/en-US/html_single/
http://docs.oracle.com/cd/E14571_01/web.1111/b32441/undtl.htm#CHDGCDDB
http://docs.oracle.com/cd/E14571_01/web.1111/b32441/undtl.htm#CHDGCDDB
http://www.eclipse.org/eclipselink/documentation/2.4/eclipselink_otlcg.pdf
http://www.eclipse.org/eclipselink/documentation/2.4/eclipselink_otlcg.pdf
http://batoo.jp/documentation/

REFERENCES 64

[10] Apache. Apache OpenJPA 2.2 User’s Guide, Oct 2012. URL http://openjpa.
apache.org/builds/2.2.1/apache-openjpa/docs/manual.pdf. Referenced
24/03/2013.

[11] Oracle. Java Platform, Enterprise Edition, v 5.0 API Specifications, 2007. URL
http://docs.oracle.com/javaee/5/api/. Referenced 3/12/2013.

[12] Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., and Stafford, R.
Patterns of Enterprise Application Architecture. Addison Wesley, 2002. ISBN
0-321-12742-0.

[13] Microsoft. Data Transfer Object, 2013. URL http://msdn.microsoft.com/
en-us/library/ff649585.aspx. Referenced 16/03/2013.

[14] Esposito, D. Pros and Cons of Data Transfer Objects. MSDN Magazine, August
2009. URL http://msdn.microsoft.com/en-us/magazine/ee236638.aspx.
Referenced 16/02/2013.

[15] Kawaguchi, K., Vajjhala, S., and Fialli, J. The Java R⃝Architecture for
XML Binding (JAXB) 2.1, Dec 2006. URL http://download.oracle.com/
otndocs/jcp/jaxb-2.1-mrel-eval-oth-JSpec/. Referenced 24/03/2013.

[16] Hardan, R. Modelbridge - Java Object Mapping, 2013. URL http://www.
modelbridge.org/. Referenced 20/10/2013.

[17] Bray, T. and Paoli, J. e. Extensible Markup Language (XML) 1.0 (Fifth
edition), Nov 2008. URL http://www.w3.org/TR/REC-xml/. Referenced
18/10/2013.

[18] Oracle. JavaTM 2 Platform Standard Edition 5.0 - Annotations, 2010.
URL http://docs.oracle.com/javase/1.5.0/docs/guide/language/
annotations.html. Referenced 15/09/2013.

[19] Oracle. Java Platform, Standard Edition 7 API Specification, 2013. URL
http://docs.oracle.com/javase/7/docs/api/. Referenced 12/10/2013.

[20] Partington, V. JPA Implementation Patterns: Lazy Loading, Aug 2009.
URL http://java.dzone.com/articles/jpa-lazy-loading. Referenced
20/10/2013.

[21] Darcy, J. D. JEP 126: Lambda Expressions Virtual Extension Methods, Feb
2013. URL http://openjdk.java.net/jeps/126. Referenced 20/10/2013.

http://openjpa.apache.org/builds/2.2.1/apache-openjpa/docs/manual.pdf
http://openjpa.apache.org/builds/2.2.1/apache-openjpa/docs/manual.pdf
http://docs.oracle.com/javaee/5/api/
http://msdn.microsoft.com/en-us/library/ff649585.aspx
http://msdn.microsoft.com/en-us/library/ff649585.aspx
http://msdn.microsoft.com/en-us/magazine/ee236638.aspx
http://download.oracle.com/otndocs/jcp/jaxb-2.1-mrel-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jaxb-2.1-mrel-eval-oth-JSpec/
http://www.modelbridge.org/
http://www.modelbridge.org/
http://www.w3.org/TR/REC-xml/
http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://docs.oracle.com/javase/7/docs/api/
http://java.dzone.com/articles/jpa-lazy-loading
http://openjdk.java.net/jeps/126

REFERENCES 65

[22] Fusco, M. lambdaj, 2013. URL http://code.google.com/p/lambdaj/.
Referenced 20/10/2013.

[23] Mernik, M., Heering, J., and Sloane, A. M. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37:316–344, Dec 2005.

[24] Colebourne, S. Enhanced null handling - Invocation and
defaulting, 2013. URL https://docs.google.com/document/d/1hX_
krmhniT2PT7hdTDMFsds7EiC55wsEuR3QZ8UZ-B4/pub. Referenced 18/10/2013.

[25] Xtext. Xtext 2.4.3 Documentation, Sept 2013. URL http://www.
eclipse.org/Xtext/documentation/2.4.3/Documentation.pdf. Referenced
18/10/2013.

[26] Neale, M. Groovy - A dynamic language for the Java platform, Sep 2013. URL
http://docs.codehaus.org/display/GROOVY/Home. Referenced 20/10/2013.

[27] Schinz, M. and Haller, P. A Scala Tutorial for Java programmers, Oct
2013. URL http://www.scala-lang.org/docu/files/ScalaTutorial.pdf.
Referenced 20/10/2013.

[28] Gabriele, J. Introduction to Clojure, 2013. URL http://clojure-doc.org/
articles/tutorials/introduction.html. Referenced 20/10/2013.

[29] Oracle. java.lang.reflect API documentation (Java Platform SE 7),
2013. URL http://docs.oracle.com/javase/7/docs/api/java/lang/
reflect/package-summary.html. Referenced 15/09/2013.

[30] Sosnoski, D. Java programming dynamics, Part 2: Introducing reflection, Juny
2003. URL http://www.ibm.com/developerworks/library/j-dyn0603/.
Referenced 09/04/2013.

[31] Crisostomo, E. M. Java Generics Tutorial, March
2011. URL http://thegreyblog.blogspot.fi/2011/03/
java-generics-tutorial-part-i-basics.html. Referenced 15/09/2013.

[32] Oracle. Java 2 SDK, Standard Edition Documentation - version 1.4.2,
2010. URL http://docs.oracle.com/javase/1.4.2/docs/api/. Referenced
3/12/2013.

[33] Jenkov, J. Java Reflection: Generics, 2013. URL http://tutorials.jenkov.
com/java-reflection/generics.html. Referenced 15/09/2013.

http://code.google.com/p/lambdaj/
https://docs.google.com/document/d/1hX_krmhniT2PT7hdTDMFsds7EiC55wsEuR3QZ8UZ-B4/pub
https://docs.google.com/document/d/1hX_krmhniT2PT7hdTDMFsds7EiC55wsEuR3QZ8UZ-B4/pub
http://www.eclipse.org/Xtext/documentation/2.4.3/Documentation.pdf
http://www.eclipse.org/Xtext/documentation/2.4.3/Documentation.pdf
http://docs.codehaus.org/display/GROOVY/Home
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
http://clojure-doc.org/articles/tutorials/introduction.html
http://clojure-doc.org/articles/tutorials/introduction.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://www.ibm.com/developerworks/library/j-dyn0603/
http://thegreyblog.blogspot.fi/2011/03/java-generics-tutorial-part-i-basics.html
http://thegreyblog.blogspot.fi/2011/03/java-generics-tutorial-part-i-basics.html
http://docs.oracle.com/javase/1.4.2/docs/api/
http://tutorials.jenkov.com/java-reflection/generics.html
http://tutorials.jenkov.com/java-reflection/generics.html

REFERENCES 66

[34] Oracle. Java 2 SDK, Standard Edition Documentation - version 1.3.1,
2010. URL http://docs.oracle.com/javase/1.3/docs/api/. Referenced
12/10/2013.

[35] Oracle. The Java HotSpot Performance Engine Architecture, 2013. URL http:
//www.oracle.com/technetwork/java/whitepaper-135217.html. Refer-
enced 15/09/2013.

[36] Buzdin, D. Is Java Reflection Really Slow?, Jan 2011. URL http://www.
buzdin.lv/2011/01/is-java-reflection-really-slow.html. Referenced
15/09/2013.

[37] Würthinger, T., Wimmer, C., and Stadler, L. e. Dynamic Code Evolution for
Java. 2013. URL http://ssw.jku.at/Research/Papers/Wuerthinger10a/
Wuerthinger10a.pdf. Referenced 18/10/2013.

[38] Rose, J. and Würthinger, T. HotSwap - Da Vinci Machine Project - Oracle,
2013. URL https://wikis.oracle.com/display/mlvm/HotSwap. Referenced
18/10/2013.

[39] ZeroTurnaround. What developers want: The End of Applica-
tion Redeploys, 2013. URL http://files.zeroturnaround.com/pdf/
JRebelWhitePaper2012-1.pdf. Referenced 05/10/2013.

[40] ZeroTurnaround. JRebel Frequently Asked Questions - How does JRebel work?,
2013. URL http://zeroturnaround.com/software/jrebel/learn/faq/#2.
Referenced 05/10/2013.

[41] ZeroTurnaround. JRebel Plugins, 2013. URL http://zeroturnaround.com/
software/jrebel/learn/jrebel-plugins/. Referenced 05/10/2013.

[42] Bloch, J. Effective Java - Second Edition. Addison-Wesley, California, USA,
2008. ISBN 0-321-35668-3.

[43] Sosnoski, D. Java programming dynamics, Part 8: Replacing reflection with
code generation, Jun 2004. URL http://www.ibm.com/developerworks/
library/j-dyn0610/. Referenced 20/10/2013.

[44] Pavlov, D. Method Synthesizers - GeDA - Generic DTO Assembler,
May 2013. URL http://www.inspire-software.com/confluence/display/
GeDA/Method+Synthesizers. Referenced 18/10/2013.

http://docs.oracle.com/javase/1.3/docs/api/
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.buzdin.lv/2011/01/is-java-reflection-really-slow.html
http://www.buzdin.lv/2011/01/is-java-reflection-really-slow.html
http://ssw.jku.at/Research/Papers/Wuerthinger10a/Wuerthinger10a.pdf
http://ssw.jku.at/Research/Papers/Wuerthinger10a/Wuerthinger10a.pdf
https://wikis.oracle.com/display/mlvm/HotSwap
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
http://zeroturnaround.com/software/jrebel/learn/faq/#2
http://zeroturnaround.com/software/jrebel/learn/jrebel-plugins/
http://zeroturnaround.com/software/jrebel/learn/jrebel-plugins/
http://www.ibm.com/developerworks/library/j-dyn0610/
http://www.ibm.com/developerworks/library/j-dyn0610/
http://www.inspire-software.com/confluence/display/GeDA/Method+Synthesizers
http://www.inspire-software.com/confluence/display/GeDA/Method+Synthesizers

REFERENCES 67

[45] Cglib. Cglib - Code Generation Library, 2004. URL http://cglib.
sourceforge.net/. Referenced 20/10/2013.

[46] Foundation, T. A. S. Apache Commons - BCEL, Oct 2011. URL http://
commons.apache.org/proper/commons-bcel/. Referenced 20/10/2013.

[47] Chiba, S. Javassist, Jun 2013. URL http://www.csg.ci.i.u-tokyo.ac.jp/
~chiba/javassist/. Referenced 20/10/2013.

[48] Bruneton, E. ASM 4.0 - A Java bytecode engineering library, 2011. URL
http://download.forge.objectweb.org/asm/asm4-guide.pdf. Referenced
20/10/2013.

[49] Oracle. Java Platform, Enterprise Edition, 6 API Specification, 2011. URL
http://docs.oracle.com/javaee/6/api/. Referenced 3/12/2013.

[50] Höller, J. Spring 4 on Java 8 - A Work in Progress, Jul
2013. URL http://www.slideshare.net/ZeroTurnaround/
juergen-hoellerspring4onjava8-24613140. Referenced 20/10/2013.

[51] Ebersole, S. Deprecated CGLIB support, Aug 2010. URL http://relation.
to/16658.lace. Referenced 20/10/2013.

[52] Yu, B. W. Scaling Your Java EE Applications, July 2008. URL http://www.
theserverside.com/news/1363681/Scaling-Your-Java-EE-Applications.
Referenced 09/03/2013.

[53] Stenberg, J. SOLID Design Principles and Other Patterns Revisited
For .NET, Aug 2013. URL http://www.infoq.com/news/2013/08/
solid-principles-revisited. Referenced 20/10/2013.

[54] Hamilton, G. JavaBeans, August 1997. URL http://download.oracle.
com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/. Referenced
09/04/2013.

[55] Fowler, M. POJO, 2013. URL http://www.martinfowler.com/bliki/POJO.
html. Referenced 09/04/2013.

[56] Free Software Foundation. GNU Lesser General Public License, June 2007.
URL http://www.gnu.org/copyleft/lesser.html. Referenced 27/10/2013.

[57] dozer. Dozer - About, 2012. URL http://dozer.sourceforge.net/
documentation/about.html. Referenced 04/11/2013.

http://cglib.sourceforge.net/
http://cglib.sourceforge.net/
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://docs.oracle.com/javaee/6/api/
http://www.slideshare.net/ZeroTurnaround/juergen-hoellerspring4onjava8-24613140
http://www.slideshare.net/ZeroTurnaround/juergen-hoellerspring4onjava8-24613140
http://relation.to/16658.lace
http://relation.to/16658.lace
http://www.theserverside.com/news/1363681/Scaling-Your-Java-EE-Applications
http://www.theserverside.com/news/1363681/Scaling-Your-Java-EE-Applications
http://www.infoq.com/news/2013/08/solid-principles-revisited
http://www.infoq.com/news/2013/08/solid-principles-revisited
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://www.martinfowler.com/bliki/POJO.html
http://www.martinfowler.com/bliki/POJO.html
http://www.gnu.org/copyleft/lesser.html
http://dozer.sourceforge.net/documentation/about.html
http://dozer.sourceforge.net/documentation/about.html

REFERENCES 68

[58] dozer. Dozer - Frequently Asked Questions, 2012. URL http://dozer.
sourceforge.net/documentation/faq.html. Referenced 04/11/2013.

[59] Pavlov, D. Generic DTO Assembler - Getting started, 2013. URL http://www.
inspire-software.com/confluence/display/GeDA/Getting+started. Ref-
erenced 04/11/2013.

[60] Pavlov, D. Generic DTO Assembler - Benchmarks, 2013. URL http://www.
inspire-software.com/confluence/display/GeDA/Benchmarks. Referenced
04/11/2013.

[61] Pavlov, D. Generic DTO Assembler - DTO parent, 2011. URL http://www.
inspire-software.com/confluence/display/GeDA/DTO+parent. Referenced
04/11/2013.

[62] Ratamaa, T. Generic DTO Converter, 2013. URL http://ryh.dy.fi/trac/
dtoconverter. Referenced 05/11/2013.

[63] Cavallotti, J. A. L. jDTO Binder 1.4 User’s Guide, 2013. URL https:
//github.com/jDTOBinder/jDTO-Binder/raw/master/book/jdto.pdf. Ref-
erenced 04/11/2013.

[64] Vurro, A. jmapper-framework, 2013. URL http://code.google.com/p/
jmapper-framework/wiki/Introduction. Referenced 10/11/2013.

[65] Halterman, J. ModelMapper - User Manual, 2013. URL http://modelmapper.
org/user-manual/. Referenced 04/11/2013.

[66] Brock, M. MVEL, 2012. URL http://mvel.codehaus.org/. Referenced
04/11/2013.

[67] Wiseman, G. Moo - User Guide, 2013. URL https://github.com/
geoffreywiseman/Moo/wiki/User-Guide. Referenced 04/11/2013.

[68] Dobrynin, D. Introduction to the Nomin Java Mapping Framework, 2011. URL
http://nomin.sourceforge.net/. Referenced 04/11/2013.

[69] Magician, S. Introduction and usage guide for OMapper, 2011. URL http:
//code.google.com/p/omapper/wiki/Home. Referenced 05/11/2013.

[70] DeBoer, M. Orika - User Guide, 2013. URL http://orika-mapper.github.
io/orika-docs/. Referenced 10/11/2013.

http://dozer.sourceforge.net/documentation/faq.html
http://dozer.sourceforge.net/documentation/faq.html
http://www.inspire-software.com/confluence/display/GeDA/Getting+started
http://www.inspire-software.com/confluence/display/GeDA/Getting+started
http://www.inspire-software.com/confluence/display/GeDA/Benchmarks
http://www.inspire-software.com/confluence/display/GeDA/Benchmarks
http://www.inspire-software.com/confluence/display/GeDA/DTO+parent
http://www.inspire-software.com/confluence/display/GeDA/DTO+parent
http://ryh.dy.fi/trac/dtoconverter
http://ryh.dy.fi/trac/dtoconverter
https://github.com/jDTOBinder/jDTO-Binder/raw/master/book/jdto.pdf
https://github.com/jDTOBinder/jDTO-Binder/raw/master/book/jdto.pdf
http://code.google.com/p/jmapper-framework/wiki/Introduction
http://code.google.com/p/jmapper-framework/wiki/Introduction
http://modelmapper.org/user-manual/
http://modelmapper.org/user-manual/
http://mvel.codehaus.org/
https://github.com/geoffreywiseman/Moo/wiki/User-Guide
https://github.com/geoffreywiseman/Moo/wiki/User-Guide
http://nomin.sourceforge.net/
http://code.google.com/p/omapper/wiki/Home
http://code.google.com/p/omapper/wiki/Home
http://orika-mapper.github.io/orika-docs/
http://orika-mapper.github.io/orika-docs/

REFERENCES 69

[71] Spring Expression Language (SpEL), 2010. URL http://docs.spring.io/
spring/docs/3.0.x/reference/expressions.html. Referenced 10/11/2013.

[72] Spring Foundation. Spring 3 Object Mapping, 2010. URL http://docs.
spring.io/spring/previews/mapping.html. Referenced 10/11/2013.

[73] OpenBRR.org. Business Readiness Rating for Open Source, 2005. URL http:
//docencia.etsit.urjc.es/moodle/mod/resource/view.php?id=4343.
Referenced 21/10/2013.

[74] Koljonen, M. Avoimen lähdekoodin valintakriteerit. Diplomity, Tampereen
teknillinen yliopisto, May 2007.

[75] Caliper. Caliper - Microbenchmarking framework for Java, 2013. URL https:
//code.google.com/p/caliper/wiki/JavaMicrobenchmarks. Referenced
10/11/2013.

[76] Sokolenko, A. Dozer vs Orika vs Manual, 2013. URL http://blog.sokolenko.
me/2013/05/dozer-vs-orika-vs-manual.html. Referenced 10/11/2013.

[77] The Eclipse Foundation. Jetty - Servlet Engine and Http Server, 2013. URL
http://www.eclipse.org/jetty/. Referenced 10/11/2013.

[78] Apache Software Foundation. Apache JMeter, 2013. URL http://jmeter.
apache.org/. Referenced 10/11/2013.

http://docs.spring.io/spring/docs/3.0.x/reference/expressions.html
http://docs.spring.io/spring/docs/3.0.x/reference/expressions.html
http://docs.spring.io/spring/previews/mapping.html
http://docs.spring.io/spring/previews/mapping.html
http://docencia.etsit.urjc.es/moodle/mod/resource/view.php?id=4343
http://docencia.etsit.urjc.es/moodle/mod/resource/view.php?id=4343
https://code.google.com/p/caliper/wiki/JavaMicrobenchmarks
https://code.google.com/p/caliper/wiki/JavaMicrobenchmarks
http://blog.sokolenko.me/2013/05/dozer-vs-orika-vs-manual.html
http://blog.sokolenko.me/2013/05/dozer-vs-orika-vs-manual.html
http://www.eclipse.org/jetty/
http://jmeter.apache.org/
http://jmeter.apache.org/

70

A. APPENDIX: FUNCTIONAL REQUIREMENTS

Functional requirements for a generic entity and DTO mapping component

Requirement Importance (1-3)

Maven support

1 Available as a Maven artifact 3

2 Availability in Maven main repository 1

Spring support

3 Can be used as a Spring component 3

4 Customizable to be used in other web frameworks 2

5 Thread-safety 3

6 Extendable interface for Spring component 2

JPA support

7 Fetching entities by primary keys 3

8 Fetching multiple entities by array/collection of primary keys 3

9 Persistence depended part as a separate Maven artifact 1

10 Hibernate compliant implementation 3

11 Support for any JPA implementation 2

Mapping techniques

12 Annotation-driven configuration 3

13 Automaitc mapping by name and type 3

14 Automatic mapping by camel case naming convention 2

15 Mapping by XML 2

16 Mapping by DSL 1

17 Mapping by API 1

18 Mapping type safely with proxy objects 2

19 Conditional mapping 1

Bi-directional mapping

20 Mapping once for both directions 3

21 Preventing mapping for either direction 3

22 Determing the conversion direction by getter/setter visibility 2

23 Defining annotation mappings to either source or target class 2

Aggregation mapping

24 Mapping by property paths 3

25 Null-safe access 3

26 Fetching container object by primary key 2

27 Automatic creation of container objects 2

28 Inner conversion 3

29 Mapping inner conversions from container by annotations 1

Type Support

30 Concrete implementation type can be specified for an abstract type 2

31 Type aliases for abstract types or interfaces 2

32 General default implementation types for abstract types 2

33 Generics type support 2

Type conversions

34 Ability to add new conversions 3

35 Automatic conversion between primary and boxed types 2

36 Ability to replace the conversions 2

37 Null-safety with primitives 1

38 Case-by-case type conversion 1

39 General type convesions 3

Collection and array support

40 Inner conversion over collections and arrays 3

41 Automatic conversion between Collection implementations and arrays 2

42 Determing Collection types automatically by Java's reflection 3

43 Ordering of DTOs by specifying a Comparator 2

44 Ordering by annnotations specifying order by properties and directions 1

45 Synchronization by primary key mapped property 2

46 Synchronization: adding new and removing non existing 2

47 Collection projection 1

48 Filtering collection values 2

Field and getter/setter support

49 Support for both getters/setters and fields 3

50 Respecting visibility rules 3

51 Appliying annotations to eihter field or getter 1

Immutable object support

52 Support for custom constructors 3

53 Ability to specify which constructor to use with the conversion 3

54 Defining annotations from the container 1

55 Parameter mappings with all the same features as properties 2

Support for graphs and two-way linking structures

56 Support with hierarchical structures with parent references 1

57 Supoort for nets and complex structures with reference cache 2

Customizability

58 Skipping certain property mappings 3

59 Multiple mappings by conversion source/targe type 3

60 Search paths for property mappings 1

61 Customized conversions 3

62 New mapping resolution implementations can be added and extended 1

63 JPA and Code Gernation components should encapsulated and changeable 1

Total 134

Total for required features 72

A. Appendix: Functional Requirements 71

72

B. APPENDIX: FUNCTIONAL REQUIREMENTS
EVALUATION

Functional Requirements Evaluation

Requirement Importance

Maven support Dozer GeDA GeDC jDTO JMap. Modlm. Moo Nomin OMap. Orika Spring

1 Maven Artifact 3 3 3 3 3 3 3 3 3 -3 3 2
5)

2 In Maven Central 1 1 1 0 1 1 1 1 1 0 1 1

Spring support

3 Spring Support 3 3 3 1
1)

3 1
1)

3 1
1)

3 1
1)

3 3

4 Other Framework Support 2 2 2 1
1)

2 1
1)

2 1
1)

2 0 1
1)

0

5 Thread-safety 3 3 3 3 3 3 3 3 3 -3 3 3

6 Interfaced mapper 2 2 2 2 2 2 0 0 2 0 2 2

JPA support

7 Fetching by primary keys 3 -3 2
2)

2
2)

-3 -3 -3 1
1)

-3 -3 -3 -3

8 Collection of primary keys 3 -3 -3 3 -3 -3 -3 -3 -3 -3 -3 -3

9 Separate Maven artifact 1 0 0 1 0 0 0 0 0 0 0 0

10 Hibernate Support 3 -3 2
1)

3 -3 -3 -3 -3 -3 -3 -3 -3

11 Support for any JPA 2 0 1
1)

1
1)

0 0 0 0 0 0 0 0

Mapping techniques

12 Annotation mapping 3 2
6)

3 3 3 3 -3 3 -3 3 -3 -3

13 Name and type mapping 3 3 3 3 -3 3 3 3 3 -3 3 3

14 Camel case mapping 2 0 0 2 0 0 2 0 0 0 0 0

15 Mapping by XML 2 2 0 0 2 2 0 0 0 0 0 0

16 Mapping by DSL 1 0 0 0 0 0 0 0 1 0 0 0

17 Mapping by API 1 1 1 1 0 0 1 0 0 0 1 1

18 Mapping with proxy objects 2 0 0 2 0 0 2 0 0 0 0 0

19 Conditional mapping 1 0 0 0 0 0 1 0 1 0 0 1

Bi-directional mapping

20 One configuration for both ways3 3 3 3 3 -3 -3 3 3 3 3 -3

21 Preventing mapping direction3 3 3 3 -3 2
1)

2
1)

-3 -3 3 3 -3

22 Directions by getter/setter visib2 2 2 2 2 0 2 2 2 0 2 0

23 Annotations in source/target2 2 0 2 2 0 0 2 0 2 0 0

Aggregation mapping

24 Mapping by property paths 3 3 3 3 3 -3 3 3 3 -3 3 -3

25 Null-safe access 3 3 3 3 3 3 3 3 3 -3 3 3

26 Fetching container object by pri2 0 0 2 0 0 0 0 0 0 0 0

27 Creation of container objects2 2 2 2 2 2 2 2 2 0 2 2

28 Inner conversion 3 3 3 3 3 3 3 3 3 -3 3 3

29 Inner conversions mapping from c1 0 0 1 0 0 0 0 0 0 0 0

Type Support

30 Specify implementation type2 2 2 2 0 0 0 0 0 2 2 0

31 Type aliases 2 0 2 2 0 0 0 0 0 0 0 0

32 Default implementation types2 0 2 2 0 2 2 0 0 0 2 2

33 Generics type support 2 0 0 0 0 0 2 0 2 0 2 0

Type conversions

34 Ability to add new conversions3 3 3 3 3 3 3 -3 -3 -3 3 3

35 Primary and boxed types conve2 2 2 2 2 2 2 2 2 2 2 2

36 Ability to replace the conversio2 2 2 2 2 2 2 0 0 0 2 2

37 Null-safety with primitives 1 1 1 1 1 1 1 0 1 1 1 1

38 Case-by-case type conversion1 1 1 0 1 1 1 0 1 0 1 1

39 General type convesions 3 3 -3 3 -3 3 3 -3 3 -3 3 3

Implementation

Collection and array support Dozer GeDA GeDC jDTO JMap.Modelm. Moo Nomin Omap. Orika Spring

40 Inner conversion 3 3 3 3 3 3 3 3 3 -3 3 3

41 Collection and arrays conversio2 2 2 2 2 2 2 2 0 0 2 2

42 Generic contained type detectio3 3 3 3 3 3 3 -3 3 -3 3 -3

43 Ordering by Comparator 2 0 0 2 0 0 0 0 2 0 0 0

44 Ordering by annnotations 1 0 0 1 0 0 0 0 0 0 0 0

45 Synchronization by primary key2 0 1
1)

1
3)

0 0 0 1
1)

0 0 0 0

46 Add/remove-merge 2 2 2 1
3)

0 0 1
4)

2 2 0 1
3)

0

47 Collection projection 1 0 0 1 0 0 0 0 0 0 0 1

48 Filtering collection values 2 0 0 0 0 0 0 0 1 0 0 1

Field and getter/setter support

49 Getters/setters and fields 3 -3 -3 3 3 3 -3 3 -3 -3 3 3

50 Respecting visibility rules 3 3 3 3 3 3 3 3 3 -3 3 3

51 Annotations to field/getter 1 0 1 1 1 0 0 1 0 0 1 0

Immutable object support

52 Support for cconstructors 3 1
1)

1
1)

3 3 -3 -3 -3 -3 -3 1
1)

-3

53 Specify constructor to use 3 -3 -3 3 3 -3 -3 -3 -3 -3 3 -3

54 Annotations from the container1 0 0 1 0 0 0 0 0 0 0 0

55 Parameter mapping conversion2 0 0 2 2 0 0 0 0 0 0 0

Support linked structures

56 Parent references 1 0 0 1 0 0 0 0 0 0 0 0

57 Reference cache 2 2 2 2 2 0 2 2 2 0 2 2

Customizability

58 Skipping mappings 3 2
1)

3 3 2
1)

3 3 3 2
1)

2
1)

3 3

59 Multiple mappings 3 3 -3 3 -3 3 3 -3 3 -3 3 3

60 Search paths 1 0 0 1 1 0 1 0 0 0 0 0

61 Customized conversions 3 3 3 3 -3 3 3 3 3 -3 3 3

62 Resolution extendability 1 0 0 1 0 0 0 0 0 0 1 0

63 Subcomponents changeable 1 0 1 1 0 0 0 0 0 0 1 0

Totals 72 66 70 117 50 45 52 32 41 -38 75 32

1)
 = No specialized support but can be used. %

2)
 = Does not support multiple primary keys for an entity. 96 %

3)
 = No element mathcer, based on order. 90 %

4)
 = No matching or removing 80 %

5)
 = Not separated. 65 %

6)
 = Experimental, limited feature 0 %

Implementation Component and version Score %

Dozer Dozer 5.4.0 66 92 %

GeDA Generic DTO Assembler 3.1.0 70 97 %

GeDC Generic DTO Converter 2.0 117 163 %

jDTO jDTO Binder 1.4 50 69 %

JMap. JMapper 1.2.0 45 63 %

Modlm. Modelmapper 0.6.1 52 72 %

Moo Moo 1.3 32 44 %

Nomin Nomin 1.1.1 41 57 %

OMap. OMapper 2.0 -38 -53 %

Orika Orika 1.4.3 75 104 %

Spring Spring Object Mapping 1.0.0-SNAPSHOT 32 44 %

Result (1-5)

2

1

Result (1-5)

Normalization scale

4

5

5

Excellent (> 96%)

Very good (90% - 96%)

Acceptable (80% - 90%)

Bad (65% - 80%)

Unacceptable (< 65%)

5

4

3

5

1

2

2

1

1

1

1

B. Appendix: Functional Requirements Evaluation 73

74

C. APPENDIX: USABILITY TEST RESULTS

Appr. Factor Weigth

NoCI Number of classes or interfaces 5

NoCF Number of configuration files 5

LoC Lines of Code 3

NoXE Number of XML elements 3

NoXA Number of XML attributes 3

NoA Number of Annotations 3

NoAP Number of Annotation parameters 3

Aggregative mapping involving Collection mapping

Component NoCI NoCF LoC NoXE NoXA NoA NoAP Total Result

Java Manual 1 0 64 0 0 0 0 197 1

Dozer 5.4.0 1 1 9 49 3 0 0 193 2

Generic DTO Assembler 3.1.0 4 0 72 0 0 12 13 311 1

Generic DTO Converter 2.0 1 0 8 0 0 4 2 47 5

jDTO Binder 1.4 1 0 9 0 0 14 16 122 3

Modelmapper 0.6.1 1 1 26 0 0 0 0 88 4

Orika 1.4.3 1 0 29 0 0 0 0 92 4

Point range Result

< 50 5

50 - 100 4

100 - 150 3

150 - 200 2

>= 197 1

Usability Test Results

75

D. APPENDIX: PERFORMANCE TEST RESULTS

Tmanual : T

Component Direction Scores Average score

Items 100 10000

DTO -> Entity 1,29 1,29 5 5

Entity -> DTO 2,30 2,3 5 5

DTO -> Entity 42242,93 3870780,03 4,8 2,8

Entity -> DTO 30927,42 2289283,15 4,9 3,1

DTO -> Entity 18532,03 1878510,72 5 3,1

Entity -> DTO 18903,73 1768371,64 5 3,2

DTO -> Entity 104462,19 9934412,86 4,4 2,4

Entity -> DTO 51953,57 5023344,86 4,7 2,7

DTO -> Entity 114677,86 11650884,26 4,4 2,4

Entity -> DTO 494518,42 49584505,56 3,7 1,7

DTO -> Entity 218929,43 22872266,27 4,1 2,1

Entity -> DTO 301239,57 30141003,97 3,9 1,9

DTO -> Entity 646422,84 63154293,07 3,6 1,6

Entity -> DTO 1588239,72 162661899,63 3,2 1,2

3,1

40*LOG10 : LOG10Basic aggregative mapping

Java manual

GeDA

Orika

Modelmapper

Dozer

GeDC

jDTO Binder

Time / ns

Performance Test Results

5,0

3,9

4,1

3,6

3,0

2,4

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

Java manual GeDA Orika GeDC jDTO Binder Modelmapper Dozer

m
s

Basic mapping with 100 items

0

20

40

60

80

100

120

140

160

180

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

Java manual GeDA Orika GeDC jDTO Binder Modelmapper Dozer

m
s

Basic mapping with 10 000 items

Aggregative mapping involving Collection mapping

Tmanual : T

Component Direction Scores Average score

Items 100 10000

DTO -> Entity 7532,49 754963,03 5 5

Entity -> DTO 6051,78 605385,94 5 5

DTO -> Entity 88847,30 9400684,57 3,9 3,9

Entity -> DTO 75243,61 8883397,73 3,9 3,8

DTO -> Entity 40574,99 3980992,04 4,3 4,3

Entity -> DTO 39008,13 3745022,94 4,2 4,2

DTO -> Entity 771221,23 76086776,33 3 3

Entity -> DTO 611486,09 61024201,57 3 3

DTO -> Entity 141601,70 14207696,24 3,7 3,7

Entity -> DTO 537849,74 54219229,33 3,1 3

DTO -> Entity 651441,48 65379373,77 3,1 3,1

Entity -> DTO 637525,14 63954594,43 3 3

DTO -> Entity 2628325,41 272014549,3 2,5 2,4

Entity -> DTO 2427689,41 276944397,6 2,4 2,3

3,4

LOG10 : LOG10

Modelmapper

GeDC

jDTO Binder

Time / ns

Java manual

GeDA

Orika

2,4

3,9

4,3

3,0

3,1

5,0

Dozer

0,00

0,50

1,00

1,50

2,00

2,50

3,00

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

Java manual GeDA Orika GeDC jDTO Binder Modelmapper Dozer

m
s

Collection mapping with 100 items

0

50

100

150

200

250

300

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

DTO ->

Entity

Entity ->

DTO

Java manual GeDA Orika GeDC jDTO Binder Modelmapper Dozer

m
s

Collection mapping with 10 000 items

D. Appendix: Performance Test Results 76

Overall Performance Test Scores

Component Basic Score Collection Score Total

Test environment

Java 1.7.0_21 64b Server

Framework Caliper 0.5-rc1

OS Windows 8 Pro 64b

CPU Intel Xeon E3-1230 V2

RAM 16 GB

Date 10th Nov 2013

jDTO Binder

Modelmapper

Dozer

3,9

4,1

3,6

3,1

3,0

2,4

GeDA

Orika

GeDC

3,4

3,1

2,4

4

4

3

3

3

2

3,9

4,3

3,0

D. Appendix: Performance Test Results 77

78

E. APPENDIX: SCALABILITY TEST RESULTS

Scalability Test Results

Threads [Throughput] = req. / min
1000 [Medium] = response in ms

Component Throughput Medium Throughput Medium Throughput Medium Throughput Medium Errors Result

GeDC 1608 9058 1660 8948 1680 8769 1649 8925 0 3

GeDA 2987 8 2989 7 2989 8 2988 8 0 5

Orika 2987 9 2987 9 2986 8 2987 9 0 5

Dozer 1151 30000 1172 30000 1161 30000 1161 30000 1 2

Modelm. 1258 14946 1467 11405 1390 12893 1372 13081 0 3

Manual 2989 1 2990 1 2990 1 2990 1 0 5

jDTO Binder 1159 30000 1163 30000 1159 30000 1160 30000 1 2

Test environment

Java 1.7.0_21 64b server OS Windows 8 Pro 64b

Server Jetty 6.1.0 CPU Intel Xeon E3-1230 V2

JMeter 2.10 RAM 16 GB

Implementation Simple Servlets (version 2.5) for each component.

Entity to DTO mapping with initialized mapper component.

One component tested at a time with Jmeter.

Server restarted after each round.

Date 10th Nov 2013

Ramp-up / s
20 10000

Conversion / request

Average321
Round

0

500

1000

1500

2000

2500

3000

GeDC GeDA Orika Dozer Modelm. Manual jDTO Binder

re
q

u
e

st
s

/
m

in
u

te

Average Throughput

79

F. APPENDIX: SCALABILITY TEST RESULTS -
BEHAVIOR

F. Appendix: Scalability Test Results - Behavior 80

F. Appendix: Scalability Test Results - Behavior 81

F. Appendix: Scalability Test Results - Behavior 82

83

G. APPENDIX: EVALUATION CRITERIA FOR
OTHER CATEGORIES

Evaluation Criteria for Other Categories

Quality

Meter 5 4 3 2 1

The number of planned

releases during the last 12

months

2 1-3 0 or > 3

The number of patch relases

during the last 12 months
3-4 1-2 or 5-6 0 or > 6

The number of reported issues

during the last 6 months
< 2 2-4 5-10 11-20 > 20

The number of fixed issues

compared to reported issues

during the last 6 months.
> 75% 60%-75% 45%-60% 25-45% < 20%

The number of critical bugs

opended during the last 6

months.

0 1-2 3-5 5-10 > 10

The average response time to

critical bugs during the last 6

months.

< 1 week 1-2 weeks 2-3 weeks 3-4 weeks > 4 weeks

Support

Meter 5 4 3 2 1

The number of messages

posted on project's mailing list

or forum during the last six

months.

> 100

messages

50-100

messages

16-49

messages

5-15

messages

< 5

messages

The number of StackOverflow

questions and answers in total
> 100 50-100 16-49 5-15 < 5

Documentation

Meter 5 4 3 2 1

Existence of various kinds of

documentation

Features and

extendability

documented

All features

documented

Basic usage

documented

Only test

code

available

No

documentat

ion

User contribution framework

People are

allowed to

contribute,

and

contributions

filtered by

experts

People are

allowed to

contribute

Users

cannot

contribute

Result

Result

Result

84

H. APPENDIX: RESULTS FOR OTHER
CATEGORIES

Category Quality

Meter Score Reasoning

The number of planned releases during

the last 12 months

3 Last release 11/112012 -> 1 relase, source:

http://dozer.sourceforge.net/releasenotes.html

The number of patch relases during the

last 12 months

1 No patch releases.

The number of reported issues during the

last 6 months

5 No reported issues in the last 6 months, source:

http://sourceforge.net/p/dozer/feature-

requests/search/?q=!status%3Awont-

fix+%26%26+!status%3Aclosed

The number of fixed issues compared to

reported issues during the last 6 months.

5 No bugs, 100%.

The number of critical bugs opended

during the last 6 months.

5 No bugs reported, 0.

The average response time to critical bugs

during the last 6 months.

5 No bugs reported, 0.

Average: 4

Category Support

Meter Score Reasoning

The number of messages posted on

project's mailing list or forum during the

last six months.

2 8 posts on forum, source:

http://sourceforge.net/p/dozer/discussion/452530/

The number of StackOverflow questions

and answers in total

5 809 questions, > 100, source:

http://stackoverflow.com/search?page=3&tab=relevanc

e&q=dozer

Average: 4

Category Documentation

Meter Score Reasoning

Existence of various kinds of

documentation

4 All features documented,

http://dozer.sourceforge.net/documentation/gettingstart

ed.html

User contribution framework
3 Documentation included in the project sources, People

are allowed to contribute

Average: 4

Dozer - Other Categories

H. Appendix: Results for Other Categories 85

Category Quality

Meter Score Reasoning

The number of planned releases during

the last 12 months

1 4 releases, http://www.inspire-

software.com/confluence/display/GeDA/Revisions

The number of patch relases during the

last 12 months

1 0, http://www.inspire-

software.com/confluence/display/GeDA/Revisions

The number of reported issues during the

last 6 months

3
6 issues, http://www.inspire-

software.com/jira/secure/IssueNavigator.jspa?sorter/fie

ld=created&sorter/order=DESC and http://www.inspire-

software.com/jira/secure/IssueNavigator.jspa?sorter/fie

ld=created&sorter/order=DESC

The number of fixed issues compared to

reported issues during the last 6 months.

3 3 fixed, 50%

The number of critical bugs opended

during the last 6 months.

5 0 critical bugs

The average response time to critical bugs

during the last 6 months.

5 No critical bugs

Average: 3

Category Support

Meter Score Reasoning

The number of messages posted on

project's mailing list or forum during the

last six months.

3 24 messages,

https://groups.google.com/forum/#!forum/geda-generic-

dto-assembler-discussion-group

The number of StackOverflow questions

and answers in total

1 1 question and 1 answer,

http://stackoverflow.com/search?q=%22generic+dto+a

ssembler%22

Average: 2

Category Documentation

Meter Score Reasoning

Existence of various kinds of

documentation

4 All features documented

User contribution framework 1 Users cannot contribute

Average: 3

Generic DTO Assembler - Other Categories

H. Appendix: Results for Other Categories 86

Category Quality

Meter Score Reasoning

The number of planned releases during

the last 12 months

3 One release, version 2.0,

https://ryh.dy.fi/trac/dtoconverter/wiki/WikiStart?action=

history

The number of patch relases during the

last 12 months

3 One patch, 1.4.1,

https://ryh.dy.fi/mvn2/public/fi/ratamaa/dtoconverter/

The number of reported issues during the

last 6 months

2 12 bugs reported,

https://ryh.dy.fi/trac/dtoconverter/report/6

The number of fixed issues compared to

reported issues during the last 6 months.

5 7 / 9 fixed, 78%,

https://ryh.dy.fi/trac/dtoconverter/report/6

The number of critical bugs opended

during the last 6 months.

4 1 critical bug, https://ryh.dy.fi/trac/dtoconverter/report/6

The average response time to critical bugs

during the last 6 months.

5 < 1 week

Average: 4

Category Support

Meter Score Reasoning

The number of messages posted on

project's mailing list or forum during the

last six months.

1 No mailing list or forum.

The number of StackOverflow questions

and answers in total

1 0 questions.

Average: 1

Category Documentation

Meter Score Reasoning

Existence of various kinds of

documentation

3 Basic usage documented

User contribution framework 1 Users cannot contribute

Average: 2

Generic DTO Converter - Other Categories

H. Appendix: Results for Other Categories 87

Category Quality

Meter Score Reasoning

The number of planned releases during

the last 12 months

3 1, version 1.4, https://github.com/jDTOBinder/jDTO-

Binder/releases

The number of patch relases during the

last 12 months

1 0 patch releases

The number of reported issues during the

last 6 months

5 0 bugs, https://github.com/jDTOBinder/jDTO-

Binder/issues?state=open

The number of fixed issues compared to

reported issues during the last 6 months.

5 No bugs reported.

The number of critical bugs opended

during the last 6 months.

5 No bugs reported.

The average response time to critical bugs

during the last 6 months.

5 No bugs reported.

Average: 4

Category Support

Meter Score Reasoning

The number of messages posted on

project's mailing list or forum during the

last six months.

1 No forum or mailing list.

The number of StackOverflow questions

and answers in total

1 1 question and 1 answer,

http://stackoverflow.com/search?q=jdto+binder

Average: 1

Category Documentation

Meter Score Reasoning

Existence of various kinds of

documentation

4 All features documented

User contribution framework
2 Users are encouraged to participate but no direct

channel for this exists.

Average: 3

jDTO Binder - Other Categories

H. Appendix: Results for Other Categories 88

Category Quality

Meter Score Reasoning

The number of planned releases during

the last 12 months

3 3 relases,

https://github.com/jhalterman/modelmapper/releases

The number of patch relases during the

last 12 months

1 No patch release

The number of reported issues during the

last 6 months

1 11+14 = 25 issues,

https://github.com/jhalterman/modelmapper/issues,

https://github.com/jhalterman/modelmapper/issues?pa

ge=1&state=closed

The number of fixed issues compared to

reported issues during the last 6 months.

4 14/25 = 56%

The number of critical bugs opended

during the last 6 months.

5 No critical bugs

The average response time to critical bugs

during the last 6 months.

5 No critical bugs

Average: 3

Category Support

Meter Score Reasoning

The number of messages posted on

project's mailing list or forum during the

last six months.

5 31 threads with total of 134 messages,

https://groups.google.com/forum/#!forum/modelmapper

The number of StackOverflow questions

and answers in total

2 4 questgions, 3 answers

http://stackoverflow.com/search?q=modelmapper

Average: 4

Category Documentation

Meter Score Reasoning

Existence of various kinds of

documentation

4 All features documented, http://modelmapper.org/user-

manual/

User contribution framework 1 Users cannot
contribute

Average: 3

Modelmapper - Other Categories

H. Appendix: Results for Other Categories 89

Category Quality

Meter Score Reasoning

The number of planned releases during

the last 12 months

3 1 (1.4.0),

http://code.google.com/p/orika/wiki/ReleaseNotes

The number of patch relases during the

last 12 months

4 3 (1.4.3, 1.4.2, 1.4.1),

http://code.google.com/p/orika/wiki/ReleaseNotes

The number of reported issues during the

last 6 months

1 33 issues,

http://code.google.com/p/orika/issues/list?can=1&q=&s

ort=-

id&colspec=ID+Type+Status+Priority+Milestone+Owne

r+Summary&cells=tiles

The number of fixed issues compared to

reported issues during the last 6 months.

2 11 / 33, 33%

The number of critical bugs opended

during the last 6 months.

5 No critical issues

The average response time to critical bugs

during the last 6 months.

5 No critical issues

Average: 3

Category Support

Meter Score Reasoning

The number of messages posted on

project's mailing list or forum during the

last six months.

5 147 posts,

https://groups.google.com/forum/#!forum/orika-discuss

The number of StackOverflow questions

and answers in total

3 9 questions, 7 answers,

http://stackoverflow.com/search?q=orika+is%3Aquestio

n

Average: 4

Category Documentation

Meter Score Reasoning

Existence of various kinds of

documentation

5 Features and extendability documented, http://orika-

mapper.github.io/orika-docs/

User contribution framework 1 Users cannot contribute to documentation

Average: 3

Orika - Other Categories

90

I. APPENDIX: TOTAL SCORES

Evaluation:

Version:

Lisence:

Other conditions:

Date:

Modified:

Method:

Score

Category Weight Score Weight * Score

Functionality 35,0% 4 1,4

Usability 20,0% 2 0,4

Quality 10,0% 4 0,4

Security 0,0% 0

Performance 10,0% 2 0,2

Scalability 10,0% 2 0,2

Architecture 0,0% 0

Support 5,0% 4 0,2

Documentation 10,0% 4 0,4

Acceptance 0,0% 0

Community 0,0% 0

Professionalism 0,0% 0

100,0%

BRR: 3,2

Business Readiness Rating, RFC1

General information

Dozer

Apache 2.0

5.4.0

11.11.2013

11.11.2013

I. Appendix: Total Scores 91

Evaluation:

Version:

Lisence:

Other conditions:

Date:

Modified:

Method:

Score

Category Weight Score Weight * Score

Functionality 35,0% 5 1,75

Usability 20,0% 1 0,2

Quality 10,0% 3 0,3

Security 0,0% 0

Performance 10,0% 4 0,4

Scalability 10,0% 5 0,5

Architecture 0,0% 0

Support 5,0% 2 0,1

Documentation 10,0% 3 0,3

Acceptance 0,0% 0

Community 0,0% 0

Professionalism 0,0% 0

100,0%

BRR: 3,6

Business Readiness Rating, RFC1

General information

Generic DTO Assembler

LGPL

3.1.0

11.11.2013

11.11.2013

I. Appendix: Total Scores 92

Evaluation:

Version:

Lisence:

Other conditions:

Date:

Modified:

Method:

Score

Category Weight Score Weight * Score

Functionality 35,0% 5 1,75

Usability 20,0% 5 1

Quality 10,0% 4 0,4

Security 0,0% 0

Performance 10,0% 3 0,3

Scalability 10,0% 3 0,3

Architecture 0,0% 0

Support 5,0% 1 0,05

Documentation 10,0% 2 0,2

Acceptance 0,0% 0

Community 0,0% 0

Professionalism 0,0% 0

100,0%

BRR: 4,0

Business Readiness Rating, RFC1

General information

Generic DTO Converter

MIT

2.0

11.11.2013

11.11.2013

I. Appendix: Total Scores 93

Evaluation:

Version:

Lisence:

Other conditions:

Date:

Modified:

Method:

Score

Category Weight Score Weight * Score

Functionality 35,0% 2 0,7

Usability 20,0% 3 0,6

Quality 10,0% 4 0,4

Security 0,0% 0

Performance 10,0% 3 0,3

Scalability 10,0% 2 0,2

Architecture 0,0% 0

Support 5,0% 3 0,15

Documentation 10,0% 3 0,3

Acceptance 0,0% 0

Community 0,0% 0

Professionalism 0,0% 0

100,0%

BRR: 2,7

Business Readiness Rating, RFC1

General information

jDTO Binder

Apache 2.0

1.4

11.11.2013

11.11.2013

I. Appendix: Total Scores 94

Evaluation:

Version:

Lisence:

Other conditions:

Date:

Modified:

Method:

Score

Category Weight Score Weight * Score

Functionality 35,0% 2 0,7

Usability 20,0% 4 0,8

Quality 10,0% 3 0,3

Security 0,0% 0

Performance 10,0% 3 0,3

Scalability 10,0% 3 0,3

Architecture 0,0% 0

Support 5,0% 4 0,2

Documentation 10,0% 3 0,3

Acceptance 0,0% 0

Community 0,0% 0

Professionalism 0,0% 0

100,0%

BRR: 2,9

Business Readiness Rating, RFC1

General information

Modelmapper

Apache 2.0

0.6.1

11.11.2013

11.11.2013

I. Appendix: Total Scores 95

Evaluation:

Version:

Lisence:

Other conditions:

Date:

Modified:

Method:

Score

Category Weight Score Weight * Score

Functionality 35,0% 5 1,75

Usability 20,0% 4 0,8

Quality 10,0% 3 0,3

Security 0,0% 0

Performance 10,0% 4 0,4

Scalability 10,0% 5 0,5

Architecture 0,0%

Support 5,0% 4 0,2

Documentation 10,0% 3 0,3

Acceptance 0,0% 0

Community 0,0% 0

Professionalism 0,0% 0

100,0%

BRR: 4,3

Business Readiness Rating, RFC1

General information

Orika

Apache 2.0

1.4.3

11.11.2013

11.11.2013

	Introduction
	Environment and Use Cases
	Java EE Web Application Architecture
	Java EE Application Frameworks
	Java Persistence API and Entities
	Data Transfer Object Pattern
	DTO Usage Scenarios
	Creating, Viewing and Modifying Entity Groups
	Listings and Reports
	Findings From Previous Projects
	The Scope of DTO and Entity Mapping

	Other Generic Use Cases
	XML Class and DTO Mapping
	Data Model Migrations

	Implementation Techniques
	The overall mapping process
	Mapping technologies
	XML
	Annotations
	Dynamic Proxies
	Domain-specific languages
	Application Programming Interfaces

	Reflection
	Fields and Methods
	Generics
	Performance

	Caches
	Early-Work and Lazy Initialization pattern
	Thread-safety with Singleton Caches

	Dynamic Code Generation

	Requirements
	Maven Support
	Spring Support
	JPA and Hibernate Support
	Ease of Use
	Annotation-driven Configuration
	Convenience in Mapping

	Feature Requirements
	Bi-directional Mapping
	Aggregation Mapping
	Type Support
	Type Conversions
	Collection and Array Support
	Field and Getter/Setter Support
	Immutable Object Support
	Support for Graphs and Two-way Linking Structures

	Customizability
	Mapping Directions and Prohibiting Mapping
	Multiple Mappings
	Customized Conversions
	Extendability

	Comparion
	Implementations
	Dozer
	Generic DTO Assembler
	Generic DTO Converter
	jDTO Binder
	JMapper
	Modelmapper
	Moo
	Nomin
	OMapper
	Orika
	Spring Object Mapping

	Maturity Model
	Functional Requirements
	Usability
	Performance
	Scalability
	Other Categories

	Evaluation of Results

	Conclusions
	References
	Appendix: Functional Requirements
	Appendix: Functional Requirements Evaluation
	Appendix: Usability Test Results
	Appendix: Performance Test Results
	Appendix: Scalability Test Results
	Appendix: Scalability Test Results - Behavior
	Appendix: Evaluation Criteria for Other Categories
	Appendix: Results for Other Categories
	Appendix: Total Scores

