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With the advent of computer vision, various applications become interested to apply it
to interpret the 3D and 2D scenes. The main core of computer vision is visual object
detection which deals with detecting and representing objects in the image. Visual object
detection requires to learn a model of each class type (e.g. car, cat) to be capable to
detect objects belonging to the same class. Class learning benefits from a method which
automatically aligns class examples making learning more straightforward.
The objective of this thesis is to further develop the sate-of-the-art feature-based align-
ment method which rigidly and automatically aligns object class images to a manually
selected seed image. We try to compensate the weakness by providing a method to auto-
matically select the best seed from dataset. Our method first extracts features by utilizing
dense sampling method and then scale invariant feature transform (SIFT) descriptor is
used to find best matches as initial local feature matches. The final alignment is based on
spatial scoring procedure where the initial matches are refined to a set of spatially verified
matches. The spatial score is used next to calculate similarity scores. We propose an
algorithm which operates on spatial and similarity scores and finally selects the best seed.
We also investigate the performance of step-wise alignment using minimum spanning tree
(MST) and Dijkstra shortest path instead of direct alignment utilizing a single seed. We
conduct our experiments using classes of Caltech-101 for which our unsupervised seed
selection and step-wise alignment achieve state-of-the-art performance.
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K Number of best local feature matches
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M Rotation matrix
Mi Total number of local features
N the number of seed features
N Number of matched local features
N Total number of images
N0 is the number of 0 (black)
N1 is the number of 1 (white)
~P 2D point
P 2D point
P Number of pixels
Px Value in the coordinate of x
Py Value in the coordinate of y
Q 2D point
R Corner region
R Edge point
R Flat region
sL Score of Lth seed’s best landmark
Sx Scaling factor in the coordinate of x
Sy Scaling factor in the coordinate of y
Si,j Similarity score between seed i and image j
T 2D vector
Tr Trace



9

tx translation in dirction of x
ty translation in dirction of y
V 2D vector
W Image window
xji Value of ith pixel in the jth image

xj
′

i Pixel value for a transformed image
(x, y) Amount of Shift
BOW Bag of words
Det Determinant
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1 INTRODUCTION

In recent years, computer vision has become one of the essential part of many applica-
tions such as Kinect (motion sensing input devise), digital cameras, Automatic number
plate recognition. The aim of computer vision is to make a device capable of analyzing
objects (e.g. buildings, tree) around us to generate meaningful and explicit interpretation
of contents. An inevitable part of computer vision is visual object detection (see Fig. 1
which handles the techniques of detecting and representing objects included in the image,
and has been under very active investigation lately. To detect an object, the visual object
detection requires to learn a general model of the class that can be applied for recogniz-
ing all the objects having the same class as the model. Learning a class model is quite
challenging due to having huge number of class types in the real world, while each class
itself consists of objects which vary in shape, poses, locations, and it is not possible to
compare all of them together. The most influential approach to achieve the goal of model
learning has been visual bag-of-words (BOW) [1, 2] where image content is encoded into
a histogram of local feature codes, but the performance of such part-based method drops
down when the objects poses vary (i.e. changes in rotation, scaling, and translation) due
to ignoring spatial arrangement (constellation) of the local features.

Figure 1. Example of visual object detection usage in pedestrian detection and car detection

Efficient learning of the computational model would benefit from automatic alignment of
training images that has been recognized first by Miller’s congealing method [3]. Con-
gealing is a jointly alignment of set of misaligned images to make them as similar as
possible according to some similarity measurement. The term of alignment refers to any
kind of allowable transformation such as color transformation, geometry transformation,
etc. The main drawback of congealing method is that it requires initial good alignment to
converge. The congealing method was later extended and renamed "alignment", and ex-



11

tended by other works [4, 5, 1, 6], but these methods are supervised and rely on manually
annotated landmarks, and cannot address the problem of recent dataset (include images
with sever geometric variation) where even manually annotated bounding boxes do not
guarantee a good alignment. A simple example of image alignment is given in Fig. 2.

Figure 2. Example of aligning 3 images from the class of stop sign to the given seed. The images
become more similar together after alignment.

This thesis introduces an improved version of the latest alignment method called feature-
based unsupervised alignment [55]. Feature-based alignment method aligns all images
from data set to a manually selected seed. The method defined an algorithm to find the best
landmarks of the seed. The algorithm extracts local features from all images using dense
sampling [5] and SIFT (scale invariant feature transform) descriptor [7], then finds the
best matches of seed features and image features (Landmarks) according to randomized
spatial scoring procedure used in [8]. The disadvantage of this method is selecting the
seed manually which means that someone should browse all images and make a decision
of the best seed.

The automatic seed selection is the first contribution of this thesis for which the same
process as the one used in feature-based alignment method for creating spatial scores for
all pairs of images is implemented. Next, the spatial scores are used to calculate similarity
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scores used in [8] among all pairs of images. We have defined an algorithm which selects
the best seed from the training images based on the spatial and similarity scores.

The second contribution to the original alignment method is that perhaps alignment could
be improved by not using only a single global seed and direct transfer, but aligning im-
ages through similarity links step by step making alignment more accurate instead of a
single long path. The idea is triggered by the work of [9] in which using a tree struc-
ture performed very well for object recognition. We investigated step-wise alignment by
implementing first a full connected graph of images where similarity scores specifies the
weight of the edges. The graph is then given to two different algorithms: minimum span-
ning tree (MST) [69], and Dijkstra shortest path [69, 70]. MST algorithm constructs a tree
structure with the lowest total cost from the graph, and sets the seed as the root of the tree,
and the Dijkstra algorithm finds the shortest path from a given source (training image)
to the seed. The alignment procedure is done by computing similarity transformation of
each visited node along the path to the seed.

We verified our methods using a standard data set, Caltech-101, for its 10 different
classes.The optimal seed selection algorithm is explicitly defined and its performance
is measured and reported in both qualitative (average images with and without aligning)
and quantitative (alignment errors of manually annotated landmarks) performances. The
results of unsupervised seed selection are compared to the original method.The result of
MST, Dijkstra, and the original alignment with a single seed are evaluated and discussed.
In our experiments we show our method of automatically seed selection is effective for
most of the classes, and in some cases is even better than the supervised seed selection.
The results of step-wise alignment indicated that the alignment performance is signifi-
cantly improved specifically by utilizing Dijkstra shortest path method.
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2 OBJECT CLASS DETECTION AND IMAGE ALIGN-
MENT

This thesis is in the field of computer vision which is a science of simulating human
vision, i.e. creating methods to give a machine the ability of how to interpret, process,
analyze, and reconstruct a 3D (three dimensional) scene like human’s perception of the en-
vironment. For instance, by looking at an image including several people, You can easily
distinguish each of the people from the background, and tell the shape of their face, skin
colors, and even assume their sensation from the facial expression. To achieve the goal,
computer vision requires to apply a combination of several fields of knowledge including :
computer science, electrical engineering, mathematics, biology, physiology and cognitive
science. Therefore, the aim of computer vision is first in analyzing objects in images to
generate meaningful and explicit interpretation of contents [10, 11, 12]. Computer vision
plays an important role in many applications, such as:detecting unexpected obstacles such
as pedestrians on the street, Optical character recognition for reading handwritten postal
codes on letters and Fingerprint recognition [13]. Obviously, object detection technology
is at the core of many computer vision applications which deals with detecting instances
of semantic objects of a certain class (such as humans, buildings, etc) in digital images
and videos, and has been studied in many works to improve the performance in recogniz-
ing the objects in pictures. That is still a big challenge because of having immense types
of object classes in the real world, while each class itself includes objects with extreme
variations in shape, appearance, and positions (e.g. see Fig. 3 ). Main issue need to be
tackled in recognizing object categories is how to represent and detect objects invariant to
distortions, appearance, and geometry variation.
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Figure 3. Example of object class variation for categorization.(a): appearance variation in class
of bird. (b): poses variation in class of spotted cat. (c): scale variation in class of car side [14]

2.1 Object class detection

If the class type of an object that we are looking for in the image is known, then it is
possible to find the object by rapidly scanning the image to find a match using different
algorithms.The object detection system learns a general model of the class so that model is
not too selective or else it cannot detect all objects due to variation inside a class type. One
example is face detection having broad usage in many applications like digital cameras.
One example of face detection is presented in Figure 4.
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Figure 4. Example of face detection [15]

2.2 Object classification

The more challenging version of recognition is class or category recognition in which
the problem is to identify the specific class of any instance presented in the image such
as the general class of car, watch, airplane, face, etc. One common method to object
categorization is shifting a search window over a given image and categorizing the object
in the window with a classifier [16].

This section covers the most significant object detection approaches having differences
with respect to what they are focusing on [17]:

• importance of localization (the location and scale of an object in the image [18] like
Fig. 5 ).

Detecting the presence of the object is the main goal of the methods, and the ac-
curate localization is of second importance. While the exact localization has the
highest priority in some other procedures.

• Detecting a single or detecting multiple object classes at a time.

• level of supervision including: supervised (manual), semi-supervised, unsuper-
vised.
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Figure 5. Examples of localization of mug [19]

2.3 Object detection methods

The main stream approach is to break objects into parts that are easier to detect such
as Fig. 6. This is one of the oldest approaches of object recognition which was first
introduced by Fischler and Elschlager [20]. In this model, instead of handling with the
whole object to create a description, the object is first divided into smaller parts, then
the appearance model is defined for each part which represents part features of the object
class. Next, the geometric relationships between the parts are matched which is called
spatial structure. Accordingly, description of local image parts can be less complicated
than a description of the whole object. Another advantage is that the system can naturally
handle the objects with parts occluded by other elements in the image (see Fig. 8) as well
as deformed objects (see fig. 7) [17].
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Figure 6. Part based recognition [21].

Figure 7. Example of deformed object.
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Figure 8. Example of occlusion: face is occluded by the book

The main issues in part-based recognition models are the representation of geometric re-
lationships, the representation of divided parts, and algorithms for learning such descrip-
tions and recognizing them at run time. For instance, in the first work by Fischler and
Elschlager [20], the pictorial structure containing spring-like links between different fea-
ture locations (Fig. 9) was applied to represent geometric relationships [13]. Then they
fit the pictorial structure to the image by operating mathematical process (more details
in [20].

Figure 9. Pictorial structure representing the class: human face [20]
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The geometric connection between the small parts of an object can be represented us-
ing varying topologies (Fig. 10, and Fig. 11). For instance, in the part-based model by
Felzenswalb and Huttenlocher (2005) [22], tree topology is applied (Fig. 10(d)). Another
topology called sparse flexible model proposed by Canoe and Lowe (2006) [23] in which
the parts are ordered and represented in a graph shape (Fig. 11(g)), and the geometry of
each part is related to the geometry of its K neighboring parts, where K is the degree
of connectivity of each part (Fig. 10(c)). The most plain model is visual bag of features
(bag of words, BOW) including parts without any geometric relationships (Fig. 10(e)),
but they still can be counted as very efficient models [24, 25] . Tree and star topologies
are recognized as the most efficient models in terms of inference and learning [22, 26, 27].

Figure 10. Graphical models for geometric spatial priors : (a) constellation [28]; (b) star [29]; (c)
k-fan (k = 2) [29]; (d) tree [22]; (e) bag of features [24, 25]
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Figure 11. Graphical models for geometric spatial priors : (f) hierarchy [30]; (g) Sparse flexible
model [23]

Recently, most of the work in the area of computer vision has become interested in apply-
ing The pictorial structure to solve the problems such as object recognition [31, 22, 32],
facial feature detection [33], human pose estimation [34, 35, 36], and action recogni-
tion [37]. Specifically, DPMs [10, 11] ( discriminate trained deformable part-based mod-
els) have demonstrated high performance of object detection.

2.4 Learning object class model

The popular approach of object detection in part-based system consist of first discovering
interest points in the training images including objects. A model of object class is learned
by generating a local image description of the interest points, and finally testing all images
that consist the objects [17].

The systems of Learning object class model utilize different interest point detection tech-
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niques depending on the level of supervision [17]. The level of supervision depends on the
manual contribution of selecting interest points. The more supervised, the better quality
resulting from accurate interest points leading to less complexity in the process of model
learning since the probability of having interest points outside of the object will be quite
low. Accordingly , object detection methods can be classified into: supervised, semi-
supervised, and unsupervised types, however this classification may not be completely
clear since the supervision level does not concern only the part of interest point detection,
but also other stages of a system such as labeling, image alignment, and segmentation of
training images.

2.4.1 Fully Supervised methods

In this type, the interest point selection is done completely manually, and object location in
each image is known. Some examples of significant works are poselet-based methods [38,
39]. poselet is a new description of a part with special predefined requirements, and ”
is trained to respond to a given part of the object at a given viewpoint and pose” [40].
E.g. for the purpose of human detection, lots of poselets are defined such as frontal
face, profile face, a head-and-shoulder configuration, etc. Some of the works based on
this method are [38, 41, 39] where the appearance of human body parts is learned by
manually annotated limb location.

2.4.2 Supervised learning methods

In supervised methods, training images are segmented and labeled (i.e. learning in the
presence of ground truth).the number of training images and that how much they cover
the possible variations in an object class affect the difficulty of learning a model. It is
desired to define a model that can be generalized. For instance, with only a single view of
a bike, the learning model cannot identify a bike from all directions [17].

Labeling can be done based on different criteria . In approach [16] where the task is di-
vided into two steps: categorization between class object types (such as classification be-
tween faces and other classes) and identification within the class object ( face recognition
of specific people among others) using Support Vector Machines (SVM), and component-
based identification. For categorization part, label is used to distinguishes the class of the
object in the image. For identification, label identifies the individual object [16]. e.g.
scene categorization (mountains, forests, etc) is performed in [42] by semantic classifica-
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tion process. In semantic classification, images are first segmented in a 101
2
10 grid, and

then each segment is classified to a specific class type (such as road, tree, etc. ) and called
local semantic. scenes are classified based on the frequency of occurrence of local seman-
tics (object). and then a prototype of each scene category is constructed. one example of
the scene categorization but by other similar work [43] is shown in Fig. 12.

Figure 12. Results when classifying scenes by supervised method: (a) original image,(b) object
recognition, (c) object occurrence. In this work [43] the goal is to organize images into three
different scene categories: road, suburb, city. Images are segmented and labeled manually into 7
objects:sky, grass, road, vegetation, dark house, white house, and ground. (c) shows the number
of occurrence of each object in the images.

Voila and Jones (2001) [44] proposed a method of real-time face detection where Images
are segmented by performing AdaBoost and integral images, Then used for learning a
face model. The detection is highly fast, although the training is slow. Also, classifier is
learned from labeled data. In another approach [45], kernel methods is utilized for the
purpose of object recognition where SVM was selected as kernel machine. This method
performed successfully for supervised learning problems like regression and classifica-
tion.
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2.4.3 Weakly supervised (semi-supervised) methods

In this approach only a small part of the data is labeled , hens we need to use both labeled
and large sets of unlabeled data [17].

Weakly supervised methods can also be divided based on their usage of constellation mod-
els. Lots of methods use the structure model. For instance, Agarwal and Roth [46] have
used a vocabulary for object’s parts, plus their spatial information. Works of Perona’s
team [47, 48] utilize the Expectation-maximization (EM) algorithm to learn the parts and
constellation model. In [49], a hierarchical tree structure of local features Principal com-
ponents analysis (PCA) SIFT based was defined to align images. Some other methods are
not interested in using structure model such as [50] which takes advantage of combining
different interest point detectors and local descriptors with AdaBoost, or in [51] Bayesian
learning of image features is used.

2.4.4 Unsupervised methods

The goal of unsupervised methods is learning from unlabeled data. Some of the most
common object detection methods are represented in the following sections, but before
that, a brief description of the few methods of interest point detection and local image
descriptions is given to have a clear understanding of the rest of the section.
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3 LOCAL REGION BASED DETECTION

3.1 Interest points and detection method

Interest points are particular locations in the images that can be considered as first no-
ticeable character of each object included in the image such as mountain peaks, building
corners, etc, and they have clear definition usually in a mathematical way [13] interest
points are also called as key point features, distinguished regions, affine regions, and
salient regions. To define interest points, methods usually use the appearance of patches
of pixels around the location of point, so this is the surrounding area of the point which
specifies whether a point is interesting or not. The significant feature that should be con-
sidered for interest point detection methods should be stable to change of scale, rotation,
noise, illumination. For instance,by changing the viewpoint or imaging conditions, there
should be no changes in the discovered interest points [17] Some of the famous interest
points detector methods are introduced in the fallowing.

3.1.1 Harris corner detector

Harris corner detector is one of the first interest point detectors in which both edge and
corner of the image are detected [52] (see Fig. 13). Additionally, the junction is defined
as meeting edges at corners. In Harris corner detector, Moravec’s corner detector func-
tions [2] are utilized. Such functions work by shifting a local window in the image that
captures the intensity of each part of the image. The average variation of image inten-
sity is found using the captured information.The amount of shifting could be adjusted in
different directions. Shifting results can be interpreted as follows [52]:

1. The change resulted from all shift are minor if there is no serious intensity variation
in the image.

2. In case of having window riding an edge, shift along the edge will result in a minor
change. In contrast, a shift perpendicular to the edge will result in a large change.

3. All shifts will result in a large change if the window contains a corner or a single
point. Therefore,large changes resulted by any of the shifts should be considered as
a corner.
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Figure 13. Interest points found by Harris corner detector [53]

Harris and Stephens [52] defined a mathematical expression based on the Maravec’s idea
calculating the change E produced by a shift (x, y), I signifies image intensity and W
denotes the image window [52].

Ex,y =
∑
u,v

Wu,v |Ix+u,y+v − Iu,v|2 (1)

The Moravec’s method accompanied some difficulties including: an isotropic response
due to performing just an uncontinuous set of shifts at every 45 degrees and noisy re-
sponse due to applying rectangular binary window. Another drawback is that the operator
response too willingly to edges because only the minimum of E is considered. These
problems have been solved in Harris and Stephan approach [52], and the final useful
equations are:

Ex,y = (x, y) ∗M (x, y)T (2)
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where M is 2× 2 symmetric matrix defined as :

M =
∑
x,y

W (x, y)

[
I2x IxIy

IxIy I2y

]
(3)

where Ix, and Iy are derivatives of x direction, and y.

As it was mentioned large variation of E in all directions indicates an interest point. This
feature can be represented also by considering α and β as eigen values of M , then we
have: the corner is discovered if both α and β are large, if both are too small then there
is no interest point at all (i.e. the image is flat), and if one has large value and the other is
small, then there is an edge. In [52], the function is defined with some changes in order
to get rid of calculating eigenvalues that is computationally expensive [52, 54]:

trace (M) = α + βDet (M) = αβ (4)

therefore,
R = Det (M)−K (traceM)2 (5)

WhereK is a tunable sensitivity parameter in a range of 0.04 to 0.15. Positive value forR
indicates a corner region, negative value shows having an edge point, and for a flat region
the value of R is small. This method is more effective for finding corner points since
they have much higher stability than edge-points. This model is robust to rotation and to
some degree to intensity variations, but is variant to scale changes. This method has been
improved later on by Mikolajczyk and Shmid [55] to compensate its weakness and make
it robust to scale variation.The method is known as Harris-Laplace detector which is a
dual process performing the Harris corner detector at multiple scales, and automatically
selecting the characteristic scale. The system was again extended in the same approach in
order to make it affine invariance and named Harris-Affine [55].

3.1.2 SIFT (Scale-Invariant Feature Transform) detector

It is an algorithm presented first by David Lowe in 1999 [7] to detect and describe local
features in an image by transforming an image to a collection of local feature vectors.
The idea is to find minima or maxima of a difference-of-Gaussian function in order to
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specify significant locations (clue) in scale -space to form feature vectors. The method
was improved in 2004 [56]. Next the interest point detector is briefly described,and SIFT
Descriptor is explained later since the SIFT detector and SIFT descriptor are two different
methods. The algorithm consists of filtering steps, and the overall process is:

1. Scale-space extrema detection: Multiple scales and image locations are investigated
to find locations and scales capable to be assigned frequently under various views
of same scene using a continues function scale called Gaussian.The scale space
of an image is identified by function L (x, y, σ) created from the convolution of a
Gaussian kernel(at different scales) for an input image I (x, y):

L(x,y,σ) = G(x,y,σ) × I (x, y) (6)

2. Keypoint Localization: Some of the points are ignored by fitting a model to deter-
mine the location and scale of interest points, only selecting key points based on
a measure of stability. Maximum and minimum of difference-of-Gaussian in scale
space is detected in a way that each point is compared to its 8 neighbors in the
current image and 9 neighbors each in the scales above and below, and the point is
chosen if it is the maximum or minimum of all. After detecting a key point can-
didate, a detailed fit to nearby data is performed to determine location, scale, and
ratio of principal curvatures. In the initial work in 1999 key points were found at the
location and scale of a central sample point. In latter work, a 3D quadratic function
is fitted to improve interpolation accuracy. In addition, the Hessian matrix is used
to eliminate edge responses.

3. Orientation assignment: Compute best orientations for each key point region by
generating histogram of local gradient directions at selected scale, and assigning
a canonical orientation at the peak of smooth histogram where each key specifies
stable coordinates: (x, y, scale, orientation).

4. Keypoint description: Calculates local image gradients at the selected scale and
rotation to describe each keypoint region. This method is able to remain invariant
to image rotation, scaling, translation, and to some degree to illumination variation
and affine or 3D projection (describe in more detail in Section 3.2.1).
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3.1.3 Entropy based detector

the approach is proposed in [57], and is robust to change of rotation, translation and small
affine transforms.Here, the detection process takes place by going through the fallowing
stages:

1. Finding local image areas entropy (entropy of gray-level or color histogram) over
different scales with the form of resizable circles. For example, there is a histogram
including a strong peak in a flat image area for which the entropy is low, and a
histogram of various peaks or with no peaks (flat) for an image area consisting
more alternation which represents higher entropy.

2. Selecting scales which have maximum entropy

3. To weight entropy values, an inter-scale unpredicted measure is used. In this model,
the scales with a powerful peak would have higher weight in the image areas, and
vice versa [17].

3.2 Feature descriptors

Feature descriptors (local image descriptors) are used with interest point detectors. First,
the keypoints (features) should be detected. To find which keypoints are matched we
need to find which ones belong to corresponding locations in various images. Some fa-
mous methods are LBP (local binary patterns), SIFT, steerable pyramid, MOPS (multi-
scale oriented patches), multi resolution Gabor filters, etc. But only a few of them are
introduced next.

3.2.1 SIFT descriptor

Also known as Lowe’s keypoint descriptor and is invariant to scale and rotation [56]. The
SIFT method includes the following steps (Fig. 14 illustrated the steps):

1. Normalize region around the interest point.

2. Calculating gradient magnitude and orientation at each pixel in the region ( in a
16× 16 window around the keypoint).
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3. Applying Gaussian window on the circle to weight them such that as the distance
form center point increases the gradient magnitudes become smaller. The advan-
tage of weighting is preventing the descriptor of having large changes resulted by
shifting window.

4. Generating an orientation histogram over the 4 × 4 sub regions of the window by
splitting the weighted gradient in each sub region performing interpolation to 8

primary directions and then summing.

5. Now, we have 4×4 descriptors over 16×16 sample array, and 4×4 times 8 primary
direction which leads to a vector of 128 values, so the descriptor length is 128, and
is finally normalized to unit length [13].

Figure 14. example of SIFT descriptor [13]

There are also other approaches such as PCA-SIFT which tries to extend the SIFT method
and compensate the disadvantage of high dimensionality (128) of the descriptor which can
be difficult for classifiers.

3.3 Dense sampling

Dense sampling is an image representation technique which uses a fixed pixel interval to
sample points i.e. points are sampled on a regular dense grid (see Fig. 15), so it contains
large number of samples at regular intervals. There are two types of dense sampling:
multi-scale dense sampling, and dense sampling with a single scale. Dense sampling
provides a better coverage of the image such that for each image region it produces a
fixed amount of features, and simple spatial relations between the features. Besides, in
some cases where the training image has low contrast, then no interest point is detected.
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While dense sampling method is capable to provide useful information even if the patches
are not matched correctly. In addition, the regular pattern of spatial information between
features is easily described in a plane model [5].

Figure 15. example of SIFT dense sampling [14]. A grid (yellow circle) shifts over the image and
samples the interest points.

3.4 Geometric transformation

Generally, there are five types of linear transformation both in 2D and 3D spaces [13].
Which are going to be described here in short details in a 2D plane (Fig. 16) since the
techniques are similar for 3D too. Prior to describing the transformation types, geometric
primitives including points, lines are required to be introduced:

• 2D points or image’s pixels are represented by the values of their coordinates:

~P =

[
Px

Py

]
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• 2D lines : Considering ~L = (a, b, c), The line equation is:

~P .~L = aPx + bPy + c = 0 (7)

Figure 16. Set of 2D planar transformations [13].

1. Translation: Translation is described as a function moving the points in a specific
direction with a fixed distance. Therefore, it can be considered as a constant vector
which is added to all points. P (Px, Py) is transformed into Q (Qx, Qy) as follow:

~Q = ~M ~P + ~T (8)

where M is defined as:

M =

[
1 0

0 1

]
= I (9)

T =

[
Tx

Ty

]
(10)

[
Qx

Qy

]
=

[
Px + Tx

Py + Ty

]
(11)

2. Euclidean (also known as 2D rigid body motion or the 2D Euclidean transforma-
tion): Performs both rotations, and translation in the image [13]. Consider M as
rotation matrix, the rotation of point P (Px, Py) is described as:

M =

[
cos θ − sin θ

sin θ cos θ

]

T =
[
0 0

]
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~Q = ~M ~P + ~T

Qx = Px cos θ − Py sin θ

Qy = Px sin θ + Py cos θ

(12)

The translation was described in previous step, therefore the translation+ rotation
equation can be represented as below:[

Qx

Qy

]
=

[
Px cos θ − Py sin θ + Tx

Px sin θ + Py cos θ + Ty

]
(13)

3. Similarity : also known as scaled rotation where scale is defined as following:

M =

[
Sx 0

0 Sy

]

T =
[
0 0

]
[
Qx

Qy

]
=

[
PxSx

PySy

]
(14)

Sx = Sy =⇒ Uniform scaling
Sx 6= Sy =⇒ Differential scaling

The rotation is described before. Thus similarity is expressed as follow:[
Qx

Qy

]
=

[
PxSx cos θ − PySy sin θ

PxSx cos θ + PySy sin θ

]
(15)

4. Projective: also know as perspective transform or homography, and is defined as:

~Q = ~M ~P (16)

Where M̄ is an arbitrary 3× 3 matrix [13].

5. Affine
In this type, each point such as P (Px, Py) is transformed into Q (Qx, Qy) as below:

Qx = aPx + cPy + Tx

Qy = bPx + dPy + Ty
(17)
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[
Qx

Qy

]
=

[
a c

b d

][
Px

Py

]
+

[
Tx

Ty

]
(18)

~Q = ~M ~P + ~T (19)
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4 STATE OF THE ART

4.1 Congealing methods

Object position in all training images can be automatically found by congealing instead of
manually annotating them. The original congealing method [3] is shortly described here.
The notation of ”congealing” first entitled by the seminal work of Learned-Miller [3],
and refers to group-wise image alignment. Congealing is an algorithm to jointly align
an ensemble of misaligned images (images are represented by a set of array of arbitrary
dimension), and make them as similar as possible, according to some similarity measure-
ment [3] (see Fig. 18). The term of alignment refers to any kind of allowable transfor-
mations. In [3], pixel values are used directly as features. Every congealing application
consists of three essential elements:

• a set of arrays of measurements. e.g. In [3], binary images are selected as set of
arrays of measurements.

• a continuous set of allowable transformations.e.g. affine transformation in [3].

• a measure of the joint similarity of the arrays within the set. like a method used
in [58]

The general steps of congealing are:

4.1.1 Transform parameterization

In [3], The type of transformation considered for congealing is spatial transformation,
and composed x-translation, y-translation, rotation, x-scale, y-scale, x-shear, y-shear, and
have the transformation of vector V as:

V = (tx, ty, θ, sx, sy, hx, hy) (20)

A transformation matrix is generated using the product of the members of v in the same
order as they have appeared (constant order):
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U = F (tx, ty, θ, sx, sy, hx, hy)

=

1 0 tx

0 1 ty

0 0 1


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


e

sx 0 0

0 esy 0

0 0 1


1 hx 0

0 1 0

0 0 1


 1 0 0

hy 1 0

0 0 1


(21)

4.1.2 Entropy estimation

The image congealing algorithm repeatedly minimizes the entropy across the stack of
image’s pixels by transforming each image by a small amount with respect to a set of
possible affine transforms. Image type is binary. In Binary images, pixels have only the
values of 0 (black) or 1 (white), and Each image consists of P pixels. The value of ith
pixel in the jth image is expressed by xji . The pixel value for a transformed image is
specified by xj′i . Pixel stack is created by taking a value of a pixel at a particular location
from each transformed image which is also shown by Figure 17. It can be expressed
as: x1′i , x

2′
i , ..., x

N ′
i in which N is the total number of images. then empirical entropy is

estimated
ˆH (xi) = −

(
N0

N
log2

N0

N
+
N1

N
log2

N1

N

)
(22)

where N0 is the number of 0 (black) and N1 is the number of 1 in the binary-valued pixel
stack. The quantity

∑P
i=1H (x′i) (each image contains P pixels) is minimized iteratively.

Fig. 18 demonstrates the result of this method.

Generally, Image congealing methods working on pixel level require moderate initial
alignment in order to converge properly, and are sensitive to intra-class variation and
background clutter [59].

4.1.3 Extensions

There are also other congealing methods proposed [60, 61, 62, 63], but they are actu-
ally extended and improved versions of the original algorithm. In these methods, using
original image intensities (as explained in 4.1.2) to represent features resulted in some dis-
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Figure 17. A pixel stack is a collection of pixels drawn from the same location in each of a set
of N images. Here, the ith pixel from each of six images forms a pixel stack. Since half of the
pixels are black and half are white, this corresponds to a Bernoulli random variable with parameter
p = 0.5. The entropy of such a random variable is (−0.5log20.5 + 0.5log20.5) = 1 bit [3].

Figure 18. top left) Samples of zeros, (top right) samples of twos. (bottom left and right) Results
after congealing using the Miller method
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advantages. For example, if the image ensemble is large, then a high dimensional space
for representing features (pixel intensities) is required, and computing would be time con-
suming. Another drawback is extracting intensities from all pixels, while each pixel has
an approximately close intensity to the neighboring pixels. Thus, there will be extra pixel
intensity [64]. A solution to overcome this problem is to create a methods with the task of
feature selection to ignore extra information like a method by Xue [64]. To improve the
performance and accuracy of congealing, various methods have been proposed [65, 4, 6].

For instance, Cox et al. [4, 66] and Yan et al. [6] create least-squares-based congealing
algorithms . In the context of learning paradigm, unsupervised congealing [4, 5, 1], and
semi-supervised congealing [2, 55] methods have been proposed. A global affine warp
function is defined in [4] to compute pair-wise image distances. A novel technique called
Fuzzy-entropy based image congealing is proposed in [66]. This technique uses the orig-
inal algorithm with fuzzy-entropy to improve the performance.

The thing not considered is a more efficient feature representation, since the cost function
is computed in most works by using pixel intensities criteria. However, a recent work by
Xueya and Liu [64] tried to refine this problem by utilizing their own method of unsuper-
vised feature selection in order to select only a sub-set of features automatically instead
of considering all pixel features. They claimed that just utilizing less the 3 percent of the
original feature representation, the accuracy and performance of congealing are consid-
erably improved in comparison to methods with no feature selection. Huang et al. [62]
used congealing for images with higher complexity such as faces and cars utilizing SIFT
descriptors as the features. In [4] Newton optimization model is applied to improve the es-
timation of transformation parameters and patterns of oriented edge magnitudes (POEM)
instead of the SIFT descriptor. Both edge information and the relation between pixels
in a neighboring region is provided by POEM [65] leading to a better performance than
congealing with SIFT. In [4] they took the benefit of Leaned-Miller congealing and Least
Squares congealing. In this thesis, a different method to congealing works is used since
methods based on pixel level processing are not effective when we have an ensemble
of object severely varying in position and appearance. The assumption in congealing is
that the ensemble contains images of similar objects in almost same poses. They cannot
handle the problems of background clutter, occlusion, and noisy images. The problem
mainly originates from omitting spatial information about the features. Our approach, the
feature-based unsupervised alignment of visual class example gives a solution by defining
a local feature-based algorithm to automatically align object class images to a given seed
image. The following section describes the original technique.
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4.2 Feature-based alignment

The recent datasets consist of images with different poses and geometric variation such
as changes in translation, rotation, and scaling. Such variations make the learning object
class models more challenging. Such challenges can be addressed using feature-based
alignment method. Most popular solution is supervised alignment requiring manual an-
notation of objects. For example, method of Jiang et al. [58] need bounding boxes and
Chen et al. [67] and kokkinos and Yuille [68] need manually annotated features in the
initial training stage. This thesis uses an unsupervised solution based on spatial scoring
in which extracted features are scored if their spatial configuration in other images isthe
same. The whole process of the method is presented by the following steps where one of
the images in the dataset is considered as a seed image which is an image that has good
matches in as many other images as possible. Selection of seed will be discussed later.

1. Detection and description of local features

For all images in the dataset, local features are extracted by local feature detector
and represented by local feature descriptors.This step produces a vast number of de-
tection failures and false matches (outlier) and thus we need to find out which points
are useful (inlieres). There are various detectors and descriptors (see Sections 3.1
and 3.2) that could be used. In current study, SIFT descriptor (vl-SIFT)and dense
sampling (vl-densems) have been selected since their performance in the feature-
based alignment method was tested previously, and they both performed well.

2. Finding putative feature matches

This step finds putative matches for N local features Fs extracted from a seed image
Is. From another image Iitotal of Mi local features Fi are extracted. Then, distance
matrices DN×Mi

between the seed and i = 1, .., I other images are computed using
the SIFT descriptor distances. The notable thing is that not only the best matches are
selected for each seed features, but also all distances are computed for the reason
that local appearance variation makes even the best matches not perfect and thus
a small number of the K best matches need to be retained (the correct match is
expected to be among the K closest matches). Seed example and background noise
in images define the optimal K. For instance, Figure 19 shows both wrong and
correct feature matches.
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Figure 19. Matching local feature (SIFT detector descriptor) including both failed matches and
correct ones.

3. Selecting the best seed features by randomized spatial scoring At this stage, the
spatial location is used for accumulating scores for points which match under some
transformation. The rigid linear transformations, 2D homography, are preferred
for efficiency. The linear method with Umeyama [6] for estimating a similarity
transformation (translation, scaling, and rotation) is adopted. Then, the minimum
number of correspondences is randomly selected, estimated a homography trans-
formation, transform all image points to the seed image and accumulate scores of
the putative features within a preset distance. The pseudo code of this approach is
given in Algorithm 1.

Figure 20. Top: examples of the highest scoring spatial matches (v in Alg. 1). Bottom: twenty
best overall scoring landmarks (sN).
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Algorithm 1 Class specific landmark selection by spatial scoring.
Pick a seed image and remove it from the image ensemble.
Extract seed interest points and form their descriptors(tot.ofN)

Initials score vectors sN of N seed feature candidates.
for all images indexed with i do

Extract interest points and form their descriptors.
Compute the distance matrix DN×Mi

.
Initials image−wise score vector v ← 0.
for R random iteration do

Select two random seed features
Select random correspondences within the K best matches in DN×Mi

Estimate 2D homography from the image i to the seed space (Umeyama method
[27])
Transform all image features to the seed space.
for all seed feature j (excluding the select two) do

if the seed feature j has matches closer than τ within theK best inDN×Mi
then

Increment the seed feature score: v (j)← v (j) + 1.
end if

end for
end for
Sort v and increment the L highest seed scores in SN .(All images have equal con-
tribution.)

end for
Return coordinates and descriptors of the L best scoring seed interest points.

The spatial scoring algorithm outputs the best L seed landmarks based on the top
scores.The top scoring seed features represent parts which have been independently
verified by other features in a similar configuration in other images.(Bring example
image)

4. Alignment using the selected seed features

With the best scoring landmarks s1, ..., sL the alignment procedure itself is straight-
forward. For a number of random iterations, the minimum number of seed land-
marks are selected, then homography is estimated to randomly selected Corre-
sponding points within the best matches, and finally, the transformation that pro-
duces the highest number of inliers is selected and the transformation re-estimated
using all inliers.
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The problem with the original method is that, the seed image needs to be selected manu-
ally (supervised) so the method is supervised. Besides, when we have a large dataset, it
is slow to find the best seed image for each class by testing all as the seed. This method
needs to be extended by finding an approach to select a good seed image automatically.
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5 AUTOMATIC SEED SELECTION IN FEATURE-BASED
ALIGNMENT

As mentioned in Section 2, alignment of class examples is a predominant problem in
learning object class models for detection, localization and classification. The problem
has become more significant with the recent datasets where objects are not centered and
poses are not carefully selected. In addition, performing this task manually is expensive
and slow that can lead to prolong the progress of business and research laboratories. Thus,
it is required to find a technique which has the ability of aligning objects in an unsuper-
vised way which is the topic of this thesis. The disadvantage of feature-based method in
Section 4.2 is that it relies on human at the first stage to select the best seed. This is not
efficient in the real world where there are enormous number of images and classes. In
the worst case, one needs to analyze all images in each class in order to find the one that
could be matched best with other images. This section aims to describe a novel method
to solve the problem.

5.1 Overall description

The goal is to automatically find an appropriate seed image by going through the steps of
Algorithm 2. The steps will be explained next.

Algorithm 2 general steps of best seed selection
1: for i = 1 to I do
2: set the image i from data set as seed
3: Create distance matrix , DN×M

4: Compute spatial score matrix, sptScoreI×I
5: Compute similarity matrix, simScoreI×I
6: end for
7: Perform optimal seed selection algorithm

To clarify the steps, and algorithms explained in rest of the thesis following Assumptions
need to be considered.

Assumptions:
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• I denotes the total number of images. (i = 1, 2, , , , , , I)

• D denotes distance matrix

• sptScore denotes spatial score matrix

• simScore denotes similarity matrix

• seed denotes seed image

• img denotes candidate image (any image from data set excluding seed that is going
to be compared with seed)

• N denotes the number of seed features

• M denotes the number of image features

• K denotes the number of best feature matches

• T denotes transform matrix

5.1.1 Distance matrix

Distance matrix defines the difference between each seed’s feature and candidate image’s
feature. To create distance matrix, we need to first extract features from images and
seed. Thus, feature detection and description methods should be applied. The current
work preferred to use dense sampling instead of interest point detection since work of [5]
showed that producing more patches in dense sampling outperforms point detectors. The
current work used single scale dense sampling version which is appropriate for images
invariant in scale and rotation. The multiscale version of dense sampling is not feasible
for this work due to performing slowly. Also, it is more suitable for images with scale and
rotation variation. Methods which are utilized by this thesis as descriptor and detector are
VL-SIFT (VLFEAT 1), and VL-dense created by Andrea Vedaldi and other researcher.
The program selects regions from images and computes their descriptors, and returns
them in the form of matrices. For each image, there is a descriptor matrix. Distance
Matrices are created by calculating the distance between each seed’s feature to each of
image’s feature. i.e. if we have N number of seed feature, and number of features for ith
image is M, then we have N ×M calculation. e.g. distance from feature number 1 of
seed should be calculated from all M features of the image. The calculation process is
given by a simple example:

1http://www.vlfeat.org



44

For instance, the distance between x and y is calculated by:

Distance (x, y) =
∣∣x2 + y2 − 2× x× y

∣∣ (23)

5.1.2 Spatial score matrix

The method to calculate spatial score corresponds to step 8 to 20 in algorithm1 (Section
4.2). Similar to alignment procedure all images are aligned using k seed features.

The reason for performing the process of R random iteration is that it is computationally
expensive to test all possible combinations to discover the best match, and thus suffi-
ciently large R = 1000 is used. To estimate homography the direct linear transform
(DLT ) [69] is utilized. The selected transformation type to map candidate features to a
seed space a similarity transformation because of being capable of detecting objects in
various orientations, location, and scales. Besides, its estimation process is faster than
affine or projective as it has less free variables. The landmark distance threshold is set
to 0.04, the K best match is set to 5, and the number of best scoring seed interest points
L = 80.

The spatial score matrix is constructed by going through steps 8 to 20 in algorithm 1.(Sec-
tion 4.2) and applying above assumptions. The spatial score for each seed is a 1 × I

dimensional vector since seed is compared to all images in data set. The spatial score of
image i and seed represents the number of matched features between transformed image i
and seed. In our case, the L is initialized to 80 which means we are checking the number
of matches only for 80 number of seed’s features. Therefore, the values in spatial score
are within 0 − 80. The following shows one example of the output of the program for
spatial score matrix. In this work, the spatial score is a matrix instead of a vector because,
we run the algorithm 1.(Section 4.2) for I number of iterations. At each round of this
loop, one image from data set is taken as seed, and the spatial scores between the seed
and other images are calculated and stored in a row of the spatial score matrix. For in-
stance, if we have a data set containing 10 images (i = 1, 2, , , , 10). In first round, image1

is set as seed, and the spatial scores between seed and images in data set ( i = 1, 2, , , 10)
are calculated. Each score is stored in row 1 with the same column number as image
number in data set. e.g. spatial score between seed (image 1) and image 3 is placed in
sptScore(1,3). The spatial score is also calculated between seed and image 1 which are
both same images. Obviously, the spatial score between one image and itself generates
highest score which is 80 in our model. The process repeats until all images in the data
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sptScore =



80 67 17 57 42 33 71 17 75 52
74 80 19 45 58 29 77 18 76 47
19 18 80 30 16 15 19 16 13 28
57 44 15 80 54 49 52 16 55 65
53 57 44 63 80 22 58 28 42 55
54 50 44 56 41 80 49 27 59 44
80 77 19 49 57 22 80 21 80 47
20 22 34 23 21 20 22 80 20 25
78 59 18 53 42 25 74 26 80 39
30 34 21 39 36 32 28 18 25 80


(24)

Figure 21. Row’s number indicates the seed image index, and column number indicates candidate
image index in the data set. Scores on diagonal are 80 that shows the number of matches (land-
marks) between the seed and itself. Therefore,it can be interpreted that images with scores closer
to 80 should be similar to seed.

set considered as seed and the spatial scores are calculated. At the end of process, we
would have a I × I sptScore matrix. Following demonstrates the sptScore for the above
example:

5.1.3 Similarity matrix

Similarity matrix is generated by adapting the technique proposed in [70] for unsuper-
vised visual object categorization with BOF and spatial matching. The reason is that it
performed very well for clustering objects in an unsupervised manner by a spatial score
which is similar to this work, and in [70] was ’ spatial matching similarity rank’. In [70],
object categorization performance is improved by using similarity. Hence, to select the
best seed that requires a reliable factor, the usage of similarity should provide higher
accuracy rather than using the plain spatial score.To acquire the similarity matrix, the
following steps are used:

1. Ranking each image according to its spatial score First, each row of sptScore
matrix is sorted in an ascending order, and the sort indeces are stored in another
matrix called reservedIndex. For instance, consider previous example of sptScore
matrix in Section 5.1.2. The sorted sptScore and reservedIndex are :
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sptScoreSort =



17 17 33 42 52 57 67 71 75 80

18 19 29 45 47 58 74 76 77 80

13 15 16 16 18 19 19 28 30 80

15 16 44 49 52 54 55 57 65 80

22 28 42 44 53 55 57 58 63 80

27 41 44 44 49 50 54 56 59 80

19 21 22 47 49 57 77 80 80 80

20 20 20 21 22 22 23 25 34 80

18 25 26 39 42 53 59 74 78 80

18 21 25 28 30 32 34 36 39 80
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reservedIndex =



3 8 6 5 10 4 2 7 9 1

8 3 6 4 10 5 1 9 7 2

9 6 5 8 2 1 7 10 4 3

3 8 2 6 7 5 9 1 10 4

6 8 9 3 1 10 2 7 4 5

8 5 3 10 7 2 1 4 9 6

3 8 6 10 4 5 2 1 7 9

1 6 9 5 2 7 4 10 3 8

3 6 8 10 5 4 2 7 1 9

8 3 9 7 1 6 2 5 4 10



(26)

The value in each row of reservedIndex matrix refers to the column number of
the image’s place in unsorted sptScore matrix. The highest spatial score occurs in
a diagonal of the sptScore matrix which means that the highest score is the one
between seed and itself. It is also possible to have the same value as the highest one
(80) between seed and other images such as seed 7 in above example. According
to sptScore matrix, there are 3 images(1, 7, 9) with the maximum score 80. It is
expected to have the seed’s index in the last column of reservedIndex matrix, but
row 7 demonstrates that it is not always true. reservedIndex(7,10) = 9 instead of
being 7. The presence of this condition should be checked as fallowing

if reservedIndex (i, I) 6= i, ∀i∃ {1, 2, , , 10} then
Swap the values of reservedIndex(i, I) with reservedIndex(i, I − 1)

end if

The factor rank (i, j) specifies the level of similarity of image j to seed i in compare
to all images in a data set. Following is an example according to reservedIndex
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matrix in (14).

rank(2, 2) = 10

rank(5, 3) = 4
(27)

2. Converting rank to similarity

Similarity is created by using the simple formula:

S (i, j) =
N

rank (i, j)
(28)

To enforce the similarity matrix symmetric the following is applied:

S (i, j) = MAX (S (i, j) , S (j, i)) (29)

The similarity matrix for our example would be:

simScore =



1.00 1.42 10.00 1.66 2.50 3.33 1.25 5.00 1.11 2.00

1.42 1.00 5.00 2.50 1.66 3.33 1.11 10.00 1.25 2.00

1.66 2.00 1.00 1.11 3.33 5.00 1.42 2.50 10.00 1.25

1.25 3.33 10.00 1.00 1.66 2.50 2.00 5.00 1.42 1.11

2.00 1.42 2.50 1.11 1.00 10.00 1.25 5.00 3.33 1.66

1.42 1.66 3.33 1.25 5.00 1.00 2.00 10.00 1.11 2.50

1.25 1.42 10.00 2.00 1.66 3.33 1.00 5.00 1.11 2.50

10.00 2.00 1.11 1.42 2.50 5.00 1.66 1.00 3.33 1.25

1.11 1.42 10.00 1.66 2.00 5.00 1.25 3.33 1.00 2.50

2.00 1.42 5.00 1.11 1.25 1.66 2.50 10.00 3.33 1.00


(30)

Obviously, the closer is the value of similarity to 1, the higher similarity between
the image and seed. The similarity values on diagonal are all 1 which shows the
similarity between seed and itself.

ForN = 50, HighestRank = 50⇒ S =
50

50
= 1; (31)
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5.1.4 Seed selection using optimal seed selection algorithm

The main goal of this part is to create a model to compensate the weakness of mentioned
feature-based alignment method where seed image needs to be chosen manually. We
utilize two factors: spatial score (sptScore) and similarity matrix (simScore).

Spatial scores and similarity scores for all pairs of images (seed, img) are computed. It
was found that seeds which show high scores for all images (img) are suitable candidates
for best seed selection. Thus, for each seed, the mean value of all computed scores be-
tween the seed and all images are calculated. It is noteworthy that having a high mean
value for a seed is not a sufficient condition since it is possible to acquire a high value for
mean score by having only a few high spatial scores while other spatial scores are very
low. That means that the seed could be matched best only with some of the images, but
not for the most of other images.That is why the standard deviation (STD) needs to be
taken into account. Therefore, we are looking for images with high ratio of mean value
of spatial scores to STD value (ratio = meanofspatialscores

STD
). To improve the precision of

selecting optimal seed process, mean value of similarity scores and the STD value for
each image as a seed are calculated. The overall process of selecting optimal seed which
is mainly based on comparing mean and STD values of both spatial scores and similarity
scores is presented through algotithm. 3. Next, the steps of the algorithm are clarified by
performing the algorithm over the mentioned example in Section 5.1.

Requirements : spatial-score matrix, and similarity matrix
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Algorithm 3 Optimal seed selection
1: Initialize vector named meanSpt← NULL
2: Initialize vector named stdSpt← NULL
3: Initialize vector named meanSim← NULL
4: Initialize vector named ratio← NULL
5: for i = 1 to I images do
6: Compute mean value from scores stored in row i of sptScore matrix and store to

meanSpt (i)

7: Compute STD value from row i of sptScore matrix and store to stdSpt (i)

8: ratio (i) = meanStp(i)
stdSpt(i)

9: Compute mean value from row i of simScore matrix and store to meanSim (i)

10: Compute STD value form row i of simScore matrix and store to stdSim (i)

11: end for
12: Compute mean value of meanSpt (i) over i (i = 1 to I) and store to MmeanSpt

13: Compute STD of meanSpt (i) over i and store to range
14: Select images with meanSpt > MmeanSpt+ range

2

15: if number of selected images > 1 then
16: Continue the steps only for selected images
17: Find mean value over values of ratio of images and store to meanRatio
18: Select images with ratio > meanRatio
19: if number of selected images > 1 then
20: Continue steps by considering only the selected images
21: Compute mean value over meanSim of images and store to MmeanSim

22: Select images with meanSim < MmeanSim

23: if number of selected images > 1 then
24: Continue steps by considering only the selected images
25: Compute mean value over stdSim of images and store to range2
26: Select images with stdSim < range2
27: if number of selected images > 1 then
28: Continue steps by considering only the selected images
29: Select the image with minimum value in meanSim vector
30: end if
31: end if
32: end if
33: end if
34: Return the selected image as optimal seed.
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1. Mean value of spatial scores
Calculate mean value of spatial scores by considering each image as seed that can
be achieved by taking mean value from each row of sptScore matrix since each
row of the matrix corresponds to seed, and each column indicates an image from a
data set. Consider the sptScore from last example:

sptScore =



80 67 17 57 42 33 71 17 75 52

74 80 19 45 58 29 77 18 76 47

19 18 80 30 16 15 19 16 13 28

57 44 15 80 54 49 52 16 55 65

53 57 44 63 80 22 58 28 42 55

54 50 44 56 41 80 49 27 59 44

80 77 19 49 57 22 80 21 80 47

20 22 34 23 21 20 22 80 20 25

78 59 18 53 42 25 74 26 80 39

30 34 21 39 36 32 28 18 25 80



mean→



51.1

52.3

25.4

48.7

50.2

50.4

53.2

28.7

49.4

34.3



= meanStp

(32)

2. Calculate STD values
STD values of spatial scores for each image as a seed is calculated by computing
STD over each row of sptScore matrix as below:

sptScore =



80 67 17 57 42 33 71 17 75 52

74 80 19 45 58 29 77 18 76 47

19 18 80 30 16 15 19 16 13 28

57 44 15 80 54 49 52 16 55 65

53 57 44 63 80 22 58 28 42 55

54 50 44 56 41 80 49 27 59 44

80 77 19 49 57 22 80 21 80 47

20 22 34 23 21 20 22 80 20 25

78 59 18 53 42 25 74 26 80 39

30 34 21 39 36 32 28 18 25 80



STD→



23.1

24.3

19.9

20.0

16.9

13.0

25.7

18.5

22.9

17.3



= stdStp

(33)

3. Calculating ratio
At this step, the output of step 1 (meanStp) is simply devided by output of step 2
(stdStp) :
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ratio =



51.1
23.1
52.3
24.3
25.4
19.9
48.7
20.0
50.2
16.9
50.4
13.0
53.2
25.7
28.7
18.5
49.4
22.9
34.3
17.3



=



2.2

2.1

1.2

2.4

2.9

3.6

2.0

1.5

2.1

1.9



(34)

4. Mean value of similarity scores
In this part, mean value of similarity scores for each image is calculated by per-
forming mean over each row of the simScore matrix as below:

simScore =



1.0 1.4 10.0 1.6 2.5 3.3 1.2 5.0 1.1 2.0

1.4 1.0 5.0 2.5 1.6 3.3 1.1 10.0 1.2 2.0

1.6 2.0 1.0 1.1 3.3 5.0 1.4 2.5 10.0 1.2

1.2 3.3 10.0 1.0 1.6 2.5 2.0 5.0 1.4 1.1

2.0 1.4 2.5 1.1 1.0 10.0 1.2 5.0 3.3 1.6

1.4 1.6 3.3 1.2 5.0 1.0 2.0 10.0 1.1 2.5

1.2 1.4 10.0 2.0 1.6 3.3 1.0 5.0 1.1 2.5

10.0 2.0 1.1 1.4 2.5 5.0 1.6 1.0 3.3 1.2

1.1 1.4 10.0 1.6 2.0 5.0 1.2 3.3 1.0 2.5

2.0 1.4 5.0 1.1 1.2 1.6 2.5 10.0 3.3 1.0



(35)

mean→



3.4

3.0

6.1

2.9

3.1

4.6

2.9

6.1

3.1

3.1



= meanSim (36)

5. Calculate STD for similarity values



52

STD over each row of similarity matrix (simScore) is performed:

simScore =



1.0 1.4 10.0 1.6 2.5 3.3 1.2 5.0 1.1 2.0

1.4 1.0 5.0 2.5 1.6 3.3 1.1 10.0 1.2 2.0

1.6 2.0 1.0 1.1 3.3 5.0 1.4 2.5 10.0 1.2

1.2 3.3 10.0 1.0 1.6 2.5 2.0 5.0 1.4 1.1

2.0 1.4 2.5 1.1 1.0 10.0 1.2 5.0 3.3 1.6

1.4 1.6 3.3 1.2 5.0 1.0 2.0 10.0 1.1 2.5

1.2 1.4 10.0 2.0 1.6 3.3 1.0 5.0 1.1 2.5

10.0 2.0 1.1 1.4 2.5 5.0 1.6 1.0 3.3 1.2

1.1 1.4 10.0 1.6 2.0 5.0 1.2 3.3 1.0 2.5

2.0 1.4 5.0 1.1 1.2 1.6 2.5 10.0 3.3 1.0



STD→

(37)



3.5

2.7

3.5

2.7

2.6

3.0

2.7

3.5

2.7

2.6



= stdSim (38)

6. Finding MmeanSpt

Corresponds to step 12 of the algorithm. 3 and calculated by finding mean value
over all columns of meanStp from step 1 as below:

meanStp =



51.1

52.3

25.4

48.7

50.2

50.4

53.2

28.7

49.4

34.3



mean→ 44.3 = MmeanSpt (39)
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7. Finding range Calculated by finding the STD over meanStp:

meanStp =



51.1

52.3

25.4

48.7

50.2

50.4

53.2

28.7

49.4

34.3



STD→ 10.5 = range (40)

8. Selecting images according to level 14 of algorithm
In this step, only images with meanSpt > MmeanSpt+ range

2
are selected for ana-

lyzing in rest of the process. The reason for considering the criteria ofMmeanSpt+
range

2
where images with lower meanSpt are dropped out is that the method tested

with several criteria and based on try and error technique. The results of testing
showed that the capability of images with meanSpt < MmeanSpt + range

2
to be-

come a feasible seed is quite low.

meanSpt =



c1

img1 51.1

img2 52.3

img3 25.4

img4 48.7

img5 50.2

img6 50.4

img7 53.2

img8 28.7

img9 49.4

img10 34.3



> 44.3 +
10.5

2
⇒



51.1

52.3

50.2

50.4

53.2



(41)

Therefore, selected images are image 1, 2, 5, 6, and 7.

9. Calculate mean of ratio for remained images Corresponds to step 17 of algo-
rithm. 3. Ratios are calculated in step 3 , thus:
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meanSpt =



c1

img1 2.2

img2 2.1

img3

img4

img5 2.9

img6 3.6

img7 2.0

img8

img9

img10



mean→ 2.6 = meanRatio (42)

10. Select images with ratio > meanRatio
This part corresponds to step 18 of algorithm. 3.

meanSpt =



c1

img1 2.2

img2 2.1

img3

img4

img5 2.9

img6 3.6

img7 2.0

img8

img9

img10



> 2.6⇒ =



c1

img1

img2

img3

img4

img5 2.9

img6 3.6

img7

img8

img9

img10



(43)

According to (29) only image 5 and 6 are selected.

11. FindMmeansim Similar to step 21 of algorithm, Calculates mean overmeanSim
columns (from step4) of remained images.
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meanSim =



c1

img1

img2

img3

img4

img5 3.1

img6 4.6

img7

img8

img9

img10



mean→ 3.8 = MmeanSim (44)

12. Select images with meanSim < MmeanSim

Same as step 22 of the algorithm.

meanSim =



c1

img1

img2

img3

img4

img5 3.1

img6 4.6

img7

img8

img9

img10



< 3.8⇒ meanSim =



c1

img1

img2

img3

img4

img5 3.1

img6

img7

img8

img9

img10



(45)

Now, we have only one image as selected, and according to step 23 of the algorithm
the checking process is over and the image 5 is selected as optimal seed. The
accuracy of selection the image 5 as optimal seed is obvious by comparing the
spatial scores, similarity scores, and STDs of images. It is noteworthy that when
the algorithm reaches the step where there are only image 5 and image 6 with high
spatial scores, it selects the one with lower meanSim. The reason is that, the
experiment demonstrated that when we have images with close spatial scores, and
acceptable STDs, then the similarity scores affects the result more significant than
spatial scores. That is why at this level we select the image with lower similarity
scores ( closer to 1 means higher similarity between images).
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The following table shows the output of the algorithm for 9 types of classes as training
data sets in our work. The table shows the spatial scores and similarity scores for both
feature-based alignment method where seed is selected manually, and for optimal seeds
which are automatically selected by our algorithm. The features for an appropriate seed
are having high spatial scores, low STD of spatial scores, and low similarity scores with
low STD of similarity scores.
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Table 1. Comparison of mean and std values between supervised and unsupervised seed selection

CLASS Method spatial score similarity

Mean STD Mean STD

Supervised 58.02 20.85 4.60 7.88
STOP−SIGN

UNsupervised 60.82 16.45 4.52 7.88

Supervised 30.18 10.12 5.59 10.12
CAR−SIDE

UNsupervised 30.34 10.76 5.45 8.52

Supervised 63.54 18.05 4.68 7.84
MOTOBIKE

UNsupervised 65.96 18.42 4.59 7.85

Supervised 60.12 13.08 4.58 7.86
FACES−EASY

UNsupervised 62.46 13.05 4.58 7.85

Supervised 57.72 17.8726 4.4996 7.8903
DOLLAR−BILL

UNsupervised 52.94 16.08 4.60 7.85

Supervised 31.2 11.11 4.64 7.85
AIRPLANES

UNsupervised 36.78 10.5527 4.68 7.82

Supervised 40.66 13.31 4.55 7.87
REVOLVER

UNsupervised 40.92 10.27 4.70 7.84

Supervised 39.92 19.00 4.59 7.87
EUPHONIUM

UNsupervised 36.08 14.55 5.24 8.03

Supervised 22.36 11.40 5.25 7.84
STARFISH

UNsupervised 28.80 12.14 4.79 7.86

According to table, our method selected seeds with better features for all classes except
euphonium and dollarbill. For instance, in the class of revolver, the spatial score of
selected seed with unsupervised method is 40.9 and STD is 10.27, while in supervised
method the spatial score is 40.66 with STD of 13.31. The spatial scores are almost close
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but the STD value in supervised method is high. If we consider the ratio of spatial score to
it’s STD, and the ratio of similarity score to it’s STD, then we can see that the unsupervised
method performed well for all classes, even for euphonium and dollarbill. For example,
the ratios for the class of dollarbill are calculated in below:

In supervised method:

sptRatio =
57.72

17.87
= 3.23

simRatio =
4.49

7.89
= 0.56

(46)

In unsupervised method:

sptRatio =
52.94

16.08
= 5.8

simRatio =
4.60

7.85
= 0.58

(47)

The above equations show that the ratio of spatial score to its’STD in unsupervised
method is superior ( higher ratio is more desired). The ratio of similarity score to the
STD is superior in supervised method ( lower is desired), but we can claim that they are
almost close. Consequently, the unsupervised method can compete the supervised one.

5.2 Alignment with optimal seed

Once the best seed is selected it is given to the feature-based alignment algorithm (Sec
4.2). Then, each image is transferred to the seed space using the generated transform ma-
trix, then the number of overlapped landmarks from candidate to seed image is calculated
same as the algorithm (Sec 4.2). Some example of selected best seed by our method is
given in Fig. 22.
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Figure 22. Examples of best seed selected by our method for the class of face, motorbike, and car
side.

So far In this work, the alignment procedure has been done by transforming each image
directly to the seed space like multiplying the image features with its estimated transform
matrix (similaritytransformation) :

Landmarks× T (48)

A remaining problem is that a single seed does not work well in some cases when the
object in the image is failed through the alignment such as Fig.23. One solution could be
to use a local approach such as alignment tree instead of applying a single global seed.
Similar to landmark selection in [57] . In the next section, we study the following tree-base
step-wise alignment paths: Minimum spanning tree, Dijkstra algorithm.
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Figure 23. Example of failed object from euphonium class. Top: original images including
euphonium, red circles show objects which are failed via transformation to the seed space. Bottom:
transformed images.
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6 STEP-WISE FEATURE BASED ALIGNMENT

Figure 24. Examples of object variation inside a class of motorbike including: scooter, sport bike,
Harley davidson.

So far, we attempted to find the best class specific landmarks in a single image (seed)
using random spatial scoring and feature similarity. However, it is easy to show that such
alignment procedure fails to align classes which are more complicated (e.g. motorbikes’
class containing sport bikes, Scooter, and Harley Davidson. Fig. 24 ). A better solution
could be a step-wise transfer via more similar examples to the seed. Next, two approaches
are proposed, minimum spanning tree and Dijkstra shortest path, both based on a graph
of similarity values. The graph is full connected where each node represents an specific
image, and similarity values are set as weight of the edges. One example is shown in
Fig. 25
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Figure 25. Graph of images for the classtype: 3 mixture of scooter, sports, Harley davidson. The
thickness of the edges represents the amount of similarity between each node such that the thicker
the edge, the higher similarity between the images.

6.1 Minimum spanning tree(MST) approach

The step-wise alignment performed to create a more smooth transform of an image to the
seed. This is done by concatenating (multiplying) transformations of each visited node
(image) along the path to the seed.

A spanning tree is a subgraph of a connected undirected graph that connects all vertices
without causing loop (no cycle) [71]. For each graph, there can be several spanning trees.
If the edges have weights, then the minimum spanning tree or the minimum weight span-
ning tree is a spanning tree with the lowest total cost. There are two algorithms commonly
used to implement the MST: Prim’s algorithm [71], and Kruskal’s algorithm [71]. They
differ by implementation, time complexity. In addition, if the given graph is unconnected,
Prim’s algorithm returns only the tree containing the root, but Kruskal’s algorithm returns
a separate MST for each unconnected part. In this work, only Prim’s algorithm is used
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since we always have a full connected graph.

6.1.1 Prim’s algorithm

Prim’s algorithm initials the MST by setting a node from the graph as the root. The MST
is extended by adding the smallest weight edge at time that connects one of the existing
MST vertices to any node that does not exist in MST. Minimal edge at a time that connects
one of the existing vertices in the growing MST with any other nodes that does not exist
in the MST yet [71]. In this thesis, the optimal seed is set as the root. An example is
shown in Fig. 26 .

The pseudo code of Prims’ algorithm is given below and provided from [71]."In the
pseudo code, the connected graph G and the root r of the minimum spanning tree to
be grown are inputs to the algorithm. During execution of the algorithm, all vertices that
are not in the tree reside in a min-priority queue Q based on a key attribute. For each
vertex v, the attribute v.key is the minimum weight of any edge connecting v to a vertex
in the tree; by convention, v.key =∞ if there is no such edge. the attribute v.Πnames the
parent of v in the tree. The algorithm implicitly maintains the setA from GEBERIC-MST
as"[76]:
A = {(v, v.Π) : v ∈ V − {r} −Q}. where V is the collection of all vertices in G. After
terminating algorithm, the min-priority queue Q is empty; the MST A from G is thus
A = {(v, v.π) : v ∈ V − {r}}.

Algorithm 4 MST-PRIM(G,W,r)
1: for each u ∈ G.V do
2: u.key =∞
3: u.π = NIL
4: end for
5: r.key = 0
6: Q = G.V
7: while Q 6= φ do
8: u = EXTRACT-MIN(Q)
9: for each v ∈ G.Adj [u] do

10: if v ∈ Q and w (u, v) < v.key then
11: v.π = u
12: v.key = w (u, v)
13: end if
14: end for
15: end while
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Figure 26. Minimum spanning tree created for the graph in Fig. 25. Root (seed) is specified with
dark blue border. Note that images with less similarity to the seed are located far from the root.
Also, images with the same intra-class type such as scooters are arranged in a same branch.
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6.1.2 Step-wise alignment through MST

The goal is to align each image step by step via the visited links to the root. First a vector
consisting of the visited nodes along the path is generated, and then using this vector
transform matrices which are pre-calculated are concatenated by multiplying to form a
new transform matrix which transfers an image to the root (seed). See Figure 27.

Figure 27. Example of step-wise MST alignment. Instead of directly transform node 1 to the
root(node 0), the transformation is done step by step thorough the more similar images to the
image 1.Transform function from node1 to root equals: T = T1 × T2 × T3

The experimental part (Sec 7.4) outperforms the direct alignment using a single seed for
same classes, but for some it is inferior. One reason could be that the MST algorithm
at each stage picks the closest neighbor that does not cause a loop (cycle). Thus, it is
possible that a node is not connected to its nearest neighbor if it already exists. For
example in Fig. 28 , we have a full connected graph. Prim’s algorithm can construct
several MST from if the graph includes links having same weight such as Fig. 30. In
this example, node A is considered as root. The algorithm grows MST until it reaches an
state where there are two edges with the same cost 3 (state c in Fig. 29 ). The algorithm
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randomly picks on of them, and thus two MSTs can be generated such as Fig. 30(d.1),
and (d.2). The point in these two MSTs is having different cost for node D if it is going
to be transformed step by step towards root (A). The cost of transformation for node D in
d.1 is higher than d.2, and even higher than direct transformation via the graph in Fig. 28.

Figure 28. Full connected graph

Figure 29. The steps of growing MST from root A.
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Figure 30. Two different structures of MST is created. Cost for transforming node D towards A
in (d.1) is: 6, and in (d.2) is: 4.

6.2 Dijkstra approach

Another approach is to utilize the full graph and find the shortest path from each node to
the seed by Dijkstra algorithm [71]. The implemented algorithm takes the optimal seed
as the goal node and finds the shortest path from each candidate image to the seed by
summing the weights of links between source (image) and the sink (seed) nodes.

The algorithm utilizes a data structure Q, which is a priority queue (node with lower
weight has higher priority). For each node, fields named w, Color,d, and π are considered
and described as following:

• w: contains the weights of all the edges.

• Color: have one of these three possible values: WHITE, GRAY, BLACK

– WHITE: indicates that the node is not found or visited.

– GRAY: indicates the node is found, but is not processed completely.

– BLACK: indicates the node is processed completely (i.e. all of the node’s
neighbors are investigated).

• d: indicates the distance from the source.

• π: indicates the node’s neighbor from which the node is discovered.
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. Dijkstra algorithm uses the algorithm RELAX. The relaxation of the edge (u, v) tests
could the shortest path found to vertex v be improved by routing its end through u and
does so if necessary [72]. The pseudo code algorithm [72] is given below:

Algorithm 5 Dijkstra(source, w, seed)
1: In the beginning the fields of each vertex are colour = WHITE, d =∞, π = NULL

2: Initialize vector path← NULL #
used to store visited node’s ID along the shortes path

3: source→ colour = GRAY

4: source→ d = 0

5: PUSH(Q,source)
6: while Q 6= 0 do
7: u = EXTRACT-MIN (Q)

8: if u = seed then
9: temp = source

10: while temp→ π 6= NULL do
11: include temp→ π to vector path
12: temp = temp→ π

13: end while
14: return path
15: exit
16: end if
17: for each v ∈ u→ Adj do
18: if v → colour = WHITE then
19: v → colour = GRAY

20: PUSH(Q, v)
21: end if
22: RELAX (u, v, w)
23: end for
24: u→ colour = BLACK

25: end while
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Algorithm 6 RELAX(u, v, w)

1: if v → d > u→ d+ w (u, v) then
2: v → d = u→ d + w (u, v)
3: v → π = u
4: end if

6.2.1 Step-wise alignment via the shortest path

Each image is aligned to the seed by the found of Dijkstra similar to the MST. To do step-
wise alignment, we need to know the found links between source(image) and sink(seed)
that can be achieved by using vector path which is the output of above algorithm. The
path vector contains the ID (e.g. image index, name) of visited nodes from source to
seed. For example:

SourceID = 8

SeedID = 17

path =
[
8 4 26 11 17

] (49)

path vector shows that for transforming image8 to seed17, we need to find transformation
between each pairs of visited nodes such as transformation from image 8 to image 4(T8−4).
Therefore:

NewTransformmatrix = T8−4 × T4−26 × T26−11 × T11−27 (50)
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7 EXPERIMENTS

We verified our seed selection procedure (Sec 5) and step-wise alignment(Sec 6) with
images from in the caltech-101 [73]. As the results we provide average images and mean
squared errors of annotated landmarks.

7.1 Caltech-101 data

We selected the following classes from Caltech-101: stop-sign, faces easy, airplane,
starfish, car side, revolver, euphonium, motorbike, dollar bill, and another of motorbikes
containing: scooters, harley davidson, and sport bikes. The reason for applying the spe-
cial motorbike class wast to test the algorithm performance in case of having objects from
the same class but with severe appearance variation.

7.2 Performance evaluation

We adopt the following measures: average images and landmark mean squared error(MSE)
graph which have been used in [61].

7.2.1 Average images

We report average images with and without alignment. This provides qualitative perfor-
mance of alignment. The average image is generated by first computing the mean size of
all images and set as the standard position to make images centered. Finally, the average
image is computed (see Fig. 31). For aligned images we first transform them to the seed
space and the process is similar to previous (see Fig. 32).
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Figure 31. Example of average of three images from stop sign class without doing alignment or
transferring images to the seed space. The result of averaging shows an obscure image of stop sign
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Figure 32. Example of average of three images from stop sign class with alignment. Images are
first transformed to the seed (top image) space according to estimated similarity transformation.
Then the average of transformed images is created. The average image shows a more clear image
of stop sign.

7.2.2 Landmark mean squared error (MSE) graph

To quantitatively evaluate alignment we annotated landmarks to each category like Fig. 33,
and computed their distances (according to Euclidean distance) after alignment. The al-
ginment procedures is performed using the estimated similarity transformation in Alg.1.
Then the generated landmarks MSE is compared to ground truth error. The ground truth
point truth tells the best results that can be possibly achieved with the data set since ground
truth points are selected manually, While landmarks are automatically chosen. Theoreti-
cally it is possible to get results which are more accurate than the ground truth, but then
there must be some errors in the ground truth.
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Figure 33. Caltech-101 images with annotated landmarks

Ground truth MSE is computed via below steps:

1. Extract ground truth point of the seed.

2. Repeat for each image from dataset:

• Extract ground truth point in the image.

• Calculate similarity transformation from ground truth point of the image to
the seed’s ground truth points.

• Transfer seed’s ground truth point using the calculated transformation.

• Compute the Euclidean distance of seed’s ground truth points before and after
transformation.

7.3 Automatic seed selection result

We compare our method to supervised one (Sec 4.2) according to generated average image
and landmark MSE for each method. The results are demonstrated in following.
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Figure 34. Results of average images for the class of stop sign.left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 35. Quantitative results for the alignments in Fig. 34. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection (blue curve, and green
curve), our method (red, and orange curves). In this figure, the ground truth 1 and 2 are overlapped
that is why the ground truth 2 (orange curve) can not be seen.
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Figure 36. Results of average images for the class of car side.left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 37. Quantitative results for the alignments in Fig. 36. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection (blue curve, and green
curve), our method (red, and orange curves). In this figure, the ground truth 1 and 2 are overlapped
that is why the ground truth 2 (orange) can not be seen.
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Figure 38. Results of average images for the class of Motorbike. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 39. Quantitative results for the alignments in Fig. 38. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection(blue curve, and green
curve), our method (red, and orange curves)
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Figure 40. Results of average images for the class of face. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 41. Quantitative results for the alignments in Fig. 40. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection(blue curve, and green
curve), our method (red, and orange curves)
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Figure 42. Results of average images for the class of dollar. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 43. Quantitative results for the alignments in Fig. 42. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection (blue curve, and green
curve), our method (red, and orange curves)
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Figure 44. Results of average images for the class of airplane. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 45. Quantitative results for the alignments in Fig. 44. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed (blue curve, and green curve),
our method (red, and orange curves)
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Figure 46. Results of average images for the class of revolver. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 47. Quantitative results for the alignments in Fig. 46. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection (blue curve, and green
curve), our method (red, and orange curves)
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Figure 48. Results of average images for the class of euphoniom. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 49. Quantitative results for the alignments in Fig. 48. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection (blue curve, and green
curve), our method (red, and orange curves)
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Figure 50. Results of average images for the class of star fish. left: without alignment, middle:
supervised method, right: unsupervised seed selection

Figure 51. Quantitative results for the alignments in Fig. 50. Graphs represent cumulative error
curves for feature-based alignment method with supervised seed selection (blue curve, and green
curve), our method (red, and orange curves)

Considering all of the results, the unsupervised seed selection outperforms the supervised
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method for the classes of stop sign, car side, motorbike, face. For instance, the number
of fitted landmarks in car side class is 28 and 21 for unsupervised and supervised meth-
ods respectively. Both methods have close performance for euphonium and dollar bill. It
seems that The performance of our method drops down by increasing the difficulty of the
class type since the landmarks MSE of the classes of airplane, revolver, and star fish in
supervised method are much closer to the ground truth curve. The performance degrada-
tion for these classes is unexpected because the scores presented in Table 1 demonstrated
that the selected seed for these classes have higher scores than the manually selected seed.

7.4 Step-wise alignment result

This section presents average images and landmark MSE resulted from both using MST
and Dijkstra shortest path. The average images and landmark MSE of directed alignment
and step wise alignment methods are compared to each other.
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Figure 52. Results of average images for the class of stop sign. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 53. Quantitative results for the alignments in Fig. 52. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 54. Results of average images for the class of car side. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 55. Quantitative results for the alignments in Fig. 54. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 56. Results of average images for the class of motorbike. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 57. Quantitative results for the alignments in Fig. 56. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 58. Results of average images for the class of face. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 59. Quantitative results for the alignments in Fig. 58. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 60. Results of average images for the class of dollar. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 61. Quantitative results for the alignments in Fig. 60. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 62. Results of average images for the class of airplane. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 63. Quantitative results for the alignments in Fig. 62. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 64. Results of average images for the class of revolver. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 65. Quantitative results for the alignments in Fig. 64. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 66. Results of average images for the class of euphonium. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 67. Quantitative results for the alignments in Fig. 66. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 68. Results of average images for the class of star fish. left: Direct alignment based on
unsupervised seed selection, middle: MST, right: Dijkstra

Figure 69. Quantitative results for the alignments in Fig. 68. Graphs represent cumulative error
curves for direct alignment of images (blue curve), MST method (cyan), and Dijkstra method
(magenta)
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Figure 70. Results of average images for the class of 3 types of motorbikes(sport bike, scooter,
Harley davidson). left: Direct alignment based on unsupervised seed selection, middle: MST,
right: Dijkstra

Figure 71

It is interpreted from the results that the alignment is improved through step-wise method
specifically by utilizing Dijkstra shortest path method since the number of fitted land-
marks for all classes except star fish is higher that the direct alignment and MST method.
According to the landmark MSE curves, the MST method only shows a high performance
for the class of star fish and airplane, while for other classes it is even lower than the direct
alignment (the reason could be the one mentioned in Sec 6.1.2).
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We also analyzed the accuracy of our method by transforming each image to the optimal
seed under direct alignment, MST and Dijkstra methods. The results showed that the
number of failed images via step-wise alignment is less than direct alignment. In addition,
some images which have been failed through MST were corrected through Dijkstra and
vice versa. One example is shown in following figures:
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Figure 72. Class of airplane, Transformed images via direct alignment. Red circles show failed
images after alignment
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Figure 73. Class of airplane, Transformed images via alignment using Dijkstra shortest path
method. Red circles show failed images after alignment and Cyan circles show images failed via
MST but corrected through Dijkstra.
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Figure 74. Class of airplane, Transformed images via alignment using MST method. Red circles
show failed images after alignment and Cyan circles show images failed via Dijkstra but corrected
through MST.
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8 CONCLUSIONS

In this thesis, the problem of feature-based alignment was investigated. In particular, we
investigated the part-based method by selecting an optimal seed automatically. The orig-
inal method has the following difficulties: selecting seed manually, and using a single
global seed for alignment that does not work perfectly in sub-classes. We proposed un-
supervised optimal seed selection method to solve the problem of seed selection and to
improve alignment, step-wise alignment via minimum spanning tree and Dijkstra shortest
path are utilized . Based on our experiment we conclude that the average performance
of our unsupervised seed selection technique is almost equal to the manual seed selection
method, only in a few cases the manually selected seed produced better average images
and lower MSE error, but in most of cases the results of unsupervised method were similar
or even better than the original. According to the results of step-wise alignment, mini-
mum spanning tree and Dijkstra shortest path outperform the direct alignment using a
single seed. Moreover, overall efficiency of Dijkstra overcomes both single seed align-
ment and MST. It can be claimed that visual object categorization can benefit from our
method since the step-wise alignment makes the class learning more straightforward.

Experiments also indicated the drawback of the our unsupervised method. The main
difficulty is the high computation time when the data set consists of a large number of
images, since it needs to compute spatial scores and similarities for each image as a seed.
For instance, for a data set of 50 images, we need 50 × 50 iterations. The other thing
is that although the algorithm is capable to find a seed with suitable scores, it still needs
some refinement or other factors to improve the precision when images have an equally
good average and STD score values. Surprising aspect of the result is that in some classes
the images that failed with MST alignment were corrected with Dijkstra and vice versa.
It seems that the two methods complement each other. Consequently, the method would
be more efficient if we can implement an algorithm with a combination of both, and
recognize when to use Dijkstra and MST.

Regarding the utilized detection and description methods in the experiments, the single
scale dense sampling and SIFT descriptor worked well for this work since the used train-
ing images contain only minor variation in scale and rotation. In this case, multiscale
dense sampling, or a method of combination of interest points and dense sampling called
"dense interest points"’ [59] can be considered.
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