
ALEJANDRO YUSTE MASCARÓ
SIMULATING OPEN SOURCE SOFTWARE COMMUNITIES
THROUGH COLLECTIVE GAMES
Masters of Science Thesis

Examiners: Associate Professor Imed
Hammouda and Msc. Terhi Kilamo
Examiners and topic approved in the
Faculty of Computing and Electrical
Engineering Council, meeting on
03/04/2013

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
YUSTE MASCARÓ, ALEJANDRO: Simulating Open Source Software Com-
munities Through Collective Games
Master of Science Thesis, 56 pages
February 2013
Major: Software Systems
Examiner: Associate Professor Imed Hammouda
Examiner: Teaching Associate Terhi Kilamo
Keywords: Open Source Software, Open Source Software Communities, Simulating, Col-
lective Games

According to the Open Source Initiative, Open Source Software (OSS) can be de�ned

by ten criteria. The most important and relevant ones are the free redistribution of

the software, the inclusion of the source code and the authorization to modify and

redistribute the work. OSS products are a vital part of how we understand Internet.

But, for most people, it is still complicated to understand what is an Open Source

Software Community. In this thesis, we have analysed how these OSS communities

work, how they are structured and how they get the results that made them pop-

ular. Furthermore, a tool that simulates many of the features of OSS communities

has been implemented. This platform permits a user to feel how is joining one of

these communities and working with other community members to solve a complex

problem through collaboration.

This thesis has allowed us to remark the importance of collective games in simulating

the dynamics of OSS communities. These communities are formed by members who

have to come together to develop a product. Thus, the notion of collaboration is es-

sential; as in the collaborative games where the players have to cooperate to reach a

solution. This project also helps us illustrate the collective games approach through

the Sudoku game, which is the game chosen to develop the simulation platform. To

perform it, we have used intelligent agents which roles are to act like members of a

real community. The result is that a human user can join it and play in di�erent

roles to understand the operation of OSS communities.

II

PREFACE

This Master of Science Thesis has been undertaken at Tampere University of Tech-

nology (TUT) at the Faculty of Computing and Electrical Engineering from October

2012 to March 2013.

Once �nished, the platform produced is available on-line for all those people who

want to check it or even collaborate to improve it. The web page of the project is

the following:

http://alejandroyuste.github.com/MudokuWithAgents/

I would like to thank Imed Hammouda for assigning me this thesis giving me the

opportunity to come to Tampere and enjoy these ten months abroad. Also, I would

like to thank all people from TUT Open Source Research Group for the good en-

vironment of work I had and all the things they taught me, I am sure they will be

very useful in the future.

Alejandro Yuste Mascaró

Tampere, March 22, 2013

III

CONTENTS

1. Introduction . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure of Thesis . 2

2. Background . 4

2.1 Free Software . 4

2.1.1 Free Software Foundation . 4

2.1.2 Open Source Software . 5

2.2 Open Source Communities . 6

2.2.1 Members . 7

2.2.2 Characteristics . 8

2.2.3 Roles . 9

2.2.4 Decision Making . 10

2.3 Problem . 12

3. The Collectives Games Approach . 13

3.1 Collectives Games . 13

3.2 Simulating an OSS Community . 14

3.2.1 Sudoku Case . 15

3.2.2 Roles Simulated . 16

3.2.3 Simulating an OSS Communities with the Sudoku Game 18

4. Mudoku Platform . 21

4.1 Overview of the Tool . 21

4.2 Technical Details . 25

4.2.1 Server Applet . 25

4.2.2 Client Applet . 26

4.3 Message Protocol . 27

5. Mudoku OSS Community Platform . 30

5.1 Overview of the Tool . 31

5.2 Technical Details . 43

5.3 Message Protocol . 48

6. Discussion . 51

7. Conclusions . 54

REFERENCES . 55

IV

NOMENCLATURE AND ABBREVIATIONS

ABM Agent-Based Model

CSS Close Source Software

FSF Free Software Foundation

OS Open Source

OSC Open Source Community

OSS Open Source Software

1

1. INTRODUCTION

During the last decades, technology has increasingly become one of the most impor-

tant parts of our lives. It has changed habits human beings have had for centuries

and nowadays we are totally dependent on this progress. One of the main reason for

this tendency is Internet. The network of networks has altered the way we perceive

and understand the world [1]. For example, people feel today closer than before,

even if they live in di�erent countries. Also, we can know every sort of news only a

few seconds after they happened. It would not have peen possible 25 years ago.

How did we arrive to this point? Who are responsible of this situation? Inter-

net has been created to connect computers and, accordingly, people. It was thought

to share information and data by some users/developers who felt the necessity to

solve a lack of solutions. And this is still the key of the Open Source Communities,

to �nd an answer to any kind of questions through Internet.

Contrary to what may seem, the way we understand Internet is thank to the work of

this type of Communities. Almost 65% of Internet servers are working with a Linux

kernel [2] and about 60% of web servers are Apache [3]. Also, the Linux kernel is

present in fridges, washing machines, smart phones and multiples devices we use

daily. We can �nd Open Source Software (OSS) communities products everywhere,

but how these communities really work? Who are their members? How are they

organized?

1.1 Motivation

One of the main problems potential members might have regarding OSS communi-

ties is just before joining them. Most of new users are scared to share their work

thinking it is not good enough for the project or it could contain bugs. This fact

creates a barrier for those people who really want to join them but do not know

how they are organized and what is the software development process in this kind

of communities. Additionally, the establishment of the relationship with the com-

munity may be tough, people do not usually like to share their thoughts and work

1. Introduction 2

through the Internet.

Potential new members could also have many communication problems. As they

might not understand the di�erent roles present in these communities, they could

ask for their issues to wrong members or they could try to do a work they are not

ready for. Besides, it is not an easy work to learn about a concrete community.

Normally, they are formed for many users who are working in di�erent parts of a

project and discussing about many di�erent facts about it at the same time. All

these information could be exasperating at the beginning and it is for this reason

they need a platform to help them knowing where to start on an OSS community.

1.2 Objectives

In this master of science, we will try to understand how OSS Communities are

structured, which motivations they have and how they work. Then, the issue will be

treated as a Serious Game [4]. This is a simulation of a real-world event or process

designed for the purpose of solving a problem. This kind of games always has an

educational purpose. A user is playing to reach an objective but what he/she is

really doing is solving a complex problem.

In this way, this last concept will be applied over collectives games. These games

are collaborative games where many players have to share their knowledge to reach

a goal. Thus, we will study the signi�cance of collective games in simulating the

dynamics of Open Source Software Communities. Concretely, we will be trying to

illustrate the collective games approach through the Sudoku Game.

Before doing this thesis, there were questions about whether it was possible or

not to simulate an Open Source Community (OSC). Thus, one of the objective was

to succeed in this performance. After a few months, we achieve the creation and the

development of a simulation tool. It imitates the di�erent roles present in an OSS

community to help the users know the di�erent functions that are part of it.

1.3 Structure of Thesis

The thesis is divided in seven di�erent chapters. After the introduction, in Section 2,

a brief review about the history of Free Software can be found, as well as the origin

of the term Open Source Software and an analysis of Open Source Communities in

order to know what is going to be simulated. In Section 3 is explained how we have

simulated our OSS community and how the simulation works applied to the concrete

Sudoku case. Then, in Section 4, the details of the previous tool we have used to

1. Introduction 3

develop our own are precised, focusing in the parts that have been more important

in our tool. Section 5 details all the features of our own platform, with all the

changes we have done to the previous tool and the new characteristics that have

been developed. In Section 6 can be read the analyses of the results and the goals

as well as the next investigation steps and the limitations of our own tool. Finally,

in Section 7 can be seen the validation of the tool in addition to the conclusions we

have obtained from the whole process.

4

2. BACKGROUND

From the �rst pieces of software until the digital age, about 1950-1960, computer

programs used to be developed by single developers. The process consisted in punch-

ing little rectangular holes in (decks of) cards that were read by computing machines

without operating systems [8]. After this, almost all software was produced by com-

puter science academics and corporate researchers working in collaboration. It is not

until the invention of the integrated circuit that the software developing companies

began to hide the code to sell the executables under restrictive licences. Then, this

business model became the general rule.

2.1 Free Software

The story begins in 1971 when a physics student called Richard Stallman enrolled

as a graduate student at MIT. In 1980, he and some other hackers at the AI Lab

were refused access to the source code for the software of a newly installed laser

printer. Stallman had modi�ed the software for the Lab's previous printer, so it

messaged a user when the person's job was printed, and would message all logged-

in users waiting for print jobs if the printer was jammed. Not being able to add

these features to the new printer was a major inconvenience, as the printer was on

a di�erent �oor from most of the users [9]. This experience convinced Stallman of

people's need to be free to modify the software they use and laying the foundation

of the Free Software Foundation.

2.1.1 Free Software Foundation

The movement was born on September 1983, when Richard Stallman announced the

GNU Project. This was a mass collaboration project whose aim is to give computer

users freedom and control in their use of their computers and computing devices,

by collaboratively developing and providing software that is based on the freedom

rights. Two years later, in October 1985, he created the Free Software Foundation,

initially to raise funds to help develop GNU. All these years the institution has

been working to remove copy, distribution and modi�cation restrictions for all the

software developed. In February 1986, FSF published the de�nition below for free

software [10].

2. Background 5

"The word 'free' in our name does not refer to price; it refers to freedom. First,

the freedom to copy a program and redistribute it to your neighbours, so that they

can use it as well as you. Second, the freedom to change a program, so that you

can control it instead of it controlling you; for this, the source code must be made

available to you."

The foundation has never lost the initial idea of developing the GNU project. How-

ever, nowadays the institution is also working in other �elds as the GNU General

Public License (GPL) and its derivatives, a widely used license for free software

projects. It has a FSF's publishing department called GNU Press which is respon-

sible for publishing a�ordable books on computer science using freely distributable

licenses. The Free Software Directory is a listing of software packages that have been

veri�ed as free software. FSF also keeps maintaining the Free Software De�nition

and many documents that de�ne the free software movement. It provides the project

hosting for software development projects on their Savannah website. It promotes

many political campaigns against what it perceives as dangers to software freedom,

including software patents, digital rights management and user interface copyright.

It presents the awards: "Award for the Advancement of Free Software" and "Free

Software Award for Projects of Social Bene�t" for the few people or groups of people

who deserve it the most every year.

According to the de�nition of FSF, Free Software is every one that follows next

four freedoms [11]:

Freedom 0: The freedom to run the program for any purpose.

Freedom 1: The freedom to change how the program works to make it do what you

wish.

Freedom 2: The freedom to redistribute copies so you can help your neighbour.

Freedom 3: The freedom to improve the program, and release your improvements

(and modi�ed versions in general) to the public, so that the whole community ben-

e�ts.

2.1.2 Open Source Software

The Free Software represents all the philosophy of the movement, but it is not valid

as a business model because of the use of the word "free". For this reason, in 1998,

Bruce Perens and Eric S. Raymond created the Open Source Initiative. They ad-

vocated that the term Free Software should be replaced by Open Source Software

[12] as an expression which is less ambiguous and more comfortable for the corpo-

rate world. To understand the di�erences between the two organizations the FSF

2. Background 6

published [13]:

"The term "Open Source" software is used by some people to mean more or less the

same category as free software. It is not exactly the same class of software: they

accept some licenses that we consider too restrictive, and there are free software li-

censes they have not accepted. However, the di�erences in extension of the category

are small: nearly all free software is open source, and nearly all open source software

is free."

Thus, we can say both types of software are more or less the same, di�erentiating

only in the legal part. We can observe in Figure 2.1 how all software are classi�ed

and which one can be downloaded for free.

Figure 2.1: Classi�cation of Software

2.2 Open Source Communities

A community is a group of people with a shared interest, purpose, or goal, who get

to know each other better over time [14]. The �nal goal or shared interest of an

Open Source Community is to produce quality "free" software in a very di�erent

way that the privative software. Traditionally, in companies dedicated to develop

software we �nd a restricted work team who create the software and only release the

compiled version. With this strategy, they permit that nobody really knows how

the program runs and that only them can �x the bugs, maintain and improve the

2. Background 7

software.

The di�erence stands in that in open source software the code is very often developed

in a public collaborative manner. This means that the members of a community

cooperate to create a product or improve an existing one. It could work as follows:

a single user or a group needs a new characteristic for any reason, so he/she/they

decide to create a product or improve one existing, then a project is published on

Internet and any person interested can join them to do any task related. Finally,

the code is released with the compiled version. Anyone can check, modify and then

release it again in the same way.

2.2.1 Members

But, which kind of people join these communities? Studies show that about 98,5%

of them are men [15], the age is from 16 to 25 year old, 60% of them are in relation-

ship and 83% of them are related with the IT sector [16].

Based on these studies we can say that these people are students or workers in

any IT sector and that they dedicate their free time to develop projects which mo-

tivate them. High chances are that they have a certain level of education (most of

them are bachelor's students) and that they enjoy exploring the limits of what is

possible, in a spirit of playful cleverness [17]. Members join communities for two

principal reasons: it is the quickest way to achieve a goal and they receive recogni-

tion from other users. The entire organization of these communities is based on the

last principles.

Time is very important for the members, as they normally do not receive any salary

for their job in the communities. Thus, there are published protocols and standards

to waste as little time as possible in the di�erent steps of developing. For example,

when a developer has an issue, before asking to the community, he must read the

manuals, look for similar problems in the own community, search for it in every web

page and if the person still has any doubt, then he �nally can ask to the correct

people in the community. The prestige refers to the fact that every programmer

likes to show his skills and do a good job to help the others. Because of this, the

communities are structured as a meritocracy; the person who is working the best has

more prestige and is more acknowledged in the community. So, this person would

work in more responsible positions and his opinions would be more listened when

the community has to make a decision.

2. Background 8

2.2.2 Characteristics

Communities have changed some traditional work concepts; they have developed

some tools to modify the way they work compared with proprietary software devel-

opment. Open source communities work in a really di�erent way than traditional

development software models [19].

The attribution concept is substituted for recognition. When a programmer pro-

vides a part of software, it belongs to the community, but the rest of the members

recognize that every part has been created for a particular member. The �nal prod-

uct is formed from a lot of contributions by each developer and every Internet user

can check any part and modify it, improve it, etc to make the �nal product even

better. This suggests that the �nal product is the result of a collective intelligence.

The sum of each small created part is setting a collective knowledge that is growing

with every new contribution.

Replacing the synchrony by asynchrony. As they work through Internet, the mem-

bers do not need to work in the same place or at the same time. It implies that

there should not be an exact dateline to make decisions or �nish a concrete work,

and that all members can submit a part when they want and if a problem is found,

then it can be studied.

Replace the opacity to transparency. At this point, we �nd two types of trans-

parency:

• Organizational and operational: All the levels of the community have the same

information which reduces wasted time and makes every people feels of equal

importance.

• Systemically: In the proprietary software, the security is based on the informa-

tion hidden. As nobody can check the source code, it is supposed that nobody

knows how it runs. However, it might not have a security layer. Working with

inverse engineering could help �gure out what is the code. In contrast, in open

source software, if everyone can check the source code, the code is designed to

be safe.

Change exclusivity for inclusivity. The control and testing of the software is made

by all the members and users of the software, not only by a limited work team

where only a few of them can check the code. This is very important because the

work can be done in a short time and as more people are involved, more bugs are

�xed and better will be the result. "Given enough eyeballs, all bugs are shallow" [18].

2. Background 9

Move from an autocracy to a meritocracy. More prestigious is a member, more

weight this person has in the important decisions of the community. The signif-

icance of this is that the prestige becomes a dynamic concept. If an important

member takes a wrong decision, next time his/her opinion is less taken into ac-

count. The aim of this system is to �nd the e�ciency through good work. For this

reason, the power is not always in the same hands. If a member is working well

and the community runs well, this member receives prestige and more responsibil-

ity. This person does not give order to the others but on the contrary, this member

must obey to the rest of the community . This means that if this person does not

follow what the community feels is necessary, the community will not trust him/her

anymore and they will follow another prestigious member.

The community has the conscience they are working for a product under construc-

tion, never a �nal result. Although, they often have to release stable versions for

the users. They handle a version system; this means they do not try to control

completely the software, they coexist with chaos. This is due to the fact that it is

impossible to control every detail, so they try to make the whole product works.

2.2.3 Roles

As we can see in Figure 2.2, the communities are formed by di�erent types of roles

with an onion model which is necessary for a healthy software production.

In the center of the onion we �nd the project Leader. This person is often the

one who has initiated the project. The main role is to be responsible for the vi-

sion and the overall direction of the project. In the next layer there are the Core

Members. They are responsible for guiding and coordinating the development of the

OSS project. These members have been involved with the project for a relative long

time and have made signi�cant contributions to the development and evolution of

the system. In those OSS projects that have evolved into their second generation, a

single Project Leader no longer exists and the Core Members form a council to take

the responsibility of guiding the development.

The next layer is for the active developers, who regularly contribute to new fea-

tures and �x bugs; they are one of the major development forces of OSS systems.

Very similar to the last ones are the peripheral Developers. This is the people

who occasionally contribute to new functionality or features for the existing system.

Their contribution are irregular, and the period of involvement is short and sporadic.

2. Background 10

Figure 2.2: Onion model of the roles of the community

Then, there are the bug �xers. These members �x bugs that either they discover by

themselves or are reported by other members. Bug Fixers have to read and under-

stand a small portion of the source code of the system where the bug occurs. The

people who discover and report bugs are the bug reporters; they do not �x the bugs

themselves, and they may not read source code either. They assume the same role

as testers of the traditional software development model.

In the borders of the onion we �nd the least in�uential roles. The readers are

active users of the system; they not only use the system, but also try to understand

how the system works by reading the source code. And �nally there are the passive

users. These members just use the system in the same way as most of us use com-

mercially available Closed Source Software (CSS).

As OSS communities work as a meritocracy, the di�erent members are promoted or

downgraded depending on their work accomplished in the community. A member

might also belong to di�erent roles. For example, a contributor could also be a bug

reporter.

2.2.4 Decision Making

The necessity of making decisions is clear, the projects have to be governed in some

directions and there are always problems to solve. However, not all the communities

2. Background 11

are working in the same way. Usually, this point depends on the size of the commu-

nity:

Small Communities. These communities are usually governed by a single leader.

This person, who often is the �rst owner of the project, is in charge of taking all

the decisions related to the community: which contributions are committed, what

is the direction of the project, how will be the user interface, etc.

Medium Communities. These communities do not present only one single leader,

but single leaders for all the di�erent parts that form the complete community. We

can say the community is formed by little self-managed communities working on

common objectives.

Large Communities When it is not possible than a single person controls all the

facts of a community, they are governed by a group of developers, usually the core

developers. To make decisions, these communities use a consensus where an unan-

imous vote is not required to reach a �nal resolution. However, the people who

disagree usually accept the conclusion because trying another solution on their own

would take too much time. Nevertheless, when there are very di�erent solutions and

many people supporting each of them, we can �nd the following scenarios:

• Passive denial: It is the case when there are some people who do not accept a

solution, but they are still included in the project. They would not participate

in the implementation of that part, but they would still enjoy the �nal product.

• Implementation of two di�erent solutions: this situation could happen when in

a concrete moment is decided to implement two di�erent solutions, and �nally

choose only one of them. It doubles the time of implementation compared to

only one solution,so for this reason, it should be avoided.

• Forking: It means the creation of two di�erent projects based on the original

one. This suggests that the two projects will never be again part of the same,

resulting in new alternative projects. This must also be avoided. When the

e�ciency of the whole process is thought about, the forking is a very bad

solution. It should be always the last solution for a problem.

The concept of a community is dynamic and there is not only one pattern to describe

them. We have tried to generalize the concept and explain the most commons facts

that we can observe. However, some communities could be very similar to the teams

in the corporate world and others a complete mess where nobody knows exactly

which is his/her work.

2. Background 12

2.3 Problem

The utility and the excellent results of OSS communities has been proven. Yet,

many users are not willing to be part of the experience. The reasons are numerous.

Among them, we could �nd the fear of sharing their knowledge, the fear of not being

good enough and the ignorance of the operation of these communities.

There is currently no studies or no interest for that matter. The users have to

learn by doing. When they �rst join a community, they will certainly make many

mistakes, but this is the only way to be trained so far. This is why we have decided

to create a platform that will help the potential new members understand the per-

formance of the OSS communities.

Another issue that might occur is the way the information are exchanged. The

core of a project of an OSS community is the communication among the members.

Usually, this is done through mail lists or forums. The problem of this method is

the users are not familiar with the idea to share every piece of information with

one another. The project we have conducted aims at developing trust in the OSS

communities by creating a platform without emailing nor forums. The information

needed can only be seen on the platform at any moment.

13

3. THE COLLECTIVES GAMES APPROACH

As it has been explained before, the simulation has been done to solve a Sudoku

problem. But the objective is not to solve a Sudoku, it is to observe how an OSC

works. Thus, in this chapter is explained the Sudoku problem and the characteristics

and limitations for this kind of simulation. Also, it is described how the simulation

has been done and the necessary facts that make it works.

3.1 Collectives Games

A collective game is a play where a single participant is not competing against other

users, but on the contrary, all of them have to cooperate to reach the goal of the

game [7]. Cooperative means that there is scope for working together, but not all

are rewarded/punished equally for doing so and the aim of the game is still to be

the best. Collaborative games only reward collaboration, and all players gain or

su�er equally. Winning one of this games is possible with good luck and careful

resource management but is more likely through good collaboration. Speci�cally,

active communication amongst the players and timely sacri�ces for the good of the

group are the keys.

A collective game follows the next rules:

• Hardness: The game must be combinatorial in nature and thus requiring

search. Technically speaking, these games must be NP-Hard.

• Adjustable hardness levels: We can easily and in a progressive manner adjust

the hardness of the instances of these games.

• Collaborative solution building: The solution to these games could be con-

structed in a collaborative manner but may require con�ict resolution.

• Decisions as discrete choices: The solution to such games can be achieved by

making decisions among a number of possible choices.

In the same way, by analysing the game when it is played to reach a goal, each

member should follow the next four lessons:

Lesson 1. To highlight problems of competitiveness, a collaborative game should

3. The Collectives Games Approach 14

introduce a tension between perceived individual utility and team utility.

Lesson 2. To further highlight problems of competitiveness, individual players

should be allowed to make decisions and take actions without the consent of the

team.

Lesson 3. Players must be able to trace payo�s back to their decisions.

Lesson 4. To encourage team members to make sel�ess decisions, a collaborative

game should bestow di�erent abilities or responsibilities upon the players.

3.2 Simulating an OSS Community

There are many features to simulate an OSS Community. For example, you could

change the behaviour of the di�erent roles or you could modify the information sys-

tem. We have tried to simulate the whole behaviour of the community, synchronizing

the di�erent roles. The work that has already been done and that is closer to what

we have done is an agent-based simulation. It has succeeded to do a prototype of

the development movement in OSC. They map one of the biggest OSS communities

in SourceForge as a network and then, they simulate the evolution of the network

calibrating it with empirical data [23].

The simulation has been implemented using an Agent-Based Model. This model,

very used in all types of simulations, permits to model a system as a collection

of autonomous decision-making entities called agents. Each agent individually as-

sesses his/her situation and makes decisions on the basis of a set of rules. These

agents may execute various behaviours appropriate for the system they represent [6].

In this way, our simulation is based in a system of agents and the relationships

between them. Speci�cally, we have implemented the behaviour of some of the dif-

ferent roles we can �nd in an OSC. Thus, we have obtained a complex system which

never behaves in the same way. Depending on the morphology of the agents present

in the community we get good or bad results where a good result is a correct solution

of the game in a short time.

The game starts when the server is launched. At the beginning the server ini-

tializes a random game with 40 values which will be untouchable the whole game.

Then, any number of agents or users can be connected and begin to interact among

themselves to solve the problem.

3. The Collectives Games Approach 15

3.2.1 Sudoku Case

The Sudoku game has been chosen as a concrete problem to apply to our simulation

of an OSS community. This game follows all the rules mentioned above, but also it

permits to see the game as an abstract system which is composed of three di�erent

subsystems, on the grid: Rows, Columns and Squares. This means that to achieve

a correct solution the three subsystems have to be correct and all the members in

each subsystem have to collaborate to get a �nal good result.

The predecessor of Suduku appears for the �rst time on July 6, 1895, in the news-

paper Le Siècle's rival, La France and it was almost a modern Sudoku. We could

�nd inside the journal the 9x9 square puzzle in which each row, column and broken

diagonals contained numbers from 1 to 9, but did not mark the sub-squares. Al-

though they are unmarked, each 3x3 sub-square does indeed comprise the numbers

from 1 to 9 and the additional constraint on the broken diagonals leads to only one

solution [21].

The modern Sudoku was designed by Howard Garns, a 74-year-old retired archi-

tect and freelance puzzle constructor from Connersville, Indiana, and it was �rst

published in 1979 by Dell Magazines as Number Place. The current name appeared

when it was introduced in Japan by Nikoli in the paper Monthly Nikolist in April

1984.

Sudoku is a puzzle game whose main objective is to �ll up a grid with natural

numbers, normally from 1 to 9, respecting the following rules:

• Rows: Each number in each row has to be di�erent.

• Columns: Each number in each column has to be di�erent.

• Squares: Each number in each square has to be di�erent, where a square is a

a sub-part of the grid. Traditionally, we �nd 3x3 squares located orderly.

The advantage of this game is that it can be seen as an abstract system formed by

three di�erent abstracts subsystems, one for every rule that determines the game.

In this way, the game is �nished only when all the subsystems are correct. In our

simulation, we have used a 16x16 grid with 1-16 possible values. In Figure 3.1 we

can observe how the grid we have developed looks like. In it, the squares are marked

by thicker stripes and every time a cell is selected the scope of this value is coloured

di�erently, doing it more user-friendly.

3. The Collectives Games Approach 16

Figure 3.1: Grid with a Sudoku Problem initialized

3.2.2 Roles Simulated

The agents represent one of the most important parts of the game. The simula-

tion can be done with real users, but a community of agents launched allows the

simulation to be totally observable and more conclusions can be extracted. In the

following list can be found all the roles simulated and how they work.

The contributor agents only participate in the community adding values to the

grid. As each one of them belongs to one of the subsystems there are three types

of contributors. In this way, a row contributor only adds values that are correct by

rows, with a 5% possibilities of error. This means that when an agent �lls a cell, the

value is probably correct in one of the subsystems, but it may be wrong in the others.

There are also three types of Bug Reporters depending on the subsystem. Their

work is to check if the values contributed by the previous role, that do not belong

to the subsystem, are correct or not. For example, a column bug reporter checks

the values contributed by row and by square contributors, assuming that the con-

tributions by columns are correct. When one of these agents detects that a value is

not correct for his/her subsystem he/she sends a report bug to the server and this

3. The Collectives Games Approach 17

position of the grid will be available to be �lled again, marking that a bug has been

detected.

A Tester works in a very similar way than a Bug Reporter, but only on correct

values. There are also three types of them and they only participate in the commu-

nity when a value of another subsystem is correct for their own subsystem. Then,

they ask for committing this value assuming it is correct at least in two subsystems.

A Committer agent only participates when a voting session is active. Its work

consists in emitting a vote to decide if a value will be committed or not. Each agent

has a 15% of possibilities to vote contrary to its interest. In any case, one incorrect

vote is not going to change the �nal result of the voting, as the values voted should

be correct in two of the three subsystems. The correct values will probably be com-

mitted.

Unlike the other groups, there is only one type of Project Leader. This member

knows all the rules of the game and he/she uni�es the three subsystems. He/she

collaborates in the community accepting or rejecting the committed values and de-

ciding if they are suitable for the �nal solution or not.

In Figure 3.2 we can see an example of how the agents work di�erentially on a

Sudoku Grid.

Figure 3.2: Example where di�erent Agents work in the same Sudoku. Black lines represent

the contributors, red lines the testers, green lines de bug reporters and brown lines the

leader

3. The Collectives Games Approach 18

3.2.3 Simulating an OSS Communities with the Sudoku Game

To simulate an OSS community on a Sudoku game the features of the community

has to change to adapt to the possibilities the game o�ers. Thus, we have modi�ed

the most important characteristics of the communities.

Contributions. Whenever a member of the community makes a contribution, there

will be a possible number added in any position of the grid. This number might not

be correct, for this reason, other members will analyse it and decide if it has to be

accepted or if it is a bug.

Bugs. When an agent or user detects a number which might not be correct in

the position it has been contributed, it will be said that a bug has been detected.

Once reported, the position in the grid will be free again to be �lled with another

number by another member.

Testing. A value is been tested correctly when a member of the community asks for

committing it. It would mean the value has been tested by a di�erent member and

he/she has estimated that the value is correct in that position, although the number

could still be incorrect.

Committing. When a value is asked for committing there is a voting session with

all the committers members who decide if a concrete number is committed or not.

As the agent committers only know about one of the subsystems of the game, they

could vote incorrectly. When a value is committed, it means than it will be pre-

sented to the project leader to know if it is �nally accepted or not in the �nal solution.

Accepting or Rejecting committed Values. The project leader is the only member

that can do this work. He/she/it knows all the rules of the game and, for this reason,

he/she/it can estimate if a value is correct or not in a certain position. Knowing

this, this member will accept or reject the possible values in the �nal.

As every member of the community has the same information about the game,

all of them have to have access to the grid in any moment in order to check the

current value and state of a determined cell. For this reason it is very important

that the grid remain the same for all the members and that every cell has only one

determined static value and state at each moment.

In this manner, at the beginning of the game the grid presents only cells with the

3. The Collectives Games Approach 19

states Waiting Value or Initialized by Server. Then, an agent or a user can connect

to the server which assigns him/her a unique ID. In this way, all the members are

di�erentiated and it is always known who participate in each part. Once a member

receive his/her ID, he/she can start to collaborate in the community.

The simulation begins when a member contributes to the �rst value to the grid.

Then, the rest of the members starts to work over the contributions made, checking

if the values are bugs or correct and communicating the resolutions with the server

which broadcast a response to the other members. When a member asks for a voting

session, the game is stopped for the agents not to alter the result of the voting. Each

voting session lasts between 10 and 15 seconds and it is not necessary that all the

committer members participate on it. The cell states we could �nd at this moment

are Contributed, Bug Reported, Committed and the ones commented above. All of

them are di�erentiated by the users or the agents that have changed the state. Once

there are committed values, the Project Leader starts to accept or reject them and

the simulation is completed, adding the cell state values Accepted and Rejected.

Figure 3.3: Example of a early-mid game situation

The early-mid game is quite fast, with many contributions and bugs reported. In

Figure 3.3 we can see an example of a half-developed game. Later, there are more

3. The Collectives Games Approach 20

voting sessions, so the game is stopped frequently. In the last game, the situation

is even slower, most of the cells are accepted values and in the free cells most of

the values are not valid, so there are many contributions that are reported quickly.

When there are only a few free cells, it is possible to get a deadlock situation. To

solve this, the project leader rejects some accepted values in the most problematic

positions. Thus, the contributors have more options to add new values and to solve

the situation. The game �nishes when all the state cells are Initialized by Server or

Accepted.

21

4. MUDOKU PLATFORM

The tool we have developed is based on another software created at the Izmir Uni-

versity of Economics, Turkey. Mudoku is a server-client model software that permits

to solve a Sudoku problem through the collaboration of a group of people. For this,

di�erent users can connect to the server and try to solve a 16x16 Sudoku problem.

In this chapter, this tool will be analysed, focusing in the parts that have been

more important in the development of our own tool.

4.1 Overview of the Tool

Figure 4.1: UML Diagram of Mudoku

The tool was developed using the JavaTM programming language with the soft-

ware development environment Eclipse. The user interface has been created using

Java Applets. This is an applet delivered to users in the form of Java bytecode. This

is very interesting, because it can be easily added in a website and it can be run

by the Java Virtual Machine in a separate process from the web browser, increasing

the speed of execution. In this way, there are two di�erent frameworks or applets

4. Mudoku Platform 22

de�ned in the tool, one for the server and the other for the clients. In Figure 4.1 we

can see the UML diagram of the tool.

Mudoku uses an external OS library called CHOCO [22]. This is a Java library

for constraint satisfaction problems and constraint programming built on a event-

based propagation mechanism with backtrackable structures. Thus, in the tool are

de�ned the constraints the library is applying to the Sudoku problem. This fact en-

sures that all the values added in the grid are always correct and it enforces all the

rules of the game in each situation. There are two di�erent ways of playing the game:

Single Player. In this mode, only one user is able to try to solve the Sudoku.

The server must be running in the same computer than the one the user is playing

on and there are not voting sessions or any collaborative facts.

Collaborative Manner. To play in this way the server could be running anywhere,

even in people's own computer, and the clients have to know the IP and the applica-

tion port of the host where the server is being executed. Once the server is launched,

it will initialize a random game and it will wait for the clients. The interface is very

simple, it only counts with a console line where all the actions produced are shown.

An example of that is visible in Figure 4.2. When a client applet is launched the

Figure 4.2: Example of the console of Mudoku's Server Framework.

�rst step a user have to do is choose the IP and the port of the server. In Figure 4.3

we can see how this is chosen with the default case, when the server is running in

the own computer. When there are one or more users connected, each one of them

with their own applet, they can start to add numbers to the grid. To do this, the

users can select any empty cell and below the grid will appear the possible values

to add, without possibility of error. We �nd three di�erent colors for the numbers

4. Mudoku Platform 23

Figure 4.3: Framework to connect a Client to the Server.

in the grid: black for the values initialized by the server, blue for the values added

by the own user and green for the ones added by other users. An example of this is

shown in Figure 4.4.

Figure 4.4: Example of a grid where an user will add a new value.

When an user detects that a value could be incorrect it can start a voting to decide

if that value should be removed from the grid. In this case, the user can select

the con�ictive value and below the grid will appear a new button to start a voting

session. An user can ask to remove any value of the grid, even if this one has been

instantiated by the server. An example of this can be seen in Figure 4.5.

4. Mudoku Platform 24

Figure 4.5: Button Clear to start a Voting session.

During the 15 seconds voting time all the users can vote to remove or keep the value

with two buttons that will appear in the right-top corner. During a vote, it is not

possible to ask to clean other values. An example of this is shown in Figure 4.6.

Figure 4.6: Buttons to vote if keep or remove a value.

The game continues until there are no more possible values to add, then the game

is �nished and correctly played. Then, if the players want to play a new game the

server must be restarted and the users reconnected.

4. Mudoku Platform 25

4.2 Technical Details

As the tool is programmed with an object-oriented language, it is composed by

classes related in di�erent ways and �lled by methods. The main class of the tool

is GameController. This class de�nes the common properties of the two di�erent

applets who are an inheritance of this one. But it also de�nes constants like the

dimensions of the applets, the size of the Sudoku and the colors of the grid and

initializes the game using the CHOCO library, when the server requires it.

This class additionally controls if all values added in the grid are correct (SudokuCP-

Controller class): This is done by the de�nition of constraints using the CHOCO

library. The process consists in the creation of a model and adds all the necessary

properties that represent the rules of the game. In this manner, every time an empty

cell is selected, it is checked which values can �ll this position and only this numbers

will appear for the users.

Besides, it controls all the mouse actions (SudokuMouseController class): This class

has been implemented using the methods of the JavaTM Platform. This class per-

mits to know where the mouse is pointing at every each moment and it also allows to

add a Java Listener every time there is a click. In this way, every time a user clicks

on a cell, a di�erent action will be produced depending on the listeners associated.

Finally, it also controls the values in the grid (CellVariable class): Mudoku does

not use di�erent states to control in which situation is a determinate cell. As is

not possible to add wrong values, all the numbers in the grid are correct. Because

of this, all the cells not initialized will have the value -1 and the others a value

between 1 and 16. However, in the user's applet, a matrix is used to know if a cell

is initialized by the server, if it is an empty cell or if the value is added by the own

user or others. This matrix is used to choose the color of every value in the grid.

When a user connects to the server, it receives the encoded matrix and it is varying

depending on the user.

4.2.1 Server Applet

This framework is responsible to keep the communication among the users. It is

formed by the inheritance of the Class GameController and the following classes:

ServerGameController. It is the main class of the applet controlling all the ac-

tions that it could produce and the user interface. Basically, the class works waiting

for messages from the users and according to it, it responds in di�erent ways. In

4. Mudoku Platform 26

the Section 4.3 are explained the di�erent messages and how the server and clients

act to answer them. The functions of this class are:

• Initialization: To call the method to initialize a random problem and to launch

one thread of the class ServerNetworkController.

• To process and respond in a di�erent way every message received.

• To add to the console all the text for every action produced.

• To control the timer and the resolution of the voting sessions.

• To encode the state of the game every time a new user connects to the server.

ServerNetworkController. This class is implemented to be launched as a thread

whose function is to listen by the public port to the new users who want to connect

to the server. Once a user sends a message, the class adds the user's information in

an array of type ClientHandler to make possible future communications. This class

also has the following functions:

• To control when a user is disconnected to remove him/her from the array of

users.

• To simulate a broadcast message sending a private message to each user of the

array.

• To distribute the ID of the clients connected, ensuring there are not two users

with the same one.

ClientHandler. This class is an aggregation of the last one. When a client is con-

nected to the server, an instance of this class is created launching a thread of Server-

Reader for each user. This allows the server to send messages to this client by its

private socket. For this reason, the server is saving the attributes of the user like

the socket and the ID.

ServerReader. This class is implemented to be launched as a thread. Its only

function is to listen to the messages sent by only one user. In this way, we will �nd

as much threads running as users connected.

4.2.2 Client Applet

This framework permits the interaction between the user and the software. It is

formed by the inheritance of the Class GameController and the following classes:

4. Mudoku Platform 27

ClientGameController. It is the main class of the applet processing all the mes-

sage received from the server and the user interaction. Basically, the class works

waiting for the actions of the user on the grid and sending messages depending on

those actions. In the Section 4.3 are explained the di�erent messages and how the

server and client act to answer them. The functions of this class are:

• Initialization: To connect to the server by the public socket and receive the

encoded state of the game.

• To draw the grid and all the values instantiated, draw the cell where the mouse

is pointing at, the active cell, the domain of the cell if this one is empty and

all the necessary buttons depending on the situation.

• To control the timer of the user every time there is a voting session. 10 seconds:

after this time, the user has not the option to vote.

ClientNetworkController. This class is used to make the connection with the server.

For this reason, a new socket is created for each user and is launched a thread of

type ClientReader to listen to the messages from the server. This class also permits

to send message to the server by the private socket.

ClientReader. This class is implemented to be launched as a thread. Its only func-

tion is to listen to the messages sent by the server.

4.3 Message Protocol

In this tool, a new message system has been de�ned to allow the communication

between the server and the clients and vice versa. The possible situations are:

To connect a new user to the server the user should send the following message

"request#type=init".

If the connection is possible (IP and port are correct) the server will receive the

last message and it will send the encoded state of the game. First of all the type

of the message: "init#", secondly the Sudoku Size: "ss=XX#", thirdly the client

ID: "ci=X#" and �nally the state of the game: Only the values instantiated will

be encoded, not all the positions of the grid. In the following way:

"iv=positionX,positionY,currentValue,currentState&..."

The current state only di�erentiates if the value has been initialized by the server

or an user. An example of one of this message could be the following:

4. Mudoku Platform 28

init#ss=16#ci=0#iv=0,3,12,-1&0,4,2,-1&0,8,1,-1&0,9,15,-1&0,11,3,-1&...

Once the client receives this message, it can draw the grid with the values and the

game can start.

To contribute with a new value any member selects an empty cell and then one

of the possible values below the grid. The client will send a message like this:

"instantiate#positionX,positionY,value"

The server will receive the message and will try to add the value in the model with

the constraints for the Sudoku game. Then, two situations can be produced:

• The value is accepted: If the value is correct the server will send the next

message to all the users: "instantiate#positionX,positionY,value,state". The

user who instantiated the value will add it as his/her own value while the other

users will add it as a value added by another user.

• The value is rejected: Theoretically, this situation never happens. But just in

case, the next message is sent to the user who tried to instantiated the value:

"instantiate_failed".

To try to clean a position when an user detects a con�ictive value and push the

"clear" button the next message will be sent to the server:

"clear#positionX,positionY".

Then the server will process it in the following way:

• If there is a voting active: The following message will be sent to the user who

asked to clean the position "rejected#clear=voting_exists".

• If there is not: The voting will be accepted and the next message will be sent

to all the users: "vote#clear="positionX,positionY,clientID". The ID is of the

client who asks to clean the position. Then the timer is set and when the users

receive the message, all of them have the option to vote for that position. So

the buttons will appear and depending on the button pushed, they will send

the following message:

� Remove the value: "voted#positionX,positionY,1"

� Keep the value: "voted#positionX,positionY,0"

The server will receive all the votes and will act in the next way:

4. Mudoku Platform 29

� If the �nal counting is higher than 0: All the users will receive the message

"clear#positionX,positionY". And the value will be removed from all the

grids.

� If the �nal counting is not positive the server will not send any mes-

sage and when the timers of the users will be �nished, always before the

server's timer, the value will remain there.

30

5. MUDOKU OSS COMMUNITY PLATFORM

The platform we have developed is using the same model than the last one, but the

aim from the beginning is quite di�erent. Now, what we are trying to do is simulate

an OSC in the way it has been explained in Section 3.2.3. This can be done in the

tool through three types of communities:

Agent Community.In this mode, the role of the real user is only to observe the

behaviour of the agents and how the di�erent roles interact among them to solve

the problem.

Human Community. It is possible to create a community only with real users.

In this mode, di�erent users will have di�erent roles with the options of every role

and they will collaborate to solve the problem.

Mixed Community. How the tool is designed in the server-client model, we can

have di�erent types of clients. In this way, it is possible to connect human clients

and agent clients creating a mixed community who will collaborate in the same lev-

els to solve the problem. In Figure 5.1 we can see how this community is composed.

Figure 5.1: Composition of a Mixed Community in the platform.

In this chapter are explained all the details of the work we have implemented. For

this reason it will be the longest chapter of the thesis, trying not to miss any char-

acteristic. As in the last chapter, �rst is written the features of the tool on how it

looks like and then can be found technical details to go deeper in the operation of

the tool.

5. Mudoku OSS Community Platform 31

5.1 Overview of the Tool

Figure 5.2: UML Diagram of the new platform.

To develop this tool, we have reused some of the code of the previous one. The

programming language is still being JAVATM and it has been developed with Eclipse

using GitHub as version repository. In Figure 5.2 there is the UML Diagram of the

platform. The tool has been implemented using the pattern of the previous tool,

but with some main di�erences to adapt it to the simulation.

The �rst big di�erence is that the platform is composed of three di�erent Applets,

one for the server, one for launch agents and the last one for the users:

• Several changes on the Server Applet to adapt it to di�erent types of clients.

• The Agents Applet permits to add agents to the community creating a random

community or adding a selected type of agents.

• The Users Applet allows the users to join the community in di�erent roles.

This has been thought with a game perspective when the users are surpassing

levels until they reach the Project Leader role.

Also, the CHOCO library is not used. The members of the communities commit

mistakes. To simulate this part, it is necessary to permit the users to add wrong

5. Mudoku OSS Community Platform 32

values to the grid that will be corrected by other members later. For this reason,

this library can not be used. Thus, both the initialization of a new game and the

control of correct values had to be redesigned.

The grid has been redesigned. As there are di�erent states for each cell and the

members could belong to the di�erent subsystems, the colors of the cells had to be

changed. In this way, every cell is composed of a background color, foreground color

in a circle and the current value of the cell in white. The background will indicate

the type of agent who has changed the last state of the cell (row, square or user) and

the foreground will show the current state of the cell. In Figure 5.3 and Figure 5.4

can be seen the colors chosen for every state or member.

Figure 5.3: Possible State colors for each cell.

Figure 5.4: Possible member colors for each cell.

Finally, the following features have been added to the grid:

• When a cell is selected, the borders will change to green and the background

of the scope cells will change from white to beige.

• Below and on the right, there are the numbers of the cell to make easier for the

user to follow the game. When a cell is selected, the corresponding numbers

of these lists will change to violet.

• Every time there is a voting session, the cell selected will change to this voting

cell, to make easier for the user to follow the game.

• When the mouse is pointing at the grid the concrete cell will be in blue.

The aim of the server applet is to keep the communication among the clients. Note

that the word "client" refers to the di�erent types of applets connected to this one,

5. Mudoku OSS Community Platform 33

so a client could be both an Agent Applet and a User Applet. In this way, there

should be an only server running where many of the other clients can be connected.

A server will represent a community alive, that many users or agents can join.

It has been de�ned two modes or two interfaces that can be switched at any moment

pushing the button on the top-right corner of the applet:

Text Mode. The interface is very similar to the previous tool. The applet con-

sists in a console where all the actions are registered. In Figure 5.5 we can see how

this mode looks like. Graphical Mode. This is the default mode and the interface

Figure 5.5: Example of the Server Text Mode.

is rather di�erent. The objective is to observe the behaviour of the members of the

community in an intuitive way. As we can see in Figure 5.6 the applet is divided in

four di�erent parts:

On the top of the applet there is the histogram of present roles in the commu-

nity. This histogram represents all the members connected to the community and

which type they are. The di�erent roles are: Passive Users, Contributors, Bug Re-

porters, Testers, Committers and Project Leaders. Every member is represented

with a square �lled with the color of the subsystem he/she/it belongs, in the case of

the agents, and the ID in the middle. The possible colors of the squares are: Blue

for the Rows Agents, Green for the Column Agents, Light Brown for the Square

Agents and Salmon for the users that do not belong to any subsystem. Notice that

these colors are getting darker in the di�erent roles.

In this part we also �nd the total of members connected and the button to change

the mode.

In the mid-left section of the applet there are 8 boxes with di�erent statistics about

the game. The �rst one is called Correct Values. Its role is to show the number

5. Mudoku OSS Community Platform 34

Figure 5.6: Example of the Server Text Mode.

of values that are correct, values initialized by the server and values accepted by

the project leaders. The second one Contributions indicates the total amount of

contributions produced in the game by the contributors. Bugs Reported indicates

the total amount of bugs reported in the game by the bugs reporters. As for Voting

Sessions it indicates the amount of voting sessions produced in the game. Values

Committed indicates how many values have been committed after a voting session

and Values Not Committed indicates how many values have been not committed

after a voting session. The last two are Values Accepted that indicates the number

of values accepted by the Project Leader and Values Rejected that indicates the

number of values rejected by the Project Leader.

In the mid-right part of the applet there is a big box where are shown the last

seven actions produced in the game. Depending on the action could appear the

square (color + ID) that represents the member that has produced the action, the

position of the grid where the action has been produced and the value. The di�er-

ent actions that could appear here are: Game Initialized, Value Contributed, Value

Reported, Value correctly tested and start of a voting session, Ending of a voting

5. Mudoku OSS Community Platform 35

session and its result, Value Accepted or Value Rejected.

In the bottom of the applet there is a box where all the committers are represented.

The box is divided depending on the subsystem the committers belong. Thus it is

possible to follow the result of the voting in the moment the votes are received by

the server. In this way, when the small square below a member is in green it means

that this member has voted to commit the value voted, when is in red the member

voted to remove the value. When there is a voting session, the borders of this box

change the color to attract the attention of the user. When there is not a vote, the

small squares below each member are in white.

The Agent Applet has been created to launch/disconnect agents who will join the

community. It is possible to connect many of this type of clients and from each of

them launch agents, but every agent launched will ask to join the community sepa-

rately. In this way, every agent will have an own ID and it can be treated separately.

The user must know the IP and the port where the server is running to be able to

connect. In Figure 5.7 can be seen how the presentation page of the applet looks

like, with the parameters to connect to a server locally.

Figure 5.7: Presentation page of the agent's Framework.

Once the server has accepted the connection, the framework page changes to the

main page of the applet which looks like Figure 5.8. In this page, there are all the

available options to control the agents. In the �rst steps of the software, it was pos-

sible to stop and resume the agents, but this feature was �nally removed because the

methods used were deprecated and they could have caused some deadlock problems.

In the last versions, the available options are launch agents, disconnect agents and

5. Mudoku OSS Community Platform 36

observe their behaviour.

Figure 5.8: Example of a new game in the Agent Framework

In the Applet, the following parts are di�erentiated:

Grid. The major part of the framework is for the grid. In this applet, the grid

only has an observable function. It means that the user can see what is happening

in the grid, but never interacts. The grid has all the features explained at the be-

ginning of the chapter.

Launch Agents Box. On the bottom of the applet there are the two di�erent options

to launch agents:

• Selecting type: The �rst alternative allows the user to select the type of the

agent that will be launched and the number of them. In this way, for example

the user, could launch six row contributor or three square committers agents.

• Launch a random community: This option permits to select the number of

5. Mudoku OSS Community Platform 37

agents that will join the community, with a minimum number of �fteen. The

percentage of each role is the following:

� 45% of Contributors with at least one in every subsystem.

� 15% of Bug Reporters with at least one in every subsystem.

� 15% of Testers with at least one in every subsystem.

� 20% of Committers with at least one in every subsystem.

� 5% of Project Leaders.

List of Agents. In the top-right corner, there is the list of the agents launched by

the concrete applet. Every agent is written with the ID and the type of agent is it,

for Example Agent [3]: Tester by Rows. From this list, the user can select any agent

and remove it from the community.

Game Information and Legend. The rest of the grid, in the bottom-right corner, is

composed of di�erent information box and a legend with the di�erent colors that ap-

pear on the grid. The information box are the following: Values Contributed by the

agents of the applet, Values Committed by the agents of the applet, Values Reported

by the agents of the applet and Voting Box, that is every time there is a voting active

the square is �lled in violet. It is thought to tell the users there is a voting session

active. We can also found Cell Information that is when the user selects a cell of the

grid in this box appears all the information of this cell, concretely the position (x

and y values), the current value and the state. The last two information are Correct

Values that indicates the amount of values that are correct in the grid and Legend

that are the explanations of the di�erent colors that appears on the grid.

The User Applet framework is thought with a game perspective. It means the user

will join the community in the lowest possible role and he/she will have to get some

points to increase his/her weight in the community until he/she reaches the project

leader role. The �nal aim is to teach the users how an OSC works and how it is or-

ganized through the motivation of surpassing di�erent levels. The presentation page

of the tool looks like Figure 5.9. In this page, the user has to choose the connection

settings and the game settings:

• Connection Settings: As in the previous Applets, the client needs the IP and

the port of the server, but also it is possible to choose a username for the

game.

• Game Settings: It is possible to choose how complicated will be the game

choosing the number of points that the user will have to get to pass each level.

5. Mudoku OSS Community Platform 38

Figure 5.9: Presentation page of user's Framework.

Once the client is connected, the user will have a passive user role which looks like

Figure 5.10. All the levels of the game will have common features in the framework

and only in the top-right corner there is the part that will change with every level.

In the following list can be seen the common ones:

Figure 5.10: Example of Passive User Role.

5. Mudoku OSS Community Platform 39

As in the previous applet, the grid will be present in the major part of the frame-

work. In the bottom-left corner there are a small console in order to know easier the

last movements in the grid and to inform the user about some facts related to the

game. Besides, there are three di�erent boxes that are also in the agent's applet.

The �rst one is to know if there is a voting active, the information cell box is to

know the details of a cell selected and the last box is a legend to understand the

di�erent colors of the grid.

The applet is divided in di�erent roles or levels of the community. In this way,

depending on the behaviour of the player, the user will be asked to get promoted to

the next role or to be displaced to the previous one. In the following list, there are

the levels of the games and the explanation of what to do in each:

Passive Role. As we have commented above, only this level has an observable

function, but in any moment, the user can ask to join the community pushing the

right button. Once the button is pushed, the right-top corner looks like in Fig-

ure 5.11. On the top there is the box that informs about the current level, under

there are di�erent buttons in order to switch levels once unlocked (not visible yet

in the �gure) ; the next box informs the user about the current score in the level

and some information about the role. To join a real community, the person has to

show his/her skills about the topic. Then, he/she could be accepted. To simulate

this part, the user will have to answer correctly a determined number of questions

about the simulation of an OSC with Sudoku.

On all levels, when the score is the minimum to be able to get the next level, a

button will appear below the information box of the role. In this way, the user can

still play in the same level or move to the next one. If the behaviour of the player

is not good for the community, if the answers are wrong, the user will be moved to

the previous level. In this case, he/she would be moved to the presentation page.

Contributor Role. Once the user has answered correctly the questions and pushed

the promotion button he/she will be moved to the contributor level. In this level,

the user adds values to the grid. The top-right corner looks like in Figure 5.12. In

the �gure, there are the same common parts than in the previous level changing

in the mid zone. Here there are the di�erent numbers that can be added to the

grid. The user has to select an empty/reported/not committed/rejected cell and

then choose a value to add it to the grid. The user will receive a point every time

one of the values added is committed. If the value is not committed, the user will

5. Mudoku OSS Community Platform 40

Figure 5.11: Example of question to join the community.

have -1 point and he/she could be moved to the passive role.

Figure 5.12: Option of the contributor Role.

Bug Reporter Role. In this level the user reports the values that are considered

wrong. The top right-corner of the applet looks like Figure 5.13. To do this, the

user selects any cell of the grid and push the button. If the value selected is not

a contribution, the user will be informed that this value can not be reported. The

player will receive 1 point if the value was incorrect and -1 if it was correct.

5. Mudoku OSS Community Platform 41

Figure 5.13: Options of the Bug Reporters Role.

Tester Role. In this level the user selects contributed values and then push the

button to ask to commit them. All the values selected will create a voting session

and the committers will vote to keep or remove the value. The top right-corner

of the applet looks like Figure 5.14. The user receives 1 point when the value is

committed and -1 when the value asked is not committed.

Figure 5.14: Options of the Tester Role.

5. Mudoku OSS Community Platform 42

Committer Role. In this level, the user takes part in the voting sessions to commit or

not to commit values. Every time there is a voting session, two buttons will appear

and the user can choose one of them to make a vote. The top right-corner of the

applet looks like Figure 5.15. The user receives 1 point when his/her vote helps to

win the voting and -1 in the contrary case.

Figure 5.15: Options of the Committer Role.

Project Leader Role. It is the last possible role. In this level, the player selects

the values that have been committed and choose if they are accepted or rejected.

The top right-corner of the applet looks like Figure 5.16. In this role the user can not

be promoted, but he/she can be moved to the committer role if the values accepted

are wrong or if the values rejected are correct. Later, another project leader will

take care of the wrong values. The game does not �nish here though, the main aim

is, when all the levels have been reached, to �nish the Sudoku problem.

5. Mudoku OSS Community Platform 43

Figure 5.16: Options of the Project Leader Role.

5.2 Technical Details

As in the previous chapter, in this section, all the features of the tool are explained

deeper. The main class of the tool is still being GameController, but it has some

di�erences with the previous tool:

The class de�nes all the constants needed in the applets: cell states, game states,

last actions states, sizes of the applets, colors of the applets, etc. It initializes the

game by new functions that check value per value if it is correct.

Every cell of the grid is an instantiation of the class CellVariable. In this way,

it is possible to control easily the state and the current value from the applets. The

possible states of a cell are the following: Cell waiting for a Value, Value initialized

by the Server, Value contributed by Rows, Columns, Squares or User, Value reported

by Rows, Columns, Squares or User, Value committed by Rows, Columns, Squares

or User, Value not Committed, Value accepted by Agent or User or Value rejected

by Agent or User.

As in the previous tool, the main aim of the Server Applet is to keep the com-

munication among the users while it is also running waiting for new connections.

Most changes are given by the necessity to interact with di�erent clients. In this

way, all the messages expected are di�erentiated if they come from an agent's applet

or user's applet. Besides, there are many changes in the interface as the graphical

mode adds complexity to the applet. Because of this, it is necessary to save all the

5. Mudoku OSS Community Platform 44

actions produced in the game. A �le is stored with a log of the statistics of the whole

game when the problem is solved. The classes present in the applet are the following:

ServerGameController. It is the main class of the applet processing all the mes-

sages received from the users and giving them an answer. It has the same functions

than the previous tool, but also it calls the method to initialize the game (Game-

Controller) and put the graphic mode as default. It saves all the actions produced

by the users in order to show them in both modes. It also saves statistics about the

game and lists all the member connected as well as control their IDs not to do have

two members with the same one.

The most important part of the server is to know how to react in front of the

input messages. For this reason, in all of them it is controlled if they are sent by the

correct type of member and if the state of the cell is correct for that message. Also,

in the server there is the original grid of the game. All the clients have they own

grid, but the original one is on the server. It is very important that all the clients

receive the same information and at the same time.

ServerNetworkController. This class is very similar to the one in the previous tool.

It is implemented to be launched as a thread whose function is to listen by the

public port to the new users who want to connect to the server. Then, it creates

an instance of the class ClientHandler to save all the information to reply to each

client. The only new feature is this class controls the members of the community.

Every time a member wants to join the community he/she has to send a connect

message which is processed by this class. This is well explained in Section 5.3.

ClientHandler. This class is an aggregation of the last one. When a client is con-

nected, an instance of this class is created by ServerNetworkController class and a

thread of type ServerReader is launched, enabling the server to send messages to

the concrete client by its private socket. For this reason, it has saved the attributes

of the client as the socket and the ID.

ServerReader. This class is implemented to be launched as a thread. Its only

function is to listen to the messages sent by one user only. In this way, we will �nd

as much threads running as users connected.

The aim of the Agent Applet is to launch and disconnect di�erent types of agent. In

this way, the applet works as a client who connects to the server and then multiple

agents, running in threads of the applet, ask to join the community in the server. It

5. Mudoku OSS Community Platform 45

is one client which simulates to be multiple members. The classes of the applet are

the following:

AgentGameController. It is the main class of the applet processing the actions

produced by the users, connect agents, and the messages received from the server.

The principal functions are:

• Show the grid with all the di�erent states and values.

• Save the statistics of the agents of the own applet.

• Permit to connect and disconnect agents at any moment.

When the applet is closed, this class informs the server that the agents are discon-

nected. This way, there are not dead members in the community.

AgentNetworkController. This class is responsible for the connection of the client

and the agents. Besides, it permits to send messages to the server and it launches

the thread of type AgentReader to receive messages for all the agents launched.

When an agent is launched, it calls the method from the class Agent which will

launch the threads.

AgentReader. This class is implemented to be launched as a thread. Its only func-

tion is to listen to the messages sent the server.

Agent. This class launches the threads of all the agents which will join the commu-

nity and it also implements the methods that simulates the behaviour of the roles

of the community. All the information about each type of agent (contributor, bug

reporter, tester, committer and project leader) launched is saved with an instance

of the class ThreadsInformation. With this class, it is easy to stop, pause and re-

sume every agent separately, but, in this tool, only stop agents is a feature available.

The methods that implements the behaviour of the agents are included in this class

because all of them must be executed by only one agent of the applet at the same

time. Otherwise, it would be not possible for the agents to know the correct values

on the grid, and there could be contributions over others contributions or many

mistakes at the end of the game. For this reason, Java Monitors are used, every

method is static and synchronized. This means that all the agents are waiting in a

queue for one agent to �nish the method and when it �nishes another one will start

to run it. Also, all the agents are stopped when there is a voting session active.

This is done so that when a committer agent is checking the grid to vote to keep or

5. Mudoku OSS Community Platform 46

remove a value, there will have not be interferences. If there were agents running,

it would add randomness to the game. But, there is already randomness added in

the behaviour of the agents, so there is no necessity to add it also at this point. The

methods that implement the behaviour of the agents are:

Contributors Agents. The behaviour is implemented with the Method SetValue

which aim is to add values to the grid. The method di�erentiates the subsystem

of the agent: Row, Columns and Squares, so every type of agent will work only in

its scope. There are three steps to add a value to the grid. First, the agents check

the scope depending on the subsystem the agent is working in. For example, a row

agent creates a list of lists ordered by rows. Secondly, the agents choose randomly

an empty position and random value in the scope's possibilities. Finally, they send

a message to the server trying to add the value on this position.

Bug Reporter Agents. The method is called CheckBugs and it also works depending

on the type of the agent. Every time an agent wants to report a bug, it has to check

the scope of the subsystem the agent belongs to. For example, a row agent creates a

option list with all the values contributed by Columns, Square and User members.

Then, it has to choose randomly one of that options and its position. Once it is

done, it has to checks if the value is correct for the scope of the agent. For example,

a row agent will check if the value added by a columns agent is correct per rows. At

last, if the value is incorrect the agent sends a message to the server reporting the

bug.

Tester Agents. The method is called TestValues and it also works depending on

the type of the agent. The behaviour is exactly the same as a Bug Reporter but

looking for correct values instead of wrong values.

Committer Agents. The method is called VoteCon�ict and it also works depending

on the type of the agent. To emit a vote, an agent has to check the scope of the

agent for that position. Then, it has to check if the value voted is correct for the

scope of this type of agent. For example, a row committer only will check if the

value is correct by rows. If the value is correct then there are a 80% of possibilities

than the vote is to keep the value and a 20% to remove it. If the value is incorrect

it is the contrary. Besides, there are a 10% of possibilities than the agent does not

produce any vote.

Project Leader Agent. This kind of agent will have implemented two di�erent meth-

ods:

5. Mudoku OSS Community Platform 47

• Normal Behaviour: To check the committed values if they are correct or not.

If a value is correct, it is accepted for the �nal solution ; if it is not, it is

rejected.

• End-game Behaviour: Sometimes, at the end of the game, it is possible to end

up with a deadlock situation. This could happen when there are less than 20

empty positions but all the values added are wrong. In this situations, the

project leader will check these con�ictive positions and will clean a position to

try to redirect the game to a correct solution and go through the deadlock.

The morphology of the Users Applet is very similar than the client in the previous

tool. To apply the game of roles only the class ClientGameController was modi�ed.

In this platform, this class is divided in di�erent states. Depending on the level, the

applet will o�er to the users di�erent features related with the characteristics of an

OSS community. The di�erent levels are:

The Pre-game refers to the presentation page with the game and connection settings.

Passive User. The only option the user has is to ask to join the community. Once

the button has been pushed, there are stored 10 di�erent questions about a random

position of the grid. An example of these questions could be is the cell [3][14] a

value Initialized by Server? or is the value [6][2] a value Accepted?. When the user

reaches the minimal points, then a new button appears to move to the next level.

Contributor. In this level, the user has the option to add numbers from 1 to 16

the grid. To implement this part, it is controlled where the mouse is pointing at. It

is possible to know which number has been selected depending on the coordinates

the mouse is pointing at when the user clicks the right button of the mouse. Then,

the active cell is checked and if it is an empty position, a bug reported, a value not

committed or a value rejected, the instantiation is sent to the server.

The user will be asked to get to the next level when a concrete number of his/her

contributions are committed. To develop this, there is a list where all the contribu-

tions of the user are stored and when a value is committed, it is checked if the user

is in the list. If he/she is, the user will have one point. However, it is also checked

whenever there is a value not committed, in this case, the user will receive -1 point.

Bug Reporter. In this level, the user has the option to report values. The im-

plementation is done checking the active cell. If it is a contributed value, a button

will appear to report it. In the moment to report it, it is checked if the value was

5. Mudoku OSS Community Platform 48

correct or not to give the user +1 or -1 point.

Tester. It is very similar than in the last case. When the active selects a con-

tributed value a button will appear to ask to commit the value. This is saved in a

list, as in the contribution case, and if the value is committed, the user will receive

1 point (-1 otherwise).

Committer. When there is a voting session, two buttons will appear to keep or

to remove a value and the buttons will disappear when the voting is �nished or a

vote had been sent. Each vote sent is stored and if the user voted the same than

the result of the voting, then he/she will receive 1 point, (-1 otherwise).

Project Leader. When the user selects a committed value, buttons will appear to

accept or reject the value. All the actions are checked and if there is any incorrect

value accepted or any correct value rejected, the user will receive -1 point.

In all the levels, if the user has less than -2 points, he/she is moved back to the

previous level, losing weight in the community. Besides, the points, in every state,

are stored during the whole game, but if the users is moved to a previous level, the

counting of that level is reset.

The classes ClientGameController and ClientReader are exactly the same than in

the Mudoku platform.

5.3 Message Protocol

The message protocol had to be redesigned because of the implementation of di�er-

ent clients, but also there are many more new types of messages because of the new

features added. In order to di�erentiate if a message is coming from an agent or an

user, each message includes the type of the member. This way, the server will know

quickly how to process the message. The member types are the same commented

during the thesis (contributor by rows, tester by user, etc.

As in the previous tool, the �rst step is to receive the state of the game. This

is done exactly as in the previous tool, encoding all the positions of the grid that

has a state di�erent of "waiting a Value".

To connect a new member to the community, it is necessary to send a message

to the server to get an ID. This way, the message is di�erent if it comes from an

agent or a user:

5. Mudoku OSS Community Platform 49

• Agent: "connect#typeAgent".

• User: "connect#typeUser,userName". Where the username is used to inform

about all the actions the user will produce. For example in the console: The

user Johnny contributed to the value 6 at the position [5][14].

When the server receives this message, it will assign an ID for the new member

and will respond with the message: "memberConnected#ID,memberType" and the

member cam join the community.

To disconnect a member from the community, the message is "disconnect#ID,memberType".

To add a new value to the grid, the semantic of the previous tool is used. The

message is:

"instantiate#memberID,memberType,positionX,positionY,value".

As the message is only to inform the rest of the client the server will not process

anything, it will just reply all the clients with the message:

"instantiated#positionX,positionY,value,contributedState".

where "contributed state" can be contributed by Rows, by Columns, by Squares or

by User.

This message and the following ones have been implemented trying to follow the

same structure than the last one. To report a bug:

"bugReported#memberID,memberType,positionX,positionY".

The server will clean the concrete position in the grid and will answer with the mes-

sage: "bugFound#positionX,positionY,reportedState" where the "reported state"

can be bug reported by Rows, by Columns, by Squares or by User.

When a tester �nds a value to be committed the following message will be send:

"clear#memberID,memberType,positionX,positionY".

Then, if there is not any voting active, the server will start the voting timer and

it will send to all the clients: "vote#clear=positionX,positionY,testedState". where

the "tested state" if the type of the agent which asked to commit the value: tested

by Rows, by Columns, by Squares or by User.

When the committers have chosen what to vote in a voting session, they will send

a message like the next one:

5. Mudoku OSS Community Platform 50

"voted#memberID,memberType,positionX,positionY,vote".

The vote can be 1 or -1 depending if the member is voting to keep or to remove the

value. Once the voting is over, the server can send these two possible messages:

• If the value is committed: "committed#positionX,positionY,votedState".

• If the value is not committed: "notCommitted#positionX,positionY,votedState".

where the "votedState" is the agent which asks to commit the value, as in the pre-

vious message.

To accept a new value in the grid, the message looks like the following one:

"accept#memberID,memberType,positionX,positionY".

The server will reply the clients with the message:

"accepted#positionX,positionY,acceptedState".

where "accepted state" can be accepted by agent or by user.

To reject a value is very similar than the last case:

"reject#memberID,memberType,positionX,positionY".

The server will reply the clients with the message:

"rejected#positionX,positionY,rejectedState".

where "accepted state" can be rejected by agent or by user.

A user can be moved from one level to another in the situation when he/she reaches

the next level or when he/she is moved back to the previous one. The message is

the next one:

"getPromotion#memberID,memberType,newMemberType".

In this case the server will not send any message back.

51

6. DISCUSSION

During this thesis, it has been demonstrated that it is possible to simulate a com-

plex system as an OSS community with collaborative games. The platform we have

developed is one of the �rst simulations of an OSS community created and the most

complete nowadays. It is able to teach how a community works and how the di�er-

ent roles work in a community.

The simulation of a complex system as an OSS community is a di�cult exer-

cise. However, when all the agents simulated are launched, our simulation runs

well enough. All the roles are well synchronized and the community, either of agents

or mixed, are able to reach a good solution for the Sudoku problem in a determined

time.

In addition, it has been demonstrated that collaborative games combined with se-

rious games are a good way to solve complex problems. In this case, a community

is solving a Sudoku problem inadvertently. Each role is working in its scope doing

a small job and it is through the synchronization of these roles that, at the end, we

obtain a good solution. The Sudoku game is suitable for this simulation because it

permits to divide the problem even in smaller parts with the di�erent subsystems. In

this manner, the implementation of the behaviour of each agent is not complicated

and they run very fast in any machine. Even the real users have to do a small job,

as selecting a number in a row or voting if a value is correct in a determined position.

Nevertheless, the limitations to apply to the simulation on a Sudoku game must

be taken into account. First of all, it should be delivered with a document ex-

plaining how to use the platform and how each feature simulated is represented.

Otherwise, it could be complicated for users that are not familiar and do not know

about OS and OSS Communities. Also, we did not implement any forums or discus-

sions mails, all the decisions made are based on the information every member has.

As it is one of the main feature of an OSS community, it would have been better to

develop it. Moreover, in the case the agents do not acknowledge meritocracy, the

agents are launched with a determined role and it never changes. In a real com-

munity, the users are regularly changing roles. Besides, the main properties of an

6. Discussion 52

OSS community have been adapted to the characteristics of the game, however, the

simulated parts are limited by the intrinsic possibilities of the game.

The platform could better simulate an OSS community implementing more at-

tributes. For example, we could add agents with di�erent roles. The idea would

be to allow the agents to be for example contributor and tester at the same time,

as it happens in the real communities. One user could have more than a role, so

it could be implemented. We could also add agents changing roles. As in the real

communities, if a concrete user is working well for the community, he/she receives

more weight in the organization. It could be implemented in the way the agents who

are getting better results can be moved to positions nearer to the power. Agents

o�ine could be created. In the real communities, all the members are not work-

ing regularly. This can be implemented making that in some moment some agents

could leave the community and adding agents who want to join. This would make

the community more dynamic.

We could implement more types of making decisions systems to accept values. We

implemented a pure voting system, but it could be interesting to try to implement

di�erent types of voting, for example where one of the agents of a subsystem has

more weight in the voting, as well as some dictatorial decisions. Agents in di�erent

subsystems could be generate. It would also be interesting to create agents that

could belong to two di�erent subsystems. In this way, there would be more possi-

bilities to have good values without checking the whole grid, increasing the speed

of execution. Also, adding more clients could be an interesting option. Thanks to

the server-client model it is possible to add more clients with new features. Thanks

to this, we could create more di�erent types of applets with other goals. Finally,

we could add more role. As in the last feature, the code of the tool could be im-

plemented to permit to add new roles very easily. To do this, only a new class has

to be added with the behaviour of the new role and then it could launch as many

threads as agents of this type which will join the community.

According to all these limitations, the next step would be to analyse if this kind

of communities would work better that a single entity to solve complex problems.

Since we did not try to make tests in this directions, we could not extract any con-

clusion. But trying to solve large Sudoku problems with this kind of systems could

be very interesting.

Also, the simulation can only be done in the terms of the Sudoku game. Because of

this, what we suggest is to try to apply the simulation to another type of problem

6. Discussion 53

not related with games or with another game. Probably, the new simulations will

have limitations too, but di�erent OSS community features could be implemented.

The idea is to create a set of tools with educational purpose where most of the

features of an OSS community could be implemented.

54

7. CONCLUSIONS

The platform developed is a tool with an educational purpose. So, it should be

used to learn what is an OSS Community, how they are structured and which are

the functions of each role. To know if our tool is valid for this work, it should be

compared with other similar tools. Unfortunately, the simulations done about this

topic are too di�erent from our tool.

Consequently, as there is not any similar tool to compare it, the validation has

been done testing the platform with �fteen users, where most of them did not know

anything about OSS communities. At the end, we have collected their impressions.

Thanks to that, we knew that the work was more or less a success. Most of them

said they learnt what is an OSS community and that the tool was really useful.

However, some of them did not understand the abstraction to apply a game to a

software developing model and they suggested to write a document to explain ex-

actly what represents to add a value to the grid and why this is a contribution, for

example. As a conclusion of this test, we can say that the tool has some interesting

features and it is a useful model to teach.

The topic of this thesis can be widely expandable. Although OSS communities

are known and used for decades, there are not many studies about how each role

is working. Most of papers published are focused on the explanation of the success

of these kind of communities in front of the traditional business model. It is more

complicated to �nd an abstract analysis about a concrete community. This is why

we propose to analyse deeper if an OSS community simulation can be done in a bet-

ter way than we did or with more features added. Thanks to some modi�cations, it

could be improved in the future, to make it more complete, more user-friendly and

maybe even more interesting. These changes could be the topic of another thesis.

55

REFERENCES

[1] M. Bakardjieva (2005) Internet Society. SAGE Publications Ltd. United King-

dom 221 pages.

[2] W3 Tech. Usage of operating systems for websites. Available online at

http://w3techs.com/technologies/overview/operating_system/all/ (Last vis-

ited on February 2013).

[3] NETCRAFT LTD. The netcraft web server survey. Available online at

http://www.netcraft.com/survey/ (Last visited on February 2013).

[4] C. Abt Clark (1970) Serious Games. University Press of America. 176 pages.

[5] G. Yongquin Gao, V. Freeh. Modeling and Simulation of the Open Source Com-

munity. Agent-Directed Simulation Conference, San Diego, CA, April 2005.

[6] E. Bonabeau (2002) Agent-based modeling: Methods and techniques for simu-

lating human systems. Proceedings of the National Academy of Sciences of the

United States of America.

[7] Jose P. Zagal, Jochen Rick, Idris Hsi. (2006) Collaborative games: Lessons

learned from board games. Simulation Gaming March 2006 vol. 3 no. 1 24-407

[8] Robert L. Glass (1998) In the Beginning: Recollections of Software Pioneers.

Los Alamitos, CA: IEEE Computer Society Press. 318 pages.

[9] Sam Williams (2002) Free as in Freedom: Richard Stallman's Crusade for Free

Software. O'Reilly Media. Available under GFDL. United States. 240 pages.

[10] GNU's Bulletin, Volume 1 Number 1, page 8. (1986) Available online at

http://www.gnu.org/bulletins/bull1.txt (Last visited on February 2013).

[11] The Free Software De�nition. GNU Operating System Available online at

http://www.gnu.org/philosophy/free-sw.en.html (Last visited on February

2013).

[12] The Open Source De�nition. Open Source Initiative Available online at

http://opensource.org/docs/osd (Last visited on February 2013).

[13] Categories of Free and Non-free Software. GNU Operating System

http://www.gnu.org/philosophy/categories.en.html (Last visited on February

2013).

REFERENCES 56

[14] R. Goldman, Richard P. Gabriel (2005) Innovation Happens Elsewhere: Open

Source as Business Strategy. (p. 28) Morgan Kaufmann Publishers. 424 pages.

[15] D. Nafus, J. Leach, B. Krieger (2006). Free/Libre and Open Source Software:

Policy Support. Integrated Report of Findings. Cambridge: FLOSSPOLS.

[16] R. A. Ghosh, R. Glott, B. Krieger, G. Robles (2002) Free/Libre and Open

Source Software: Survey and Study. International Institute of Infonomics (Uni-

versity of Maastricht)

[17] Richard Stallman. Articles: On Hacking. Available online at

http://stallman.org/articles/on-hacking.html (Last visited on February

2013).

[18] E.S. Raymond, B. Young. The Cathedral and the Bazaar: Musings on Linux

and Open Source by an Accidental Revolutionary. O'Reilly, Sebastopol, CA,

2001. 279 pages.

[19] J. Preece (2000) Online Communities: Designing Usability and Supporting

Sociability. John Wiley. 439 pages.

[20] Y. Ye, K. Kishida (2003) Toward an understanding of the motivation Open

Source software developers. Proceedings of the 25th International Conference

on Software Engineering in 2006.

[21] C. Boyer, (2007). Sudoku's French ancestors. Pour La Science, June 2006, pages

8-11.

[22] O�cial Webpage of the CHOCO library Project. Available online at

http://www.emn.fr/z-info/choco-solver/ (Last visited on February 2013).

[23] G. Yongquin Gao, V. Freeh. Modeling and Simulation of the Open Source Com-

munity. Agent-Directed Simulation Conference, San Diego, CA, April 2005.

