

ARI STJERNA

DEPLOYMENT OF CLOUD BASED PLATFORMS FOR PROCESS

DATA GATHERING AND VISUALIZATION IN PRODUCTION AU-

TOMATION

Master of Science thesis

Examiners: prof. José L. Martinez
Lastra, Dr. Jani Jokinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences
on 1th March 2017

i

ABSTRACT

ARI STJERNA: Deployment of Cloud Based Platforms for Process Data Gath-
ering and Visualization in Production Automation
Tampere University of technology
Master of Science Thesis, 111 pages, 17 Appendix pages
March 2017
Master’s Degree Programme in Automation Technology
Major: Factory Automation
Examiners: Professor José L. Martinez Lastra, Senior Research Fellow Jani
Jokinen

Keywords: cloud computing, REST interface, Internet-of-Things, future produc-
tion automation monitoring

New developments at the field of factory information systems and resource allocation

solutions are constantly taken into practice within the field of manufacturing and pro-

duction. Customers are turning their vision for more customized products and request-

ing further monitoring possibilities for the product itself, for its manufacturing and for

its delivery. Similar paradigm change is taking place within the companies’ departments

and between the clusters of manufacturing stakeholders. Modern cloud based tools are

providing the means for gaining these objectives.

Technology evolved from parallel, grid and distributed computing; at present cited as

Cloud computing is one key future paradigm in factory and production automation. Re-

gardless of the terminology still settling, in multiple occasions cloud computing is used

term when referring to cloud services or cloud resources. Cloud technology is further-

more understood as resources located outside individual entities premises. These re-

sources are pieces of functionalities for gaining overall performance of the designed

system and so worth such an architectural style is referred as Resource-Oriented Archi-

tecture (ROA). Most prominent connection method for combining the resources is a

communication via REST (Representational State Transfer) based interfaces. When

comping cloud resources with internet connected devices technology, Internet-of-

Things (IoT) and furthermore IoT Dashboards for creating user interfaces, substantial

benefits can be gained. These benefits include shorter lead-time for user interface de-

velopment, process data gathering and production monitoring at higher abstract level.

This Master’s Thesis takes a study for modern cloud computing resources and IoT

Dashboards technologies for gaining process monitoring capabilities able to be used in

the field of university research. During the thesis work, an alternative user group is kept

in mind. Deploying similar methods for private production companies manufacturing

environments. Additionally, field of Additive Manufacturing (AM) and one of its sub-

category Direct Energy Deposition Method (DED) is detailed for gaining comprehen-

sion over the process monitoring needs, laying in the questioned manufacturing method.

Finally, an implementation is developed for monitoring Tampere University of Tech-

nology Direct Energy Deposition method manufacturing environment research cell pro-

cess both in real-time and gathering the process data for later reviewing. These func-

tionalities are gained by harnessing cloud based infrastructures and resources.

ii

TIIVISTELMÄ

ARI STJERNA: Pilvipalvelupohjaisten alustojen hyödyntäminen tuotantoauto-
maation prosessidatan keräyksessä ja visualisoinnissa
Tampereen teknillinen yliopisto
Diplomityö, 111 sivua, 17 liitesivua
Maaliskuu 2017
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Factory Automation
Tarkastajat: Professori José L. Martinez Lastra, Yliopistotutkija Jani Jokinen

Avainsanat: pilvipalvelut, REST rajapinnat, esineiden internet, tulevaisuuden
tuotantoautomaation monitorointi

Sekä teollisuuden valmistuksessa että -tuotannossa otetaan jatkuvasti käyttöön teolli-

suusautomaation informaatio järjestelmissä sekä käytettävien resurssien allokoinneissa

tapahtuvien kehitys askeleiden mukanaan tuomia uusia ominaisuuksia. Samalla kulutta-

jat ovat lisänneet kiinnostustaan laajempiin monitorointi ominaisuuksiin aina tuotteiden

valmistuksesta, toimitukseen saakka. Vastaavanlainen muutos on tapahtumassa teolli-

suuden piirissä, sekä yritysten sisällä, että yritysten välillä. Valmistavan teollisuuden

toimijat ovat entuudestaan muodostaneet ympärilleen alihankkijoiden yhteenliittymiä eli

klustereita. Nyt näiden klustereiden sisällä ryhdytään vaatimaan parempia monitorointi

kyvykkyyksiä. Modernit pilvipalveluihin perustuvat työkalut mahdollistavat näiden ta-

voitteiden saavuttamisen.

Verkko-, rinnakkaisuus- sekä hajautetun laskentatekniikan uusin kehitysmuoto nimeltä

pilvilaskenta sekä laajemmin pilvipalvelut tulevat olemaan teollisuusautomaation tule-

vaisuuden avaintekijöitä. Näiden palveluiden yhteydessä käytettävä terminologia on

vielä vakiintumassa. Monesti puhuttaessa pilvilaskennasta, tarkoitetaan palveluita ja

resursseja jotka sijaitsevat toimijoiden omien toimipisteiden ulkopuolella, kolmannen

osapuolen hallitsemina. Liitettäessä näitä resursseja yhteen resurssipohjaisten arkkiteh-

tuurien menetelmien, saadaan aikaan uusia toiminnollisuuksia toteuttavia järjestelmiä.

Eräs lupaavin kommunikointitekniikka eri palveluita yhdistettäessä on REST rajapin-

toihin perustuvat menetelmät. Esineiden internet sekä tarkemmin mainittuna esineiden

internet alustojen käyttöliittymätyökalut luovat pilvipalvelu resursseille lisäominaisuuk-

sia käyttöliittymien luonnissa. Näitä ominaisuuksia ovat lyhyemmät läpimenoajat suun-

nittelussa, sekä prosessien monitoroinnin helpottuminen.

Tämä diplomityö perehtyy moderneihin pilvipalvelu resursseihin sekä esineiden internet

käyttöliittymä työkaluihin, tavoitteena hyödyntää näitä yliopistotason kokeellisten tut-

kimusjärjestelmien monitoroinnissa. Työn aikana pidettiin mielessä myös mahdollisuus

hyödyntää vastaavia menetelmiä yksityisen sektorin valmistavan tuotannon järjestelmis-

sä. Lisäksi työssä perehdytään ainetta lisäävän valmistusmenetelmän alalajiin, suoraker-

rostuksen vaativiin monitorointi ominaisuuksiin. Työn käytännön osuudessa toteutettiin

Tampereen teknillisen yliopiston suorakerrostus valmistuksen tutkimusympäristöön

monitorointi sovellus. Sovelluksen avulla monitoroidaan kyseisen tuotantojärjestelmän

prosessia sekä reaaliajassa että keräten tarkempaa prosessidataa myöhemmin tarkastel-

tavaksi. Nämä ominaisuudet toteutettiin pilvipalveluihin perustuvilla infrastruktuureilla

sekä resursseilla.

iii

PREFACE

This thesis is the final goal on my personal endeavor for reaching my Master of Science

degree. After I started the project as a Bachelor of Engineering for four years ago, it has

been a long road of time-consuming assignments and patience-taking exams. Now,

when finalizing my thesis I would like to express my gratitude to several persons.

First, I express my gratitude to my thesis mentors Professor José L. Martinez Lastra and

Senior Research Fellow Jani Jokinen. Additionally, I like to recognize the input of Re-

search Manager Jorma Vihinen and Project Manager Jyrki Latokartano for planting the

seed and developing the idea and topic of my thesis.

My special thanks goes to Mr. Oskari Hakaluoto, founder of Roboco Co. He originally

developed the History Data gathering text file parsing program for our disposal. Later

used in robot controller in the implementation. I also thank him for his extensive consult

and aid for working with the ABB robot in the application environment. His knowledge

was and still is, indispensable.

Initial step for reaching the start point of my Master of Science studies, was taken al-

most a decade ago in 2008 when I graduated for Bachler of Engineering. In the preface

of my Bachelors thesis, I sent my compliments to my parents for their never-ending

support. That support still exists. However, now at the end of this study project it is time

to reach out for other closest persons.

Nothing mentioned above can compete with the gratitude that I owe to my fiancée Jen-

na. She never lost fate in my perseverance and commitment for reaching the dream of

Master of Science degree. I apologize for these four passed years. Years, which can

never be reclaimed. I could not have done without her. One more person to be remem-

bered. Our daughter who is now three months old. She will not remember the time when

her dad was pushing the hours for finishing with his thesis. Nonetheless, last special

greeting to you, Sandra.

Tampere, 14th March 2017

Ari Stjerna

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 Problem Definition ... 2

1.2 Work Description ... 3

1.3 Assumptions and limitations ... 4

1.4 Methodology .. 4

1.5 Thesis outline ... 5

2. THEORETICAL BACKROUND .. 6

2.1 Additive Manufacturing .. 6

2.1.1 Path manipulation ... 7

2.1.2 Cold Metal Transfer method ... 8

2.1.3 LASER aided Additive Manufacturing .. 10

2.2 Cloud computing .. 12

2.2.1 Cloud computing concept .. 12

2.2.2 Security, privacy and reliability ... 15

2.2.3 Industrial Internet of Things .. 17

2.3 Data transfer methods ... 23

2.3.1 Representational State Transfer ... 23

2.3.2 File Transfer Protocol ... 26

2.4 Cloud based ecosystems ... 27

2.4.1 Amazon Web Services .. 27

2.4.2 Microsoft Azure .. 31

2.4.3 Google Cloud Platform ... 34

2.4.4 Alternatives ... 37

2.5 Dashboard solutions.. 39

2.5.1 Wapice IoT-Ticket platform .. 39

2.5.2 Freeboard.io .. 41

2.5.3 Ignition IIoT ... 41

2.5.4 DGLogik IoE platform .. 42

2.5.5 Conventional Web Application ... 42

3. METHODOLOGY .. 45

3.1 Technology selections ... 45

3.1.1 Programming language selection ... 46

3.1.2 Cloud technology selection ... 46

3.1.3 Dashboard technology selection .. 47

3.2 Application Layer ... 48

3.3 Backend technology.. 51

3.3.1 Amazon Web Services ecosystem ... 51

3.3.2 Amazon Virtual Private Cloud .. 52

3.3.3 Amazon Elastic Compute Cloud.. 54

v

3.3.4 Amazon Simple Storage Service ... 56

3.3.5 Amazon Relational Database Service .. 57

3.4 Frontend technology ... 59

3.4.1 IoT-Ticket Platform .. 59

3.4.2 IoT-Ticket Dashboard ... 65

3.4.3 IoT-Ticket Reporting .. 65

4. IMPLEMENTATION ... 67

4.1 Dataflow and security architecture .. 67

4.2 Cloud platform framework .. 69

4.3 Real time process monitoring .. 72

4.3.1 Gathering of process variables... 72

4.3.2 Process variables visualization .. 78

4.4 Process data history .. 85

4.4.1 Process data integration and transfer ... 85

4.4.2 Process data manipulation ... 86

4.4.3 Process data visualization .. 90

4.5 Process report creation .. 94

5. CONCLUSIONS ... 96

5.1 Thesis conclusions .. 96

5.2 Future work .. 97

REFERENCES ... 99

APPENDIX A: IOT-TICKET REQUEST-RESPONSE MESSAGES

APPENDIX B: REAL-TIME PROCESS MONITORING URI’S

APPENDIX C: SEGEMNTS OF THE PROCESS DATA FILE

APPENDIX D: PROCESS DATA FILE EXAMPLE

APPENDIX E: DESIGNED PROCESS REPORTS

vi

LIST OF FIGURES

Figure 1. ABB IRB 4600 robot (left) and ABB IRBP A-750 positioner, adapted

from [15; 16] ... 8

Figure 2. Cold Metal Transfer process [19]. .. 9

Figure 3. Laser Additive Manufacturing processes classification, modified from

[12; 21]. ... 11

Figure 4. Internet can be deployed inside the factory, adopted from [5]. 19

Figure 5. Gartner Magic Quadrant representing cloud IaaS major players,

adapted from [63]. ... 28

Figure 6. Amazon Web Service infrastructure for implementing the data

gathering and visualization .. 30

Figure 7. Microsoft Azure infrastructure for implementing the data gathering and

visualization ... 33

Figure 8. Google Cloud Platform infrastructure for implementing the data

gathering and visualization .. 36

Figure 9. Data gathering implemented with private cloud infrastructure 39

Figure 10. Application environment overview, adapted from [15; 16; 136-138]. 49

Figure 11. ABB Robot RESTful description’s tree structure, adapted from [41].......... 51

Figure 12. Amazon Web Services Virtual Private Cloud, adapted from [142]. 53

Figure 13. AWS custom AMI creation, adapted from [155]. 56

Figure 14. AWS RDS Database deployment ideology.. 58

Figure 15. IoT-Ticket Monitoring and Controlling methodology, adapted from

[117] .. 60

Figure 16. IoT-Ticket Connectivity diagram, adapted from [117] 61

Figure 17. IoT-Ticket Data Model, adapted from [165] .. 61

Figure 18. IoT-Ticket Device registration and data writing sequence, adapted

from [165]. ... 62

Figure 19. Implementation Dataflow and security architecture 68

Figure 20. Cloud platform framework .. 69

Figure 21. Flowchart for Real-rime process monitoring ... 73

Figure 22. Program architecture for Real-time process monitoring 74

Figure 23. IoT-Ticket Datanode architecture for Real-Time process monitoring 78

Figure 24. Production monitoring Dashboard .. 79

Figure 25. COAXwire monitoring main Dashboard page ... 80

Figure 26. Dataflow Editor setup for starting and stopping of the COAXwire

variable gathering .. 80

Figure 27. CMT monitoring main Dashboard page .. 82

Figure 28. CMT process Real-time voltage variable history glimpse 83

Figure 29. CMT process Voltage variable analysis Dashboard 84

Figure 30. CMT process Free Choice variable visualization....................................... 85

vii

Figure 31. Flowchart for History Data storing processing.. 87

Figure 32. Program architecture for History Data processing 88

Figure 33. Process data - database structure .. 89

Figure 34. IoT-Ticket datanode architecture for process History Data storing 91

Figure 35. History data plain values visualization for CMT process 93

Figure 36. History data average and minimum-maximum values for CMT 94

viii

LIST OF TABLES

Table 1. HTTP methods and basic status codes [54]. .. 25

Table 2. Cloud service provider evaluation. .. 47

Table 3. Dashboard service provider evaluation ... 48

Table 4. IoT-Ticket API Server resources [165] .. 63

Table 5. IoT-Ticket API Server HTTP status codes [165] .. 64

Table 6. IoT-Ticket API Server error message body description [165] 64

Table 7. IoT-Ticket API Server internal error codes [165] .. 64

Table 8. AWS security group inbound rule settings ... 70

Table 9. HTTP request for controlling the monitoring... 75

Table 10. Robot variable URI’s for monitoring the production 76

ix

LIST OF SYMBOLS AND ABBREVIATIONS

ACL Access Control List

AIOTI Alliance for IoT Innovation

AJAX Asynchronous JavaScript And XML

AM Additive Manufacturing

AMI Amazon Machine Image

API Application Protocol Interface

AWS Amazon Web Services

BI Business Intelligence

BPEL Business Process Execution Language

CaaS Communications as Service

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CAM Computer Aided Manufacturing

CAN Control Area Network

CIA Confidentially, Integrity and Availability

CIDR Classless Inter-Domain Routing blocks

CIP Common Industrial Protocol

CLI Command Line Interface

CMT Cold Metal Transfer

CNC Computer Numerical Control

CPS Cyber-Physical Systems

CSS Cascading Style Sheets

CTO Configure-To-Order

D2D Device-To-Device

DB Database

DED Direct Energy Deposition Method

DOF Degrees of Freedom

DOM Document Object Model

EBS Elastic Block Storage

EC2 Elastic Compute Cloud

EER Enhanced Entity-Relationship

ERP Enterprise Resource Planning

ETLA The Research Institute of the Finnish Economy

ETO Engineer-To-Order

FI Future Internet

FTP File Transfer Protocol

FTPS File Transfer Protocol with SSL security

GCP Google Cloud Platform

GMAW Gas-Metal-Arc Welding

HATEOAS Hypermedia As The Engine Of Application State

HMI Human Machine Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as Service

IAM Identity and Access Management

ICS Information Centric Security

x

ICT Information and Communications Technology

ID Identification

IDE Integrated Development Interface

IERC IoT European Research Cluster

IGW Internet Gateway

IIoT Industrial Internet of Things

IO Inputs/Outputs

IoE Internet of Everything

IoT Internet of Things

IP Internet Protocol

IWS Institute für Werkstoff- und Strahltechnik

JSON Java Object Notation

LM Laser Melting

LMD Laser Metal Deposition

LS Laser Sintering

MES Manufacturing Execution System

MQTT Message Queue Telemetry Transport

MTO Make-To-Order

MTS Make-To-Stock

MVaaS Materialized View as Service

NASA National Aeronautics and Space Administration

NAT Network Address Translation

NIST National Institute of Standards and Technology

NPM Node Package Manager

ODB On-board Diagnostics

OPC OLE for Process Control

OPC UA OLE for Process Control Unified Architecture

OS Operating System

PaaS Platform as Service

PLM Product Lifecycle Management

RDS Relational Database Service

REST Representational State Transfer

RFC Request for Comments

ROA Resource-Oriented Architecture

RP Rapid Prototyping

RS RobotStudio

S3 Simple Storage Service

SaaS Software as Service

SCADA Supervisory Control and Data Acquisition

SDK Software Development Kit

SFTP SSH File Transfer Protocol

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSD Solid State Drive

SSL Secure Sockets Layer

SSH Secure Shell

STL Stereolithography

TC Trusted Computing

xi

TCG Trusted Computing Group

TCP Tool Center Point

TLS Transport Layer Security

TPU Teach Pendant Unit

TUT Tampere University of Technology

TVMM Trusted Virtual Machine Monitors

UAS User Authentication Service

UI User Interface

UML Unified Modeling Language

URI Universal Resource Identifier

URL Uniform Resource Locator

WADL Web Application Description Language

VM Virtual Machine

VPC Virtual Private Cloud

VPN Virtual Private Network

WRM Wapice Remote Management

WSDL Web Service Description Language

XaaS Everything-as-service

XML Extensible Markup language

1

1. INTRODUCTION

In past few decades world has been introduced with multible methods for web based

application assemblies. One of these methods is called Service Oriented Architecture

(SOA). The key feature using SOA lies in the architectural style by which the service

consumer interacts with service provider offering the requested service. Usually this

service is related to capalities of changing the state of service consumer [1].

Representational State Transfer (REST) is a arctitectursal model which was originally

developed by Roy Fielding in his doctoral thesis. REST architecture was later on

derived for RESTful services, which gives the quidelines for designing intercations

between server based services. Thus, REST services can be used for building interfaces

for SOA. [1; 2]

Cloud computing is another new service that is introduced in past decade. Cloud

computing is sometimes refered as internet-based computing. However, the term cloud

computing has been adapted for industry de-facto when referring to computing taken

place either public (off premises), or private (on premises) servers. Another term is used

for computing which includes both public and private servers compined together. This

kind of architecture is called hybrid cloud. [3] Cloud computing term originates to

occurences where software applications and other services have been moved to servers

located in distant datacenters. Cloud computing additionally introduces three different

architectural styles. Insfrastucture as Service (IaaS), Platform as Service (PaaS) and

Software as Service (SaaS). Each of these are constructed on top of each other.

However, depending on service provider these can be provided as individual services.

[3] Now the first connection can be noted. Software as Service can be seen as a platform

for providing Service-oriented architecture. SaaS provides a platform for service which

gives the service consumer a new state or another information from where the consumer

can continue. [4] One prominent method for connecting service provider and service

consumer is a communication through RESTful based services [2]. Platform as Service

is used when consumer gains access with cloud computing provider for using their

platforms when deploying their own software. Depending on cloud provider some

software languages might be supported and some not. Infrastructure as Service can be

imagined as the lowest level of services. [3]

The most resent introduction to the list of technologies represented in last chapters is

Internet of Things. Internet of Things has multible names according to the author

referring to present technology. Thus, multitude of companies are trying to stand out

when gaining more customers by making the variations over the title. Internet of Things

2

is often refered as abbreviation IoT and basically it means the technology where smart

sensors are connected to the internet. These smart sensors can communicate with each

other by Device to Device (D2D) method or deliver the sensor data to data servers. [5;

6] The reason for IoT been developed rapidly over the last few years, is the technology

behind it. The costs for the electronics embedded in the smart sensors is lowered to

level where deploying wast amount of these sensors is economically reasonably.

Another reason is the expansion of the internet connection reaching almost every new

device mounted in industry and in peoples homes. [5] IoT has provided also another

advantage what comes to building user interfaces (UI); Dashboards. Many IoT service

providers are marketing also their own version of IoT Dashboard, used for visualizating

the data gathered from the smart sensors. The convenient use of these Dashboards can

be extended to build data visualizations in reasonable time (with the help of cloud

computing services).

As it is described, multible tools are exists just to be used. When accessing these tools

consumers can exploit their own implementation for applications that they keep

reasonable or profitable when pursuing new business models. The only complication is

to notice the possibilities of each services and realize the potential which is waiting to

be exposed. In past years increasing amount of companies are turning their interests into

cloud computing and other off premises based technology. Duan et al heralds that cloud

computing will have major role in companies development for upcoming years. [7]

1.1 Problem Definition

With the academic research, the data collected from the empirical studies is mostly rec-

orded using spreadsheets or by some legacy based software’s or some proprietary soft-

ware provided by device manufacturer. Research data is not collected in structural form

or either centralized manner. For some practical research and particularly in research

where results are searched by means of repetition, a dilemma appears where more and

more time is consumed in manual data collecting. The solution comes when the re-

search data is recorded automatically and implemented data sensors monitor the envi-

ronment. With these methods, the research can focus on the results, not recording the

values correctly. Additional value comes later in the studies when all gathered data can

be analysed to the core and effective phenomena’s can be detailed. Another benefit can

be noted if process can be controlled in real-time by implementing machine learning

over the collected history data.

Similar requirements are occurring in private sector enterprises. Companies are search-

ing for added value for their products and turning their vision for product service based

business model. Gaining advantage with this new model, vast amount of data must be

gathered for analysing and decision making purposes. Starting point with this new mod-

el is to gather the data efficiently. Discussion over the matter is represented in finish

3

news magazine Tekniikka ja Talous (Technology and Economy) [8]. According to the

magazine from November 2016 future companies should be apple to transpose the data

between their customers and suppliers more resiliently. Real-time monitoring of prod-

ucts and disposing of device data transfer boundaries are key figures for future growth.

Lack of knowledge is one reason for resisting the open interfaces yet the change in the

attitude of the company’s personnel is another matter on the way of open data transfer-

ring. [8]

Both academic research and private sector goals could be achieved when sufficient

amount of data can be collected from the processes, stored in structural form and repre-

sented to the user. After the initial phase where data collection is formalized it can be

used for machine learning, controlling the process and for search of new business mod-

els. Reaching the goals is possible by novel cloud based solution where implementation

is divided in two separate realization, backend and fronted. Backend acts as server col-

lecting the data and providing it to frontend where data is visualized the data to user.

Backend can be built on cloud services and fronted can be implemented with IoT Dash-

board frameworks. When solution is designed in this manner, it aids researches to modi-

fy the data collection as research evolves. Similarly, private sector can more rapidly,

with less human resources and less ICT (Information and Communications Technology)

knowledge, search new business area and improve the existing ones. From these

grounds, it is reasonable to study the possibilities of cloud computing acting together

with IoT frameworks for finding the solution to problem set forth in above paragraphs.

Solutions that serves both academic research and private sector companies. Finding the

solution for presented issues with novel cloud computing paradigm is additionally rea-

sonable after studying the future prospects. According to Frost & Sullivan [9] 40% of

the global data will be stored in the cloud based platforms by the year 2020. Frost &

Sullivan additional states in [10] that new cloud based services are on the rise

1.2 Work Description

Thesis makes theoretical search for cloud computing theory, cloud computing technolo-

gy providers, Dashboard frameworks from the field of Internet of Things and interface

methods for transferring data between different parties of assemblies. Thesis will also

compare the features of the cloud providers and explain the differences in each technol-

ogy. Thus, through the work a possible implementation prospects for small and medium

sized manufacturing companies and academic research are kept in mind. Additionally

study over the Additive Manufacturing method of Direct Energy Deposition is conduct-

ed. Comprehension of this method is essential for the reason that implementation is de-

signed for this particular production process.

With the help of theoretical research, one of the multiple methods is selected to be the

one used in implementation. The focus of the implementation is to build cloud based

4

environment for process data gathering and real time visualization in additive manufac-

turing research. When finished the researches can keep the focus on the research itself

leaving the data recording and real time visualization of the system to the burden of the

cloud framework.

1.3 Assumptions and limitations

At the initial stage of planning the thesis, some limitations and assumptions of the ap-

plication level devices came clear. The environment providing the platform for imple-

menting the designed solution is described in detail in the following chapters. In addi-

tion, the technology researched within the environment is also detailed. Both of these

matters are essential for building the final data gathering solution for the reason that

right variables are collected and substance data can be presented. For the readers of the

thesis it comes easier to follow the coming chapters if some details and assumptions are

described here at the introductory phase. These matters are:

 Universal robot acts as the manipulator in the environment

 There are no additional controllers, robot handles the controlling of the process

 Additive Manufacturing devices and tools have non open interface

 Lack of interfaces forces the robot to gather the main data

 Timestamping keeps on track when one device (robot) gathers the raw data

 Selected robot supports File Transfer Protocol, REST service, .NET solution

 Data gathering and visualization should be handled based on public cloud

 Cloud services should possess low learning curve

 Selected cloud service platform(s) should be ones relied for future existence

1.4 Methodology

Implementation of the environment is based for the theoretical background. Before the

implementation may start the research over the following topics will be carried out.

 Familiarize the methods for additive manufacturing for understanding the re-

quirements of the process

 Study over the theory behind the cloud computing technology

 Resolve the possible interface methods been used

 Research over the public vs. private cloud computing paradigm

 Take closer look over the IoT Dashboard solutions

Another half of the thesis is implementing the environment to the additive manufactur-

ing environment. This part is constructed from the following parts.

 Configure and prepare a cloud computing framework for the implementation

 Handling of Real-time process monitoring

 Operations with Process data history

 Creating a Report for finished process

5

1.5 Thesis outline

This Thesis has five chapters. Chapter 1 covers the introduction for the subject includ-

ing the problem definition, work description and description over the methodology.

Within Chapter 2 the extensive study over the cloud based computing is been illustrat-

ed. Main task is to represent the factors from public and private cloud technology incor-

porated with the IoT Dashboard study. According chapter covers additionally familiar-

izing for the additive manufacturing and the search for the appropriate interface for data

transferring. Chapter 3 takes closer look for the selected cloud computing technology

and Dashboard solution been used in implementation. Second to last chapter, Chapter 5

has main task to cover the implementation part. This chapter describes first how the

cloud framework is designed, configure and build. Second real-time process monitoring

is detailed. Third part in the Chapter 5 illustrates how the process data is gathered. After

gathering, data is passed to cloud service where it is manipulated and finally visualized

for the user through Dashboard solution. Fourth part of the according chapter is to por-

tray how the report creation of the process is carried out. Chapter 6 concludes the thesis

giving the analysis over the work and gives proposals for the future development of the

system.

6

2. THEORETICAL BACKROUND

This chapter takes an extensive coverage over the theoretical issues accessed within

thesis. For the thesis becoming a reality, an implementation subject had to be found.

Through the groundbreaking work with the additive manufacturing field at TUT (Tam-

pere University of Technology) Laser Application Laboratory an implementation envi-

ronment was discovered from in questioned field of manufacturing. Thus, the first

Chapter is dedicated to additive manufacturing technology and specific variation of ac-

cording field, Directed Energy Deposition (DED). Chapter continues by introducing

cloud computing which is the basic technology used in implementation part. The major

issues in cloud computing, security and reliability are covered with survey over the arti-

cles and reports. Another foundation in the implementation comes though Internet of

Things, and more over the IoT Dashboards. Thus, chapter takes closer look for current

state in IoT technology. Later on the chapter, covers data transferring methods available

in the implementation part. Latter sections are dedicated to theoretical work on studying

cloud computing providers and IoT dashboard technologies.

2.1 Additive Manufacturing

Additive Manufacturing has the origins from the 1980’s after which the other technolo-

gies, computer-aided design (CAD), computer-aided manufacturing (CAM) and com-

puter numerical control (CNC) reached the maturity level for producing three dimen-

sional objects and so worth making the questioned production technology possible. [11]

Another significant impact on the rise of AM technology was STL (Stereolithography

or Standard Tessellation Language) file format developed by 3D Systems Inc. Inside the

CAD file object shape is stored in continuous geometry. Converting a CAD file to STL

file format translates this continuous geometry into a header and small triangles added

with the normal vector of these triangles. When processing the STL file for AM produc-

tion, the file is cut in slices each sliced layer holding the points and information of that

specific layer. [11] This information can be inserted, into G-code file. AM devices can

then read a G-code file format and manufacture the artifact accordingly. Additive Man-

ufacturing follows different discipline compared for conventional manufacturing where

material is being removed from the blank. Like described in [12] Additive Manufactur-

ing process artifact is formed layer by layer from feedstock normally consisting of wire

or powder.

Technology as we know it today was not always called Additive Manufacturing. In the

1980’s Rapid Prototyping (RP) was the term for same ideology. Initial drive for creating

7

such manufacturing method was the urge for creating prototypes over the artifacts, thus

portraying what engineers have in their mind. Formal RP technologies enabled further-

more a reduction of time and cost moreover making possible of creating pieces impos-

sible to machine. Novel technologies in the AM have made it possible to manufacture

finished product straight out from the AM device. AM processes are evolving to the

level where no polishing, machining or abrasive finishing are needed. All the possible

solutions for AM processes are yet to be found. Some of the use case examples at the

moment are architectural design of buildings and structures, medical applications via

biomedical materials and 3D scanning processes, manufacturing of lightweight ma-

chines from exceptional materials or by structural concepts. Artists have their own in-

tentions for making novel objects. One user group of the AM processes are the hobbyist

making extraordinary artifacts and repairing household products via printed spare parts.

[11]

AM processes can be classified into three main categories representing the material used

in the process; liquid based, solid based and powder based solutions [11]. However,

these categorizations are quite straightforward and multiple other categories can be con-

sidered. Alternative concept for categorizing the AM methods are through the energy

source or via the method of how materials are joined [13]. Categorization is furthermore

possible by the material being used; plastic, metal or ceramics [13].

Subcategorization of Additive Manufacturing through the method of feeding the energy

into the process leads to technology called Direct Energy Deposition [14]. DED is a

method commonly used for adding additional material on already existing part or re-

pairing damaged artifacts. DED solution consists of manipulator having multiple de-

grees of freedom, practice which enables the addition of material in any part of the arti-

fact. Manipulator holds a nozzle (tool) from where the material is deposit on the objects

surface. Near the surface material is first melted and on the surface the deposited mate-

rial is finally solidified. DED method can be used for ceramics or polymers, yet the

most common solutions are built for metals. Deposit material can be inserted either with

wire or by powder and the melting can be arranged either with laser or electron beam.

[14] DED method is the one used in the application environment of the thesis. Envi-

ronment in which the data gathering is implemented.

2.1.1 Path manipulation

For making both research and solution testing with Additive Manufacturing and its sub-

class Direct Energy Deposition, there is a need for versatile environment. One part of

this environment is the manipulation method for the different tools (nozzles) used.

When searching a commercial solution first intuitive manipulator is an industrial robot.

Industrial robot with 6 degrees of freedom (DOF) has the asset of reaching all the points

in the toroidal working area. However, the challenge rises if more advanced manufac-

8

turing in different poses need to be conducted. Cladding of a rod is one example. Pro-

cess can only be handled when rod is positioned vertically and is rotated simultaneously

during the cladding. Solution for this and other similar problems is additional manipula-

tor called positioner. Positioner in this case is a 2-axis device capable of rotating its ta-

ble and horizontal axis. According devises from the application environment are illus-

trated in the Figure 1.

Figure 1. ABB IRB 4600 robot (left) and ABB IRBP A-750 positioner, adapted from

[15; 16]

Another issue for the additive manufacturing solutions is the accuracy of the manipula-

tor. There could be a significant difference between the position in the virtual controller

model and the actual robot. For the robot (ABB IRB 4600) of thesis implementation

part there is a concept called Absolute Accuracy [17]. Absolute Accuracy compensates

the mechanical properties and the deviation of the axes due to the payload. Through the

implementation of the questioned approach robot can maintain accuracy of 0.5mm in-

side the working area. Usually industrial robots work inside 8-15mm accuracy. Tech-

nology for gaining the 0.5mm accuracy lies in the proprietary algorithms inside the ro-

bot controller. Because solution for the problem is non-linear and complex, ABB has

resolved the issue with a position compensation inside the controller. Robot adopts the

kinematics from the generic library of the particular robot model and the actual position

is reached using compensation parameters collected with 3D measurement system. [17]

2.1.2 Cold Metal Transfer method

One possible Direct Energy Deposition method is an approach of Cold Metal Transfer

(CMT). CMT is a welding technology developed by Fronius International GmbH [13].

Before describing the technology further, few words over the conventional welding pro-

cess. Fusion welding is a concept where heat is applied to the welding groove to create

liquid weld pool [13]. Afterwards the weld pool solidifies and creates strong and per-

9

manent joint. Source of the heat could be a flame, laser, electron beam or, the most pop-

ular one, an electric arc. With the welding process, there is also a possibility to add a

filler metal into the weld pool and so worth fill the gaps of the object. The most em-

ployed fusion welding method is Gas-Metal-Arc Welding known as GMAW. In this

method filler, metal acts as the electrode for the electric arc meanwhile filling the weld

groove. Electric arc is formed between the weld groove and tip of the filler material.

Electric arc melts the tip of the filler and creates a common weld pool. Atmospheric

protection is performed with shielding gas. Reason for the favor of the welding and

more over GMAW comes through the fact that each type of steel, aluminum, copper and

nickel alloy could be used as the filler wire. By using the weld torch and manipulator

for overlaying the successive weld seams the technology can be used for AM processes

as well. Welding process is, in addition, an easy task to be automated. [13]

Austria based company Fronius had an idea of developing a GMAW solution for weld-

ing steel together with aluminum. The criteria for accomplishing questioned task is to

avoid the mixing of these two materials. In other words, steel has to remain solid while

aluminum molts meaning that process has to work on quite modest energy level. Froni-

us has resolved this matter with high frequency (130 Hz) forward-retract movement of

the filler wire during the welding process. [13] According device has both digital con-

trolled wire feed and digital detection of electric arc short circuit. When the short circuit

is initialized, the retraction of the filler takes place meanwhile the arc is extinguished.

Consequence of this method is the release of the molten droplet form the filler material

(see Figure 2 for details). Thus, thermal effect is reduced causing the term Cold Metal

Transfer or ensemble CMT-GMAW. [18]

Figure 2. Cold Metal Transfer process [19].

Vast range of metal materials and alloys can be used with CMT and the process itself

reduces the spatters often present with the conventional GMAW process. Minimum

thickness of the seam created with the CMT process fluctuates by the diameter of the

filler metal. If wider seam is requested the action of weaving with the manipulator can

be initialized. Reduction of thermal effect and properties mentioned has raised the op-

portunity to use the CMT process for Additive Manufacturing and for DED solutions.

[13; 18]

10

2.1.3 LASER aided Additive Manufacturing

Studying laser technology implemented in the field of AM, three different methodolo-

gies are addressed. Laser Sintering (LS), Laser Melting (LM) and Laser Metal Deposi-

tion (LMD) are the current most versatile technologies used. [12] However, regardless

of the versatility of the methods, each of them are a composition of complex chemical

metallurgical and non-equilibrium processes where heat and material transfer plays sig-

nificant role. In novel laser additive manufacturing processes, the substance can be de-

livered either in the form of powder or filler wire. Process itself is highly dependent of

the materials chemical constituents, substance particle size and shape, packing density

and the flow ability of the powder (when powder is accessed as the substance). Equiva-

lent importance in LS, LM and LMD comes through the process values of laser power,

laser spot size, speed of the scanning and type of the laser. [12]

Laser Sintering is one alternative for laser based AM processes. In LS manipulator, lev-

els powder substance layer by layer and sintering is conducted with laser energy. At-

mospheric protection of the powder and preheating of the build platform has a signifi-

cant role for contriving with this method. Selection of the laser technology (fiber laser,

disc laser, Nd:YAG or 𝐶𝑂2) is important considering the fact that different substance

materials absorb different wavelength of light in divergent ways. In addition, the metal-

lurgical mechanism in the process is determined with laser energy density. Sintering

time varies from 0.5 to 25 ms which causes the melting/solidification reaction. [12]

Laser Sintering is not the solution when demands are considering the fully dense com-

ponents with no time consuming post processing phases. To meet these requirements

Laser Melting technology is developed. Application solution for LM process shares the

similar devices with LS technique yet the difference comes from the complete melt-

ing/solidification reaction when compared with LS. LM method is enabled by the en-

hanced properties of the laser. Key improvements are higher laser power, smaller fo-

cused spot size and superior beam quality. All this leads to advanced microstructural

and mechanical properties when compared with aged LS solutions. However, LM pro-

cess, occupies complications. During the process, the substance lies in the molten pool

state, which can come instable and ruin the artifact. Constructed artifact sustains high

stress consequent from the shrinkage during the transformation from liquid pool to solid

material. Problem that could cause the distortion or delamination of the finished prod-

uct. [12]

Final conceivable method for using laser in additive manufacturing is Laser Metal Dep-

osition method occasionally referred as Directed Energy Deposition [13]. Some of the

principles from LS/LM methods are adopted yet the compelling contrast comes from

the powder feeding technology. In LMD, powder is fed through specially designed noz-

zle system where gas driven powder feeder delivers the substance from center of the

11

nozzle. From the same nozzle laser beam is injected to the work piece by focusing the

beam close to the surface. Focused beam melts the powder and the substance is solidi-

fied on the work piece. Controlling the z-axis movement, the layer can be altered and by

controlling the x and y-axis arbitrary forms can be manufactured. In composition three

dimensional artifact is produced. By implementing LMD (DED) method it is possible to

repair, coat and build artifacts with complex geometries. [12] Coating gives additional

value where artifact with lower hardness or corrosion resistance is enhanced with the

layer of superior material [20]. LMD (DED) is highly versatile process for studying and

manufacturing various artifacts. Different laser AM techniques using the powder or wire

as the substance are aggregated in the Figure 3.

Figure 3. Laser Additive Manufacturing processes classification, modified from

[12; 21].

Powder based systems enable the forming of thin structures at narrow targets. If gener-

alized, only the laser beam and sustainable amount of powder are required to make the

structure. Powder techniques in addition does not require great precision and timing at

the points where beam is enabled and disabled. Simplified ideology is that only ade-

quate amount of powder is present. The disadvantage of powder system is the loss of

the substance falling from the target, not been melted. Powders furthermore holds a risk

for human operators where the substance can find its way inside the human body by

breathe if sufficient protective gear is not used.

German based research organization Fraunhofer and its subdivision Fraunhofer Institute

of Material and Beam Technology IWS (Institute für Werkstoff- und Strahltechnik)

Dresden [22] has developed a concept and device called COAXwire [21]. COAXwire

stands for Coaxial laser wire cladding head [21], a laser head which can use wire as the

12

filler element. COAXwire is designed to afford welding process with omni-directional

performance. Fundamental of the head is based on the beam splitter which divides the

collimated laser beam in three separated beams travelling at the outer shell of the de-

vice. Three beams appear from three optic nozzles at the bottom of the device and one

unified laser beam is constructed at the focal point. Optical elements of the COAXwire

are constructed in a way that beam focuses exactly at the center axis of the filler. Filler

runs in the centerline of the device. This causes an action where filler is injected pre-

cisely in the center of the laser created molten pool. Causing the advantage where all

welding directions and poses are conceivable without the interference from gravity. [21]

All this has being enabled by the development of digital technology at the stage where

start and stop sequences of the beam and filler wire feed can be handled with sufficient

precision and timing. Fraunhofer IWS COAXwire is one device in the application envi-

ronment of the practical part in the thesis. COAXwire moreover composes a third line

of technology in Figure 3.

2.2 Cloud computing

The purpose of next paragraphs is to take a theoretical view over the cloud computing.

Cloud computing is fairly a new ideology over the issue of how the server based com-

putation and services could be organized. For this reason, terminology and basic func-

tions are settling at the moment. One of the newest cloud based services are Internet of

Things (IoT) solutions. These solutions provide interfaces for connecting devices to

internet for the purpose of monitoring and controlling processes.

Section 2.2.1 describes the theoretical concept of the cloud based computing. Section

portrays both the historical background of cloud computing as its current state. Follow-

ing section, Section 2.2.2 concentrates to security issues and reliably of the cloud solu-

tions. Both of these issues are most important then building a cloud based solution and

more over when shifting businesses to be solely located on the cloud. Failing with relia-

bility and security might cause the company’s core business to fail with catastrophic

consequences. Last section, Section 2.2.3, takes closer look into Internet of Things solu-

tions, technology itself and current state of the applications. Cloud computing in gen-

eral, furthermore with IoT technology, lies in quite introductory state and both the tech-

nology and the platform providers are basing their grounds.

2.2.1 Cloud computing concept

Cloud computing can be comprehended as all the services which takes place out of enti-

ties own premises and are accessed over the internet [23]. In addition National Institute

of Standards and Technology (NIST) defines the cloud computing to be a model in

which an universal access is based on the commission and where computing resources

can be configured and changed, including storages, servers, networks, services and ap-

13

plications [24]. Premises in here can be sorted out to mean individual persons’ homes

or facilities for some particular company or business. To be more precise cloud compu-

ting covers all the activities that takes place over the internet which incorporates the use

of devices, services or, more anonymously said the use of resources located on provid-

ers web servers [25]. Reference to the modern cloud computing can be found from the

history. Cloud computing is a combination over the grid computing, parallel computing

and distributed computing [26]. The basis of the thesis is to concentrate on the cloud

computing resources used by businesses but for the wider audience it can be mentioned

that most of ordinary people use cloud based solutions in every day basis. For contact-

ing their friends and family or when using web based banking solution. Most of the

people never realize that the usage of electronic mail is also a use of cloud computing

[25].

Cloud computing is based on large data centers which are maintained by the cloud pro-

vider [27]. Within these data centers, vast amounts of physical resources are running

simultaneously. These physical resources are then applied by multiple virtual machines

(VM’s). Each of these VM’s can represent one ecosystem whereas this ecosystem are

the virtualized locations of cloud consumers. Cloud consumer can have one or many of

these VM’s and so forth use the cloud as on-demand. Scalability, on-demand resources,

resilient computing, recovering from disaster and extensively high performance are the

main features for justifying the use of cloud based computing. Major players on cloud

computing field are also providing payment methods where you only pay for what you

use. [27; 28] For small and medium sized enterprises, this creates a significant asset.

Costs for using the cloud are substantially lower when compared to the technology

where computing power is maintained on private servers [25; 29; 30]. All this also has

another side; cloud data centers are remarkably sophisticated infrastructures. Orchestra-

tion of cloud resources makes the cloud solutions both, vulnerable for security and reli-

ability, yet accessing cloud resources require additional expertise through the lack of

standardized interfaces [27; 28; 31].

Cloud computing theory holds three different models for describing the level of services

whom cloud providers are offering. Frost & Sullivan addresses these level as the legacy

levels, for the reason that new business insights are on the horizon [10]. The lowest lev-

el of basic service is Infrastructure as Service (IaaS). IaaS is a service where service

provider offers only the physical resources accessed by the consumer. Consumer must

deploy their own operating system (OS), data storage methods, software’s and network

connections. [3] Platform as Service (PaaS) represents the middle level out of these

three service stages. PaaS is a realization of physical resources been submitted for one

virtual machine. Used resources can be distributed over various data centers; however,

virtual machine acts as one frontend entity. Consumers exploit this platform as one en-

vironment for deploying their own services and computational applications. Service

consumer can maintain virtual machine(s) via internet browser based portal and through

14

this portal changes can be made for platform within the limits of service provider. [3;

26] On the highest level locates the Software as Service (SaaS). Method and ideology

for using SaaS diverts totally from two mentioned ones. The principle is that SaaS is

accessed on-demand bases and through any device, that has an access to internet. Ser-

vice consumers possess only minor possibilities to customize the service. SaaS acts as

an individual entity that is used to change the state of the consumer or provide a new

thread for the consumer to continue its actions. [3; 26]

These three layers forms the basis for cloud technology, although multiple variations

exist. Singh et al presents a new form of PaaS named Plat Serve derived from Platform

as PaaS [26]. Plat Serve stands for the paradigm where all the operating systems are

installed on the central server and user only picks up the one, which is required at a

time. This gives the advantage over traditional problems for operating system updates.

All the updates are always activated through this one master OS, gaining the user an

access to the latest features. [26] Additionally, variations of different services can be

combined and illustrated with equal basis. These variations include, among others,

Communications as Service (CaaS) [3] and Materialized View as Service (MVaaS)

[32]. Consulting company Frost & Sullivan introduces a model of Everything-as-service

(XaaS) in their report [10] of new business opportunities in cloud services. Frost & Sul-

livan states that new services will emerge and more increasing amount of services will

be offered as cloud based.

Dialogic portrays four different cloud location models in their Whitepaper [3]. These

four models are also addressed by Duan et al in their article for a Construction Method

and Data Migration Strategy for Hybrid Cloud Storage [7]. Private cloud is addressed as

cloud located entirely within locations firewall. Private cloud can be maintained either

the operator itself or some third –party operator. [3; 7] Private cloud has the advantages

for storing vast amount of data with high reliability in terms of availability [7]. Com-

munity cloud portrays a cloud deployment model where multiple consumers share the

same cloud infrastructure [3]. Usually these consumers have similar requirements for

the cloud and so forth the usage of same deployment is conceivable. Consumers may

also hold a demand for allocating rather modest amount of financial resources for de-

ploying their function at cloud. In these circumstances, a public cloud comes in ques-

tion. Public clouds are commercial versions of cloud based computing and can be ac-

cessed with rather modest payments for the provider. Financial model in these clouds

are based on pay-as-you go type of invoicing. Hybrid cloud is a composition over two

or more of these three other explained cloud types. [3; 7] When deploying a hybrid

cloud two main issues should be covered. Usage of two different cloud types should be

invisible to the end user, and at the same time implementation should hide the com-

plexity of the structure behind the multiple cloud system. Gaining these two aspect at

the same time is much more challenging than commissioning a one model based cloud

system. [7]

15

2.2.2 Security, privacy and reliability

Each entity mentioned in the header of this section is one of the most important issues

related to cloud computing. According to survey conducted by Benslimane et al, slight-

ly less than 74 percent of the total 203 papers them were able to discover, related to se-

curity issues concerning cloud computing [33]. One of the issues in inflation of cloud

based systems in business solutions are related to security and privacy of the data stored

in cloud [34].

Multiple aspects over the security matter can be formed. Security and privacy can be

seen as separate elements hovering over or encapsulating the actual cloud based system.

Such as Virtual Private Network (VPN) connection shielding the communication be-

tween cloud and the consumer. Further, these matters can be comprehended to be incor-

porated in each actions performed with cloud based system, thus creating a fabric where

data and security are co-existed. [34; 35] This leads to new way of understanding the

development of software’s that are deployed in cloud based ecosystems. Software de-

velopment process has its standard manner how different stages are handled. In legacy

systems software developing consist of planning, modeling, construction, communica-

tion, testing, deployment and maintenance. [35] However with cloud based systems

software designers should keep in mind that the data is transferred to cloud ecosystem

with public connections and internet backbone switches. Thus, these mediums need to

be secure as well. Consumers of cloud based systems should also keep in their mind that

security is not only a responsibility of the cloud service provider. Consumer itself

should be aware and handle the security from their part. [34] One of the first solutions

for security issues is that consumers turn their look for is the Service Level Agreement

(SLA). SLA is a document where service provider gives their promise for, security and

performance of the service according to the contract in which the consumer has agreed.

Some of these SLA agreements could also include additional information such as data

location and its auditability for service provider. [33] In principle, SLA is based on the

trust between service provider and service consumer.

Narula et al has reviewed the matter of trust through a pair of concept covered in their

study over cloud computing security [34]. Trusted Computing (TC) and Information

Centric Security (ICS) [34]. Cloud service providers are constantly enhancing the secu-

rity related to cloud computing. In many cases, the eventual trust can be accomplished

by introducing, a third party for authenticating both cloud consumer and cloud provider.

Narula et al identifies these actions as remote server attestation. Mainly the idea in TC is

an encryption, which is conducted for the information, and the decryption key is provid-

ed for trusted program. Operation is handled via third party hardware chipset installed

on computers. [34] Narula, Jain and Prachi additionally describes the Trust Computing

Platform [34]. TCP was originally a title of the group providing the third party security.

At the present state the platform owns the title of the technology been used and the or-

16

ganization has been renamed as Trusted Computing Group (TCG) [36]. TCP is based on

two services. Other one is authenticated boot and other one is encryption. These actions

are conducted via Trusted Virtual Machine Monitors (TVMM) and Trusted coordinator.

TVMM acts as hosting the customers’ virtual machines and Trusted Coordinator runs

these VM’s in secured location shielded by security perimeter. Only the combination

fulfilling both of these requirements are then relayed to be trusted ones. [34]

ICS is understood as security of information over the security of medium where infor-

mation is moved from location to location. ICS is based on encryption where only the

author with legitimate decryption key can access the information. Dispute in these ac-

tions comes through the practice where in general both information and data is pro-

cessed in the cloud without any encryption.

Confidentially, Integrity and Availability commonly labeled as CIA are extensively

present at every article concerning cloud services [34]. Confidentially means that data

and information held in cloud ecosystem should be encrypted for any unauthorized ac-

cess. Only the entities having the access can reach the data. Integrity concerns both the

data and information. These should not be modified by any unauthorized personnel nei-

ther any process nor entity. Especially the information inside the cloud should remain

consistent. Reliability of accessing the data or computing resources should be consistent

through all the timeline consumers holds the access to the kept resources. Service pro-

vider is responsible for providing backup methods and concurrent VM’s to provide the

consumer with Availability at any time. [35]

Trust was identified as agreement between two parties of cloud operators verified with

third party player. Similar issue can be noted for integrity of the data and information

within cloud systems. Cloud provider cannot acknowledge if the information was tem-

pered with any hacker while it travelled in the interchange medium. Further cloud con-

sumer should not have to care about the integrity once the information has left its

source. Similar to Narula et al concept, Madhubala introduces in article over the securi-

ty in cloud computing a third party member for watching the integrity and providing

transparent actions for cloud consumer. [35]

In the implementation, the process data is delivered with File Transfer Protocol (FTP)

although real-time monitoring is handled with Representational State Transfer based on

Hypertext Transfer Protocol (HTTP) and Hypertext Transfer Protocol Secure (HTTPS)

messages. Process data moves in text file where all the parameters are only numbers for

any outside viewer. Only the source and the destination knows the sequence and rela-

tion of these data records. Complementary method is noted in Kaur et al article where

they give a solution example by means of Image Steganography [37]. With this tech-

nology, a sensitive information is encrypted inside an image and decryption is conduct-

ed with Pixel Key Pattern where edge detection excavates the encrypted information.

17

After the data has left the premises of its original owner it is stored in large data centers

beside several other cloud user’s data. This causes an issue over the privacy of the data.

Cloud service providers might have disclaimers in their SLA’s for storing the data and

its location. However, the owner has partially lost the control over the data stored in the

cloud. Storing the data in large data centers possesses also a thread with itself. Most

cloud providers compose a multiple copies of the data for availability issues. Data

should always be accessible even with one data center disconnected from the internet.

For this actions data owner (consumer) is not anymore aware of who and from where

has the access to the data copied by automatized applications. Privacy issues raises

likewise with sensitive data storing. For instance, names, phone numbers, addresses

both personal and internet protocol (IP), medical history or criminal investigation evi-

dence. [24]

Reliability in cloud computing intertextures with availability of data and information.

Both Li et al [27] and Zhang et al [38] introduces a different perspective in cloud relia-

bility in their studies. Zhang et al takes an aspect of reliability to represent it as the reli-

ability in response time of cloud actions. They also state over the energy consumption

paradigm in cloud computing in which total energy applied by data centers is increasing

by 12% each in year in US. Against these basis Zhang et al introduces and implements a

queueing algorithm, which improves the response reliability time and meanwhile lowers

the energy consumption [38]. Li et al study in the same matter has a different percep-

tive. In their study, the concept is based on reliability of the different physical servers

running in data centers, serving as platform for VM’s used by cloud consumers. If a

physical server should fail, the VM’s fail at the same time and the consumers cannot

receive the reliable service. Conclusion for their study represents a state-space model

with a combination of fault tree. With these tools, first making a state-space model of

the physical server and then calculating the probability of each state within the fault tree

can clarify a reliability. Outcome can give the cloud provider a means to evaluate the

amount of physical servers running consumers VM’s. [27]

Trust, as it is described in this section is otherwise a considerable matter with a technol-

ogy called IoT for connecting devices to internet. Next section covers the usage and

potential of IoT for possible technology bringing benefit in future manufacturing

2.2.3 Industrial Internet of Things

Megatrend is a global term, yet in the field of technology, it can be comprehended as

indicating a major long-term change that takes place with some specific field without

anyone actual effecting the direction of the change. Internet of Things, usually referred

as IoT from the initials, is one of current megatrends. [5] Basics for IoT is connecting

smart devices into internet but it also possesses frameworks (Dashboards) which brings

cloud based services to the level where deploying solutions at incorporated level comes

18

more practical and convenient. Further, on within thesis cloud computing is conceptual-

ized as backend solution and IoT Dashboard as frontend solution to be accessible for the

users. This section of the thesis holds extensive look for current state in the field of IoT

and its adjacent solutions.

IoT is a term that is profiled to cover products and services for private consumers rather

than for the industrial sector. IoT considers smart devices connected into internet

through which users can monitor their everyday life, health and surroundings. As for

industrial IoT equivalence there is a concept called Industrial Internet of Things, regu-

larly spoken of IIoT. [5] Designing of IoT devices and services starts from ground level.

From the question of how consumers’ needs can be more efficiently fulfilled and what

are the prospects for making more economical and high-speed sensors. These sensors

are used for relaying information and so worth producing more value to end user. When

conversing over IIoT the methodology is different. IIoT glimpses the needs for specific

industrial sector from bird’s eye view trying to gain more efficient overall process and

optimizing the needs for entire corporation. Lower level requirements for producing the

devices and services are detailed after the higher-level concept is clarified. [5]

The rise of IoT and IIoT can be observed to be the consequence of internet connection

taking more coverage and electronics coming smaller in size to be fitted in every device.

Yet, the most important single matter enabling the rise of IoT is cloud computing plat-

forms making the usage of the gathered data more convenient. General Electric points

IIoT to consist of three main topics, smart devices, advanced analytics and humans

working [5]. IIoT is additionally referred as the third industrial revolution [5]. The Re-

search Institute of the Finnish Economy (ETLA) has released a report over the IIoT pro-

spects in Finnish industry and manufacturing [5]. From this report it can be noted that

possibilities for economic future growth with the help of IIoT are extensive. Similar

studies are taking place all over the world and as an example; German has started their

spearhead initiative Industrie 4.0 in year 2013. Questioned initiative is concentrating for

flexible manufacturing systems, individualized manufacturing and integrations of both

subcontractors and customers. With the addition of pursuing the additional value for the

products and composing hybrid commodities. [5] Name of their initiative is indicating

the fourth industrial revolution which should be, in their opinion, consisting IoT and

Cyber-Physical Systems where cyber networks and physical world are tied together [5].

Multiple industries have turned their vision from producing basic commodities for

providing life-cycle management. IIoT enables expedited growth for these services

through data gathering from both devices and products. By analyzing this data, compa-

nies can provide predictive measures. ETLA’s report states that business has three op-

portunities. First, they can emphasis their commercial function, method known as evo-

lution. Second, they can pursuit new businesses, method known as revolution. Third,

companies can reach for additional value inserted inside their products. [5]

19

Service business model can be twisted to be incorporated with the manufacturing indus-

try itself, within the company. Before taking closer look for this aspect, it has to be not-

ed that in legacy systems industrial sector has largely relied on the intranet connections.

By introducing internet starting from the Enterprise Resource Planning (ERP) to Manu-

facturing Execution System (MES) to SCADA (Supervisory Control and Data Acquisi-

tion) system and finally on the shop floor, the methodology of services can be used and

develop to be an internal service for providing more efficient manufacturing methods.

[39] Perceiving the service based model as an internal function between different manu-

facturing devices, cells and subsidiaries, companies can reduce the input assigned for

internal information systems and release these resources for another use. Although The

Research Institute of the Finnish Economy points out that modern cloud computing and

IIoT or IoT platforms require high-ended expertise, it seems that in future this paradigm

is changing [5]. Platform providers are constantly raising the abstraction level of their

services making the learning curve more low gradient. Companies can additionally ap-

ply public cloud computing model as the backend for the production devices. Described

method opens a new set of services able to be provided for company’s customers by the

means of more precise and detailed production data. Data, which is collected in, formal-

ized manner, not by users, so any human errors are eliminated. Now internal processes

itself comes money worth information. [5] Described paradigm is portrayed in the Fig-

ure 4.

Figure 4. Internet can be deployed inside the factory, adopted from [5].

Previous chapter describes the concept of service-based architecture within company’s

internal structures as well in company-customer boundaries. The potential in Industrial

Internet concerns also the future manufacturing performance. Soldatos et al [39] has

taken an extensive view over the matter. In their study, they point out four different as-

pects for future manufacturing trends. First, is the emerging need for shifting from ca-

pacity ideology to capability ideology. In this concept, companies are changing their

20

manufacturing for more responsive and flexible methods when responding on market

demands. Second, they point out the support for new production models. Factories are

shifting from make-to-stock (MTS) methodology to make-to-order (MTO) and more

over configure-to-order (CTO) and engineer-to-order (ETO) methodologies. These new

models are replying for the growing need of mass customization. Third trend, which

they propose in their study, is a movement towards proximity sourcing and proximity

production. In this concept, factories, material suppliers, distributors, retailers and sub-

contractors work together in tight loop for making modular products in common plat-

forms. When applying mentioned manner stakeholders are able to perform the final cus-

tomization at a location and provide highly custom-built solutions. Fourth point in

Soldatos et al study is the change of work force commitment. Work forces are shifting

from manual labor to more upper level when concerning factory workload.

Future manufacturing is highly leaning against Future Internet (FI). Manufacturing will

change to be consisting of Industrial Internet, Internet of Things and cyber-physical

Systems (CPS) where physical devices and cyber technologies act together. [39] These

goals can be gained by the implementation virtual manufacturing applications with the

actual factory automation, both incorporated by means of IoT as described in Soldatos

et al work [39]. Future virtual manufacturing environments will be built in a manner

where whole chain from material supplier to customer can be covered. Likewise, manu-

facturing methods are under rapid changes. Additive and Digital manufacturing will

revolutionize the technologies used in legacy systems. [39]

Singularity point of these modern manufacturing processes are yet to come and several

reasons for this are pointed out. Industrial sector is rather conservative when changing

their methods and no actual operational and extensive pilot cells exists at the moment.

Even though service oriented architecture paradigm appears very prominent. Another

reason comes from the migration path and its lack of smoothness. Factories cannot

change overnight and no clear methods is found for making the merging of legacy and

future systems easy. Otherwise, standards for future solutions and techniques are still

under specification. [39] Numerous initiatives across the Europe are taking a participa-

tion for intensive research in the field of digitalization. IERC (IoT European Research

Cluster) is a consortium for hosting several topics for future manufacturing. Another

union is AIOTI (Alliance for IoT Innovation) which has pointed a working group for

studying future smart manufacturing. Numerous other projects within EU’s FP7 and

H2020 programs are also concentrating for future digital manufacturing by means of

IoT. [39] In the practical part of the thesis one possible solution for future data gather-

ing and visualization is presented through multiple technologies of SOA, REST ser-

vices, IIoT, cloud computing and legacy system of FTP.

Interfaces between different devices plays a major role in digitalization and in future

manufacturing, controlling and quality assurance. The concept of interface can be un-

21

derstood either located on the physical layer or at the API layer (Application Protocol

Interface). There is an endeavor for unified interface connection between ERP, MES,

PLM (Product Lifecycle Management), SCADA and shop floor controlling systems. [5]

In legacy interfaces and systems there has been a concept called silos. Device manufac-

tures have been using their proprietary interfaces thus causing a vendor lock-in situa-

tions. In past years the usage of these proprietary interfaces are diminishing. Mentioned

silos could have been industry specific or even a specific within some industry sub lev-

el. This has caused a situation where it has been cumbersome to connect multiple devic-

es together. According to new principles in IIoT these interfaces should be open and

interoperability should be convenient. [5] Devices should also be able to interact with

each other using D2D (Device-to-Device) communications methods. By doing so de-

vices can form a mesh like structure for transferring information. D2D communication

can be conducted with wired or wireless communication approach. [6] In the thesis ap-

plication, Cold Metal Transfer (CMT) device is one example of silo principle. CMT

device hold’s EthernetIP bus connection. Connection is part of Common Industrial Pro-

tocol (CIP), although Fronius has closed the interface for any user outside their co-

operation partners. [40] Described method can be compared with ABB robot controller,

which holds REST interface for reading and writing the robot variables [41].

Designing an open and comprehensive interface for IIoT comes cumbersome through

the variety of devices communication protocols and data formats, which are usually

heterogeneity [42]. Domenech et al [43] introduces a concept named Smart Gateway

placed between IIoT devices and cloud platform. Smart Gateway acts as proxy and is

responsible for altering the device proprietary communication protocol making the de-

vice characteristics available through RESTful web service. Second, this proxy layer

sends the data to cloud service and third it enables the remote monitoring of the devices.

[43] Their solution consists of four components. Device Driver (first layer) abstracts the

device communication protocol and transposes the data for Interpreter (second layer,

responsible for constantly updating the virtual model of the device. On the third layer,

RESTful Web Services provides resource of the device for clients to be accessible

through HTTP messages. Fourth layer executes the RESTful Web Client, which sends

the gathered data to cloud platform for future analyzing, visualization or other availabil-

ity. In their model, data is transferred with JSON (Java Object Notation) instead of

XML (Extensible Markup language). JSON was selected for its need of less computa-

tional resources when processing the data and for the nature of JSON being less ver-

bose. [43]

Emeakaroha et al represent a contrary method for Domenech et al search, called Generic

Cloud Interface [42]. On top of this Generic Cloud Interface, they propose a Server

Middleware making the connections to actual devices through device’s heterogonous

interfaces. Their study additionally introduces a direct link from Generic Cloud Inter-

face to devices when controlling of actuators are in question. Generic Cloud Interface

22

composes from three layers. First layer acts as security authenticator enabling the au-

thentication methods for the connected devices and thus assuring the privacy of the data.

Second layer plays the role of formatting the data. According layer gathers all the data

and transforms it to the platform-neutral format. Final layer is called Communication

Mechanism. This mechanism has two different models. One for the more generic com-

munication via HTTP messages used in large scale applications which support accord-

ing technique and one for the D2D communication handled with method called message

bus. Message bus is composed of three individual agents, producer, messaging infra-

structure and consumer. In the operation, producer and the consumer has no need to

know about each other’s capabilities and interfaces. [42]

Both Domenech et al and Emeakaroh et al proposals are quite far similar. Domenech et

al do not have the feature for D2D communication and they do not take a stand in the

security issues, which are quite profound when acting with IIoT technology. User acting

with IIoT and cloud computing are concerned about their data privacy as described for-

merly in this thesis. With IIoT technology user should be more awake with the security

issues [42]. Moreover, understand a concept of trust when referring IIoT or consumer

counterpart IoT.

Concept of trust is used when dealing with human beings, yet the rise of the devices

being connected to internet the mentioned trust is altered to comprehend the matters

between entities of any kind [44]. Tragos et al has made a study [44] over the concept of

trust. Trust is understood as an action where opposite party is believed acting via the

predefined criteria subjective to the entities themselves. When measuring the trust of the

entities an abstract concept of trustworthiness has to be defined. Trustworthiness is

based on the fact of how the entity has behaved in the past and at the current state. Yet

the availability figures, reliability and security evidences has to be evaluated. Evaluation

is usually performed for the trust of the devices themselves, for the communication me-

dium and for the trust of the security issues. The trust of the security means the vulnera-

bility of the device against the certain attacks. [44] Trust management is relaying on

five criteria when evaluating trustworthiness. Observation is the most important step. In

the observation systems, parameters from the entities are monitored. Scoring is done

after the adequate information from the entities have been gathered. Scoring can be

done for the particular entity or the bundle of the entities. Third step is the selection of

the entity based on the scoring results. After the selection is conducted the transaction

can commence and more information can be gathered over the functionality of the enti-

ty. Finally, at the fifth step, rewarding and punishing of the entities are performed. [44]

In the near future global world will take a leap in device interactions. Now terminology

for Internet of Things is evolving rapidly and as an example Cisco has conceptualized a

matter of Internet of Everything, in which humans, processes, devices and artifacts are

all connected creating added value [5]. As for the comparison Vermesan et al [45] in-

23

troduces a concept of Internet of Robotics where data combining changes the manner of

how artificial entities acts with the humans [45]. Prospective digitalization offers a great

opportunity for small and medium sized enterprises for the reason of their agile capa-

bilities for making changes. Although large enterprises are the driving force in ICT in-

novations, they can convert their methods much slower. [39] Mentioned agile move-

ment of the small and medium sized enterprises has also a down side. Knowledge for

using these new opportunities are often unreachable and hard to gain without strong ICT

knowledge. There are also islands of knowledge where pure ICT companies have the

capabilities of realizing cloud based systems. However, offering the right concepts are

cumbersome for them are inadequate to understand the actual requirements of other

business sectors. [5; 39] These matters are under a heavy development and as for pro-

cess data gathering and visualization the practical part proposes a one solution.

2.3 Data transfer methods

The essential concept of thesis implementation part is based on data transfer method for

moving the process data from the environment to the cloud ecosystem. Another crucial

factor is real-time monitoring of the environment. These two operations are carried out

by two distinctive methods. Although variety of data transfer methods exists for cloud

based computing and IoT solutions, an approach used here is dictated by the device

providers. Section in question takes a closer look for data transmission matters, support-

ed by the source of the process data (ABB Robot).

2.3.1 Representational State Transfer

After internet became reality, HTTP was formed as a standard for transferring data over

the web [46]. Selection was mainly carried out for the reason that HTTP messages were

able to penetrate company’s firewalls. However, HTTP lacked the essential possibility

for the use of calling remote objects. As the result, major companies in the field of ICT

evolved with a protocol of SOAP (Simple Object Access Protocol). [46] For multiple

years, SOAP was kept as the standard for transferring messages [47]. In 2000 Roy

Fielding represented in his doctoral thesis [48] a concept of Representational State

Transfer (REST) where he conceptualized the web to be constructed of hypermedia sys-

tems which are loose coupled with each other. Leonard Richardson and Sam Ruby later

refined Fielding’s works at [49] to be an approach when designing HTTP-based ser-

vices. Richardson et al additionally conceptualized the Resource-Oriented Architecture

(ROA) which describes the rules when creating RESTful services [49].

24

In RESTful architecture there are five core constraints and one combined constraint:

1. Identification of Resources: RESTful services operate through URI’s (Universal

Resource Identifier). Thus, all the resource URI’s, related to certain application,

should be unique, stable and global. [50]

2. Uniform Interface: Interactions with RESTful services should be treated with

uniform interface structure, which provides the methods for resource serving.

[50]

3. Self-Descriptive Messages: The representations of resources should give suffi-

cient information for the usage of the current resource. No additional infor-

mation should be needed. [50]

4. Hypermedia Driven Application: Exchanged representations should be linked

for additional usage of the original resource. Any entity using the original re-

source is capable to understand the links through the semantics and is so worth

able to continue interactions with provided links [50].

5. Statelessness: Interactions between client and server are self-contained. Client

state is not maintained on the server; there are no traditional sessions between

interactions. State of the client and the server can of course change in conse-

quence of interaction, but following interactions continues from this new state.

[50]

6. HATEOAS: Items five and six can be bundled for a new concept of Hypermedia

As The Engine Of Application State (HATEOAS). Neither client nor server

does not maintain the exchange state between sessions. All the necessary infor-

mation travels inside the individual HTTP message. URI describes the resource

and HTTP header and the body contains additional information and the message.

Meanwhile, Hypermedia enables the discovering and connecting the services

and applications. [51]

Fensel et al delineates RESTful services at [23] to be a combination of multiple Web

resources operated between appliances (not by humans) through basic HTTP methods

of POST, GET, PUT and DELETE. These methods are the verbs that should be per-

formed for the resource and they describe the actions that are executed; creation, read-

ing, updating and deletion known as GRUD from the initials. [23] When applying

HTTP methods there is an important terminology of Idempotence and Safe. Idempo-

tence is a term portraying the methods, which causes the same outcome regardless of

consequent requests. Safe, on the other hand, means the methods where the state of the

resource does not change between consequent requests. Notions behind these terms are

illustrated in the Table 1. The asset of using RESTful services lies both in these HTTP

methods [23] and in the ability to use the HTTP status codes [52]. With the status codes

client has the tools for interpreting the message by just reading the first three bytes [53].

25

Table 1. HTTP methods and basic status codes [54].

HTTP method GRUD Idempotent Safe Status code

(Collection)

Status code

(Specific item)

POST Create - - 201 Created 404 Not Found

GET Read x x 200 OK
200 OK /

404 Not Found

PUT Update x - 404 Not Found
200 OK /

404 Not Found

DELETE
Delete

x - 404 Not Found
200 OK /

404 Not Found

HTTP protocol is based on the request/response model. Client performs HTTP request

for the server addressed with URI. Possible queries for the URI’s are separated with

question mark. Server processes the request and replies with response message con-

structed of header and body. Actual data is transposed in the body section of the mes-

sage, which makes the body significant for the whole transaction. [53] Typically, data is

interchanged either with two mainstream formats JSON or XML [23]. XML is a speci-

fication for creating custom-based markup languages and it was developed for transfer-

ring structured data between information systems [23]. The power in XML lies the ex-

tensiveness of the language and in the freedom for the developer to assign own tags for

specific purpose. XML being a markup language thus creates significant overhead and

requires computing power for parsing and interpreting the message through API’s such

DOM (Document Object Model). None of which exist while using JSON format. [23]

JSON is a lightweight data interchange format operating natively with JavaScript pro-

gramming language although being a language independent. JSON format requires far

less computational power for parsing and interpreting when compared with XML.

JSON is also more human readable compared to XML [23]. JavaScript is applied in the

practical part. The use of JavaScript lead to obvious and straightforward selection of

JSON as for the data transfer format in the REST interface with the ABB robot control-

ler. However robot controller support XML as well [41].

Considering RESTful services used between appliances rather than humans some con-

cepts of descriptive methods for the services are required. Traditional web services im-

plemented with SOAP has been composed with Business Process Execution Language

(BPEL) [55]. Another language for describing the web service is WSDL (Web Service

Description Language). WSDL is a XML based language describing four elements of

web service. First operations, which are supported and operative. Second, the bindings

for transport protocol. Third, the exchange format for the messages and finally fourth,

the location of the web service. Even though WSDL sketches all the necessary elements

for using the web service, WSDL is not meant for ROA based systems and thus all the

actions are described in operation-based aspect. Nor WSDL supports for providing Hy-

permedia links. At the current state WADL (Web Application Description Language) is

26

the most prominent method for creating the representations for RESTful services.

WADL was specifically designed for RESTful services and has the capability of being

machine readable in XML form. This method models the resources, which are provided

by the service, and additionally holds the information between resources in the form of

links. [56] WADL has not gained the mainstream popularity and so worth is only adopt-

ed in minority of the services [23].

Verborgh et al states in their Survey of Semantic Description of REST APIs [56] that

for the reason of semantics in RESTful services being merely implicit, the developers

need to gain additional information over the multiple API’s prior to composing a new

service. Verborgh et al continues that for the same reason RESTful API’s are commonly

described with pure textual form [56]. As the case lies also in practical part where ABB

Robot controller’s REST based interface is portrayed in basic web page only with hu-

man capable interpretation [41].

2.3.2 File Transfer Protocol

File transfer Protocol or more commonly known as FTP is an open protocol used for

transferring files over the internet. Files, which can be either data files or parameter files

for devices. FTP structure is founded on two distinct entities, FTP client and FTP serv-

er. FTP servers hosts the files and FTP client connects to the server for either uploading

or downloading the files. FTP server can be accessed with specific FTP client software,

with internet browser or with command line interface (CLI). While accessing the server

with basic internet browser the connection is usually an anonymous. Anonymous how-

ever means that server should only provide access to the certain files, which are not con-

fidential. [57]

When FTP was developed, it was not designed to encrypt the data and so worth lacking

the according capability. After the initial launch of FTP there has been variations over

the original protocol. FTPS (File Transfer Protocol with SSL security) and SFTP (SSH

File Transfer Protocol). [57] Both of these connections are secured and so worth used in

novel solutions. SSL security stands for Secure Sockets Layer and it is a protocol de-

scribing the use of algorithms and variables for encryption of data transmitted and link

used for transmitting. The use of according method is based on SSL certificates consist-

ing of public and private keys working together for creating the connection. SSH, stand-

ing for, Secure Shell is similar methodology for SSL. SSH provides both encryption of

data and authentications of the user at the same time. SSH furthermore has a meaning to

describe the solutions and utilities for using the protocol and methodology. [58; 59]

These additional variations of FTP prevent the eavesdropping of any unauthorized lis-

teners in the medium used.

27

FTP connections are based on appointed ports where server and client tracks the incom-

ing messages. Without modifications, FTP server uses port 21 to listen any incoming

messages. When requested, FTP server applies port 20 for sending the data to FTP cli-

ent. FTP client in this case can select the ports to use. Port information is passed with

the initial request for the connection. [60]

Because of the popular use of file transfer via FTP, the Unix based operating systems

holds a specific version of FTP server called vsFTPd. vsFTPd runs as daemon (Unix OS

program running privately on the background without user intervention) in Unix based

operating systems such as Linux. The power behind the vsFTPd lies in its security and

stability augmented with its capabilities in performance. [59] Multiple are found on-line

for the configuration of this particular FTP server and due to these stated matters

vsFTPd was selected to be the utilization of FTP server in implementation work of the

thesis.

2.4 Cloud based ecosystems

In this chapter introduction and comparison for significant operators in the field of

cloud computing and IoT Dashboard platforms are represented. The following services

and software’s has been preselected through them known existence and capabilities.

According to report from The Research Institute of Finnish Economy merely on the

field of IIoT 50 different platforms existed in the year 2014 [5]. At In the future some of

these platforms will polish to be the ones for future use. Others will diminish or change

their vision [5]. For the implementation, there was a requirement for platforms and ser-

vices that, in high probability, still exist in the future. To get the more precise overview

for the current state of the cloud ecosystems one section of this chapter is dedicated for

presenting the alternatives for major players.

2.4.1 Amazon Web Services

Amazon Web Services (AWS) started in the 2006 with a provision of IT infrastructure

for various fields of business. At the time, these utilities where called web services.

Now according services has adopted a new name; cloud computing. AWS had an idea

of providing infrastructure by which the customers can replace their own up-front ex-

penses with low costs. In their vision, costs are build up from the time of using the ser-

vices. AWS started to use the term pay-as-you-go. AWS realized the potential behind

the ideology where customer’s own infrastructure does not lay on the way of future

growth. Customers can automatically expand their own services through automated se-

quences inside the AWS cloud services. [61] AWS has developed a global, scalable,

reliable and low cost infrastructure operating at 14 geographic regions in 38 availability

zones (datacenters) with additional expansion in coming years. [62] AWS provides over

70 different services from which the customers can selected the ones for their solution

28

[61]. According to Gartner Magic Quadrant (Figure 5), being 10 years in the market

AWS has gained a notable lead compared with rival service providers and up comers.

[63]

Figure 5. Gartner Magic Quadrant representing cloud IaaS major players, adapted

from [63].

For the new users Amazon Web Services offers a concept called Free Tier, starting from

the sign-up date. When customer is registered through AWS portal user is granted one-

year free usage of certain services with certain limitations. Free Tier covers roughly half

of the entire product line and all the major services are included. Free Tier is divided

into a monthly usage and any use over the Tier is charged separately. In most incipient

trials and concept designs for the usage of the cloud services Free Tier is highly ade-

quate. After Free Tier year customer is charged according to AWS standard pricing.

[64] For the marketing purpose, AWS has developed quite hooking advertising system.

AWS provides extensively layers of security for their customers through years of secu-

rity development. Customer cloud is protected with an AWS concept of Virtual Private

Cloud (VPC) incorporated with firewalls. Customers are eligible for building their own

subnetworks inside the VPC environment and ruling their gateways for internet access-

ing. All the actions inside the cloud infrastructure are encrypted with TLS (Transport

Layer Security). Customers are in addition able to construct security groups providing

the IP (Internet Protocol) address rules for inbound and outbound traffic. Accessing

with API (not via AWS portal) to the different services, connection is verified with

identification number consisting of numbers and letters of capital and lower case. Ac-

29

cording concept is called AWS IAM (Identity and Access Management). Much of the

security issues and details are held in secret. Amazon does not provide the entire de-

scription of their security mechanisms. [65] Amazon services can be kept reliable

through their long period on the market and positive feedback found quite easily from

couple of searches from the web. Amazon states having redundant power sources and

independent networking and connectivity solutions housed in separate facilities within

different availability zones [62]. In addition, equally important matter is the concept of

how and where the customer data is stored. Amazon Customer Agreement [66] assures

that the customer data is always stored and kept in the availability zone (datacenter)

which customer has made the selection. Data is newer moved, without customer clear-

ance. Thus, in the case when data is stored in EU economical region, data will always

stay there. Although AWS has the disclaimer, stating that in illegal use cases the data is

handled according the legal regulations, although this action is informed for the custom-

er in advance. [66]

At the time of online tutorials and forums, AWS has found the way for mercerizing

their new features and provide assistance for building solution(s) with their platform.

They offer a great deal of their own webinars via Amazon Web Service web pages, as

well almost regulatory at the modern ages, via YouTube channel. Individual users and

customers are also discussing the features and possibilities of AWS platform at online

forums. These discussions provide a fundamental ground for any new customers to get

started.

For accomplishing the tasks set forth for this thesis multiple AWS services should be

implemented. Figure 6 portrays the overview of the required services. All these services

are part of AWS Free Tier offer [64] and multiple tutorials over these services can be

found for getting started. As the robot supports only three possible data exchange meth-

ods (see Chapter 1.3 for details), some decisions need to be made. Depending from the

data gathering frequency, timestamping might be fuddled and internet connection might

get overwhelmed if each triggered data entry is transferred independently. More con-

venient way is to first gather the data inside robot controller and transpose it after the

process is finished. Real-time monitoring on the other hand should be conducted with

specific intervals from controller. FTP is a convenient way to transfer the data after the

process is finished. Amazon Elastic Compute Cloud (EC2) [67] with an instance of

Amazon Linux operating system can hold a FTP server which robot controller can ac-

cess with its client [68-70]. EC2 can additionally hold Node.js server [71] providing a

platform for executing REST interface. By way of REST service real-time monitoring

can be achieved.

30

Figure 6. Amazon Web Service infrastructure for implementing the data gathering

and visualization

Amazon Web Service does not include any Dashboard solution for illustration purposes

of the real-time customer data. AWS has an IoT service yet it is designed for making the

D2D connection rather than visualizations [72]. From these grounds, variable data needs

to be transferred to additional frontend solution. Process data is received in text file

format, which can be moved into AWS Simple Storage Service (S3). S3 acts as perma-

nent deposit of the original text file. Meanwhile text file can be parsed and data can be

moved into AWS Relational Database Service (RDS) [73] holding multiple different

database options. Amazon Aurora, PostgreSQL (Structured Query Language), MySQL,

MariaDB, Oracle and Microsoft SQL Server [73].

For making the analysis and visualization of the gathered process history data, custom-

ers can rely on AWS QuickSight service [74]. QuickSight is an AWS cloud powered

business intelligence (BI) service through which customers are able to make business

insights over their data and ad-hoc analysis or visualizations. QuickSight is capable of

searching the data straight from all AWS cloud storages, including S3 and RDS. The

engine behind the service replays all the data and forms a best-fit conception which kind

of analysis and visualizations user would like to use. Service further more offers this

solution for the user, although user can afterwards make own adaptation of the data vis-

ualization. QuickSight has one weakness for not having an automatic report creation

possibility. [74] Almost all the areas of business are depending in some sort of automat-

ic or semi-automatic report creations prospects. While being a decade on the market

31

AWS has gained a substantial amount of partners integrated with AWS services and so

worth providing third-party business intelligence solutions [75].

2.4.2 Microsoft Azure

Microsoft Azure, originally named Windows Azure [76], was launched in 2008. Mi-

crosoft desired to join in the rivalry of the cloud based services. Amazon had started

their own counterpart few years earlier and Microsoft realized the market opportunity’s

as well. In 2014 Windows Azure was renamed Microsoft Azure [76] and it had already

gained substantial position at the cloud market. However, the starting point was some-

thing different. Azure was originally built with the Silverlight ecosystem [77]. In 2011

there was a change in the management of the Azure division and platform was changed

for much lighter HTML5 (Hypertext Markup Language). From this point Azure started

the eminent growth. [77] Azure utilizes exactly the same business model with AWS,

pay-as-you-go. Azure operates on 30 regions (datacenters) at the moment and they have

8 more on the horizon. [78] Azure provides 100 different cloud based products for their

customers [79].

Microsoft has divergent pricing method for new users when compared with AWS. Az-

ure offers 170 euros of credit which user can utilize in any of their cloud service prod-

ucts [80]. Method can be considered with the use of Azure pricing calculator [81]. In

case of implementing the thesis practical part with Azure services, amount of credits

provided for new customer would withstand one and half months of executing the solu-

tion [81]. This is a considerable difference when compared with AWS Free Tier offer.

However, Azure van compete with the mentioned fact that credits are valid for any ser-

vice in their product line.

Microsoft has a well-known experience over the security and reliability issues working

with their global product line. Microsoft as an operator itself is kept in value and with

high probability; the company will remain existence for years to come. Azure is a direct

competitor for AWS and has already gained considerable amount of partners [82] and

customers [83]. Meaning that closing down Azure platform would extensively affect

their brand and image as a company.

Microsoft has a concept called Security Development Lifecycle that is a software devel-

opment process where security issues and compliances are addressed during the devel-

opment project. Assume Breach is a concept through which Microsoft performs testing

for the services. Team of trained security experts simulates real-time attacks against the

network. [84] At the level of physical security, Azure datacenters are prepared for sud-

den power loss and any physical intrusion or network outages. Customers are eligible to

build their own isolated networks within their regime and operate between these re-

gimes via private IP addresses. Virtual Private Network (VPN) connections between

32

Azure cloud and customer location are also conceivable. Azure has committed for EU

Model Clause. An EU data protection law that regulates the data provision outside the

EU economical region. In addition, Microsoft Azure is acting along US-EU Safe Harbor

Framework and US-Swiss Safe Harbor Program. Microsoft was one of the original sub-

scribers of ISO/IEC 27018 international guideline for practicing cloud privacy. [84]

From the Azure Privacy Compliance document [84] a clause is found for stating that the

data location remains on the region where customer has originally made the deposition.

Microsoft move the data inside the region for another datacenter for redundancy pur-

poses. However, data never leaves the economical are where it was initially stored.

Microsoft is advertising their Azure concept with extensive webinars, online tutorials

and brochure marketing material. Azure team has made extensive work with their portal

solution. Customers can easily select the service they need and deploy it into use. Portal

interface is based on method where new pane opens on the right hand side of the source

pane. Even though making the user experience friendly, not all settings are found in the

same amount of time compared with AWS. Azure manages with the appearances, yet

losses some on the demanding settings. Individual studies and customer tutorials are not

at level compared with AWS. Years on the market and the development from the year

2011 has helped to catch the pit. However, there is still road ahead.

In the circumstances where practical part of the thesis should be implemented with Az-

ure platform, multiple services has to be commissioned. Figure 7 illustrates the concept

where thesis implementation objectives are conceived with Azure services. Initial limi-

tations and assumptions can be revised from Chapters 1.3 and 2.4.1. When the process

in the application environment is finished, the robot sends the process data via FTP.

Azure Virtual Machine service can host Ubuntu Linux [85] with FTP server. One tuto-

rial gives instructions for proFTPd server [86], yet vsFTPd should work equivalently.

Reason for, vsFTPd is native FTP server for Unix based operating systems. Node.js

runtime environment can be installed on Azure Linux VM. Thus, JavaScript based exe-

cution for arrived process data file can be performed. [85] Customer program execution

is able to move the text file into Azure Blob Storage for permanent storing.

33

Figure 7. Microsoft Azure infrastructure for implementing the data gathering and

visualization

Real-time monitoring can be achieved by setting up a REST service inside Azure VM.

According service acts as an interface for requesting the desired variables from robot

with certain intervals. Concerned REST service is again able to communicate with Az-

ure IoT Hub. IoT hub is a platform for connection of IIoT and IoT devices into Mi-

crosoft ecosystem. Devices can connect with HTTP or Message Queue Telemetry

Transport (MQTT) interface or via gateway in the case where no internet connection is

available within the device. [87] Three programming languages are presented in the

Microsoft tutorial for creating connection with IoT Hub, C#, Java and Node.js [88].

Custom App Service can act as a gateway between robot and IoT Hub providing the

end-to-end connection. On top of IoT Hub, Azure provides IoT Suite through which

users can visualize their data in real-time. Historical data visualization is additionally

available, from the time when data submitting started. [89] Both IoT Hub and IoT Suite

are applicable of communication bi-directional with the device [87].

Azure Blob Storage [90] is a service where customer can store any unstructured data,

such as text files. Unstructured data could be moved into Azure SQL relational database

service. From this point, data can be visualized and analyzed in detail. Final step in the

implementation would be commissioning the Azure Power BI Embedded and Microsoft

Power BI Desktop. Power BI Desktop [91] is one of the newest Microsoft products for

creating Dashboards analyzing and visualizing business data. Power BI Embedded acts

here as a gateway for retrieving the data from various sources, such as Azure SQL Da-

34

tabase [92]. Through Power BI, customers are applicable for making embedded visuali-

zation within their web and mobile applications [92].

2.4.3 Google Cloud Platform

Google is a corporation with well-known name. Their dominance in mobile operating

systems, civilian email & data storing solutions and video sharing services is almost

unbreakable. In year 2008 they released Google App Engine [93]. Service was similar

with AWS Elastic Beanstalk or Azure App Engine. An ecosystem possessing runtime

environment for various programming language support, making the customer applica-

tion deployment easier. [93] Google had noticed the potential in cloud computing and

involved themselves to the race of gaining the market shares. Now Google Cloud Plat-

form (GCP) operates on 5 geographic regions and has total 15 zones available within

these regions [94]. Zones are physical datacenters inside the geographic regions and

different zones are connected with fiber optical communication for making the redun-

dancy behavior easier. GCP has additionally 8 regions on the verge of the launch state.

[94] Google offers 52 different services from which the customers can select the ones

for their purpose [95]. Google has adopted similar pricing than their rivals. Per-minute

paying is the term they use [96]. At the Gartner Magic Quadrant [63] GCP is set in the

class of visionaries. When studying Google marketing material and tutorials over the

different products they offer through their Cloud Platform, this categorizing comes

clear. One example can be noted from their launch of Node.js platform in Google App

Engine [97]. The level of fine-tuning and readiness in the event does not reach the level

of their competitor’s similar events.

For the new user of Google Cloud Platform they offer 300 dollars’ fee, which can be

used for any of their Cloud Products. Fee is offered for 6 months or when the amount is

consumed. Some of the products are outside the offer. These products are offered as

without no cost for new trials. [98] GCP pricing calculator gives the details over the

convenience of the offered credits. Building similar infrastructure as with AWS or Az-

ure, GCP would utilize the fee slightly over three months after which the usage of the

GCP would cost around 90 dollars per month [99]. Google offer performs slightly supe-

rior compared with Azure yet loses the rivalry with the AWS in here.

Google has published a Whitepaper [100] over their security and privacy issues. Ac-

cording to this whitepaper, they perform extensive background checking for their per-

sonnel working with the security and privacy issues. Whitepaper states that collabora-

tion with the security research community has being one of Googles elementary opera-

tions during the years at market. For making the security breach hunt more inviting,

they have started Vulnerability Reward Program. Current programs offer reward for any

individual person finding a possible breach. Google exploits TLS encryption in the data

transferring and has initialized the use of 2048 bit RSA certificate to make the data

35

transmission inside cloud ecosystem safer. Physical datacenters are highly guarded and

implemented with multiple layers of security. Final entrance inside the data center is

protected via security badges and biometrics. Uninterruptible power sources acts as

backbone for the servers. [100] For the privacy and data location Google announce in

their Terms of Service [101] that customer data is stored according to their Service Spe-

cific Terms [102]. Additional search through these Terms reveals that customers can

only selected the geographical region where the data is stored. Google makes the final

decision which datacenter is employed at the time. [101; 102] Nevertheless, customer

can make the choice for specific datacenter via Google portal. This mismatch feature

can puzzle the customers for they can make the choice that does not take any notice.

Google has operated at the Cloud computing market for almost ten years now and is

competing with AWS and Azure [63]. However, Google has not found the way to per-

form equally with other major players. Google does not reach the level of AWS nor at

the level of Azure with their tutorials or getting started guides. Minor amount of imple-

mentations can be noted from the amount of customer’s posts and inquiries on the

online conversational forums and tutorials. Some of the Google products are working on

the beta version, expecting additional feedback from the users. Practice, which might

banish the corporation level customers. Nevertheless, Google can compete with their

massive computing power and their study on the artificial intelligence or neural network

research [103]. Expertise, which has induced customers from the fields where vast

number of computational power is required. Visual special effects companies, for an

instance. [103]

For reaching the outcome thesis practical implementation, multiple GCP products

should be put into operation. Limitations and assumptions can be revised from Chapter

1.3 and Chapter 2.4.1. Most of these products are part of the Google 300-dollar fee and

one products is totally without any charge for being at the beta state during the moment.

Figure 8 illustrates the concept design with Google Cloud Platform products. On the

fundamental level, GCP Compute Engine would be commissioned. Compute Engine

can hold a virtual machine instance launched from multiple operating system [104].

From these systems, Ubuntu Linux would be the most suitable. Reason for this is the

possibility to launch Unix based FTP server, vsFTPd. Ubuntu Linux is additionally ca-

pable of hosting runtime environment for Node.js [105], among others. When the pro-

cess on application environment is ready, the robot would send the process data file to

FTP server. Updated folder can be noticed and the file could be transposed into GCP

Cloud Storage [106]. An object based data storing service. At parallel action, data can

be stored into GCP Cloud SQL service hosting MySQL relational database [107].

36

Figure 8. Google Cloud Platform infrastructure for implementing the data gather-

ing and visualization

Here lies the crossroads between competing service providers (AWS and Azure). Data

is now stored inside Cloud Storage as raw material for permanent keeping and for future

use. Equivalent data is structured inside SQL relational database. Sequential step should

be visualization both process data and real-time data. Fetching of real-time monitoring

variables is able to treat with a REST interface running on Compute Engine. However,

Google Cloud Platform merely holds a Cloud Datalab visualization tool, still at beta

stage [108]. Furthermore Cloud Datalab is actually a platform build on Jupyter [108] a

web application for sharing diaries that holds equations, analysis or visualizations [109].

Cloud Datalab support multiple programming languages for making customers own

visualizations i.e. programming of the visualizations need to performed conventional

web application manner [108].

Visualization cloud be done with Cloud Datalab or the data could be provided for some

third party solution, making the visualizations and possible analysis. Real-time monitor-

ing could be alternatively handled with some third party Dashboard solution supporting

convenient data transposing interface, REST for an instance.

37

2.4.4 Alternatives

This section covers the alternatives for major players in cloud providing cluster. Minor

operators are shuffling the field and wresting customers from their giant opponents.

Later on at this section comes the review over open source methods for incorporating

cloud computing. At the end of the section, there is a comparison against the private

cloud where all the functionalities are hosted inside the company network.

Comparing with AWS, Azure and GCP, SoftLayer has the potential for contending with

these operators in near future. SoftLayer was acquired by IBM in 2013 and is now a

subsidiary of IBM. SoftLayer provides virtual servers and basic hardware servers for

their customer’s use. They, in addition, have solutions for data storage and networking

services. [110] Rackspace (creator of OpenStack) and CenturyLink have slightly differ-

ent aspect for cloud service provision. These companies are acting as integrators and

administrators providing managing services for businesses using major cloud platforms.

[111; 112] Company called Virtustream has focused their business model for providing

cloud platforms dedicated to Enterprise Resource Planning (ERP) sector. Company of-

fers cloud platforms for SAP, ERP, Oracle, Git and Apache among many others. [113]

One rival on the cloud service provision field is a Finland based company UpCloud.

UpCloud has developed concept called MaxIOPS [114] a disc management technology

making input and output operations faster when compared to conventional cloud pro-

viders. UpCloud infrastructure is scalable according to customers’ needs and customers

are capable of selecting the platform from their own instance or one from UpCloud ar-

chives. [114] Concerned company can play a major role in the future and compete by

way of trust and promise of data integrity and privacy.

Cloud consumers are not constrained to use a commercial version of cloud computing

platform for there is an alternative; open source cloud platforms. EUCALYPTUS,

OpenStack and OpenNebula are the most progressive ones in the field. EUCALYPTUS

is derived from Elastic Utility Computing Architecture for Linking Your Program To

Useful System, which is an open source solution developed in University of California-

Santa Barbara. Advantage in the EUCALYPTUS project lies in the technology where

AWS compatible API accesses both AWS EC2 compatible counterpart, EUCALYP-

TUS Computing Platform and AWS S3 compatible EUCALYPTUS Cloud Storage.

[115]

Even though EUCALYPTUS has a founding region of contributors, the most rapidly

evolving open source cloud project is OpenStack. OpenStack originated from collabora-

tion between National Aeronautics and Space Administration (NASA) and Rackspace.

NASA provided their Nebula solution, renamed as Nova, for computing resource and

Rackspace involved with their Object Storage later renamed as Swift. OpenStack pos-

sess an Image Service called Glance. Glance is used for retrieval and looking up images

38

from VM’s. Such as the case was with EUCALYPTUS, OpenStack has the feature

where accessing the cloud can be managed via AWS compatible API’s. Thus, solution

build on AWS ecosystem can be deployed to OpenStack. [115] A vast amount of devel-

opers can cover multiple fields of technology which makes Open source methods a re-

markable assets for developing cloud computing technologies suitable for particular

field of industry.

Third alternative in the list of open source cloud computing project is aged solution first

introduced by Liorente, I and Ruben, S back in 2005 in their research project. When the

solution was released in 2008 it was titled as OpenNebula. Cited project has a different

approach than two mentioned above. OpenNebula is used for virtualization of physical

resources located in data centers. These data centers are generally private ones although

OpenNebula holds an option of exposing its interface when functionalities with public

clouds are conceivable. By way of interface exposing OpenNebula holds a support for

implementing hybrid clouds. [115]

Comparing these mentioned open source solutions, the task comes a bit cumbersome,

when OpenNebula works on the different abstraction level compared with others two.

The most convenient way for comparison is to use some notable commercial cloud pro-

vider as reference. Amazon Web Services is selected for the reason that background of

questioned provider leans back to the time when referred projects has started. Both EU-

CALYPTUS and OpenStack holds similar features compared with AWS EC2 and AWS

S3. These open source projects both include AWS compatible API’s. Within

OpenNebula there is also an AWS compatible API for building hybrid clouds although

OpenNebula works on different grounds. In addition OpenStack developed their own

native RESTful service API for accessing the resources [115]. This RESTful API was

later commissioned in Duan et al study where a hybrid cloud was introduced with

OpenStack Swift as the object file service [7].

In the case where pure private cloud needs to be considered a survey over the compa-

nies own IT infrastructure has to be conducted. Of course, the solutions in here varies

extensively between the companies. However, next there is an example of the one pos-

sible solution. Some companies might offer platform services internally with IaaS, PaaS

or SaaS methods. Smaller companies might only have tiny ICT team without any ready-

made packaging of services. Either way after the platform is initialized the actual solu-

tion needs to be divided for backend and frontend levels. Backend provides the data

storing and parsing while frontend handles the real-time monitoring and visualization of

gathered data. Described method requires more expertise in multiply fields of technolo-

gy when compared with commercial cloud services. One possible structure of the im-

plementation is portrayed in the Figure 9.

39

Figure 9. Data gathering implemented with private cloud infrastructure

2.5 Dashboard solutions

Rise of the IoT and IIoT paradigms has brought on the appearance of the Dashboard

solution for making the visualization, analyzing and reporting much more straightfor-

ward when compared for traditional web page based applications. According to Re-

search Institute of Finnish Economy cloud based systems and IIoT demands high exper-

tise at the field of ICT [5]. Yet, there is a change happening. Cloud service and IoT plat-

form providers are improving their framework to reach the level where implementations

require much less of high-end expertise. Dashboard solutions are the final step for

providing the tools for more cost-effective implementations. In this chapter, potential

alternatives are studied.

2.5.1 Wapice IoT-Ticket platform

Wapice Ltd. is a Finnish based company, which operates as technology partner with

industrial business sector. They provide custom software and embedded electronics so-

lutions for improving their customer’s competitiveness. In addition, for their custom

solution they have their own products. IoT-Ticket platform is one of them [116].

IoT-Ticket is an IoT platform, which provides data gathering, supervisory monitoring

and controlling through internet based Dashboard User Interface (UI) solution with ana-

lytics and reporting capabilities of gathered data [117]. Data gathering can be handled

either via Wapice proprietary WRM (Wapice Remote Monitoring) device, by REST

40

interface on top of OPC (OLE for Process Control) Gateway, customers own REST

client, Libelium interface or Wapice ready-made developer libraries. Building of the

controlling and monitoring Dashboard is conducted by “drag ‘n drop” principle via In-

terface Designer tool running on web page based portal. This means that no software

needs to be installed on customer’s workstation. Elements on the Dashboard and the

gathered data are then interconnected with Data Tags (referred also as datanodes). Sec-

ond tool is web based portal application called Dataflow Editor. Dataflow Editor is a

Wapice in-house design tool operating on graphical block programming basis, based on

the IEC 61131-3 standard. Dataflow Editor is used for programming interactions with

data tags. [117]

Wapice Report Editor is another solution integrating with IoT-Ticket Dashboard. Re-

port Editor operates on web page based portal solution with “drag ‘n drop” method.

Creation of the reports takes place from the gathered data inserted with static material

available in each of the reports. Static material can be company logos and manufactur-

ing line indicators. After the layout of the report is designed, reports with similar tem-

plate can be automatically triggered or manually requested. Another web page based

solution integrating with IoT Dashboard is Wapice Analytics Tool. With the questioned

tool, gathered data can be analyzed for better understanding both the process and the

phenomenon affecting to the results. Analytics Tool includes correlation analysis with

additional analysis managed through line, scatter, map and bar plots. Analytics tool of-

fers the users to perform an abnormal value detection by using the curve fitting algo-

rithms. For the implementations not getting enough information out from Analytics

Tool, Wapice offers an interface for the R. R is a statistical computing language with

extensively analyzing capabilities and options. [117]

IoT-Ticket has the advantages based on the entire line of solutions. Using same applica-

tion users are able to access monitoring and controlling of the appliances with the addi-

tion of using reporting and analyzing tools. Another asset lies in the method of data

gathering. Either user are can purchase ready-made WRM device, use their own elec-

tronics with REST interface, or order proprietary electronics from Wapice including

IoT-Ticket interface. The whole application package is user friendly. With basic “drag

‘n drop” architecture the learning curve for making new solution or modifications to

existing ones is kept at the low level. Customers can modify the appearance of the

Dashboards to match their company’s brand image. [117] Even though IoT-Ticket pos-

sess multitude of benefits the weak point of the solution is the lack of the custom code

execution platform. In some cases, data processing before insertion to IoT-Ticket could

have additional value. Additionally, execution of custom code triggered by Dashboard

solution could be convenient. At the current state, customers are forced to execute the

code on another cloud platform and handle the data transmission with suitable interface.

However, Wapice is concentrating on different section of the IoT market. Leaving the

code execution to the hand of operators from different sector.

41

2.5.2 Freeboard.io

Freeboard.io is an open-source IoT Dashboard platform with quite modest pricing struc-

ture. Without any charge user can make unlimited number of public dashboards, open to

entire world. For making private Dashboards Freeboard.io charges 12-dollar fee per

month. For this payment user is yielded with five dashboards located behind the pass-

word. Dashboard development is based on the widgets, which makes it easy and swift.

Freeboard.io uses integration with dweet.io for connecting the devices, yet it also has a

REST interface capability. [118]

REST interface and “drag ’n drop” simplicity makes the Freeboard.io one of the most

prominent alternatives used in frontend technology. However, Freeboard lacks the pos-

sibilities for report creation either on automatic mode or manually. This is due to the

fact that Freeboard.io acts solely on the real-time basis. [118] Report creation should

have database connection or capabilities. Freeboard.io is an open-source solution, which

effects for the supporting means, tutorials and blogs on rather modest state.

2.5.3 Ignition IIoT

Ignition is a server based SCADA system with HMI (Human Machine Interface) capa-

bilities developed by the company called Inductive Automation [119]. Ignition works

on the centralized manner in which all the devices and applications inside the factory

can connect and deliver the data for visualization through the HMI. Data is stored in

SQL database by Ignition adapters and HMI development is conducted with Web page

interface mainly by the “drag ‘n drop” technique. [119] Although Python scripts are

supported for operations that are more exclusive. Software runs on Java platform mean-

ing that HMI can be deployed to each device supporting Java Runtime System [119].

Mobile devices are supported as well. Mentioned database connection enables reporting

and history diagram inspection. Real-time monitoring features are incorporated with

HMI system. Feature, which makes the Ignition system quite intriguing for the factories

and manufacturing companies, is the pricing model. In their pricing one license fee

makes possible of deploying endless number of client HMI’s, even with off premises

distant locations. [119]

The appearance of the concept Internet of Things has awaked the interests inside Induc-

tive Automation as well for they have developed Ignition IIoT platform making the data

delivery for their Ignition SCADA software. Ignition IIoT utilizes MQTT protocol,

which is gaining rapid interest with machine-to-machine connections. MQTT is pre-

ferred in many cases for its lightweight overhead, scalability and security facilities when

operating with IoT and IIoT. MQTT has also better usage of bandwidth due to its Pub-

lish/Subscribe protocol ideology compared with polling protocol structures. Ignition

IIoT can operate with three different principles. First public cloud based basis, pure pri-

42

vate basis or hybrid cloud bases in which MQTT servers are running on public clouds.

[120]

Advantages of the Ignition IIoT lies in the background of the software itself. The whole

concept is actually on add-on for Ignition SCADA system. For the users of Ignition

SCADA, Ignition IIoT could be an obvious choice. Disadvantages are forming from the

high initial price of the software [121] and the deprivation of the REST interface [120].

2.5.4 DGLogik IoE platform

DGLogik is a company providing customizing solution for visualizing the Internet of

Things device data. DGLogik uses the term Dashboard for their creations of the user

interfaces and in addition refer to the IoT as the Internet of Everything (IoE), where

users are capable of analyzing, measuring, managing and controlling the devices from

any location. [122] In the interest of Dashboard technology DGLogik methodology is

based mainly on their DGLux5 application developing environment. DGLux5 is

HTML5 compatible as the number 5 indicates, making the applications natively respon-

sive for mobile devices. [123] Finished applications are adequate for performing real-

time monitoring of factory functions either on the shop floor or at the production line

level [124]. DGLux5 additionally possess analytic capabilities by providing formula

creation and manipulating the data before inserting into visualization [125].

DGlux5 operates on “drag ‘n drop” fundamental without familiarizing the developer

with the actual code behind the widgets. Visualizations, charts, graphs and data flows

are handled with appending these widgets and connecting them with elastic wirings.

Finished solution runs solely on any of the client side web browser, which supports

HMTL5. Described method releases the server (backend) side for handling the incom-

ing data and providing it for client (frontend) solution. [123] DGLux5 comes with

Apache Tomcat 7.0.55 web-server that makes the server applicable for installation ei-

ther an Windows, OSX or Linux systems. Data inbound can be treated via various dif-

ferent methods, MQTT being one of these. However, DGLux5 in addition offers REST

interface for data transmitting. [123] DGlux5 pricing is quite modest when compared

with current rivals as Ignition IIoT [126]. This makes the software attractive for new

installations of IoT Dashboards.

2.5.5 Conventional Web Application

Web application, modern term for web page, development has evolved considerably

after the initial versions of web pages, build with basic HTML language. New customs

and new methodologies are taken into practice. Following section takes a review over

the modern technologies from the aspect of building IoT Dashboard solution. Still keep-

43

ing in mind that in IoT concept web apps can be perceived to be conventional when

comparing with IoT Dashboard solutions.

Modern web apps are based on three building blocks. First, there is a traditional HTML

language. Second, CSS (Cascading Style Sheets) [127] is the tool for describing how

the elements in the web page should appear for the user. Same CSS file can be used in

multiple web pages. Method that makes it easier for developing similar layouts. CSS

was designed to fix the deprivation in HTML. HTML only incorporates the content of

the web page, not the layout of how the information should be represented. [127] Third,

JavaScript, a scripting language which runs natively in all modern web browsers. In

web application development JavaScript has gained reputation through the library called

jQuery.

When starting a development of state-of-the-art web app, the designer has various

methods of how to proceed. One possibility is to use Yeoman generator ecosystem.

Yeoman is JavaScript package that builds developer ready infrastructure for writing the

actual application [128]. Yeoman provides automatic web app folder structure and re-

quired files inside these folders. When installing the ecosystem through Yeoman user

can make a selection for frameworks as Sass, CSS or Bootstrap. Sass is an extension

language for writing CSS files more efficiency [129]. Whereas Bootstrap is a frame-

work for creating responsive and initially mobile based applications [130]. Mentioned

term, responsive, indicates that web app is especially designed for mobile devices. Ele-

ments on the page can scale, hide or move in relation to the end-device screen resolu-

tion. From Bootstrap web page [130] developers are able to find hundreds of examples

of different elements and code for creating these elements inside in questioned web app.

Above-mentioned jQuery is a library for writing JavaScript web apps more efficiently

though convenient event-handling, animation, HTML manipulation and AJAX (Asyn-

chronous JavaScript And XML) programing [131]. AJAX is especially important with

RESTful services as AJAX concept can be stated to follow RESTful service design

guidelines. AJAX commands are sent with HTTP request and HTTP response alters the

web page through JavaScript commands. [132]

Elements of buttons and meters can be taken care with mentioned technologies, alt-

hough for tracing real-time and off-line variables, concept of charts are needed. Current

web page applications can have charts incorporated with multitude of techniques. The

most sensibles are Chart.js, D3.js and dygraphs. Chart.js and dygraphs are open-source

solutions that can operate on very basic chart tracing. D3.js is a very high-ended data

visualization toolset with steep learning curve. However, it is open-source and does

provide visualized examples. [133]

It can be stated that the learning curve for building IoT Dashboard with web app is

much steeper when compared with ready-made IoT Dashboard applications. Yet, with

44

sufficient expertise, web app enables more features that can be accomplished with built

in platforms. The final selection on technology is a compilation of expertise, use case,

scale of the system, available resources and modification availability.

45

3. METHODOLOGY

Following chapter describes selection for the technologies used in the practical work.

After which comes the detailed descriptions of these solutions. On the higher abstrac-

tion level, implementation is divided in three independent parts. First, is the application

environment layer where the actual process takes place and where all the physical de-

vices are connected through interfaces. This layer is also the source for the process data,

which is the main interest of the implementation. Application environment was already

stated when starting the work of the thesis so there was no influence from the work to

physical devices. Thus, cloud services needed to be applied to these already existing

devices. Regardless of sketched situation application layer plays significant role in the

implementation and methodologies in the devices are illustrated in the following chap-

ter. Second comes the concept of backend technology. Amazon Web Services plays the

role of processing the data and providing it for the visualization, taking place at frontend

technology; part three of the implementation.

Segmentation for backend and frontend technologies was conducted for the hypothetical

future work where either one of the technologies could be replaced with parallel tech-

nology. Another reason was that either one could be altered without affecting to the

execution of the other. Thus, Software-as-Service (SaaS) principle was adopted. For the

same reasons the programming language was selected to be JavaScript and the backend

server runtime as Node.js. Both of these are gaining more popularity and they possess a

high probability for having the support on cloud platforms in the future.

Following chapter starts with the technology selections and continues for the description

of the application environment. After which the focus turns for the backend technology.

Finally, frontend technology is detailed.

3.1 Technology selections

Technologies used in the implementation are selected through the theoretical study from

the Chapter 2 of the thesis. Final selection was quite straightforward due to the fact that

practise of weight factors was implemented for the most important features of the tech-

nologies. These most important features included, pricing of the technology, future ex-

istence, reliability of the service provider, data privacy and service security, low learn-

ing curve, support for Node.js execution, REST service support in Dashboard solution

and extensive software support either through direct contact or through tutorials and

online forums. Current section starts from the selection of the programming language

46

and continues for the selection of the cloud technology and final to the Dashboard tech-

nology. Method of tables are adopted for making evaluation.

3.1.1 Programming language selection

All major cloud service platforms (AWS, Azure, GCP) support multiple programming

languages for server implemented code execution. In the implementation, REST ser-

vices for the robot controller and for the frontend solution plays a significant role. From

the previous experience, there was a knowledge that JavaScript with Node.js environ-

ment has an extensive support for REST services through additional package and so

worth both JavaScript and Node.js was kept as a preferred programming language-

runtime compilation. Robot controller has a Digest authentication for the REST inter-

face and Node.js request package additionally incorporates the concerned method. From

these grounds, JavaScript with Node.js server environment was selected for the pro-

gramming language.

JavaScript was originally developed for a scripting language, rather than pure coding

language, used in HTML web pages. JavaScript is executed at the client side of the ser-

vice. Thus, only a few lines of code is needed to command the client browser to perform

the required actions. [134] Another design rule which makes the JavaScript ideal for

HTML pages is the asynchronous execution method. Asynchronous means that various

code executions are performed simultaneously compared for synchronous method

where code is executed line-by-line. Consecutive line waiting for previous one finished.

In the design principles of JavaScript, there are no fundamental limitation that it could

not be used at server side as well [134] thus Node.js was developed.

Node.js adopted Google Chrome V8 JavaScript engine and implemented a server side

execution. Node.js is an event driven and non-blocking method for building scalable

server side solutions. [135] Node has gained extensive popularity in the recent years and

vast number of independent developers are participating in Node package ecosystem,

npm (Node Package Manager), for making their own code packages performing diver-

gent actions. Npm is mentioned as the world’s largest open source library. [135]

3.1.2 Cloud technology selection

For the cloud service technology and provider there was no preferred selection when

starting the evaluation. The whole process was handled through initial requirements (see

Chapters 1.3 and 2.4.1 for more details). Open source cloud computing services where

left out from the evaluation. There were two reason for such action. First, the future

existence of the service had set a great value. Second, the readiness for supporting the

commercial (Small and Medium sized Enterprises) solutions was one of the primary

goal. Private (on premises) cloud solution was left out because in the work description,

47

public clouds were set to be the technology to use. UpCloud will be one potential alter-

native in the future. Now UpCloud provides solid application execution environment

with high speed hard drive system. However, no fee for new customers are offered and

product line is not yet equal with other rivals. That is to say, evaluation would be cum-

bersome with no similar products available.

In the evaluation table, each service provider can score from 0 to 100 on each feature. If

all the providers manage themselves equally, everyone is provided with same value.

Score values are weighted through factors decided according to the importance set forth

in these features. Pricing, learning curve and existence of the service in the future where

the main objectives. This appears in the evaluation table where 20 % factor is provided

each of these features. When something as essential as production and process data is in

question data privacy was additionally provided with same 20 % weight factor. In the

case if some provider would score 100 on each of the feature, according provider would

get final score 100 which is the maximum. After the theoretical study and the assess-

ment of Table 2. Amazon Web Services was selected to act as the backend service tech-

nology. Amazon Web Services fared in the evaluation through their extensive tutorial

matters and pricing model. Learning curve in the case of AWS performed superior

compared with other rivals. Their service-managing portal is the clear and easy to com-

prehend.

Table 2. Cloud service provider evaluation.

Feature AWS Azure GCP Weight factor

Pricing 90 40 50 20 %

Learning curve &

Tutorials
95 85 60 20 %

Future Existence 100 100 75 20 %

Security 100 100 100 10 %

Data privacy 95 95 70 20 %

Reliability 80 80 50 10 %

Total scores 94 82 66 100 %

3.1.3 Dashboard technology selection

Dashboard operates the frontends technology and visualizes the process data for the

user. Dashboard acts as user interface. Low learning curve, pricing, report creation pos-

sibility and easy implementation style were the key figures when making the final selec-

tion. Positive value was also given in the case where REST interface could be natively

supported. Highest weight factors where provided for low learning curve and report

creation possibilities. Reason for such action emerged from design rule where Small and

Medium sized enterprises were kept in mind for one possible implementation environ-

ment. Mentioned business sector could alter the Dashboard solution in-house basis and

48

create modified reports out from the manufacturing process. Methods in the evaluations

were similar compared with the assessment of cloud service provider. Through the Ta-

ble 3 Wapice IoT-Ticket was selected to be the frontend technology.

Wapice IoT-Ticket managed with the native REST interface and their feature in report

creation. Reports can be triggered automatically after the process is finished and report

templates can be composed with company specific emblems and document styles. In the

case of pricing, the situation was slightly cumbersome. Conventional web applications

proved to be the one for least expensive. However, costs would rise in the implementa-

tion part. Learning hours would be higher compared to rivals, thus stacking the costs.

Table 3. Dashboard service provider evaluation

Feature

IoT

Ticket

Freeboard.io Ignition

IIoT

DGLogik5 Conventional

Webb Application

Weight

Factor

Pricing 60 85 60 60 100 20 %

Low learning

curve
85 95 75 70 20 30 %

Report creation 100 10 50 50 100 30 %

Native REST

support
100 100 70 70 100 20 %

Total scores 87.5 58 51 50 64 100 %

3.2 Application Layer

Application environment makes the connection of the thesis to production engineering

technology and it provides the platform for implementing the designed solution in actu-

als process. The application is located at the Tampere University of Technology, Me-

chanical Engineering and Industrial Systems research Laboratory of Laser Applications.

Described application is a testing environment for Direct Energy Deposition Methods, a

subclass of Additive Manufacturing. Used techniques include cladding and form fabri-

cation. These technologies and methods are detailed in Chapter 2.1. Devices of the ap-

plication are:

 ABB IRB 4600-40/2.55 robot

 AB IRBP A-750 positioner

 Fronius Cold Metal Transfer (CMT) Advanced 4000R and VR 7000 controller

 Fraunhofer IWS COAXwire

 Corelase C-LASE 3000 kW fibre laser

 Medicoat AG Powder - Duo Laser feeder with FhG COAX8 powder nozzle

These devices are connected through various interfaces, which are noted in the Figure

10 where the structure of the application environment is portrayed. Robot acts as the

master in the process, controlling the devices. Robot was the natural choice for the main

controller for its capability of handling multiple interface architectures. Especially in the

49

process cell without any additional programmable controller. During the process, robot

adjusts the process variables for the devices. Thus, robot saves the values in text file for

later sending to cloud platform through FTP. After the process is finished robot appends

the final entries to the file sends the file to the cloud.

Figure 10. Application environment overview, adapted from [15; 16; 136-138].

Fronius CMT device is connected to the robot controller via EthernetIP bus. Robot has

own software adapter for accessing the bus and so worth communicating with CMT

device. For any third party users CMT device is closed excluding their own Fronius

Xplorer software capable of gathering, storing and analysing the process variables from

the device and illustrating maintenance diagnostics [139]. Fronius Xplorer is a windows

based software without any additional interfaces for external solutions [40], complying

with the theory of silos described formerly.

Fibre laser used in the process is a product of Corelase, a Finnish laser manufacturer,

and it has the maximum output power of 3000 watts. Connection with the laser and the

robot controller is handled with inputs/outputs (IO) interface. COAXwire provides

EthernetIP (via Anybus Gateway) for making the connection to the controller, robot in

this case. The last actuator unit in the cell is Medicoat powder feeder connected with

IO’s to robot controller. Together all these devices form the final process cell where

research and manufacturing with DED method takes place.

50

Managing the process is orchestrated either from tailor made robot user interface or by

offline programming the robot with ABB RAPID robot programming language. Offline

programming is accomplished with the help of ABB RobotStudio (RS) Integrated De-

velopment Interface (IDE). Robot UI holds selections for setting up the process hastier

when compared to programming conducted with offline or by teaching in online. UI has

a navigation menu accessible by ABB FlexPendant Teach Pendant Unit (TPU) touch

screen buttons. Through these buttons user can select the process from predefined set-

tings and start the process by simply clicking the Play button element. Basic superviso-

ry control is accomplished from FlexPendant TPU. Robot is also capable of form fabri-

cation from Computer Aided Manufacturing (CAM) files. Files must be inserted with

G-code language and robot has a custom-programmed feature for altering the G-code

path file to RAPID programming syntax. Selection of the CAM designs are handled

from UI as well.

After the user has placed the building platform on the positioner (see Chapter 2.1.1 for

details) and made the required selection via UI or custom offline programming with RS,

robot can start the form fabrication. Robot picks the desired tool (COAXwire or Powder

Feeder Nozzle or CMT torch) from the tool changer and produces the article. Used tool

can also alter during the process. In this case, robot changes the tool via tool changer.

During the production, robot saves the process data inside the text file with desired fre-

quency. Furthermore, during the process, the real-time process monitoring is conducted

via robot REST interface.

ABB Robot’s REST services are described in textual format at ABB robot developer’s

web pages [41]. Service uses the Digest authentication with cookie management and the

data can be requested either with XML or JSON format, as the default data is responded

in XML. Data is requested as JSON, with the query of json=1. Through the REST inter-

face robot’s variables and IO’s can be modified and monitored. Path for the variables

inside the robot controller are portrayed with tree structure at the developer’s page. [41]

Yet, the developer needs to have the knowledge over the robot program structure to

perform the right requests for the right variables. Mentioned tree structure is illustrated

in the Figure 11 and it corresponds to the structure of the robot program in ABB RS

IDE.

51

Figure 11. ABB Robot RESTful description’s tree structure, adapted from [41].

According to the REST services design guidelines the resources should be represented

with nouns rather than verbs [46]. This design rule is adopted in the Robot REST ser-

vices as it can be noted in the following example, where RobotStudio virtual controller

(localhost) is accessed and the state of the variable reg1 is requested in JSON format.

Similar action can be performed to actual robot controller, in such case the localhost is

replaced with controller’s IP address.

http://localhost/rw/rapid/symbol/data/RAPID/T_ROB1/user/reg1?json=1 (1)

3.3 Backend technology

Amazon Web Services was selected to acts as the backend server technology in the im-

plementation. Through AWS one-year Free Tier offer, multiple AWS services can be

studied and incorporated in the backend solution. This Free Tier method proved to be

quite convenient for executing the program code and when storing the data in AWS

cloud in both unstructured textual and structured relational database format. Following

section describes the AWS cloud ecosystem as the whole and then portrays the individ-

ual services used in the implementation. Reasons for implementing named services are

additionally detailed.

3.3.1 Amazon Web Services ecosystem

Both [115] and [31] state that AWS serves as IaaS paradigm. However, this is not the

whole story for there is an alternative categorization. Some AWS services such as EC2

act as IaaS in their plain form. Situation alternates when one of the available instances

are deployed at the service. From that point, onwards the EC2 can be categorized as

52

PaaS. Another aspect arises in the case of services providing platforms for application

execution. Elastic Beanstalk operates on this field and can be at first classified as PaaS.

AWS Simple Storage System on the other hand acts as SaaS basis. Unstructured data

can be stored and retrieved in the service with API’s and stored data can be inspected

via AWS portal.

For monitoring and assessment purposes, AWS customers possess multitude of means.

In the implementation phase, some of these were found rather useful. One of these is the

access to AWS Dashboard (AWS portal web page) from which the deployed resources

can be monitored. Dashboard illustrates the charges for current month and indicates

whenever the Free Tier offer has been exceeded. From the AWS portal users are able to

found a Budget Tool. A feature that comes in profit for constraining the monthly costs

for example in the training or familiarizing phase. Notification can be triggered on the

forecasted budget or actual budget exceeding. Amazon CloudWatch is a tool for moni-

toring resources state and usage with graphical overview [140]. Free Tier offers 3

CloudWatch Dashboards with 10 custom metrics and alarms [64].

AWS has designed the hands-on work with the services to be quite straightforward with

low learning curve. Adopting new services and making the adjustments with the exist-

ing ones is handled via AWS portal. Only after few hours of learning, the basic usage of

the services and configurations comes clear. Within the same timeline user can get a

good overview from where more detailed options are found in the portal.

3.3.2 Amazon Virtual Private Cloud

AWS provides a concept Virtual Private Cloud or usually addressed as VPC [141]. It is

a private virtual network inside Amazon cloud ecosystem similar to customer’s private

network inside the company premises. Various AWS resources and services can be de-

ployed inside the VPC network and customer can have multiple VPC networks at their

disposal without any additional charge. Each of these networks are logically isolated

from any other AWS virtual networks. [141] Virtual Private Clouds can hold different

subnets, which furthermore can be dedicated to either private or public use, latter for

connection to internet. [142] Subnets must be located inside one Allocation Zone in one

Region (for an instance at EU region, Frankfurt Allocation Zone). This gives the cus-

tomer the availability for redundant operations. On the creation of the VPC user is re-

quested to specify the range of IP addresses to be used. These IP addresses are given in

Classless Inter-Domain Routing blocks (CIDR) blocks. [143] In the Figure 12 there is

an illustration of the VPC concept where VPC has CIDR block 10.0.0.0/16. Meaning

that first 16 bits in the address are reserved for the network part and remaining 16 bits

for subnet allocations [144; 145]. Subnets can be assigned into this particular VPC and a

subnet must be a subset of the VPC CIDR block. For assigning the subnets, AWS rec-

ommends to use the addresses from non-public routable range according specification

53

RFC 1918 (Request for Comments). Additionally, some of the IP addresses are reserved

for AWS proprietary use. [143]

Figure 12. Amazon Web Services Virtual Private Cloud, adapted from [142].

Every subnet must be attached to AWS routing table. Routing table specifies the rules

for outbound/inbound traffic [143]. In the Figure 12 subnet 1 possess a running instance

marked V1 and routing table has been configured for accessing AWS Internet Gateway

(IGW) (igw-id) [146]. IGW is a VPC component for making the internet access con-

ceivable from inside the VPC network and making the Network Address Translation

(NAT) for instances with additional public IP addresses (see Elastic IP later). Purpose

of the Internet Gateway is to alloy the internet outbound/inbound traffic only with the

instances connected to IGW through router. Method, which enables traffic within the

VPC between different subnets and only dedicated subnet for accessing the public net-

work. [146] Example in Figure 12 has an Elastic IP address (Static IP) assigned for in-

stance V1. Meaning that according instance can be found from internet with this IP ad-

dress prior to any change from the user itself. [147] After altering the IGW and so worth

according routing table AWS relays the traffic for appropriate instance [143; 146].

AWS provides one Elastic IP address for one customer account. Any additional Elastic

IP’s are charged. This is a consequence of the limited amount of AWS disposable static

public IP’s. [147]

In the Figure 12 subnet 2 is not allowed for internet access yet it is connected to a con-

cept called VPC endpoint via routing table. VPC endpoints are AWS virtual devices

alloying the traffic from AWS subnet for additional AWS resources without public in-

ternet connection, NAT device, VPN connection or AWS Direct Connect. [142] Thus,

the traffic never exits the AWS dedicated network. In according figure, subnet 2 has a

routing table configured for relaying AWS Simple Storage Service (S3) traffic through

VPC endpoint (vpce-id). VPC endpoint configuration takes place in AWS portal with

54

indications of the prefix ID (identification) of the service. ID is formed according to

AWS region and service name; com.amazonaws.<region>.<service> [142],

com.amazonaws.eu-central-1.s3.

For the security purposes AWS offers three distinct features, Security Groups, network

Access Control Lists (ACL) and Flow logs. Security group is controlling the inbound

and outbound traffic for the instance connected to internet. ACL technology manages

the inbound and outbound traffic between different subnets. AWS recommends ACL

commissioning for additional layer of security while stating that security groups are

sufficient to provide necessity protection. Flow logs capture the information over the

traffic between different interfaces inside VPC. [148] In the implementation Security

groups where the main layer of security protection. Security group functionalities are

detailed in Chapter 3.3.3.

3.3.3 Amazon Elastic Compute Cloud

Customer’s using AWS cloud platform are eligible to launch AWS Elastic Beanstalk

service. A platform for executing custom web application or other custom program.

Elastic Beanstalk has a support for applications written in multitude of programming

languages; Java, .NET, Python, Ruby, Node.js, Go and Docker are available [149].

Elastic Beanstalk has great advantages from easy deployment of code to rapid initializa-

tion at first launch. Regardless of these assets, making large-scale application AWS

Elastic Compute Cloud (EC2) is a better service. For the implementation, there was an

initial study for the possibility to deploy application on Elastic Beanstalk. Limitations in

the features of questioned service induced the movement for EC2 service.

Amazon EC2 operates on IaaS basis. Customer can select an instance to be launched

from AWS ready-made packages called Amazon Machine Image (AMI) or create their

own image which contains customer proprietary applications, libraries, configurations

and data. [150] Selection and customization takes place in AWS portal. Prior to launch-

ing an EC2 instance, a VPC should be configured. Launch of an EC2 instance proposes

to use a default VPC (created at the AWS sign-up) and deploy the EC2 inside. For mak-

ing future modifications adaptable, setting up a custom VPC and proper subnets is high-

ly recommended.

When launching new EC2 instance user is requested to choose the AMI (ready-made or

custom). Conceivable instances consist of 31 variations of Linux and Windows OS im-

ages from which 15 are eligible via AWS Free Tier. Against Linux images, one of the

most popular version is Amazon Linux including default command line tools of Python,

Ruby, Perl and Java with additional repository packages of Docker, PHP, MySQL and

PostgreSQL. AWS Free Tier offers 750 hours of monthly execution time for selective

instances [64]. These instances have furthermore certain limitations [151]. Instance type

55

has to be t2.micro which incorporates 1 CPU with clock speed of 3.3 GHz and 1 GB of

memory. Disk space is within the limitations of AWS Elastic Block Storage (EBS) Free

Tier offer [151]. EBS disk space is limited for 30GB in Free Tier [64].

Security groups are one network breach-evading concept in AWS services. When

launching an EC2 service, desired security group is assigned by the user. If no security

group is allocated, AWS uses the default settings allowing all traffic in both directions.

There are few additional notes for setting up the security rules. Rules are always per-

missive so no rule can be created for denying the access. There is a short delay from

setting up a new rule for AWS taking the rule in use. Security groups act as stateful

manner. When request is sent for users instance the response messages are allowed re-

gardless of the security rules. [152] Each inbound and outbound rule is consisting of

following settings [152]:

 Protocol type to allow (e.g. HTTP, HTTPS, FTP)

 Protocol to allow (TCP / UDP)

 Port number to allow

 Source IP address or address range to allow

When launching a Linux instance customer is granted with .pem file for holding the key

pairs making the SSH connection with the running instance. Opening the connection

can be handled through SSH client such as PuTTY [153]. PuTTY is an open source and

so worth entirely free [154] which has induced the popularity of the software. PuTTY

utilizes .ppk security key files causing the need for transform from .pem to .ppk. Such

action can be performed with PuTTYgen software [153]. After the transformation, .ppk

file, EC2 instance network address and used protocol can be inserted in PuTTY soft-

ware making the terminal window connection [153]. For file transmission purposes FTP

client software should be utilized. Similar settings are conducted prior making the con-

nections [153].

After initiating the connection with the EC2 instance, the required software’s can be

installed and runtime configurations can be performed. Custom applications are then

deployed and tested. Following the desired configurations and application deployments

made, customer can register their own AMI. Feature, which comes convenient when

similar instances has to be launched, or backing up the configurations and software’s for

specific instances. Registered AMI’s can be later deregistered. According feature is por-

trayed in Figure 13. Customer instances are stored in AWS EBS [155]. For Free Tier

usage maximum of 30 GB of image disk space should be considered [64].

56

Figure 13. AWS custom AMI creation, adapted from [155].

3.3.4 Amazon Simple Storage Service

Various applications and solution often have a need for storing data in its native format.

Amazon Web Services Simple Storage Service solves this introduced dilemma. In the

implementation S3 bucket is established for storing process data files in their native

textual format. These files can be later commissioned for divergent usage or to be

moved for other file storing platform. Modularity of the solution and centralizing the

original data in one location are the key features for utilizing S3. Establishing S3 stor-

age takes place via AWS portal. S3 storages are called buckets in AWS ecosystem

[156]. Customer can operate with multiple buckets, inside different regions and save

identical data in multitude of these buckets for making redundancy capable features.

AWS itself stores the data in numerous servers and multiple facilities within selected

Availability Zone. AWS serves the customer with checksum calculation for all the data-

grams inside their network. Mismatch in checksum can be indicated and corrupted data

can be repaired. AWS utilizes their own self-healing method for corruption correction,

thus improving data integrity. [156] AWS Free Tier enables 5 GB of disk space for S3

buckets with 20 000 Get requests and 2000 Put requests per month [64].

S3 stores the data as objects. These objects can be written, read or deleted whether user

has the subsequent permissions. Customer can control the access permissions for the

bucket and in addition grant the access only from specific locations around the globe.

VPC endpoints are implemented for creating a secure connection when the data is

moved within the AWS ecosystem. In data transition from end terminal (workstations)

into S3 bucket, AWS utilizes SSL encryption. This action is transparent for the user

thus, requiring no additional steps. [156] Data transmission is enabled with two distinct

methods. First, customer can use web page based AWS portal with simple “drag’n

drop” feature. Second, customer is eligible to operate with AWS Software Development

Kit (SDK) [156]. SDK’s provide application level access for files in various buckets.

AWS SDK has the support for Java, PHP, .NET, Python, Node.js and Ruby program-

ming languages [156]. In Node.js language AWS SDK is accessible via node package

manager and S3 Node.js API is available at AWS web page [157].

57

Access keys are used when opening the connection from Node.js environment in specif-

ic S3 bucket [156]. These access keys can be generated at AWS IAM portal. Access key

consists of Access Key ID and Secret Access Key pair. [158] Using these keys together

with the region identifier and bucket name, a connection to the specified bucket can be

opened. IAM keys are monitored and customer can track the usage of all the generated

keys from AWS portal [158]. In case where keys are applied in different context than

originally designed, customer may consider a security breach.

3.3.5 Amazon Relational Database Service

AWS S3 is a service for storing files (objects) in unstructured manner and in their native

format. When multiple applications are accessing the same data or when extensive

amount of data should be employed, databases are the right tool [159]. Relational data-

base model is a development from flat databases. In relational database, data is stored

inside tables, which are related with each other through links. This enables the multi-

layer ideology when storing the data. Methodology in relational database is based on

theoretical background of predicate logic, relational calculus and set theory. [159] Pro-

cess history data in the implementation is in plain string entries in textual file. This for-

mat can easily be structured in database tables. For future analysing purposes, the gath-

ered data is stored in AWS Relational Database Service (RDS). Multitude of the AWS

technology partners has the adapters and knowledge for accessing their customers RDS

databases. A great opportunity for future analysing of the data with any third party tech-

nology. Learning from usage of AWS QuickSight is additionally conceivable when data

is stored in AWS RDS.

RDS offers 6 different database (DB) engines from which the customer can make the

selection. Amazon Aurora, MySQL, Oracle, MariaDB, Microsoft SQL Server and Post-

greSQL are represented.[160] AWS RDS services are executed within additional AWS

instance. Performance of the instance can be selected from various options yet when

applying AWS Free Tier, t2.micro instance is the only conceivable one [64]. According

instance is provided with 750 hours of monthly execution time. Sizing is limited for 20

GB of database storage inside general purpose SSD (Solid State Drive) disk [64]. Of

course, detailed limitations are not eligible when Free Tier is expired or not used.

MySQL database engine was selected for the previous knowledge over the according

database and the experience of the MySQL database engine adapter in Node.js envi-

ronment.

When deploying a new DB, customer can select the time interval for backup purposes.

AWS automatically takes an image (dump) from the database for later restoring. This

action uses EBS capacity, which on the other hand reduces the capability for storing

custom images of EC2 instances. When recalling the Free Tier offer for 30 GB EBS

storage and 20 GB of DB storage, customer should be aware of the possibility for cross-

58

ing of the Free Tier limits. Actual connection for the database is handled via existing

EC2 instance. Database can be perceived to be a specific data storing location for cer-

tain EC2. Ideology is portrayed in the Figure 14.

Figure 14. AWS RDS Database deployment ideology.

API connection with the database orchestrated over MySQL package for Node.js. Con-

figuring of the username, password, port and database name are moreover required

[161]. For visual inspection of the database, MySQL Workbench [162] can be har-

nessed. Workbench is conceivable from MySQL Community Edition package without

any charges [162]. Connection from Workbench into MySQL database is configured

similar with the API connection. Merely the connected EC2 address is furthermore re-

quired. Adapter for making the connection from Workbench into RDS is quite tardy

with Free Tier low-level instance and for extensive use, higher level RDS instance

should be considered.

RDS with MySQL database engine operates on SQL (Structured Query Language)

method. A standardized querying language for relational databases. With SQL, applica-

tions and users are eligible for correlating and manipulating the data between relational

tables. SQL syntax holds various commands and combination of these commands can

be created. Basic statements are SELECT, INSERT, UPDATE and DELETE. SELECT

is being used for reaching certain data from relational database. INSERT is deployed

when new data needs to be inserted into the database. UPDATE amends the data inside

database. DELETE eliminates subjected data from the database. [159] W3Schools [163]

holds a complete list over the possible queries.

59

3.4 Frontend technology

IoT-Ticket was selected to serve as the platform for Dashboard functions. For making

the visualizations according platform has functionalities on monitoring, controlling and

reporting creation compared with optional service providers (see Table 3 for details).

With IoT-Ticket, customers are capable of making Dashboards on gathered data with

minimal effort. IoT-Ticket tools are entirely web browser based; no software’s or

frameworks are required to be installed on customer’s servers and workstations. This

liberates the resources for other purposes and unties the attachment on working with

certain workstation having the right tools installed. In the following, IoT-Ticket plat-

form is represented.

3.4.1 IoT-Ticket Platform

IoT-Ticket Platform as a whole can be perceived to be a set of various devices, finally

brought together with IoT-Ticket Dashboard. These devices and platform concepts are

portrayed in Figure 15. In monitoring solutions, different devices and actuators are con-

nected into IoT Device inside the manufacturing company. IoT Device can be Wapice

proprietary WRM247+ (Wapice Remote Management), customer’s own device, some

third party device or server operated application supplied with suitable interface (see

Figure 16 for details). Via secured connection, data is transposed into IoT-Ticket Data

Server. From the Data Server variables can be adapted into Dashboard UI operated over

secured internet connection and illustrated at the end device. IoT-Ticket Platform is

additionally capable of bidirectional communication. Machines and devices can be con-

trolled from the Dashboard solution as detailed in Figure 15. [117]

60

Figure 15. IoT-Ticket Monitoring and Controlling methodology, adapted from

[117]

Advantage with the IoT-Ticket lies in its multitude of characteristics. IoT-Ticket can

operate either PaaS or SaaS basis. Customer can purchase only the platform and con-

tribute internally for the solution development. However, Wapice offers services to

build specific solutions for customer’s needs. IoT-Ticket Platform can serve the whole

chain from hardware devices to software services for creating customer’s solution. This

reduces the need for surveys and studies performed by the companies, in the case where

countless parties contribute. [117]

IoT-Ticket supports multitude of interfaces. One of these interfaces is WRM247+ de-

vice. WRM247+ is a Wapice proprietary robust device performing remote measuring,

controlling and management for the actuators or events at the shop floor level. Ques-

tioned device can support 10 different interface modules or protocols. Acceleration

measurement, CANdata (Control Area Network), CANopen, One-Wire, ISO11783

Monitor, Modbus, ModbusTCP, Modbus Server, Time and ODB (On-board Diagnos-

tics). When combined with additional interfaces illustrated in the Figure 16. IoT-Ticket

can support totally 18 different protocols or modules. [117]. IoT-Ticket Platform Data

Server can natively support OPC UA (OLE for Process Control Unified Architecture)

protocol. Such case when customer merely possess Classic OPC interface an OPC

Gateway can be commissioned. [117] Newest interface for IoT-Ticket Data Server is

Libelium. Libelium provides wireless devices with low power, long range (21 km) ca-

pabilities for smart city and smart environment applications. Now these devices are eli-

gible to be connected with IoT-Ticket Data Server using the advantages of the platforms

Dashboard and Reporting tools. [164] IoT Tracker is a mobile phone based interface

making user’s end device an IoT device. With Tracker interface mobile devices sensor

data is available for IoT-Ticket solutions. Wapice provides REST API libraries for Java,

C# and C/C++, Python, Codesys, Qt and Simulink programming languages. REST API

Development Guide is additionally available for using another programming language,

61

connecting directly over REST interface. [117] Practical part utilizes JavaScript pro-

gramming meaning that mentioned API Development Guide was studied.

Figure 16. IoT-Ticket Connectivity diagram, adapted from [117]

IoT-Ticket has a hierarchical data model initiating from root level named Enterprise

(e.g. customer or company). Enterprise can have multiple devices and these devices can

have multiple datanodes (datatags). Inserted data is written or read, from these individu-

al datanodes. [165] Figure 17 portrays a situation where example enterprise has a vessel.

Vessel acts as device and according vessel has path Engine/LeftBlock for defining the

datanodes Temperature and AirIntake. Additionally, vessel global positioning can be

reached with two distinct devices.

Figure 17. IoT-Ticket Data Model, adapted from [165]

IoT-Ticket API Server has a quota policy for users taking an advantage of the 30-day

evaluation period. With this, IoT-Ticket platform is restricted to 5 devices. Additionally,

62

these devices can have 20 data nodes per device and 20 000 read requests per device in

one day. When using a commercial version of IoT-Ticket platform quota size is defined

according the subscription level. [166]

Requests for IoT-Ticket Server are made with HTTPS. Thus, protection against wire-

tapping and man-in-the-middle attacks can be reached. Authentication of the requests

are handled with HTTP basic authentication. Username and password need to be pro-

vided each time the when message requires an authentication. [165] Authentication re-

quirements for the distinct messages can be noted from the Table 4, detailed in the next

paragraph. In practise, every message needs to be authenticated. When client is registra-

tion a new device, under the Enterprise root element, an ID is provided for later access-

ing according device. [165] Registration and data writing sequences are illustrated in the

Figure 18. First client sends the request for device registration. IoT-Ticket API Server

creates a new device and responses with device ID. After the client has stored the pro-

vided ID, client is applicable to start sending data to device datanodes. If IoT-Ticket

API Server notices that datanode does not yet exist, one is created and data is stored.

Client receives a response message for succession or failure of the writing procedure.

Figure 18. IoT-Ticket Device registration and data writing sequence, adapted from

[165].

With IoT-Ticket API Server REST interface, specific URL (Uniform Resource Locator)

and HTTP methods define the action to be performed at the server side. Total 8 different

resources are available. [165] These resources are detailed in Table 4. For space saving

purposes table represent only the last section of the URL. Initial part of the URL is con-

sisting of base URL, name of the API and version number. Following URL gives an

example where device is being registered:

63

https://{base-ul}/api/v{version-number}/devices (2)

In the above sample URL: {base-ul}/api/v{version-number} can be shortened for: {api-

server-URL}. This comes convenient later in the Appendix A where request-response

message airs are detailed.

Table 4. IoT-Ticket API Server resources [165]

Operation Purpose URL
HTTP

method

Authentication

required

Register a

device

Create a new device

under Enterprise

/devices/ POST Yes

Get

devices

Request for clients

available devices

/devices GET Yes

Get a

device

Request information

over the device

/devices/deviceID GET Yes

Get device

data node

list

Request the list of

device data nodes

/devices/deviceID/datanodes GET Yes

Write data Write the vales to

data nodes

/process/write/deviceID POST Yes

Read data Read device data

node values

/process/read/deviceID GET Yes

Get client

quota

Request a client

quota information

/quota/all GET Yes

Get device

quota

Request quota in-

formation for certain

device

/quota/deviceID GET Yes

In the HTTPS messages, communicating with IoT-Ticket Server, payload transposes the

username, password and the required information, proprietary for each of the resource.

Clearer picture for the usage of the resources can be given through series of tables.

These tables are represented in Appendix A. Tables illustrate the request-response mes-

sage pairs and the structure for the most essential resources given in Table 4. Response

can be requested in XML thus JSON format is the default. [165] JSON format was used

in the thesis implementation.

64

Error handling with IoT-Ticket API Server takes place with HTTP status codes and ad-

ditional information in the body of the error message. Table 5 indicates the possible

status codes for the responses and the Table 6 indicates the structure of the body in the

error response message. Final table in the set of error handling, Table 7, describes the

API Server specific error codes.

Table 5. IoT-Ticket API Server HTTP status codes [165]

Status code Note

200 OK

201 Created

400 Bad Request

401 Unauthorized

403 Forbidden

500 Internal Server Error

Table 6. IoT-Ticket API Server error message body description [165]

Response message body

Field Description

description

(String:500)

General information over the error

code (int) Internal error codes

moreInfo

(String:255)

Reference to the documentation where additional description can be found

apiver (int) The API version

Table 7. IoT-Ticket API Server internal error codes [165]

Code Description

8000 Internal server error

8001 Permission is insufficient

8002 Quota violation

8003 Bad parameters

8004 Writing failed

65

3.4.2 IoT-Ticket Dashboard

IoT-Ticket Dashboard is a web browser based and secured interface for monitoring,

controlling, managing the devices. Visualization are created with online-based content

creation tool. Customers can exploit multiple Dashboard pages starting from the super-

visory level of the application and going deeper inside the sites and down at the individ-

ual devices. IoT-Ticket Dashboard has been divided in two different tools for creating

the final visualization, Interface Designer and Dataflow Editor. [117]

Interface Designer is a tool for Dashboard creation. A user can utilize “drag n’ drop”

mechanism for adding distinct elements of labels, gauges, charts, maps, camera views,

sliders, buttons and indicators. Elements are moved on suitable position on the canvas

with user experience kept in mind. When adding a new element, data variables are at-

tached with this specific element by employing “drag n’ drop” method from the Data-

tags (datanodes) list. These datatags are the variables inserted with selected interface

into IoT-Ticket Data Server. [117] Interface elements can further be configured for pro-

cess specific minimum / maximum values, scale of the measured variable and units of

variable. Yet, unit information can be inserted together with variable data over REST

interface. User can be provided with button elements acting as links between different

Dashboards and Dashboard pages. Otherwise, user is required to open the certain Dash-

board and further select the according page.

Second tool for Dashboard formation is the Dataflow Editor. Dataflow Editor is an IEC

61131-3 inspired block programming editor operated via web browser. Different Data-

flow Editor widgets are connected with each other by elastic wire method. Interface

Designer and Dataflow Editor integrate seamlessly together creating the final Dash-

board visualization. Dataflow Editor provides function blocks/widgets for creating

complex logical operations used for executing control actions at the shop floor level.

Formed logical operations can otherwise be used for triggering visualization elements

for providing monitoring action. [117] Dataflow Editor is also used for manipulating the

datanode values before representing those to the user. Calculations can be made with

selecting right function blocks. Calculations include basic mathematical operations with

some additional ones.

3.4.3 IoT-Ticket Reporting

IoT-Ticket Reporting tool is based on the similar features compared with the Dashboard

solutions. With Report creation tool user can “drag n’ drop” elements on the document

template and create the visualizations for the report. However, the selection of the

widgets are restricted. Reports cannot represent any communicable elements. Elements

can be static (e.g. company logos) or dynamic. When using dynamic elements, Datatags

are inserted with “drag n’ drop” method. After the report template is created, customers

66

can use the same template and trigger the automatic creation of the report updated with

the dynamic elements. Triggering can take place from various sources. Application lev-

el process finishing could be one of these triggering actions. However, more complex

logic can be utilized. Reports can incorporate charts, sliders, text boxes, figures, dialogs,

checkboxes, labels, gauges, camera snapshots, maps, and state indicators. Reports can

be delivered at users emails and different templates can be used for different depart-

ments inside the company. As an example, material processing team can receive differ-

ent report with different elements compared with automation team receiving infor-

mation with their interests. [117]

Report creation tool differs from Dashboard editing tool set for holding one adjunct

browser tab. This adjunct tab is used for previewing the outlook of the report under de-

sign. Otherwise, report creation takes place with Report editor and Dataflow editor.

When initializing a new report, administrator should take into consideration the levels

of the datanodes and user experience for accessing the finalized report. Reports can hold

any of the datanodes regardless of the level where the report was first initiated. Howev-

er, the end user can work with more intuitive manner when report is located under the

path, dependent for the content of the report. As mentioned, reports can be triggered

with predefined timetable or with trigger signal from any of the Dashboads.

67

4. IMPLEMENTATION

Following chapter describes the implementation where cloud platforms are accessed for

creating process data monitoring solution. Solution is developed for application envi-

ronment, described in Chapter 3.2. As mentioned, the application environment was in-

stalled in the laboratory with all the basic hardware and additional devices before start-

ing the thesis. For this reason, no affect from the thesis were made for immediate alter-

nation of the environment. Multitude of future prospects for updates where nevertheless

considered and during the thesis project, intensive co-operation was conducted for set-

ting up the final application. Consequently, subsequent chapter concentrates on software

development of the cloud platform working tightly together with the hardware level.

For providing a clear presentation for the viewer, following subsections are divided in

five distinct parts. Chapter 4.1 gives the viewer an overall representation over the used

dataflow and security methods. Purpose of this chapter is to bring forth more clear con-

ception over the implementation. Chapter 4.2 describes the cloud platform framework

used as backend for the implementation. For the frontend solution, three specific entire-

ties can be portrayed. Thus, following chapter is divided in additional three parts. Chap-

ter 4.3 covers handling of the real-time process monitoring and illustration of the pro-

cess variables for the users. Chapter 4.4 concerns gathering of the process data simulta-

neously with the active process and after the process is finished, provide the data for

cloud frameworks for later observation. Chapter 4.5 describes the report creation steps

for the process.

4.1 Dataflow and security architecture

In the Chapter 3.2 application layer was portrayed. Within this chapter, Figure 10 por-

trays the mechanical units and actuator devices of the application layer. These devices

are crucial for the usage of the environment. However, for the purpose of the thesis,

even more crucial is the illustration of the dataflow and accessed security methods with-

in both the application layer and cloud platforms. Mentioned Figure 10 can be modified

for Figure 19 to represent these details.

68

Figure 19. Implementation Dataflow and security architecture

Each data transfer uses different security method. For process data transmission, a basic

FTP with username and password authentication was utilized. Set against for robot

REST API interface, which holds HTTP digest authentication method. Digest authenti-

cation holds challenge-response scheme [167]. Scheme challenges to use a nonce value.

Response holds MD5 128-bit algorithm hashing for checksum of the username, pass-

word, nonce value, HTTP method and requested URI. [167] In the robot Digest authen-

tication also provides a cookie for the client after a successful authentication. Later ac-

cessing the same API questioned cookie is transposed with the message to verify the

user [41]. Wapice IoT-Ticket holds HTTPS protocol for data transmission and control-

ling the requested process monitoring, takes place with REST interface together with

HTTP basic authentication method. HTTP basic authentication holds a method where

user must authenticate itself against the realm by representing username and password

[168]. These credentials are hashed with base64 encoding. Basic authentication does not

support nor possess cookie mechanism [168].

In the application research project, robot can have multitude of users. Full access rights

for the robot features, by all the users, was reduced. Robot holds a default credentials

for accessing and usage [169]. These default credentials originally possess a full access

to robot features. New user and credentials can be formatted via RS User Authentication

Service (UAS) [169]. Default credentials access was lowered to hold only the basic ro-

bot operations and new user with new credential where formed to have full access to

robot usage and configuration. These credentials are moreover used with REST API

communication and by the main users of the cell.

69

4.2 Cloud platform framework

According to study conducted in theoretical background Amazon Web Services was

selected to act as the backend service and provide the resources for the implementation.

Various AWS services where harnessed for building up the framework. These services

and resources are detailed in Chapter 3.3. Thus, in the following the framework is de-

scribed as it is set up for the implementation. The most convenient method portraying

the framework is to view the architecture through a figure.

Figure 20. Cloud platform framework

At the initial phase, an AWS region was decided for operating all the resources. Accord-

ing to Amazon Customer Agreement [66] data is always kept in the Availability Zone

where the user makes the selection. As operating in EU economical region a Frankfurt

Germany based eu-central-1 was selected for the datacentre and resource location. Ac-

cording functionality can be noted from the Figure 20 where region is portrayed as the

outer shell covering all other resources. Inside the region, a Virtual Private Cloud was

configured. Prior for launching any actual resources inside the VPC a subnet allocation

was configured. In the implementation, architecture was divided in three different sub-

nets for leaving two as for future reservation already at this stage. These subnets can

later on hold new AMI’s for analysing of the process data or controlling the process.

Subnet allocation was selected from 172.32.0.0 address space with CIDR block of 20

(172.32.x.0/20) making totally 16 different subnets available with each subnet having

4094 possible IP addresses [170]. AWS route table was configured for allowing traffic

70

only from the subnet 21 to be transferred into Internet Gateway (IGW). With this action,

only AWS EC2 located inside the subnet 21 can access the internet. In the future, other

two subnet AMI’s can prepare the results for subnet 21 AMI. Inside the route table, an-

other configuration was set forth for allowing subnet 21 to communicate with the AWS

VPC Endpoint. VPC Endpoint was configured for allowing the communication with

AWS S3 bucket. As mentioned in the methodology, according configuration is conduct-

ed with S3 bucket ID and prefix relating to AWS region. Thus, in the implementation

VPC Endpoint was configured as xx-xxx54007 (com.amazonaws.eu-central-1.s3).

AWS security group holds the main layer of security for the internet traffic. Security

group is illustrated in the Figure 20 as an external service block although this is done

only for representation purposes. Security group acts in conjunction with all the services

always confirming the inbound and outbound traffic. In the implementation, multiple

security rules were put forward for inbound traffic. Totally five different types of com-

munication where needed HTTP, HTTPS, SSH, FTP (Custom TCP Rule) and MySQL

with various modification for acceptable IP addresses. Detailed specification of the in-

bound rules are noted in Table 8. For testing purposes, outbound rules were left in the

default settings allowing traffic to all IP addresses.

Table 8. AWS security group inbound rule settings

Type Protocol Port

Range

Source IP Function

HTTP TCP 80 Robot IP,

used workstations IP’s

Robot REST interface

HTTPS TCP 443 all IP’s IoT-Ticket, secured connection

SSH TCP 22 used workstations IP’s Terminal connection with EC2

instance

Custom TCP

Rule

TCP 20-21 Robot IP,

used workstations IP’s

FTP server

Custom TCP

Rule

TCP xxxx

(secured)

all IP’s used for inbound communica-

tion from IoT-Ticket, basic

HTTP authentication

AWS RDS

MySQL/Aurora

TCP 3306 all IP’s route table handles the accessi-

ble communication

Inside the subnet 21 AWS Elastic Compute Cloud with AMI of Amazon Linux was

launched. Later on this modified Amazon Linux was packed as implementation own

AMI and stored in the AWS EBS for later launching similar instances with all the con-

figuration already made. Using the AWS Free Tier offer determined the level of the

launched instance; t2.micro incorporating 1 CPU with the clock speed of 3.3 GHz and

1 GB of memory. However, regardless of the low performance level, the according in-

stance type it is perfectly suitable for the initial proof-of-concept implementation usage.

71

Running instance was set up with AWS Elastic IP (Static IP) for accessing the instance

from the application level devices with immutable IP address. At the initial launching

stage of the Amazon Linux a .ppk file was provided via AWS portal. According .ppk

file was translated with PuTTYgen for .pem file to be used with SSH program (PuTTY)

making the terminal connection with the instance. Via formed terminal connection, a

Node.js environment was installed together with Node.js package managing software,

npm. These environments are available for installation directly from Node.js and npm.js

webpages with Linux commands illustrated in the following lines.

curl --silent --location https://rpm.nodesource.com/setup_4.x | sudo bash -
sudo yum -y install nodejs
sudo yum -y install gcc-c++ make
curl --silent --location "https://www.npmjs.org/install.sh" | sudo bash -

Another key functionality is the FTP server, hosting a file transmission from the robot

into Amazon Linux instance no identified as TUT-AM-EC2 instance. A Linux FTP

server called vsFTPd was used to fulfil this functionality. As for the Node.js environ-

ment, vsFTPd needs to be installed by the user. Installing the software occurs with an-

other Linux command.

yum install vsftpd

vsFTPd needs additionally few altered parameters inside the vsFTPd configuration file

located in /etc/vsftpd/vsftpd.conf This configuration file can be altered with vi editor

adding the following extra lines in the file.

Additional configuration
pasv_enable=YES
pasv_min_port=port range min
pasv_max_port=port range max
pasv_address=Amazon Elastic IP address
local_root=root folder for the FTP server

As illustrated in the above lines, a local root folder is set up for vsFTPd server. This

means that a user with the equivalent home directory and a password needs to be set in

questioned Linux instance. Task was conducted with Linux commands of adduser and

passwd. Transferring Node.js program files and testing the FTP server can take place

with any FTP client program. FileZilla was selected for this purpose. FileZilla requires

the address for the endpoint (either TUT-AM-EC2 elastic IP or DNS name), used proto-

col and .pem file for making the connection. Accessing the vsFTPd server, .pem file is

not required, yet user root folder need to be specified keeping in mind that questioned

folder is password protected. Additionally, when accessing the TUT-AM-EC2 instance

or vsFTPd server, a used port needs to be configured in FTP client. With SSH port

number 22 and with vsFTPd port number 21.

72

AWS RDS MySQL database was set up for storing the process data in structured form

separate from the S3 bucket in which the data is stored as its native .txt format available

for accessing with web browser by anyone granted with the permission. At the launch-

ing stage of the AWS RDS MySQL service a backup functionality was configured out

of the usage. Reason for this was to save AWS EBS space for future use, such as addi-

tional stored AMI’s. As it comes clear in the Chapter 4.4 a .txt file of the process data is

always left intact in AWS S3 enabling the reset of the database in case of the data loss.

Size of the database was set up for 10 GB and t2.micro instance (Free Tier offer) was

selected as the platform. Portrayed in the Figure 14 and Figure 20, using the AWS RDS

MySQL takes place via already running EC2 instance. Thus, database was bound to

existing TUT-AM-EC2 instance and existing VPC. Further MySQL Workbench was

installed and configured for accessing the database from user workstation. Function

takes place by making the configurations in Workbench of TUT-AM-EC2 instance

DNS name, password in the database and MySQL port number of 3306.

4.3 Real time process monitoring

In the Chapter 3.2 where application layer was introduced there was a mention of a

DualCoat powder feeder. The installation of the powder feeder to become one part of

the possible AM technologies in the cell, where delayed and was left for the future add-

on. For this reason, the implementation part only covers CMT and COAXwire devices.

Both of these devices hold their own monitoring software for true Real-time monitoring.

Yet these are independently great set of tools, end user requires a convenient way of

monitoring the ongoing process at the supervisory level. Supervisory level in here is

meant as monitoring the whole production cell or the particular process in one view.

Together with the AWS framework and Wapice IoT-Ticket technology, these objectives

can be gained. Following two chapters takes closer look for the infrastructure and the

architecture of the Real-time monitoring. Portraying starts with Chapter 4.3.1, the de-

scription of how process variables are gathered. Following Chapter 4.3.2, details visual-

ization of these variables via IoT-Ticket Dashboard.

4.3.1 Gathering of process variables

Before visualizing the process, the adequate variables must be collected from the devic-

es. Robot controls all the processes in the cell. Thus, gathering of the variables takes

place via robot REST interface accessing directly for according variables in robot IO

system’s EthernetIP adapters. Additionally, the overall Supervisory status of the cell is

monitored with robot’s own RAPID program variables for controlling the questioned

process. Regardless of the monitored process or monitoring the production at the Super-

visory level, functionalities and the order of the operations are identical. Steps which are

taken from the initial launch of the monitoring, for reaching the moment when the data

is send to IoT-Ticket data server can be portrayed in the Figure 21. These steps are de-

73

tailed in following paragraphs concerning the monitoring of the production at Supervi-

sory level, included with few words over the basis of the process monitoring.

Figure 21. Flowchart for Real-rime process monitoring

Steps, portrayed in the Figure 21, are higher-level notifications of the software compo-

nents used to perform the functionalities. Before continuing to description level of these

operations, a following figure can be noted. Figure 22 portrays the program architecture

deployed in TUT-AM-EC2 instance for collecting the variables and transposing them

into IoT-Ticket platform.

74

Figure 22. Program architecture for Real-time process monitoring

Portrayed in the Figure 22 the entirety of the process monitoring can be realized as one

independent component (Real-time Monitoring), composed from several individual

software components acting together by program calling and using dependencies from

outside services with REST interface. During the implementation, a future prospect of

shifting the programmed backend environment to be executed within resources of an

alternative service provider was kept in high value. For this reason, the individual op-

erations where heavily modulated. All the modulated components inside the main com-

ponent, are deployed in one folder inside TUT-AM-EC2 instance. The main module is

executed with Node.js forever npm-module for evading rebooting of the instance. In the

following, functions of specific components are detailed.

mainMonCon.js is the main component launched at the start of the Real-time monitor-

ing. It holds all the sub-functions for calling appropriate operations for the monitoring.

After the start, according component instantly calls runProductionMonitor function and

is left waiting for commands via IoT-Ticket Dashboard REST API (Commands REST

API) which is used when launching CMT monitoring or COAX monitoring functions.

IoT-Ticket Dashboards are configured to hold button elements for initiating a monitor-

ing for according process (see Chapter 4.3.2 for details). By pressing these elements

user sends a HTTP POST request with HTTP basic authentication to TUT-AM-EC2

instance for activating the monitoring. With similar elements, a user can stop the moni-

toring. Questioned requests are described in Table 9. Furthermore, this component has

logging capabilities with time and date record for later debugging the activities. Similar

debugging is also available with all the other components portrayed in Figure 22. Log-

ging was performed with log4js module. log4js was selected from the reason that it

holds interface for logging inside Loggly service [171]. Loggly is a cloud based logging

75

management service where logs are able to be accessed and studied online via Loggly

web pages [172].

Table 9. HTTP request for controlling the monitoring

Function URI

base-URI: http://TUT-AM-EC2-Elastic IP:PORT/

Method

Start CMT process monitoring cmt/startmonitor POST

Stop CMT process monitoring cmt/stopmonitor POST

Start COAX process monitoring coax/startmonitor POST

Stop COAX process monitoring coax/stopmonitor POST

runProductionMonitor function is launched at the start of the mainMonCon.js. Func-

tion is left running with timeout interval of 3 seconds, which becomes the update inter-

val for these gathered variables. Function controls the additional components for moni-

toring of the production inside entire application level (Supervisory level).

There are couple of reasons for dividing the functions and components in the form as

described in Figure 22 is that different components are handled with distinct timeout

intervals. These timeouts are represented in the questioned figure with millisecond rec-

ords above the function. Timeouts can more easily be handled at the upper level of the

architecture than encapsulating within individual components. Production can be moni-

tored with less frequency than the processes itself. Use of the production monitoring is

to give a user basic information over the running application, concerned information is

detailed in Chapter 4.3.2. Additionally, the lower level components can easily be main-

tained and modified.

runCMTprocessMon and runCOAXprocessMon -functions are launched when the

user requests for according process monitoring via IoT-Ticket Dashboard elements.

These functions are driven with 250 millisecond timeout interval and them use moni-

torCMT and monitorCOAX components. Compared to foregoing functions

sendCMTprocessToIoT and sendCOAXprocessToIoT are called with 500 millisec-

ond timeout interval. These two functions control the data sending for IoT-Ticket Data

Server which holds maximum of 500 millisecond update interval. Thus, variables itself

are updated within backend service with higher frequency for gaining more accurate

data ready for to IoT-Ticket provision.

monitorProduction component is used by runProductionMonitor function for First;

preparing the data model for accessing robot variables via Robot REST API and Sec-

ond; storing requested variable data with JSON format within the component. Compo-

nent uses the pre-prepared JSON data structure where the URI’s for desired robot varia-

bles are stored (see Table 10 for details). These URI’s are transposed for sub-component

of methods where requestRobotParam function sends the HTTP GET request with

76

specified URI, by npm request module for Robot REST API. In the case where the ses-

sion is not established, robot returns with HTTP error code 401, not authenticated.

Component responses with function methods.authenticate and returned digest authenti-

cation cookie is stored in the component’s cookie-jar for later accessing the API. When

the authentication is verified, responses from requesting the variable states are stored in

JSON structure. In the case where additional formation of the returned variable is need-

ed it is handled before storing. This enables immediate later transpose of the variable

data for IoT-Ticket Data Server.

Table 10. Robot variable URI’s for monitoring the production

base-URI:

http://robot-ip-address/rw/rapid/symbol/data/RAPID/T_GUI/CellData

Name resource-URI Datatype (IoT-Ticket) Unit (IoT-Ticket)

timeETA /sTimeETA?json=1 String Text

currUser /sCurrUser?json=1 String Text

process /sProcess?json=1 String Text

procedure /sProcedure?json=1 String Text

details /sDetails?json=1 String Text

platformID /sPlatformID?json=1 String Text

fixture /sFixture?json=1 String Text

timeStarted /sTimeStarted?json=1 String Text

prodAvailable /bProdAvailable?json=1 Boolean bool

Current implementation is though a narrow introduction for the subject and for this rea-

son, each device inside IoT-Ticket data structure (under the enterprise level) in added

manually via specifically formed JavaScript code. From the response of the new device

formation, an identification number is grasp and stored in JSON file, devices.json. Path

of the each Datanode is established by the user and them are stored by IoT-Ticket server

each time current Datanode-path combination is initially written to data server (see

Chapter 3.4.1 for details). These Datanode-path combinations remain evermore the

same. Thus, them are saved in another JSON file, datanodes.json. Datanodes file holds

the name of the node, path for the node, unit of the node and datatype of the according

node. Glimpse of the file is portrayed in below lines of JSON structure.

77

 "prodTimeETA":
 { "datanode": "prodTimeETA",
 "path": "Production",
 "unit": "text",
 "dataType": "string"
 },
 "prodCurrUser":
 { "datanode": "prodCurrUser",
 "path": "Production",
 "unit": "text",
 "dataType": "string"
 }

Both the devices.json and datanodes.json are accessed by the writeProdDataToIoT

component. Initially current component assembles a JSON structure, which is a combi-

nation of variable data stored by monitorProduction component, and Datanode infor-

mation from datanodes.json. Data and information are stored in secondary JSON struc-

ture in a way that all the retained data can be send within one single message. A glimpse

of the mentioned structure is illustrated below this paragraph. Together with device ID

and the formed data structure mentioned component uses methods.writeToIoT function

for sending the data to IoT-Ticket data server. methods.writeToIoT holds authentica-

tion information, method (POST), headers and the base URL for accessing the data

server. Final URL is formed from the base URL and from JSON structure (path) trans-

posed from writeProdDataToIoT with component call.

 var dataToWrite = [{
 "name": datanodesJSON.prodTimeETA.datanode,
 "path": datanodesJSON.prodTimeETA.path,
 "v": productionData.timeETA,
 "unit": datanodesJSON.prodTimeETA.unit,
 "dataType": datanodesJSON.prodTimeETA.dataType
 },
 {
 "name": datanodesJSON.prodCurrUser.datanode,
 "path": datanodesJSON.prodCurrUser.path,
 "v": productionData.currUser,
 "unit": datanodesJSON.prodCurrUser.unit,
 "dataType": datanodesJSON.prodCurrUser.dataType
 }
 .
 .
 .]

When monitoring one of the process (CMT or COAXwire) data model and the data

flow takes similar steps as described above. Difference comes only from the initial op-

eration where user need to activate the monitoring via IoT-Ticket Dashboard, for the

timeout interval of the data update and for the gathered variable data from the robot. For

these reasons, detailed operations for process monitoring are not described. Yet, viewer

can find the names and the specific Robot URI’s for gathered variable data in Appendix

B.

78

4.3.2 Process variables visualization

After the data is gathered from the robot and sent for IoT-Ticket Data Serv, a creation of

the Dashboards can take place. Customer can hold as many Dashboards as they keep

necessary and movement between these Dashboards are handled with IoT-Ticket user

interface Control Pane or with hyperlinks inside each Dashboard. Creation and modifi-

cation of the Dashboards are conducted with online Interface Designer together with

Dataflow Editor for making the evaluation and modification for the data before repre-

senting it for the viewer. According chapter takes closer look for Dashboards used in the

final solution briefly rising some detailed information from the phase of building the

Dashboards of the project.

Gathered real-time visualization variable data is structured inside IoT-Ticket Data Serv-

er under the enterprise level and furthermore under each process title. Described catego-

rization, further portrayed in the Figure 23, holds an advantage when using datanode

(datatag) selector tool in Interface Designer or in Dataflow Editor. Datanode selector

tool can represent the nodes as a list containing all the nodes, yet another possibility is

to choose the right datanode from the tree structure. While the detailed hierarchy is

adopted and when building the Dashboards, all the numerous datanodes are not needed

to go through for finding the right one from the certain process.

Figure 23. IoT-Ticket Datanode architecture for Real-Time process monitoring

After logging into IoT-Ticket webpage, the user is provided a hyperlink for the produc-

tion Dashboard. This Dashboard represents the Supervisory level status of the applica-

tion environment (Figure 24). At the top of the Dashboard user is eligible for starting

and stopping of the monitoring for this particular view. Operation only activates or de-

activates the updating of the page; the questioned variables are still gathered via robot

REST API and stored inside IoT-Ticket Data Server. Described action is created for

lower data rate internet connections which might cause blocking of the end device when

79

updating the view each 3 seconds, set for now as update interval (controllable via Data-

flow Editor, at the moment same as the variable gathering timeout interval). Below the

update control, a button element is presented for selecting the desired process for de-

tailed monitoring (CMT / COAXwire). By pressing the button, a prompt screen is visu-

alized and user can make the selection. At lower part of the initial view, the actual vari-

ables are presented with their current values. Under the progress bar, a button element

for accessing History Data is available. Another button is given for triggering a report

from the latest finished process run. At the pages’ footnote, IoT-Ticket Control Pane is

available with additional Dashboard page navigation elements.

Figure 24. Production monitoring Dashboard

Selecting the desired process, user is directed over to the main page of the according

Dashboard. These main Dashboard pages varies over the selected process. CMT process

Dashboard main page holds only meters as indicators at the middle section. Whereas

COAXwire monitoring Dashboard main page holds 4 meter elements and two charts.

One for monitoring the robot TCP (Tool Center Point) velocity and one for wire feeding

velocity. Figure 25 portrays the main page of the COAXwire monitoring.

80

Figure 25. COAXwire monitoring main Dashboard page

At the top most position of the Dashboard, there is a control panel. Via buttons of the

according panel, the user can activate or deactivate the page updating, similar as for

production monitoring page for low rate internet connections. Alongside these buttons

user can start or stop the variable gathering itself. By pressing the Start COAX monitor-

ing –button IoT-Ticket sends HTTP POST message for TUT-AM-EC2 instance REST

API, requesting the start of the monitoring. TUT-AM-EC2 replies accordingly and

Monitoring status light is turned green or remains red, in the case of failure. Feature is

created with IoT-Ticket button element widgets “drag’n dropped” inside the Dashboard

working canvas and connecting these elements inside Dataflow Editor with IoT-Ticket

REST API widgets. These widgets are configured to hold the URI’s and port of the

TUT-AM-EC2 REST API with additional HTTP basic authentication username and

password. For providing the viewer a glimpse of the operations within Dataflow Editor

described configuration is portrayed in the Figure 26.

Figure 26. Dataflow Editor setup for starting and stopping of the COAXwire varia-

ble gathering

At the middle section of the COAXwire main Dashboard (Figure 25), meters for moni-

toring robot TCP velocity, wire feeding velocity, laser power and the angle of the

81

COAXwire tool, are present. Below the meters, a set of two charts are located for brief

history glimpse of the according variables. This helps the user when monitoring the

corners and the edges of the artifact manufactured with COAXwire process. On the left

hand side of the page, a group of selected Boolean variables is gathered under the cate-

gorization of their existence from the aspect of the robot. Another feature providing the

viewer a top down look over the manufacturing of the artifact. Finally, at the right hand

side a Navigation Panel is formed for making hyperlink jumps between desired Dash-

boards. Green line above the button indicates the current page. Initial button named

Monitoring Main redirects the user for Production monitoring main page (Supervisory

monitor). History Data button is used for switching inside visualization of the already

finished processes. More of this feature in described in the Chapter 4.4.3. CMT and

COAX buttons switch between the desired process monitoring main pages, respectively.

In the middle, there is a set of four button elements. Use of these redirects the user for

sequential pages below the main Dashboard of the current process. These pages holds

graphical charts where user can make the selection of specific timeline for observing the

history of the according variables. Selected data is traced from the real-time monitoring

variables. Reason for the existence of the functionality is to eligible the user a glimpse

into the history of the process while it is still running. Feature arises from the method

where actual history data is collected by the robot and transposed into IoT-Ticket Data

Server moments after the process is finished. Free Choice button element on the Navi-

gation panel redirects the user for a history glimpse page where user can freely choose

the variable for detailed observation. Possibility for Free Choice selection was a user

experience feedback. One additional feature within the real-Time monitoring Dash-

boards are the short cut elements to instantly relocate the user inside History Data ob-

servation.

For the CMT process monitoring, main Dashboard appears much of similar aspects with

COAXwire process. There are difference coming from distinct monitoring variables and

features over the process itself. With CMT process there are no charts available set forth

for the user at the main monitoring Dashboard. Values of the individual variables hold

more benefit for the user when illustrated in transient mode with meters. Like in

COAXwire process, CMT monitoring holds sequential Dashboards for taking a peek

within the history of the according variables and one for Free Choice of the variables.

Main Dashboard for CMT process is portrayed in the Figure 27.

82

Figure 27. CMT monitoring main Dashboard page

Observing the history of the real-time monitoring variables take place equivalently re-

gardless of the monitored process. By selecting the desired variable and method with

the Navigation Panel buttons according Dashboard for history glimpse is prompted. The

history observation is divided in two methods, for longer period of constantly updating

real-time data and search of the real-time data from the past. For the CMT process, the

real-time history data holds current and voltage variables. For COAXwire monitoring

similar variables are robot TCP velocity and wire feed velocity. Additional variable

selections can be maintained and altered by adding a new Dashboard page and config-

ure the page according a new set of variables. Action, which is performed by the admin-

istrator of the solution while users can only access the interface for employing the

graphics. Figure 28 represent the CMT process voltage visualization with constantly

updating chart values. User can access this Dashboard by Voltage Real-Time –button.

Chart at the top level of the Dashboard is updating the values in real-time and below

chart is showing the variations of the minimum and maximum values with additional

calculation of the average value. From the cited figure, it can be observed that process

voltage has lowered during the inspected timeline. This information corresponds to

lower chart indicating that minimum and maximum values stabilizing. Knowing the

questioned process run it can be noted that wire-feeding velocity was deliberately

dropped after first layer of the AM process. This affects the output voltage of the CMT

device, now able to be observed from the charts.

83

Figure 28. CMT process Real-time voltage variable history glimpse

Additionally, user can make a selection of the certain real-time variable analysis. In the

case of voltage variable user can access this page by pressing Voltage Analysis – button

in the Navigation Panel. Despite the name of the functionality, analysis ensemble of the

data and variables are left for the future work conducted after the finalization of the the-

sis. Analysis in this relation is understood to be handled by the users in pure visual

manner. Each variable analysis Dashboard is formed of upper and lower segments. At

the upper segment user is provided with two date and time selectors, From and To. Af-

ter choosing the desired start and stop moments for the visualization, a chart is traced

accordingly. Lower segment of the Dashboard works in similar manner as the upper

one. Lower part is used for visualization of minimum, maximum and average values

from the selected timeline. Figure 29 portrays the functionalities described for the anal-

ysis Dashboards. Figure represent one short AM process. In the middle section, voltage

was at stable state, indicating stable process. When closing the end of the timeline volt-

age was drifted out of balance. Process was shortly after halted for the cause of wire

feeding error.

84

Figure 29. CMT process Voltage variable analysis Dashboard

Ascend from the fact that current and voltage in case of CMT and TCP velocity and

wire feed velocity in case of COAXwire are the two main essential variables represent-

ed with real-Time monitoring history glimpse, a one-click relocation for these variables

inspection were created. Additionally there raised a compulsion from the user experi-

ence feedback for freely select the variables for detailed history glimpse observation. To

fulfill the need, one Dashboard page were designed and inserted with both CMT and

COAXwire Dashboards groups. Within both of these Dashboards, a user can freely se-

lect out of two datanodes and one Boolean state to be visualized. Visualization is possi-

ble with both traced values and minimum, maximum and average values. Described

Dashboard is portrayed in the Figure 30 as it is accessed in CMT process. Charts in the

Figure 30 visualize wire feeding velocity values. Process in question has lowered the

velocity of the wire feeding. This is due to gaining better contact with initial layers for

the base material (build platform). After first layers, the process is stabilized with lev-

elled wire feeding velocity.

85

Figure 30. CMT process Free Choice variable visualization

4.4 Process data history

During the active manufacturing process robot is the controller for the application and

thus storing process data in the background task. Data is stored with higher frequency

than real-time monitoring takes place and so worth basic .txt file inside robot controller

is the most convenient location for the retained data. After the processis finished col-

lected data is transposed into TUT-AM-EC2 FTP server. Inside TUT-AM-EC2, the de-

signed backend program acknowledges the arrival of new file and the manipulation of

the data for storing inside AWS services and sending to IoT-Ticket Data Server can

commence. Finally gathered process data is available for the users to be observed from

IoT-Ticket custom created History Data Dashboards. In addition, a report is created

from the current manufacturing process. In following Chapters of 4.4.1, 4.4.2 and 4.4.3

these operations are detailed, respectively.

4.4.1 Process data integration and transfer

Starting of a new artifact production with a certain process, that is starting manufactur-

ing with application environment, robot goes through the setup chosen by the user (ro-

bot user interface, see Chapter 3.2 for details). With these settings, desired process is

started. Another possibility for the user is to create robot program, either with offline or

online programming (see Chapter 3.2 for details). Regardless of the initial input of how

the process is started, robot recognizes a change in a specific Boolean variable set active

at the start sequence. In consecutive phase controller checks the type (CMT or COAX-

wire) of the process and forms a new .txt file accordingly. Controller continues to writ-

ten variable data in line-by-line basis.

86

Mentioned .txt file is based on three distinct segments. At the initial segment (line) a

key identification notes for the questioned process run are noted. On the second seg-

ment each line is led by the timestamp, followed by the gathered variables data. Final

segment is the last line in the file. According line contains time when process was final-

ized and a notification of seized process. Viewer can review the tables in Appendix C,

for more detailed information over the content of the segments. Appendix A further-

more describes the meaning and the usage of the gathered variables in the process. An

example of actual process data file in case of CMT process can be viewed from Appen-

dix D.

When booting the robot controller it connects to TUT-AM-EC2 instance vsFTPd server

with FTP client and mounts the directory inside the controller. After the process is fin-

ished the mentioned Boolean variable as for starting the data gathering is set inactive

and together with inactivation of the process (CMT or COAXwire), the final segment is

written for the file. Middle segment of the composed file contains now process data,

written with the frequency set by the user. Robot moves the file for mounted vsFTPd

server directory. This action further automatically transposes the file into AWS TUT-

AM-EC2 instance FTP server directory. Robot re-enters for waiting a new process and

the software components inside TUT-AM-EC2 instance continues for the file manipula-

tion.

4.4.2 Process data manipulation

Process data files are transposed in specific folder inside TUT-AM-EC2 instance. Ques-

tioned folder holds own username and usage rights and it serves only for the purpose of

the data files. Folder is monitored with Node.js backend program. New file is shifted

over to Line-by-Line reader and handled according to line count. Steps from the new

file arrival until the file is entirely processed are detail in the Figure 31.

87

Figure 31. Flowchart for History Data storing processing

Viewer can notice from the above figure that after the line is read it is processed with

two independent threads. One for writing the records inside AWS RDS MySQL data-

base and one for forming the data model over the records, to be send into IoT-Ticket

Data Server. For more detailed knowledge, viewer can look for Figure 32 (below)

where the program architecture for file processing is portrayed with Unified Modeling

Language (UML) chart. As it can be observed, architecture is more elementary when

compared with real-Time monitoring.

88

Figure 32. Program architecture for History Data processing

Portrayed in the Figure 32 the entire file processing can be comprehended as one com-

ponent (History Data manipulation and storing). This component is formed from

multitude of individual components acting together for outcome. All the software com-

ponents are deployed under FileService folder within TUT-AM-EC2 instance and they

hold log4js logging feature. At the initial phase, mainService.js is launched with

Node.js forever npm-module. Inside mainService.js a watchFolder function is deployed

for monitoring the changes in the FTP server dedicated folder. Function is implemented

with npm module called watch. Watch module can notice a multitude of changes, yet in

here, a new file arrival was accessed. After a file arrival, watch module provides the file

name for the function. According file is moved inside AWS S3 bucket with Node.js

aws-sdk module. At the same time file name is provided for Line-by-Line reader func-

tion, developed around Node.js npm linebyline module.

Line-by-Line reader commences accessing the file. According to the line count, a specif-

ic manipulation is carried out. At the initial line, there is a basic information for the fin-

ished process. One important record inside this line is the knowledge of the according

process (CMT or COAXwire). Database interactions and IoT-Ticket interactions are

handled accordingly. From the line, a start time is taken out and shifted for millisecond

record. Reason for such action comes from the IoT-Ticket Data Server where

timestamps are handled with unix-time (epoch time) at millisecond accuracy. Together

with rest of the data from the initial line, a data model is structured for later sending the

89

basic process information to IoT-Ticket Data Server, under ProcessData device. One

additional data model is formulated to hold the start and the stop times of the process

with millisecond form. This data model is transposed into IoT-Ticket after the file han-

dling is ended. Reason for two distinct data models is to update the mentioned

timestamp values within Production -path in ProcessMonitor device. Two different

device interactions requires two different REST requests. Recognition of the first line

also immediately updates another Boolean variable inside ProcessData device. Updated

variable is chosen according the process the file concerns. These timestamp values and

Boolean variables are later accessed when triggering a report creation. More detailed

information can be found from Chapter 4.5. Simultaneously the first line of the file is

provided for DatabaseIntercation component. Database is constructed with one-to-

many architecture as illustrated in the EER (Enhanced entity-relationship) model in

Figure 33. Basic information from the process is stored inside Production table, where

buildPlatform is the primary key. Data from the lines holding the process variables are

stored within according buildPlatform table. A new buildPlatform table is formed each

time new process file is accessed. Build platform is the identification of certain process

run. This identification is formed by the robot when starting a new process. Format

comes from the current date and timestamp. This enables each process to be identified

with distinctive ID. Handling the initial line of the file, DatabaseIntercation component

formulates the SQL query and writes the data inside AWS MySQL database Production

table.

Figure 33. Process data - database structure

Sequential comes the second line of the file. This line is the first holding the variables

from the process. Line is provided for both DatabaseInteraction component and

90

IoTdataModel function. DatabaseInteraction component verifies the line count; forms

SQL query and stores the data inside according buildPlatform table. Connection with

IoT-Ticket Data Server is slower than internal connection with AWS RDS MySQL. For

this reason, a data model is formed to hold the data from the process records in JSON

array structure. This structure is monitored and each time it reaches 10 000 JSON array

objects the data portion is sent for IoT-Ticket Data Server, within the body of the HTTP

message. After the file handling is finished, remaining data in JSON array is sent for

IoT-Ticket Data Server. IoTdataModel function handles the formation of the JSON

structure. With the function call, a process start time in unix-time form is provided.

Function excavates the timestamp (milliseconds from the start of the process) from the

provided process line and adds the value with provided start timestamp. A timestamp is

now calculated for all the records within the line. Function forms a temporary JSON

structure for each record. These structures are then pushed inside another JSON array

for holding the records. Reason for such double array action arises from the feature

where IoT-Ticket datanodes are handled with identical keywords; each datanode in that

case need to be handled individually.

Each line holding the process variables are processed similar way, database is updated

and JSON array is pushed with records from the line, while monitoring the size of

JSON array. As the file is handle, Line-by-Line reader watches every line for key word

‘end’. From this record, a final line is realized and stop time for the process is found

after the key word. Database Production table is now updated with according time.

Equivalently the data model for the basic information (for Iot-Ticket), is now updated

with end time. Simultaneously a second data model for holding the start and stop times

in millisecond form and data model for holding variable information for triggering a

report creation is updated (for IoT-Ticket). All data models are now completed and rec-

ords are send for IoT-Ticket Data Server via methods component. Administrator of the

solution has beforehand prepared a device inside IoT-Ticket Data Server for holding the

process data. Returned device ID is stored inside devices.json file. Actual data is stored

with Datanode-path combination, similar as for the real-Time monitoring data. These

Datanode-path combinations are stored inside datanodes.json file.

4.4.3 Process data visualization

Designing and building of the IoT-Ticket Dashboards for process History Data takes

similar steps as for real-time process monitoring described earlier. Thus, following

chapter takes into consideration only the details exclusive for History Data Dashboards

and visualization.

For the reason of the the IoT-Ticket Data Server structure, few design rules must be

applied when storing the data. A new device, ProcesssData was formed to hold the data

for finished processes. According device is used for making the separation over the

91

ProcessMonitor device serving as real-time monitoring variables. The understandable

difference welling from the structure of sorting the two distinct data and method pur-

poses. Inside the ProcessData device data is structured under the two different process-

es, CMT and COAXwire, respectively acting as IoT-Ticket paths. Basic information of

the finished processes is further stored under each process BuildplatfromID path. Every

new finished process is given a BuildplatfromID, formed similarly as database forms

buildplatform primary key and table. These ID’s are turned as datanodes holding the

according information. Each questioned process path holds the datanodes for all the

gathered data. Same datanode holds the data for each of the processes. It would have

been conveniently to produce a new datanode for each gathered data record after the

each finished process. Furthermore, the user could have visualized these datanodes ac-

cordingly. Unfortunately, IoT-Ticket does not hold a datatag selector widget with a tree

structure option, accessible in finished Dashboard. Without a tree structure visualiza-

tion, user would be forced to go through all the datanodes when searching the right pro-

cess in question. Possible update is been revised, yet the option is not present at the cur-

rent moment. Final History Data storing architecture is illustrated in the Figure 34.

Figure 34. IoT-Ticket datanode architecture for process History Data storing

From the production Supervisory monitoring page (Figure 24), a button element is

found for shifting into process History Data visualization. After reaching the button,

initial page for the user is the main History Data visualization Dashboard. This page

holds a summary of the finished processes and button elements for accessing either

CMT or COAXwire for more detailed visualization. Additionally, a dedicated button

can be used for returning the Supervisory monitoring page. Regardless of the accessed

process, the operations within the History Data visualization are similar. Only change

takes place with the gathered data. For this reason following considers CMT process

with more details.

Dashboards for finished processes History Data are composed of four different sections

and two distinct Dashboards are provided for the user. First of these Dashboards is illus-

92

trated in the Figure 35. Figure inside black rectangle is the one visualized for the user.

Additionally some parts are highlighted for better viewing. On the upper section, there

is a table for portraying the critical information over the finished processes. On the left

column of the table, ID’s of the process correspond on the right column holding the de-

tails. These details are represented in the Appendix C (first and last line of the process

file).. Middle segment is used for making the selection over the variable data. User can

access two buttons, one for resetting the datatags selection(s) and another for refreshing

the selected datatags after the made selection(s). Selections for requested data are han-

dled with dropdown menus. User can select maximum of two datatags with one Boole-

an variable. Adding more data with one chart would make the chart unreadable. From

and To date selectors are used for viewing specific time in the process. User first

searches the desired process from the above finished process table and inserts the de-

sired time values with date selectors. Lowest part of the Dashboard holds the line chart

for representing the values of the data. Finally, on the right hand side a Navigation Pan-

el is located. Green line above the button gives the information over the current selected

Dashboard. Additionally, green color was selected to act as headline color within Histo-

ry Data Dashboards. Manner, which gives user more briefly the information of the lo-

cated functionality.

For the actual process, Figure 35 portrays a situation from the application tests where

real-time monitoring revealed that some error occurred with CMT current value during

the initial layers of the artifact. After the process was finished and data inserted into

IoT-Ticket CMT current was studied. A drop of the current was indeed located and fur-

ther examination was conducted view IoT-Ticket ‘zoom’ feature. CMT current was ob-

served together with wire feeding velocity. Combination of these two unveiled that wire

feeding was dropped near zero and moments later current was dropped to zero. Occur-

rence corresponds with knowledge where current must be lowered if no wire is fed.

When counting the samples and knowing that data storing frequency was 100 Hz (10

ms) wire feed was at zero level for total of 260 ms. Occurred phenomenon did not re-

veal at any way in the final artifact. Yet, example indicates the usage of the real-time

monitoring together with History Data observation.

93

Figure 35. History data plain values visualization for CMT process

User has additional Dashboard for viewing minimum, maximum and average values of

the datatags. Tracing of these records takes place with similar user interface as the case

was with plain values visualization page. According Dashboard is portrayed in the Fig-

ure 36. Conceivable variables (datatags) are now reduced in one. With more variables in

the same graph would make the chart unreadable. Viewer selects the time range with

date selectors and datatag with variable menu. Refresh button is accessed for tracing the

chart. Illustrated graphs shows minimum and maximum values as marked area and av-

erage values with plain line records. Questioned figure illustrates a situation where ap-

plication is started and CMT current minimum and maximum values are fluctuating.

This is due to the both process itself and user altering the wire feeding velocity for gain-

ing more solid attachment for the artifact to the base material (build platform). During

this short period of application test value is stabilized. Similar observation can be

gained from the average value; line representation. Average value is lowering to the

level where stable process might be continued. Unfortunately for other reasons this pro-

cess was halted.

94

Figure 36. History data average and minimum-maximum values for CMT

4.5 Process report creation

This chapter describes the steps, which were taken for creating the reports for the appli-

cation tests. Reports can be triggered on various occasions of the process. However,

most conveniently, a report should be created and triggered for the finalized process.

Although a start of a new process is additionally valuable information for the main us-

ers. When a shared electronic mailbox is harnessed, everyone can be provided with the

information over the activity of the environment. Thus, a report was designed for start

of a new process and for finalized process. Following describes in total three types of

reports designed. Viewer can look for more visualized information from the Appendix E

that holds the examples of all the reports.

Designed reports were elected to hold the basic coverage of the according process.

These layouts are going to be updated and maintained as more information over the pa-

rameters and process itself can be gained during the future usage of the application envi-

ronment. As for finalized process report, a coversheet starts the report after which

comes the actual datasheets. Coversheet is mainly a static page holding company name

and logo. Dynamic feature located on the coversheet include a timestamp for report cre-

ation. Both of the processes, CMT and COAXwire hold their specific report layouts.

Dynamic information changes according each process. For the CMT application, page

following the coversheet, holds an overall information of the process. Similar variables

already represented at the main real-time monitoring Supervisory Dashboard. CMT re-

port continues with representing the average current and voltage accessed during the

manufacturing, including furthermore minimum and maximum values of the variables.

Report is moreover used for maintenance purposes for the CMT device. Maximum val-

ue of the wire feeding rollers current is calculated and represented. In the case where

95

value crosses above the selected threshold report provides the information for the user

to consider inspecting the wire-feeding path. Certain values of the process data are also

presented with traced charts. These charts cover the wire-feeding rollers current and

CMT device process Current and Voltage values. The advantage that these charts pro-

vide can be observed in Appendix E. CMT process report meters indicates that Current

and Voltage values has dropped down to zero level for some part of the process. From

the sequential pages viewer can indicate the timeline for this drop down. User is now

eligible to access the history data Dashboard and zoom in for the questioned timeline of

the process for studying the case in detail.

During the timetable when designing the reports within the thesis, the COAXwire pro-

cess was not as well studied as CMT. Nevertheless, a report layout was designed to hold

the basis and few detailed records. Most significant objective was to design a similar

foundation corresponding with CMT report for future modifications. COAXwire final-

ized process report starts with a coversheet representing a timestamp and process name.

First and only datasheet holds summary for finalized process as well as minimum, max-

imum and average values of the accessed laser power.

The layout of the report triggered at the start of a new manufacturing process, is slightly

different. At the initial moment when new process is started only the basic information

is available for accessing. For this reason, the layout was designed to hold all the infor-

mation within the coversheet itself. Project team working with the environment can now

get an immediate knowledge of an ongoing manufacturing test with just one look.

For manually triggering the report over the most recent process, a user can access a but-

ton element located at the Supervisory production monitoring Dashboard. Otherwise,

the report triggering is done automatically. One additional page of the Supervisory

Dashboard was harnessed to hold the logic for new report generation and triggering.

Same logic could have been added to any of the already existing Dashboard pages. Yet,

when adding one specific Dashboard page, a new updates and modifications of the logic

are more easily comprehended. Boolean variable indicating the state of the environ-

ment, located at the ProcessMonitor device under Production path, was used as for trig-

gering element for the report of a new started process. When triggering the finalized

process report, a different approach was developed. Report can only be created and sent

after all the data is stored inside the IoT-Ticket Data Server. Indicating the finalized

data transfer a set of two new Boolean variables were added inside each ProcessData

path, according the process title (CTM or COAXwire). These Boolean variables are

updated at the start of the data transfer and together with the last line of the process data

file. Change in the variable triggers a new report according the finalized process. For

knowing the start and end time of the process, pair of variables are used from Process-

Monitor - Production path. These variables hold the timestamps with unix time milli-

second values. Method of updating the variables is described in Chapter 4.4.2.

96

5. CONCLUSIONS

Following chapter concludes the work for the thesis. Keynotes for the work are detailed.

Furthermore, results for the studied technology and when deployed in the field of pro-

duction automation are discussed. Chapter closes with the future work consideration of

the implementation.

5.1 Thesis conclusions

Thesis took a view for the paradigm change in the production automation and in manu-

facturing industries. Both individual customers and companies are requesting more cus-

tomization for their products and at the same time, they are demanding better monitor-

ing capabilities for their goods. In the past, manufacturing companies have formed clus-

ters around the certain production artefacts. Now within these clusters the need for in-

formation exchange is rapidly evolving. Companies are furthermore shifting from ca-

pacity model for capability model.

Main focus of the thesis where kept in modern cloud computing technologies, re-

sources, and Internet-of-Things technologies, providing the tools for companies to han-

dle their process and production monitoring. In seems clear that by harnessing the capa-

bilities within rapidly developing cloud and IoT technologies and combining these re-

sources with Resource-Oriented- and Service-Oriented Architectures, new monitoring

practises can be commissioned. With novel solutions both academic research and small-

medium sized enterprises are not required for having extensive ICT skills to gain moni-

toring and reporting solutions. Cloud technology is additionally enhancing the computa-

tional power for deeper analysing of the gathered data.

In the thesis a modern Additive Manufacturing technology called Direct Energy Deposi-

tion was studied for the purpose of building the implementation for monitoring the pro-

cess and the production within the Tampere University of Technology DED technology

research cell. With the help of the results from the study and the experience working

with the according research extensively, gave the tools for designing the implementa-

tion. Implemented solution monitors the research cell production and process in real-

time, at the same time process data is gathered for later detailed reviewing by the user.

Implemented solution worked well in the tests and the review from the researches where

mainly positive. Solution enables the monitoring of the application environment at the

higher level, Supervisory level. This enables the monitoring via internet connection and

an instant overview of the manufacturing process can be provided for the user. Gathered

97

process History Data can be studied online from individual users (researchers) work-

stations or homes or at any location equipped with available internet connection. This

enhances the usage of the research cell. History Data can be reviewed without the need

for working beside the environment where other teams are working in parallel.

It can be concluded that introduced and described technology suits well for the produc-

tion automation and process monitoring applications. All studied capabilities open a

great deal of opportunities for improving research, company’s businesses, finding new

businesses and providing additional features within company’s products.

5.2 Future work

Future holds new possibilities for further developing of the implementation. User expe-

rience feedback from the research is constantly enhancing the interface of the IoT-

Ticket Dashboards. New variables are added for gathering and monitoring of the pro-

cess. Reports are taking them new shape as learning from the processes takes place.

Additional sensors are planned to be installed for monitoring the process environment

with more detail. One key feature gained when using IoT technology as one art of the

solution. Room and process temperature with cooling water flow and temperature are

ones that has been considered so far.

Information from the finished process should be taken inside PLM software for learning

more details over the manufacturing with DED method. Such action improves the de-

signing of the products manufactured with questioned manufacturing method. Life cycle

management for the manufactured products and research cell itself can be harnessed.

Devices monitored can be maintained with indications inserted via Dashboards. When

combining all the possible aspects from the design of the products to the final produc-

tion and finishing of the product and furthermore life cycle management capabilities

both product itself and the environment and covering all these matters with modern

cloud computing information systems, a Future Industry can be realized.

Due to the circumstances, that additive manufacturing research project was focusing on

the two novel solution of CMT and COAXwire. Powder feeding device was left out

from the data gathering and monitoring solution at this stage. Now when the platform

exists adding the device is no massive effort to be conducted. When the project reaches

the level where powder feeding as a manufacturing methods is included, the designed

solution is updated to incorporate data gathering and monitoring.

Wapice has just now released a Mobile Designer tool. A new feature continuing their

previous Interface Designer, Dataflow Editor and Report Editor tools. This new tool is

intended for designing mobile first Dashboards. Tool comprehends a countless models

of smart phone platforms for making the designs on specific model or study the suitabil-

98

ity of the designed Dashboard for other phone models. Mobile Designer tool is one near

future features to be incorporated in the implementation.

As a separate study branch, the backend server implementation could be copied on dif-

ferent service provider’s resources. This action would give a new hands-on experience

over the steps that are required when shifting between different service providers. An-

other key future prospect is the study conducted by means of machining learning for the

gathered data. Now when the data is stored in the cloud environment, adaptors can be

used or designed, for further making analysis for improving the production with the

help of studying patterns from the different processes. This data analysing together with

additional sensor installations will be the next short term future objectives.

99

REFERENCES

[1] H. He, What is Service-Oriented Architecture, United International College,

 Honk Kong, web page. Available (accessed 4.9.2016):

 http://uic.edu.hk/~spjeong/ete/xml_what_is_service_oriented_architecture_sep20

 03.pdf.

[2] J. Salo, Designing a RESTful grid computing system : Master of Science Thesis,

 Tampere University of Technology, Tampere, 2010, vi, 54 p.

[3] Introduction to Cloud Computing, Dialogic, web page. Available (accessed

 4.9.2016): https://www.dialogic.com/~/media/products/docs/whitepapers/12023-

 cloud-computing-wp.pdf.

[4] S. Almulla, Y. Iraqi, S. D. Wolthusen, Inferring relevance and presence of

 evidence in service-oriented and SaaS architectures, 2015 IEEE Symposium on

 Computers and Communication (ISCC), pp. 152-159.

[5] J. Juhanko, M. Jurvansuu, T. Ahlqvist, H. Ailisto, P. Alahuhta, J. Collin, M.

 Halen, T. Heikkilä, H. Kortelainen, M. Mäntylä, T. Seppälä, M. Sallinen, M.

 Simons, A. Tuominen, Suomalainen teollinen internet - haasteesta

 mahdollisuudeksi, 42, ETLA, 2015, .

[6] O. Bello, S. Zeadally, Intelligent Device-to-Device Communication in the

 Internet of Things, IEEE Systems Journal, Vol. 10, No. 3, 2016, pp. 1172-1182.

[7] Z. Duan, Y. Cao, M. Song, A construction method and data migration strategy

 for hybrid cloud storage, 2015 18th International Conference on Computer and

 Information Technology (ICCIT), pp. 473-478.

[8] Lehto.T, Tehdas ei tietoa pihtaa, Tekniikka ja Talous, Vol. 57, No. 35, 2016, pp.

 18-19.

[9] Frost & Sullivan, Future of Manufacturing in Europe, Market Insight Frost &

 Sullivan, USA, 2016.

[10] Frost & Sullivan, Applications on the Cloud - New Business Models, Technical

 Insight Report D6CE, Frost & Sullivan, USA, 2016.

[11] K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN

 Mechanical Engineering, Vol. 2012, 2012.

[12] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing

 of metallic components: materials, processes and mechanisms, International

 Materials Reviews, Vol. 57, No. 3, 2012, pp. 133-164.

100

[13] Metal Additive Manufacturing process, Inovar Communications Ltd, web page.

 Available (accessed 16.10.2016): http://www.metal-am.com/introduction-to-

 metal-additive-manufacturing-and-3d-printing/metal-additive-manufacturing-

 processes/.

[14] Directed Energy Deposition, Loughborough University, web page. Available

 (accessed 15.10.2016):

 http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturi

 ng/directedenergydeposition/.

[15] ABB IRB 4600, web page. Available (accessed 4.8.2016):

 http://www.iws.fraunhofer.de/en/business_fields/surface_treatment/laser_claddin

 g/system_technology/COAXwire/_jcr_content/contentPar/sectioncomponent/sect

 ioParsys/textblockwithpics/imageComponent1/image.img.large.jpg/1464252331

 243_coaxwire-400x600.jpg.

[16] ABB IRBP A-750, web page. Available (accessed 4.8.2016):

 http://www.iws.fraunhofer.de/en/business_fields/surface_treatment/laser_claddin

 g/system_technology/COAXwire/_jcr_content/contentPar/sectioncomponent/sect

 ioParsys/textblockwithpics/imageComponent1/image.img.large.jpg/1464252331

 243_coaxwire-400x600.jpg.

[17] Absolute Accuracy - Industrial Robot Option, ABB, Apr. 2011, Available:

 https://library.e.abb.com/public/e69d8dd25cd7d36bc125794400374679/AbsAcc

 PR10072EN_R6.pdf.

[18] Prakasham.G, Krishna.L, Kumar.A, A Review on the Effect of Various Process

 Parameters in Cold Metal Transfer (CMT) GMAW Welding, in: International

 Journal of Engineering Research, ITMAE, 2016, pp. 432-435.

[19] Cold Metal Transfer - The Technology, Fronius International GmbH, Feb. 2014,

 Available: http://www.fronius.com/cps/rde/xbcr/SID-F2B6125B-

 5A5D560B/fronius_international/M_06_0001_EN_CMT_leaflet_44211_snapsho

 t.pdf.

[20] Metal powders - the raw material, Inovar Communications Ltd, web page.

 Available (accessed 17.10.2016): http://www.metal-am.com/introduction-to-

 metal- additive-manufacturing-and-3d-printing/metal-powders-the-raw-mate

 rials/.

[21] Coaxial laser wire cladding head COAXwire, Fraunhofer-Gesellschaft, web

 page. Available (accessed 17.10.2016):

 http://www.iws.fraunhofer.de/en/business_fields/surface_treatment/laser_claddin

 g/system_technology/COAXwire.html.

[22] Fraunhofer IWS, Fraunhofer-Gesellsschaft, web page. Available (accessed

 17.10.2016): http://www.iws.fraunhofer.de/en.html.

[23] D. Fensel, F.M. Facca, E. Simperl, I. Toma, Semantic Web Services, 2011, XI,

 357p p.

101

[24] S. M. Shariati, Abouzarjomehri, M. H. Ahmadzadegan, Challenges and security

 issues in cloud computing from two perspectives: Data security and privacy

 protection, 2015 2nd International Conference on Knowledge-Based Engineering

 and Innovation (KBEI), pp. 1078-1082.

[25] Visma Software, Pilvipalvelut yrityskäytössä, Visma, web page.

 Available (ac cessed 10.9.2016):

 http://www.visma.fi/tietopankki/opas/pilvipalvelut-yrityskaytossa/.

[26] A. Singh, S. Sharma, S. R. Kumar, S. A. Yadav, Overview of PaaS and SaaS and

 its application in cloud computing, 2016 International Conference on Innovation

 and Challenges in Cyber Security (ICICCS-INBUSH), pp. 172-176.

[27] Q. Li, R. Li, Reliability evaluation for cloud computing system considering

 common cause failure, 2016 35th Chinese Control Conference (CCC), pp. 5267-

 5271.

[28] H. Brabra, A. Mtibaa, L. Sliman, W. Gaaloul, F. Gargouri, Semantic Web

 Technologies in Cloud Computing: A Systematic Literature Review, 2016 IEEE

 International Conference on Services Computing (SCC), pp. 744-751.

[29] Tietotekniikan käyttö yrityksissä (2014), Statistics Finland, web page. Available

 (accessed 4.9.2016): http://www.stat.fi/til/icte/2014/icte_2014_2014-11-

 25_tie_001_fi.html.

[30] Tietotekniikan käyttö yrityksissä (2015), Statistics Finland, web page. Available

 (accessed 4.9.2016): http://www.stat.fi/til/icte/2015/icte_2015_2015-11-

 26_tie_001_fi.html.

[31] M. AhmadKhan, A survey of security issues for cloud computing, Journal of

 Network and Computer Applications, 2016, pp. 11-29.

[32] S. Yamamoto, S. Matsumoto, S. Saiki, M. Nakamura, Materialized View as a

 Service for Large-Scale House Log in Smart City, 2013 IEEE 5th International

 Conference on Cloud Computing Technology and Science, pp. 311-316.

[33] Y. Benslimane, Z. Yang, B. Bahli, Key Topics in Cloud Computing Security: A

 Systematic Literature Review, Information Science and Security (ICISS), 2015

 2nd International Conference on, pp. 1-4.

[34] S. Narula, A. Jain, Prachi, Cloud Computing Security: Amazon Web Service,

 2015 Fifth International Conference on Advanced Computing & Communication

 Technologies, pp. 501-505.

[35] Patil Madhubala R., Survey on security concerns in Cloud computing, Green

 Computing and Internet of Things (ICGCIoT), 2015 International Conference on,

 pp. 1458-1462.

102

[36] R. Merrit, New group aims to secure PCs, PDAs, cell phones, EE-Times, web

 page. Available (accessed 18.9.2016):

 http://www.eetimes.com/document.asp?doc_id=1202119.

[37] R. Kaur, J. Kaur, Cloud computing security issues and its solution: A review,

 Computing for Sustainable Global Development (INDIACom), 2015 2nd Inter

 national Conference on, pp. 1198-1200.

[38] N. Zhang, R. Li, Resource optimization with reliability consideration in cloud

 computing, 2016 Annual Reliability and Maintainability Symposium (RAMS),

 pp. 1-6.

[39] J. Soldatos, S. Gusmeroli, G. Di Orio, Internet of Things Applications in Future

 Manufacturing, in: O. Vermesan, P. Friess (ed.), Digitising the Industry Internet

 of Things Connecting the Physical, Digital and Virtual Worlds, Volume 49 ed.,

 River Publishers, Denmark, 2016, pp. 153-182.

[40] K.Peltomaa, Sales manager, Pronius Oy, Tampere, Interview 9.6.2016.

[41] ABB, Robot Web Services, ABB, web page. Available (accessed 22.9.2016):

 http://developercenter.robotstudio.com/Index.aspx?DevCenter=Robot_Web_Serv

 ices&OpenDocument&Url=html/index.html.

[42] V. C. Emeakaroha, N. Cafferkey, P. Healy, J. P. Morrison, A Cloud-Based IoT

 Data Gathering and Processing Platform, Future Internet of Things and Cloud

 (FiCloud), 2015 3rd International Conference on, pp. 50-57.

[43] M. C. Domenech, L. P. Rauta, M. D. Lopes, P. H. Da Silva, R. C. Da Silva, B.

 W. Mezger, M. S. Wangham, Providing a Smart Industrial Environment with the

 Web of Things and Cloud Computing, 2016 IEEE International Conference on

 Services Computing (SCC), pp. 641-648.

[44] E. Tragos, J. Bernabe, R. Staudemeyer, J. Ramos, A. Fragkiadakis, A. Skarmeta,

 M. Nati, A. Gluhak, Trusted IoT in the Complex Landscape of Governance,

 Security, Privacy, Availability and Safety, in: O. Vermesan, P. Friess (ed.),

 Digitising the Industry Internet of Things Connecting the Physical, Digital and

 Virtual Worlds, Volume 49 ed., River Publishers, Denmark, 2016, pp. 185-210.

[45] O. Vermesan, P. Friess, P. Guillemin, M. Serrano, M. Bouraoui, L. Freire, T.

 Kallstenius, K. Lam, M. Eisenhauer, K. Moessner, M. Spirito, E. Tragos, H.

 Sundmaeker, P. Malo, A. Wees, IoT Digital Value Chain Connecting Research,

 Innovation and Deploymenty, in: O. Vermesan, P. Friess (ed.), Digitising the

 Industry Internet of Things Connecting the Physical, Digital and Virtual Worlds,

 Volume 49 ed., River Publishers, Denmark, 2016, pp. 15-129.

[46] Pro ADO.NET Data Services : Working with RESTful Data, in: Springer

 eBooks, Apress, Computer science.Computer ScienceProgramming Techniques,

 Berkeley, CA, 2009, .

103

[47] E. Wilde, C. Pautasso, REST: From Research to Practice, 2011, XXX, 496p. 150

 illus p.

[48] R.T. Fielding, Architectural styles and the design of network-based software

 architectures, Dissertation, University of California, Irvine, 2000, 180 p.

[49] L. Richardson, S. Ruby, RESTful web services, First Edition ed. O'Reilly Media,

 Inc., USA, Sebastopol, 2007, 416 p.

[50] C. Pautasso, E. Wilde, R. Alarcon, REST: Advanced Research Topics and

 Practical Applications, 2014, IX, 222 pages 58 illus., 25 illus. in color p.

[51] P. Adamczyk, P. Smith, R. Johnson, M. Hafiz, REST and Web Services: In

 Theory and in Practice, in: E. Wilde, C. Pautasso (ed.), REST: From Research to

 Practice, Springer, USA, 2011, pp. 35-57.

[52] HTTP Status Codes, RestApiTutorial, web page. Available (accessed 7.10.2016):

 http://www.restapitutorial.com/httpstatuscodes.html.

[53] N. Mäkitalo, REST-pohjainen sisällönhallintajärjestelmä hajautettuun ympäris

 töön : diplomityö, Tampereen teknillinen yliopisto, Tampere, 2011, vi, 81 lehteä

 p.

[54] HTTP Methods, RestApiTutorial, web page. Available (accessed 8.10.2016):

 http://www.restapitutorial.com/lessons/httpmethods.html.

[55] U. Thakar, A. Tiwari, S. Varma, On Composition of SOAP Based and RESTful

 Services, 2016 IEEE 6th International Conference on Advanced Computing

 (IACC), pp. 500-505.

[56] R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan,

 R. Van de Walle, Survey of Semantic Description of REST APIs, in: C.

 Pautasso, E. Wilde, R. Alarcon (ed.), REST: Advanced Research Topics and

 Practical Applications, Springer, USA, 2014, pp. 69-89.

[57] FTP, TechTerms, web page. Available (accessed 19.9.2016):

 http://techterms.com/definition/ftp.

[58] Secure Shell, Techtarget, web page. Available (accessed 19.9.2016):

 http://searchsecurity.techtarget.com/definition/Secure-Shell.

[59] Use of vsftp for secure, reliable FTP server, Techrepublic, web page. Available

 (accessed 19.9.2016): http://www.techrepublic.com/article/use-vsftp-for-a-

 secure-reliable-ftp-server/.

[60] What is File Transfer Protocol (FTP?) - Definition & Explanation, study.com,

 web page. Available (accessed 19.9.2016):

 http://study.com/academy/lesson/what-is-file-transfer-protocol-ftp-definition-

 lesson-quiz.html.

104

[61] About AWS, Amazon WEb Services, web page. Available (accessed

 18.10.2016): https://aws.amazon.com/about-aws/.

[62] Amazon Global Infrastructure, Amazon Web Services, web page.

 Available (ac cessed 18.10.2016): https://aws.amazon.com/about-aws/global-

 infrastructure/.

[63] Magic Quadrant for Cloud Infrastructure as a Service, Worldwide, Gartner Inc.,

 web page. Available (accessed 18.10.2016):

 https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519.

[64] AWS Free Tier, Amazon WEb Services, web page. Available (accessed

 18.10.2016): https://aws.amazon.com/free/.

[65] AWS Cloud Security, Amazon WEb Services, web page. Available (accessed

 18.10.2016): https://aws.amazon.com/security/.

[66] AWS Customer Agreement, Amazon WEb Services, web page.

 Available (ac cessed 18.10.2016): https://aws.amazon.com/agreement/.

[67] Amazon EC2 - Virtual Server Hosting, Amazon WEb Services, web page.

 Available (accessed 18.10.2016): https://aws.amazon.com/ec2/.

[68] Amazon ec2 LAMP and FTP installation and setup, Github, web page. Available

 (accessed 18.10.2016):

 https://gist.github.com/gunjanpatel/37d306cd1585ece1179b.

[69] S3 FTP: build a reliable and inexpensive FTP server using Amazon's S3,

 CloudAcademy, web page. Available (accessed 18.10.2016):

 http://cloudacademy.com/blog/s3-ftp-server/.

[70] Setting up FTP on Amazon Cloud Server, Stackoverflow, web page. Available

 (accessed 18.10.2016): http://stackoverflow.com/questions/7052875/setting-up-

 ftp-on-amazon-cloud-server.

[71] How to install nodejs 4.x in AWS EC2 instance, Easyusedev, web page.

 Availa ble (accessed 18.10.2016):

 https://easyusedev.wordpress.com/2016/02/04/how- to-install-node-js-4-x-in-

 aws-ec2-instance/.

[72] AWS IoT, Amazon Web Services, web page. Available (accessed 18.10.2016):

 https://aws.amazon.com/iot/?nc2=h_m1.

[73] Amazon Relational Database Service (RDS), Amazon Web Services, web page.

 Available (accessed 18.10.2016): https://aws.amazon.com/rds/.

[74] AWS Quicksight, Amazon Web Services, web page. Available (accessed

 18.10.2016): https://aws.amazon.com/quicksight/.

105

[75] AWS Partner Directory, Amazon Web Services, web page. Available (accessed

 18.10.2016): http://www.aws-partner-directory.com/PartnerDirectory/.

[76] Upcoming name change for Windows Azure, 2014 Microsoft, web page.

 Availa ble (accessed 19.10.2016): https://azure.microsoft.com/en-

 us/blog/upcoming-name-change-for-windows-azure/.

[77] A Brief History of Microsoft Azure, Gary Clarke, web page. Available (accessed

 19.10.2016): http://garyclarke.us/technology/a-brief-history-of-microsoft-azure/.

[78] Azure Regions, 2016 Microsoft, web page. Available (accessed 19.10.2016):

 https://azure.microsoft.com/en-us/regions/.

[79] Azure Products, 2016 Microsoft, web page. Available (accessed 19.10.2016):

 https://azure.microsoft.com/en-us/services/?sort=popular&filter=all.

[80] Get started with Azure, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/get-started/.

[81] Azure Pricing Calculator, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/pricing/calculator/.

[82] Azure Technology and Service Partners, 2016 Microsoft, web page. Available

 (accessed 19.10.2016): https://azure.microsoft.com/en-us/partners/directory/.

[83] Azure Customer case studies, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/case-studies/.

[84] Trusted Cloud: Windows Azure-Security, Privacy and Compliance, Microsoft,

 Apr. 2015, Available:

 http://download.microsoft.com/download/1/6/0/160216AA-8445-480B-B60F-

 5C8EC8067FCA/WindowsAzure-SecurityPrivacyCompliance.pdf.

[85] Create Azure Virtual Machine and Setup Node.js, 2016 Girnar Software Pvt.Ltd,

 web page. Available (accessed 19.10.2016): http://www.connecto.io/blog/create-

 a-node-js-server-on-azure-vm-with-mongodb-as-database-in-added-vhd/.

[86] How to configure FTP on Azure Linux VM, 2016 Code Chewing, web page.

 Available (accessed 19.10.2016):

 http://www.codechewing.com/library/configure-ftp-azure-linux-ubuntu-vm/.

[87] Overview Azure IoT Hub, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/documentation/videos/azurecon-

 2015-overview-of-azure-iot-hub/.

[88] Get started with Azure IoT Hub, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/documentation/articles/iot-hub-

 node-node-getstarted/.

106

[89] What is Azure IoT Suite? 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/documentation/articles/iot-suite-

 overview/.

[90] Azure Blob Storage, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/services/storage/blobs/.

[91] Microsoft Power BI, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://powerbi.microsoft.com/en-us/.

[92] Azure Power BI Embedded, 2016 Microsoft, web page. Available (accessed

 19.10.2016): https://azure.microsoft.com/en-us/services/power-bi-embedded/.

[93] Google App Engine Release, Google Inc., web page. Available (accessed

 20.10.2016): http://googleappengine.blogspot.fi/2008/04/introducing-google-

 app-engine-our-new.html.

[94] Google Regions and Zones, Google Inc., web page. Available (accessed

 20.10.2016): https://cloud.google.com/compute/docs/regions-zones/regions-

 zones.

[95] Google Cloud Platform Products, Google Inc., web page. Available (accessed

 20.10.2016): https://cloud.google.com/products/.

[96] Google Cloud Platform Pricing, Google Inc., web page. Available (accessed

 20.10.2016): https://cloud.google.com/pricing/tml.

[97] Building node.js application on GCP, Google Cloud 2016, web page. Available

 (accessed 20.10.2016): https://www.youtube.com/watch?v=jsznS0QxtYI.

[98] Google - How does the free trial work? Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/free-trial/docs/.

[99] Google Cloud Platform Pricing Calculator, Google Inc., web page. Available

 (accessed 20.10.2016):

 https://cloud.google.com/products/calculator/#id=60130062-3df6-48ca-9e5b-

 933ee41b4bd7.

[100] Google Cloud Platform Security Whitepaper, Google Inc., web page. Available

 (accessed 20.10.2016): https://cloud.google.com/security/whitepaper.

[101] Google Cloud Platform Term of Service, Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/terms/.

[102] Google Cloud Platform Service Specific Terms, Google Inc., web page.

 Availa ble (accessed 20.10.2016): https://cloud.google.com/terms/service-terms.

[103] Google Cloud Platform Why to choose? Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/why-google/.

107

[104] Google Cloud Platform Compute Engine, Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/compute/.

[105] Running Node.js on Compute Engine, Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/nodejs/getting-start

 ed/run-on-compute-engine.

[106] Google Cloud Platform Cloud Storage, Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/storage/.

[107] Google Cloud Platform Cloud SQL, Google Inc., web page.

 Available (accessed 20.10.2016): https://cloud.google.com/sql/.

[108] Google Cloud Platform Cloud Datalab, Google Inc., web page.

 Available (ac cessed 20.10.2016): https://cloud.google.com/datalab/.

[109] Jupyter Notebook, 2016 Project Jupyter, web page.

 Available (accessed 20.10.2016): http://jupyter.org/.

[110] About SoftLayer, SoftLayer Technologies Inc., web page.

 Available (accessed 18.10.2016): http://www.softlayer.com/about-softlayer.

[111] Rackspace - Cloud expertise, Rackspace, web page. Available (accessed

 18.10.2016): http://www.rackspace.co.uk/cloud-expertise.

[112] CenturyLink - Managed office, CenturyLink, web page. Available (accessed

 18.10.2016): http://www.centurylink.com/business/.

[113] Virtustream - The cloud for the core of the enterprise, Virtustream, web page.

 Available (accessed 18.10.2016): http://www.virtustream.com/solutions/mission-

 critical-apps.

[114] UpCloud features, UpCloud, web page. Available (accessed 18.10.2016):

 https://www.upcloud.com/fi/ominaisuudet/.

[115] S. Yadav, Comparative study on open source software for cloud computing plat

 form: Eucalyptus, OpenStack and OpenNebula, International Journal Of Engi

 neering And Science, Vol. 3, No. 10, 2013, pp. 51-54.

[116] Wapice Company, Wapice Ltd., web page. Available (accessed 12.10.2016):

 https://www.wapice.com/about-us/wapice.

[117] IoT-Ticket, Wapice Ltd., web page. Available (accessed 12.10.2016):

 https://www.iot-ticket.com/platform.

[118] Freeboard.io, Bug Labs Inc, web page. Available (accessed 9.10.2016):

 https://freeboard.io/.

108

[119] Ignition Discover the SCADA, Inductive Automation, web page.

 Available (ac cessed 10.10.2016): https://inductiveautomation.com/scada-soft

 ware/#.

[120] Ignition IIoT, Inductive Automation, web page. Available (accessed 10.10.2016):

 https://inductiveautomation.com/ignition-iiot.

[121] Ignition Software pricing, Inductive Automation, web page. Available (accessed

 10.10.2016): https://inductiveautomation.com/pricing/ignition.

[122] DGlogik, DGlogik Inc, web page. Available (accessed 10.10.2016):

 http://www.dglogik.com/company.

[123] DGlogik IoE Application Platform, DGlogik Inc, web page. Available (accessed

 10.10.2016): http://www.dglogik.com/products/dglux5-ioe-application-platform.

[124] DGlogik IoT Verticas, DGlogik Inc, web page. Available (accessed 10.10.2016):

 http://www.dglogik.com/iot-verticals.

[125] Introduction to DGLux5, DGLogik, Available:

 http://www.dglogik.com/component/phocadownload/category/1-dglogik- mar

 keting-material?download=1:introduction-to-dglux5.

[126] Infinite Automation: DGLux5 Pricing, Infinite Automation, 2016, Available:

 http://infiniteautomation.com/forum/uploads/files/1452182616305-dglux5-price-

 list.pdf.

[127] Cascading Style Sheets, W3Schools, web page. Available (accessed 11.10.2016):

 http://www.w3schools.com/css/css_intro.asp.

[128] Yeoman generator ecosystem, Yeoman, web page. Available (accessed

 11.10.2016): http://yeoman.io/.

[129] Sass CSS, Sass Hampton Catlin, Natalie Weizenbaum, Chris Eppstein, and

 numerous contributors, web page. Available (accessed 11.10.2016): http://sass-

 lang.com/.

[130] Bootstrap framework, Bootstrap Core Team, web page. Available (accessed

 11.10.2016): http://getbootstrap.com/.

[131] jQuery, jQuery Foundation, web page. Available (accessed 11.10.2016):

 https://jquery.com/.

[132] T. Latvala, Deployment of a service-oriented automation platform for integrating

 smart city applications : Master of Science Thesis, Tampere University of

 Technology, Tampere, 2010, vi, 58 p.

[133] The 14 best data visualization tools, The NextWeb, web page.

 Available (ac cessed 11.10.2016): http://thenextweb.com/dd/2015/04/21/the-14-

 best-data-visualization-tools/#gref.

109

[134] JavaScript General Introduction, Quirksmode, web page. Available (accessed

 8.10.2016): http://www.quirksmode.org/js/intro.html.

[135] nodeJS, NodeJS Foundation, web page. Available (accessed 9.10.2016):

 https://nodejs.org/en/.

[136] Fronius: CMT Power Source, Fronius, web page. Available (accessed

 21.10.2016): http://www.fronius.com/internet/img/w_v_13_FE1_8.jpg.

[137] ARM Fibre laser, Corelase Oy, 2015, Available: http://www.corelase.fi/wp-

 content/uploads/2016/03/arm_A4_4s_0906.pdf.

[138] Fraunhofer: Surface Treatment, Fraunhofer, web page.

 Available (accessed 4.8.2016):

 http://www.iws.fraunhofer.de/en/business_fields/surface_treatment/laser_claddin

 g/system_technology/COAXwire/_jcr_content/contentPar/sectioncomponent/sect

 ioParsys/textblockwithpics/imageComponent1/image.img.large.jpg/1464252331

 243_coaxwire-400x600.jpg.

[139] Fronius Xplorer, Pronius Oy, web page. Available (accessed 15.10.2016):

 http://www.pronius.fi/?p=114.

[140] AWS CloudWatch, Amazon Web Services, web page. Available (accessed

 18.10.2016): https://aws.amazon.com/cloudwatch/details/.

[141] AWS What is Amazon VPC? Amazon Web Services, web page. Available (ac

 cessed 25.10.2016):

 http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.ht

 ml.

[142] AWS VPC Endpoints, Amazon Web Services, web page. Available (accessed

 22.10.2016): http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-

 endpoints.html#vpc-endpoints-s3-bucket-policies.

[143] AWS Your VPC and subnets, Amazon Web Services, web page.

 Available (ac cessed 25.10.2016):

 http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#

 SubnetSecurity.

[144] CIDR (Classless Inter-Domain Routing or supernetting), TechTarget, web page.

 Available (accessed 25.10.2016):

 http://searchnetworking.techtarget.com/definition/CIDR.

[145] RFC 1918, Internet Engineering Task Force, web page. Available (accessed

 25.10.2016): https://tools.ietf.org/html/rfc1918.

[146] AWS Internet Gateways, Amazon Web Services, web page.

 Available (accessed 25.10.2016):

 http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Internet_Gate

 way.html.

110

[147] AWS Elastic IP addresses, Amazon Web Services, web page.

 Available (ac cessed 25.10.2016):

 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-

 eip.html.

[148] AWS Security in Your VPC, Amazon Web Services, web page.

 Available (ac cessed 25.10.2016):

 http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Security.html.

[149] AWS Elastic Beanstalk, Amazon Web Services, web page. Available (accessed

 26.10.2016): https://aws.amazon.com/elasticbeanstalk/.

[150] AWS EC2 Product Details, Amazon Web Services, web page.

 Available (ac cessed 25.10.2016): https://aws.amazon.com/ec2/details/.

[151] AWS EC2 Instance Types, Amazon Web Services, web page.

 Available (ac cessed 26.10.2016): https://aws.amazon.com/ec2/instance-types/.

[152] AWS EC2 Security Groups for Linux Instances, Amazon Web Services, web

 page. Available (accessed 26.10.2016):

 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-securi

 ty.html#ec2-classic-security-groups.

[153] AWS Connecting to Your Linux instance from Windows Using PuTTY, Amazon

 Web Services, web page. Available (accessed 26.10.2016):

 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html.

[154] PuTTY, PuTTY.org, web page. Available (accessed 26.10.2016):

 http://www.putty.org/.

[155] AWS Amazon Machine Images, Amazon Web Services, web page. Available

 (accessed 26.10.2016):

 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.

[156] AWS S3 Product Details, Amazon WEb Services, web page. Available (accessed

 26.10.2016): https://aws.amazon.com/s3/details/.

[157] AWS SDK API S3, Amazon WEb Services, web page.

 Available (accessed 27.10.2016):

 http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html.

[158] AWS What is IAM? Amazon Web Services, web page.

 Available (accessed 27.10.2016):

 http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html.

[159] I.M. Delamer, J.L. Martinez Lastra, Factory information systems in electronic

 production, Tampere University of Technology, Tampere, 2007, 293 sivua p.

[160] AWS Amazon RDS Product Details, Amazon Web Services, web page.

 Availa ble (accessed 27.10.2016): https://aws.amazon.com/rds/details/.

111

[161] AWS Using Amazon RDS with Node.js, Amazon Web Services, web page.

 Available (accessed 27.10.2016):

 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.rds.

 html.

[162] MySQL Community Edition, Amazon Web Services, web page.

 Available (ac cessed 27.10.2016): https://www.mysql.com/products/community/

[163] SQL Tutorial, W3Schools.com, web page. Available (accessed 27.10.2016):

 http://www.w3schools.com/sql/.

[164] Latest IoT-Ticket News, Wapice Ltd., web page. Available (accessed

 29.10.2016): https://www.iot-ticket.com/news.

[165] IOT API Documentation, IoT-Ticket.com REST API, Wapice Ltd, Vaasa, 2016,

 29 p.

[166] IoT-Ticket Marketplace, Wapice Ltd., web page. Available (accessed

 30.10.2016): https://www.iot-ticket.com/marketplace.

[167] RFC 2069, Internet Engineering Task Force, web page. Available (accessed

 27.2.2017): https://tools.ietf.org/html/rfc2069.

[168] RFC 2617, Internet Engineering Task Force, web page. Available (accessed

 27.2.2017): https://tools.ietf.org/html/rfc2617.

[169] O.Hakaluoto, Founder, Roboco Oy, Helsinki, Interview 24.11.2016.

[170] IP address space calculator, Jodies.de, web page. Available (accessed

 31.12.2016): http://jodies.de/ipcalc?host=172.32.0.0&mask1=20&mask2=.

[171] log4js - Loggly module, 2017 Github, Inc, web page. Available (accessed

 12.02.2017): https://github.com/nomiddlename/log4js-node/wiki/Loggly.

[172] Loggly - Intro to Log Management, 2017 Loggly Inc, web page.

 Available (ac cessed 12.02.2017): https://www.loggly.com/intro-to-log-man

 agement/.

APPENDIX A: IOT-TICKET REQUEST-RESPONSE MESSAGES

Request-Response message structures for registering a device [165]

Request:

https://{api-server-URL}/devices/

Parameter Description

name (String:100) (mandatory field) Name of the device

manufacturer (String:100) (mandatory field) name of the device manufacturer

type (String:100) Category of the device

description (String:100) Description over the device

attributes (key,String:255)(value,String:255) Array of key value pairs, for

storing additional attributes

Response:

Field Description

href URL for accessing the resource

deviceID Device ID for subsequent calls. Consisting of 32 alphanumeric characters.

name Name provided at the registration message

manufacturer Manufacturer provided at the registration message

type Type provided at the registration message

createdAt Time of the creation. ISO8601 UTC format.

attributes Attributes provided at the registration message

description Description of the device

Request-Response message structures for devices listings [165]

Request:

https://{api-server-URL}/devices/

Parameter Description Examples

callback JavaScript function triggered at response /devices?callback=bar

returns: bar(response data)

format Format /JSON / XML) /devices?format=xml

limit Number of returned results. Max 100, default 10 /devices?limit=5

offset Number results to be skipped from the beginning /devices?offset=3

Response:

Field Description

offset Number of skipped results from the start

limit Results per one page

fullsize Total amount of applicaple devices for client

devices List of the objects with following parameters:

href URL to the device

name Name provided at the registration message

manufacturer Manufacturer provided at the registration message

type Type provided at the registration message

createdAt Time of the creation. ISO8601 UTC format.

description Description of the device

attributes Attributes provided at the registration message

Request-Response message structures for a device information [165]

Request:

https://{api-server-URL}/devices/deviceID

Parameter Description Examples

callback JavaScript function triggered at response /devices/deviceID?callback=bar

returns: bar(response data)

format Format (JSON / XML) /devices/deviceID?format=xml

Response:

Field Description

href URL to the device

name Name provided at the registration message

type Type provided at the registration message

manufacturer Manufacturer provided at the registration message

createdAt Time of the creation. ISO8601 UTC format.

description Description of the device

attributes Attributes provided at the registration message

Request-Response message structures for a device datanodes listing [165]

Request:

https://{api-server-URL}/devices/deviceID/datanodes

Parameter Description Examples

callback JavaScript function triggered at

response

/devices/deviceID/datanodes?callback=bar

returns: bar(response data)

limit Number of returned results. Max

100, default 10

/devices/deviceID/datanodes?limit=5

offset Number results to be skipped from

the beginning

/devices/deviceID/datanodes?offset=3

format Format (JSON / XML) /devices/deviceID/datanodes?format=xml

Response:

Field Description

offset Number of skipped results from the start

limit Results per one page

fullsize Total amount of applicable data nodes for the device

items List of data node objects

Request-Response message structure for writing data [165]

Request:

https://{api-server-URL}/process/write/deviceID

Parameter Description Examples

deviceID ID of the target device

Data to be

written

Array of data objects. Each of the objects holds the

following attributes:

Name:

(String:100)

Name of the data node

Path:

(String:100)

Forward slash separated list of path to be created for

current data node. Max 10 components.

/Engine/LeftBlock/

v Value to be written

unit

(String:10)

Unit of the written data V, A, Hz

ts (long) Timestamp according to Unix Timestamp. Millisec-

onds after the Epoch

dataType Data type of the variable long / double / Boolean

/ string / binary

Response:

Field Description

write result

object

Array of response objects each containing:

 href

 WrittenCount

totalWritten Number of total data points written

href URL for the current data node

WrittenCount Values written to the data node

Request-Response message structure for reading data [165]

Request:

https://{api-server-URL}/process/read/deviceID

Parameter Description Examples

format Format (JSON / XML) /process/read/deviceID?datanodes

=Temperature?format=xml

deviceID Targetted deviceID

datanodes Comma separated list of the data nodes to

be read. Number of requested data nodes

should not exceed 10

/process/read/deviceID?datanodes

=Temperature,AirIntake

fromdate

(long)

Unix Timestamp. Time from which the

data is requested

/process/read/deviceID?datanodes

=Temperature?fromdate

=1415260152284

todate

(long)

Unix Timestamp. Time to which the data is

requested

/process/read/deviceID?datanodes

=Temperature?fromdate

=1415260152284&todate

=1417609677

limit (inte-

ger)

Max number of data points returned for

each data node. Default value 1000, max

value 10 000

/process/read/deviceID?datanodes

=Temperature?limit=5

order Order of the requested values by timestamp /process/read/deviceID?datanodes

=Temperature?order=descending

Response:

Field Description

objects Array of response objects each containing:

 href

 type

 unit

 value with arrays of v and ts

name Name of the data node

path Path to get to data node

v Value at the timestamp of ts

ts Timestamp accomplice with the value

unit Unit of the data node

APPENDIX B: REAL-TIME PROCESS MONITORING URI’S

Robot variable URI’s for monitoring the CMT process

base-URI:

http://robot-ip-address/rw/

Name resource-URI Datatype

(IoT

Ticket)

Unit

(IoT

Ticket)

cmtJobNumber /iosystem/signals/EtherNetIP/ioFronius1/goFr1JobNum?json=1 long num

cmtCurrent /iosystem/signals/EtherNetIP/ioFronius1/aiFr1Current_M?json=1 double A

cmtVoltage /iosystem/signals/EtherNetIP/ioFronius1/aiFr1Volt_M?json=1 double V

SpeedRobot /iosystem/signals/aoR1TCPSpeed?json=1 double mm/s

weavingFreg /iosystem/signals/aoR1TCPSpeed?json=1 double Hz

torchAngle /rapid/symbol/data/RAPID/T_ROB1/CellData/nTorchAngle?json=1 double deg

arcLenghtCorr /iosystem/signals/EtherNetIP/ioFronius1/aoFr1ArcLength?json=1 double %

wirefeed_mms /iosystem/signals/EtherNetIP/ioFronius1/aiFr1WireFeed_M?json=1 double mm/s

wirefeed_perc /iosystem/signals/EtherNetIP/ioFronius1/aoFr1Power?json=1 double %

dynamicCorre /iosystem/signals/EtherNetIP/ioFronius1/aoFr1Dynamic?json=1 double num

wireFeedRollCurrent /iosystem/signals/EtherNetIP/ioFronius1/aiFr1MotorCurr_M?json=1 double A

MainCurrent /iosystem/signals/EtherNetIP/ioFronius1/diFr1MainCurrent?json=1 Boolean bool

Communication-

Ready

/iosystem/signals/EtherNetIP/ioFronius1/diFr1CommunicRdy?json=

1

Boolean bool

SetArcON /iosystem/signals/EtherNetIP/ioFronius1/doFr1ArcOn?json=1 Boolean bool

ProcessActive /iosystem/signals/EtherNetIP/ioFronius1/diFr1ProcessActv?json=1 Boolean bool

Robot variable URI’s for monitoring the COAXwire process

base-URI:

http://robot-ip-address/rw/iosystem/signals

Name resource-URI Datatype

(IoT

Ticket)

Unit

(IoT

Ticket)

laserPower /EtherNetIP/Controller_IO/aoLaserPower?json=1 double W

laserAlarm /EtherNetIP/Controller_IO/diLaserAlarm?json=1 Boolean bool

laserEmissionON /EtherNetIP/Controller_IO/diLaserOn?json=1 Boolean bool

laserReady /EtherNetIP/Controller_IO/diLaserReady?json=1 Boolean bool

laserAimingBeam /EtherNetIP/Controller_IO/doLaserAiming?json=1 Boolean bool

laserSetBeamON /EtherNetIP/Controller_IO/doLaserBeamOn?json=1 Boolean bool

laserClearAlarms /EtherNetIP/Controller_IO/doLaserClearAlarms?json=1 Boolean bool

coaxReady /EtherNetIP/ioWirefeed/diWf1_Ready?json=1 Boolean bool

coaxFault /EtherNetIP/ioWirefeed/diWf2_Fault?json=1 Boolean bool

coaxWireFault /EtherNetIP/ioWirefeed/diWf3_WireFault?json=1 Boolean bool

coaxLifeBit /EtherNetIP/ioWirefeed/diWf7_LifeBit?json=1 Boolean bool

coaxEmStop /EtherNetIP/ioWirefeed/diWf11_EmStop?json=1 Boolean bool

coaxProcActiv /EtherNetIP/ioWirefeed/diWf14_ProcActiv?json=1 Boolean bool

coaxWireEnd /EtherNetIP/ioWirefeed/diWf15_WireEnd?json=1 Boolean bool

coaxStartRelease /EtherNetIP/ioWirefeed/doWf1_StartRelease?json=1 Boolean bool

coaxStartFeed /EtherNetIP/ioWirefeed/doWf3_StartFeed?json=1 Boolean bool

coaxwActual-

WireSpeed

/EtherNetIP/ioWirefeed/giWf_WirefeedSpeed?json=1 double mm/s

APPENDIX C: SEGMENTS OF THE PROCESS DATA FILE

First and the last line of the process data file

Record name Record definition

First line of the process data file

Build platform Identification of the process run, formed over date and time of the start moment

Process CMT or COAXwire

Product Fixture of the positioner for this particular process run

Details Additional details for the process run

Used ID Name of the user

Start Indication that process is now started

Start time Timestamp of the process start

Data frequency Frequency by which the data is collected and stored

Last line of the process data file

End Indication that process is finished

End time Timestamp of the finished process

Gathered data for CMT process (middle segment)

Record name Record definition

Timestamp Timestamp from the start of the process

Job number Number of CMT job, welding parameters and synergy graphs are

selected with this figure

Current Transient current used in the cladding process

Voltage Transient voltage used in the cladding process

Robot TCP Speed Transient robot TCP (Tool Center Point) velocity

Weaving frequency Frequency for weaving pattern used in the cladding process

Torch angle Angle for the tool tip, between -90 and 90 degrees

Arc Lenght correction Regulates the heat energy and the size of the droplets (from -30

to +30)

wire feed (mm/s) Feeding velocity of the wire in mm/s

wire feed (percentage) Feeding velocity of the compared for maximum of 100%

Dynamic Correction Adjusts the properties of short circuit break (from -5 to +5)

Wire feeder roller current Current for the wire feeding roller, decline of the current is an

indication of wearied rollers

Gathered data for COAXwire process

Record name Record definition

Timestamp Timestamp from the start of the process

Laser ON/OFF Laser Beam ON/OFF indication

Laser power Transient laser power

Wire feed (mm/s) Feeding velocity of the wire in mm/s

Wire feed started Wire feed is active

Wire feed stopped Wire feed is inactive

Robot TCP Speed Transient robot TCP (Tool Center Point) velocity

Weaving frequency Frequency for weaving pattern used in the cladding process

Torch angle Angle for the tool tip, between 0 to 180 degrees

APPENDIX D: PROCESS DATA FILE EXAMPLE

170214120148,CMT,RodCladding,Internal,Ari,start,2017-02-14T12:01:48,0.01
0.001,1,0,0,2.31,1.15,0,0,0,50,0,0
0.011,1,0,0,2.31,1.15,0,0,0,50,0,0
0.022,1,0,0,6.97,3.49,0,0,0,50,0,0
0.032,1,0,0,6.97,3.49,0,0,0,50,0,0
0.043,1,0,0,6.97,3.49,0,0,0,50,0,0
0.053,1,0,0,11.68,5.84,0,0,0,50,0,0
0.064,1,0,0,11.68,5.84,0,0,0,50,0,0
0.074,1,0,0,16.39,8.2,0,0,0,50,0,0
0.084,1,0,0,16.39,8.2,0,0,0,50,0,0
0.095,1,0,0,21.1,10.55,0,0,0,50,0,0
0.105,1,0,0,21.1,10.55,0,0,0,50,0,0
0.115,1,0,0,21.1,10.55,0,0,0,50,0,0
0.125,1,0,0,25,12.5,0,0,0,50,0,0
0.135,1,0,0,25,12.5,0,0,0,50,0,0
0.145,1,0,0,25,12.5,0,0,0,50,0,0
0.156,1,0,0,25,12.5,0,0,0,50,0,0
0.166,1,0,0,25,12.5,0,0,0,50,0,0
0.177,1,0,0,25,12.5,0,0,0,50,0,0
0.187,1,0,0,25,12.5,0,0,0,50,0,0
 -------SLICED--------
12.424,1,0,0,25,12.5,0,0,0,50,0,0
12.435,1,0,0,24.52,12.26,0,0,0,50,0,0
12.445,1,0,0,24.52,12.26,0,0,0,50,0,0
12.455,1,0,0,21.87,10.94,0,0,0,50,0,0
12.465,1,0,0,21.87,10.94,0,0,0,50,0,0
12.476,1,0,0,17.38,8.69,0,0,0,50,0,0
12.486,1,0,0,17.38,8.69,0,0,0,50,0,0
12.497,1,0,0,17.38,8.69,0,0,0,50,0,0
12.507,1,0,0,13.48,6.74,0,0,0,50,0,0
12.518,1,0,0,13.48,6.74,0,0,0,50,0,0
12.528,1,0,0,10.08,5.04,0,0,0,50,0,0
12.539,1,0,0,10.08,5.04,0,0,0,50,0,0
12.549,1,0,0,6.99,3.5,0,0,0,50,0,0
12.559,1,0,0,6.99,3.5,0,0,0,50,0,0
12.57,1,0,0,6.99,3.5,0,0,0,50,0,0
12.58,1,0,0,4.35,2.18,0,0,0,50,0,0
12.59,1,0,0,4.35,2.18,0,0,0,50,0,0
12.6,1,0,0,2.26,1.13,0,0,0,50,0,0
12.611,1,0,0,2.26,1.13,0,0,0,50,0,0
12.621,1,0,0,0.87,0.44,0,0,0,50,0,0
12.632,1,0,0,0.87,0.44,0,0,0,50,0,0
12.642,1,0,0,0.87,0.44,0,0,0,50,0,0
12.652,1,0,0,0.28,0.14,0,0,0,50,0,0
end,2017-02-14T12:05:25

APPENDIX E: DESIGNED PROCESS REPORTS

