
LAURA CABELLO PIQUERAS
AUTOREGRESSIVE MODEL BASED ON A DEEP CONVOLU-
TIONAL NEURAL NETWORK FOR AUDIO GENERATION

Master of Science thesis

Examiner: Tuomas Virtanen, Heikki
Huttunen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 7th December 2016



I

ABSTRACT

LAURA CABELLO PIQUERAS: Autoregressive model based on a deep convolu-
tional neural network for audio generation
Tampere University of Technology
Master of Science thesis, 54 pages
March 2017
Master’s Degree in Telecommunication Engineering
Major: Signal Processing
Examiner: Tuomas Virtanen, Heikki Huttunen
Keywords: audio generation, convolutional neural network, deep learning

The main objective of this work is to investigate how a deep convolutional neural

network (CNN) performs in audio generation tasks. We study a final architecture

based on an autoregressive model of deep CNN that operates directly at the wave-

form level.

In first place, we study different options to tackle the task of audio generation.

We define the best approach as a classification task with one-hot encode data; gen-

eration is based on sequential predictions: after next sample of an input sequence is

predicted, it is fed back into the network to predict the next sample.

We present the basics of the preferred architecture for generation, adapted from

WaveNet model proposed by DeepMind. It is based on dilated causal convolu-

tions which allows an exponential growth of the receptive field size with depth of

the network. Bigger receptive fields are desirable when dealing with temporal se-

quences since it increases the model capacity to model temporal correlations at

longer timescales.

Due to the lack of an objective method to assess the quality of new synthesized

signals, we firstly test a wide range of network settings with pure tones so the network

is capable to predict the same sequences. In order to overcome the difficulties of

training a deep network and to accelerate the research adjusted to our computational

resources, we constrain the input database to a mixture of two sinusoids within an

audible range of frequencies. In generation phase, we acknowledge the key role of

training a network with a large receptive field and large input sequences. Likewise,

the amount of examples we feed to the network every training epoch exert a decisive

influence in any studied approach.



II

CONTENTS

1. Introduction 1

2. Background 3

2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 13

2.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Audio generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Method 21

3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Training the network . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Audio generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Evaluation 30

4.1 Input dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 First Neural Network approach . . . . . . . . . . . . . . . . . . . . . 33

4.4 Second Neural Network performance . . . . . . . . . . . . . . . . . . 33

4.4.1 Batch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Segment length . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.3 Receptive field size . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.4 Computational time . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.5 Audio generation . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Conclusions 48

Bibliography 50



III

TERMS AND DEFINITIONS

ANN Artificial Neural Network

CE Cross Entropy

CNN Convolutional Neural Network

DNN Deep Neural Network

FNN Feedforward Neural Network

GPU Graphics Processor Unit

HMM Hidden Markov Model

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

MSE Mean Squared Error

PDF Probability Density Function

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SPSS Statistical Parametric Speech Synthesis

NN Neural Network



1

1. INTRODUCTION

Breakthroughs in machine learning over the last decade lead us to a new era of

artificial intelligence. Nowadays computers can learn. But not only that, they

can potentially understand the world around us. In the conventional approach to

programming, we tell the computer what to do, breaking big problems up into many

small, precisely defined tasks that the computer can easily execute. By contrast,

in a neural network (NN) we do not tell the computer how to solve our problem.

Instead, it learns patterns from observational data and figure out its own solution

to the current problem.

Automatically learning from data sounds promising. However, until 2006 we did

not know how to train neural networks to outperform more traditional approaches,

except for a few specialized problems. In 2006 Hinton and Salakhutdinov [15] pro-

posed a layer-wise pre-training which favored this recent surge of popularity and an

introduction to new techniques of learning known as deep learning. This incredible

revival of neural networks within deep learning field in the past five to ten years

is partly due to improvements of mathematical algorithms, partly because we have

much more data, but a big part is thanks to the advances in computational resources

and the decrease in the price of powerful GPUs.

Deep learning can be summed up as a sub field of machine learning studying

statical models called deep neural networks. The latter are able to learn complex

and hierarchical representations from raw data, extracting new set of features that

enhance traditional, hand crafted models. They have been further developed and

today deep neural networks achieve outstanding performance on diverse tasks such

as computer vision, speech recognition or natural language processing.

Thus, larger and deeper architectures are trained on bigger databases to achieve

better performance every year. It is worth to highlight AlexNet, a deep convolutional

neural network (shorted as CNN or ConvNet) developed in 2012 by Krizhevsky,

Sutskever and Hinton [23]. AlexNet became a milestone in the use of deep CNNs

for image classification and ever since then they are widely used in a wide range

of contexts. Despite they were firstly intended to work with images as input data,



2

language processing [5, 6] or audio modeling [14, 42] -where audio generation is

included- are some of the last applications that benefit from CNN properties.

Audio generation aims to give a machine the ability to compose new pieces of

audio. New compositions must be meaningful accordingly to the purpose of gener-

ation: compelling piano melodies, realistic jazz rhythms or simply sounds that are

pleasant to listen to if that is what we are looking for.

Many studies have been conducted for the analysis and generation of musical

sequences [19, 28, 29]. The handling of memory and computational cost are core

challenges in music modeling. Whereas the widely used bag-of-features approach,

based on haphazard collections of local data descriptors, neglects any sequential rela-

tion between musical events, common N-gram based methods for the representation

of musical sequences usually set a maximal fixed length of context [24]. This leads

to exponentially growing storage needs to allow the model to account for more com-

plex structures. The solution offered by WaveNet model [42] handles larger input

sequences than traditional methods without greatly increasing computational cost.

It is based on a deep convolutional neural network that combines causal filters with

dilated convolutions to allow its receptive field to grow exponentially with depth,

which is important to model the long-range temporal dependencies in audio signals.

Motivated by the recent success of deep CNNs, in this work we decided to analyze

its performance on audio generation tasks. Taking WaveNet architecture as refer-

ence for generation, we study how to tackle the problem of raw audio generation

and the implication of different hyperparameters of the network. Finally, the quality

of the synthesis reveals whether the methods used to generate new waveforms have

been adequate.

This thesis is structured as follows. Chapter 2 serves as an introduction to ma-

chine learning and neural networks, as well as presents the theoretical background

necessary to understand the research and methodology accomplished in this work.

Chapter 3 describes the methodology and process followed in our study with the

ultimately objective of achieve a good generation. The experimental cases and re-

sults of testing a set of proposed configurations are presented in Chapter 4. Finally,

Chapter 5 gathers concluding remarks and a proposal for further research.



3

2. BACKGROUND

This chapter reviews the general theory needed later. A deep convolutional neural

network (CNN or ConvNet) is the approach that we study in this work to predict

and generate audio signals. Hence, this chapter first talks about the basic concept

of artificial neural networks (ANNs, or simply NNs), with a special focus on CNNs

and its architecture, and then introduce the concept of deep learning; finally the

basis of audio generation are presented.

The area of study of NNs was originally inspired by the goal of modeling biological

neural systems, but has since diverged and become a matter of engineering and

achieving good results in machine learning tasks. Machine learning is viewed as a

programming paradigm which allows a computer to learn from observational data.

In computer science, a NN is an instance of machine learning and it is frequently

described as a computing system made up of simple, highly connected processing

elements which processes information by its dynamic state response to external input

[3].

Hence, an NN’s topology can be described as a finite subset of simple processing

units (called nodes or neurons) and a finite set of weighted connections between

nodes that scale the strength of the transmitted signal, mimicking synapses in the

human brain. The behavior of the network is determined by a set of real-valued,

modifiable parameters or weightsW={w1, w2, ...} which are tuned in every event,

known as epoch, of the training process. Neurons in the network are grouped into

layers. There is one input layer, a variable number of hidden layers that perform

intermediate computations and one output layer.

Supervised and unsupervised learning Neural networks do not follow the

conventional approach to programming, where we tell the computer what to do,

breaking big problems up into many smaller tasks that the computer can easily

perform. By contrast, a neural network learns itself from observational data, figuring

out its own solution to a current problem. [30]

Typically, the network reads an input x and associate one or more labels y. If the



4

network predicts a label for new unseen data, we say it performs a classification task.

When a database has a sufficient amount of pairs (x,y), we can make a computer

learn how to classify new unseen data by training it on the known instances from

the database. It is the so-called supervised learning, that try to find patterns in data

as useful as possible to predict the labels.

Hence, it is desirable the network learns to classify new unseen instances and not

only the training set. We want to prevent our model from overfitting, i.e., from

memorizing training pairs instead of generalizing patterns to any example. A classic

methodology to ensure the model has not overfitted is to test it on unseen data

whose labels are known and evaluate the accuracy.

In contrast to supervised learning, unsupervised learning is another type of ma-

chine learning technique that learns patterns in data without neither label informa-

tion nor an specific prediction task.

2.1 Perceptron

In order to understand how neurons and NNs work, it is worth to introduce first the

baseline unit for modern research: the perceptron. Perceptron was defined in 1957

by the scientist Frank Rosenblatt [34], inspired by earlier work by Warren McCulloch

and Walter Pitts [27]. A perceptron takes several binary inputs and combines them

linearly to produce a single binary output. Figure 2.1 depicts a perceptron with

several inputs {x1,x2, ...,xN} ∈ R. Rosenblatt proposed a simple rule to compute

the output: the neuron’s output, 0 or 1, is determined whether the weighted sum is

less than or greater than some threshold value. Just like the weights, the threshold

is a real number which is a parameter of the neuron. Equation 2.1 defines it in

algebraic terms:

Figure 2.1 Model of a perceptron.



5

output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold,
(2.1)

where it is easy to infer that by varying the weights and the threshold we can

get different models of decision-making. However, Equation 2.1 can be simplified

making two notational changes. First, both inputs and weights can be seen as vectors

[x1,x2, ...,xN]
T and w respectively, which allows us to rewrite the summation as a

dot product. The second change is to move the threshold to the other side of the

inequality, and replace it by what is known as the perceptron’s bias, b ≡ −threshold.

The bias can be seen as a measure of how easy is to get the perceptron to output a

1 [30]. Thus, the perceptron rule can be rewritten into Equation 2.2:

output =

{
0 if w · x+ b ≤ 0

1 if w · x+ b > 0
(2.2)

We can devise a network of perceptrons that we would like to use to learn how

to solve a problem. For instance, the inputs to the network might be the raw audio

from a soundtrack. And we want the network to learn weights and biases so that

the output from the network correctly classifies the chord that is being played one

at a time. We can now devise a learning algorithm which can automatically tune

the weights and biases to get our network to behave in the manner we want after

several epochs. The learning algorithm gradually adjusts the weights and biases in

response to external stimuli, without direct intervention by a programmer.

The problem is that this is not possible if our network contains perceptrons, since

a small change in the weights (or bias) of any single perceptron in the network could

cause the output of that perceptron to completely flip, say from 0 to 1. And that

flip may then cause the behavior of the rest of the network to entirely change in

some very complicated way [30].

It is possible to overcome this problem by introducing new types of neurons with a

nonlinear behavior, which lead us to introduce a new concept: activation functions.

The main purpose of nonlinear activation functions is to enable the use of nonlinear

classifiers.



6

2.2 Activation Function

An activation function scales the activation of a neuron into an output signal. Any

function could serve as an activation function, however there are few activation

functions commonly used in NNs:

• Sigmoid Function. This is a smooth approximation of the step function used in

perceptrons. It is often used for output neurons in binary classification tasks,

since the output is in the range [0,1]. It is sometimes referred to as logistic

function. Mathematically,

σ(x) =
1

1 + e−x
. (2.3)

• Rectified Linear Unit (ReLU). This function avoids saturation problems and

vanishing gradients, two of the major problems that arise in deep networks. It

is depicted in red in Figure 2.2, where we can see how ReLU grows unbounded

for positive values of x,

ReLU(x) = max(0, x). (2.4)

• Hyperbolic Tangent (tanh). This function is used as an alternative to the

sigmoid function. Hyperbolic tangent is vertically scaled to output in the range

[-1,1]. Thus, big negative inputs to the tanh will map to negative outputs and

only zero-valued inputs are mapped to zero outputs. These properties make

the network less likely to get stuck during training, which could be possible

with sigmoid function for strongly negative inputs. Mathematically,

tanh(x) =
ex − e−x

ex + e−x
. (2.5)

2.3 Neural Networks

Multilayer perceptrons (MLP) constitute one of the simplest type of feedforward

NNs (FNNs) and the most popular network for classification and regression [13].

An MLP consists of a set of source nodes forming the input layer, one or more

hidden layers of computation nodes, and an output layer. Figure 2.3 depicts the

architecture of an MLP with a single hidden layer.



7

8/2/17 15:02graphs

Página 1 de 2https://www.desmos.com/calculator/2igndp8arg

Figure 2.2 Visual representation of sigmoid (blue), rectified linear unit (ReLU, red) and
hyperbolic tangent (tanh, green) activation functions. It can be seen that sigmoid and tanh
are both bounded functions.

Figure 2.3 Signal-flow graph of an MLP with one hidden layer. Output layer computes
a linear operation.

For an input vector x, each neuron computes a single output by forming a linear

combination according to its input weights and then, possibly applying a nonlinear

activation function. The computation performed by an MLP with a single hidden

layer with a linear output can be written mathematically as:

ŷ = Why · Φ(Wxhx+ bh) + by, (2.6)

where, in vector notation, W** denotes the weight matrices connecting two layers,

i.e., Wxh are the weights from input to hidden layer and Why from hidden to output



8

layer, b* are the bias vectors, and the function Φ(·) is an element-wise non-linearity.

The power of an MLP network with only one hidden layer is surprisingly large.

As Hornik et al. and Funahashi showed in 1989 [17, 9], such networks, like the one in

Equation 2.6, are capable of approximating any continuous function f : Rn → Rm

to any given accuracy, provided that sufficiently many hidden units are available.

For an input x a prediction ŷ is computed at the output layer, and compared to

the original target y using a cost function E(W,b;x,y), or just E for simplicity.

The network is trained to minimize E for all input samples x in the training set,

formally:

E(W,b) =
1

N

N∑
n=1

E(W,b;xn,yn) (2.7)

where N is the number of training samples. Since the cost function (also known as

loss or objective function) is a measure of how well our network did to achieve its goal

in every epoch, it is a single value. Mean squared error (MSE) and cross entropy 1

(H(p, q) with p and q two probability distributions) are among the most common

cost function to train NNs for classification tasks:

EMSE =
1

N

N∑
n=1

∥yn − ŷn∥2 (2.8)

ECE =
1

N

N∑
n=1

H(pn, qn) = − 1

N

N∑
n=1

yn log ŷn + (1− yn) log(1− ŷn). (2.9)

Furthermore, categorical cross entropy is a more granular way to compute error

in multiclass classification tasks than simply accuracy or classification error. Let

us consider the following example to endorse this statement. Suppose we have two

neural networks working on the same problem whose outputs are the probability of

belonging to each class, shown in Figure 2.4. We choose the class with the highest

probability as the solution and then compare it with the known right answer (tar-

gets); since both networks classified two items correctly, both present a classification

error of 1/3 = 0.33 and thus, same accuracy. However, while the first network barely

classify the first two training items (similar probabilities among all of them), the

1In information theory, the entropy of a random variable is a measure of the variability as-
sociated with it. Shannon defined the entropy of a discrete random variable X as: H(X) =
−
∑

x P(X = x) logP(X = x). From this definition we can deduce straightforward the entropy
between two variables (cross entropy).



9

second network distinctly gets them correct. Should we consider now the average

cross entropy error for every network,

{
E1

CE = −(log(0.4) + log(0.4) + log(0.1))/3 = 1.38,

E2
CE = −(log(0.7) + log(0.7) + log(0.3))/3 = 0.64,

(2.10)

we can notice that the second network has a lower value which indicates it actually

performed better. The log() in cross entropy takes into account the closeness of a

prediction.

Figure 2.4 Example of two networks’ output for the same classification problem with three
training samples and three different classes. Networks output the probability of belonging
to each class; the class with the highest probability is chosen as the solution and compared
to the target to decide whether it is correct or not.

NNs are constructed as differentiable operators and they can be trained to min-

imize the differentiable cost function using gradient descent based methods. An

efficient algorithm widely used to compute the gradients for all the weights in the

network is the backpropagation algorithm, an implementation of the chain rule for

partial derivatives along the network. The backpropagation algorithm is the most

popular learning rule for performing supervised learning tasks [7] and it was pro-

posed for the MLP model in 1986 by Rumelhart, Hinton, and Williams [35]. Later

on, the backpropagation algorithm was discovered to have already been invented in

1974 by Werbos [44].

Due to backpropagation, MLP can be extended to many hidden layers. In order

to understand how the algorithm works, we will use the following notation: Φ′ is

the first derivative of the activation function Φ; wl
ji is the weight connecting the ith

neuron in the layer l− 1 to the jth neuron in the layer l; zlj is the weighted input to

the jth neuron in layer l, expressly:

zlj =
∑
i

wl
jiΦ(z

l−1
i ) + blj =

∑
i

wl
jih

l−1
i + blj, (2.11)



10

where hl−1
i is the activation of the ith neuron in the layer l−1. The cost function can

be minimized by applying the gradient descent procedure. It requires to compute

the derivative of the cost function with respect to each of the weights and bias terms

in the network., i.e., ∂E
∂wl

ji
and ∂E

∂blj
. Once these gradients have been computed, the

corresponding parameters in the network can be updated by taking a small step

towards the negative direction of the gradient. Should we use stochastic gradient

descent (SGD),

w ≡ w − η∇E(w), (2.12)

the weights are updated via the following:

∆wi(τ + 1) = −η∇E(wi) = −η
∂E

∂wi

, (2.13)

where τ is the index of training iterations (epochs); η is the learning rate and it can

be either a fixed positive number or it may gradually decrease during the epochs of

the training phase. The same update rule applies to the bias terms, with b in place

of w.

Backpropagation is a technique that efficiently computes the gradients for all the

parameters of the network. Unfortunately, computing ∂E
∂wl

ji
and ∂E

∂blj
is not so trivial.

For MLP, the relationship between the error term and any weight anywhere in the

network needs to be calculated. This involves propagating the error term at the

output nodes backwards through the network, one layer at a time. First, for each

neuron j in the output layer L an error term δlj is computed:

δLj ≡ ∂E

∂zLj
=

∂E

∂hL
j

∂hL
j

∂zLj
(2.14)

We can then compute the backpropagated errors δlj at the lth layer in terms of

the backpropagated error δl+1
j in the next layer applying the chain rule:

δlj ≡
∂E

∂zlj
=

∑
i

∂E

∂zl+1
i

∂zl+1
i

∂zlj
. (2.15)

The first factor of Equation 2.15 can be rewritten directly from definition in 2.14

as



11

∂E

∂zl+1
i

≡ δl+1
i , (2.16)

the second factor in Equation 2.15 can be derived using Equation 2.11

∂zl+1
i

∂zlj
=

∂

∂zlj

∑
i

wl+1
ij hl

j + bl+1
i =

∑
i

wl+1
ij Φ′(zlj), (2.17)

hence, we can simplify Equation 2.15

∂E

∂zlj
=

∑
i

δl+1
i wl+1

ij Φ′(zlj). (2.18)

Finally, the gradients can be expressed in terms of the error δlj

∂E

∂wl
ji

=
∂E

∂zlj

∂zlj
∂wl

ji

= hl−1
i δlj (2.19)

∂E

∂blj
=

∂E

∂zlj

∂zlj
∂blj

= δlj (2.20)

Note that all weights and bias must be initialized to give the algorithm a place

to start from. The values are typically drawn randomly and independently from

uniform or Gaussian distributions.

The SGD, defined in Equation 2.12, is convergent in the mean if 0 < η < 2
λmax

,

where λmax is the largest eigenvalue of the autocorrelation of the input vector X.

When λ is too small, the possibility of getting stuck at a local minimum of the error

function is increased. In contrast, the possibility of falling into oscillatory traps is

high when λ is too large. This fact added to the slow convergence of the algorithm

lead to several variations to improve performance and convergence speed.

Following with SGD as the cost function, it can also be used in a smarter way to

speed up the learning. The idea is to estimate the gradient ∇E(w) by computing

∇Ex(w) for a small sample of randomly chosen training inputs, called batch, whose

size is m so that m < n, with n the size of the complete input dataset. By averaging

over this sample, provided that the batch size m is large enough, it quickly gets a

good estimate of the true gradient:



12

∑m
j=1 ∇Exj

(w)

m
≈

∑n
i=1 ∇Exi

(w)

n
= ∇E(w).2 (2.21)

Adam [22] is a recent alternative to SGD. It is a method for efficient stochastic

optimization that only requires first-order gradients with little memory requirement.

The method computes individual adaptive learning rates for different parameters

from estimates of first and second moments of the gradients. Adam was designed

to combine the advantages of two other popular techniques: AdaGrad [8], which

works well with sparse gradients, and RMSProp [40], which works well in on-line

and non-stationary settings.

In this section we have presented the MLP network, which is the baseline model for

FNN. In Section 2.4 another type of FNN, Convolutional Neural Networks (CNNs),

are described in detail since it will be used in the subsequent sections of this work.

However, before offering an insight into CNNs, we briefly present Recurrent Neural

Network (RNN).

Recurrent Neural Network An architecture is referred to as RNN when con-

nections between neurons form a directed cycle (see Figure 2.5). This creates an

internal state in the network, which allows it to exhibit dynamic temporal behavior,

i.e., the feedback connections provide the network with past context information.

Due to this property RNNs are often better for tasks that involve sequential inputs

such as audio, video and text. When we consider the outputs of the hidden units

at different discrete time steps as if they were the outputs of different neurons in

a deep multilayer network (Figure 2.5, right), it becomes clear how we can apply

backpropagation to train RNNs.

Figure 2.5 A recurrent neural network with one hidden layer and a single neuron. On
the right, the unfolding in time of the steps involved in its forward computation.

RNNs, once unfolded in time, can be seen as very deep feedforward networks in

which all the layers share the same weights. Although their main purpose is to

2Conventions vary about scaling of the cost function and batch updates. We can omit 1
n ,

summing over the costs of individual training examples instead of averaging. This is particularly
useful when the total number of training examples isn’t known in advance



13

learn long-term dependencies [24], theoretical and empirical evidence shows that it

is difficult to learn to store information for very long. To correct for that, an effective

alternative to conventional RNN are Long Short-Term Memory (LSTM) networks

[16], that use special hidden units to augment the network with an explicit memory.

Other proposals include the Neural Turing Machine [12] and memory networks [45].

2.4 Convolutional Neural Networks

There have been numerous applications of convolutional neural networks going back

to the early 1990s, but it was since the early 2000s when CNNs have been applied

with great success to detection, segmentation and recognition of objects and re-

gions in images. Recently, they have achieved major results in face recognition [39],

speech recognition [1] and raw audio generation [42]. The model presented in [42] by

DeepMind, which inspired us to undertake this work, also reaches state-of-the-art

performance in text-to-speech applications.

Despite these successes, CNNs were largely forsaken by the mainstream computer-

vision and machine-learning communities until the ImageNet competition in 2012.

The spectacular results achieved by A.Krizhevsky, I.Sutskever and G.Hinton [23]

came from the efficient use of GPUs, ReLUs, a new regularization technique to avoid

overfitting called dropout, and techniques to generate even more training examples

by deforming the existing ones. This success has brought about a revolution in

computer vision; CNNs are now the dominant solution for almost all recognition

and detection tasks and approach human performance on some others [24].

The Convolution Operation. The operation used in a convolutional neural

network does not correspond precisely to the definition of convolution as used in

other fields such as engineering or pure mathematics. The convolution of two real-

valued functions is typically denoted with an asterisk (∗) and it is defined as the

integral of the product of the two functions after one is reversed and shifted. How-

ever, working with data on a computer, time is usually discretized and it can take

only integer values. Thus, if we assume that f and k are two discrete functions

defined only on integer n, we can then define the discrete convolution as:

s(n) ≡
∞∑

m=−∞

f(m)k(n−m) =
∞∑

m=−∞

f(n−m)k(m). (2.22)

In convolutional network terminology, the first argument to the convolution is

often referred to as the input (function f) and the second argument as the filter



14

or kernel (function k). Both of them are multidimensional arrays, or tensors, that

are zero everywhere but the finite set of points for which we store the values. This

means that in practice we can implement the infinite summation as a summation

over a finite number of array elements.

The output s can be referred to as the feature map, which usually corresponds

to a very sparse matrix (a matrix whose entries are mostly equal to zero) [11, ch.9,

pp.333-334]. This is because the kernel is usually much smaller than the input image.

The only reason to flip the second argument in Equation 2.22 is to obtain the

commutative property. Since in neural networks the kernel is symmetric, commuta-

tive property is not usually important and many neural network libraries implement

a pseudo-convolution without reversing the kernel, known as cross-correlation.

s(n) ≡
∑
m

f(m)k(m+ n). (2.23)

It can be easily generalized for a two-dimensional input F : Z2 → R, which

probably will be used with a two-dimensional kernel K : Ωr → R, with Ωr =

[−r, r]2 ∩ Z2 [46]:

S(p) = (F ∗K)(p) ≡
∑

m+n=p

F (m)K(n). (2.24)

A CNN (Figure 2.6) can be regarded as a variant of the standard neural net-

work. It is a feedforward network, i.e., each layer receives inputs only from the

previous layer, so information is always traveling forward. Its typical architecture is

structured as a series of stages. The first few stages consists of alternating so-called

convolution and pooling layers, instead of directly using fully connected hidden lay-

ers like in RNNs.

Figure 2.6 A simple convolutional neural network. (Source: www.clarifai.com).



15

CNNs make the explicit assumption that the input data is organized as a number

of feature maps. This is a term borrowed from image-processing applications, in

which it is intuitive to organize the input as a two-dimensional array (for color

images, RGB values can be viewed as three different 2D feature maps). Thus, the

layers of a CNN have neurons arranged in three dimensions: width, height and

depth. For example, input images in CIFAR-10 are an input volume of activation

which has dimensions 32× 32× 3 (width, height and depth respectively) as shown

in Figure 2.7.

Figure 2.7 One of the hidden layers show how three dimensions are arranged in a CNN.
Every layer transforms the 3D input volume to a 3D output volume of neuron activations
through a differentiable function. (Source: cs231n.github.io/convolutional-networks/)

There are four key concepts behind CNNs that take advantage of the properties

of natural signals: local connections, shared weights and biases, pooling and the use

of many layers [24]. The idea of stacking many layers up is explained in Section 2.5,

introducing the advantages of using deep neural networks.

Local connections. In CNNs not every input sample is connected to every

hidden neuron, as well as it is impractical to connect neurons to all neurons in the

previous layer. Instead, connections are made in small, localized regions of the input

feature map known as receptive field. To be more precise, each neuron in the first

hidden layer is connected to a small region of the input neurons, say, for example,

a 3 × 3 region as in Figure 2.8. We then slide the local receptive field across the

entire input, so for each local receptive field, there is a different hidden neuron in

the first hidden layer. We can think of that particular hidden neuron as learning to

analyze its particular local receptive field.

Shared weights and biases. Shared weights and bias are often said to define

a kernel or filter (different weights led to different filters). Following the example

above, each hidden neuron has a bias and 3x3 weights connected to its local recep-

tive field. But this bias and weights are the same for every neuron on each layer.

This means that all the neurons in the first hidden layer detect exactly the same



16

Figure 2.8 Connections for a particular neuron in the first hidden layer. Its receptive
field is highlighted in pink.

feature, just at different locations in the 2D input array. A big advantage of sharing

weights and biases is that it greatly reduces the number of parameters involved in

a convolutional network. Despite the runtime of forward propagation remains the

same, the storage requirements are vastly reduced.

Pooling. A pooling layer is a form of non-linear downsampling and it is usually

used immediately after convolutional layers. Pooling layers condense the information

in the output from the convolutional layer by replacing the output of the net at a

certain location with a summary statistic of the nearby outputs [11]. As a concrete

example, one common procedure for pooling is known as max-pooling where the

maximum output within a rectangular neighborhood is reported. Another popular

pooling functions is L2, which takes the square root of the sum of the squares of the

activations in the region applied.

Dilated Convolution In dense prediction problems such as semantic segmenta-

tion or audio generation, working with a large receptive field is an important factor

in order to obtain state-of-the art results. In [46], a new convolutional network

module that is specifically designed for dense prediction is defined. It is known as

dilated or atrous convolution, a modified version of the standard convolution. Let l

be a dilation factor and let ∗l be defined as in Equation 2.25 for a two-dimensional

input:

(F ∗l K)(p) ≡
∑

m+ln=p

F (m)K(n). (2.25)

A dilated convolution is a convolution where the kernel is applied over an area

larger than its length by skipping input values with a certain step [42], also called



17

dilation factor. It effectively allows an exponential expansion of the receptive field

without loss of resolution or coverage. This is similar to pooling or strided convo-

lutions, but here the output has the same size as the input. Note as a special case,

dilated convolution with dilation 1 yields the standard convolution.

2.5 Deep Learning

Deep neural networks (DNNs) have shown significant improvements in several appli-

cation domains including computer vision and speech recognition [14]. In particular,

deep CNNs are one of the most widely used types of deep networks and they have

demonstrated state-of-the-art results in object recognition and detection [33, 38].

While the previous century saw several attempts at creating fast NN-specific hard-

ware and at exploiting standard hardware, the new century brought a deep learning

breakthrough in form of cheap, multi-processor graphics cards or GPUs. GPUs excel

at the fast matrix and vector multiplications required not only for convincing virtual

realities but also for NN training, where they can speed up the learning process by

a factor of 50 and more [36].

At this point we may ask ourselves: what must a neural network satisfy in order

to be called a deep neural network? A straightforward requirement of a DNN follows

from its name: it is deep. That is, it has multiple, usually more than three, layers of

units. This, however, does not fully characterize a deep neural networks. In essence,

we often say that a neural network is deep when it has more than three layers and

the following two conditions are met [4]:

• The network can be extended by adding layers consisting of multiple units.

• The parameters of each and every layer are trainable.

From these conditions, it should be understood that there is no absolute number

of layers that distinguishes deep NNs from shallow ones. The depth grows by a

generic procedure of adding and training one or more layers, until it can properly

perform a target task with a given dataset [4].

In classic classification tasks, discriminative features are often designed by hand

and then used in a general purpose classifier. However, when dealing with complex

tasks such as computer vision or natural language processing, good features that are

sufficiently expressive are very difficult to design. A deep model has several hidden



18

layers of computations that are used to automatically discover increasingly more

complex features and allow their composition. By learning and combining multiple

levels of representations, the number of distinguishable regions in a deep architecture

grows almost exponentially with the number of parameters, with the potential to

generalize to non-local regions unseen in training [32]. Taking the network depicted

in Figure 2.6 as an example, the combination of the first four layers work in feature

extraction from image and the last fully connected layers in classification.

Nevertheless, DNN are hard to train. We could try to apply stochastic gradient

descent by backpropagation algorithm as described in Section 2.3. But there is an

intrinsic instability associated to learning by gradient descent in deep networks which

tends to result in either the early or the later layers getting stuck during training

[30]. In order to avoid that, many factors play an important role for an appropriate

train: making good choices of the random weight initialization –a bad initialization

can still hamper the learning process–, cost function and activation function [10],

applying notably regularization techniques (in order to avoid overfitting) such us

dropout and convolutional layers, having a sufficiently large data set and using

GPUs.

2.6 Audio generation

Algorithmic music generation is a difficult task that has been actively explored in

earlier decades. Many common methods for algorithmic music generation consist

of constructing carefully engineered musical features and rely on simple generation

schemes, such as hidden Markov models (HMMs) [37]. It captures the musical

style of the training data as mathematical models. Following these approaches the

resulting pieces usually consist of repetitive musical sequences with a lack thematic

structure.

With the increase in computational resources and recent researches in neural

network architectures, novel music generation may now be practical for large scale

corpuses leading to better results. Models look after a pleasant to hear outcome since

it is not easy to find an objective evaluation of the performance of the network.

Extremely good results are obtained with WaveNet model from the paper [42],

which works directly at waveform level and uses a very deep dilated convolutional

network to generate samples one at a time sampled at 16 KHz. By increasing the

amount of dilation at each depth, they are able to capture larger receptive fields and

thus, long range dependencies from the audio. Despite the extensive depth, training

the network is relatively easy because they treat the generation as a classification



19

problem. It is reduced to classify the generated audio sample into one of 255 values

(8 bits encoding).

Nonetheless, many recent studies that work with raw audio databases agree on

RNN as the preferred architecture [19, 28, 29] to learn underlying dependencies from

music input files. Both works [29] and [19] are based on LSTM networks trained with

data in the frequency domain of the audio. This enables a much faster performance

because it allows the network to train and predict a group of samples that make up

the frequency domain rather than one sample [19].

In practice it is a known problem of these models to not scale well at such a high

temporal resolution as is found when generating acoustic signals one sample at a

time, e.g., 16000 times per second. That is the reason why enlarging the receptive

field [42] is crucial to obtain samples that sound musical.

It may perhaps be considered without straying too far afield from our primary

focus some speech synthesis techniques, since it is one of the main areas within audio

generation. Conventional approaches typically use decision tree-clustered context-

dependent HMMs to represent probability densities of speech parameters given texts

[41, 50]. Speech parameters are generated from the probability densities to maxi-

mize their output probabilities, then a speech waveform is reconstructed from the

generated parameters. This approach has several advantages over the concatenative

speech synthesis approach [18], such as the flexibility in changing speaker identities

and emotions and its reasonable effectiveness. However, HMMs are inefficient to

model complex context dependencies and its naturalness is still far from that of

actual human speech.

Inspired by the successful application of deep neural networks to automatic speech

recognition, an alternative scheme based on deep NNs has increasingly gained im-

portance applied to speech generation, although it is worth to emphasize that NNs

have been used in speech synthesis since the 90s [21]. In the statistical parametric

speech synthesis (SPSS) field [49], DNN-based speech synthesis already yields better

performance than HMM-based speech synthesis, provided we have a large enough

database and under the condition of using a similar number of parameters [47].

Regarding acoustic speech modeling in speech generation, deep learning can also

be applied to overcome the limitations from previous approaches. These deep learn-

ing approaches can be classified into three categories according to the modeling

steps, as well as the relationship between the input and output features represented

in the model [26]:



20

1. Cluster-to-feature mapping using deep generative models. In this approach,

the deep learning techniques are applied to the cluster-to-feature mapping step

of acoustic modeling for SPSS, i.e., to describe the distribution of acoustic

features at each cluster. The input-to-cluster mapping, which determines the

clusters from the input features, still uses conventional approaches such as

HMM-based speech synthesis [25].

2. Input-to-feature mapping using deep joint models. This approach uses a sin-

gle deep generative model to achieve the integrated input-to-feature mapping

by modeling the joint probability density function (PDF) between the input

and output features. In [20], the authors propose an implementation with in-

put features capturing linguistic contexts and output features being acoustic

features.

3. Input-to-feature mapping using deep conditional models. Similar to the pre-

vious approach, this one predicts acoustic features from inputs using an in-

tegrated deep generative model [48]. The difference is that this approach

models a conditional probability density function of output acoustic features,

given input features instead of their joint PDF.



21

3. METHOD

This chapter describes the approach studied in this work to predict and generate

audio signals based on a deep CNN. The method mainly consist in predicting the

value of a sample based on a sequence of previous input samples. We could see the

entire system as a black box which receives a bunch of generated waves and outputs

a new synthesized audio signal. The model is trained on multiple batches composed

of shorter temporal segments from the original signals.

3.1 System overview

In this section the overview of the system is presented with a brief introduction to

all the steps in the pipeline. A depiction of the block diagram of the system is shown

in Figure 3.1.

The input data set is an ensemble of analog waves that are sampled and then

converted to discrete domain by a quantizer that approximates each continuous

value sample with a quantized level. The data is divided into three different parts:

training, validation and test set. Both training and validation sets are dynamically

one-hot encoded, arranged in batches and fed to a deep CNN, which is trained to

output the conditional probability for the next sample of every sequence. Once the

network has been trained, test signals are selected as different seeds to boost the

generation of new ones.

Input data set and its preprocessing to feed the network are explained in Section

3.2; network architecture and its training are explained in Sections 3.3 and 3.4

respectively; audio generation process is detailed in Section 3.5.

3.2 Data format

Waves generated and stored as the input data set are sampled following the Nyquist

criterion for an alias-free signal sampling. This is, the sample rate meets the require-

ment fs >2B, where B is the bandwidth of the input signal with highest frequency.



22

Figure 3.1 Block diagram depicting an overview of the system.

Hence, no actual information is lost in the sampling process. Notice that when

working with pure sinusoids, the bandwidth is equivalent to the signal’s frequency.

The discrete-time version of the original waves is then quantized. A simplified

model of the quantizer applied is depicted in Figure 3.2. The value of each input

sample is approached by the nearest quantization level Qi out of L = 2b possible

levels, where b is the number of bits. It is an uniform quantizer since the L output

levels and the quantization step ∆ are equally spaced. Zero-level is not a possi-

ble quantization level, being the quantizer symmetric with L/2 positive and L/2

negative output values. This characteristic is known as mid-riser approach.

To summarize, the uniform quantizer is specified with three parameters: i) the

dynamic range (−vsat, vsat); ii) the step size ∆; and iii) the number of levels L or,

equivalently, the number of bits b. The relation among these three parameters is

the following,

L∆ = 2vsat; 2b−1∆ = vsat. (3.1)

By representing a continuous-amplitude signal a(nTs) with a discrete set of values

an error is introduced in the quantized signal aq(nTs). We assume a quantization

error eq(nTs) given by the following equation:

eq(nTs) = aq(nTs)− a(nTs). (3.2)



23

Figure 3.2 A simple mid-riser quantizer with 8 quantization levels Qi and uniform
quantization step ∆.

As distance between quantization levels Qi is constant and equal to the quanti-

zation step ∆, i.e., Qi − Qi±1 = ∆, we can set a maximum for the error [2] as in

Equation 3.3,

|eq|≤
∆

2
for |a|< vsat. (3.3)

In this section we have introduced the preprocessing applied to each signal in

order to make them suitable to feed the network. However, we apply an additional

step within batch generator block (see Figure 3.1) to one-hot encode the quantized

signals to train the network. This process is detailed later in Section 3.4.

3.3 Neural Network Architecture

We train an artificial NN by showing it thousands of training examples and gradually

adjusting the network parameters until it gives the classification we want. The

network consists of several stacked layers of artificial neurons. Each wave is fed into

the input layer, goes across the hidden layers until eventually the output layer is

reached and the network, playing the role of a soft decision decoder, produces an

output.



24

One of the challenges of neural networks is understanding what exactly goes on at

each layer. It is known that after training, each layer progressively extracts higher

and higher-level features of the input, until the final layer essentially makes a soft

decision on what it is (what an image shows, what chord is being played, what is

the next sample of a given sequence). The output shapes a vector of probabilities

for each class after computing a softmax function used to normalize the output,

defined by Equation 3.4, such that softmax(xj) > 0 ∀j and
∑

m xm=1 [32],

softmax(xj) =
exj∑
m exm

. (3.4)

Baseline model. In order to understand the behavior of a deep CNN and to

test the best approach to generate new waves, we initially worked with the network

architecture depicted in Figure 3.3. Filter weights are uniformly initialized. At this

early stage we train the network with pairs of input sequences of length T and its

targets which only contain the next sample to the input sequence, i.e., sample T+1.

The length of the input waves matches the size of the receptive field of the network,

which also defines the number of hidden layers according to the following equation,

#hidden layers = log2(receptive field). (3.5)

In addition, hidden layers are convolutional layers with stride equal to two, causing

output’s size is half of input’s size. Therefore, taking into account this property

and Equation 3.5, the output of the last convolutional layer is a single value.

As an example, given an input sequence of 64-samples length, the network has

6 convolutional hidden layers whose intermediate signal’s lengths are 32, 16, 8, 4,

2, 1 respectively. Last output is then connected to a dense layer that calculates the

output of the network.

ReLU is the activation function of neurons in convolutional layers, while in the

dense layer depends on the solution studied. When testing classification perfor-

mance, softmax is applied to calculate the probability of belonging to each output

class for the next sample in the input sequence; in this case it can be directly in-

ferred that dense layer has as many output bins as quantization levels. When testing

regression, tanh is the activation function to output a real value.

Second model. Yet the baseline model proposed works well with short sequences

at low frequencies, we need to increase its complexity to handle larger receptive fields.

Recent advances in generative models for audio [42] and images [43] have stated the



25

Figure 3.3 Baseline model of the deep CNN proposed for early studies within this work.
The network depicted is an example with 64-length receptive field.

importance of a large receptive field to achieve a more natural synthesis, especially

when working with high temporal resolution tasks such as in raw audio generation.

Figure 3.4 Network architecture based on WaveNet model [42]. Residual block is stacked
k times in the network. Skip connections are stored and after k iterations are merged to
make the input to the next step in the pipeline. Output keeps the same shape than the
original input to the network.

With this purpose, we implement an adaption of WaveNet architecture presented

in [42]. The network topology is based on a deep CNN and presented in Figure

3.4. The main component of the architecture are causal convolutions. By using

causal convolutions we make sure the model cannot violate the ordering in which we



26

model the data: the prediction emitted by the model at timestep t does not depend

on any of the futures timesteps t + 1, t + 2, ... [42]. The inclusion of dilated causal

convolutions allows an exponential expansion of the receptive field without loss of

resolution or coverage [46], which favors long term memory; at the end it leads

to a robust wave generation and achieves the synthesis of new waveforms without

greatly increasing computational cost. Layers implementing a dilated convolution

are defined in Keras; we modified the standard layer to enable causal flag following

the code from github.com/basveeling/keras#@wavenet as a reference.

The block named residual block presents a feedback connection indicated by a

red arrow in the diagram, which means that the entire block is stacked k times, or

equally, log2(receptive field). The residual connection acts as the new input to the

block in the next iteration. After k iterations, the skip connections that have been

stored are merged and continue forward in the pipeline. Unlike with the previous

baseline model, now the target keeps the same size than the input segment, which

implies that we train the network with pairs of segments [0, ..., T] and [i, ..., T+i]

as input and target respectively.

3.4 Training the network

Quantized signals are split up into three groups as mentioned in Section 3.2. Train

and validation sets are the input to a batch generator which selects a certain number

of signals to feed the network at every training epoch. Due to memory restrictions

we shorten the signals to segments instead of feeding the entire signal at once. The

selected format for the training data is one-hot encoded. Figure 3.5 summarizes

the steps performed within the batch generator.

A large and deep neural network, with millions of parameters like the one studied

in this work, has enough flexibility to properly solve the problem, but will be also

very prone to overfit to the training data when this is scarce. For this reason, a

vast amount of training data is a key requirement to train a large and robust model.

In order to enhance the training process and to be able to generalize to unseen

data without a high storage demand, we produce new examples by introducing a

variation in the existing ones. Segments are randomly selected within each signal,

allowing us to augment the number of training examples seen by the network since

even two segments from the same original signal will have a different phase offset.

The generator yields batches with both training and target data. Target data is

generated from training data in two possible different manners.

Training one. First approach is to feed the network with batches composed of



27

Figure 3.5 Pipeline of the steps performed in the batch generator. It is called at the
beginning of every epoch to generate a new training batch. N is the number of signals in
the input set; n is the batch size, with n < N ; T is the length of the signals in the input
set; w is the length of the training segments, with w < T ; L is the number of quantization
levels.

Figure 3.6 Depiction of how segmentation and target generation work. On the left, there
are n signals randomly picked. Within each signal, every offset parameter points the
starting sample of every segment of fixed length w. On the right, two training approaches.
On top, target is a vector with the one sample encoded, adjacent to the end sample of the
input segment. Below, the parameter stride sets the shift -same value for all the segments-
from the starting sample of the input segment.



28

fixed size segments paired with one sample target. Signals are fed into the network

one segment at a time, and it is trained to predict the next sample in the sequence.

However, before yielding a batch, the segments are one-hot encoded. Each of them

is a matrix with as many columns as the segment size -number of timesteps- and

L rows -one per quantization level-. Therefore, it is a zero matrix filled with one

number 1 in every column in the corresponding position, as shown in the graphs

with green dots from Figure 3.5. Accordingly, target is a vector.

Training two. Both input and target have the same size, but target is shifted

a number of samples on time, what we called stride, as depicted on the right side

of Figure 3.6. Segment length is a design parameter which is carefully studied

and affects network performance. We mainly have two variations that distinguish

between segment length that matches receptive field size and segment length larger

than receptive field; implications of different segment size are explained in Chapter

4. Likewise training one, segments are one-hot encoded.

Loss function and optimizer. In both models and training approaches pre-

sented above, categorical cross entropy is computed as loss function. How cross

entropy performs and why it is a more accurate measure to evaluate the perfor-

mance of the network when working on classification tasks is explained in Section

2.3. Adam is the selected optimizer, set up with default parameters [22] after veri-

fying it is the configuration that provides better performance.

3.5 Audio generation

Audio generation process starts after having properly trained the neural network.

As explained in the previous section, the network is trained with a bunch of tones

in the first place. Once the trained architecture is capable to predict correctly pure

tones within the training range of frequencies, which does not necessarily mean these

tones belong to the training set, we save the network settings and proceed with the

generation phase. Since the aim of generation is to synthesize a new waveform,

it is advisable to the train the network with non-stationary signals. Thus, it is

more difficult to predict the sequential samples and the network has more degrees

of freedom to generate a new waveform.

It is a sequential process based on predicting the sample t+1 for a given sequence

of length t. Every time an output value is predicted, it is appended to the input

sequence and then fed back to the input of the network to predict the next sample,

as depicted on Figure 3.7. The initial sequence is known as seed and it belongs to

the test set. At this stage, the seed and the subsequent network inputs are segments



29

matching the size of the receptive field instead of using larger segments as in the

training process. This allows to accelerate the generation procedure.

As we can see in Figure 3.4, the output layer in the network is a softmax function

which gives us the conditional probability distribution over the individual audio

samples, p(xt|x1, ..., xt−1) for L output classes. This is, softmax function outputs

L probabilities per timestep to model all possible values. Therefore, the predictor

determines the new sample after calculating the maximum likelihood.

Then, we append the new sample at the end of the input sequence and shift by one

the consequential sequence, i.e., we keep the same segment length by including the

new prediction and deleting the first sample, oldest in time. We one-hot encode the

sequence and feed the network to make the next prediction. This iterative process is

repeated until we have generated the desired number of new samples. It is worth to

highlight the fact that the network will be eventually generating new audio samples

based on a completely predicted sequence.

Figure 3.7 Sound wave generation is an iterative process. Every time an output value
is predicted, the prediction is fed back to the input of the network to predict sequentially
the next sample.



30

4. EVALUATION

Our study takes pure sinusoidal waves, also known as tones, as the baseline ex-

periment. The results after training the system with these signals serve us as the

reference to evaluate the performance of the system with more complex waveforms.

Mathematically, a sinusoidal wave is given as:

s(t) = A(t) · sin(ωt+ ϕ) = A(t) · sin(2πft+ ϕ), (4.1)

where A is the wave amplitude, ω is the wave angular frequency, f is the frequency

in Hz and ϕ is the phase offset. Classic modulation techniques are amplitude,

frequency and phase modulation that encode information as variations in A, f and

ϕ respectively. However, if these parameters remain constant over time it leads to a

pure tone. Tones can also be mixed up to produce more complex waveforms.

System development and generation. Data generation, system development,

evaluation and post audio generation are entirely based on Python1. Design and

training of deep CNNs were built on Keras2, a modular neural network library

written in Python that enables fast experimentation.

4.1 Input dataset

In order to measure the performance of different NNs and test the influence of

hyperparameter values, we first create a dataset with 1500 pure sinusoids of one

second each, whose frequencies belong to an audible range from 100 Hz to 1 KHz.

Frequency and initial phase are randomly picked for every sinusoid; amplitude is set

to one. Sines are sampled at 8 KHz to lighten memory requirements and quantified

with 8 bits as shown in Figure 4.1. From now on, we will refer to this input data

set as set 1.

A second dataset aimed to achieve generation of new waveforms is created with

1url: www.python.org/downloads
2url: www.github.com/fchollet/keras



31

1500 mixture sinusoids of one second each, also sampled at 8 KHz and quantified

with 8 bits. Every signal is the result of adding two individual sines of different

random frequencies within the range 100 Hz to 1 KHz; its amplitude is normalized

to unity. Since this two sines are seldom harmonics, the final wave is not necessarily

stationary and it is hard to predict. This is a desirable characteristic to boost

generation of new waveforms which does not belong to the training set. On the

other hand, we can not objectively quantify the performance of the network even

though the sinusoids are deterministic functions because the generator outputs a

different waveform, i.e., with different phase, frequency and variable amplitude. As

we will see later, it does not predict the samples of the input signal as it is, but

generating a new signal. From now on, we will refer to this input data set as set 2.

Figure 4.1 256 quantization levels from 8 bit quantifier. Uniform quantization step ∆
with seven significant decimal digits. Maximum quantization error is ∆/2 ≈ 3.9E − 3
according to Equation 3.3.

In both sets we split up the data into three subgroups, taking into account the

importance to have enough data to validate the learning process so network does

not fail to overfit the training set. Thus, we have 900 waves to train the network,

450 to validation and 150 to test (60% train, 30% validation and 10% test).

4.2 Evaluation procedure

As explained in Section 2.6, it is not easy to devise an objective measure to quantify

an audio generator performance. Neither an evaluation of a multilabel classifier is

straightforward. However, the main goal in the latter is well known: to assess how



32

close the network prediction ŷ is to the target y. This is why we decide to undertake

an objective evaluation as if our system were a pure classificator, without including

the outcome from generation phase.

We firstly train a network architecture with set 1 and evaluate its performance

by means of a loss function. The main advantage of training the network with

stationary signals is that they are predictable and thus, we can quantify how well is

the network predicting samples over time. After the network is capable to estimate

correctly pure tones within both train and test sets, we save the progress made

through the learning process and record the elapsed time in training for future

comparisons. Then, we proceed to train the same architecture with set 2, save

weights of the network and load them into the generator (which basically is same

network architecture but this time, after the supervised training, predicts one sample

every timestep in an unsupervised way, as explained in Section 2.6). Subsequent to

the generation phase, we analyze visually and by listening the generated sequence.

Since it is a new waveform that does not continue the original seed shape, we can

only evaluate and validate it subjectively, provided that it is an audible segment,

far from being noisy or squeaky.

Loss function chosen to weigh the distance between the predicted class and the

target is categorical cross entropy, presented in Section 2.3 as the most suitable cost

function in multiclass classification tasks. We evaluate it in every training epoch

based on the ground-truth provided as the target, since first of all we follow a super-

vised learning technique. To support the results obtained with a second measure,

we evaluate it together with MSE (see Equation 2.8). Considering the quantiza-

tion values from Figure 4.1, we can set a maximum MSE for a single prediction

thinking of the worst-case scenario: the real value of the sample is the minimum,

i.e. -0.99609375, and the network predicts it is the maximum, i.e. +0.99609375. In

other words, it maximizes the numerator of the Equation 2.8,

EMAX
MSE =

∥−0.99609375− 0.99609375∥2

256
= 0.0155. (4.2)

Working with configuration from training two -stride parameter always set to one-

both categorical cross entropy and MSE are calculated and stored in every epoch.

Should we work with a segment length same as the receptive field size, it applies

solely to the last sample of each segment from a batch, i.e., the measures only take

into account the new sample predicted for the input sequence and compare it with

the actual value, which is the last sample of the target segment. This way we

skip calculation within the receptive field. Should we train the network with larger



33

segments, measures are computed for all the samples beyond the receptive field.

4.3 First Neural Network approach

Deep NNs have lately seen greater success in classification than in regression tasks

[23, 42]. with regard to classification, the problem is to identify to which of a set of

defined classes a new observation belongs, while the output in regression tasks is a

continuous value.

An initial research in this work is aimed to decide how to tackle the problem of

audio generation, as either regression or classification task. Regression is performed

with tanh activation function in the output layer yet we observed this nonlinearity

worked significantly better than ReLU , which was due to the fact that we work

with audio signals having negative values. We set up a modest experiment with

the baseline network architecture depicted in Figure 3.3 and a variation of set 1

as input, where segments are shortened to 16 ms (128 timesteps). We tested four

combinations, training either directly with raw values or one-hot encoded data for

both regression and classification tasks. Whereas in regression the target was the

next real value in the sequence, i.e., the value of the sample 129, in classification it

was one-hot encoded as shown in Figure 4.2.

Despite classification led to a higher MSE than regression when testing the per-

formance with the test set (an average of 0.046 versus 0.003, according to Equation

2.8), we decided to follow this approach since it performed better results in terms of

accuracy of the predicted signal when working with deeper NNs and ease the work

with larger sequences, which is essential to model longer term dependencies.

One-hot encoding input data forces us to work with 2D matrices instead of 1D

vectors and it has a highly negative impact in computational time required. We

observed one-hot encode solution performed four times slower than working directly

with real values. Nevertheless, it outperformed the train with raw values as input

data in terms of lower MSE for regression and higher accuracy in classification. This

fact, in addition to recent successful applications based on one-hot encoded data 3,

helped us to opt for an one-hot solution.

4.4 Second Neural Network performance

The NN based on WaveNet architecture (Figure 3.4) was chosen as final implemen-

tation after corroborating the key role played by dilated causal convolutions. We

3magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/



34

Figure 4.2 A tone from the training set one-hot encoded and its target.

analyzed two methods within training two set up. Method 1 trains the network

with segments whose length matches the receptive field size of the network. Method

2 was intended to train the network directly with entire signals of one second. As we

came across a memory allocation issue, we reduced the signals to shorter segments

of 500 ms randomly placed within the original waves. We tested different settings to

study the influence of hyperparameter values such as the receptive field size, batch

size, stride and segment length, as well as the computational time needed. Table

4.1 shows the constant parameters fixed after reading documentation [31, 42] and

previous test with the baseline network architecture. All experiments were run using

one NVIDIA Tesla K40 GPU accelerator card.

# filters: 256
filter length: 2
batch size: 32
epochs: 150
loss function: categorical crossentropy
optimizer: ADAM

Table 4.1 Fixed parameters of the CNN.

4.4.1 Batch size

Before setting the batch size to 32 segments as a fixed value, we run several tests in

order to verify the behavior of the network. At this step we work with signals from

set 1, a receptive field of 512 and 1024-samples input segments (what we can see

as a variant from Method 2 ). The reason of choosing an input segment length that



35

double the receptive field size is because it enhances the learning process compared

to Method 1, as explained later in Section 4.4.4, and it is more efficient than working

with 500 ms segments.

Figure 4.3 illustrates the evolution of cross entropy value when training the

network with different amount of examples. The batch generator implemented allows

us to train the network with more than one batch every epoch, which provides an

additional degree of freedom. This means that training with ten batches of size

32 signals (blue line in Figure 4.3) entails the network sees the same amount of

examples every epoch than training with five batches of size 64 (magenta line in

Figure 4.3). In both cases the network is trained with 320 different signals every

epoch, but arranged in different way. We can conclude that the network performs

better with major number of examples per epoch arranged in smaller batches, which

also reports a lower MSE (Table 4.2). As a compromise between computational

time and performance, we set ten batches of 32 signals (32x10) as baseline for future

experiments.

Figure 4.3 Evolution of the loss function across the training epochs when setting different
amount of examples per epoch. The legend shows how the examples are arranged: 32x10
references to ten batches of size 32, and so on.



36

Batch size 32x10 32x5 32x2 64x10 64x5 64x2
MSE (train set) 0,0025 0,0028 0,0031 0,0024 0,0026 0,0030
MSE (test set) 0,0039 0,0039 0,0039 0,0037 0,0039 0,0039

Table 4.2 MSE after 150 training epochs. MSE in test barely varies probably due to the
small size of the set.

4.4.2 Segment length

Prediction of the next sample in a given sequence highly depend on the data used

to train the network. It does not only depend on the range of frequencies, shape

and encoding of the signals but also on its duration. Likewise measuring the effect

of batch size, we train same CNN model with a receptive field fixed to 512 and

set 1. With a configuration of 32x10 batches, we run experiments with different

segment lengths as input signals. Considering that the original input dataset was

created with one second signals, it would be desirable to test the training feeding

directly the entire waves. However, it was not feasible due to computational power

restrictions and we decided to select 4000-sample segments, i.e., 500 ms if sampling

at 8 KHz, as the largest sequences to train.

Figure 4.4 illustrates the evolution of cross entropy value when training the

network with different segment sizes. It can be directly stated that training with

segments longer that the receptive field favor the learning process: it converges faster

and achieves lower value for the loss function and MSE as exposed in Table 4.3.

However, we observe that provided they are larger than the receptive field, enlarge

its size does not affect the cross entropy or MSE.

Segment length 512 1024 2048 4000
MSE (train set) 0,0036 0,0025 0,0025 0,0024
MSE (test set) 0,0039 0,0039 0,0039 0,0038

Table 4.3 MSE after 150 training epochs. MSE in test barely varies probably due to the
small size of the set.

Training with larger sequences also benefit post audio generation. Despite the

fact that CNNs were not designed to preserve long term memory, training with

segments of longer duration helps to overcome this drawback when trying to model

temporal dependent sequences as speech, audio or text sentences. On the other

hand, this sort of training highly increment the computational power needed and it

was impracticable with the existing technology few years ago.



37

Figure 4.4 Evolution of the loss function across the training epochs when using different
segment lengths as input sequences. All the experiments were run with a receptive field
size of 512 and 320 examples per epoch arranged in batches of size 32, i.e., 32x10.

4.4.3 Receptive field size

One of the key concepts when working with a CNN is the receptive field of the

network. As a reminder of Section 2.4, we connect each neuron to only a local region

of the input volume, which we call receptive field. It is important to emphasize that

connections are local in space (along width and height) but always full along the

entire depth of the input volume, which in our case has depth 1. All neurons have

the same receptive field size.

Figure 4.5 and 4.6 illustrate the impact of varying the size of the receptive field,

training with signals from set 1. We analyze it following Method 1 and 2 exposed

above in Section 4.4. When training with the second method we set the maximum

segment size up to test its behavior since it is the configuration we choose later for

generation. From the graph on Figure 4.6 showing results for Method 2, we can

tell that the performance of the network barely varies with size of the receptive field

in terms of loss function. In the same manner, the progress of cross entropy with

Method 1 is similar for all the sizes tested (Figure 4.5). Nonetheless, it is clear that

larger sequences equally benefit all the studied configurations. MSE calculated after



38

150 training epochs is indicated in Table 4.4 and 4.5; it agrees with the behavior

shown in graphs and Method 2 achieves lower values.

Figure 4.5 Loss function across the training epochs when using Method 1. Legend on
top-right corner indicates the size of the receptive field, which matches with input segments
length.

Method 1 32 64 128 256 512 1024
MSE (train set) 0,0039 0,0037 0,0037 0,0036 0,0036 0,0037
MSE (test set) 0,0039 0,0039 0,0038 0,0038 0,0039 0,0039

Table 4.4 MSE after 150 training epochs. MSE in test barely varies probably due to the
small size of the set.

Method 2 32 64 128 256 512
MSE (train set) 0,0025 0,0026 0,0026 0,0027 0,0024
MSE (test set) 0,0039 0,0039 0,0038 0,0038 0,0038

Table 4.5 MSE after 150 training epochs. MSE in test barely varies probably due to the
small size of the set.

4.4.4 Computational time

The main consequence of training with entire -or at least larger- signals is to make

the processing faster. Yet it does not affect the manner the network learns the



39

Figure 4.6 Loss function across the training epochs when using Method 2. Input seg-
ments length is fixed to 4000-samples. Legend on top-right corner indicates the size of the
receptive field.

underlying structure of the data to predict next samples, it has a big impact on

computational time needed for training.

Table 4.6 displays how Method 2 can be over 500 times faster than the first

method. The main ingredient that allows to dramatically increase the number of

sequences processed per second is the amount of input/output pairs the network sees

from a single input segment. In other words, an input/output pair (x,y) corresponds

to an input segment and its target with same length as the receptive field of the

network. The first method only provides one pair (x,y) because the input segment

matches the receptive field size. However, the second method provides many more

pairs (x,y) because we feed the network with input segments much larger than the

receptive field, and it is the network who automatically generate these sub-segment

pairs. For instance, Method 2 in Table 4.6 (right) provides 3489 input/output

pairs since we feed segments of 4000 samples to a network with receptive field 512.

Directly, 4000 − 512 + 1 = 3489 with target sequences that are same as input but

shifted by one sample in time. Due to the benefit it implies, we do not need to

train the network with so many initial input segments. That is why we halve the



40

number of batches per epoch and still obtain better performance, as we could see in

the subsequent results.

Method 1 Method 2

receptive field: 512 receptive field: 512
segment length: 512 segment length: 4000
i/o pairs: 1 i/o pairs: 3489
segments seen every epoch: 320 segments seen every epoch: 160
time/epoch: 34 s time/epoch: 108 s
i/o pairs processed per second:

⌊1×320
34

⌋ = 9
i/o pairs processed per second:

⌊3489×160
108

⌋ = 5168

Table 4.6 Comparison between the two methods studied. Method 2 on the right of the
table is 574 times faster than method 1.

Bar charts from Figure 4.7 and 4.8 depict computational time and amount of

network parameters among a range of receptive field sizes training the second model

network with the first and second method described above. Whereas Figure 4.7

shows the distribution when training with input segments matching the receptive

field size, Figure 4.8 corresponds with a train of the network with same settings

but larger segments -a fixed segment length of 500ms-.

Since we keep same network configuration in both experiments, the amount of

parameters remain invariant and grows linearly with the receptive field. However,

analyzing the trend of computational time needed in both cases, we easily verify it

is independent of the receptive field size (see Figure 4.8) but follows an exponential

dependence with Method 1 approach (see Figure 4.7). Bar chart depicted in Figure

4.9 shows a linear growth of the elapsed time accordingly to the segment length.

4.4.5 Audio generation

After a thorough study of the deep CNN adopted as the preferred architecture,

we select several configurations to proceed with the generation of new waveforms

using signals from set 2. Best results were obtained with Method 2, so we directly

consider this as unique to generation. Figure 4.10 serves as a visual verification

and justify the fact that Method 1 is inadequate for synthesis, even working with

simple sines from set 1. As explained in previous chapters, we lack of an objective

measure to evaluate the quality of the new auto-generated waves from set 2 since the

prediction does not continue the original seed shape. It implies we value the quality

of generation based on our personal judgment, and, as stated above, we validate the

new waveform provided that it is an audible segment without noise artifacts.



41

Figure 4.7 Bar chart depicting amount of parameters (purple), computational training
time (blue) for 150 epochs and its trend line with different receptive field sizes. Coefficient
of determination (R2) indicates linear and exponential regression perfectly fit the pertinent
data. This experiment was performed with input segments to the network matching the
size of its receptive field, batch size: 32x5.

Figure 4.8 Bar chart depicting amount of parameters (purple) and its trend line and
computational training time (blue) for 150 epochs, with different receptive field sizes and
batch size 32x5. Coefficient of determination (R2) indicates linear regression perfectly fit
the distribution. Notice that training time is approximately constant and independent of
the receptive field size.



42

Figure 4.9 Bar chart depicting computational training time needed for different seg-
ment lengths. Coefficient of determination (R2) indicates linear regression perfectly fit the
distribution. Receptive field is set to 512, batch size is 32x5.

Before training again the model with more complex input data, we verify that it is

actually capable to predict any simple sinusoid with a frequency within the training

range, i.e., [100, 1000] Hz. We can see some examples in Figure 4.11 for networks

with different receptive fields trained with 4000-sample input segments. All of them

predict correctly the given sequence.

Nevertheless, network performance is strongly different if training with non sta-

tionary signals and the segment length has a bigger impact in the performance.

Figure 4.12 show generation with a same network set up but trained with dif-

ferent segment lengths. It is clear the benefit of increasing the length of training

sequences, yet we obtain more natural waves without presence of noise artifacts or

constant intervals.

The vital importance of a model with large receptive field is shown in Figure

4.13, which supports the use of dilated convolutions to increase even more the

receptive field size without greatly increasing computational cost. The generation

with a receptive field of 256 results in an inconsistent waveform, where seems to be

a concatenation of different pieces: from 0.05 to 0.09 seconds where could try to

follow the trend of the original seed, from 0.09 to 0.14 seconds where it becomes

more spiky and from 0.14 to the end, where it is just noise. Both networks were

trained with 32x10 batches per epoch and 4000-sample length segments.



43

Figure 4.10 Snippet of a generated sinusoid. The seed used is in blue; the continuation
of the wave in red indicates the component predicted by the network. It is obvious that
Method 1 (on the left) is not valid for generation since the prediction is not even close
to a sinusoid. In both situations the network has a receptive field size of 512 and it was
trained with 4000-sample segments, 32x10 batches, 150 epochs.

Accordingly to what stated in Section 4.4.1, the more examples we train a network

with, the better results we achieve. It becomes clear when we test generation with

same network set up (512 receptive field, 4000-sample segments), but trained with

32x5 and 32x10 examples per epoch. In Figure 4.14 we can check how differ the

outcome of the network. While the latter provides a reasonable good generation,

the wave obtained after training the network with half of examples is rather unhar-

monious. Table 4.7 gather what we considered the best settings among all tested

for generation of new waveforms, meeting computational requirements and results

achieved.

4.5 Discussion

Feeding the network with sequences larger than the receptive field of the network

outperform the approach described in Method 1. Enlarge the length of the inputs



44

Figure 4.11 Snippet of generated sinusoids. The seed used is in blue; the continuation
of the wave in red indicates the component predicted by the network.

receptive field size: 512
# filters: 256
filter length: 2
batches: 32x10
epochs: 150
loss function: categorical crossentropy
optimizer: ADAM
segment length: 4000 samples

Table 4.7 Desired configuration of the CNN and input data for generation. Elapsed time
in training: 8,5h.



45

Figure 4.12 Snippet of generated sinusoids. On top, a wave generated by a network
trained with 1024-sample sequences; on the second row, a wave generated by same net-
work trained with 2048-sample sequences; at the bottom, a wave generated by the same
network trained with 4000-sample sequences. Different seeds used are depicted in blue; the
continuation of the wave in red indicates the component predicted by the network.

Figure 4.13 Snippet of generated sinusoids. On top, a wave generated by a network of
receptive field 256; below, a wave generated by a network of receptive field 512. Seed used
is depicted in blue; the continuation of the wave in red indicates the component predicted
by the network.



46

Figure 4.14 Snippet of generated sinusoids. On top, a wave generated by a network
trained with 32x5 batches every epoch; below, a wave generated by the same network trained
with 32x10 batches every epoch.

affects computational cost adversely, with a linear increase of the training time.

However, it is evident that it is necessary in order to achieve a more continuous and

natural synthesis and get rid of noise artifacts or spikes, although it does not modify

the context information that a NN is using to do individual predictions.

In addition, large sequences entail a significant increment of the amount of exam-

ples seen by the network every epoch in a more efficient way than simply increasing

the batch size, as proved withMethod 2 in Table 4.6. Despite the fact that objective

measures reveal little improvement with the growth of input segment lengths once

they have doubled the receptive field size, see Figure 4.4, it is an important factor

in generation phase. Likewise, enlarging the receptive field of the network leads

to a similar behavior. Waves synthesized from networks trained with longer input

sequences or bigger receptive fields seem to be reasonably better, while if trained

with shorter sequences (or, equally, shorter receptive field) the generation seems to

be random, i.e., shape of the waveform at certain time is inconsistent with previous

timesteps, and it is more prone to get stuck eventually and output a constant value.

As we are working with a deep network architecture, the size of the input dataset



47

is crucial to achieve a proper training and meaningful results. Likewise, the amount

of sequences shown to the network in every epoch has a key role and it has been

evidenced either with objective measures and later in generation. Since we studied

generation from simple signals constrained to a mixture of two sinusoids, we were

able to synthesize new waveforms correctly with a modest database. Notice that

in order to generate real audio signals, the input database should be much bigger

as well as computational resources. As a reference, WaveNet model was trained

with MagnaTagATune dataset, which consist of about 200 hours of music audio,

and YouTube piano dataset, which consist of about 60 hours of solo piano music.

Overfitting was a persistent issue encountered in training the networks, which was

noticeable with test signals from set 1 mainly. However, our ultimate objective was

the generation of new waveforms based on set 2, where overfitting did not suppose

a major impediment. Including regularization techniques, more data augmentation

methods or a bigger amount of sequences shown to the network every training epoch

would possibly help to generalize the network performance but increasing overall

computational time.



48

5. CONCLUSIONS

In this work we have studied the use of a deep convolutional neural network for audio

generation. We have presented the fundamentals of CNNs and audio generation

constrained to a mixture of two sinusoids. We studied an autoregressive model of

deep CNN that operates directly at the waveform level.

Despite CNNs were not firstly intended to process temporal sequences due to the

lack of feedback connections, which provide recurrent neural networks with past

context information, nowadays they are capable of eventually modeling long-range

temporal dependencies. The way many problems are approached has changed thanks

to the development of a field called deep learning. A deep CNN built on dilated

convolutions, such as the final architecture adapted from WaveNet model studied

in this work, possesses a receptive field that exponentially grows with depth of the

network. It increases the model capacity to model temporal correlations at longer

timescales, which allows the model to generate new waveforms. The baseline CNN

studied at the beginning of this work was not deep enough to model the long-

range temporal dependencies in audio signals and was not suitable for generation.

Therefore, we ended up facing the issue of properly training a deep architecture with

the final network studied. We were capable to synthesize new waveforms correctly

with a modest database thanks to the nature of input signals, albeit we could not

avoid overfitting.

The approach proposed in Method 2, i.e., training the network with large in-

put sequences, is more efficient and outperforms the training with segment lengths

matching the receptive field size. After testing different training scenarios, we can

conclude that the more training examples we feed to the network, the better gener-

ation we obtain in terms of a natural and harmonic sound. In addition, it also helps

the reduce overfitting.

Due to the lack of an objective method to properly assess the quality of new

synthesized signals, we approached the problem of generation as a classification

task with pure tones in the first place. After predicting the next sample in a given

sequence, we evaluated it and proceeded to either validate that model for generation



49

or directly discard it. A new metric should be implemented in order to get more

accurate judgments, equally valid in the previous classification stage and in posterior

generation.

Having access to a powerful computational device such as a GPU is crucial to con-

duct research within deep learning field. Since training a deep network is already

a computational expensive task, we should do further studies in order to code the

models efficiently. At training time, we take advantage of GPU parallelization of the

convolution operations. However, in generation phase, the predictions are sequen-

tial: after each sample is predicted, it is fed back into the network to predict the

next sample. In [31] an efficient implementation of any generation model based on

dilated convolution layers is presented. Their approach removes redundant convo-

lution operations by caching previous calculations, greatly reducing computational

complexity without sacrificing space complexity. Its inclusion in this work could be

the following step to study a CNN at a deeper level.

Regarding the audio generation results, future work should concentrate on training

the network with real audio databases. Another line of work that draws attention

is to test the model studied in different applications, such as multi-speaker speech

generation.



50

BIBLIOGRAPHY

[1] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,

“Convolutional neural networks for speech recognition,” IEEE/ACM Transac-

tions on Audio, Speech and Language Processing (TASLP), vol. 22, no. 10, pp.

1533–1545, 2014.

[2] N. Benvenuto and M. Zorzi, Principles of Communications Networks and Sys-

tems, 1st ed. US: John Wiley and Sons Inc, 2011.

[3] M. Caudill, “Neural networks primer, part i,” AI expert, vol.2, no.12, pp. 46–52,

1987.

[4] K. Cho, Foundations and Advances in Deep Learning. Doctoral Thesis, Aalto

University, 2014.

[5] R. Collobert and J. Weston, “A unified architecture for natural language pro-

cessing: deep neural networks with multitask learning.” ACM, 2008, pp.

160–167.

[6] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolutional

networks for text classification,” 2016.

[7] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning,

2014th ed. London: Springer London, 2014; 2013.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-

line learning and stochastic optimization,” The Journal of Machine Learning

Research, vol. 12, pp. 2121–2159, 2011.

[9] K. Funahashi, “On the approximate realization of continuous mappings by

neural networks,” Neural Networks, vol.2, no.3, pp. 183–192, 1989.

[10] X. Glorot and Y. Bengio, “Understanding of the difficulty of training deep

feedforward neural networks,” AISTATS 9, pp. 249–256, 2010.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

www.deeplearningbook.org.

[12] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” CoRR, vol.

abs/1410.5401, 2014.

www.deeplearningbook.org


BIBLIOGRAPHY 51

[13] L. Grippo, A. Manno, and M. Sciandrone, “Decomposition techniques for multi-

layer perceptron training,” IEEE Transactions on Neural Networks and Learn-

ing Systems, vol. 27, no. 11, pp. 2146–2159, 2016.

[14] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural

networks for acoustic modeling in speech recognition: The shared views of four

research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97,

2012.

[15] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol.2, no.5, pp. 359–366, 1989.

[18] A. J. Hunt and A. W. Black, “Unit selection in a concatenative speech synthesis

system using a large speech database,” vol. 1. IEEE International Conference

on Acoustics, Speech, and Signal Processing Conference Proceedings (ICASSP),

1996, pp. 373–376.

[19] V. Kalingeri and S. Grandhe, “Music generation with deep learning,” CoRR,

vol. abs/1612.04928, 2016.

[20] S.-Y. Kang, X.-J. Qian, and H. Meng, “Multi-distribution deep belief network

for speech synthesis.” IEEE International Conference on Acoustics, Speech,

and Signal Processing Conference Proceedings (ICASSP), 2013, p. 80128016.

[21] O. Karaali, G. Corrigan, and I. Gerson, “Speech synthesis with neural net-

works,” World Congress on Neural Networks, pp. 45–50, 1996.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2014.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Advances in Neural Information Process-

ing Systems (NIPS), pp. 1097–1105, 2012.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.



BIBLIOGRAPHY 52

[25] Z.-H. Ling, L. Deng, and D. Yu, “Modeling spectral envelopes using restricted

boltzmann machines and deep belief networks for statistical parametric speech

synthesis,” IEEE Transactions on Audio, Speech and Language Processing,

vol. 21, no. 10, p. 21292139, 2013.

[26] Z.-H. Ling, S.-Y. Kang, H. Zen, A. Senior, M. Schuster, X.-J. Qian, H. M. Meng,

and L. Deng, “Deep learning for acoustic modeling in parametric speech gen-

eration: A systematic review of existing techniques and future trends,” IEEE

Signal Processing Magazine, vol. 32, no. 3, pp. 35–52, 2015.

[27] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bulletin of Mathematical Biophysics, vol.5, Issue 4, pp. 115–

133, December 1943.

[28] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville,

and Y. Bengio, “Sample rnn: An unconditional end-to-end neural audio gener-

ation model,” CoRR, vol. abs/1612.07837, 2016.

[29] A. Nayebi and M. Vitelli, “Gruv : Algorithmic music generation using recur-

rent neural networks,” Course CS224D: Deep Learning for Natural Language

Processing (Stanford), 2015.

[30] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,

2015, neuralnetworksanddeeplearning.com.

[31] T. L. Paine, P. Khorrami, S. Chang, Y. Zhang, P. Ramachandran, M. A.

Hasegawa-Johnson, and T. S. Huang, “Fast wavenet generation algorithm,”

CoRR, vol. abs/1611.09482, 2016.

[32] G. Parascandolo, Recurrent neural networks for polyphonic sound event detec-

tion. Master of Science Thesis, Tampere University of Technology, 2015.

[33] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Ima-

genet classification using binary convolutional neural networks,” CoRR, vol.

abs/1603.05279, 2016.

[34] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain,” Psychological Review, vol.65, no.6, pp. 386–408,

November 1958.

[35] D. E. Rumelhart and J. L. McClelland, Parallel distributed processing: Vol.

1, Foundations / explorations in the microstructure of cognition. Cambridge,

MA: MIT Press, 1987.

neuralnetworksanddeeplearning.com


BIBLIOGRAPHY 53

[36] J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural net-

works : the official journal of the International Neural Network Society, vol. 61,

pp. 85–117, 2015; 2014.

[37] W. Schulze and B. van der Merwe, “Music generation with markov models,”

IEEE Multimedia, vol. 18, no. 3, pp. 78–85, 2011.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[39] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to

human-level performance in face verification.” IEEE Conference on Computer

Vision and Pattern Recognition, 2014, pp. 1701–1708.

[40] T. Tieleman and G. Hinton, “Lecture 6e: Divide the gradient by a running

average of its recent magnitude,” COURSERA: Neural Networks for Machine

Learning, 2012.

[41] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, “Speech

synthesis based on hidden markov models,” Proceedings of the IEEE, vol. 101,

no. 5, pp. 1234–1252, 2013.

[42] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative

model for raw audio,” CoRR, vol. abs/1609.03499, 2016.

[43] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,

and K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,”

CoRR, vol. abs/1606.05328, 2016.

[44] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. Doctoral Thesis, Harvard University, 1974.

[45] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” CoRR, vol.

abs/1410.3916, 2014.

[46] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

CoRR, vol. abs/1511.07122, 2015.

[47] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech synthesis

using deep neural networks.” IEEE International Conference on Acoustics,

Speech, and Signal Processing Conference Proceedings (ICASSP), 2013, pp.

7962–7966.



Bibliography 54

[48] H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech synthe-

sis using deep neural networks.” IEEE International Conference on Acous-

tics, Speech, and Signal Processing Conference Proceedings (ICASSP), 2013,

p. 79627966.

[49] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech synthesis,”

Speech Communication, vol. 51, no. 11, pp. 1039–1064, 2009.

[50] H. Zen, K. Tokuda, and T. Kitamura, “Reformulating the hmm as a trajectory

model by imposing explicit relationships between static and dynamic feature

vector sequences,” Computer Speech & Language, vol. 21, no. 1, pp. 153–173,

2007.


	Introduction
	Background
	Perceptron
	Activation Function
	Neural Networks
	Convolutional Neural Networks
	Deep Learning
	Audio generation

	Method
	System overview
	Data format
	Neural Network Architecture
	Training the network
	Audio generation

	Evaluation
	Input dataset
	Evaluation procedure
	First Neural Network approach
	Second Neural Network performance
	Batch size
	Segment length
	Receptive field size
	Computational time
	Audio generation

	Discussion

	Conclusions
	Bibliography

