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Diffraction is fundamentally a wide scale phenomena, and well understood from
macroscopic mechanical waves up to quantum mechanical electron diffraction. How-
ever, hadronic diffraction is still missing a rigorous quantum field theoretical formu-
lation, but it can be experimentally probed in high energy accelerators. Because
diffraction is inherently a coherent process, it allows a unique perspective to probe
partonic inner structure of protons (hadrons) and relativistic space-time evolution
of high energy hadron-hadron collisions.

In this thesis a Bayesian, probabilistic multivariate approach is developed for
experimentally classifying diffractive hadronic scattering events from non-diffractive.
For each measured collision event, the algorithm assigns a finite probability to an
event to belong to a diffractive or non-diffractive process class. By integrating these
probabilities over the full data sample, the interaction probabilities, known as cross
sections, are estimated for different processes. The approach is Bayesian because it
partly relies on the theoretical prior knowledge of cross sections.

This probabilistic way is shown to be a sound approach, because hard event-
by-event decisions are both theoretically and experimentally not uniquely definable.
The reasons for this are thoroughly explained in this thesis. The underlying al-
gorithm is based on ℓ1-norm regularized multinomial logistic regression. This reg-
ularization is shown to provide a mathematical view to the de-facto experimental
physical signature of hadronic diffraction, known as the large rapidity gap.

The experimental part of the thesis is done with proton-antiproton data collected
in the CDF run II experiment at the center of mass collision energy

√
s = 1.96 TeV

at Fermilab. For the first time major components of the proton-antiproton scattering
total cross section are estimated using a multivariate algorithm. The obtained cross
sections for single diffractive σSDL = (4.87 ± 1.06) mb, σSDR = (4.83 ± 1.04) mb,
double diffractive σDD = (6.16± 1.93) mb and non-diffractive σND = (45.20± 1.59)
mb match the phenomenological theory predictions within errors. Results of the
thesis indicate that the probabilistic approach is viable, and emphasize also the
importance of experimental forward (small-angle) instrumentation that is limited at
the CDF detector.
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Chapter 1

Introduction

The physics of strong interactions is modelled using non-Abelian SU(3) gauge field
theory called Quantum Chromodynamics (QCD). Hadrons, like protons or neutrons,
are composite objects made of quarks and interactions between these quarks are
propagated by gluons. The so-called confinement property of QCD guarantees that
quarks are never seen free. Out of hadrons, baryons are made of three valence quarks
and mesons of two. However, the structure is actually much more complicated as
inside the hadrons there are also so-called sea quarks and gluons which become
evident with higher energies.

In this thesis, a probabilistic multivariate classification framework is developed
for the difficult problem of classifying diffraction in high energy physics. That
means, proton-antiproton pp̄-collisions are classified into different major scattering
processes, i.e. diffractive or non-diffractive. Unfortunately, in practise the classi-
fication is an ill-posed inverse problem, especially experimentally. The classes are
not uniquely definable, thus makes it an ill-posed problem in the sense of classic
Hadamard definition. This fact stands out as a need for an approach which takes
this into account.

Understanding diffraction is a major part of the ultimate goal, which is to have a
complete picture of hadronic dynamics and the structure of hadrons. Diffraction in
high energy physics can be approximately categorized into soft and hard diffraction
based on 4-momentum transfer. Diffraction is predominantly soft and thus pertur-
bative QCD is not a solution for theoretical predictions due to divergent power series
expansion. Classic phenomenological approaches are based on Regge theory where
soft diffraction is described with a Pomeron exchange, which is an object with quan-
tum numbers of vacuum. Monte Carlo parametrizations are however very different,
and there is no real consensus of how hadronic diffraction should be really treated.

The key of our approach is in probabilistic output, which is used to weight
physical variables according to their probabilities to belong to different classes, e.g
to signal or background processes. This gives more accurate distributions of physical
variables. The framework itself is general and transparent enough to be used with
several kind of particle physics analysis where currently Boosted Decision Trees,
Neural Networks and traditional hand-tuned variable histogram cuts dominate.

The most straightforward way of utilizing our classification framework is to cal-
culate estimates of relative cross sections for different scattering processes by inte-
grating obtained probabilities. Given a priori measured total inelastic cross section
σinel or integrated luminosity

∫
L dt, absolute cross sections can be estimated. The
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first results of this approach with real data are presented, using the CDF run II
experiment 0-bias pp̄-run collected at

√
s = 1.96 TeV center of mass energy. The

CDF run I experiment measured earlier the cross sections of single diffraction [34]
and double diffraction [3] at

√
s = 1.8 TeV. However, comparison with the results

from this thesis and CDF I results can be done using the higher energy predictions
by MBR (Minimum Bias Rockefeller) event generator model in PYTHIA 8 [16] at√
s = 1.96 TeV. This is because the MBR model is basically tuned to match the

results of CDF run I measurements.
Our framework takes a pragmatic approach, i.e. the algorithms obey definition

of diffraction described by the selected Monte Carlo generator. Thus, if there is a
mismatch between classification results and the real world, allegations can be for-
warded to the corresponding physics generator or detector response modelling. It
should be emphasized that the framework developed in this thesis is fundamentally
different way to measure diffraction than what has been done previously in tradi-
tional rapidity gap analyses [3,34]. This is because all the major inelastic scattering
process classes are taken into account simultaneously and background corrections
are obtained directly via probabilistic weighting.

The Standard Model is introduced in Chapter 2 and the basis of proton structure
knowledge in Chapter 3. Then diffraction and diffraction as a quantum mechanical
process are described in Chapters 4 and 5, respectively. A short hadron collider
phenomenology round up is in Chapter 6 and the Tevatron hadron collider with
the CDF experiment are introduced in Chapter 7. The mathematical basis for the
multivariate analysis is given in Section 8 and the actual analysis algorithm, spar-
sity regularized multinomial logistic regression, is described in Chapter 9. Finally,
the results with CDF data are given in Chapter 10, with relevant discussion and
conclusions finally given in Chapter 11.



Chapter 2

The Standard Model in a nutshell

Particle physics is described by the Standard Model (SM) of particle physics, which
is a gauge field theory. It can be considered as a triumph of theoretical and experi-
mental physics, but it leaves several questions unanswered. The first building block
of the SM was Quantum Electrodynamics (QED), which describes electromagnetic
interactions at quantum level in a relativistic way. In theory, the classic Maxwell
equations come out from QED as macroscopic, differential-geometrical descriptions
of classic fields.

Next interaction included in the SM was the weak-interaction, which was com-
bined together with the electrodynamic interaction to produce the theory of elec-
troweak interactions (EW). The Higgs mechanism together with Yukawa interaction
is used to describe how gauge bosons (force propagators) and fermions (matter par-
ticles) acquire mass. This involves the so-called spontaneous symmetry breaking of
the electroweak theory.

Chronologically, the last thing to complete the SM was Quantum Chromody-
namics (QCD), which describes strong interactions. The strong interactions are
responsible for ordinary atomic nucleus not breaking apart, and describes the par-
tonic structure of nucleons inside nucleus.

3
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2.1 Symmetries and particles

Particle physics is based on an idea that interactions between particles and the
conservations laws are coming from physical symmetries. Symmetries that are based
on transforms can be continuous (like translation) or discrete (like parity inversion).
The famous Noether’s theorem says that for every continuous symmetry, there is a
conserved quantity [25].

Space-time symmetries

For space-time continuous symmetries, this means that momentum conservation is
a result of invariance under space translations. In a same way, energy conservation
comes from invariance under time translations. Together, these can be represented
mathematically as 4-momentum conservation and they form Abelian Lie group of
translations in the Minkowski space-time M4. In practise, highly important relation
is the dispersion relation [45]

E2 = |~p|2 +m2 (2.1)

where ~p is the relativistic 3-momentum of the particle, m is the invariant mass and
E is the total energy. In the rest frame ~p = ~0 and thus E = m, which is the
Einstein’s famous E = mc2 in natural units (c = 1, ~ = 1) (see Appendix A.1). By
definition, in the center of mass (CMS) frame of particles

∑

i ~pi =
~0. Note that for

a system X of particles, e.g. γγ pair, the invariant mass mX is not equal to the sum
of individual invariant masses, which is identically zero in this case.

In addition to translations, also crucial are Lorentz boosts (moving frames) and
rotations in the Minkowski space which are transformations of hyperbolic geometry
of special relativity. Direct analogies are the classic Galileo transformations and
rotations of the Euclidean space.

Combined group theoretically, all these space-time symmetries form the non-
Abelian Poincaré symmetry group P (1, 3) = R1,3 ⋊ SO(1, 3) with 10 generators,
which a semi-direct product between the group of translations and the Lorentz
group. The irreducible representations of the Poincaré group are linked with the
particles, with non-negative mass and integer or half-integer spin as indices. [45]

Local gauge symmetries

In the SM, internal symmetries generate the interactions between particles, and
these symmetries are described by the gauge group made of Lie groups

GSM = SU(3)C × SU(2)L × U(1)Y , (2.2)

with the corresponding Lie algebras su(3), su(2), u(1). By Noether’s theorem, the
corresponding conservation laws are the conservation of color charge, weak isospin
and electric charge. For more details see Appendix A.3. The full symmetry group
of the SM is thus [45]

P (1, 3)×GSM . (2.3)

The gauge symmetry is local, which means it depends on the space-time point x ∈
M4. This need for a local gauge symmetry is sometimes seen as a fundamental
philosophy or an aesthetic goal of modern particle theories. It means that by any
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means, field theories are usually built in a way that the gauge symmetry must not
be broken.

The non-Abelian Lie group SU(3)C describes QCD gauge symmetry, the non-
Abelian SU(2)L the weak force and the Abelian U(1)Y describes the gauge symmetry
of the electromagnetic interactions. Together, SU(2)L × U(1)Y form the celebrated
theory of electroweak interactions. The color charge of a particle describes how it
transforms under SU(3), the weak isospin T3 how it transforms under SU(2) and
the weak hypercharge Y describes the transformations under U(1). The last two
are related to the electric charge Q by formula [29]

Q = T3 + Y/2. (2.4)

The electroweak theory is a chiral gauge theory. In practise, chirality is mathe-
matically reflected by the fact that there are both left-handed SU(2) doublets and
right-handed singlets, which are explained later in the context of Lagrangians. In
practise, only left-handed fermions or right-handed antifermions can interact in the
charged current (CC) weak interactions via W±-bosons. In contrast, the weak neu-
tral currents (NC) can interact with right-handed fermions and left-handed an-
tifermions via Z0-boson. See Figure 2.3 for Feynman diagrams of basic interaction
vertices. One must remember that the antiparticle of a left-handed fermion is right-
handed, and the antiparticle of a right-handed fermion is left-handed. [15, 45]

Table 2.1: Differences between chirality and helicity, where γµ are Dirac gamma
matrices, ~σ is a spin vector and ~p is a 3-momentum vector. [29]

Mass Property Chirality operator Helicity
γ5 = iγ0γ1γ2γ3 ~σ · ~p

m = 0 Constant of motion yes yes
Lorentz invariant yes yes

m 6= 0 Constant of motion no yes
Lorentz invariant yes no

The handedness of a particle is given by its chirality operator, and for massless
particles it equals particles helicity which is a dot product between particles 3-
momentum and spin. Note that spin is not affected by Lorentz boosts, but 3-
momentum naturally is. This equivalence between chirality and helicity does not
hold for massive particlesm 6= 0, because helicity is not a Lorentz covariant quantity.
See Table 2.1 for a comparison. Helicity is not a constant of motion for massive
particles because it does not commute with the total energy operator, i.e. with
Hamiltonian HDirac. Mathematically that is [γ5, HDirac] 6= 0. [29]

Gell-Mann is well-known for his quark model based on SU(3) symmetry, or the
eightfold-way, of up, down and strange quarks. However, this symmetry is only an
approximation like the isospin symmetry of proton and neutron. This approxima-
tive symmetry is sometimes wrongly understood to be the same thing as the exact
SU(3)C gauge symmetry of QCD, which describes how quarks and gluons come in
different color combinations and interact. For this reason, Gell-Mann’s symmetry is
correctly called as flavour SU(3)F symmetry.
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Discrete transformations

The fundamental discrete transformations in particle physics are charge conjugation
C, parity transformation P (spatial mirror reflection) and time reversal T . An
interesting thing is that the weak interactions can violate C, P and CP symmetries,
which means that the probability for a given interaction is different before and after
the transformation. Electromagnetic and strong forces are not known to violate
these discrete symmetries. Any interaction in the SM should not violate CPT
transformation, given that the CPT theorem is correct [45]. Parity transformation
and charge conjugation operator eigenvalues of the particle are often written together
with spin1 J , as JPC . For example, let us have a meson |qq̄〉. Now use the charge
(C-parity) and parity (P-parity) inversion operators to the meson wavefunction |qq̄〉
or quantum field configuration as

Ĉ|qq̄〉 = ±|q̄q〉 (2.5)

P̂ |qq̄〉 = ±|qq̄〉, (2.6)

where + means that the meson is parity ”even”, and − that the meson is parity
”odd”.

Then, there are some ”accidental” symmetries in the SM which are known as
baryon and lepton number conservations, which are not as fundamental as other
symmetries.

Particles

The elementary particles of the SM are written in Table 2.2 and in a more theoretical
format in Appendix in Table A.1, where SU(3)C color triplet and SU(2)L weak
isospin doublet structure is represented. The matter particles quarks and leptons
come in three mass generations and obey Fermi-Dirac spin-1/2 statistics, i.e. Pauli’s
exclusion principle holds. Of these, only quarks flavours of the first family, up and
down, are stable and build the universe together with electrons. The reason for three
families is unknown, and the symmetry groups of the SM do not give any answer
for this. [45]

Most of the mysteries within the SM are related to neutrinos, those nearly zero
mass, highly non-interacting particles only interacting via weak interactions. Cur-
rently it is not known if neutrinos are their own antiparticles (Majorana fermion) or
not (Dirac fermion), and can there be even a fourth generation of neutrinos. Also,
right handed neutrino singlets (νl)R have not been observed experimentally, and
they might be so-called sterile neutrinos, i.e. not taking part in the Standard Model
EW interactions. Neutrinos propagate in free space as a linear combination of mass
eigenstates (ν1, ν2, ν3) and interact and are created as weak eigenstates (νe, νµ, ντ ).
This change of flavour in free space is called oscillation, and it requires that their
mass is non-zero, with differing values to have phase difference in propagation. How-
ever, currently their absolute masses are unknown. The neutrino mixing is described
by 3 × 3 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, but its components
are not well-known and it is not known if it has a complex phase, which leads to
CP-violation in neutrino oscillation. [44]

1e.g. for ordinary mesons, J = L+S is the total angular momentum, i.e. sum of orbital angular
momentum L and intrinsic total spin S.
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The interactions are mediated by gauge bosons which obey Bose-Einstein spin-
0 statistics. The peculiar non-Abelian feature of QCD (and weak interactions)
is that the corresponding gauge bosons, gluons (and W±) carry color (electric)
charge, and can interact together. This non-linear behaviour does not happen in
electrodynamics, which is seen also in macroscopic Maxwell equations, where values
of fields can be calculated by linear superposition. In terms of QED, the classic static
electric and magnetic fields are at the quantum level mediated by virtual photons.
The electromagnetic waves are mediated by real photons.

Table 2.2: Elementary particles and their properties. DF = Dirac fermion, MF =
Majorana fermion, B = Boson. Fermions are grouped in three families. [44]

Name Type Charge Color Spin Mass

Quarks
u; ū DF ±2/3 r, g, b; r̄, ḡ, b̄ 1/2 2.4 MeV/c2

d; d̄ DF ∓1/3 r, g, b; r̄, ḡ, b̄ 1/2 4.8 MeV/c2

c; c̄ DF ±2/3 r, g, b; r̄, ḡ, b̄ 1/2 1.27 GeV/c2

s; s̄ DF ∓1/3 r, g, b; r̄, ḡ, b̄ 1/2 104 MeV/c2

t; t̄ DF ±2/3 r, g, b; r̄, ḡ, b̄ 1/2 171.2 GeV/c2

b; b̄ DF ∓1/3 r, g, b; r̄, ḡ, b̄ 1/2 4.2 GeV/c2

Leptons
e−; e+ DF ∓1 - 1/2 0.511 MeV/c2

νe, (ν̄e) DF/MF ? 0 - 1/2 < 2.2 eV/c2

µ−;µ+ DF ∓1 - 1/2 105.7 MeV/c2

νµ, (ν̄µ) DF/MF ? 0 - 1/2 < 0.17 MeV/c2

τ−; τ+ DF ∓1 - 1/2 1.777 GeV/c2

ντ , (ν̄τ ) DF/MF ? 0 - 1/2 < 15.5 MeV/c2

G-Bosons
W± B ±1 - 1 80.4 GeV/c2

Z0 B 0 - 1 91.2 GeV/c2

γ B 0 - 1 0
g B 0 #8 (octet) 1 0
H0 B 0 - 0 ∼ 126 GeV/c2

The conjectured property of QCD, confinement, says that the quarks are never
seen free, i.e. they are always trapped inside color singlet bound states, hadrons,
where the quark color charges combined a ”colorless”, SU(3)C singlet state. Hadrons
as non-elementary particles are QCD bound states made of three quarks or three
antiquarks, also known as baryons. Mesons are bound states of quark-antiquark
pairs. Baryons obey Fermi-Dirac statistics and mesons Bose-Einstein statistics.
These composite particles have a rich mass spectrum and currently the only stable
hadron seems to be proton |uud〉. However, some grand unified theories (GUT)
predict proton half-life at 1036 years. The mass of hadrons is not simply mass
of quarks, because the binding energy of QCD builds up the most of the hadron’s
mass. [45] This property makes also the concept of quark mass a matter of definition.

The SM cannot answer currently the questions about dark, non-luminous matter
which should be there based on gravitational lensing and galactic rotational curves.
This leads to supersymmetric (SUSY) models where each fermion acquires a bosonic
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superpartner particle and vice versa. SUSY models can provide a stable, natural
dark matter candidate particle, namely WIMP (weakly interacting massive particle).
Unfortunately, currently there is no experimental evidence for supersymmetry.

Also unanswered question is the matter-antimatter asymmetry of the universe,
i.e. why there is more matter than antimatter in the current universe. Finally, the
theory of gravity, general relativity, is not included at all in the Standard Model.
This unification requires currently extra-dimensional (string theory) models, which
have their own major obstacles.
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2.2 Couplings

The strength of three different interactions are described with coupling constants,
which are not actually constants, but run with energy. Electromagnetic interaction
strength, is given at electron mass scale by [45]

αem(Q = me) =
1

137
, (2.7)

with this energy scale it is also known as the fine structure constant.

γ

e−

e+

γ

Figure 2.1: One loop Feynman diagram of QED vacuum polarization.

The running with energy is due to quantum scale effect known as screening,
which is illustrated in Figure 2.1. In screening, the vacuum polarizes around an
electrical charge with virtual dipole charges created ”out of vacuum” and this makes
interaction strength larger with smaller distances. This effect must not be mixed
up with Coulomb potential (low energy, long distance) which goes as V ∝ 1/r over
distance r from the charge, which comes purely from spherical geometry.

The weak interactions have much lower interaction strengths, which is logical
given the name, and the effective strength at energies Q ≪ MX is given by the
Fermi theory constant [45]

GF = 1.167× 10−5 GeV−2, (2.8)

where MX is the mass of the massive vector bosons of weak interactions. The elec-
troweak theory of the Standard Model uses dimensionless, renormalizable couplings
g and g′.

The coupling of strong interactions αs , g2s/4π is notoriously running with
energy scale such as

αs(Q = mhadrons) ∼ 1 Confinement (2.9)

αs(Q→ ∞) → 0 Asymptotic freedom (2.10)

This makes calculations based on perturbation theory impossible in QCD at low
energy scales2, i.e. series expansion is unstable/divergent. This feature of QCD
is due to screening and antiscreening, and it turns out that at large distances the
coupling αs is large and vice versa. Like tension in a rubber band. Corresponding
Feynman diagrams are shown in Figure 2.2.

The evolution of the coupling, both in QED and QCD, can be described with the
so-called β-function expansion with renormalization group differential equation [29]

µ2
R

∂(α or αs)

∂(µ2
R)

= β(α or αs), (2.11)

2One must use e.g. numerical lattice QCD or phenomenological models.
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where µ2
R is the renormalization energy scale (GeV)2. It turns out that the leading

order term β0 in the perturbative power series is negative for QED and positive for
QCD, which gives the opposite energy scale behavior of both forces.

g

q

q̄

g g

g

g

g

Figure 2.2: QCD screening (on the left) and antiscreening (on the right) at one loop
level.

In grand unification theories, where the unified gauge group is e.g. SU(5) or
SO(10), these couplings come together at some finite high energy scale. [5] At this
scale, there would be only one force, including the gravity. However, usually these
energy scales are beyond the realms of current collider experiments and the only hope
to see some experimental evidence for these unifications comes from astrophysical
processes.
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2.3 Lagrangians

The mathematics of the Standard Model is written in a language of Lagrangians,
which has roots in a variational formulation of classic mechanics. For a pedagogical
introduction to the derivation of these equations, see [47]. The basic idea is that
the corresponding Lagrangians for each interaction theory are derived under local
gauge invariance. Algebraic generators of the gauge group give the number of gauge
mediators (bosons), for general case of SU(N), the number is given by N2−1. Three
for SU(2) which are W±, Z0 and eight for SU(3) which are gluons gα, α = 1, . . . , 8.

The Lagrangians can be written with highly compact or highly explicit formal-
ism. In the following, a semi-compact notation is followed from [15, 24].

Electroweak

The Lagrangian density for the electroweak unification can be written in parts as [15]

LEW = Lgauge + Lmatter + LHiggs + LY ukawa, (2.12)

and it combines QED interactions together with weak interactions as the unification
name suggests.

The gauge boson interactions are described by the gauge part [15]

Lgauge = −1

4
~Wµν · ~W µν − 1

4
BµνB

µν (2.13)

with field strength tensors

W i
µν = ∂µW

i
ν − ∂νW

i
µ − igǫijkW j

µW
k
ν , i = 1, 2, 3 (2.14)

Bµν = ∂µBν − ∂νBµ, (2.15)

where W i
µ is the SU(2)L gauge field triplet with the weak isospin correspondence

and Bµ is the U(1)Y singlet with the weak hypercharge correspondence and the
partial derivative is defined as ∂µ = (∂t,∇) and ∂µ = (∂t,−∇). These are the weak
eigenstates of gauge bosons, and the corresponding mass eigenstates are linear com-
binations of those. See vertices e.) and f.) in Figure 2.3 for the gauge interactions.

First, the massive charged current W±µ ∼W±

W±µ =
1√
2
(W 1µ ∓ iW 2µ) (2.16)

and two neutral currents, massless Aµ ∼ γ and massive Zµ ∼ Z0 are given by linear
combination or an orthogonal rotation in SO(2) by

(
Aµ

Zµ

)

=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

W 3µ

)

, (2.17)

where θw is the Weinberg mixing angle and it can be expressed with the gauge boson
masses and couplings as

cos θw =
MW

MZ

=
g

√

g2 + g′2
, (2.18)
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where g and g′ are the SU(2)L and U(1)Y running couplings, respectively. [15]
The matter Lagrangian, which includes fermion fields and their electroweak V−A

(vector - axial vector) interactions with gauge bosons are described by [15]

Lmatter =
∑

L

L̄γµ
(

i∂µ + g
1

2
~τ · ~Wµ + g′

Y

2
Bµ

)

︸ ︷︷ ︸

,Dµ

L

+
∑

R

R̄γµ
(

i∂µ + g′
Y

2
Bµ

)

R, (2.19)

where L is a left-handed fermion doublet and R is a right-handed fermion singlet.
See vertices a.) - d.) in Figure 2.3 for an illustration. The covariant derivative
taking care of gauge invariance is denoted with Dµ.

The three Pauli matrices are denoted with ~τ and γµ are the Dirac gamma ma-
trices. Doublets have weak isospin T3 = (+1/2,−1/2) and singlets have T3 = 0.
The quark mixing and the probabilities of flavour changing decays are described
by famous Cabibbo-Kobayashi-Maskawa (CKM), 3 × 3 unitary matrix, with three
mixing angles and CP-violating complex phase (not shown here). The transition
probability from up type quark i to down type quark j, is proportional to the CKM
matrix element |Uij|2. [44]

The Higgs part and the corresponding potential term V (φ) with the complex
SU(2) doublet φ(x) (4 degrees of freedom) are [15]

LHiggs = (Dµφ)
†(Dµφ)− V (φ) = |Dµφ|2 − V (φ) (2.20)

V (φ) = µ2φ†φ+ λ(φ†φ)2, (2.21)

which gives the mass to massive gauge bosons, i.e. to Z0 and W± and leaves photon
massless. The three degrees of freedom of φ are ”transmuted” by massive gauge
bosons, and only one is left ⇒ scalar Higgs field. The free parameters µ2 < 0 and
λ > 0 control the shape of the Higgs ”mexican hat” potential and λ works also as
the quartic self coupling term. The doublet φ including the Higgs field h(x) after
this so-called spontaneous symmetry breaking (SSB) of EW theory is

φ(x) =

(
φ+

φ0

)

SSB7→ 1√
2

(
0

v + h(x)

)

(2.22)

with the non-zero vacuum expectation value v = 246 GeV, which can be theoretically
obtained by using the measured Fermi’s constant GF and the W mass. However,
the mass of the Higgs boson H0, the neutral, scalar (spin-0) excitation particle of
the field itself with JPC = 0++, cannot be calculated from the theory but must be
experimentally ”scanned”. Only some restrictions can be given for its mass.

The final part is the Yukawa coupling part to give fermions their mass by inter-
action with the Higgs doublet [15]

LY ukawa = −
∑

f−

Gf
−(L̄φR + R̄φ̄L)−

∑

f+

Gf
+(L̄φ

cR + R̄φ̄cL), (2.23)

where φc is the charge conjugate of the Higgs doublet, i.e. φc = (φ̄0,−φ̄+), necessary
such that the ”up” type quarks are able to get mass. The Yakawa fermion coupling
is denoted with Gf

±, where ± corresponds with T3 = ±1
2
.
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γ

X

X

a.) QED photon interaction, X has
charge.

Z0

f

f

b.) EW neutral current, f is any fermion.

W±

U(D)

D(U)

c.) EW flavour-changing current, U is
”up” type, D is ”down” type quark.

W±

l(νl)

νl(l)

d.) EW charged current with a lepton-
neutrino pair.

Z0/γ

W−

W+

e.) EW non-Abelian 3-boson vertex.

Y

X

W+

W−

f.) EW non-Abelian int., X and Y EW
bosons obeying charge conservation.

Figure 2.3: EW interaction vertices excluding Higgs. Note that W± couples only to
left-handed fermions or right-handed antifermions.

These relations about masses can be shown to hold at tree level [15]: MW =
gv/2,MZ = MW/ cos θw,Mf = vGf/

√
2 and MH = v

√
2λ. So the last unknown

parameter in the Standard Model (excluding neutrino oscillations) was the mass of
the Higgs MH (∼ 126 GeV), and thus the value of λ.

After all this, as expected, LEW is still invariant under local SU(2)L × U(1)Y
transformations and particles have obtained masses in a gauge invariant way by
”spontaneous symmetry breaking”. Fixing the masses of weak bosons by hand in
the Lagrangian would break the gauge invariance [15] and the driving principle
(gauge invariance) of all modern field theories would be suspicious.

Quantum Chromodynamics

The full Lagrangian density of QCD can be written in parts as

LQCD + Lgauge fix + Lghosts. (2.24)

The first part without gauge fixing and ghosts at the classical level is [24]

LQCD(x) = −1

4
F a
λρ(x)F

λρ
a (x) +

∑

q

q̄(x)(iγλDλ −mq)q(x), (2.25)
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where q(x) SU(3)C triplet describes the quark matter fields in Minkowski space
x ∈ M4 with masses mq for the six flavours q ∈ {u, d, c, s, t, b}. The gluon field
strength tensors are given by [24]

F a
λρ(x) = ∂λA

a
ρ(x)− λρA

a
λ(x)− gsfabcA

b
λ(x)A

c
ρ(x) (2.26)

with the eight different gluon potentials Aa
λ(x), a = 1, . . . , 8. The strength of

coupling is described by the bare coupling gs, which is here a non-physical (non-
renormalized) quantity due to screening. The gauge group SU(3) structure con-
stants (scalars) are fabc, which are given in Appendix A.3.

Now the covariant derivative, in a similar fashion as in EW theory is [24]

Dλq(x) = (∂λ + ig0A
a
λTa)q(x), (2.27)

where generators Ta =
1
2
λa are given by the eight 3× 3 Gell-Mann matrices λa, a =

1, . . . , 8 of the SU(3) group, again see Appendix A.3. Finally, the gluon potential
and field-strength matrices are

Aλ(x) = Aa
λ(x)Ta (2.28)

Fλρ(x) = F a
λρ(x)Ta, (2.29)

which are just potentials and field strengths contracted over all eight generators
Ta, a = 1, . . . , 8. Easily can be shown that LQCD is invariant under local SU(3)
transformations which depend on x ∈ M4, also the mass term of quarks [24]. See
Figure 2.4 for an illustration of QCD interaction vertices.

g

q

q

a.) QCD strong interaction, q is a quark.

g

g

g

b.) QCD 3-gluon non-Abelian strong in-
teraction.

g

g

g

g

c.) QCD 4-gluon non-Abelian strong in-
teraction.

Figure 2.4: QCD interaction vertices.

Description above is valid at the level of classical fields and for non-Abelian the-
ory, like QCD, the most convenient way to turn this into quantum field theory is by
functional integration approach also known as path integral quantization. For more
information, see e.g. [24]. Ultimately, this allows one to derive Feynman rules and
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the perturbation theory as power series in the coupling. However, several technical
difficulties (infinite quantities) are encountered when one tries to calculate higher
than leading order predictions, and the need for renormalization arises which in-
volves suitable regularization techniques. This is because every loop in a Feynman
diagram is basically a divergent 4-momentum integral. Also, when the QCD cou-
pling is large enough, the perturbation theory cannot be used. This in contrast with
QED, which does not have similar problems with a large running coupling.

When selecting or fixing the ”gauge”, one needs to add the so-called Faddeev-
Popov ghost fields which are necessary auxiliary fields in non-Abelian quantum field
theories. In general, the Feynman rules are made of external (lines) and internal
propagators of fermions and bosons and interaction vertex factors, which are derived
from the Lagrangian of the theory. In QCD, these are the gluon propagator, the
quark propagator and the ghost propagator. The coupling constant is included
the vertex factors, which are the three-gluon vertex, four-gluon vertex, quark-gluon
vertex and ghost-gluon vertex. The renormalization procedure can also add several
counter-term rules to mitigate the infinities. [24]

In QED, as in QCD, the propagators are described by Green’s functions usually in
momentum space and they have the same role as in classic field theories and in non-
relativistic quantum mechanics. In QED we can also use the Fourier decomposition
to describe the solution to systems as a sum of individual plane-waves, because the
theory is Abelian, i.e. superposition principle holds. However, in QCD, gluons can
interact with themselves and thus, the theory is also non-linear with respect to gauge
boson interactions (like EW) and no superposition cannot be used in general. [29]
However, QED, EW and QCD are all non-linear theories in a sense that the only
general way to calculate anything analytically is to do perturbative expansions.
Finally, there is always the fact that QCD describes the fields in terms of quarks
and gluons, not actual observables, which are hadrons.
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2.4 S-matrix and cross sections

The golden era of the S-matrix (scattering matrix) theory was in the 1960s, and
originally it was meant to be the theory of particle physics. Nowadays it is un-
derstood more abstraction than a suitable computational tool for every problem.
It could explain bound states, i.e. hadrons, as poles in complex domain etc., but
failed to answer questions in more physical terms, especially in comparison with the
parton image and QCD. [6]

Let there be the initial state ket-vector |i〉 and the final state bra-vector 〈f |. The
probability of this transition from |i〉 → 〈f | is described by the S-matrix element,
also known as scattering amplitude 〈f |S|i〉 ∈ C. The transition probability is [6]

Pfi = |〈f |S|i〉|2 = 〈i|S†|f〉〈f |S|i〉 (2.30)

and the set of orthonormal states |f〉 obeys the completeness relation

∑

f

|f〉〈f | = 1, (2.31)

so the probability of producing any of the final states, given some initial state, must
be equal to one

∑

f

|〈f |S|i〉|2 =
∑

f

〈i|S†|f〉〈f |S|i〉 = 〈i|S†S|i〉 = 〈i|i〉 = 1. (2.32)

This must be true if want to conserve probability, which means that S†S = 1, thus
it is a unitary operator.

Now the scattering matrix S can be related to the transition matrix T in process
of 2-body to n-bodies [6]

〈f |S|i〉 = 〈p′1p′2 . . . p′n|S|p1p2〉 = δfi
︸︷︷︸
no int.

+ i(2π)4δ4(pf − pi)
︸ ︷︷ ︸
4-momentum cons.

〈f |T |i〉
︸ ︷︷ ︸

amplitude

, (2.33)

where pi and pf are the 4-momentum of the initial state and final state, respectively.
These 2 → n processes and their kinematics were much studied in the 1960s, before
QCD which moved the interest to hard exclusive 2 → 2 processes.

Cross sections and decay widths

Basically, the most fundamental measurements done in particle physics are the mea-
surements of cross sections and decay widths (particle lifetimes). By definition

Cross section ,
# of transitions 12 → n per unit time

# of particles per unit surface and time

∝
∫

Kinematics× Dynamics

∼ Probabilities.



17

The total cross section for a scattering process 12 → n, given in Lorentz invariant
form, is in general [24]

σ12→n =
1

F

∑

(2π)4δ4(pf − pi)|〈fn|T |i〉|2

=
1

F

∫
(

n∏

i=1

d4p′i
(2π)4

2πδ+(p
′2
i −m2

i )

)

(2π)4δ4

(
n∑

i=1

p′i − p1 − p2

)

× |〈p′1 · · · p′n|T |p1p2〉|2

=
1

F

∫
(

n∏

i=1

d3p′i
2Ei(2π)3

)

(2π)4δ4

(
n∑

i=1

p′i − p1 − p2

)

|Mfi|2, (2.34)

where the kinematical, Lorentz invariant flux factor is

F = 4
√

(p1 · p2)2 −m2
1m

2
2 → 2s, when s≫ m2

1, m
2
2 (2.35)

and δ4 is the Dirac’s delta in Minkowski space used to keep track of 4-momentum
conservation. So one needs a flux factor, an integral over the phase space ∼ kine-
matics, and the matrix element squared inside the phase space integral ∼ dynamics,
to be able to answer questions about integrated cross sections.

In a similar way, the total decay width of a particle decay a → 1 + 2 + · · ·+ n
to n-particle final state is given by [15]

Γa =
n∑

i=1

Γi =
1

2Ea

∫
(

n∏

i=1

d3p′i
2Ei(2π)3

)

(2π)4δ4
(
pf − pi

)
|Mfi|2 (2.36)

which is clearly not a Lorentz invariant quantity due to Ea, thus particle lifetimes
τa = 1/Γa are by definition expressed in the rest frame of the decaying particle a.

In a case of simple 2 → 2 scatterings, which are processes described by the given
theory of dynamics like QED, QCD, EW, SUSY etc., the Lorentz invariant matrix
element squared |Mfi|2 in the integrand of Equation 2.34 can be calculated with the
Feynman rules of the perturbation theory at least on the tree level. The integration
limits for phase-space integral are usually straightforward, but require care.



Chapter 3

Proton structure

First experimental measurements to probe hadronic structure were done in the 1960s
at SLAC (Stanford Linear Accelerator) experiment using electron-proton scattering.
Later, similar experiments were done in the 1990s at HERA (DESY, Hamburg)
and these measurements about proton structure are used to predict scattering cross
sections at LHC (Large Hadron Collider). This process of electron-proton scattering,
where the proton breaks in parts in the collision and new particles are produced from
the energy, is known as as deep inelastic scattering (DIS) [15]. SLAC experiments
were a strong motivation for parton model of Feynman which describes proton as a
composite object of point-like particles when probed with high spatial resolution.

Measurements in DIS showed partons to be charged spin-1/2 objects. From
the naive parton model of Feynman, theoretical development lead finally to QCD
partons which have the postulated asymptotic freedom, i.e. interaction between
partons should vanish at small distances (large momentum transfers). These charged
QCD partons are nowadays called quarks. However, electrically uncharged gluons
inside protons play an important role especially at hadron colliders.

Probing the structure of proton using electron is different based on energy of the
electron. 1. First at very low energies λ≫ rp the scattering happens from a point-
like object with no spin. 2. At low energies λ ∼ rp the scattering happens from an
extended charge distribution and the resolution λ is close to the proton’s classic1

radius rp ∼ 10−15 m. 3. At high energies λ ∼ 10−18 m < rp scattering happens
from the valence quarks which dictate the proton quantum numbers. 4. Finally, at
very high energies λ ≪ rp the proton looks to be sea of quarks, and indirectly, sea
of gluons. [15]

1Classic, because proton’s radius is quantum mechanically a probability density.

18
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3.1 Deep inelastic scattering

In deep inelastic scattering, a lepton is used to probe distributions of partons inside
a hadron. Let the target proton with mass M be at rest in the lab frame, with
4-momentum by definition p = (M,~0). The electron has 4-momentum in the initial

state ki = (ωi, ~ki) and in the final state kf = (ωf , ~kf). All coming derivations are
based only on leading order quantum electrodynamic (QED) interactions between
electron and proton, with single virtual photon γ∗ exchange. In general, when using
EW theory, 4-momentum in DIS can be also propagated by a Z0 boson, or via
charged current through W± bosons. [15]

p(p)

e−(ki)

q(xp)
q(xp+ q)

γ∗(q)

e−(kf)

Figure 3.1: Feynman diagram of the naive parton model DIS.

The first Lorentz scalar, a frame independent quantity, is 4-momentum transfer
Q2 or virtuality of the exchanged boson, which can be understood as the resolution
power of probing the hadron structure as λ ∼ 1/

√

Q2. It is defined as

Q2 = −q2 = (ki − kf)
2 = −(ν, ~q)2, (3.1)

where kf and ki are the 4-momentum vectors of the lepton in the final state and the
initial state, respectively. The energy ν transferred to the hadron by the scattering
lepton is [15]

ν =
p · q
M

, (3.2)

where p and M are the 4-momentum and the invariant mass of the hadron, respec-
tively.

Now the very important, the so-called Bjorken scaling dimensionless x-variable
is [15]

x = − q2

2p · q =
Q2

2Mν
=

Q2

Q2 +W 2
, 0 ≤ x ≤ 1, (3.3)

and the research field of low-x QCD has its name based on this. Another useful
variable is the so-called inelasticity [15]

y =
p · q
p · ki

, 0 ≤ y ≤ 1, (3.4)

which is not to be confused with rapidity y. The Bjorken2 x ∈ [0, 1] can be un-
derstood as the momentum fraction of the hadron carried by the parton in a frame

2Not to be confused with the kinematical Feynman xF variable, often used in heavy ion physics.
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where the hadron has very high energy, i.e. in the infinite momentum frame. Orig-
inally, Bjorken described these ideas in the abstract language of current algebra,
which was a theoretical tool of the 1960s.

By using these variables and 4-momentum conservation, the invariant mass
squared W 2 of the scattered hadronic system is described as

W 2 = (p+ q)2 =M2 + 2Mν −Q2, (3.5)

which is the same as hadronic center of mass energy squared. The elastic scattering
case, where the initial and final states of the hadron are the same, can be easily
derived by setting x = 1 by

W 2
el =M2 + 2Mν −Q2

=M2 + 2Mν − x2Mν

=M2, (3.6)

which means that the scattered proton has the same invariant mass as the original.
Now, the hadronic tensor to describe the proton structure is [15]

W µν
(p) = −W1g

µν +
W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν), (3.7)

where gµν is the Minkowski metric tensor. The W µν
(p) is a rank-2 tensor, where the

electroweak part W3 is left out due simplicity and because of small EW interaction
cross sections. Functions Wi, i = 1, . . . , 5 are based on Lorentz invariant scalars and
they describe the internal structure of the proton. By reformulation [15]

W µν
(p) =W1(−gµν +

qµqν

q2
) +

W2

M2
(pµ − p · q

q2
qµ)(pν − p · q

q2
qν) (3.8)

Then, by using the leptonic tensor [15] and the hadronic tensor, the scattering
matrix element squared is obtained by contraction [15]

|M|2 = L(e−)
µν W µν

(p) = 4EE ′(W2(Q
2, ν) cos2(θ/2) +W1(Q

2, ν) sin2(θ/2)). (3.9)

Differential cross section in the lab-frame (proton at rest) is obtained by including
flux F , differential phase-space factor dΠ and matrix element squared |M|2, formally

dσ =
1

F
dΠ|M|2 (3.10)

and integrating over the energy of the electron in the final state results in [15]

dσ

dΩ

∣
∣
∣
∣
lab

=
α2

4E2 sin4(θ/2)

E ′

E
(W2(Q

2, ν) cos2(θ/2) +W1(Q
2, ν) sin2(θ/2)), (3.11)

which is the differential cross section for deep inelastic electron-proton scattering.
Above purely magnetic W1 and electro-magnetic W2 are the so-called structure

functions, which describe the momentum distribution of the quarks inside the pro-
ton. The independence of the structure functions on Q2 is the famous Bjorken
scaling, which states asymptotically [15]

F1(x) = lim
Q2→∞

MW1(Q
2, ν) (3.12)

F2(x) = lim
Q2→∞

νW2(Q
2, ν). (3.13)
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However, Bjorken scaling is known to break down and scaling violations arise when
QCD corrections are included into this naive parton image. It was still a major
breakthrough and one of the most important things invented in the 1960s in particle
physics, and it was a strong argument to support the parton model.

These Q2 independent structure functions F1,2(x) obey also the so-called Gallan-
Gross relation [15]

F2(x) = 2xF1(x), (3.14)

which is expected for scattering from spin-1/2 quarks. In a case quarks would be
spin-0 particles, the purely magnetic structure function F1(x) would be F1(x) = 0.
This is coming from the fact that the spin is a property which is magnetic by its
nature.
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3.2 Partons - quarks and gluons

In the proton |uud〉, the valence up quarks carry twice the momentum of the valence
down quarks. However, experimentally can be seen that the quarks carry just a
little over 50 percent of the total momentum [15]. The rest is carried by gluons and
these as electrically neutral objects do not effect the electron-proton scattering. The
probability fi(x) for the parton to carry a fraction x of the momentum is described
by parton distribution function (PDF), and in order to conserve probability

∑

i

∫ 1

0

dx xfi(x) = 1, (3.15)

where i runs over different quark (antiquark) flavour pdfs and a gluon pdf. This
means that in total the parton distribution functions include the valence quarks,
the sea quarks, which are virtual and produced by the gluons splitting g → qq̄, and
gluons itself.

Figure 3.2: CT10-NNLO parton distribu-
tions for proton at Q = 2 GeV. Axis vari-
ables are (x, xfi(x,Q

2)). [43]

Figure 3.3: CT10-NNLO parton distribu-
tions for proton at Q = 85 GeV. Axis vari-
ables are (x, xfi(x,Q

2)). [43]

Feynman’s parton model uses the parton distribution functions to construct the
proton’s structure functions as [15]

F2(x) =
∑

i

e2ixfi(x) (3.16)

F1(x) =
1

2x
F2(x), (3.17)

where the second line uses Gallan-Gross relation and ei is the fractional electric
charge of the given quark flavour. In a case that the proton is probed at low
energies, parton distribution functions only of up, down and strange quarks, and
corresponding antiquarks can be used as an approximation. Figures 3.2 and 3.3
show a next-to-next-to-leading order (NNLO) parton distribution calculations at
Q = 2 GeV and Q = 85 GeV, respectively. Gluon and sea quarks distributions are
scaled down for visualization with a factor of 10. At higher energies and low-x, the
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contribution especially from gluons, but also from sea quarks (due to g → qq̄) grows
significantly larger than from the valence quarks. This means directly that colliders
like the Large Hadron Collider (LHC), are effectively gluon colliders.
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3.3 QCD corrections

When the contribution from gluons is included, i.e. naive parton model + gluons,
at order O(ααs) in QED and QCD, there is a change for processes where the virtual
photon probes the quark, and this quark emits a gluon after interaction γ∗q → qg.
Or a gluon splits into quark-antiquark pair and virtual photon probes one of these
quarks. These break down the Bjorken scaling, and the structure function must be
modified F2(x) → F2(x,Q

2). Scaling violations become evident with small values of
x, which were not experimentally available at the time in SLAC experiment. [15]

These QCD corrections are taken into account by redefining the quark pdf dis-
tribution q(x) in the infrared region where soft gluons are emitted. This is called
mass factorization at scale µ2

F , and this scale is ultimately related with the value of
Q2. Mass factorization of quark density is expressed as [15]

fq(x, µ
2
F ) = fq(x) +

αs

2π

∫ 1

x

dξ

ξ
fq(ξ)Pqq(

x

ξ
) log

µ2
F

µ2
, (3.18)

where fq(x, µ
2
F ) is the actual measurable quark density, which due to QCD vacuum

screening is different than the bare, non-physical fq(x). The function Pqq(z) is a
splitting kernel, which describes the probability for gluon emissions with a fraction
z of the quark momentum. The integral is evaluated due to unknown and unmea-
surable gluon emission with transverse momentum pT obeying

µ2
F ≥ p2T ≥ µ2, (3.19)

where µ2 is an arbitrary infrared cutoff scale, and can be basically set always below
what is experimentally achievable in resolution [15].

Finally, QCD corrected structure function with famous logarithmic scaling cor-
rections is [15]

F2(x,Q
2)

= x
∑

q

∫ 1

x

dξ

ξ
fq(ξ, µ

2
F )e

2
q

(

δ(1− x

ξ
) +

αs

2π
Pqq(

x

ξ
) log

Q2

µ2
− αs

2π
Pqq(

x

ξ
) log

µ2
F

µ2

)

= x
∑

q

∫ 1

x

dξ

ξ
fq(ξ, µ

2
F )e

2
q

(

δ(1− x

ξ
) +

αs

2π
Pqq(

x

ξ
) log

Q2

µ2
F

)

(3.20)

and after all, the arbitrary infrared cutoff scale µ vanished and only the factorization
scale parameter µF is left. Now, if the factorization scale is set as µ2

F = Q2, which
is a valid factorization scale in DIS, the structure function is

F2(x,Q
2) = x

∑

q

e2qfq(x,Q
2), (3.21)

where sum runs over different flavours of quarks and antiquarks. Now there is a
dependency on both x and Q2, and the energy scale Q2 dependency is ultimately
due to gluons. Also can be seen that this whole procedure of mass factorization is
closely related to defining the running strong coupling αs(Q

2) using QCD β-function.
The same screening plays here a major, physically same role.
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3.4 DGLAP and BFKL evolution

The factorization of QCD means that the perturbative, hard short distance parton-
parton scattering, and all soft long distance non-perturbative phenomena can be
separated, i.e. factorized. However, there are some cases where factorization breaks
down, but in general it gives very good predictions for many high energy processes.
Factorization introduces an adjustable scale µ2

F and ”absorbs” all non-perturbative,
soft phenomena related to hard scattering below this scale into renormalised parton
densities. In a collinear emission factorization scheme, this simple means a collinear
cut off energy [15]. For a long introduction to different factorization approaches,
see [19].

The famous DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) or Altarelli-
Parisi evolution equations describe how the parton distribution functions fi(x,Q

2) of
quarks and antiquarks evolve when x is fixed andQ2 is evolved. It is a very important
part of the factorization of hadronic scatterings. There are several different splitting
”kernels”, which describe e.g. quark radiating a gluon before interaction. The gluon
distribution function fg(x,Q

2) describes how the hadron can emit gluons which
might turn into a quark-antiquark pairs before interaction. The DGLAP integro-
differential equations are written as [15]

∂

∂ log(µ2
F )

u(x, µ2
F ) =

αs(µ
2
F )

2π

∫ 1

x

dz

z
P(z)u(

x

z
, µ2

F ), (3.22)

where P(z, αs(µ
2
F )) is the splitting kernel 2×2 matrix. At order O(αs), four different

splitting kernels can be written in terms of perturbative QCD [15]

P(z) =

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)

, (3.23)

where each Pji(z) describes the probability for i → j splitting with transverse mo-
mentum fraction z. The quark and gluon distributions are written inside the vector

u(x, µ2
F ) =

(
fq(x, µ

2
F )

fg(x, µ
2
F )

)

. (3.24)

Using the DGLAP equation starts by choosing some initial value µF = µ2
0 which

is safely on the perturbative domain of QCD, where Q2 should be approximately
larger than 1 or 2 GeV2 [24]. Then the parton distributions u(x, µ2

0) are fitted to the
measurements for each fixed value of x. Finally, the Q2 evolution of u(x, µ2

F ) can be
solved at any other scale µ2

F by applying analytically Mellin transformation to the
DGLAP equations, or by using numerical integration techniques like Runge-Kutta.
Unfortunately, there are some problems with low-x behaviour of DGLAP evolution,
because it does not give safe predictions with very small values of x [24].

The BFKL (Balitsky, Fadin, Kuraev, Lipatov) is a similar kind of perturbative
evolution scheme like the DGLAP. The main difference is that Q2 is fixed and x
is evolved. Unfortunately, BKKL is only applicable when x is small and Q2 is
large enough, and BFKL cannot handle Q2 → ∞ [24]. In general, phenomenology
related to BFKL evolutions is much more controversial thing than of DGLAP, that is
because BFKL is ultimately dealing closer to non-perturbative physics. Illustration
of the parton evolution is shown in Figure 3.4. When using BFKL evolution with
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fixed low value of Q2, the number of partons increasing as a function of 1/x, and
finally leads to parton overlap in low-x saturation region, but their ”size” stays
the same. This saturation region is not yet experimentally well-probed. By using
DGLAP evolution with fixed high value of x, the interpretation is that the number
of partons increases but their size decreases as a function of Q2. [21]
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Figure 3.4: Perturbative parton evolution plane. Adapted from [21].

Other parton evolution related thing is the Sudakov suppression model, which
describes the probability of a parton to evolve without branching. This is especially
suitable for parton shower modelling in Monte Carlo. Also, there are interesting
coherent phenomena related to soft gluon emission, which are angular ordering and
coherent branching [25]. Angular ordering restricts soft gluon radiation by a heavy
quark to be limited within a cone, which radius goes down as the evolution of the
jet continues. Thus, the emitted gluons which split g → qq̄ are near in phase-space
and the hadronization process where color-singlet objects are produced is assumed
to happen locally. [25]

These QCD effects are analogous to phenomena which causes the Sudakov effect
in QED, i.e. supression of soft bremsstrahlung photons from e+e− in electromagnetic
cascades.



Chapter 4

Diffraction

The hadronic scattering processes are divided into soft and hard processes. The
soft processes are processes where 4-momentum transfer squared between colliding
particles is ”small”, |t| ∼ 0.5GeV2, and the hard processes are the ones where the
4-momentum transfer squared is ”large” |t| & 2GeV2 [6]. Perturbative QCD can
be used to describe these hard processes, but unfortunately the soft processes are
beyond perturbative approaches. This is due to large interaction distances between
hadrons which makes strong force coupling αs too large.

The soft processes are elastic scattering, soft diffractive dissociation, and the
most dominant, soft non-diffractive processes. These soft non-diffractive processes
are also known as minimum bias processes, which is basically an experimental term
coming from the detector trigger terminology. Hard processes produce e.g. high
transverse momentum pT -jets, electroweak vector bosons (Z0,W±) and possibly
Higgs etc. Even if the hard processes can be treated under perturbation theory of
QCD, there is a soft part of these processes which effect is included in the universal
quark and gluon distribution functions.

The mass factorization theorem introduced in the previous chapter says that
the soft and the hard part can be separated of each other, i.e. non-perturbative
from perturbative, and the measured parton distribution functions can be nearly
universally used in calculations of cross section estimates of the hard processes.
However, the factorization in the context of hadronic hard diffraction is not well
understood, and it is known to be a problematic concept. The diffractive-DIS and
corresponding diffractive parton distributions functions, measured at HERA in e−p-
collisions, cannot be trivially applied to hadron-hadron hard diffraction, and it is
known to lead to factorization break-down [18, 24].

27
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4.1 Definition of diffraction

Def. I. Diffraction is a scattering process where quantum numbers of vacuum are
exchanged between the colliding particles. Final states have a multiplicity spectrum
narrow in the rapidity space. In a diffractive scattering process A+B → C+D, quan-
tum numbers are the same between A/C and B/D, because of vacuum exchange. [6]

Def. II. Diffractive scattering processes are characterized by large rapidity gaps
(LRG), a region in the rapidity space with no final states, which is nearly an equiv-
alent definition with the first one. [6]

Elastic (EL) scattering

p

p̄

p

IP

p̄

Figure 4.1: Feynman diagram of elastic scattering.

pp̄→ p+̇p̄, (4.1)

where both hadrons stay intact in collision and are possibly detected at small scat-
tering angles using e.g. Roman pots. For now on, symbol +̇ denotes ”large” gap in
rapidity ∆y or experimentally, in pseudorapidity ∆η. The usual measurement with
elastic scattering is the differential elastic cross section as a function of |t|, where on
low |t|, Coulomb (QED) interaction dominates and then QCD comes into image on
higher |t|. The term Pomeron IP , a color singlet ”vacuum object”, perturbatively
at leading order understood as a 2-gluon system, is used to describe the strong
interaction between colliding protons as a t-channel exchange. [6]

Single Diffractive (SD) scattering

pp̄→ p+̇X, (4.2)

where another proton stays intact and second one is excited into diffractive system
denoted with X with the same quantum numbers as the incident particle. Mass of
the system MX depends on the fractional longitudinal momentum loss [6]

ξ = 1− xF = 1− pfz
piz

=
M2

X

s
(4.3)

of the incident antiproton momentum, or proton, when the antiproton is disassoci-
ated into X . In Figure 4.2, the ξ is defined for antiproton.
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p

p̄

p̄

IP
X

Figure 4.2: Feynman diagram of single diffractive scattering.

Experimentally, the double differential cross section spectrum of single diffractive
scattering is approximately [6]

d2σSD
dM2

Xdt
∝ 1

M2
X

e−b|t|, (4.4)

where the slope parameter b ∈ R+ can in principle be a function of M2
X [48]. Low

mass diffraction happens when the ξ is small, and the elastic scattering comes from
the limit when ξ → 0, then MX → mp. The coherence condition [6] for single
diffraction says that when ξ . 0.05, the rapidity gap ∆y is approximately

∆y ≃ −ln(ξ) (4.5)

and substituting gives a minimum gap size of ∆y = −ln(0.05) = 3. Under coher-
ence condition, also the maximum invariant mass of the diffractive system can be
approximated to be

MX =
√

ξ
√
s =

√
0.05 · 1960 GeV . 430 GeV (At Tevatron). (4.6)

The fractional longitudinal momentum loss ξ of the surviving proton can be ex-
perimentally reconstructed within geometrical acceptances with at least two Roman
Pot detector layer signals, to have a vector measurement, and by using accelerator
optics transport equations.
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Double Diffractive (DD) scattering

p

p̄

Y
IP

X

Figure 4.3: Feynman diagram of double diffractive scattering.

pp̄→ X+̇Y, (4.7)

is a process where both incoming protons are excited into diffractive system in both
forward and backward region, with same the quantum numbers as the incident
particles. Thus, there is no fractional longitudinal momentum loss ξ variable to be
measured experimentally in a way there was in single diffraction. [6]

Double diffractive events have a tendency to have experimental signature close
to non-diffractive events, i.e. to have a vanishing rapidity gap when system X and
Y overlap in the rapidity space. This happens when both diffractive systems have
large mass which happens when we approach the coherence condition.

Central Diffractive (CD) scattering

p

p̄p̄

IP

p

IP

X

Figure 4.4: Feynman diagram of central diffractive scattering.

pp̄→ p+̇X+̇p̄, (4.8)

also known as the double Pomeron exchange, which is a process with both forward
and backward protons separated from the central system X . The X is a soft system
or, in central exclusive production, for example a pair of γγ, π+π− or even hard scale
objects like 2-jets (qq̄) or Higgs H0 [22,23]. By using the mass-shell1 condition, the

1Mass-shell, real particle with q2 = m2, not virtual off-shell with q2 6= m2.
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invariant mass of the central system is given by

[(pi − pf ) + (p̄i − p̄f)]
2 =M2

X . (4.9)

which is the same as
M2

X = ξ1ξ2s, (4.10)

where ξ1, ξ2 are the fractional longitudinal momentum losses. Note, that there is
also a possibility that the forward protons are excited into a resonance N∗, e.g.
N(1440)-baryon with decay N → π0p.

One interesting exclusive state is the bound state of gluons, known as glueball [4],
which is predicted by QCD but not yet observed. Based on lattice simulations, it
should exist at very low masses of under 2 GeV/c2.

Non-Diffractive (ND) scattering

p

p̄

X

Figure 4.5: Feynman diagram of non-diffractive scattering.

pp̄→ X, (4.11)

where X is a system of soft particles nearly uniformly produced in rapidity with
dN/dy ∼= constant, and central hard scattering end products with high transverse
momentum pT . In contrast to diffractive interactions, ”color is exchanged” between
colliding hadrons, i.e. the strong interaction is propagated in a t-channel sense
by color octet gluons. These hard scattering end products can be gluon or quark
originated jets, or some energetic lepton pairs, like in the classic Drell-Yan process
where quark and antiquark originating from protons annihilate via s-channel qq̄ →
γ∗(Z0) → l−l+.

The highest probability to have high-pT objects is in non-diffractive events, and
most of the new physics is believed to be discovered via high-pT objects. However,
each of the diffractive process classes (except elastic) can produce also hard objects,
but with much lower cross sections than soft objects. This is known as hard or
semi-hard diffraction. Hard diffractive jet events are measured at CDF to be in
order of 1-2% of all jet events [1, 2].
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Total cross section

These scattering processes contribute to the total pp̄ cross section defined here as

σtot , σel + σinel (4.12)

= σel + σsd + σdd + σcd + σnd. (4.13)

These cross sections are in order of tens of millibarns at Tevatron
√
s = 1.96 TeV

(see section 10.10), except the central diffraction which is believed to be below one
millibarn.

Measuring the total cross section σtot is done in practise by utilization of optical
theorem and Roman Pots or similar in-beam pipe detectors. The optical theorem
gives a relation between the forward θCM = 0 scattering amplitude and the total
cross section. By using the definition of the T -matrix 2.33 and completeness relation
2.31, gives

〈j|T i〉 − 〈j|T †|i〉 = (2π)4i
∑

f

δ4(pf − pi)〈j|T †|f〉〈f |T |i〉. (4.14)

Then, taking the case j = i of elastic scattering and rewriting the left hand side as

Re 〈i|T |i〉+ i Im 〈i|T |i〉 − (Re 〈i|T |i〉 − i Im 〈i|T |i〉) = 2 Im 〈i|T |i〉 (4.15)

results in an interesting formula

2 Im 〈i|T |i〉 =
∑

f

(2π)4δ4(pf − pi)|〈f |T |i〉|2. (4.16)

Because the right hand side is the total transition rate, the total cross section is
obtained by dividing with the flux factor F (Equation 2.35) as

2Im 〈i|T |i〉
F

=

∑

f(2π)
4δ4(pf − pi)|〈f |T |i〉|2

F
2Im 〈i|T |i〉

F
= σtot

2Im 〈i|T |i〉
4
√

(p1 · p2)2 −m2
1m

2
2

= σtot. (4.17)

The transition amplitude 〈i|T |i〉 corresponds to elastic scattering with 4-momentum
transfer squared t = 0, when m3 = m1 and m4 = m2. Thus, the optical theorem
can be written as

σtot =
Im A(s, t = 0)

2
√

(p1 · p2)2 −m2
1m

2
2

, (4.18)

in terms of elastic scattering amplitude A(s, t) ∈ C [24]. Experimentally, a slightly
modified version is used and the experimental data is extrapolated down to unmea-
surable t = 0.
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4.2 Survival of the large rapidity gap

Experimentally it is difficult to measure these diffractive processes because the defin-
ing signature, the large rapidity gap, can be missing. The probability that the gap
is filled by some soft spectator partons or bremstrahlung gluons is not theoretically
well known. It is believed that with the LHC center of mass energies

√
s, the gap

survival probabilities 〈|S|2〉 ∈ [0, 1] are under 0.1 for SD, DD and CD [32]. This
suppresses the theoretical event rate with gaps Fgap to measured

fgap = 〈|S|2〉Fgap, (4.19)

which clearly makes the distinction between diffractive and non-diffractive events
experimentally an ill-posed problem.

One of the first theoretical calculations of these probabilities was done by Bjorken
[8]. He did these calculations in the context of electroweak virtual vector boson
WW -fusion events hypothetically characterized with LRGs, with event topology
highly similar to double diffraction where the interaction is propagated via strong
interaction (Pomeron).

Bjorken defined the gap survival probability for hard WW -fusion as a ratio

〈|S|2〉 =
∫
d2Bd2b ρ(b)ρ(B − b)|S(B)|2
∫
d2Bd2b ρ(b)ρ(B − b)

, (4.20)

based on convolution of parton densities ρ(b) of two incoming hadrons over the
transverse impact parameter B space, where B is defined as the distance between
centres of two incoming hadrons and b is the convolution variable. This convolution
is basically representing the interaction cross section for the hard scattering up to
some factor σ0.

The term |S(B)|2 is the probability that both hadrons pass through each other
without generating any inelastic activity on the rapidity interval of the gap. It is
often theoretically calculated in the Eikonal picture, where the hadrons are described
with some profile function in the impact parameter space [8, 32, 33]. See end of
paper [32] for some discussion of how Monte Carlo event generators usually deal
with these.

In this thesis, the methods developed for measuring the diffractive cross sections
defined in equation 4.13, are not relying on rapidity gaps and thus are robust in
that sense.
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4.3 Space-time image of hadronic collision

Feynman diagrams are covariant, i.e. invariant under space-time Lorentz (Poincaré)
transformations and they give no information about space-time image of scattering
processes. This is computationally extremely good property, because this allows
one to calculate Lorentz invariant cross sections. These cross sections, interaction
probabilities, are not however everything in physical understanding.

In the Feynman/Bjorken naive parton picture, the hadron is moving infinitely
fast and consists of infinitely many partons each with momentum fraction x. When
one looks from the laboratory frame, colliding hadrons are highly Lorentz contracted
discs and boosted. Thus, the time scale over the interactions between hadron con-
stituents is much longer. At low energies the partonic fluctuation is small and the
valence quarks dominate the content. Then, by parton evolution, low-x gluons dom-
inate the image with high center of mass energies

√
s.

When studying more the naive parton image, one can say that the fast moving
partons are localized on the Lorentz contracted disc. The slower moving partons,
with smaller momentum fraction are more spread out in the longitudinal direction.
Experimentally, this means that when two partons collide with x1 6= x2, the labo-
ratory (detector) frame and center of mass frame of the collision are not the same,
which is the case always in lepton colliders with ~p(e−) + ~p(e+) ≡ 0.

Already in 1952, before any parton picture, Heisenberg [36] had an idea that if
two Lorentz contracted hadrons collide, they produce a shock wave of mesons filling
up all the kinematically allowed longitudinal momentum space. Mathematically,
this is equivalent of taking Fourier transform of the spatially localized Dirac’s delta-
like distribution and ending up in the momentum space with nearly flat distribution.
This picture is quite intuitive for non-diffractive soft QCD processes, and it explains
why soft neutral and charged pions or kaons are produced uniformly in rapidity
∼ longitudinal momentum. Even the broading of dN/dy in rapidity as a function
of

√
s can be easily seen from this Fourier transform perspective, i.e. purely from

kinematics of space-time. Even though this view does not say anything about the
real QCD dynamics, and basically assumes a constant matrix element.
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Figure 4.6: Bjorken chain-reaction view of space-time evolution of an ordinary non-
diffractive soft process.

More complicated picture of space-time evolution was developed by Bjorken and
Gribov [9,35]. In their picture, the hadronic collision is a chain-reaction started first
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by the interaction of wee2 partons [28]. At first, only a small domain of partons
inside |∆y| ≈ 1, centered around y = 0 in the CMS frame, is excited. After the
excitation, de-excitation or ”cooling” happens within a time τ0 ≈ 1 fm/c by hadron
emissions which can excite the neighbouring rapidity domains. This happens at
time t ≈ τ0 cosh(y)

3 in the rapidity space around ±|y|, thus large rapidity (fast)
partons are excited last. The production of hadrons happens e.g. by gluons turning
into quark-antiquark pairs during the excitation interval, and these can hadronize
or annihilate to produce something else, like leptons. This image of space-time
evolution is visualized in Figures 4.6 and 4.7.
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Figure 4.7: Minkowski space-time (t, z) diagram with z as a beam axis in the CMS
frame of colliding hadrons A and B at (0, 0), which are moving almost on the light
cone near the speed of light. The grey part of hyperbola illustrates hadronization
process. The rapidity y of the produced particle on the red boundary shown as the
hyperbolic angle.

Diffractive processes in particle physics have some familiarity with classical diffrac-
tion, especially the elastic scattering resembles optical diffraction. The picture is
however much more complicated in diffractive dissociation than in elastic scattering,
due to complicated inner structure of the hadrons under dissociation. The complete
space-time image and QCD dynamics picture for coherent processes, like low-Q2

diffractive scattering is highly non-trivial and not well-known in any sense. A quite
intuitive image of diffraction by Good and Walker is represented later in Chapter 5.

2Partons with Bjorken x ∼ 0.

3Directly from a general Lorentz boost along z-axis:

(
ct′

z′

)

=

(
cosh y − sinh y
− sinh y cosh y

)(
ct

z

)

.
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4.4 Regge theory

Regge theory, named after Tulio Regge’s complex angular momentum ideas, is a the-
ory for strong interactions from 1960s, before QCD, and it is based on sound and gen-
eral mathematical principles from quantum mechanics. Later on, Gribov’s Reggeon
calculus and the so-called cutting rules of Abramovskii, Gribov and Kancheli (AGK)
extended these basic principles much further. Here, only the leading principles are
presented and the three most important are the following. [6]

Unitary, which also means conservation of probability and leads for example to
the optical theorem for elastic scattering. The optical theorem gives a relationship
between the total cross section and the forward scattering amplitude at t = 0.

Duality, which in Regge theory context usually means that scattering amplitudes
can be expressed as a sum of poles produced in the s-channel or equivalently as a
sum of poles exchanged in the t-channel.

Analyticity, which is the concept from mathematical complex analysis giving
integral and continuity relations, a crossing symmetries between particle and an-
tiparticle scattering amplitudes and is related to causality in quantum field theories.

Spins and masses

Soft, low-Q2 interactions, are described in Regge theory as scatterings which are
modelled as sums of different exchanges. These exchange objects are given by
particle-families with different spin. Meson families demonstrate a surprising lin-
ear (affine) relationship between spin J and squared masses m2 of the particles [6]

J ≡ α(m2) ≃ α0 + α′m2, (4.21)

where α0 is the intercept parameter and the slope α′ is sometimes called inverse
string tension.

In Regge theory the scattering amplitude is modelled as a linear combination of
partial-waves with spin J and mass m, i.e. sum of orthogonal Legendre polynomials
PJ with phase shifts φj

A(s, t) ∼
∑

J

φJPJ(zt = cos θt), (4.22)

where zt ∼ 1 + 2s
t−4m2 . For scattering of initial states with equal invariant masses

m1 = m2 = m, the ”physical” region of t-channel is given by requiring t-channel
scattering angle |zt = cos θt| ≤ 1 which leads to t > 4m2 and s < 0 [26]. This partial-
wave approach in is already familiar from the ordinary quantum mechanics scattering
problems and thus it was naturally extended to S-matrix Regge formalism.

Meson family exchanges

Analyticity gives a property that the partial-wave representation of A(s, t) can be
complex analytically continued to ”unphysical” region of t-channel which states
t < 0, and s ≫ 4m2, i.e. to physical high energy s-channel energies. Shortly, using
Legendre polynomials and their properties with respect to analyticity gives [26]

zJt ∼
(

s

|t− 4m2|

)J

∼ sJ ∼ sα(t). (4.23)
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This leads to Regge trajectories exchanged in t-channel, instead of the partial-waves
representation in s-channel. The scattering amplitudes in the crossed t-channel are
then [26]

A(s, t) ∼
∑

αi

βi(t)s
αi(t), (4.24)

where βi(t) : R → R are some unknown functions. From this one can deduce
differential cross section as a function of t as

dσ

dt
∼ s2α(t)−2 (4.25)

and by using optical theorem, one gets

σtot ∼ sα(0)−1 ∼ s−
1

2 when
√
s . 10GeV (4.26)

for exchange families of ρ, ω, f2 and a2 mesons. These are the leading exchange
particle families, Reggeons, in the Regge theory sense at very low center of mass
energies. [6, 24, 26]

Rise of the Pomeron

When
√
s & 20 GeV, the total and elastic cross sections rise experimentally as

∼ s0.08. This triggers the need for a new pole, the vacuum pole Pomeron with
vacuum quantum numbers JPC = 0++ and a trajectory [6]

αP (t) = αP (0) + α′
P t when

√
s & 20GeV. (4.27)

The total cross section rises as σtot ∼ sαP (0)−1, the exponent is experimentally mea-
sured to be ǫ = αP (0)− 1 ≈ 0.08 and the slope α′

P ≈ 0.25GeV−2. So at high
√
s,

the total hadron-hadron interactions are phenomenologically described by exchange
of Pomeron trajectory in t-channel. The dips and peaks observed experimentally as
a function of |t| in elastic scattering are result of interference of real and imaginary
part of forward scattering amplitude. [24]

b

a
aa
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aIP
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b

Figure 4.8: Triple Regge diagram with IPIPIP -vertex∼ squared amplitude of Figure
4.2 summed over the system X , in the high mass limit of single diffraction ab →
a+̇X .

The diffractive cross sections are described usually under the triple Regge for-
malism, where eight different (23) combinations of Pomerons and Reggeons ”inter-
acting” in the triple vertex are possible. At very high masses of diffractive system,
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the (IPIPIP ) vertex is dominating. See Figure 4.8 for an illustration. In the lower
mass region a second triple coupling term is needed such that the lower Pomeron
is replaced with a Reggeon family, for example with f2 or ω family. Also, in the
intermediate range when ξ is not close to zero, triple vertices with one or both upper
Pomerons are replaced with Reggeons. [24]

Especially the low mass region and its differential cross section as a function
of diffractive mass is not well known, because experimentally it requires very for-
ward instrumentation. Approximately single diffractive cross section behaves like
dσSD/dM

2
X ∝ 1/M2

X but lower mass region (MX . 5 GeV) can be steeper and also
the basic Regge theory is not theoretically valid anymore [6, 24].

Even if QCD is widely regarded as the right theory for the strong interactions,
it is unable to give quantitative predictions for soft and diffractive processes. QCD
gives only good predictions perturbatively for high-Q2 processes and by using lattice
QCD, meson and baryon mass spectrums can be approximately reproduced. Cur-
rently, the predictions for the total cross section for hadronic collisions are based
on the phenomenological Regge approach. Regge theory lives alongside with QCD,
and much effort is still needed to understand these two theories together. At leading
order, the Pomeron can be perturbatively described by a 2-gluon color-singlet state,
which is of practical use only in high-Q2 diffraction, when production of hard objects
is triggered diffractively. Higher order description of hard diffraction is done in a
gluon ladder picture, and often the term BFKL Pomeron is used [6, 24].

These mysterious, approximately linear Regge trajectories have been one of the
inspirations for development of classic string theories [26]. In classic string theory,
one could think these resonance mesons following a Regge trajectory as a different
excitations of a string, which is rotating. Extremely popular AdS/CFT (Anti de
Sitter/Conformal Field Theory) duality, which is a conjectured equivalence between
a chosen string theory and gravity on one space and QFT without gravity in a
lower dimensional space, has triggered also ideas about Graviton-Pomeron Regge
trajectories [17].

Martin-Froissart bound

Most of the phenomenological models for the total cross section as a function of
s are based on Regge theory fits and utilization of Martin-Froissart bound. The
Martin-Froissart upper-bound is [6]

σtot <
π

m2
π

ln2s, (4.28)

which is derived using mathematical tools similar to Regge theory and not in terms
of QCD. Experimentally σtot ∼ (0.3 mb)ln2s, but π/m2

π ≈ 64 mb. This indicates
that the bound could need a modification. Taking account the chiral perturbation
theory, where mπ → 0, i.e. when up and down quark masses vanish and chiral
symmetry is obtained, the total cross section might diverge. The saturation of the
bound is also unsolved and it’s context to gluons and their impact parameter b
picture.
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4.5 Regge theory in Monte Carlo

What follows, a phenomenological model [16] for predicting the total cross section
and diffractive cross sections. It is introduced because of its implementation in the
latest version of PYTHIA 8 event generator and it is somewhat similar to other
Regge theory based soft diffraction models. However, it does not represent any
theoretical superiority over other phenomenologies.

Total cross section formula

The Minimum Bias Rockefeller (MBR) model [16] predicts the total p− (p̄)p cross
section with

σp±p
tot (s) =







16.79s0.104 + 60.81s−0.32 ∓ 31.68s−0.54 when
√
s < 1.8 TeV

σCDF
tot +

π

s0

[(

ln
s

sF

)2

−
(

ln
sCDF

sF

)2
]

when
√
s ≥ 1.8 TeV,

(4.29)

where the upper term is obtained by a global Regge-theory fit to data and the lower
term is a prediction of a saturated Martin-Froissart bound model.

One can see that on higher energies there is no difference between particle-
(anti)particle scattering cross sections. Intuitively, this reflects similar parton dis-
tributions (full of small-x gluons) on the asymptotic energies between colliding pro-
ton and anti-proton. This asymptotic equivalence between particle-(anti)particle
scattering from the pre-QCD era is known as the Pomeranchuk theorem (1958) [6].

In Equation 4.29, the free parameters are the saturation energy
√
sF = 22 GeV

and the energy scale s0 = 3.7 ± 1.5 GeV2. To obtain values in millibarns, the s0 is
divided by (~c)2 ≈ 0.389 GeV2mb. The normalization is done using the measured
cross section of σCDF

tot (
√
s = 1.8 TeV) = 80.03± 2.24 mb. [16]

Diffractive cross section formulas

The proton fractional longitudinal (forward) momentum losses ξ = ∆pz/pz of the
intact proton for the single diffraction, double diffraction and central diffraction
(double Pomeron exchange) are

ξSD =
M2

s
(4.30)

ξDD =
M2

1M
2
2

s · s0
(4.31)

ξCD = ξ1ξ2 =
M2

s
, (4.32)

where M2 is the invariant mass squared of the dissociated system(s) and the energy
scale parameter is s0. Clearly the definition of ξDD is not really physically the same
as ξSD and ξCD, because both protons have dissociated.

This forward momentum is carried away by the interchanged ”particle”, by
Pomeron, and the fractional momentum loss has an inverse exponential relation
with the rapidity gap width ∆y, given by

ξ = e−∆y ⇔ ∆y = −ln(ξ). (4.33)
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In the central diffraction ∆y = ∆y1 + ∆y2, which is a sound definition because
ξCD = e−∆y1e−∆y2 = e−(∆y1+∆y2) = e−∆y. In the double diffraction, the center of the
rapidity gap y0 can be calculated with

y0 =
1

2
ln

(
M2

2

M2
1

)

, (4.34)

which means that when M1 6=M2, it shifts from zero.

The differential cross sections are modelled using the Pomeron trajectory α(t),
the Pomeron-proton coupling β(t) and the ratio κ of the triple Pomeron to Pomeron
coupling [16]

αP (t) =

αP (0)
︷ ︸︸ ︷

1 + ǫ+α′
P t = 1.104 + 0.25(GeV−2) · t (4.35)

β2(t) = β2(0)F 2(t) (4.36)

κ = g(t)/β(0), (4.37)

where F (t) is the proton form factor [16], a concept already used in nuclear physics
(Fourier transform of the charge density). The value for the Pomeron-proton cross
section is fixed by σ0 := κβ2(0) = 2.82 mb at s0 = 1 GeV2.

Now, the differential cross section formulas are expressed as a function of kine-
matical terms as [16]

d2σSD
dtd∆y

=
1

NG(s)

[
β2(t)

16π
e2[αP (t)−1]∆y

](

κβ2(0)

(
s′

s0

)ǫ)

, (4.38)

d3σDD

dtd∆ydy0
=

1

NG(s)

[
κβ2(0)

16π
e2[αP (t)−1]∆y

](

κβ2(0)

(
s′

s0

)ǫ)

, (4.39)

d4σCD

dt1dt2d∆ydyc
=

1

NG(s)

[
∏

i

(
β2(ti)

16π
e2[αP (ti)−1]∆yi

)]

κ

(

κβ2(0)

(
s′

s0

)ǫ)

, (4.40)

where yc is the center of the central system in the rapidity space. Above, the expres-
sion in normal (·) brackets encapsulates the total Pomeron-proton cross section at
the reduced squared collision energy, where s′ = e−∆ys = ξs =M2

X . The expression
in square brackets [·] is understood as the Pomeron flux ∼ probability of Pomeron
exchange. [16]

These expressions are said to hold when rapidity gaps are ∆y & 3 (ξ . 0.05),
i.e. when Pomeron exchange is dominating and coherence condition holds. The
NG(s) = min(1, f) is renormalization factor and f is the integral of the square
bracket term in equations 4.38, 4.39 and 4.40. This integral is calculated over phase
space as [16]

fSD =

∫

dt [ · ] (4.41)

fDD =

∫

dtdy0 [ · ] (4.42)

fCD =

∫

dt1dt2dyc [ · ] (4.43)
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for ∆ymin > 2.3. The authors of the model say that this ”renormalization”4 corre-
sponds to interpretation of the Pomeron flux as a rapidity-gap formation probabil-
ity. Mainly, this renormalization procedure makes the MBR model different from
standard Regge phenomenologies, and it is not theoretically on rigorous basis. Its
purpose is to fix the break of unitary along the rise of diffractive cross sections. This
rise seems to start with the standard triple Pomeron Regge approach to diffraction,
with the center of mass energy larger than 20 GeV [37].

The Equations 4.38, 4.39 and 4.40 are assumed to be valid only at large rapidity
gaps ∆y, as said earlier. A somewhat arbitrary approach is then needed at small ra-
pidity gaps. The cross sections obtained at small rapidity gaps values are suppressed
with a multiplicative factor

S =
1

2

[

1 + erf

(
∆y −∆yS

σS

)]

, (4.44)

where erf(x)5 is the sigmoidal, Gaussian error function with parameters ∆yS = 2
(coherence limit set ξ ≤ 0.135) and σS = 0.5. These parameters are problematic,
and especially with the DD events, the ∆yS controls how large fraction of the DD
events in total look like the ND events, i.e. have a vanishing rapidity gap. [16]

Refer to the original reference [16], how the events are generated in practise. To
summarize, the free parameters of the model are: Pomeron trajectory ǫ = 0.104 and
α′ = 0.25, the Pomeron-proton coupling β(0) = 6.556 (GeV−1), ratio κ = 0.17, the
lower bound of the dissociated system mass-squaredM2

0 = 1.5 (GeV2), the minimum
widths of the rapidity gap ∆ymin,SD,∆ymin,DD,∆ymin,CD = 2.3 used in flux renormal-
ization and the parameters ∆yS,SD,∆yS,DD,∆yS,CD = 2.0 and σS,SD, σS,DD, σS,CD =
0.5 for low ∆y cross section suppression. [16]

4Which is not to be mixed with the concept of renormalization in quantum field theories.
5erf(x) = 2√

π

∫ x

0
e−t2dt



Chapter 5

Diffraction as a quantum
mechanical process

In general, describing hadronic processes in particle physics requires much more
mathematical machinery than in plain-old quantum mechanics. However, in the
so-called Good-Walker image [31] of diffractive scattering, a purely quantum me-
chanical S-matrix formalism is used. The whole approach is based on unitarity of
the scattering matrix.

42
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5.1 Good-Walker image

The moving hadron |B〉 is described as a coherent, complex valued superposition of
eigenstates |ψi〉 of the scattering operator [31]

|B〉 =
∑

k

Ck|ψk〉, (5.1)

with probability amplitudes Ck ∈ C. The kets |ψk〉 are the eigenstates of the scat-
tering amplitude operator Im T = 1− Re S, with an eigenvalue equation

Im T |ψk〉 = tk(~b)|ψk〉. (5.2)

From the unitarity condition 0 ≤ tk(~b) ≤ 1, and the imaginary operator is basically
coming from the definition of T -matrix with respect to the S-matrix, in Equation
2.33 . These eigenvalues are the probabilities for the corresponding state to interact
or ”absorb” with the target, and are a function of the impact parameter ~b ∈ R2.

The usual normalization is used

〈B|B〉 =
∑

k

C∗
kCk〈ψk|ψk〉 =

∑

k

|Ck|2 = 1, (5.3)

with an orthonormal set of eigenstates obeying 〈ψi|ψj〉 = δij . After collision, the
state of hadron is not anymore |B〉, this means that different eigenstates are absorbed
by different intensities.

Directly using these, the imaginary part of elastic amplitude is given by the
expectation over absorption coefficients

〈B|Im T |B〉 =
∑

k

|Ck|2tk = 〈tk〉, (5.4)

which is simply weighted average of absorption coefficients tk weighted by the prob-
ability amplitudes |Ck|2 of states.

The differential total and elastic cross sections with respect to the impact pa-
rameter ~b, by using only imaginary part of the elastic amplitude, are described
by [31]

dσtot

d2~b
= 2〈tk〉 (5.5)

and
dσel

d2~b
= 〈tk〉2. (5.6)

The differential cross section of diffraction is the dispersion of absorption coefficients
[31]

dσdiff

d2~b
=
∑

k

|〈ψk|Im T |B〉|2 − dσel

d2~b
(5.7)

=
∑

k

|Ck|2t2k −
(
∑

k

|Ck|2tk
)2

(5.8)

= 〈t2k〉 − 〈tk〉2, (5.9)
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and the dispersion is equal to variance of the absorption coefficients. Utilization
of two-dimensional Fourier transform is needed to express these equations in the
momentum space instead of the impact parameter space.

This general, a quite simple picture of diffraction by Good-Walker does not really
directly tell us much about diffraction quantitatively, which is a common property
to theories utilizing S-matrix formalism. However, one interesting, a simple model
suitable for soft diffraction and based on Good-Walker formalism is by Miettinen
and Pumplin.
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5.2 Miettinen-Pumplin model

Under the Good-Walker image, Miettinen and Pumplin (MP) [42] formulated a
reasonable simple model of soft diffraction. In their model, hadrons are described as
composite objects. These constituents make up the hadron as a quantum-mechanical
superposition of different states. In diffraction, these states are absorbed unequally
by the target. This process produces inelastic states which have the same internal
quantum numbers as the incident hadron.

Most important fact about the MP model is that diffraction is understood aris-
ing from the differences in absorption probabilities of hadron’s component states.
Under the usually understood model of probabilities (Kolmogorov’s axioms), i.e. no
negative values, these absorption probabilities must be tk ∈ [0, 1]. From there, the
Pumplin s-channel unitary upper bound can be derived as [42]

σdiff (b) + σel(b) ≤
1

2
σtot(b), (5.10)

under given b = |~b|, which is the impact parameter of the collision. However, this
bound is strictly valid only under the assumptions of this model. Using the Pumplin
bound, non-diffractive cross section is bounded by

σnd(b) ≥
1

2
σtot(b). (5.11)

The impact parameter has a major effect on production of soft diffraction, and thus
it is a main constituent of the MP model.

The first assumption of the MP model is that if the interactions of states are
described just by using real valued absorption coefficients, these states must diag-
onalize the corresponding diffractive part of the S-matrix. Diagonalization means
simply that the corresponding matrix valued operator eigenvalue equation can be
expressed in a form where eigenvalues are on the diagonal of the diagonal matrix.

In the MP model, the diagonal states of the S-matrix are derived from the
parton model. Every state is described by a number of N ∈ N partons, which each
are characterised with a pair (~b, y) of impact parameter and energy and longitudinal

momentum (as rapidity). Thus, a set of parton characterizations is {(~bi, yi)}Ni=1.
These partons are assumed to be structureless, point-like constituents, but no quark
model or similar hypothesis is made. Under QCD, these must be valence quarks,
sea quarks or gluons.

The MP model generates the global properties of diffraction on distribution and
interactions of wee partons only. The parton states are understood as the eigenbasis
for diffraction, i.e. states which diagonalize the S-matrix. These parton states can
be well populated with wee partons which leads to high interaction probability and
some states have no or just few wee partons, and these generate the transparent
channels of diffraction. Main feature of the MP model is that the fluctuations in
interaction probabilities which are responsible for diffraction, are due to fluctuations
in the number of wee partons N and their characterizations of impact parameters
and rapidities. Here is the direct connection to probabilistic classification, and
the multidimensional likelihood distributions introduced in Chapter 8 describe the
information embedded in the final state multiplicity fluctuations over rapidity.
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Probabilities

Now, under the optical MP model, the hadron is modelled as a coherent sum over
N parton states which are assumed to be the eigenstates of diffraction [42]

|B〉 =
∑

N

N∏

i=1

∫

d2~bidyi CN(~bi, . . . ,~bN ; y1, . . . , yN) |~b1, . . . ,~bN ; y1, . . . , yN〉, (5.12)

where coefficients CN are the wee parton configurations (impact parameters and
rapidities). This model clearly assumes no dependency e.g. on spin. Also no cor-
relation between wee partons is assumed, thus product rule of probability calculus
can be used. The total probability |CN |2 of N wee partons is modelled as a random
process with a Poisson distribution [42]

|CN(~b1, . . . ,~bN ; y1, . . . , yN)|2 = e−G2G2N

N !

N∏

i=1

|Ci(~bi, yi)|2, (5.13)

where G2 is the mean of Poisson distribution and the probabilities are normalized
to

∫

d2~bidyi|C(~bi, yi)|2 = 1. (5.14)

The interaction probability of a parton to interact with the target is denoted
with τi, and due to Kolmogorov’s axioms, probability to not to interact is 1 − τi.
Thus, the probability for N independent partons to interact is

1−
N∏

i=1

(1− τi). (5.15)

This result is said to depend directly on s-channel unitarity [42]. Now the whole
MP-model is characterized by independent wee-parton states

|ψk〉 = |~b1, . . . ,~bN ; y1, . . . , yN〉 (5.16)

with likelihoods to exist in the hadron as

e−G2G2N

N !

N∏

i=1

|C(~bi, yi)|2 d2~bidyi. (5.17)

These partons interact with the target hadron with probabilities given by

t(~b1, . . . ,~bN ; y1, . . . , yN ;~b) = 1−
N∏

i=1

[1− τ(~bi +~b, yi)], (5.18)

with parton’s impact parameters translated with the hadron’s impact parameter
~b. [42]
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Differential cross sections

Now the cross sections can be described as a function of the impact parameter under
the Good-Walker image using moments of the absorption coefficients tk. These first-
order and second-order (central) moment are given in the Miettinen and Pumplin
model by Eikonal forms [42]

〈t〉 = 1− e−G2〈τ〉 (5.19)

〈t2〉 − 〈t〉2 = e−2G2〈τ〉(e+G2〈τ2〉 − 1), (5.20)

where the independency assumption of wee-parton distributions was used. In gen-
eral, the n-th moment of the single-parton interaction is

〈τn〉 =
∫

d2~b1dy1 |C(~b1, y1)|2[τ(~b1 +~b, y1)]n, (5.21)

with the given impact parameter ~b.
Differential cross sections with respect to the transverse momentum vector ~q are

obtained by two-dimensional Fourier transform of the impact parameter amplitudes
[42]

dσel
d2~q

=
1

4π2
〈t̃〉2 (5.22)

dσdiff
d2~q

=
1

4π2

(
〈t̃2〉 − 〈t̃〉2

)
, (5.23)

where

〈t̃j〉 =
∞∑

N=0

e−G2G2N

N !

N∏

i=1

d2~bidyi|C(~bi, yi)|2

×
{
∫

d2~bei~q·
~b[1−

N∏

k=1

(1− τ(~bk +~b, yk))]

}j

. (5.24)

Fourier transform can be used due to well-known fact from quantum mechanics,
which says that position and momentum are conjugate variables1, thus their operator
representations do not commute, are constrained by Heisenberg uncertainty principle
∆x∆p ≥ ~/2 and are coupled via Fourier transform. Also, using Fourier transform
is possible due to the fact that the parton states are the same for all global impact
parameter values ~b.

The expectation values in differential cross section equations 5.22 and 5.23 are
calculated using 2-dimensional Fourier transform as [42]

〈t̃〉 =
∫

d2~b ei~q·
~b〈t〉 (5.25)

〈t̃2〉 − 〈t̃〉2 =
∫

d2~b d2~b′ei~q·(
~b′−~b)e−G2[〈τ̃(~b)〉+〈τ̃ (b′)〉](eG

2〈τ(~b)τ(~b′)〉 − 1), (5.26)

where

〈τ(~b)τ( ~b′)〉 =
∫

d2~b1dy1|C(~b1, y1)|2τ(~b1 +~b, y1)τ(~b1 + ~b′, y1). (5.27)

1like time and energy.
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Figure 5.1: Differential cross section as a function of the impact parameter using
the MP model parametrization at

√
s = 53 GeV, as described in [42].

Basically, the MP model is described with three factors. First G2 defines the av-
erage number of wee partons in a Poissonian way, |C(~b, y)|2 defines the single-parton
probability distribution and τ(~b, y) defines the single-parton interaction probability.

However, easily can be seen that all the values in the model are integrated and
an event-by-event Monte Carlo model would need a modification in the model. In
the original paper [42], parametrizations were used to give predictions. See Figure
5.1 for an illustration of the MP model predictions at

√
s = 53 GeV. The figure is

done with σdiff = σsdl + σsdr, so the double diffraction is not explicitly included,
because it was not really discussed in the original paper. Diffractive cross section
peaks at non-zero impact parameter value, which is intuitive if one thinks diffraction
in optical terms.



Chapter 6

Hadron colliders

Hadron colliders are the high energy new physics search tools. In comparison with
lepton colliders, like the pre-LHC collider LEP (large electron-positron collider)
at CERN, hadron colliders can achieve much higher center of mass energies due to
much smaller synchrotron radiation which has proportionality∝ 1/m4 to the particle
mass. As a downside, hadron colliders are colliding composite objects which have
a non-deterministic initial state |i〉, i.e. colliding particles are actually quarks or
gluons with some probability. This compositeness creates the so-called underlying
event which makes precision physics a great challenge in hadron colliders. Naturally,
as a positive side, hadron colliders allow the research of hadronic structure over large
kinematical regions.

49
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6.1 Master equation

In an inelastic hard collision in a hadron collider, the center of mass energy of two
interacting partons is √

ŝ =
√
x1x2s = Q, (6.1)

where Bjorken variables x1 and x2 are the fractional momentums of the two partons
colliding, and they have a kinematical relation with rapidity y of the heavy end
product as [15]

x1,2 =
Q√
s
e±y. (6.2)

By using this, one can see easily that a centrally produced y ∼ 0 hypothetical
massive particle requires x1 ⋍ x2. Then the mass of the particle M = Q dictates
is it the sea (low x) or valence (higher x) partons which produce the particle most
probably.

Equations 6.1 and 6.2 demonstrate a dramatic difference in comparison to lepton
colliders where

√
ŝ =

√
s is fixed due to non-composite colliding particles, and the

only way to change it is to vary beam energy. The value of
√
ŝ is the threshold for

particle production, i.e
√
ŝ ≥ MX , where MX is the invariant mass of the system

produced. Statistically, x1 and x2 are described by the same parton distribution
functions than measured in DIS, and at the LHC energies, the highest probability
is actually to have hard gg-collisions.

p1

p2

i(x1p1)

j(x2p2)

X

σ̂

Figure 6.1: Illustration of the hard collision master equation.

If the factorization of short and long distance parts of QCD interactions can be
assumed, the cross section for different processes is expressed as [15]

dσp1p2→X =
∑

i,j∈{q,g}

∫ 1

0

dx1 dx2fi/p1(x1, µ
2
F )fj/p2(x2, µ

2
F )dσ̂ij→X(Q

2;µ2
F , µ

2
R), (6.3)

where µ2
F is the factorization scale and µ2

R is the renormalization scale. Q2 & 2
GeV2 is the scale of the hard parton-parton process, i.e. 4-momentum transfer t̂ or
Q =

√
ŝ in an s-channel process. This means that two partons (quarks or gluons)

do any of possible hard collisions which can produce the system X under study,
and the sum is done incoherently over all the possibilities. The master equation
is illustrated in Figure 6.1. One must still remember that the factorization is not
theoretically rigorous for hadron colliders, in contrast with DIS, where it can be
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proven with operator product (OPE) Laurent series expansion. The soft gluon (∼
long wavelength) color connections can spoil the factorization in hadron-hadron
collisions, but the effects can be shown to be power suppressed as a function Q2.

The parton-parton cross section is calculated perturbatively as power series [15,
29]

dσ̂ij→X = αk
s

∑

n

dσ̂
(n)
ij

(αs

π

)n

, (6.4)

where n ∈ N is the order of perturbation series, with leading order (LO) also known
as tree level or Born level. The tree level is the lowest possible order diagram in the
coupling gs for a given process. The αk

s denotes the leading power of the hard process,
e.g. for jets k = 2 and vector boson production k = 0 [29]. Increasing the order of
perturbation in QCD is computationally very complicated and there are no universal
techniques to calculate at arbitrarily high order. At each order of perturbation
theory, both parton-parton cross section and pdfs have a residual factorization µF

scale dependency. This is supposed to be smaller with higher order calculations.
After all, the measurable cross sections dσ must be independent of any (arbitrary)
renormalization µR and factorization scale µF , i.e. they obey renormalization group
equations (RGE) condition1.

The calculation techniques must handle two kind of divergences: the ultraviolet
(UV) and infrared (IR) divergences. The UV divergences are coming from the small
scale loop corrections, from higher resolution, and the IR divergences from large
scale, soft effects. The former is usually handled by renormalization via dimensional
regularization, i.e. calculations are done in space-time of dimension d = 4 − ǫUV ,
where ǫUV is the regularization term. This is done to avoid singularities (poles)
encountered with complex integrals. Shortly expressed, the UV divergences are ab-
sorbed into bare strong coupling ∼ renormalization scale µR dependency. The latter,
IR divergences are usually tailed by cancellation of virtual and real particle contri-
butions at all order of perturbation theory together with a suitable pdf factorization
scheme, which can absorb collinear and soft gluon emissions ∼ factorization µF scale
dependency.

1µR,F
∂σ

∂µR,F
= ∂σ

∂ ln(µR,F ) = 0.
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6.2 Jets and algorithms

Jets are collimated, experimentally measured sprays of particles in a ”restricted”
space angle and close in phase-space, and highly important in searching for new
physics and in the Standard Model measurements. Like bb̄-jets which is one of the
decay signatures for Higgs H0, but also signature for standard QCD processes. As
discussed earlier, they can be produced also in hard diffraction.

Due to QCD confinement, energetic quarks or gluons produced in hard high-Q2

scatterings are never seen free, but they produce sprays of hadrons (mesons, baryons)
which are detected experimentally by their tracks (if charged), and by their energy
deposits. Unfortunately, hadronization, the process of how these quarks or gluons
turn into jets can be only phenomenologically modelled.

 

Missing Energy 

Muon 

b-Jet 

Jet

Figure 6.2: Single top quark event reconstructed in transverse (x, y) plane at CDF.
Figure shows reconstructed tracks and transverse energies of jets (bars). [13]

In practise, the definition of a jet is not unique and is basically an algorithmic
definition. First, the jet clustering algorithms use some ”metric”, which is not a
real metric in mathematics sense, but a QCD motivated way to measure distances
between hadrons in an experimental (η, φ) space. Together with the metric, algo-
rithm uses some combinatorial process with usually at least one free parameter, the
maximum jet cone radius, to cluster hadrons together. To define the 4-momentum of
two particles clustered together, most usually the sum is taken. Jet algorithm must
be both experimentally relatively easy to apply and give a correspondance between
QCD final states, which are quarks or gluons, and the real end products which are
the jets of hadrons. Naturally jet composition also consists of leptons and photons
via EM interactions. Figure 6.2 shows an event reconstruction of a rare single top
quark decay event at the CDF experiment, where missing energy is due to muon
neutrino νµ.
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Jet algorithms must be both infrared and collinear safe, thus they must be able
to handle the soft QCD properties of parton evolution. The algorithmically found
number of jets should stay the same even if partons radiates a soft gluon or one
parton is replaced with a collinear pair of partons. This property is a requirement
from QCD perturbation theory, which executes an exact cancellation of real and
virtual diagrams of soft and collinear emissions in all orders of αs [29]. This is a
requirement from unitary, i.e. P (resolvable emission)+P (virtual + unresolvable) ≡
1. Thus, the jet algorithm must obey this requirement if one wants to be able to
compare experimental jet rates with theoretical parton level calculations. The most
commonly used jet algorithm nowadays in hadron colliders is the anti-kT [14].
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6.3 Underlying event

Because the colliding hadrons are composite particles, it is usual that even in hard,
high-pT interactions, there is soft particle production in addition to the hard process.
This is the so-called underlying event (UE), which ultimately makes precision QCD
measurements in hadron colliders extremely difficult. The case is different with
lepton colliders, which have a well understood non-composite initial state such as
|e+e−〉. Formally, after one beam cross in a hadron collider, the set of final states is

H⋃

i

{|Hard FS〉}i ∪ {|UE FS〉}i ∪
S⋃

j

{|Soft FS〉}j, (6.5)

which is a union over H hard scattering final state (FS) events and their underlying
events, and a union over S soft diffractive or non-diffractive events. The total number
of simultaneous hadron-hadron pair collisions is H + S, the number of pile-up. One
must notice that the underlying event is not exactly the same thing to model as soft
non-diffractive events, even if the phenomenology common to both is highly similar.

Now assume a hard gluon-gluon collision. All the rest of the partons, i.e. pro-
ton remnants can and usually will have, soft interactions which create unwanted
background activity in measurements. This must be corrected e.g. in jet energy
scale analysis by statistical subtraction techniques. Currently the modelling of un-
derlying event depends on phenomenological models [48] implemented in the Monte
Carlo event generators, which of course can lead easily to circular reasoning by
tune-fit-tune procedure.

Usually these models for UE are based on the impact parameter b pictures with
some matter distribution function, like double Gaussian shape, and some hard scale
pT cut-off, which depends on

√
s. This pT cut-off regularizes the hard scattering

2 → 2 processes which have divergent cross sections when pT → 0, which would
otherwise grow to infinity. Below this cut-off, in UE modelling sense soft gluons
are exchanged and stretching the corresponding color ”strings” between partons
explains phenomenologically the soft hadron production. [48]

The proton remnants can have multiple interactions (MPI) even with the hard
process and there can be even a secondary hard scattering involved. Also initial
state and final state radiation are part of this UE scheme. Tuning the underlying
event is such a difficult subject, that models tuned at the center-of-mass energy√
s = 1.96 TeV of the Tevatron do not easily extrapolate to the energies

√
s = 7 or

8 TeV of the LHC.



55

6.4 Luminosity

The instantaneous luminosity L of a collider describes the rate of how often the
colliding particle bunches have an interaction, and has units of [cm2 s]−1. One must
remember that luminosity is purely collider related quantity, like a particle flux.
Physics processes interaction probabilities do not depend on luminosity, but they
depend on cross sections σ. Model of instantaneous luminosity multiplied with the
number of NB bunches circulating, is described in a simple form with [29]

L =
NBf0NpNp̄

4πρ2
≈ 1031−32 cm−2s−1 (Max at Tevatron) (6.6)

≈ 1034 cm−2s−1 (Max at LHC) (6.7)

where f0 is the bunch revolution frequency and Np and Np̄ are the number of protons
(antiprotons) per particle bunch. The bunch crossing frequency ∼ MHz ( trigger
rate) is given by fX = NBf0. The parameter ρ describes the Gaussian transverse
width of the beam. It can be expressed as πρ2 = ǫβ∗, where ǫ is the beam emittance,
which is the average spread or volume of beam particles in position-momentum
phase space and β∗ the accelerator optics parameter, both with units of length. The
integrated luminosity

∫
Ldt describes the amount of data collected over a period of

time.
Increasing the luminosity increases the probability for simultaneous pp̄ collisions,

and this pile-up is usually modelled to be Poisson distributed with a mean ν ∈ R.
This can be estimated based on the measured instantaneous luminosity L, integrated
over all NB circulating bunches per revolution. Thus, the expected number ν of
simultaneous inelastic collisions per bunch cross is

ν =
Lσinel
NBf0

, (6.8)

where e.g. NB = 36 and the bunch revolution frequency f0 ∼ 48 kHz at the Tevatron
run II, and the formula assumes that the instantaneous luminosity L is summed over
NB bunches.

The probability to have k ∈ N simultaneous (or none) collisions per bunch cross
is then given by discrete Poisson distribution

P (X = k; ν) = νk
e−ν

k!
. (6.9)

At the LHC, the mean pile-up can be as high as ν = 30. It makes data collection
faster, but requires very sophisticated pile-up detection (vertex reconstruction) and
correction algorithms in the triggering and offline data-analysis.
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6.5 Counting experiment

In a counting experiment, the cross section for a given physics process at the given√
s is experimentally defined as [29]

σ(
√
s) ,

#Number of observed events

Integrated luminosity
=

Nobs
∫

∆t
Ldt, (6.10)

where
∫
Ldt is the integrated luminosity [cm−2] with usually Gaussian uncertainty

and Nobs is the number of observed signal event candidates with Poisson uncertainty
∼

√
Nobs. However, when taking experimental effects, i.e. detector acceptance

probability and analysis efficiencies ǫi in account, the formula is

σ =
Nobs − 〈B〉

ǫ1 · ǫ2 · · · ǫn
∫
Ldt

=
Nobs − 〈B〉
Atot

∫
Ldt

, (6.11)

where Atot ∈ [0, 1] is the total acceptance usually following log-normal distribu-
tion [10] and 〈B〉 is the expected number of unwanted, background events passing
through the event selection. In a case of rare signal search, the irreducible back-
ground contamination by ordinary decays can be easily larger than the event count
of rare signal itself. Systematic uncertainties are usually coming from selection ef-
ficiencies, background subtraction, integrated luminosity measurement, acceptance
corrections, detector modelling and from theoretical models for a given signal process
and background processes.

The cross section formula 6.11 can be easily generalized as binned cross section
via matrix formalism to differential cross section dσ/dx estimation, i.e. in practise
to histogram vector x estimation of some variable x. This leads to a statistical,
discretized (via histogram) inverse problem known as unfolding, naively solved as

x = A−1(y − b), (6.12)

where y ∈ Rn
+ describes the folded measurements of each n histogram bin and

b is the background estimate. However, applying this directly usually results in
highly unstable inversion and requires suitable regularization techniques. Classic
regularization tactics are Tikhonov regularization and truncated Singular Value De-
composition (SVD). The non-negativity constraint should be also included in the
regularization, and it is a requirement what closed form estimators do not usually
guarantee. The mixing between bins, known also as bin migration, is due to non-
diagonal measurement matrix Aij . This measurement matrix ultimately defines the
probabilities of migrations from a histogram bin i → j, and it must be very well
understood, thus the measurement calibration and Monte Carlo modelling must be
done with care. Also the background vector b must be known with low uncertainty.

Acceptance and efficiency

Above, the total acceptance Atot was defined as the factor, which incorporates all
the acceptance and efficiency corrections. However, the terminology has some dif-
ferences, and sometimes the acceptance is defined as

A(process; detector) ,
#Low-level reconstructed

#Generated
∈ [0, 1], (6.13)
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which can be purely geometrical limiting factor, known as geometrical acceptance.
A detector with a space angle reach of Ω = 4π steradians would be the optimal.
Unfortunately, in practise the geometrical acceptances are far from that and for
example in elastic scattering processes with no Roman Pots or similar very forward
detectors, the acceptance is zero.

All the inefficiencies, dead times etc. of the detectors are part of the accep-
tance characterization, and they are not necessarily constant over time, e.g. due to
detector ageing and different luminosity conditions.

An important factor to analysis comes from the online triggering efficiency

ǫtrig(process; online chain) ,
#Triggered

#Low-level reconstructed
∈ [0, 1] (6.14)

and highly important is also the offline selection efficiency

ǫsel(process; offline chain) ,
#Selected

#Triggered
∈ [0, 1]. (6.15)

All these can be combined into same total acceptance Atot correction by multiplica-
tion, assuming mutual independence of each.

Purity

The expected purity π at the end of the analysis chain is

π ,
〈S〉

〈S〉+ 〈B〉 (6.16)

and when π → 1, then 〈B〉 → 0. One can see that the purity factor is not directly
used in evaluating the cross section in equation 6.11. However, it is related to the
term 〈B〉 and estimation of background. Why this is so? Well, if one incorporates
the effect of background as a multiplicative factor π in the numerator, one wrongly
scales the background rate together with the measured signal rate, if the signal rate
(cross section) turns out the be higher than expected.

Sometimes the background can be estimated without MC by using a control
sample, which is a data sample only of background events, and then extrapolating
the background rate from this sample.

Offline selection rules are traditional single-variate cuts, or cuts in the output
of multivariate algorithms, which are often tuned to optimize quantity ǫ · π ∝
S/

√
S +B, which is optimal only in a case when the estimated background 〈B〉

has vanishing uncertainty [40]. For rare signal searches, one usually wants to opti-
mize roughly the ratio S/

√
B, i.e. maximize significance.

Based on the estimated efficiencies, acceptances and background estimates, one
is able to do statistical correction when doing the counting measurement. The
case with a well understood background class (small uncertainty), and a one signal
class, the problem is well-posed. In a multi-class case, as in this work, with not
well understood theoretical cross sections of each class, the problem is more or less
ill-posed.
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Tevatron and CDF experiment

The Tevatron accelerator at Fermilab (Fermi National Accelerator Laboratory),
USA, was the highest energy particle accelerator in the world before the LHC (Large
Hadron Collider), CERN, Switzerland. It started its operation in 1983 as the first
superconducting synchrotron, with two experiments, CDF and D∅. After the last
major upgrade in 2001, the Tevatron accelerated protons and antiprotons in a ring
with a circumference of 6.28 km and achieved a center of mass energy of

√
s = 1.96

TeV, with energy of 0.98 TeV per beam particle. The final shutdown of the Tevatron
beam was on September 30, 2011.

58
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7.1 Tevatron accelerator

The acceleration process at the Tevatron was done in several phases, which is a sim-
ilar approach as in the LHC. Figure 7.1 shows a schematics of the whole acceleration
chain. The MiniBoone and NuMI denote neutrino experiment baselines, which use
the beam from the booster and the Main Injector to create a beam of neutrinos
travelling under the ground, respectively.

Figure 7.1: The Tevatron accelerator complex. [49]

The collection of protons starts by ionizing hydrogen gas which leads to ions
with two electrons and one proton. Then the 750 keV Cockroft-Walton (CW) pre-
accelerator is used, which is a diode-capacitor ladder type voltage multiplier, similar
in principle as in electronics. These negatively charged ions with charge q are acceler-
ated using the CW with a positive voltage potential φ, which creates an accelerating
electric field ~E = −∇φ with force ~F = q ~E, and then passed to the 150 meter long
linear accelerator (linac), where the ions achieve energy of 400 MeV. [27]

In general, radio frequency (RF) cavities are used to accelerate protons in each
of the accelerators.

The creation of protons is made by shooting these ions through a carbon foil,
which removes electrons. These protons are then transferred into the Booster, which
is a synchrotron that accelerates protons into energy of 8 GeV. After the Booster
follows the Main Injector which accelerates protons up to 150 GeV and produces
120 GeV protons for antiproton creations process.

The antiproton creation process is highly non-trivial, which is one of the reasons
why the LHC uses only protons. However, using antiprotons allows both antiproton
and proton bunches to travel in the same beam pipe. At the Tevatron, the Antipro-
ton source creates antiprotons by colliding 120 GeV protons with a nickel target
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which produces a small amount of antiprotons, which are then trapped, collected
and stored in the accumulator ring. These are then passed into the Main Injector,
which passes proton and antiproton bunches which travel in opposite directions in
the same beam pipe, to the main accelerator.

The main accelerator keeps the charged particles on a circular track by using 774
Niobium-Titanium (NbTi) superconducting dipole magnets with liquid helium cool-

ing which generate 4.2 Tesla bending magnetic fields ~B, which apply an orthogonal
force to charge q moving with velocity ~v = (vx, vy, vx), towards the centre of ring.
This can be expressed with relativistic, covariant Lorentz force law1 as derivative of
the 4-momentum P µ with respect to the proper time τ of the particle as

F µ =
dpµ

dτ
= qF µνUµ, (7.1)

where the 4-velocity and the 4-momentum of the particle are

Uµ = (γc,−γvx,−γvy,−γvz) (7.2)

pµ = (E/c, γm~v) = (γmc, γmvx, γmvy, γmvz), (7.3)

obeying pµ = mUµ = mgµνUν , where the factor γ = 1/
√

1− |~v|2

c2
. The usual an-

tisymmetric electromagnetic field rank-2 tensor, encapsulating Maxwell’s equations
in space-time is

F µν =







0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0






. (7.4)

Finally, the beam transverse size is controlled with focussing and defocussing
magnetic ”lenses” by using 240 NbTi quadrupole magnets. The modelling of these
magnets are done classically by linear matrix approaches, where the magnets are
modelled as thin lenses, i.e. Fourier optics analogy, and the full optics transport
over the ring is modelled by chaining these matrices together as MnMn−1 · · ·M1.
Unfortunately, the actual problem is non-linear, even chaotic in the sense of Lya-
punov when it comes to beam stability, and modern computational software (like
MAD-X [41]) try to use more flexible approaches.

1Non-relativistic version is ~F = q( ~E + ~v × ~B).
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7.2 CDF experiment

The Collider Detector at Fermilab (CDF) is an experiment, which collected proton-
antiproton collision data from year 1985 (run 0), initiated the first upgrade in 1989
(run I) and the second upgrade in 2001 (run II). The multipurpose CDF detector
weights around 5500 tons, and its diameters are around 12 meters in each space
dimension. The detector is illustrated in Figure 7.2.

The most famous physics result of the CDF experiment was the discovery of the
top quark, which was announced in February 1995. The experiment was also able
to exclude a wide region of possible Higgs boson’s masses and announced, together
with D∅, evidence for a Higgs like particle in July 2, 2012. Two days later, the
discovery announcement of a Higgs like particle was announced by the CMS and
ATLAS experiments at CERN, with statistical significance over 5σ.

Figure 7.2: The CDF run II detector structure with subdetectors marked, and the
followed coordinate system where positive pseudorapidities (θ ∈ [0, π/2]) are in
proton direction. [12]

SVX II - Silicon Vertex Tracker

The SVX II detector measures the position of charged particles as they transverse
through the detector layers of silicon. The first layer 00 is especially radiation hard
single sided silicon with 1.5 cm away from beam line, and the rest 5 layers of the SVX
II are double sided silicon strip detectors. The outermost intermediate silicon layers
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(ISL) have two double sided silicon layers. The total number of signal channels is
about ∼ 0.72 million. [11]

The measurements of charged particle hits are done in silicon pn-junctions with
suitable amplification. Finally, the hits are algorithmically reconstructed as tracks
by a fitting procedure. The spatial accuracy is in order of tens of micrometers, which
is enough to discriminate between a primary pp̄-collision vertex and a secondary
vertex which is due to the decay of a B-meson or a D-meson, for example.

COT - Central Outer Tracker

The COT tracker is argon and ethane gas filled tracking drift chamber, which detects
charged particles via ionization and drifting. The so-called sense wires collect free
electrons left by ionization. The field wires with negative voltage collect the signal
from positive ions in gas, but only the electrons are actually drifting in the gas. The
COT has eight ”superlayers” with 12 wire-layers each. [11]

In the COT tracker, the positions of the charged particles are measured and due
to solenoidal 1.5 Tesla magnetic field, the trajectories of charged particles bend in
helices. From the bending, 3-momentum of the particle can be measured via a fitting
procedure. Higher the momentum of the particle, less bending and vice versa.

Electromagnetic calorimeter

The electromagnetic calorimetry is based on lead (Pb) sheets sandwiched with a
scintillator material. The charged particle creates an EM shower by interacting
with the lead, and the shower creates visible light by ionization in the scintillator,
which is transferred by light guides to photomultiplier tubes. [11]

There is nearly linear correlation with the amount of light observed and the
energy of the original incoming particle (photon or electron/positron). The discrim-
ination between a photon and electron can be done by combining the information
from tracking, i.e. photon does not leave a track.

Hadronic calorimeter

The hadronic calorimetry is based on iron (Fe) sheets sandwiched with a scintillator
material. The leading idea is that the EM shower should be finished before the
hadronic calorimeter. Hadrons should leave only a small energy deposit in the EM
calorimeter, and thus most of the energy should be deposited in the hadronic part.
The hadronic calorimeter has physical size much larger than the EM calorimeter.
This is due to the fact that hadron are more massive, do not start showering as
early as photons or electrons/positrons, and need more interaction length to have a
nuclear collision. After the hadronic calorimeter, there is an iron absorber which is
used to absorb the hadronic shower generated in the hadronic calorimeter. [11]

Both electromagnetic and hadronic calorimeter are actually made of separate
calorimeters over the pseudorapidity η: central, end-wall and end-plug as shown in
Figures 7.2 and 7.3. This means that they are not absolutely homogenic, and this
fact must be taken account in characterization and calibration.
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Figure 7.3: The CDF run II detector cutaway view exposing the pseudorapidity
η-span. [11]

Muon chambers

The muon chambers are the last detectors (in radial direction), designed to tag the
muons, which go through all the other detectors without any significant deposit
in the calorimeters. However, as charged particles, they can be tracked and thus
their momentum can be measured in the COT. This momentum can then be com-
pared with the muon chamber track signal. The muon chambers are gas filled drift
chambers, as the COT. [11]

Neutrinos, which do not carry either electric or strong (color) charge, do not leave
any signal in the CDF detector. They only interact via electro-weak interaction,
with extremely small cross sections. The presence of neutrinos can be thus known
in this kind of general purpose detector only by utilization of conservation laws,
e.g. by calculating missing transverse energy ET = E sin θCM or momentum pT =
|~p| sin θCM . Transverse quantities are favoured in hadron colliders, because before
collision, the colliding particles (partons) have zero energy or momentum sum only
in transverse plane.

Cherenkov luminosity counters

Cherenkov luminosity counters are there to measure the instantaneous luminosity.
Cherenkov light production is initiated by charged particles, which move faster than
light in dielectric, transparent medium. The after effect is visible light in a cone
shape, dominated by blue end of the spectrum, which can be measured with photo-
multiplier tubes. This effect is analogous to breaking the speed limit of mechanical
sound waves, e.g. when a bullet travels faster than sound waves in the air.
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7.3 Monte Carlo chain

Because modelling real physical measurables in particle physics is far from closed
form algebraic expressions with analytical solutions, Monte Carlo simulations must
be used. The term Monte Carlo here means simply numerical integration techniques.
The most obvious targets are phase space integrals in the cross section formulas and
statistical models of detector responses.

Table 7.1: A typical simulation and event reconstruction chain.

1. Event ”physics” generation (PYTHIA, SHERPA. . . )
Input parameters: Initial state (e.g. |pp̄〉), √s, list of processes
High and low-pT processes, underlying event,
ISR, FSR, hadronization
Output: Final state 4-momentum vectors with particle IDs
→ 2. Detector simulation (Geant)
Detector geometry, magnetic fields, material response (calorimeter
showering) and electrical (sensor) response
Output: Low level signals with O(108) of channels
→ 3. Offline event reconstruction (custom software)
Reconstruction of high level objects (like jets, tracks)
from low-level signals
Output: High level physics objects for physics analysis algorithms

Monte Carlo event generators, like PYTHIA, are programs designed to generate
high-energy collision simulations. These generators simulate both theoretically well
understood hard scattering events and phenomenologically understood soft scat-
tering, diffraction and hadronization. For the hard scattering matrix elements are
needed, which are nowadays often calculated at the given order using computer al-
gebra software like Feyncalc or MADGraph. Finally numerical integration is used
together with the matrix elements to randomly sample phase space, to obtain (in-
tegrated) cross sections.

The simulation of a hadronic collision goes as follows. It starts with two initial
states, e.g. two protons with the given

√
s energy. Next, the generator generates

the hard sub-process, e.g. qq̄ → Z0 → e+e−. After this, the generator simulates
initial state radiation (ISR) and final state radiation (FSR), i.e. gluon (or photon)
emissions. Gluons can emit new gluons, or split into quark-antiquark pairs. The
evolution of this process is known as parton showering, which can be treated reason-
ably well under perturbative QCD. After evolving the parton shower, partons must
be combined into colourless hadrons, this is called hadronization. The hadronization
process is based purely on phenomenological, QCD inspired models, like PYTHIA’s
Lund color string stretch-and-split model or HERWIG’s clustering approach. After
hadronization, the generator adds hadronic decays. Even more complicated is to
handle the underlying event, i.e. dealing with proton remnants and their collisions
and multi-parton interactions (MPI). [48]

The parton shower is evolved as long as all partons have energy low enough,
then they are combined into hadrons. The generation of hadrons stops after the
generation of ”stable” final state particles like pions, kaons etc.
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The detector geometry and electrical response simulation is done usually using
the software called Geant. This takes the event generator output, which includes the
particle IDs (i.e. charge, lifetime etc.) and 4-momentum vectors of each, and evolves
these particles through the layers of sensors. It does the simulation of interaction
of particles in the detector, which includes particle ionisation in trackers, energy
deposition in calorimeters and the decays of intermediate particles and radiation.
The output of Geant is the raw result of all the electric signals of each detector, in
a comparable and same format to real measurements.

These raw signals can be passed through the event reconstruction algorithms,
which reconstruct e.g. particle trajectories (using Kalman filter or similar iterative
estimation), primary and secondary vertices, time of flight (TOF) information, par-
ticle transverse momentum, transverse energy deposits, particle identification and
jet reconstruction. The whole simulation chain is summarized in Table 7.1, where
the event reconstruction phase works naturally with simulated (Geant) or real data.

In this work, PYTHIA 6.4x was used to generate diffractive and non-diffractive
(minimum-bias) events, which were then simulated with Geant 4 CDF simulation
chain. Actual variables used were calorimeter deposits and number of reconstructed
tracks. The non-diffractive events included both perturbative QCD and soft, non-
perturbative events. See Appendix A.4 for details about the PYTHIA simulation.



Chapter 8

Multivariate analysis

The experimental target of this study is to classify diffractive pp̄-collisions on an
collision-by-collision basis, and to obtain integrated cross sections. Classic way of
doing this, or any other high energy physics analysis, is to introduce 1-dimensional
reductive cuts on the measured variable histograms to select events. In the case
of diffraction, this basically means some definition of a rapidity gap, which needs
some threshold on particle production or energy inside the gap and so on. These
gap defining rules are usually more of an ad-hoc nature than mathematically or
physically well defined. When this problem is understood as a statistical inverse
problem, 1-dimensional reductive analysis is not usually the most precise approach.
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8.1 Probabilistic classification

Now when classification is understood as a statistical inverse problem, there must be
the corresponding forward problem. In this case, the forward problem means a way
to calculate estimates of physically measurable variables. This is usually solved by
using the Monte Carlo simulator (like PYTHIA) together with detector geometry
and electrical response modelling (like Geant), and the event reconstruction algo-
rithm chain. Monte Carlo generator can be basically either based on sound physical
models, like perturbative QCD expansion, or purely parametric fits to reproduce
distributions and cross sections measured in experiments. The forward problem
parametrization defines our supervised classification scheme, and the inverse solu-
tion estimate is as good as the simulation model.

Let us now define our probabilistic multivariate classification scheme. Probability
calculus starts with tuplet (Ω,A, P ), which is called a probability space. Here Ω is
a sample space, which is the set of all possible outcomes. A is a σ-algebra with
corresponding properties and it is a set of subsets of Ω. Every A ∈ A is called an
event. An event with only one element is called elementary. Finally, P : A → [0, 1]
is a function which maps each event A ∈ A with probability P (A). Probability of
disjoint events is P (A1∪A2∪ . . . ) = P (A1)+P (A2)+ . . . , with Ai∩Aj = ∅ if i 6= j.
Naturally P is our probability measure with P (Ω) = 1 and P (∅) = 0. [38]

Now the formal structure of the probability space is given. Let us also define a
real-valued d-dimensional continuous random vector X ∈ Rd. Especially, it must be
assumed that there is a function fX : Rd → [0,∞) such that there exists probability
[38]

P (X ∈ A) =

∫

A

fX(x) dx, (8.1)

where the event A ⊂ Rd is a set with interesting vector values. The function fX is
known as likelihood function or multidimensional density function1. One must note
that the value fX(x) is not a probability, but the integral over Ω must be equal to
one.

Here one must not get confused with the terminology, because often one talks
about ”events” i.e. collisions and not probability space events, which can be sets.
But for now on, the term event is used only in physics sense to denote a realization
of the random variable X.

Now, each collision is modelled as a pair of continuous and discrete random
variables (X, C), where C is the discrete random variable representing scattering
process ”class”. Let us number each scattering process with the number C ∈ C,
where C = {1, 2, . . . , |C|} is the set of possible class labels. Each class represents
different diffractive/non-diffractive processes, e.g. 1 can be double-diffractive pro-
cesses, 2 central-diffractive and so on.

First of all, the a priori probabilities of each class are denoted with

Pj := P (C = j),
∑

j

Pj = 1, j = 1, . . . , |C|. (8.2)

These probabilities should come from theory, or from previous experiments. A class

1Likelihood has also a slightly different meaning in a case of parameter estimation, but here
density and likelihood are synonyms.



68

likelihood or density function for each class is

fj(x) = fX(x|C = j), j = 1, . . . , |C|. (8.3)

This means that the total density function of a random variable X is here

fX(x) =

|C|
∑

j=1

fj(x)Pj, (8.4)

which can be seen by integrating over x and summing over j, such that the total
probability is

P (X ∈ A) =
∑

j

P (X ∈ A|C = j)P (C = j) (8.5)

=

∫

A

(
∑

j

fX(x|C = j)P (C = j)

)

dx, (8.6)

where A ⊂ Rd.
After the realization (measurement) x of the random variable X, the discrete

distribution with point probabilities P (C = j|X = x) exists. These are the so-
called a posteriori probabilities of a pp̄-collision to be generated by any of the process
classes. These can be interpreted as updating our prior knowledge with new data
by

posterior ∝ likelihood× prior. (8.7)

Formally, a posteriori probabilities of the measurement vector x are obtained from
the Bayes’ rule [7]

P (C = j|X = x) =
fX(x|j)P (j)

fX(x)
=

fj(x)Pj
∑|C|

j′=1 fj′(x)Pj′

, (8.8)

where j = 1, . . . , |C|. It is the task of a classifier algorithm to estimate these proba-
bilities.

Training and classification

The classifier is trained to estimate the posterior probabilities using a training set
of random vector and class label pairs

T = {(X = x, C = j)}, (8.9)

where each i-th pair is generated using Monte Carlo, hand classified measurements
or any other way. This training sample is run through an optimization algorithm
which constructs the multidimensional class likelihoods, or directly generates the
discrimination mappings which define the classification decision boundaries of the
multivariate space.

In practise, most of the classifiers do not estimate posterior probabilities (likeli-
hoods) but are based on defining decision boundaries in the space of x, which can
be proven to be equivalent way as far as hard classifications are considered. These
can be seen as mappings

g : x 7→ {1, 2, . . . , |C|}. (8.10)
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Figure 8.1: Decision boundary illustration (green lines) of an arbitrary two class
problem and a non-linear classifier in the multivariate space R2. Red and blue
markers and line-contours denote class vectors and their likelihood distributions
fj(x), respectively.

Decision rule mappings g define decision regions as

Rj = {x ∈ R
d : g(x) = (C = j)}, (8.11)

and thus Rj is the region in Rd where the posterior of class j is the highest. These
decision regions can be defined by affine hyperplanes or in general, by nonlinear
manifolds (or surfaces). Classic linear algorithms are Fisher’s linear discriminant,
support vector machines (SVM) and logistic regression. Nonlinear classifiers are
usually neural networks and decision trees, but nowadays different type of kernel
machines can be used to define nonlinear decisions, e.g. SVM with kernels. See
Figure 8.1 for a demonstration of decision boundaries and class densities.

Bayes’ minimum error classifier, optimal in Bayesian sense [7], does the hard
classification according to

g⋆(x) = argmax
j=1,...,|C|

P (j|x) = argmax
j=1,...,|C|

fj(x)Pj, (8.12)

because the denominator in equation 8.8 does not depend on C. This is also known
as Maximum a Posteriori (MAP) decision rule.

Theoretically, the lower bound for classification error is the Bayes error rate,
given by [7]

e(g⋆) = 1−
|C|
∑

j=1

∫

Rj

fj(x)Pj dx, (8.13)

which is always non-zero for a problem with overlapping class densities.
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In many particle physics problems where the interesting ”signal class” is very
rare, it is not usually possible to use the Bayes’ minimum error criteria. By using the
criteria directly, not a single signal event would be classified right, and the efficiency
would be zero. Thus, different kind of criteria are being used like minimum efficiency.

However, in this work, a classifier with probabilistic output is used. This has
many obvious benefits. First, one can see how certainly the vector to be classified
belongs to each class, not just binary yes-no answer. Second, as it is shown later,
class fractions ∼ cross sections can be estimated in a coherent way by averaging a
posteriori probabilities.
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8.2 Cross sections via probabilities

It is well-known that conditional expectation values obey the so-called iterated ex-
pectation relation [38]

E[h(X,Y)] = E[E[h(X,Y)|Y]] = E[E[h(X,Y)|X]], (8.14)

where X,Y are random vectors and h(X,Y) some arbitrary function of those. This
means that the prior mean of a pair (X,Y) is equal to the average of all posteriori
means, averaged over all possible X or Y.

This is easily proved, using for example the case where pair (X,Y) has continuous
distribution

E[E[h(X,Y)|X]] =

∫

E[h(X,Y)|X = x]fX(x)dx (8.15)

=

∫ ∫

h(X,Y)fY(y|X = x)fX(x)dxdy (8.16)

=

∫ ∫

h(x,y)fX,Y(x,y)dxdy (8.17)

= E[h(X,Y)]. (8.18)

By definition, the conditional expectation values for X = x or C = j are given
by [38]

E[h(X, C)|X = x] =

|C|
∑

j=1

h(x, j)P (j|x) (8.19)

E[h(X, C)|C = j] =

∫

Rd

h(x, j)fj(x)dx, (8.20)

and the corresponding expectation values are given by the iterated expectation re-
lation as

E[h(X, C)] = E[E[h(X, C)|X]] =

∫

Rd

|C|
∑

j=1

h(x, j)P (j|x)fX(x)dx (8.21)

= E[E[h(X, C)|C] =
|C|
∑

j=1

∫

Rd

h(x, j)fj(x)dxPj . (8.22)

After the a posteriori probabilities P (j|xi) are estimated using the multivariate
algorithm for each measurement vector xi and for each class j, the empirical esti-
mates of the expectation values can be calculated. In this application, these are the
relative cross section estimates of the scattering processes. The selection of class is
done by using an indicator function which has no dependence on X

hI(j; k) =

{

1, when j = k

0, when j 6= k,
(8.23)

where the parameter k = 1, . . . , |C| is used to encode the selected scattering process
class. Now using Equation 8.21, and a priori measured total inelastic cross section
σinel for normalization

σk
σinel

, E[E[hI(C; k)|X]] (8.24)
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and by using Kolmogorov’s strong law of large numbers which states for an inde-
pendent, identically distributed random vectors Xi ∼ fX(x) with E‖X1‖ < ∞,
that

1

N

N∑

i=1

Xi → E[X1] (8.25)

holds almost certainly, when N → ∞. Using this, the expectation operator over X
is replaced with summation, and by using equation 8.24 and 8.19 results in

σk
σinel

∼= 1

N

N∑

i=1

E[hI(C; k)|X = xi] (8.26)

=
1

N

N∑

i=1

|C|
∑

j=1

hI(j; k)P (j|xi) � (8.27)

for all k, where N ∈ N is the number of collision events in the event sample. In
a case where our priors are correct and likelihood functions are correctly estimated
i.e. data matches the MC modeling and the multivariate algorithm is working,
expression 8.27 returns relative cross sections for each class. Discrepancies between
a priori expected and a posteriori obtained results indicate that something is poorly
understood either in experiment or in theory.

Also can be seen that this probabilistic way of estimating cross sections does
implicitly efficiency ǫ and purity π corrections, which must be done explicitly when
using either simple cut and count, or hard classifiers. However, this assumes that all
the events belong to any of the classes of C. The events which do not belong in C,
should be removed from the sample somehow before the classification procedure, or
their effect should be estimated some way and then subtracted from the final results
(see analysis Equation 10.3).

In a similar way as above, by using a posteriori probabilities as weights, ex-
pectation value estimates for many other physical variables can be calculated. For
example, the inclusive distribution dN/dη can be estimated for any given scattering
process C = j. This means that a classifier with probabilistic output is a general
tool for different physics analysis purposes.



73

8.3 Classifier performance metrics

In general, estimating the performance of a classifier is based on dividing the Monte
Carlo sample into train and test sample(s). Of course, this is the most practical
approach, not always the most optimal.. Theoretically, the generalization of these
empirical estimates can be discussed under Vapnik-Chervonenkis (VC) theory.

So, to be able to calculate the performance metrics, one must know the class
label of each event vector in the test sample, which is the case with Monte Carlo.

The most important metrics can be read from the so-called confusion matrix, here
denoted with A ∈ N|C|×|C|. By convention, rows are the right classes and columns
are the hard classification estimates. It has the following properties

∑

i,j

[A]ij = N, Total number of test vectors (8.28)

∑

j

[A]ij/N = fi, Fraction of each i-th class (8.29)

[A]ii/
∑

j

[A]ij , ǫi, Classification efficiencies for each class (8.30)

[A]ii/
∑

j

[A]ji , πi, Classification purities for each class (8.31)

trace(A)/N, Total classification accuracy (8.32)

1− trace(A)/N, Total classification error (8.33)

and often its row normalized version An ∈ [0, 1]|C|×|C| is used, which has class effi-
ciencies on its diagonal, or similarly column normalized, which has purities on its
diagonal. Thus, each empirically estimated element

[An]ij , Ex|C=i [hI(g(x); j)] = P (g(x) = j|C = i) (8.34)

gives the conditional probability of classifying a vector originating from the i-th class
to the j-th class. Note that using confusion matrix is not limited to multivariate
algorithms, it can be also calculated when estimating performance of a cut and count
analysis.
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8.4 Inversion based on the hard confusion matrix

In hard classification, the class fraction estimates by directly counting the classifica-
tions, are biased, if the efficiencies and purities are not both nearly perfect for each
class. There are at least two ways to try to correct the class fraction estimates ∼
cross sections by using the Monte Carlo estimated confusion matrix A. The reason
why this confusion matrix was denoted with same symbol as the bin migration mea-
surement matrix A in the context of unfolding, is because they have an analogous
role (bins ↔ classes). In the unfolding, we have a well-known background, which is
at least on formal level subtracted from the measurement and then the unfolding of
bin migration is solved. However, because the bin migration is caused by detector
effects it is fundamentally different kind of ”mixing” than what is encountered in this
classification problem. Here the mixing is driven by non-unique physical signatures
of events, not just by detector (resolution) effects.

In the classification, in principle, we could use a similar approach, estimate the
normalized confusion matrixA and solve ”the true” class fractions by multiplying the
measured class fractions vector from left with A−1. Assuming that all events belong
to one of the classes. However, this again needs specific regularization techniques
with problem specific prior distributions. General smoothness ℓ2-prior, like Tikhonov
induced Gaussian, has no use. That is because there is no general reason for class
fractions to be smooth when represented in a vector form. Inverting the confusion
matrix was experimented, and it yielded highly unstable results with several kinds of
classic regularization techniques when the confusion matrix was not exactly correct.

The second approach is well-known also in unfolding context, bin-by-bin correc-
tion factors, which cannot be really considered as a real inversion method. The use
of Monte Carlo estimated efficiencies ǫj and purities πj to correct ”class migration”
by dividing each obtained class-fraction with ǫj and by multiplying with πj , is a
kind of ”correction by expectation” technique. Also, it is basically as Monte Carlo
driven method as it can be, using only integrated class fractions, class-by-class and
only in a scalar way. Doing the purity correction as a multiplicative factor has also
the problems explained in section 6.5.

The approach of this work is to use empirical event-by-event probabilities to
correct the ”class migration”, and not to use the integrated information from the
confusion matrix. This event-by-event correction can be seen as the fundamental dif-
ference in comparison to other techniques. It has natural non-negativity constraint
via probabilities, and does the correction based on both likelihood fj(x) (data) and
prior information Pj , instead of looking at integrated quantities in matrix A.

Ultimately, this discussion about correction methods is application specific, what
is the background uncertainty, how many process classes, can the corrections be
based on multiplicative factors (∼ stable ratios) or should there be subtractive or
additive corrections, how good the chosen inversion approach is found in simulation2

and so on.

2Is the simulation based on inverse crime, i.e. does it naively use exactly the same sampling
and parameters in both forward problem and inversion.
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8.5 Data pre-processing

For algorithmic purposes, the components of data vectors are often normalized using
some component by component mapping f : R → R. Usually this is done to avoid
biasing the classifier training, e.g. to make sure that not a single component can
dominate the regularization procedure. Standard way of doing this is by mean-
variance normalization

fMV : xi 7→ (xi − 〈xi〉) /
√

Var(xi), ∀i ∈ [1, d] (8.35)

where means 〈xi〉 and variances Var(xi) are estimated from the training set. These
values are then used also for normalizing the real data sample.

Logarithmic normalization

flog : xi 7→ ln (ǫ+ xi), ∀i ∈ [1, d], ǫ ∈ R+ (8.36)

is often done when the vector components are exponentially distributed, i.e. positive
with long tailed distribution and often ǫ = 1. Empirically, calorimeter deposits and
track multiplicities are exponentially distributed. This transformation can be done
in combination with the mean-variance normalization, by first applying the logarith-
mic transformation. Effectively, the logarithmic transformation makes exponentially
distributed variables more Gaussian distributed.

Normalization can be done also as a vector valued mapping f : Rd → Rd. To
normalize each vector on the surface of hypersphere Sd−1 in Euclidean space, a
unit-length mapping

fUL : x 7→ x

‖x‖2
(8.37)

can be done. This has different kind of properties, and it preserves the orientation
of each vector but length differences vanish. This mapping is not always suitable,
because it can amplify noisy vectors to look like signal vectors.

More usual vector valued mapping is to do d-dimensional rotation to decorrelate
components. This is usually called whitening and can be done using the Princi-
pal Component Analysis (PCA), also known as the Karhunen-Loève transform. In
practise, this means calculating the covariance matrix and finding numerically the
corresponding eigenvectors as new orthogonal basis vectors for the data representa-
tion, and it can be shown to be optimal way in variance maximizing sense. At the
same time, dimension reduction is possible using less than d basis vectors when syn-
thesizing data as a linear combination of the new basis vectors. However, whitening
is not in general necessary with multivariate algorithms and one also loses physical
interpretation of each variable after whitening, due to rotation.



Chapter 9

Regularized Multinomial Logistic
Regression

Multinomial Logistic Regression (MLR) is a multi class extension of the classic
logistic regression. Logistic regression is a bivariate response model which is used to
predict probabilities of two classes. Multinomial logistic regression does not assume
independence of components of vector X, and does not make any assumptions on
likelihood distributions fj(X), like Gaussianity etc., which is a clear advantage over
other simple classifiers.

76



77

9.1 Discriminative model

MLR is a so-called discriminative classifier, which means it does not model likelihood
functions f(x) directly like generative classifiers. The purpose of MLR is to predict
probabilities P (C = j|X = x). MLR assumes a parametric form tj(x, θ) for the
distribution as [38]

P (C = j|X = x) = tj(x, θ) (9.1)

and estimates the parameters θ of this distribution from the training data. In this
work, a linear ℓ2 inner product model MLR was used

P (C = j|X = x;w) =
exp(〈wj,x〉)

∑|C|
i=1 exp(〈wi,x〉)

, j = 1, . . . , |C| (9.2)

which can be interpreted as ”squishing” a linear model through a non-linear response
function. The denominator normalizes this model, and it is not necessary to estimate
one of the weight vectors wj ∼ θ. The model can easily include an intercept term
w0, i.e. 〈wj,x〉 + w0 = 〈[w0,wj], [1,x]〉. For now on, the notation assumes the
intercept to be included for each class.

In general, the parametric functional form of the logistic regression can be any-
thing which obeys [38]

0 ≤ tj(x, θ) ≤ 1,

|C|
∑

j=1

tj(x, θ) = 1, ∀x, ∀θ. (9.3)

One way to derive the model in equation 9.2 is by setting

P (j|x)
P (|C||x) = exp(〈wj,x〉), j = 1, . . . , |C| − 1, (9.4)

then writing out with all possible values of j and solving for the wanted posterior.
It can be also easily shown to obey conditions of Equation 9.3.

Equation 9.5 is valid when the class priors are implicitly incorporated in the
training data class fractions fj ∼ Pj . However, when using training data with
balanced, equal fractions for each class, one needs to be explicit with priors in the
classification phase and use Bayes’ theorem to correct the posterior probabilities as

P (C = j|X = x;w) =
exp(〈wj,x〉)Pj

∑|C|
i=1 exp(〈wi,x〉)Pi

, (9.5)

which was the approach used in this work, and also suggested in [7].
The parameter (weight) vectors wj Maximum Likelihood (ML) estimates can be

calculated using iterative mathematical optimization routines, such as IRLS. For-
mally, conditional ML estimates are obtained by maximizing concave cost function
l : Rd|C| → R

l(w) =

n∑

j=1

ln P (yj|xj ,w) =

n∑

j=1





|C|
∑

i=1

y
(i)
j 〈wi,xj〉 − ln

|C|
∑

i=1

exp(〈wi,xj〉)



 , (9.6)

where n is the number of training vector-class label pairs and the binary vector
yj ∈ {0, 1}|C| is used to encode the classification of the j-th training vector xj .
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In practise, the problem must be regularized by inducing a prior distribution
over parameter vectors. This prior is used to avoid overfitting and having degener-
ate solutions to the optimization problem, and makes parameter estimates Bayesian
Maximum a Posteriori (MAP). Degenerate solutions can arise when classes are lin-
early separable and l(w) → ∞. The problem with regularization is in a functional
form

ŵMAP = argmax
w

L(w) = argmax
w

[l(w) + log p(w)] , (9.7)

with regularization distribution denoted by p(w).
Classic regularization is done by using a Gaussian prior distribution which is

usually known as Tikhonov regularization or ℓ2-norm regularization. This regular-
ization works well when induction of smoothness is wanted into solution. Another
way is to induce sparsity into solution. This is done by using ℓ1-norm

1 regularization
or a corresponding Laplace distribution as the prior

p(w) ∝ exp(−λ‖w‖ℓ1), (9.8)

where λ ∈ R+ is the regularization strength parameter.
The problem with the Laplace distribution is, that it creates an optimization

problem which cannot be calculated e.g. with IRLS (iteratively reweighted least
squares) due to non-differentiability of the ℓ1-norm at x = 0, but it is still a convex2

minimization problem with unique, global optimum guarantee. [39]
Formally, a function f : Rn → R defined as

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), (9.9)

is convex if its domain D(f) is a convex set for all x, y ∈ D(f) with θ ∈ [0, 1]. The
definition of a convex set C with x, y ∈ C is that θx+(1−θ)y ∈ C, i.e. all points on
the line between any x and y which belong to C, belongs also to C. It is well-known
that e.g. Neural Networks are not convex optimization problems, and thus, they
have several local minima solutions.

1‖x‖ℓ1 =
∑d

i=1 |xi|, x ∈ R
d

2If f is a concave function, −f is called a convex function.
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9.2 Optimization algorithm

The use of ℓ1-norm requires a state-of-the-art optimization approach, and in this
work, a fast algorithm from [39] was implemented. Now a simple description of the
algorithm follows. Notation assumes that the weight vector w, without any lower
indices, encapsulates weight vectors for each class, i.e. dim(w) = d(|C| − 1). Except
for one, which does need not to be estimated due to normalization of probabilities.

First start with the ML optimization problem by defining

p
(i)
j = P (y

(i)
j = 1|xj,w), (9.10)

where lower index j denotes now the j-th training vector out of n and upper index i
denotes the class, with the corresponding vector and the diagonal matrix represen-
tations

pj(w) = [p
(1)
j (w), . . . , p

(|C|−1)
j (w)]T ∈ R

|C|−1 (9.11)

Pj(w) = diag
(

p
(1)
j (w), . . . , p

(|C|−1)
j (w)

)

∈ R
(|C|−1)×(|C|−1). (9.12)

The maximum likelihood cost function l(w) is a concave function and its Hessian
square matrix of size (|C| − 1)d is

H(w) = −
n∑

j=1

(
Pj(w)− pj(w)pT

j (w)
)
⊗
(
xjx

T
j

)
, (9.13)

expressed using the Kronecker matrix product operator ⊗, a special case of tensor
product. This is defined as Q⊗W ∈ Rmp×nq, if Q ∈ Rm×n and W ∈ Rp×q.

This Hessian is lower bounded [39] by a negative definite matrix B which has no
dependency on w. This is written as

H(w) � −1

2
[I− 11T

|C| ]⊗
n∑

j=1

xjx
T
j =: B, (9.14)

where 1 is a vector of ones with dim(1) = |C| − 1. Together with the Hessian, we
need the gradient of l(w), given by

∇l(w) =
n∑

j=1

(
y′
j − pj(w

)
)⊗ xj , (9.15)

with the target class encoding vector y′
j = [y

(1)
j , . . . , y

(|C|−1)
j ]T .

Finally, the iterative update rule for ML estimates without any regularization is

ŵ(t+1) = ŵ(t) −B−1∇l(ŵ(t)), (9.16)

where t ∈ N is the iteration counter index.

Regularized case

The optimization rule of the ℓ1-regularized cost function, that is the MAP case, is
given by maximizing [39]

wT
(
∇(l(ŵ(t))−Bŵ(t)

)
+

1

2
wT (B− λΛ(t))w, (9.17)
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where the matrix Λ(t) = diag
(

|ŵ(t)
1 |−1, . . . , |ŵ(t)

d(|C|−1)|−1
)

.

The actual optimization step of the sparsity promoting MAP ℓ1 optimization
algorithm is then expressed as

ŵ(t+1) =
(
B− λΛ(t)

)−1 (
Bŵ(t) −∇l(ŵ(t))

)
, (9.18)

where the matrix B must be computed only once. This is the most straightforward
way to maximize function 9.17, but in practise numerically more optimal approaches
are available. For those, see [39]. Smoothness promoting ℓ2 algorithm can be easily
obtained by changing the Λ(t) 7→ I [39], which is a little surprising, given the tech-
nicality needed for the ℓ1-norm in the first place. The initialization of ŵ(0) is not
very important, due to global optimum guarantee of this problem.
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9.3 Adjusting regularization

In Figure 9.1, the regularization parameter λ-paths are calculated using the MC
training sample. When the regularization parameter λ → ∞, the most impor-
tant variables (vector coefficients) are remained and the rest are suppressed to zero.
Mathematically speaking, regularization with ℓ1 norm applies a Laplacian distribu-
tion prior over coefficients of wj , which induces sparsity into solution and has an
effect of variable selection.

The physical interpretation is clear, e.g. with single diffraction the most im-
portant detector components are those with high |η|. This can be seen as a large
rapidity gap - multivariate space correspondence, in the limit where only a subspace
S ⊂ Rd of the multivariate space Rd is used with dim(S) ≪ d. Classification metrics
in Figures 9.2 and 9.3 show that using only the subspace information, i.e. classi-
fying events based on large rapidity gaps, is suboptimal in terms of classification
performance. Information theoretically it means that the entropy of diffraction is
distributed over all components, even if the most of the entropy belongs to compo-
nents corresponding to high |η|. All this is consistent with the rapidity gap survival
probability discussion, where pure gaps of diffraction are destroyed by some specta-
tor partons.
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Figure 9.1: Regularization λ-paths using MLR-ℓ1 with the MC training sample. On
y-axis the coefficients of wj in order: wi := (blue, green, red, light blue, purple,
yellow), with discrete binning dη = (−3.64,−1.78,−0.88, 0, 0.88, 1.78, 3.64), such
that ηmin,max(wi) ∈ [di, di+1]. All 6 variables are log transformed, centred (0-mean)
and variance normalized calorimeter deposits.
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The interpretation of the coefficients {wi}di=1 of the weight vector wj is relatively
easy, due to ℓ2 inner product 〈wj ,x〉 which is evaluated between the weight vector
and the measurement vector x in logistic Equation 9.5. This inner product operation
is a correlator, and a positive coefficient wi > 0 with large xi > 0 means strong
correlation with the corresponding j-th scattering class and e.g. a negative coefficient
wi < 0 but xi > 0 is understood as anti-correlation. This interpretation makes this
multivariate algorithm more transparent.

When looking at Figure 9.1, there is expected, natural antisymmetry between
the coefficients of left and right single diffraction. There is also slight discrepancy
between the corresponding antisymmetric components of single and right diffrac-
tion, and between the high |η| components of double diffraction. This is probably
reflecting the differences in the detector modelling and characterization in the Geant
model, i.e. detectors in backward and forward regions are not physically perfectly
identical. The signs of the coefficients are dominated by non-diffractive events, which
have the largest deposit energies in the given η range and thus its the coefficients
are all positive.
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9.4 Classification performance

Effect of the regularization parameter λ on the classifier performance must be eval-
uated numerically. This can be done using cross-validation, by doing a scan over
different λ values and inspecting the classification metrics. This is done in Figure
9.2, where efficiency, purity, purity × efficiency and total accuracy are calculated
for each class using a MC test sample. Clearly, one sees that at least with a lin-
ear hyperplane classifier, as MLR-ℓ1 is, the classification efficiencies of double and
single diffraction are anti-correlated with non-diffractive class. Which means that
the efficiency of non-diffractive class rises when the efficiency of diffractive classes
go down, and vice versa with the purities. This is one of the good points of a linear
classifier over non-linear ones, it has predictable and stable behaviour.
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Figure 9.2: Hard (Bayes’ minimum error rule) event-by-event classification metrics
obtained using MLR-ℓ1 with the MC test sample.

Clearly, the regularization can be seen here as a mathematical tool for adjusting
the sensitivity of classification toward different event classes. Usually that is done
by adjusting the cut value on the output of the 2-class classifier (like neural net) and
by plotting signal efficiency vs. background rejection ROC-curve. This approach is
much more complicated for the multi-class classification case, but MLR-ℓ1 posterior
probability outputs allow this kind of optimization when used as a hard classifier.
Choosing optimal working point(s) should be always based on the nature of the
analysis, i.e. are we searching for some new physics signal over known background
etc.

So, there is always a trade-off between purity and efficiency of individual classes.
However, the total accuracy can be seen as the optimal criteria in this application,
because it minimizes the empirical Bayes error rate. The optimal total classification
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accuracy is achieved with regularization around λ ≈ 0.003. The biggest difference
between hard and probabilistic classification can be seen from Figure 9.3, where
the relative differences between estimated and ground truth class cross sections
are evaluated. The minimum error point of the probabilistic classification (sum of
absolute relative errors ∼ 0.01) corresponds to the maximum total accuracy plateau
in Figure 9.2.

This is an important result. First of all, it gives numerical backup for the an-
alytical derivation of the integrated probabilities done in Section 8.2. Secondly, it
shows that the optimal probabilistic integrated cross section estimates coincide with
the optimal total hard classification accuracy point, obtained using Bayes’ minimum
error classifier rule in equation 8.12. Bayes’ minimum error rule assumes always that
unbiased priors Pj ∼ σj/σinel are being used, and the probabilistic approach does
no exception.
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Figure 9.3: The relative errors of hard (Bayes’ minimum error rule) and probabilistic
MLR-ℓ1 classification, when estimating class fractions ∼ cross sections of the MC
test sample.

Confusion matrix estimates

The amount of overlap of class densities in the multivariate space can be estimated
as follows. First, calculate the confusion matrix of a test sample which has uniform
class fractions fi = fj ∀i, j. Then do a realistic sample of class vectors, and use
class fractions according to theoretical relative cross sections fj ∼ σj/σinel. Then
compare the confusion matrix of this sample to the first. This can be done with
Tables 9.1 and 9.2, where in both cases the test data was nearly identical but only
the fractions were different.

The classification efficiencies transform completely when the class fractions (and
priors) are different. When realistic fractions are being used, the efficiencies of
single diffraction go down and the efficiency of double diffraction rises. However,
the purities stay nearly the same, thus the flip-flop of efficiencies happens between
SD ↔ DD, which can be read from the confusion matrix elements. It seems that
the signature of diffraction with given η-span of CDF is highly ill-posed, and the
priors have a defining role in classification results.



85

Table 9.1: Hard confusion matrix estimate for the case with uniform priors Pj =
1/|C| ∀j with uniform test sample fractions fj ∼ Pj. Rows are true classes, columns
are estimates and Acc denotes total accuracy.

SDL SDR DD ND ǫj
SDL 0.62 0.13 0.15 0.09 0.62
SDR 0.13 0.62 0.15 0.09 0.62
DD 0.38 0.38 0.20 0.05 0.20
ND 0.08 0.08 0.02 0.82 0.82
πj 0.52 0.52 0.38 0.78 Acc 0.57

Table 9.2: Hard confusion matrix estimate for the case with realistic priors Pj =
(0.07, 0.07, 0.10, 0.76), which are based on the product of theoretical cross sections
and 0-bias cut efficiencies in table 10.3 and test sample has fractions fj ∼ Pj.

SDL SDR DD ND ǫj
SDL 0.24 0.02 0.35 0.39 0.24
SDR 0.02 0.23 0.37 0.39 0.23
DD 0.13 0.13 0.43 0.31 0.43
ND 0.00 0.00 0.02 0.98 0.98
πj 0.48 0.47 0.41 0.90 Acc 0.82

Hard classification efficiencies are anyway much higher than for a pure random
classifier ∼ Pj , which is the sanity check lower bound for accuracy. Also, non-linear
multilayer perceptron (MLP) neural networks with different configurations and non-
linear boosted decision trees (BDT) were tried out as a comparison, and they did
not achieve any higher hard classification results than the MLR-ℓ1. Also, they
do not give probabilistic output without major modifications, like output histogram
techniques etc. See Appendix A.5 for a Monte Carlo consistency comparison between
MLR-ℓ1 and BDT, obtained by classifying a different MC sample than what was used
in training.

In addition, non-linear stochastic Gaussian processes (GP) [46] based classifiers
with probabilistic output were studied and experimented. Unfortunately, the classi-
fication results with GP classifiers were not any better than with linear MLR-ℓ1 in
this problem, and they were computationally extremely heavy. Also, a non-linear
modification of MLR was tried out, by using a kernelized [7] version of it. Also this
trial did not prove to be useful. However, with a different physical detector setup,
the case might be different.

These results reflect the fact that the class densities are not uniquely separable,
given the physical η-span of the detectors. Most importantly, most of the other
classifiers do not enable to provide as clear physical interpretation such as explained
with MLR-ℓ1 in section 9.3.



Chapter 10

Results with a CDF 0-bias sample

The primary target of the experimental part of this study was to obtain cross sections
for each main inelastic scattering process defined here

σinel , σSDL + σSDR + σDD + σND. (10.1)

The central diffraction was excluded from the study because it was not available
in the used Monte Carlo generator. Also, theoretically it has such a small, under
one mb cross section that it should have a minor effect to integrated cross sections
estimates.

Table 10.1: CDF 0-bias sample parameters.

Parameter Details
CMS energy

√
s = 1.96 TeV

Bunches NB = 36
Bunch revolution frequency f0 = 46500 Hz
Inst. luminosity over NB bunches 〈Linst〉 = 27.2 · 1030 cm−2s−1

The accelerator parameters regarding the 0-bias sample collected at CDF in are
given in Table 10.1.
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10.1 Analysis parameters

The data sample used in the analysis was a CDF 0-bias
√
s = 1.96 TeV run triggered

by a ”random trigger”, which triggered and collected the data based on the bunch
crossing information. The variables used in the multivariate analysis were calorime-
ter deposits and charged particle multiplicities obtained from tracking, both summed
over φ ∈ [0, 2π]. These variables and their number are given in Table 10.2.

Table 10.2: Variables used in multivariate analysis.

Variable # Pseudorapidity η
Calorimeters 22 [−3.64, 3.64]
Tracks 19 [−2.11, 2.11]

Different binning over η were studied, and more discrete binning, i.e. higher
dimensional multivariate space, gave always better results with the MLR-ℓ1 algo-
rithm. So no problem with a high dimensional multivariate space was experienced.
This is probably due to fact that there were always enough training data used,
around ∼ 50000 vectors for each class. Logarithmic pre-processing was used with
the analysis classifier, because based on Monte Carlo, the classification efficiencies
of diffractive classes were improved.

Table 10.3: Analysis parameters.

Parameter Details (SDL, SDR, DD, ND)

Inelastic [16] σinel = 61.06 mb
Priors (PYTHIA 6) [48] Pj = σj/σinel = (0.10, 0.10, 0.12, 0.68)
Mean pile-up ν = 〈Linst〉σinel/(NBf0) = 0.98
Pre-selection cut Ec = 2.2 GeV, Nc = 1
Pre-cut efficiencies ǫj = (0.63, 0.63, 0.77, 1.00)
CDF data sample size |S| = 1563562 (#)
After fcut 809099 (#)
After pile-up discriminator 575482 (#)

Pile-up discriminator:
Variable normalization Mean-Variance
MLR-ℓ1 Regularization λ = 0.0025
Analysis classifier:
Variable normalization Logarithmic (ǫ = 1) and Mean-Variance
MLR-ℓ1 Regularization λ = 0.0025

The parameters regarding the whole classification chain are given in Table 10.3.
Note that the priors ∼ relative cross sections are before taking into account any cuts
before the classification algorithm. These cuts alter the bare priors and this effect
is explained in the following sections. The full analysis algorithm without pile-up
filtering is explained in what follows.
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Analysis algorithm: no pile-up case

INPUT: MC T , Data S, Priors {Pj}, Luminosity
∫
L dt or Inelastic σinel

A. Pre-cut (∼ trigger) efficiency estimation
1. Estimate the 0-bias cut efficiencies {ǫj} based on applying the cut on MC samples
τj ⊂ T of the each j-th scattering process class separately and calculate efficiencies
with ǫj = |{x ∈ τj : fcut(x) = 1}| / |τj|.

B. Classifier training
1. Normalize the training vectors using the mean-variance normalization, where
means and variances are based on T used to train the classifier.
2. Train the MLR-ℓ1 classifier with uniform number of training vectors for each
class, i.e |τi| = |τj | ∀ij, to avoid biasing the classifier1

C. Estimating probabilities
1. Apply the 0-bias cut fcut to the data sample S.
2. Normalize the remained data vectors using means and variances calculated in the
training phase.
3. Obtain the posteriori probabilities with the MLR-ℓ1 using priors which have been
re-weighted as Pj 7→ Pj · ǫj , and normalized to sum up to one.
4. Calculate the mean values 〈P (C = j|X)〉 of a posteriori probabilities for each
j-th class.

I Obtaining cross sections (using integrated luminosity)
1. Obtain the cross sections for each j-th class by

σj =
〈P (C = j|X)〉Ntot − 〈Bj〉

ǫj
∫
L dt , (10.2)

where Ntot is the number of events in the data sample after 0-bias cut and the ob-
tained (visible) event counts are extrapolated via efficiencies ǫj . The background
events Bj are possibly propagating from the ”non-interaction” event set, but not a
priori from other classes, due to probabilistic event-by-event weighting.

II Obtaining cross sections (using inelastic cross section)
1. Obtain the cross section for each j-th class by

σj =
Nj/ǫj

∑|C|
k Nk/ǫk

σinel, (10.3)

1In general, this is a classifier dependent procedure and it depends on how the classifier incor-
porates prior probabilities. If priors are explicit, then training must be done with uniform samples,
to avoid ”double priors”.
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where Nj = 〈P (C = j|X)〉Ntot−〈Bj〉, and the variables Ntot, ǫj and Bj are the same
as above. This algorithm II is formally an equivalent formulation as the algorithm
I, which is easy to proof by using Definition 10.1 and Equation 10.2.

OUTPUT: Cross sections {σj}
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10.2 Selection of interaction events

Because the 0-bias sample was bunch crossing triggered and low luminosity, nearly
half of the events are ”empty” or ”non-interaction”. Actually, the elastic and low-
mass diffractive interactions are part of this ”non-interaction” subset, but their
cross sections cannot be measured here experimentally due to missing very forward
instrumentation.

To discriminate out the ”non-interaction” events, a selection cut fcut : Rn →
{0, 1} was used

fcut =







1, if
∑

i

Ei ≥ Ec ∨
∑

i

Ni ≥ Nc (Interaction event)

0, otherwise (”Non-interaction” event)

(10.4)

where Ec is the energy threshold and Nc is the track multiplicity threshold in Table
10.3, and Ei is the i-th calorimeter variable and Ni is the i-th track count variable,
over η. See section 10.5 for how these thresholds were chosen. This mapping is
actually a multivariate projector with two linear operators (sums) combined with
algebraic OR.
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Figure 10.1: Cherenkov light counter distributions.

The calorimeter noise is filtered once before the cut rule, due to fact that ev-
ery variable Ei is a sum of calorimeter towers over φ angle, i.e. over the detector
cylinder. This summation over φ is a linear low-pass filter, with a Fourier spec-
trum interpretation, and the optimal linear filter when noise amplitude is Gaussian
distributed.

As a cross-check, in Figure 10.1 are the distributions of Cherenkov Light Coun-
ters (CLC) for the full 0-bias event sample, interaction and ”non-interaction” event
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Figure 10.2: Instantaneous luminosity (dashed blue) and the ratio between interac-
tion and ”non-interaction” events (green).

samples. Clearly the ”non-interaction” sample is Gaussian distributed peak, which
indicates that the filtering rule 10.4 is working as designed. The CLC counters itself
were not used in the selection rule, because they were not available in the MC sim-
ulation and thus the cut efficiency estimation would have been problematic. If one
would like to make a mathematically sound 1-dimensional discrimination cut based
on the CLC histogram, a one possible, well-known criteria in statistics and signal
processing, is to minimize the intra-class variance (and maximize the inter-class
variance). This cut value can be easily found by brute force search.

The selection efficiencies in Table 10.3 for each class were estimated using Monte
Carlo, by applying cut-and-count to a Monte Carlo sample. Clearly the non-
diffractive events, usually with much higher measured deposit energies than diffrac-
tive events and with several tracks in the central region of the detector, are selected
with nearly perfect efficiency. The efficiencies of diffractive events are thus much
lower. This is basically due to very forward events, low mass Mx events, which
cannot be selected this way without very forward detectors.

The scaling of the discrimination rule fcut, measured as the ratio between inter-
action and ”non-interaction” as a function of measured instantaneous luminosity is
shown in Figure 10.2. The rule seems to scale linearly with luminosity, and no bias
with respect to that is observed.

After doing the 0-bias pre-cut, the multivariate classification was done. The
details of the analysis procedures and results are given in the following sections.
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10.3 Pile-up discrimination

Because the data was collected with instantaneous luminosity, which is too high for
data to be completely pile-up free, the data sample was hard classified into pile-up
(PU) and no pile-up (N-PU) by training an additional MLR-ℓ1 as a 2-class discrim-
inator. The training was done by simulating the pile-up conditions with Poisson
mean ν in Table 10.3, and by summing the event vectors according to their cross
sections in Table 10.3. This summation was done after the Geant simulation and
event reconstruction, and implicitly it assumes perfect linearity (additivity and ho-
mogeneity) of the pile-up. After the simulation, there were two samples for training
and testing, pile-up class and no pile-up class. The obtained efficiencies and purities
are in Table 10.4.

If the primary vertex reconstruction information was available, it would have
been straightforward to use only bunch crossings where at maximum one primary
vertex is reconstructed. However, this information was not available for this analysis.

Table 10.4: Pile-up discriminator confusion matrix estimate based on MC.

PU N-PU ǫj
PU 0.65 0.35 0.65

N-PU 0.15 0.85 0.85
πj 0.77 0.76 Acc 0.76

The total accuracy of this discriminator using Bayes’ minimum error rule g⋆ was
76 percent. By testing this discriminator with pile-up simulated Monte Carlo sample
and then classifying the pile-up filtered data using the analysis algorithm in section
10.1, the performance was adequate. The integrated cross sections were estimated
nearly as well as without pile-up (∼ 5% error). This was reasonably good, giving
that in simulation, based on purity from Table 10.4, the pile-up was 24 percent after
discrimination. Thus, no additional corrections with respect to pile-up was added
into the analysis, only the discrimination was performed.
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10.4 Systematic uncertainties

Due to time scale and a proof-of-concept nature of this thesis, not all the systematic
uncertainties were evaluated. Only the effect of prior probabilities was calculated.
The prior probabilities were perturbed for each class, and then the whole classi-
fication chain was run with real data. The results are shown in Appendix A.6.
There is a clear dependency over the priors and this reflects the physical facts al-
ready discussed. Note the ∆RMS error behaviour between estimated and expected
cross sections, there is a minimum solution with a typical quadratic error behaviour
around the minimum. However, the minimum error solution can be biased due to
any systematic source of error, for example due to pile-up.

Table 10.5: Possible sources of systematic uncertainties.

Source

Pre-cut efficiencies/purity (MC)
Pile-up discrimination (MC/MVA)
Instantaneous luminosity
Class likelihood models and priors (MC)
Posterior estimates (MVA)
Inelastic cross section (Pre-measured)

The possible source of systematic uncertainties are listed in Table 10.5. Most of
the uncertainties are coming from Monte Carlo, like the pre-cut efficiencies which
were estimated using MC. The pre-cut purity (leakage of non-interaction to interac-
tion) cannot be answered directly by Monte Carlo, and in this work the purity was
assumed to be perfect. The pre-measured inelastic cross section, which was used as
a normalization instead of integrated luminosity, has also its own uncertainty.

The most important factors are the class likelihoods, because they incorporate
the physics embedded in the chosen Monte Carlo generator (PYTHIA), the detector
characterizations and corrections (Geant) and algorithmic reconstructions. Class
priors are given by the used Monte Carlo model, or they can be also given by some
other theory. These two make up the most of the total systematic uncertainty.

Finally, the a posteriori probabilities estimated by the multivariate algorithm
also include a source of systematic uncertainty. They are not perfect because that
would usually require an infinite amount of training data and high complexity from
the algorithm.

Usually all the estimated individual systematic errors would be added in quadra-
ture, by assuming mutual independence and orthogonality, and finally taking the
square root to obtain total errors for each class. To take (linear) correlations in ac-
count, one would also need to estimate the covariance matrix between error sources.
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10.5 A posteriori probabilities

In Figure 10.3 the classifier outputs, a posteriori probabilities, are given in normal-
ized histograms for the 0-bias event sample. If the 0-bias pre-cut Ec was too loose,
the pure noise non-interaction events were easily seen from this plot where a Gaus-
sian peak was noticeable at P (C = SD|x) ≈ 0.24 for both single diffraction classes.
The pre-selection cut value of Ec was tuned on the threshold so that the Gaussian
peaks vanished.
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Figure 10.3: Histograms of the a posteriori probabilities for each class.

Quite an interesting fact is that the a posteriori probabilities of the diffractive
classes are on the low end of [0, 1], and the spectrum is highly similar for all three
diffractive classes. Except the slight rise for the double diffraction after P ≃ 0.3.
This means that with the given CDF detector η-span, there are really never highly
distinctive diffractive event signatures available. Only non-diffractive events can be
hard classified on an event-by-event basis into the right class with high confidence.

The information entropy2 in natural units (nats) is shown in the legend, which
was calculated using the binned and normalized histograms. It has an interpretation
of being the average informationH(Y ) = E[− lnP (Y )] or uncertainty measure of the
random variable Y , embedded in the distribution P (Y ). Here, the non-diffractive
posteriori distribution has the most entropy. This is physically reasonable, given
that the non-diffractive collisions are more rich in phase-space and dynamics than
the more restricted diffractive collisions. Theoretically, the maximum entropy is

2H(Y ) = −∑i P (yi) lnP (yi), where P (Y ) is the pdf of a discrete random variable Y .
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obtained with a uniform density and minimum with Kronecker’s delta like distribu-
tion.
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Figure 10.4: Two dimensional distributions of the pairwise a posteriori probabilities,
where lighter intensity denotes lower density.

Figure 10.4 shows the pairwise distributions of the a posteriori probabilities,
in a Dalitz-plot fashion. Naturally, all distributions have a property to be lim-
ited in ”probability plane”, due to constraint that the probabilities over all classes
must sum up to one. The first plot indicates expected symmetry between left and
right single diffraction. Also, no asymmetry between single diffractive left and right
with respect to double diffractive or non-diffractive class is observed. Perhaps the
most interesting distribution is the bottom right, between double diffractive and
non-diffractive, which is the most constrained in area and demonstrates linear cor-
relation. Also, each of the distributions are non-uniform, with higher densities on
the boundaries. The small peaks near P (SD|x) ≈ 0.24 are most probably detector
noise ”non-interaction” events, as discussed earlier.
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10.6 Inclusive dE/dη distributions

The inclusive distributions were calculated using a posteriori probabilities as weights
from MLR-ℓ1 algorithm, and for comparison, using a Boosted Decision Tree (BDT)
with AdaBoost training algorithm as a hard classifier without any efficiency/purity
corrections, to demonstrate the difference. Boosted Decision Trees are non-linear,
widely used3 out-of-the-box classifiers equipped with very good general performance.

The dE/dη distributions are in Figures 10.5, 10.6, 10.7 and 10.8 for classes
SDL, SDR, DD and ND, respectively. No major surprises with respect to Monte
Carlo are seen, except there is a dip with every class around |η| = 1.25 in data,
which is probably due to defect in detector modelling in Geant simulation. In this
analysis, no run specific modelling was available and many different corrections and
selections should be applied in order to get correct distributions. In forward regions
where |η| > 2, the data shows ascending trends with ND class respect to the Monte
Carlo. Probably PYTHIA’s non-diffractive minimum-bias modelling needs tuning
in forward regions, or there is some problem again in Geant simulation. Also the
central region data seems to have higher energies in both DD and ND with respect
to Monte Carlo. It can be mainly due to non-perfect pile-up discrimination and
partially due to modelling differences.

When comparing the performance of MLR and BDT, there is similar kind of
tendency than in purely simulated results. BDT uses hard cuts, which bias the
estimated distributions at high |η|. These biases should then be compensated based
on Monte Carlo or some other way. As expected, the performance of probabilistic
MLR is much more consistent.

3e.g. in CMS Higgs search.
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Figure 10.5: Calorimeter deposits Ecal as a function of pseudorapidity.
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Figure 10.6: Calorimeter deposits Ecal as a function of pseudorapidity.
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Figure 10.7: Calorimeter deposits Ecal as a function of pseudorapidity.
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Figure 10.8: Calorimeter deposits Ecal as a function of pseudorapidity.
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10.7 Calorimeter deposit Ecal histograms

The calorimeter deposit histograms are overlaid in Figure 10.9 and each process
class is compared with the Monte Carlo predictions in Figure 10.10. Non-diffractive
events are on much higher energies, which is expected because most of the diffractive
energy is over the rapidity span of the calorimeters.

From Figure 10.9 can be seen that both single diffractive classes are nearly per-
fectly symmetric, and double diffraction has slightly higher cross section. The dis-
tributions for each process class are matching reasonably well the Monte Carlo pre-
dictions. Non-diffractive class has slight higher average than MC, which is probably
due to non-perfect pile-up discrimination.
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Figure 10.9: Calorimeter deposit histograms.
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10.8 Inclusive dNch/dη

The dNch/dη distributions are in Figures 10.11, 10.12, 10.13 and 10.14 for classes
SDL, SDR, DD and ND, respectively. Again, no major discrepancies with respect
to Monte Carlo are seen. The smooth downward slope as a function of |η| is due
to decreasing tracking efficiency. Especially the diffractive distributions match well
the Monte Carlo predictions. Also, now there is no dip around |η| = 1.25 as there
was with dE/dη distributions.

There seems to be a clear left-right asymmetry in MC with ND class, which
is not seen as strong in data. The reason for this is not perfectly clear, probably
some differences in the tracking system characterization. Because the asymmetry is
much more strong in MC and nearly vanishing in data, a detector characterization
or calibration mismatch is more likely.

When comparing the performance of MLR and BDT, the results are similar as in
dN/dη. Again, the performance of probabilistic MLR is much more consistent. The
distributions of SDL, SDR and DD match quite well the MC expectations, which
is a little surprising. The distributions match much better overall than the dE/dη,
probably due to better detector modelling. The characterization of the calorimeter
responses is usually a quite demanding task, and in this analysis, out of the box
characterizations were used.
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Figure 10.11: Track multiplicities Nch as a function of pseudorapidity.
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Figure 10.12: Track multiplicities Nch as a function of pseudorapidity.
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Figure 10.13: Track multiplicities Nch as a function of pseudorapidity.
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Figure 10.14: Track multiplicities Nch as a function of pseudorapidity.
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10.9 Multiplicity Nch histograms

The track multiplicity histograms are overlaid in Figure 10.15 and each process class
is compared with the Monte Carlo predictions in Figure 10.16. Non-diffractive events
are on much higher multiplicities, which is expected because most of the diffraction
goes over the rapidity span of the tracking systems.

From Figure 10.15 can be again seen that both single diffractive classes are nearly
perfectly symmetric, and double diffraction has nearly similar distribution than
both single diffractive. The distributions for each process class are again matching
reasonably well the Monte Carlo predictions.
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Figure 10.15: Track multiplicity histograms.
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Figure 10.16: Normalized histograms of track multiplicities.
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10.10 Cross section measurements

The cross sections were estimated using the algorithmic chain explained in section
10.1 with the pile-up discrimination as an extra procedure. The pile-up discrimina-
tion was applied after the pre-selection cut was applied to the 0-bias sample. The
pre-selection cut was expected to be hard enough, i.e. with perfect purities, so that
the ”non-interaction” background correction was not necessary.

Finally, after obtaining the mean values of a posteriori probabilities, compen-
sating the pre-cut efficiencies and by using the pre-measured total inelastic cross
section σinel given in Table 10.3 as the final multiplicative normalization factor, the
integrated cross section estimates4 for each scattering process class are shown in
Table 10.6. These values are calculated using the priors given in Table 10.3 and al-
ternatively ”fully Bayesian”, marginalized (integrated) over a distribution of priors
are given in Appendix A.6.

Table 10.6: Cross sections with statistical (Poisson) and systematic (1σ) errors for
the CDF 0-bias run at

√
s = 1.96 TeV.

SDL [mb] SDR [mb] DD [mb] ND [mb]
4.87± 0.03± 1.06 4.83± 0.03± 1.04 6.16± 0.03± 1.93 45.20± 0.07± 1.59

When comparing the results of Table 10.6 with the phenomenological theory
predictions in Table 10.7, the measured values of diffractive cross sections are sur-
prisingly close. The predictions by the MBR model are tuned to earlier CDF run I
measurements at

√
s = 1.8 TeV of single [34] and double diffraction [3]. Of course,

one must be cautions making any strong claims because the prior probabilities have
a strong effect in this physics problem. Mathematically speaking this is due to heavy
overlap of the class densities in the multivariate space.

Table 10.7: Theory estimates [mb] at
√
s = 1.96 TeV normalized to the same σinel.

Model SDL SDR DD ND CD σinel
PYTHIA 6 [48] 6.46 6.46 7.20 40.94 - 61.06
PYTHIA 8 (MBR) [16] 5.11 5.11 7.67 42.41 0.78 61.06

The prior dependency is not a shortcoming of the multivariate approach, it
affects the simple cut-and-count approach as much. Instead, probabilistic multivari-
ate algorithms makes this prior dependency very transparent and easily evaluated.
Ultimately, this dependency on priors comes from a limited η-span of CDF and
the physical nature of diffractive events. Especially double diffraction is a difficult
process to measure due to experimental signature which is imitating ND and SD
processes.

4Systematic error estimates include only the effect of prior probabilities.



Chapter 11

Discussion and conclusions

By using probabilistic multivariate classification algorithms, not only hard classifi-
cations are obtained, but also probabilities. These probabilities gives us confidence
on an event-by-event basis and can be used also as weights in later physics analysis
and estimation of physical distributions, as was done in this work. Most important,
it was shown both analytically and numerically with a Monte Carlo sample that
integration of a posteriori probabilities is a mathematically consistent way to esti-
mate relative cross sections under the Bayesian framework. This is natural, because
scattering cross sections are ultimately interaction probabilities. The demonstrated
multivariate techniques are new to high energy physics, and can be used as a re-
placement or alternative for Boosted Decision Trees and Neural Networks in some
analyses.

The classification accuracy is upper bounded by the chosen Monte Carlo gen-
erator. However, not bounded in a trivial way. The most important is how the
differential cross sections are described on the boundaries between different scatter-
ing processes, i.e. when the processes’ experimental signatures start to overlap in
the multivariate space. As important is where these boundaries are modelled to be.
Less important are the regions of the multivariate space, where no overlap between
class densities happens. Thus, any advances in theoretical models or actual prac-
tical implementations of theory in the Monte Carlo event generators have a major
impact.

The algorithmic ℓ1-regularization is a mathematically sound variable selection
tool and enables the utilization of high dimensional multivariate spaces. The mul-
tivariate space and rapidity gap correspondence was demonstrated using the ℓ1-
regularization, based on Monte Carlo, for the first time. The conclusion was that
the gaps are defining signatures of diffraction in the limit when full information en-
tropy available in the multivariate space is approximated with only few, high pseu-
dorapidity |η| components. This multivariate space - rapidity gap correspondence
is an example of gaining a physical, i.e. kinematical or dynamical interpretation of
the multivariate space. Not just using the multivariate algorithm as a black-box, as
often happens.

The effectiveness of this multivariate approach was evaluated with a 0-bias sam-
ple measured at the CDF run II experiment by obtaining cross section measurements
of diffraction, which were compared with theoretical predictions. The measured
values matched the phenomenological theory expectations within estimated errors.
This kind of simultaneous measurement of diffractive and non-diffractive scatter-
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ing cross sections by using multi-class multivariate algorithms has never been done
before using experimental data. Based on estimated cross sections, data seems to
favour slightly smaller cross sections for diffractive classes than what is given in
Monte Carlo event generators. However, because data was not pile-up free, this
might be also an artefact coming from non-perfect pile-up correction.

Unfortunately hadronic diffraction is still theoretically poorly understood. Espe-
cially the diffractive mass 1/M2

X and exponential t dependency of the cross sections
are open questions. The multidimensional densities for diffractive events depend
ultimately on differential cross sections which are driven by functional dependency
of M2

X , t and Regge parameters. The hadronization process modelling with particle
multiplicities creates also some effects. The priors depend on integrated cross sec-
tions and what fraction of events can be seen within detector pseudorapidity range
(acceptance), which are both driven by differential cross section formulas. However,
the 4-momentum conservation should be well understood and because signature of
diffraction is mainly kinematical, this should be a strong argument for the multi-
variate approach.

The usual factorization of Regge formulas into Pomeron flux and Pomeron-proton
cross-section is also challenging, because effectively only their product can be mea-
sured. The triple-Pomeron coupling, which gives the 1/M2

X dependency of the differ-
ential cross sections in the high mass limit, is also one of the most crucial parameters
of the Regge phenomenology. New insight into these questions could be possibly ac-
quired by developing multivariate techniques which allow estimation of diffractive
mass and 4-momentum transfer event-by-event.

Also problematic fact is that there is no rigorous way to theoretically estimate
cross section of soft non-diffractive events. Thus, it is often set to a value which is
obtained by substracting diffractive and elastic contribution from the total cross sec-
tion value. On the other hand, the question of low mass single and double diffraction
cannot be answered without instrumentation in very forward direction, that is, it
cannot be solved purely algorithmically. However, low mass central diffraction and
its resonance structure could be an interesting subject for the multivariate analysis
techniques.

Finally, the work at LHC energies has been already started with the experiments
at CERN, and the work of this thesis is an extensive proof of concept for those
upcoming multivariate analyses of diffraction.
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Appendix A

Appendix

A.1 Four vectors in Minkowski space

This is basic kinematics and natural units are used, i.e. c = ~ = 1. Thus, energy
(GeV), mass (GeV/c2), momentum (GeV/c) can be all expressed in GeV, time
(GeV/~)−1 and length (GeV/~c)−1 in 1/GeV and area (GeV/~c)−2 in GeV−2. The
important relativistic relations are then γ = E/mc2 ⊜ E/m and β = |~p|c/E ⊜ |~p|/E
with γ = 1/

√

1− β2. [44] Highly important is the Lorentz invariant mass formula

m =

√
√
√
√

(
∑

i

Ei

)2

−
∣
∣
∣
∣
∣

∑

i

~pi

∣
∣
∣
∣
∣

2

, (A.1)

where sum runs over a system of particles. This is coming from the energy-momentum
relation E2 = m2c4 + |~p|2c2. Modern notation treats mass always as constant, i.e.
the concept of relative mass is not favoured.

The 4-vector notation is used, here for example the 4-momentum vector and the
4-position

pµ = (p0, p1, p2, p3) = (γmc, γm~v) = (
E

c
, ~p) ⊜ (E, ~p) (A.2)

xµ = (ct, x, y, z) ⊜ (t, ~x). (A.3)

The 4-vectors belongs to space of special relativity, i.e. to flat Minkowski space
xµ ∈ M4, and are naturally contravariant, upper index vectors. A covariant, lower
index vector is obtained by contraction with the metric tensor. The Lorentz frame
independent quantity, scalar product between two 4-vectors a and b is

a · b = gµνa
νbµ = aµb

µ = a0b0 − ~a ·~b, (A.4)

with the metric tensor gµν = gµν = diag(1,−1,−1,−1) of Minkowski space, which
uses the usual sign notation in particle physics. If the particle is on-shell, i.e. real
particle, p2 = pµpµ = m2 by energy-momentum relation. Einstein’s summation
convention is used over corresponding upper and lower indices. However, often the
metric tensor and greek letter indices are left out for notational simplicity, when
working with scalar products of 4-vectors.

Now, let us have a two body scattering process 2 → 2 with the initial state
4-vectors p1, p2 and the corresponding final state 4-vectors p3, p4. Commonly used
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Lorentz scalars, the so-called Mandelstam variables are [29]

s = (p1 + p2)
2 = (p3 + p4)

2 Center of mass energy squared (A.5)

t = (p1 − p3)
2 = (p2 − p4)

2 4-momentum transfer squared (A.6)

u = (p1 − p4)
2 = (p2 − p3)

2 Final states crossed t-channel (A.7)

which have the relation

s+ t + u =
4∑

i=1

m2
i , (A.8)

with particle masses mi.

p2

p1

p4

p3

Figure A.1: s-channel.

p2

p1

p4

p3

Figure A.2: t-channel.

The s-channel in Figure A.1 has an interpretation of an annihilation process,
t-channel in Figure A.2 as a scattering where an intermediate particle is exchanged
and u-channel as t-channel where final states are crossed p3 ↔ p4. Commonly seen
probability amplitudes are often defined as a function of s and t as A(s, t) ∈ C.
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A.2 Rapidity

By definition, rapidity in particle physics for a given particle with energy E, mass
m, longitudinal momentum pz = |~p| cos θ and transverse momentum pT = |~p| sin θ
with respect to the beam axis is [29]

y =
1

2
ln

(
E + pz
E − pz

)

=
1

2
ln

(

(E + pz)
2

m2 + p2T

)

(A.9)

⇔ tanh(y) =
pz
E
, (A.10)

where the hyperbolic function gives rapidity an interpretation as a hyperbolic angle.
It is easy to show that rapidity is constrained by

y ≤ 1

2
ln

(
2E2

m2

)

= ymax (A.11)

with symmetry ymin = −ymax.
Rapidity is in the massless limit, or for highly relativistic (|~p| ≫ m) particles [20]

η = y|m=0 = ln

(
E + pz
pT

)

= −ln

(

tan
θ

2

)

, (A.12)

which is known as pseudorapidity, and it runs from minus infinity to plus infinity.
This is experimentally easy to measure in experiments, because it depends only on
the angle θ ∈ [0, π] over the beam axis.

So rapidity is a variable which describes together both energy E and longitudinal
momentum pz of particles, and ∂y/∂pz = 1/E. Also it is sometimes useful to write
the 4-momentum as [29]

pµ = (mT cosh y, pT cosφ, pT sin φ,mT sinh y), (A.13)

where the transverse mass is mT =
√

m2 + p2T and the transverse angle φ ∈ [0, 2π] is
around the beam axis. Finally, the most important fact is that differences between
rapidities are Lorentz boost invariant under longitudinal boosts, i.e. y1−y2 or η1−η2
are frame independent. This is the reason to use pseudorapidity η instead of θ.
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A.3 Lie algebras of the Standard Model

QCD su(3)

The Lie algebra su(3) is spanned by traceless hermitian 3×3 matrices with determi-
nant 1, equipped with a basis represented by eight matrices. The eight generators
are

Ta =
1

2
λa, (A.14)

where λa is [24]

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 (A.15)

These are known as the Gell-Mann matrices, used to model SU(3)C gauge symmetry
of QCD and in an approximate way in flavour symmetry invented by Gell-Mann.
The totally antisymmetric structure constants fabc are given by [29]

fabc =
1

4i
Tr([λa, λb]λc). (A.16)

Using these, the fundamental commutation relation

[Ta, Tb] = i
∑

c

fabcTc (A.17)

can be proven to hold.

Weak force su(2)

The Lie algebra su(2) is spanned by antihermitian 2× 2 matrices with determinant
1, equipped with a basis represented by three matrices. The three generators are

Tj =
1

2
τj , (A.18)

where τj is [29]

τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

. (A.19)

These are the famous Pauli matrices and the corresponding generators obey the
fundamental commutation relation

[Ti, Tj] = i
∑

k

ǫijkTk, (A.20)
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where ǫijk = ǫijk is the totally antisymmetric Levi-Civita permutation tensor, with
ǫ123 = +1.

Pauli matrices are used also in ordinary quantum mechanics to represent angular
momentum and intrinsic angular momentum (spin) operator components. This is
natural because mathematically SU(2) group is the double-cover of SO(3), which
is the usual rotation group. Also, when looking closely, one can see that the Pauli
matrices are actually embedded inside the first three Gell-Mann matrices.

Later on Heisenberg used this same mathematics to describe strong nuclear force
symmetry between protons and neutrons, which is known to be only an approxima-
tion. The concept is known as isotopic spin or shortly as isospin. The idea is that
both proton and neutron would be different states of the same particle, nucleon,
transformed using the spin-1

2
representation of SU(2).

In the context of weak force group SU(2)L, the Pauli matrices correspond to
three components of the weak isospin Ij . This idea was due to Glashow, Weinberg
and Salam, the developers of the electroweak unification.

QED u(1)

Finally, the simplest Lie algebra u(1) in the Standard Model is made by antihermi-
tian 1× 1 complex matrices, that means, imaginary numbers. Common choice as a
basis vector is i

3
, due to fractional charges of quarks.
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Table A.1: Elementary particles in the Standard Model (without antiparticles for
fermions) with corresponding irreducible representation algebras. The irreducible
representation of the weak hypercharge Ŷ operator is marked with Cy, from Ŷ |ψ〉 =
y|ψ〉. [5]

Type SU(3) irrep SU(2) irrep U(1) irrep

1st gen. Fermions

Quarks
(ur, ug, ub, d

′
r, d

′
g, d

′
b)L C

3
C
2

C 1

3

(ur, ug, ub)R C
3

C C 4

3

(dr, dg, db)R C
3

C C− 2

3

Leptons
(νe, e

−)L C C
2

C−1

(e−)R C C C−2

(νe)R not observed! C C C0

2nd gen. Fermions

Quarks
(cr, cg, cb, s

′
r, s

′
g, s

′
b)L C

3
C
2

C 1

3

(cr, cg, cb)R C
3

C C 4

3

(sr, sg, sb)R C
3

C C− 2

3

Leptons
(νµ, µ

−)L C C
2

C−1

(µ−)R C C C−2

(νµ)R not observed! C C C0

3rd gen. Fermions

Quarks
(tr, tg, tb, b

′
r, b

′
g, b

′
b)L C

3
C
2

C 1

3

(tr, tg, tb)R C
3

C C 4

3

(br, bg, bb)R C
3

C C− 2

3

Leptons
(ντ , τ

−)L C C
2

C−1

(τ−)R C C C−2

(ντ )R not observed! C C C0

Gauge Bosons

(grg, grb, ggr, ggb, gbr, gbg, grr − gbb, gbb − ggg) su(3) R R

(W1,W2,W3) R su(2) R

(B0) R R u(1)
(H0) C C

2
C1
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A.4 PYTHIA 6.4x setup

Non-diffractive (Minimum-bias)

The tree-level 2 → 2 hard QCD processes (ISUB = 11, . . . , 68). Soft, non-perturbative
QCD (ISUB = 95).

Subprocess number Process
ISUB = 11 qiqj → qiqj
ISUB = 12 qiq̄i → qkq̄k
ISUB = 13 qiqi → gg
ISUB = 28 qig → qig
ISUB = 53 gg → qkq̄k
ISUB = 68 gg → gg
ISUB = 95 low pT

CTEQ5L parton density functions. Standard underlying event modelling CDF-II
tune A.

Diffractive

Subprocess number Process
ISUB = 92 Single diffraction AB → AX
ISUB = 93 Single diffraction AB → XB
ISUB = 94 Double diffraction AB → XY
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A.5 Multivariate method consistency
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Figure A.3: Calorimeter deposits Ecal as a function of pseudorapidity.
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Figure A.4: Calorimeter deposits Ecal as a function of pseudorapidity.
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Figure A.5: Calorimeter deposits Ecal as a function of pseudorapidity.
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Figure A.6: Calorimeter deposits Ecal as a function of pseudorapidity.



121

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
SDL

〈d
N

ch
/
d
η
〉

 

 
MC, MLR
MC, BDT
MC

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

M
C

(M
V
A
)
/
M
C

η

Figure A.7: Track multiplicities Nch as a function of pseudorapidity.
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Figure A.8: Track multiplicities Nch as a function of pseudorapidity.
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Figure A.9: Track multiplicities Nch as a function of pseudorapidity.
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Figure A.10: Track multiplicities Nch as a function of pseudorapidity.
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A.6 Prior probabilities systematics

Cross section estimates for the CDF 0-bias sample by using different theory priors
Pj are given in Table A.2. The algorithmic chain is the same as explained in Section
10.1. The RMS error between a posteriori estimated and a priori expected cross

sections is denoted with ∆RMS =
√

1
|C|

∑

j (σ̂j − σj)2.

Table A.2: Prior probabilities systematics. Prior combinations with PND < 0.66 do
not satisfy Pumplin s-channel unitarity bound! The last line includes marginalized,
”fully Bayesian” estimates with 1σ standard deviations.

PSDL PSDR PDD PND σSDL (mb) σSDR (mb) σDD (mb) σND (mb) ∆RMS

0.07 0.07 0.04 0.82 4.75± 0.03 4.66± 0.03 2.97± 0.02 48.68± 0.07 0.80
0.07 0.07 0.05 0.82 4.36± 0.03 4.28± 0.03 3.66± 0.02 48.75± 0.07 0.77
0.06 0.06 0.06 0.82 3.99± 0.02 3.92± 0.02 4.34± 0.02 48.82± 0.07 0.74
0.06 0.06 0.07 0.82 3.62± 0.02 3.56± 0.02 5.00± 0.03 48.89± 0.07 0.71
0.05 0.05 0.08 0.82 3.26± 0.02 3.20± 0.02 5.64± 0.03 48.95± 0.07 0.69
0.04 0.04 0.09 0.82 2.91± 0.02 2.86± 0.02 6.28± 0.03 49.02± 0.07 0.66
0.04 0.04 0.10 0.82 2.56± 0.02 2.52± 0.02 6.89± 0.03 49.08± 0.07 0.64
0.03 0.03 0.11 0.82 2.22± 0.02 2.19± 0.02 7.50± 0.03 49.15± 0.07 0.61
0.03 0.03 0.12 0.82 1.89± 0.02 1.86± 0.02 8.10± 0.03 49.21± 0.07 0.58
0.08 0.08 0.05 0.80 4.92± 0.03 4.83± 0.03 3.25± 0.02 48.05± 0.07 0.47
0.07 0.07 0.06 0.80 4.56± 0.03 4.48± 0.03 3.91± 0.02 48.12± 0.07 0.44
0.07 0.07 0.07 0.80 4.20± 0.03 4.13± 0.03 4.54± 0.02 48.19± 0.07 0.41
0.06 0.06 0.08 0.80 3.86± 0.02 3.79± 0.02 5.16± 0.03 48.25± 0.07 0.39
0.06 0.06 0.09 0.80 3.51± 0.02 3.45± 0.02 5.78± 0.03 48.32± 0.07 0.36
0.05 0.05 0.10 0.80 3.18± 0.02 3.12± 0.02 6.38± 0.03 48.38± 0.07 0.33
0.05 0.05 0.11 0.80 2.85± 0.02 2.80± 0.02 6.96± 0.03 48.45± 0.07 0.30
0.04 0.04 0.12 0.80 2.53± 0.02 2.48± 0.02 7.54± 0.03 48.51± 0.07 0.27
0.04 0.04 0.13 0.80 2.21± 0.02 2.17± 0.02 8.11± 0.03 48.57± 0.07 0.24
0.08 0.08 0.05 0.78 5.09± 0.03 5.00± 0.03 3.52± 0.02 47.46± 0.07 0.16
0.08 0.08 0.06 0.78 4.75± 0.03 4.66± 0.03 4.13± 0.02 47.52± 0.07 0.15
0.07 0.07 0.07 0.78 4.41± 0.03 4.33± 0.03 4.73± 0.02 47.59± 0.07 0.15
0.07 0.07 0.08 0.78 4.08± 0.03 4.01± 0.03 5.32± 0.03 47.65± 0.07 0.15
0.06 0.06 0.09 0.78 3.75± 0.02 3.69± 0.02 5.90± 0.03 47.72± 0.07 0.16
0.06 0.06 0.10 0.78 3.43± 0.02 3.37± 0.02 6.48± 0.03 47.78± 0.07 0.16
0.05 0.05 0.11 0.78 3.12± 0.02 3.06± 0.02 7.04± 0.03 47.84± 0.07 0.17
0.05 0.05 0.12 0.78 2.80± 0.02 2.76± 0.02 7.59± 0.03 47.91± 0.07 0.19
0.04 0.04 0.13 0.78 2.50± 0.02 2.46± 0.02 8.13± 0.03 47.97± 0.07 0.21
0.04 0.04 0.14 0.78 2.20± 0.02 2.16± 0.02 8.67± 0.03 48.03± 0.07 0.24
0.09 0.09 0.06 0.76 5.25± 0.03 5.16± 0.03 3.76± 0.02 46.89± 0.07 0.32
0.09 0.09 0.07 0.76 4.93± 0.03 4.84± 0.03 4.34± 0.02 46.96± 0.07 0.35
0.08 0.08 0.08 0.76 4.60± 0.03 4.52± 0.03 4.91± 0.03 47.02± 0.07 0.38
0.07 0.07 0.09 0.76 4.29± 0.03 4.21± 0.03 5.48± 0.03 47.08± 0.07 0.41
0.07 0.07 0.10 0.76 3.98± 0.02 3.91± 0.02 6.03± 0.03 47.15± 0.07 0.44
0.07 0.07 0.11 0.76 3.67± 0.02 3.61± 0.02 6.58± 0.03 47.21± 0.07 0.47
0.06 0.06 0.12 0.76 3.36± 0.02 3.31± 0.02 7.11± 0.03 47.27± 0.07 0.50
0.06 0.06 0.13 0.76 3.07± 0.02 3.01± 0.02 7.64± 0.03 47.34± 0.07 0.54
0.05 0.05 0.14 0.76 2.77± 0.02 2.73± 0.02 8.17± 0.03 47.40± 0.07 0.57
0.05 0.05 0.15 0.76 2.48± 0.02 2.44± 0.02 8.68± 0.03 47.46± 0.07 0.61
0.04 0.04 0.16 0.76 2.19± 0.02 2.16± 0.02 9.19± 0.03 47.52± 0.07 0.66
0.10 0.10 0.07 0.74 5.41± 0.03 5.32± 0.03 3.98± 0.02 46.35± 0.07 0.70
0.09 0.09 0.08 0.74 5.10± 0.03 5.01± 0.03 4.53± 0.02 46.41± 0.07 0.73
0.09 0.09 0.09 0.74 4.79± 0.03 4.71± 0.03 5.08± 0.03 46.48± 0.07 0.76
0.08 0.08 0.10 0.74 4.49± 0.03 4.41± 0.03 5.62± 0.03 46.54± 0.07 0.79

Continued on next page
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Table A.2 – Continued from the previous page

PSDL PSDR PDD PND σSDL (mb) σSDR (mb) σDD (mb) σND (mb) ∆RMS

0.08 0.08 0.11 0.74 4.19± 0.03 4.12± 0.03 6.15± 0.03 46.60± 0.07 0.82
0.07 0.07 0.12 0.74 3.89± 0.02 3.83± 0.02 6.68± 0.03 46.67± 0.07 0.86
0.07 0.07 0.13 0.74 3.60± 0.02 3.54± 0.02 7.19± 0.03 46.73± 0.07 0.89
0.06 0.06 0.14 0.74 3.31± 0.02 3.26± 0.02 7.70± 0.03 46.79± 0.07 0.93
0.06 0.06 0.15 0.74 3.03± 0.02 2.98± 0.02 8.20± 0.03 46.85± 0.07 0.97
0.05 0.05 0.16 0.74 2.75± 0.02 2.70± 0.02 8.70± 0.03 46.91± 0.07 1.01
0.05 0.05 0.17 0.74 2.47± 0.02 2.43± 0.02 9.19± 0.03 46.97± 0.07 1.06
0.10 0.10 0.07 0.72 5.57± 0.03 5.47± 0.03 4.19± 0.02 45.83± 0.07 1.10
0.10 0.10 0.08 0.72 5.27± 0.03 5.18± 0.03 4.72± 0.02 45.89± 0.07 1.13
0.09 0.09 0.09 0.72 4.97± 0.03 4.89± 0.03 5.24± 0.03 45.96± 0.07 1.16
0.09 0.09 0.10 0.72 4.68± 0.03 4.60± 0.03 5.76± 0.03 46.02± 0.07 1.19
0.08 0.08 0.11 0.72 4.39± 0.03 4.32± 0.03 6.27± 0.03 46.08± 0.07 1.22
0.08 0.08 0.12 0.72 4.11± 0.03 4.04± 0.03 6.78± 0.03 46.14± 0.07 1.26
0.07 0.07 0.13 0.72 3.82± 0.02 3.76± 0.02 7.27± 0.03 46.20± 0.07 1.29
0.07 0.07 0.14 0.72 3.55± 0.02 3.49± 0.02 7.76± 0.03 46.26± 0.07 1.33
0.06 0.06 0.15 0.72 3.27± 0.02 3.22± 0.02 8.25± 0.03 46.32± 0.07 1.38
0.06 0.06 0.16 0.72 3.00± 0.02 2.95± 0.02 8.73± 0.03 46.38± 0.07 1.42
0.05 0.05 0.17 0.72 2.73± 0.02 2.68± 0.02 9.20± 0.03 46.44± 0.07 1.47
0.05 0.05 0.18 0.72 2.46± 0.02 2.42± 0.02 9.67± 0.04 46.50± 0.07 1.52
0.11 0.11 0.08 0.70 5.72± 0.03 5.62± 0.03 4.38± 0.02 45.33± 0.07 1.51
0.11 0.11 0.09 0.70 5.43± 0.03 5.34± 0.03 4.90± 0.02 45.39± 0.07 1.54
0.10 0.10 0.10 0.70 5.15± 0.03 5.06± 0.03 5.40± 0.03 45.45± 0.07 1.57
0.09 0.09 0.11 0.70 4.87± 0.03 4.78± 0.03 5.90± 0.03 45.51± 0.07 1.60
0.09 0.09 0.12 0.70 4.59± 0.03 4.51± 0.03 6.39± 0.03 45.57± 0.07 1.63
0.08 0.08 0.13 0.70 4.31± 0.03 4.24± 0.03 6.88± 0.03 45.63± 0.07 1.67
0.08 0.08 0.14 0.70 4.04± 0.02 3.97± 0.02 7.36± 0.03 45.69± 0.07 1.71
0.07 0.07 0.15 0.70 3.77± 0.02 3.71± 0.02 7.83± 0.03 45.75± 0.07 1.75
0.07 0.07 0.16 0.70 3.50± 0.02 3.44± 0.02 8.30± 0.03 45.81± 0.07 1.79
0.07 0.07 0.17 0.70 3.24± 0.02 3.19± 0.02 8.77± 0.03 45.87± 0.07 1.84
0.06 0.06 0.18 0.70 2.98± 0.02 2.93± 0.02 9.23± 0.03 45.93± 0.07 1.89
0.05 0.05 0.19 0.70 2.72± 0.02 2.67± 0.02 9.68± 0.04 45.99± 0.07 1.94
0.05 0.05 0.20 0.70 2.46± 0.02 2.42± 0.02 10.13± 0.04 46.05± 0.07 2.00
0.12 0.12 0.09 0.68 5.87± 0.03 5.77± 0.03 4.57± 0.02 44.84± 0.07 1.93
0.11 0.11 0.10 0.68 5.60± 0.03 5.50± 0.03 5.06± 0.03 44.90± 0.07 1.96
0.11 0.11 0.11 0.68 5.32± 0.03 5.23± 0.03 5.55± 0.03 44.96± 0.07 1.99
0.10 0.10 0.12 0.68 5.05± 0.03 4.96± 0.03 6.03± 0.03 45.02± 0.07 2.02
0.10 0.10 0.13 0.68 4.78± 0.03 4.70± 0.03 6.51± 0.03 45.08± 0.07 2.06
0.09 0.09 0.14 0.68 4.51± 0.03 4.43± 0.03 6.98± 0.03 45.14± 0.07 2.09
0.09 0.09 0.15 0.68 4.25± 0.03 4.17± 0.03 7.44± 0.03 45.20± 0.07 2.13
0.08 0.08 0.16 0.68 3.98± 0.02 3.92± 0.02 7.90± 0.03 45.26± 0.07 2.17
0.08 0.08 0.17 0.68 3.72± 0.02 3.66± 0.02 8.36± 0.03 45.32± 0.07 2.22
0.07 0.07 0.18 0.68 3.47± 0.02 3.41± 0.02 8.81± 0.03 45.37± 0.07 2.27
0.07 0.07 0.19 0.68 3.21± 0.02 3.16± 0.02 9.25± 0.03 45.43± 0.07 2.32
0.06 0.06 0.20 0.68 2.96± 0.02 2.91± 0.02 9.69± 0.04 45.49± 0.07 2.37
0.06 0.06 0.21 0.68 2.71± 0.02 2.67± 0.02 10.13± 0.04 45.55± 0.07 2.43
0.12 0.12 0.09 0.66 6.02± 0.03 5.92± 0.03 4.75± 0.02 44.37± 0.07 2.36
0.12 0.12 0.10 0.66 5.75± 0.03 5.65± 0.03 5.23± 0.03 44.43± 0.07 2.39
0.11 0.11 0.11 0.66 5.49± 0.03 5.39± 0.03 5.70± 0.03 44.48± 0.07 2.42
0.11 0.11 0.12 0.66 5.22± 0.03 5.13± 0.03 6.16± 0.03 44.54± 0.07 2.45
0.10 0.10 0.13 0.66 4.96± 0.03 4.88± 0.03 6.62± 0.03 44.60± 0.07 2.48
0.10 0.10 0.14 0.66 4.70± 0.03 4.62± 0.03 7.08± 0.03 44.66± 0.07 2.52
0.09 0.09 0.15 0.66 4.44± 0.03 4.37± 0.03 7.53± 0.03 44.72± 0.07 2.56
0.09 0.09 0.16 0.66 4.19± 0.03 4.12± 0.03 7.97± 0.03 44.78± 0.07 2.60
0.08 0.08 0.17 0.66 3.94± 0.02 3.87± 0.02 8.41± 0.03 44.83± 0.07 2.65
0.08 0.08 0.18 0.66 3.69± 0.02 3.63± 0.02 8.85± 0.03 44.89± 0.07 2.70
0.07 0.07 0.19 0.66 3.44± 0.02 3.38± 0.02 9.29± 0.03 44.95± 0.07 2.75

Continued on next page
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Table A.2 – Continued from the previous page

PSDL PSDR PDD PND σSDL (mb) σSDR (mb) σDD (mb) σND (mb) ∆RMS

0.07 0.07 0.20 0.66 3.20± 0.02 3.14± 0.02 9.72± 0.04 45.00± 0.07 2.80
0.06 0.06 0.21 0.66 2.95± 0.02 2.90± 0.02 10.14± 0.04 45.06± 0.07 2.86
0.06 0.06 0.22 0.66 2.71± 0.02 2.67± 0.02 10.57± 0.04 45.12± 0.07 2.92
0.13 0.13 0.10 0.64 6.17± 0.03 6.06± 0.03 4.92± 0.02 43.90± 0.07 2.80
0.13 0.13 0.11 0.64 5.91± 0.03 5.81± 0.03 5.38± 0.03 43.96± 0.07 2.82
0.12 0.12 0.12 0.64 5.65± 0.03 5.55± 0.03 5.84± 0.03 44.02± 0.07 2.85
0.11 0.11 0.13 0.64 5.39± 0.03 5.30± 0.03 6.29± 0.03 44.08± 0.07 2.89
0.11 0.11 0.14 0.64 5.14± 0.03 5.05± 0.03 6.74± 0.03 44.13± 0.07 2.92
0.11 0.11 0.15 0.64 4.89± 0.03 4.81± 0.03 7.18± 0.03 44.19± 0.07 2.96
0.10 0.10 0.16 0.64 4.64± 0.03 4.56± 0.03 7.61± 0.03 44.25± 0.07 3.00
0.10 0.10 0.17 0.64 4.39± 0.03 4.32± 0.03 8.05± 0.03 44.30± 0.07 3.04
0.09 0.09 0.18 0.64 4.15± 0.03 4.08± 0.03 8.48± 0.03 44.36± 0.07 3.08
0.08 0.08 0.19 0.64 3.90± 0.02 3.84± 0.02 8.90± 0.03 44.42± 0.07 3.13
0.08 0.08 0.20 0.64 3.66± 0.02 3.60± 0.02 9.33± 0.03 44.47± 0.07 3.18
0.07 0.07 0.21 0.64 3.42± 0.02 3.36± 0.02 9.75± 0.04 44.53± 0.07 3.24
0.07 0.07 0.22 0.64 3.18± 0.02 3.13± 0.02 10.16± 0.04 44.58± 0.07 3.30
0.07 0.07 0.23 0.64 2.95± 0.02 2.90± 0.02 10.57± 0.04 44.64± 0.07 3.36
0.06 0.06 0.24 0.64 2.71± 0.02 2.67± 0.02 10.98± 0.04 44.70± 0.07 3.43
0.14 0.14 0.11 0.62 6.32± 0.03 6.21± 0.03 5.09± 0.03 43.44± 0.06 3.24
0.13 0.13 0.12 0.62 6.06± 0.03 5.96± 0.03 5.54± 0.03 43.50± 0.06 3.26
0.13 0.13 0.13 0.62 5.81± 0.03 5.71± 0.03 5.98± 0.03 43.56± 0.06 3.29
0.12 0.12 0.14 0.62 5.56± 0.03 5.47± 0.03 6.41± 0.03 43.62± 0.06 3.32
0.12 0.12 0.15 0.62 5.32± 0.03 5.22± 0.03 6.85± 0.03 43.67± 0.06 3.36
0.11 0.11 0.16 0.62 5.07± 0.03 4.98± 0.03 7.28± 0.03 43.73± 0.07 3.40
0.11 0.11 0.17 0.62 4.83± 0.03 4.75± 0.03 7.70± 0.03 43.78± 0.07 3.44
0.10 0.10 0.18 0.62 4.59± 0.03 4.51± 0.03 8.13± 0.03 43.84± 0.07 3.48
0.10 0.10 0.19 0.62 4.35± 0.03 4.27± 0.03 8.54± 0.03 43.90± 0.07 3.52
0.09 0.09 0.20 0.62 4.11± 0.03 4.04± 0.02 8.96± 0.03 43.95± 0.07 3.57
0.09 0.09 0.21 0.62 3.87± 0.02 3.81± 0.02 9.37± 0.03 44.01± 0.07 3.63
0.08 0.08 0.22 0.62 3.64± 0.02 3.58± 0.02 9.78± 0.04 44.06± 0.07 3.68
0.08 0.08 0.23 0.62 3.41± 0.02 3.35± 0.02 10.19± 0.04 44.12± 0.07 3.74
0.07 0.07 0.24 0.62 3.17± 0.02 3.12± 0.02 10.59± 0.04 44.17± 0.07 3.80
0.07 0.07 0.25 0.62 2.95± 0.02 2.90± 0.02 10.99± 0.04 44.23± 0.07 3.87

0.08 0.08 0.13 0.71 4.04± 1.06 3.97± 1.04 7.07± 1.93 45.98± 1.59


