

JORGE A. GARCIA IZAGUIRRE MONTEMAYOR

A COMPLEX EVENT PROCESSING SYSTEM

FOR MONITORING OF MANUFACTURING

SYSTEMS

Master of Science Thesis

Examiner: Professor José L. M. Lastra

Examiner and topic approved in the

Automation, Mechanical and

Materials Engineering Faculty

Council meeting on 7 Mar 2012

I

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

GARCIA IZAGUIRRE MONTEMAYOR, JORGE A.: A Complex Event

Processing system for monitoring of manufacturing systems

Master of Science Thesis, 84 pages, 12 Appendix pages

February 2012

Major: Factory Automation

Examiner: Prof. José Luis Martínez Lastra

Keywords: complex event processing, event-driven architecture, service oriented

architecture, production engineering, web services, factory automation, OPC-UA,

DPWS

Future manufacturing systems will require to process large amounts of complex

data due to a rising demand on visibility and vertical integration of factory floor

devices with higher level systems. Systems contained in higher layers of the business

model are rapidly moving towards a Service Oriented Architecture, inducing a

tendency to push Web Technologies down to the factory floor level. Evidence of this

trend is the addition of Web Services at the device level with Device Profile for Web

Services and the transition of OPC based on COM/DCOM communication to OPC-

UA based on Web Services. DPWS and OPC-UA are becoming nowadays the

preferred options to provide on a device level, service-oriented solutions capable to

extend with an Event Driven Architecture into manufacturing systems. This thesis

provides an implementation of a factory shop floor monitor based on Complex Event

Processing for event-driven manufacturing processes. Factory shop monitors are

particularly used to inform the workshop personnel via alarms, notifications and,

visual aids about the performance and status of a manufacturing process. This work

abstracts the informative value of the event-cloud surrounding the factory shop floor

by processing its content against rules and formulas to convert it to valuable pieces

of information that can be exposed to business monitors and dashboards. As a result,

a system with a generic framework for integrating heterogeneous sources was

reached, transforming simple data into alarms and complex events containing a

specific context within the manufacturing process.

II

Preface

In this space I would like to thank all of the people that have supported me

during the development of this work.

First, I would like to thank my wife Eija who has always been at my side

supporting me regardless of the time this thesis has consumed from my personal

life. Always pushing me forwards and making me improve constantly as a person

and as a husband.

I would like to express my gratitude to Prof. Jose L. Martinez Lastra for the

opportunity to develop this work under his research group. Also thank the European

research project PLANTCockpit who has founded this work.

Thanks to Andrei for guiding me throughout the development of this thesis work.

Also for all the discussions related to this work and the projects.

I would like to thank Johannes and Axel for helping me debugging devices and

giving programming tips as well for the long discussions we had regarding this topic.

Also to the rest of my co-workers that have supported me by standing my constant

questionings.

To Hanna, Taina and Sonja for helping me with all of the bureaucratic issues as

well for trip planning and advices. Also, thanks to Matti who has been providing

material and support un the conveyor line installation.

También quisiera agradecer a mis familiares y amigos que me han apoyado

siempre y aun estando tan lejos de casa. A mi padre y a mi madre que me han dado

la oportunidad de tener una educación superior la cual me ha abierto puertas para

salir adelante. A mi hermana y a mis tíos por los momentos y enseñanzas que hemos

compartido y que seguiremos compartiendo.

Jorge Andres Garcia Izaguirre Montemayor (B.Sc.)

Tampere, Jan 2012

III

Table of Contents

Abstract ... I

Preface ... II

List of Figures .. V

List of Tables .. VII

Acronyms ... VIII

1. Introduction .. 10

1.1 Background .. 10

1.2 Problem Definition ... 11

1.2.1 Justification for the work ... 12

1.2.2 Problem statement .. 12

1.3 Work description .. 13

1.3.1 Objectives ... 13

1.3.2 Methodology ... 13

1.3.3 Assumptions and limitations .. 14

1.4 Thesis Outline .. 15

2. Literature review ... 16

2.2 Monitoring of distributed Manufacturing Systems 16

2.1.1 Classification of monitors .. 17

2.1.2 Business Activity Monitors .. 24

2.3 Towards distributed system integration ... 25

2.2.1 Service-oriented Architecture .. 26

2.2.2 Event-driven Architecture ... 31

2.2.3 Web Services architecture ... 33

2.4 Web-based communication protocols in manufacturing 34

2.3.1 Device Profile for Web Services .. 35

2.3.2 Ole for Process Control –Unified Architecture 38

2.3.3 Assessment on OPC-UA and DPWS ... 45

2.5 Rule engines .. 47

2.4.1 Complex Event Processing .. 50

2.4.2 Other event processing technologies ... 58

2.4.3 Summary of rule engines .. 58

IV

3. Methodology approach .. 59

3.1 Technology mapping and tool selection .. 59

3.2 CEP Monitor functional architecture .. 62

4. Implementation .. 65

4.1 Monitor implementation .. 65

4.1.1 Event manager implementation ... 65

4.1.2 Output adapter implementation ... 69

4.1.3 Configuration model description .. 70

4.1.4 Runtime technical description .. 70

4.2 Experimental implementation .. 71

4.2.1 Test bed .. 72

4.2.2 Use case definition .. 73

4.2.3 Tests performed ... 74

5. Results .. 77

5.1 Experimental results ... 77

5.1.1 Overall monitor functionality and limitation test 77

5.1.2 Lap time test results .. 78

5.1.3 Average lap test results .. 78

5.1.4 Flaw detection test results .. 79

5.2 Conceptual results .. 81

6. Conclusions ... 84

6.1 Implementation conclusions .. 84

6.2 Result conclusions .. 84

6.3 Future work and final thoughts .. 85

REFERENCES .. 86

APPENDIX A – CEP platforms.. 94

APPENDIX B – NEsper EPL ... 98

APPENDIX C – Monitor configuration and initialization 100

V

List of Figures

Figure 1: Monitoring modes as explained in [Goodloe & Pike 10] 17

Figure 2: Generic bus monitoring architecture [Goodloe & Pike 10] 20

Figure 3: Generic single process-monitor architecture 21

Figure 4: Generic distributed process monitors [Goodloe & Pike 10] 22

Figure 5: Monitoring techniques [Adapted from Liotta 2002] 22

Figure 6: Event Processing Architecture [Bayer 09] 25

Figure 7: Basic characteristics of SOA solution [Marechaux 06] 27

Figure 8: Dose-maker logical implementation [Jammes et al. 06] 29

Figure 9: SOCRADES general Architecture [Cannata et al. 08] 30

Figure 10: Factory wide predictive maintenance architecture 31

Figure 11: Basic characteristics of EDA [Marechaux 06] 31

Figure 12: Unified Management Architecture ... 32

Figure 13: ED-SOA implementation in Factory-shop floor 33

Figure 14: Web services general process [W3C 04] 34

Figure 15: DPWS subscription mechanism ... 36

Figure 16: DPWS/ EXI example .. 38

Figure 17: OPC-UA interaction in the automation levels [Burke 06] 39

Figure 18: OPC-UA stack overview [OPC-UA 6] ... 39

Figure 19: OPC-UA object model [OPC-UA 3] ... 40

Figure 20: MonitoredItem Model [OPC-UA 4] ... 42

Figure 21: Interaction of clients with the address space [Schleipen 08] ... 43

Figure 22: Architecture for monitoring and controlling of field devices 44

Figure 23: UA2XML conversion [Virta et al. 2010] 44

Figure 24: Categorization of rule engines ... 47

Figure 25: Backward chaining control flow [JBossCom 11] 48

Figure 26: Forward chaining control flow [JBossCom 11] 49

Figure 27: Event abstraction [Adapted from Luckham 02] 51

Figure 28: Event pattern matching [Adapted from Luckham 05] 52

Figure 29: JDL Data Fusion Model [Tibco 07] .. 52

Figure 30: Microsoft Stream Insight CEP architecture [Microsoft 11] 54

Figure 31: Data freshness to business value [Vidackovic et al. 10] 57

Figure 32: edUFlow system architecture [Rosales et al. 10] 57

Figure 33: Monitor techniques and modes map ... 59

Figure 34: state-of-the-art Technology map .. 61

Figure 35: CEP Monitor functional architecture .. 63

Figure 36: Event manager concept map ... 66

Figure 37: OPC-UA to XML wrapping .. 67

Figure 38: SOAP message and internal CEP Event 68

Figure 39: Concept map for CEP configuration and rule composition 68

Figure 40: Output adapter description ... 69

VI

Figure 41: Deployment and configuration model ... 70

Figure 42: Platform functionality.. 71

Figure 43: Flexlink products ... 71

Figure 44: Test bed configuration ... 72

Figure 45: Test bed description [Garcia 11] .. 73

Figure 46: Data aggregation for lap time calculation 78

Figure 47: CEP output Visual dashboard .. 79

Figure 48: Flaw detected on the 5th transition of the pallet 80

Figure 49: Transition times after system correction 80

Figure 50: Event manager UI description (OPC-UA tab) 100

Figure 51: Event manager UI description (DPWS tab) 100

Figure 52: CEP deployment ... 101

Figure 53: OPC-UA server discovery and connection 101

Figure 54: Subscription for OPC-UA notifications 102

Figure 55: OPC-UA notification XML conversion 102

Figure 56:DPWS device discovery ... 103

Figure 57: DPWS event subscription ... 103

Figure 58: CEP engine UI (Event schemas loaded for EPL definition) .. 104

Figure 59: Event type registration for CEP engine 104

Figure 60: Rule ActionListener script UI .. 105

Figure 61: CEP initialization ... 105

Figure 62: Complex event generation .. 106

VII

List of Tables

Table 1: Contrast of monitoring modes [Adapted from DAWAC 05] 19

Table 2: Monitoring techniques [Adapted from Philippe et al. 00] 23

Table 3: SOA characteristics [adapted from Valipour et al. 09] 27

Table 4: Constrast of SOA compliable technologies [Bohn et al. 06] 28

Table 5: OPC-UA service sets [compiled from OPC-UA 4] 41

Table 6: Contrast between OPC-UA and DPWS characteristics 45

Table 7: Contrast of inference engines .. 50

Table 8: Available CEP solutions (See Appendix A) 53

Table 9: Description of SASE+ statements ... 55

Table 10: CAYUGA query structure ... 56

Table 11: Selected tools for development ... 62

Table 12: Functional description of the architecture 64

Table 13: NEsper EPL clauses ... 99

VIII

Acronyms

AI Artificial Intelligence

BAM Business Activity Monitor

BI Business Intelligence

BMM Business Motivation Model

BPM Business Process Management

CAMX Computer Aided Manufacturing using XML

CEP Complex Event Processing

COTS Commercial-Off-The-Shelf

COM Component Object Model

DCOM Distributed Component Object Model

DFS Depth-First Search

DPWS Device Profile for Web Services

EC Electronic Commerce

EDA Event-Driven Architecture

ED-SOA Event Driven- Service Oriented Architecture

EIB Enterprise Integration Backbone

EPA Event Processing Agent

EPL Event Processing Language

ERP Enterprise Resource Planning

ES Expert Systems

ESB Enterprise Service Bus

ESP Event Stream Processing

EXI Efficient XML Interchange

FA Factory Automation

IT Information Technology

JDL Joint Directors of Laboratories of the US Dep. of Def.

KB Knowledge base

KPI Key Performance Indicator

MA’s Mobile Agents

MES Manufacturing Execution System

MRL Model Representation Language

OPC OLE for Process Control

IX

OPC-UA OPC-Unified Architecture

PLC Programmable Logic Controllers

RFID Radio Frequency Identification

SCADA Supervisory Control and Data Acquisition

SEP Simple Event Processing

SN Sensor Networks

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SUO System Under Observation

UDP User Datagram Protocol

UI User Interface

WGLA Weighted Granular Level of Appropriateness

WS Web Service

WSA Web Service Architecture

WSD Web Service Description

WSDL Web Service Description Language

WSN Wireless Sensor Networks

W3C World Wide Web Consortium

XML eXtensible Markup Language

1. Introduction

This chapter provides a solid background on the thesis work domain preparing

the reader to understand the problematic with a clear definition of the problem and

the justification of work. The work is described by setting objectives followed by a

methodology which intends to achieve such objectives defining assumptions and

limitations.

1.1 Background

Since the industrial revolution, manufacturing industries has taken an important

role in economy with a significant effect on the environment and society. Nowadays,

only in the EU, there are around 430 thousand manufacturing enterprises providing

28 million people with jobs and generating about 20% of the EU output [Jovane et

al. 09]. These enterprises are the motor of one of the most important industries in

Europe, however, they require of constant tuning in order to maintain themselves

against the constant increase of demand that is being subjected by the market.

In the last decades, there has been an important progress in Information

Technology (IT) which has directly modified the internal functionality of

manufacturing companies. The introduction of IT in combination with classic

manufacturing systems has evolved into smart automated systems capable to react

automatically to certain production specific situations to increase productivity. Such

systems are the result of an attempt to counteract the demands and requirements of a

constantly evolving market. Due to this, many companies have invested greatly in

automation technologies to provide more intelligence into their systems while at the

same time generating the need for monitoring their automated processes. The

introduction of Supervisory Control and Data Acquisition (SCADA) provided

visibility to such processes by generating human-machine interfaces, giving a

graphical interpretation of the process status. SCADA systems entirely rely on data

acquisition from field devices to do these representations. Throughout the time,

many industrial communication protocols have been developed due to the lack of

standardization in the field. Many vendors have developed their own communication

protocols that do not allow interoperability with others, a huge problem at the time of

trying to interoperate with devices and applications from different vendors started.

Higher integration costs and programming experts were needed in order to integrate

to different systems. The need for interoperability made Ole for Process Control

(OPC) to appear as a specification to standardize secure communication between

applications and field devices [Hannelius et al. 08]. Costs for integration time were

reduced considerably, leading vendors to adopt this specification.

Recently, web-based technologies have become widely used and reliable,

drawing attention within the factory automation domain. In particular, Web Services

11

(WS), which are the preferred technologies to implement a Service-Oriented

Architecture (SOA) according to Jammes & Smit [2005]. WSs provide flexibility

and interoperability of distributed systems regardless of the vendor architecture,

suiting perfectly to the tendency of having decentralized intelligent components

implemented throughout different layers of the business model.

Nowadays, many Business Intelligence (BI) and Manufacturing Execution

Systems (MES) solutions are available, and many of them rely on SOA paradigm.

Because of this, there has been an inclination for vertical integration of SOA. This

caused a transition of SOA into the lower levels of the automation layer. Evidence of

this trend is the development of Device Profile for Web Services (DPWS) and Ole

for Process Control- Unified Architecture (OPC-UA). Such protocols propose the

addition of WS down into the device level as a result of the increasing capabilities of

Programmable Logic Controllers (PLCs). WSs include event mechanisms to devices

which can act as an interface for interoperability inside an enterprise, carrying

valuable information about a process. Nonetheless, new challenges come across with

these implementations due to an increasing amount of event data being generated

which is surrounding the business IT systems creating a so called event cloud.

Events contain information which sometimes is not relevant on its own and logging

its data makes analysis more complicated. In the IT domain, events have been widely

studied. Complex Event Processing (CEP) has been introduced, tested and adopted

in monitoring tasks with the aim of avoiding the inaccurate task of analyzing

substantial event logs manually, demonstrating to be a stable set of tools capable to

filter, map and generate higher level events with more representative information of

what is happening on a system [Luckham & Frasca 98].

Overall, SOA solves the interoperability and decentralization problems among

applications by loosely-coupling components, while Event-Driven Architectures

(EDAs) promises to extend SOA and complement the integration among other SOA

based systems by coupling components with events [Van Hoof 07]. Extensive

research is currently studying the possibility of a cross-layered enterprise visibility

solution. Moving towards EDA has started a new need to implement complex event

processing methods as automatic data aggregators for cross-layer data interpretations

of many heterogeneous event sources in factory automation.

1.2 Problem Definition

Current market demands are pushing current automation systems to assume a

position where visibility of every component of a company is needed, from process

control up to business management. Product customization, maintenance, quality

control and, business monitoring are some examples of requirements that pushes

towards a holistic manufacturing monitoring which can provide a proper visibility

[Hardy 08]. Due to this rising demand on visibility and vertical integration of factory

12

floor devices with higher level systems, future manufacturing systems will require to

process large amounts of heterogeneous data describing different states and

situations on different levels of a business.

The bond between higher level systems and lower level systems is made

currently by system experts. Meetings are held in order to take further actions across

the layers of automation defined in ANSI/ISA-95 [Isa 95]. This non-automatic

decision making and cross-layered monitoring of the current status of a business

takes loads of valuable time. Information across layers is critical for manufacturing

and it must be available at any time in any layer of the business model.

The need to integrate and correlate information automatically across layers of the

business model is arising. Transition from local monitors to a holistic monitoring

solution is required, increasing the reaction speed a company to act accordingly to

situations that can be triggered by different factors within a company.

1.2.1 Justification for the work

Integration of the different levels of automation for increasing visibility is a

current topic of research. Factory floor systems are as well as Manufacturing

Execution Systems (MES) and Enterprise Resource Planning (ERP) moving towards

a Service Oriented Architecture. These systems together can construct what it is now

the modern business architecture. This transition to SOA allows the integration of

the relatively new device level SOA with the other higher level systems, this to

improve a holistic visibility of an enterprise.

SOA systems can be extended and interoperate with EDA [Van Hoof 07]. The

inclusion of EDA in the automation model can provide a framework for horizontal

and vertical integration of SOA based systems by including an event processing

manager to handle the “cloud of events” which surrounds a business. Although event

processing technologies has been already studied as solution of cross-layer visibility

and control for Event Driven Manufacturing (EDM) [Walzer et al. 08];

interoperability among different factory-wide integration specifications is pending.

This leaves a gap in the study of horizontal SOA integration on the device level.

Furthermore, a more flexible implementation of SOA on factory floor can be

achieved by adding up the benefits of different specifications [Colombo et al. 10].

Due to this, the inclusion of heterogeneous data aggregation and event processing is

required in order to achieve a more flexible and complete integration of SOA based

factory floor systems with the rest of the components distributed along the

companies.

1.2.2 Problem statement

As previously mentioned, there is a need to enhance the enterprise visibility by

aggregating data from heterogeneous sources within the factory floor level. A direct

13

connection of factory floor systems into higher level systems may lead to a state of

“IT blindness”, due to the quantity of data generated at this level [Luckham 02]

[Luckham 04]. This instead of helping will hinder the global visibility which is

targeted. In order to provide better visibility to higher levels it is necessary to process

hundreds of events incoming from the factory floor before making them available to

other systems. Implementation of EDA and Event processing techniques can be

introduced to overcome this situation, but at the same time it prompts the following

questions which this thesis tries to solve:

 How to simplify integration of different heterogeneous information sources into

a single event-processing system?

 How to automate event aggregation to provide new higher level event

generation?

 How to leverage the factory-shop floor information?

 What components could create a framework that can allow event management?

1.3 Work description

1.3.1 Objectives

1. Design and implementation of a mechanism for unification of event streams of

heterogeneous systems into a common processing engine.

2. Implementation of an event processing engine with automatic aggregation

capabilities.

3. Design and implementation of a framework for automatic web services / OPC-UA

device integration with a complex event processor for improved visibility of the

factory floor process.

4. To define the principles for addition of new information sources on the factory

floor

5. The event processing engine should be capable of storing event information.

1.3.2 Methodology

Study and implementation of web based factory floor information systems

A detailed study on integration protocols for factory floor information systems is

done to understand similarities, benefits and drawbacks of each approach. In

addition, a detailed analysis is made on current solutions available for event

processing implementations on these to communication specifications. Finally, a set-

up of factory floor information systems in a distributed line is performed to establish

the test bed for this thesis.

14

Selection of an event processing platform

An extense research of available event processing platforms is done in order to

compare their capabilities and select a platform that suits the integration approach.

During this methodology step it has to be considered that some tools require

licensing and not all the features might be available. Open source solutions may be

suitable as well considering that performance is not on the scope of this thesis.

Moreover, programming languages and input data formats also have to be well

thought-out for fast prototyping for factory floor information system integration.

Design and implementation of the event manager

Based on the information gathered by the previous steps, the selection of

technologies, tools and platforms is done in order to develop a processing engine

capable of automatic event aggregation and processing. Afterwards, components of

the proposed framework are implemented on a discrete manufacturing line to test its

capabilities.

Definition of requirements for factory floor system integration to the event

management platform

Considering the framework design, generic requirements are defined and mapped

for the specification of a methodology to implement heterogeneous information of

factory floor data into higher levels.

Empirical study

The empirical study was performed over a light assembly line. Such line consists

of lifters, workstations, conveyors and cross-conveyors that are controlled with

multiple devices that communicate with heterogeneous technologies. The devices

provide subscriptions to notifications related to the process status. Notifications

generated were submitted to a sink during process orchestration, pushed through

complex event statements in a processing engine which filtered and aggregated such

notifications for event patterning and relevant information extraction.

Tests were performed in such system to detect complex situations extracted from

atomic notifications as well as to prove the automatic registration of events from

both communication technologies during the engine configuration process.

1.3.3 Assumptions and limitations

The current study applies for manufacturing systems composed of modular

segments controlled with DPWS and OPC-UA communication technologies. The

development scope does not go further than the automatic data aggregation for

monitoring purposes using complex event processing. Event Processing Agents

(EPA) were studied but not implemented during this development.

15

Assumption 1: Modular components in the manufacturing line must be able to

provide subscription to notifications.

Assumption 2: The manufacturing system is composed of two or more

heterogeneous sources of notifications.

Assumption 3: Notifications received contain more than a single value related to

the process.

Assumption 4: Orchestration of the process runs independently from the

monitoring tool, no feedback is required to keep the process running.

1.4 Thesis Outline

 This thesis work is structured as follows. Chapter 2 presents a literature review

containing concepts and technologies relevant for this work. Chapter 3 presents a

methodology approach for the development of this work. Chapter 4 describes the

technical implementation as well as the use case chosen for testing purposes. Chapter

5 presents the results obtained for the tests performed. To finalize, Chapter 6

presents conclusions, future work and final thoughts.

16

2. Literature review

This chapter introduces technologies and tools related to this thesis work.

Technologies within the scope of this study are described and explained with

industrial examples made by the research community. Furthermore, the tools in the

scope of this study consist of Event Processing technologies, its implementations and

concepts will be covered in this chapter as well.

2.1 Monitoring of distributed Manufacturing

Systems

The alignment of process performance and equipments state with business

objectives has always been of top priority within the manufactory industry. Keeping

track on process variables and performance is critical to analyze and predict the

possible effects and deviations of these goals. Monitors are the main bridges between

process and humans. Because of this, monitors are considered to be a critical part of

any business process. Currently monitors have evolved in business applications as

performance dashboards as explained by [Eckerson 11]. Such dashboards allow

business people to monitor processes, analyze cause of problems and manage

resources to improve decision making. But until now such applications have a rough

connection with the layers of automation, limiting the visibility and crippling the

reactivity of an enterprise. As mentioned by [Panetto & Molina 08, Karnouskos et al.

09], proprietary solutions that currently exist to achieve enterprise integration are the

main cause of this problem. Thus, a more heterogeneous enterprise integration and

interoperability in manufacturing systems could be the solution to this problem. Such

assertion has been the starting point and trend for future research focusing in

aggregation and unification the information across the factory without compromising

reliability and performance of the system.

Early studies by Weaver [2001] show that Electronic commerce techniques have

been previously used to solve the monitoring issues of Factory automation.

Requirements such as universal data access, ubiquitous programming, data security

and, user authentication can be solved using solutions borrowed from internet-based

Electronic Commerce (EC) such as HTTP, IP, HTML and XML. In Weaver’s work,

a web server was fed with factory information which later was later accessible by a

web browser using java-applets showing a tendency of the time to move toward web

environments for factory monitoring. This tendency has opened several research

branches such as the analysis of current network and systems monitoring methods

for implementation in Factory Automation and manufacturing domains [Park 10,

[Balasubramanian et al. 09].

The main contribution of this thesis work surrounds on a heterogeneous approach

for monitoring of distributed automated manufacturing systems. Based on the main

17

trends previously explained, a review of current monitoring techniques is essential in

order to scope, choose and implement the best technique/mode/architecture available

for the realization of this work. However, a detailed classification is out of the scope

of this work; however this will provide helpful input to the methodology for

selection of the fittest approach.

Since the nature of the manufacturing monitoring systems is application

dependant, it is complicated to develop a taxonomic classification of these systems.

Due to this, a short methodology as an attempt for analysis and classification of

current monitoring works was applied. This methodology consisted in the research

from several sources of information using several keywords related to factory

monitoring to compile the work related to this area. Subsequently, the research

results are filtered to the level of relevance in the field to finally highlight

commonalities among the approaches. However, it must be considered as a coarse

classification due to the extensive nature of this topic. It is only valid under the scope

of this work which objective is the identification of available monitors for distributed

systems.

2.1.1 Classification of monitors

Several works and publications have put in evidence that monitoring modes,

techniques and, architectures tend to differ depending on the process or equipment

demands, communication constraints and distribution of control as seen in different

works [Goodloe & Pike 10, Leitao 09, Liotta 02, Bernhard 02, Han 03, Kusunoki et

al. 98]. Due to this reason it is proposed to divide monitors in three identified

classifications that contribute for later implementation decisions.

2.1.1.1 Monitoring mode

Classifying monitors by mode can be one of the proposed categories previously

mentioned. Figure 1 depicts the hierarchy of monitoring types described by [Goodloe

& Pike 10]. In this classification, the types of monitors are separated by the method

of obtaining and handling data. Offline monitoring manipulates information once it

has been collected from the process, making the required calculations while being

disconnected from the process. On the other hand, online monitors focus on runtime

and even real-time information for acquisition, processing and display of data.

Figure 1: Monitoring modes as explained in [Goodloe & Pike 10]

18

Online monitoring can be divided in two sub classes as well. In one hand, Inline

monitor proposes the addition of monitoring code within the execution code. In

Havelund & Roşu [2004] work, they have proposed the use of inline monitoring for

testing the finite execution trace of events generated by executing programs to detect

errors. Using PathExplorer (PaX) as the monitoring environment, it allowed adding

extra code in the algorithm execution program that allowed the identification of

errors. According to the authors inline monitoring in this application has higher

precision than offline monitoring due to the fact that one can know where the event

comes from in the execution program.

Alternatively, an outline monitor executes another external process for

monitoring. Pellizzoni et al. [2008] gives a simple example of the use of online

outline monitoring for Commercial-Off-The-Shelf (COTS) components. Runtime

verification of the COTS peripherals can be achieved by the use of external hardware

that is able to predict and detect disturbances in the transmission bus. In this case the

hardware referred as monitor module; act as a non-intrusive external monitoring

process.

According to [Trinitis et al. 00 and DAWAC 05], online tools provide more

benefits than offline monitoring. One of the benefits is that online monitoring is

running in parallel while executing a process, hence it is possible to adjust and guide

the trajectory of the processes during process execution. However this later is more

expensive due to the needs of exclusive hardware and support for manipulation of

the target systems making it a heavy system which lacks of portability. On the other

hand offline diagnostics can provide more accurate results due to the time

independence it has with the System under Observation (SUO) [Grubic et al. 08].

Substantial research has been done due to the benefits of online monitoring

[Barringer et al. 04, Bodden 05, Fei et al. 06, Barbon et al. 06]. In particular, Liotta

[2002] on his work tries to define the real-benefit of using Mobile Agents (MAs) for

monitoring of networks. His work defines an algorithm for network adaptability of

agents following the premise that a distributed monitor can become fault-tolerant by

dividing their task into several monitors, diminishing the probability to enter into a

faulted state. Many other publications have later publish on this subject

recommending the distribution of control and monitoring tasks as surveyed and

analysed by [Leitao 09]. However the level of required adaptability is dependent on

the dynamic behavior of the monitored system. This leads to the fact that not always

the most complex solution is the fittest in every case.

A collection of seen advantages and disadvantages of different monitoring modes

are shown in Table 1.

19

Table 1: Contrast of monitoring modes [Adapted from DAWAC 05]

Monitoring

mode

Advantages Disadvantages Applicability

Offline More precise

and complex

algorithms can

be applied

 Results are useful

only for time

independent

applications

 Reaction is only

possible with

very slow

processes

 When no on-line monitor is

available for certain

parameter

 The required frequency of

analysis would induce more

time for on-line monitor

 The economical situation is

not favourable to the on-line

monitor and if the required

frequency does not require a

frequent value

 Reliability, sensitivity or

adequacy of the online

monitor is not as good as the

laboratory method.

Online /

Inline

 Data can be

processed

during runtime

 Simpler

localization of

flaws

 Monitoring code

is embedded with

process code

affecting

performance

 When high frequency of data

generated allows early

detection of anomalies

 When risk of product

contamination and human

errors is reduced

 When response needs to be

fast

 When some parameters

cannot be measured by

offline monitoring (grab

sampling)

Online/

Outline

 Data can be

processed

during runtime

 Better

performance

due to

distribution of

monitoring

tasks

 Robust data

analysis

without

influencing the

process

execution

 Better fault-

tolerance

 More expensive

implementations

 Difficult to

debug

20

2.1.1.2 Monitoring architectures

Monitor architecture seem to depend on process requirements, reason why

thousands of different architecture proposal exists. Even though several authors have

tried to generalize the monitoring architecture of networks [Tang et al. 07 and

Zhaohua et al. 07], different monitor architectures keep emerging to attack different

problems. Some of them, heading towards a simpler implementation for less critical

applications while other trying to bring performance and high fault-tolerance to

applications such as hard real-time systems. The process in the end is the one that

has to guide to a selection of a fitting architecture. Goodloe & Pike [2010] in his

work describe three monitoring architectures to follow in future implementations,

which based on his work; they cover most of the distributed monitoring approaches

currently available. The categories proposed are consistent with other works found

within the research community as seen in [Hongliang et al. 09, monALISA 08]. For

the authors three base architectures are: Bus-monitor architecture, Single Process-

Monitor architecture and distributed Process-monitor architecture which will be

explained using industrial state-of-the-art examples.

Bus-monitor

This architecture is the simplest of the implementations to be described. It

consists in a silent monitor connected as part of the system reading messages through

a bus. These monitoring architectures are commonly used to find faults in bus

protocol messages or as well monitor performance of systems as in [Hongliang et al.

09] where monitoring systems are being interfaced with a CAN bus interface

allowing monitoring and control of the SUO. However this architecture may

interfere with the control messages of the system. One of the major drawbacks being

also the low fault-tolerance, Nonetheless it requires the least hardware

implementation making it in the least expensive approach to implement.

Bus

Monitored system

A

Monitored system

B

Monitored system

C

Figure 2: Generic bus monitoring architecture [Goodloe & Pike 10]

21

Single Process-Monitor

As a resolution for the problems seen in the bus-monitor architecture, the single

process monitor intends to solve the messaging interference between data messages

and monitoring messages that may be caused by the violation of timeliness

guarantees. The main difference comes in the addition of a dedicated monitoring bus.

As a result, instead of having a single process sending data to a single monitor,

multiple processes send monitoring information via a monitoring bus ensuring

functionality of the monitored system.

Implementations of this architecture propose to use different networks such as

wireless sensor networks (WSN) for process monitoring. For example, [Ciancetta et

al. 10] in his work shows a plug-n-play solution based on web services that consists

on a dedicated network for monitoring while the system under observation contains

its own control bus for process execution.

Data bus

Monitoring bus

Monitored system

A

Monitored system

B

Monitored system

C

Figure 3: Generic single process-monitor architecture [Goodloe & Pike 10]

Distributed Process-Monitor

This architecture proposes to distribute monitoring tasks among “guardians” that

monitor different components of a process. These can communicate with each other

allowing increasing fault-tolerance to a next level where the system under

observation cannot interfere under any circumstances. Compared to the single

monitor approach, reliability is potentially increased by the premise that the

probability to fail of several monitors is less than one single instance monitoring the

whole system.

Implementations of this architecture are inclined to be of great scale and with

variable number of composite monitored systems. monALISA [2004] is a good

example of the latest massive deployment of agents globally. Based on JINI and

Web Services technologies this architecture is able to provide complete monitoring,

22

control and global optimization services for complex systems. The high reach of

scalability is determined by the capability of this system with a multi-threaded

engine to host loosely coupled self-describing dynamic services.

Data bus

Monitoring bus

Monitored system

A

Monitored system

B

Monitored system

C

Monitor A Monitor B Monitor C

Figure 4: Generic distributed process monitors [Goodloe & Pike 10]

2.1.1.3 Monitoring techniques

According to Liotta [2002], management and monitoring of future networks is

being affected by factors such as scalability, topology dynamics and diversity of

complex services in heterogeneous networks. Conventional approaches for network

monitoring using management protocols and distributed object technologies cannot

satisfy requirements for future networked systems. [Philippe et al. 00] provides an

extensive review of management technologies where four main techniques can be

identified as shown in Table 2.

InternetMonitoring station InternetMonitoring station
Monitoring station

Holon

Holon

Static

centralized

Static

decentralized

Programable or

Active decentralized

Figure 5: Monitoring techniques [Adapted from Liotta 2002]

23

Table 2: Monitoring techniques [Adapted from Philippe et al. 00 and Liotta 02]

Monitoring

technique

Description & drawbacks

Static

centralized

monitoring

One main monitoring station, every SUO is communicated directly.

Used for small-scale networks using for example Simple Network

management Protocol (SNMP).

Drawbacks:

 Limited responsiveness and accuracy.

 Lack of scalability

 Concentration of management intelligence (single point of failure)

 Bottleneck

 When using polling approach, it limits the tracking of problems in

a timely manner and overflowing networks even when no change

has happened. (SNMP)

Static

decentralized

monitoring

Consists of hierarchical management architecture where a main

monitor is communicating with distributed area monitors. CORBA and

JAVA-RMI are examples for implementing this technique.

Drawbacks:

 Monitoring functionality is restrained to simple and rudimentary

operations.

 Low adaptability to network changes

 Marginally better scalability

 Limited level of decentralization

Programmable

decentralized

Monitoring

This technique proposes the use of mobile code in network

management. Within the code new management functions can be

dynamically introduced in the nodes as needed. The main advantages

are the decentralization of tasks and re-configurability of nodes.

Drawbacks:

 Relatively static mechanism (Deploys management logic at start-

up)

 Deployment logic made centralized

Active

distributed

monitoring

A system that self reconfigures based on the monitoring system

changes. The exploitation of distributed area monitors autonomy to

optimize the monitoring tasks while decreasing network traffic and

increasing responsiveness and robustness.

Drawbacks:

 This technique does not provide any improvement if the

monitored system is not of dynamic nature

24

From the techniques presented it can be noticeable that they intend to mitigate

different problems. Even though, the active decentralized technique seems to have

the least drawbacks of all, there has to be a system evaluation beforehand. The

selection of a correct technique is directly related to the dynamic and granularity

level of the system to monitor [Agarwala & Schwan 06, Liotta 2002].

Khoshkbarforoushha el al. [2010] proposes a semantic model for weighting the

appropriateness of the granularity level (WGLA) this setting a basis for quantitative

granularity appropriateness analysis. Based on a quantitative analysis one can

determine the optimal granularity of services from which would serve as a guide for

the monitoring technique selection.

2.1.2 Business Activity Monitors

Business intelligence (BI) is referred to the procedure of any software or IT

solution that can transform important information out of data. This solutions show

how a business is doing by analyzing historical data, identifying patterns and

understanding trends. Current BI products mostly rely in historical data for data

mining. Due to this, real-time decision support is not possible with these solutions.

Increasing demands and ever changing fast-paced business environments has

incorporated the requirement for fast reactivity on business. To overcome with this

need, BI has been extended with Business Activity Monitors (BAM). This

technologies aim on real-time event-driven business analytics. Getting information

from transactional data sources such as Web Services, BAM correlates

heterogeneous events that can lead to real-time KPI definitions as well as trend and

pattern identification for real-time business reactivity. BAM solutions consist of

dashboards that can display business information. One of the core technologies that

BAM integrates is CEP. Rules correlate, aggregate and analyze data into information

real-time and directs it to BAM dashboards.

According to Bayer [2009], CEP platforms commonly provide connectivity to

custom applications through adapters. So before choosing a CEP engine it is

necessary to evaluate a CEP solution in the context of the integration architecture

guidelines compatible to the IT systems. For an event processing architecture it is

better to consider first a mixture of SOA and EDA because they make business

events available to BPM, BAM, and CEP tools in a standardized way. A possible

combination of EDA and SOA would enable a layer of high-value services that

could have a visual impact in the business.

As seen from Figure 6, a typical CEP architecture has business events entering

the CEP engine in form of data streams incoming from an EDA foundation. The

integration adapters capture events starting the sequence of activities the CEP

architecture performs. Events are transported to the CEP engine through messaging

or web services. Rules and patterns create aggregated or complex event that could be

sent to dashboards, BPM, BAM or a custom application.

25

Figure 6: Event Processing Architecture [Bayer 09]

Due to the relatively new concept of service orientation in shop-floor devices,

few works on BAM integration with shop-floor have been introduced. This leaves a

research gap which this work intends to fill.

2.2 Towards distributed system integration

System distribution has been taking place during the past few decades. Its

benefits combined with the continuous development of embedded systems, have

stirred its applicability in system architectures. The main advantages of system

distribution do not only involve performance and speed improvement; its mayor

contribution comes from the reliability and scalability that a system can reach while

hiding its underlying intricacies and heterogeneous nature.

By definition, a distributed system in software engineering is:

“A collection of independent computers that appear to its users as a single

coherent system”

Tanenbaum & van steen [2006]

The definition may lead to the assumption that distributed systems are a

networked bundle of computers. However, two categories may be divided from this

concept: Tightly couple components and loosely-coupled components. Tightly-

coupled components are commonly related to the management of homogeneous

multiprocessor computers. Usually they maintain a global view with computer

resources. On the other hand, Loosely-couple components consist of a bundle of

26

heterogeneous multicomputer systems allowing local services to be available to

remote clients.

Distributed systems solve several of the recurring problems caused by centralized

systems while at the same time adding different challenges. Single points of failure

in the system are resolved, also performance, scalability and, reliability is improved.

Nevertheless, management of the resources increases in complexity due to the

networked nature of the distributed system. Information on distributed systems may

be endangered more than centralized systems. In a nutshell, the main challenges to

deploy a successful distributed system can be summarized in four main aspects that

need to be ensured: secure communication, fault-tolerance, replication, coordination

and management of systems.

Subsequent from distributed computing era, several design principles and

paradigms have been developed in the last decade. The concept of distributed

services along networked loosely-couple components started to stand out with the

beginning of service oriented architectures, and currently continues to be adopted

and extended with other methodologies and concepts such as Event Driven

Architectures and Event-Driven Service Oriented Architectures.

Nowadays, service orientation and cloud computing towards a fully integrated

enterprise is an ongoing topic of research. Transformation from the classical

production-oriented manufacturing towards a service oriented manufacturing is

taking place. The key of this transition comes from the development of

manufacturing clouds based on the capabilities that SOA provides to the whole

enterprise [Li et al. 2010]. The following subsections will cover in detail the

architecture paradigms mentioned here and its current state on manufacturing

systems.

2.2.1 Service-oriented Architecture

2.2.1.1 Overview

Starting as a concept brought by the Information and Communication

technologies sector, SOA opened new perspective for a high-level service-based

communication infrastructure. According to the OASIS [2006] reference model for

service oriented architectures the definition of SOA is:

“A paradigm for organizing and utilizing distributed capabilities that may be

under the control of different ownership domains. It provides a uniform means to

offer, discover, interact with and use capabilities to produce desired effects

consistent with measurable preconditions and expectations.”

SOA paradigm core driver is services by which capabilities and needs are

brought together from service provider entities to service consumers. Table 3 lists

the set of characteristics that SOA introduces that comprise its design paradigms.

27

Table 3: SOA characteristics [adapted from Valipour et al. 09]

Characteristics Description

Discoverable and

Dynamically Bound

Ability of a costumer to discover a service during

runtime based on certain criteria.

Self-Contained and

Modular

Cohesive interfaces allowing a service to be

modular in certain context The modules should be

decomposed and composed into other modules.

Interoperability Ability to communicate different platforms and

languages with each other.

Loose Coupling Having few well know dependencies among

modules

Location Transparency Ability to move a service from location to location

without the consumer’s knowledge.

Composability Ability to structure modules to assemble

applications, federations or service orchestrations.

Self-Recovery Ability of a system to recover from errors without

human intervention during execution.

Concisely, SOA intends to reduce the integration complexity of systems on a

heterogeneous environment allowing them to be modular, reusable and flexible. The

basic model of a SOA paradigm consists on a consumer and a provider. First, the

consumer has to know the location and description of the produces. In order to do

that, the provider exposes its service description on a directory allowing customers to

obtain it. The interaction between them consists primarily of a request-response

message pattern. This is closely related to a client-server paradigm where the

producer acts passively and reacts on a consumer’s request. Figure 7 summarizes the

basic characteristics of a SOA solution.

Figure 7: Basic characteristics of SOA solution [Marechaux 06]

For instance, WS technology provides a standardized vehicle that complies with

the core characteristics of SOA. Service loose coupling, reusability and autonomy is

achievable by the ever-present platform-independent XML standardized messaging.

28

Abstraction and a standardized service contracts are contained in a Web Service

Description (WSD). Service discoverability is given by the WS-discovery

specification. Composability can be achieved by using WS-Metadata, WS-

Federation and WS-Policy specifications. To be precise, SOA is not bound to a

special technology; several technologies are available as explained by Zeeb et al.

2009]. Nevertheless, Web Services is the preferred technology to implement

service-oriented architectures due to the presented set of compliant specifications

that allow implementing the majority of the characteristics of SOA. Insight on WS

technology will be presented in the following subsections.

2.2.1.2 Service Oriented Manufacture state-of-the-art

Service Infrastructure for Real-time Embedded Networked Applications

The European project SIRENA (Service Infrastructure for Real-time Embedded

Networked Applications) is one of the pioneering projects to consider the Service

Oriented paradigm in a manufacturing domain. Its main goal consisted in the

definition of a framework to seamlessly connect heterogeneous devices and services

hosted in such devices. A technology analysis taking place during the project and

compiled in Table 3, highlighted DPWS as the promising technology for

implementing Service Oriented architecture on a device level.

Table 4: Contrast of SOA compliable technologies [Bohn et al. 06]

Criteria OSGi HAVi JINI UPnP WS DPWS

Plug and Play - x x x - X

Device support X x x x - X

Programming Lang

independent

- x - x x X

Network media

independent

- - x X x x

Large scalability x x - x x

Security X X x - x x

High market acceptance X - x X x x

Jammes & Smit [2005] reviewed the opportunities and challenges to solve in a

Service Orientation. As a two edged sword, making a device visible and reusable to

all layers of automation comes with major challenges. One of the major challenges

comes in the management domain, where devices shall be managed by a higher-level

system to facilitate configuration, monitoring, fault-diagnosis and maintenance. To

demonstrate the SO paradigm in industrial devices, in [Lastra & Delamer 06,

Delamer & Lastra 07-2, Jammes et al. 06] they present an industrial applicability of

DPWS-enabled devices for the exposure of service. For instance, a dose maker

implementation demonstrated the composability feature of the services allowing

29

them to be encapsulated in high-level services. Figure 8 depicts the logical

representation of the services provided by different devices. An orchestration

component acting acted as a controller, allowed granular services to perform the

specific task as shown in [Delamer & Lastra 06].

Figure 8: Dose-maker logical implementation [Jammes et al. 06]

Service-Oriented Cross-layer infRAstructure for Distributed smart Embedded

devices

As a successive research project, SOCRADES was created based on the concepts

and results SIRENA. The aim of the project consisted on the creation of an

infrastructure for manufacturing where loosely-coupled smart embedded devices to

communicate seamlessly with business level service based components. The closure

of the gap between shop-floor and top floor systems conveyed the project towards

considerable physical results with the implementation and orchestration of WS-

enabled controllers in an industrial environment. De Souza et al. [2008] presented a

reference implementation where two devices were able to connect to ERP systems

using WS as driving force. The use DPWS in a manufacturing domain allowed

seamless vertical integration with business levels. Cannata et al. [2008] presented the

impacts of SOA adoption in manufacturing systems. Among them Business Activity

Monitoring would be possible due to the effective seamless integration. This

integration would allow calculating real-time Key Performance indicators whilst

having real-time reaction based on the increased granularity that an enterprise system

can consist of.

Cachapa et al. [2010] presents a monitoring methodology in a SOA-based

industrial environment. The approach combines two types of monitoring indexes,

30

Feature-based and model-based. The first one consisting in the wrap-up of sensor

data into XML to expose it as web service while the later one intends to compose the

services into higher-level services detailing certain model. For his methodology, the

identification of services for a monitoring application is crucial and it can be done by

a two phase approach combining a top-bottom and bottom-top approaches to define

the required services in a monitoring operation.

Figure 9: SOCRADES general Architecture [Cannata et al. 08]

Factory-wide Predictive Maintenance in Heterogeneous Environments

Factory-wide data integration can lead to the calculation of situations that cannot

be detected by a standalone system. Jakob et al. [10] propose a framework for

predictive maintenance that claims to automate the prediction process for fine

granular data incoming from various machines. Their approach consists on a Service

Oriented generic prediction process that can retrieve data and information from

machines and modeling tools that exists already. They use a prediction control

process that acts as an orchestrator to execute every step in the prediction process

and later map the information in an ERP. Figure 10 shows the stair case architecture

of the system as coined by the authors.

Active monitoring is not visible in this approach based on the passive SOA

nature of the system. The system has to be invoked and no active health alarming

could be generated. On the other hand, an EDA predictive maintenance tool would

be able to do.

31

Figure 10: Factory wide predictive maintenance architecture [Krauze et al 10]

2.2.2 Event-driven Architecture

2.2.2.1 Overview

Event-driven Architecture (EDA) is an architectural paradigm that uses events as

main execution drivers. This paradigm follows the publish/subscribe model

providing asynchronous messaging among components. Differently from SOA, the

event-driven paradigm allows components to be extremely loosely-coupled. This

concept comes primarily by the fact that publishers of events are not aware of the

existence of subscribers and that they only share the semantics of the message [Van

hoof 07]. The core implementation components consist of: Enterprise Integration

Backbone (EIB), event management tools, event processing engine, event processing

rules, service invocation, event transport, event specification and event data. The

basic characteristics of EDA can be summarized in Figure 11.

In a simplistic point of view, EDA system interaction consists of: Several

consumers that subscribe to a messaging backbone, later publisher posts a message.

The messaging backbone (broker) will route the messages subscribers that are

interested in that particular message.

Figure 11: Basic characteristics of EDA [Marechaux 06]

32

2.2.2.2 EDA in manufacturing

Event-Driven Manufacturing: Unified Management of Primitive and Complex

Events for Manufacturing Monitoring and Control

According to Waltzer et al [2010] State-of-the-art event management systems

only cover selected levels in the automation pyramid. The architecture shown in

Figure 1, proposes an approach for event management that allows high-level systems

and low level systems to communicate via events. The solution shows a reference

framework for event management that can be separated in 5 main segments: Data

acquisition, data processing, data persistence, data exposure and, configuration. The

Data acquisition adapters and data exposure adapters are commonly used supply the

system with incoming data allowing any external system to be interconnected to the

manager. This is a centric approach based on a broker as a backbone system for

messaging. A CEP for control and aggregation is proposed as part of the manager

closely coupled to a publish/subscribe system to receive events and route its results

to the consumer. The configuration of CEP is done by a configuration environment

component that defines input and output message relationships among components.

Figure 12: Unified Management Architecture

Combining Service-Oriented Architecture and Event-Driven Architecture using an

Enterprise Service Bus

An Enterprise Service Bus (ESB) is an architecture model that allows the

interaction of heterogeneous systems acting as a SOA enabler. ESB is currently the

preferred model to consider due to the advantages of combining benefits of both

33

EDA and SOA. It exposes transport, event and, mediation services that facilitate

integration using a strict asynchronous communication.

An analysis presented by Marechaux [2006] describes the benefits of

implementing an ESB instead of a standalone EDA or SOA. The first benefit

presented is the standardized connectivity, which is achieved based on messaging

backbones that allow heterogeneous systems to connect. This also provides

pervasive integration that bridges systems, following the concepts of ubiquitous

computing. Also this architecture model allows reliable integration whilst increasing

robustness. Transport services guarantee reliability and transactional integrity which

is crucial in a demanding environment. In [Delamer & Lastra 07-1] they propose a

optimization for QoS-aware event driven middleware in electronics production.

While in [Ming et al. 09], they study the benefits and drawbacks of current SO

paradigms systems, proposing an Event-driven SOA (ED-SOA) as an improved

solution for plant visibility. According to this author, WS-based SOA systems are

not optimal for shop-floor systems considering the inefficiency of request-response

mechanism on natural event producing systems such as factory floor equipment. And

improved event-triggered service paradigm would be more efficient whilst allowing

event processing systems to leverage this complex transactional information into a

visible format for decision making.

Figure 13: ED-SOA implementation in Factory-shop floor [Ming et al. 09]

2.2.3 Web Services architecture

A Web Service according to the W3C [2004] is a software system designed to

support interoperable machine-to-machine interaction over a network. It possesses an

interface described in a machine-processable format. In its abstract form it is a

34

resource characterized by the set of functionality that it provides. Considering an

agent as a computational resource, an agent hosts a service in a piece of software of

hardware that sends and receives messages. The agent may change but the abstract

set of functionalities of the service is maintained.

Figure 14: Web services general process [W3C 04]

The scenario presented in Figure 14 is divided in 4 steps which defines the

general process for system interaction using Web Services. Firstly, the requester and

provider entities discover each other. Afterwards, transaction of contract and

semantics is agreed. Subsequently, both parties input the semantics and Web Service

description to finally interact with each other. These interactions between entities

may be manual or automated.

Web Services Architecture relies on several technologies and specifications such

as: Extensible markup language (XML), Simple Object Access Protocol (SOAP)

and, Web Service Description Language (WSDL). Also there are several

specifications that govern specific process of the web service process interaction

such as: WS-transfer, WS-Eventing, WS-Discovery, WS-Metadata, WS-Addressing,

and WS-Notification among others.

These technologies will be explained in Section 2.3.1 due to the fact that DPWS

is an actual implementation of Web Services Architecture for embedded devices.

2.3 Web-based communication protocols in

manufacturing

35

Considering the results obtained from the previous section it is noticeable the

strong trend towards SOA and EDA. The main focus of this section is on the

description of the standards available that enable vertical enterprise integration in a

manufacturing environment as well as the state of the art implementations by the

research community.

2.3.1 Device Profile for Web Services

2.3.1.1 Overview

The device profile for web services is an OASIS standardized device-level

protocol that succeeds Universal Plug n’ Play (UPnP) for communication of

networked embedded devices [Jammes & Smit 2005]. It is built on top of a set of

web technologies that together comply in Service Oriented paradigms. This protocol

relies in IP, TCP, UDP, HTTP, SOAP and XML making it suitable for cross-

platform integration.

DPWS exposes devices as services that can be discovered, invoked or notified by

any other networked devices that support Web Services. For instance, a DPWS-

enabled device can host services that can be dynamically discovered. At the same

time it provides metadata exchange service to load the exposed services into clients.

Other feature of DPWS is the compliance with the WS-eventing specification for

eventing mechanism; this allows other components to communicate asynchronously

via semantically rich events.

2.3.1.2 Web service specifications

SOAP

This protocol is a recommendation from the W3C that once stood for “Simple

Object Access Protocol”. It encodes data for structured information exchange. The

core aspects of SOAP are neutrality and independence. This specification can be

send over any transport protocol and it does not depend on any programming model.

SOAP structure is XML-based and it consists of an envelope element containing a

header element in that holds application-specific information and a body element

which conveys the message contents. The platform-agnosticism characteristic of

SOAP makes it preferable as transport protocol for Web Services.

Web Service description Language [W3C 01]

This W3C specification is used for describing network services as a set of

endpoints operating on messages. It is extensible to allow description of endpoints

and their messages regardless of what message formats or network protocols are

used to communicate. The WSDL documents are structured in 6 main sections called

definitions. Type definition describes data types used in the messages. Message

defines input and output message parameters. These are bound to operations input

36

message and output message. Port type defines the Web Service operations and

binds the messages to the operations. The Binding specifies interface and defines the

transport with the binding style. Operations define the actions and the message

encoding. Services define system functions that are exposed to web-applications.

Overall specification is used to define the contractual mechanism in DPWS to

expose the services and their endpoint to other clients.

Web Service Eventing

WS-Eventing specification defines the message structure and composition for

subscription messages as well as the notification structure.

Eventing in DPWS allows purely asynchronous messaging. Operations with one-

way message patterns can be subscribed by invoking a subscription request.

Subscription request are submitted by the client containing the required subscription

setup properties such as duration and event sink endpoints directions.

The process consists in three basic steps. First, a client with knowledge of a

service requests a subscription. The hosted service processes the requests and

registers the client as consumer. The hosted device responds to a client and finally

submits notifications to the registered consumers. The subscription mechanism of

DPWS is depicted in Figure 15.

Hosted service
Event

sink

Action: Subscribe

Body:

-Subscription

-- EndTo

-- Delivery Mode

-- Expiration

-- Filter

Action: SubscribeResponse

Body:

-Subscription response

-- Identifiers

-- Endpoint reference

-- Expiration

Notifications
Client

1

2

3

Figure 15: DPWS subscription mechanism

Web Service Discovery

Web service discovery specifies the procedure for message exchanges and

conceptual content that a consumer and a service provider must use for detection of

each other existence. The WSA does not define a specific technology for discovery.

DPWS on the other hand, specifies de use of SOAP-over-UDP to implement the

discovery services. In a sample scenario for discovery, a consumer would multicast a

37

probe message to a broker. The broker would route the message to hosted services.

Hosted services would then notify a probe match message to the consumer.

Additional information can be found in [W3C 01].

2.3.1.3 Industrial experience state-of-the-art

Device Profile for Web Services for Service Oriented Manufacturing

Machine health monitoring is one example of the important measurements that

manufacturers are interested for equipment maintenance. Wireless Sensor Networks

(WSN) is a common solution that provides Condition-based Maintenance (CBM) to

machinery. According to Sleman & Moeller [2008], the interoperability and dynamic

discovery of DPWS can interface 6LoWPAN-based WSN with other IP-networked

systems. In their methodology, DPWS can acts like a gateway allowing IP-based

clients to subscribe to sensor data. This work is in concordance with solutions

described by [Jammes et al. 07] where he points out the cost-effectiveness of a

“wrap-and-reuse” basis for industrial solutions rather than a “rip-and-replace”. As a

gateway, DPWS can interact with any industrial field bus and expose the

functionality of its components as web services. This proposes a solution as similar

the one that OPC-UA and its address space provide. Nonetheless Jammes et al.

[2007] also mentions that the gateway solutions are ad-hoc solutions that work today

based on the current equipment restrictions. For that reason, future implementations

should follow the SOA paradigm of having “smart devices” up to every corner of the

industry. In [Moritz et al. 2009], DPWS was directly integrated to WSN. Results

reflected the need of enhancements to the protocol in order to fit in the constrained

resource sensor nodes. A set of considerations and profiling is needed to achieve a

successful implementation of DPWS in a sensor node. In [Delamer & Lastra 06],

Enhancements for DPWS

Reliability and real-time requirements that commonly are found in the factory

shops and manufacturers are the common aspects that DPWS cannot guarantee. The

non-deterministic nature of the standard IP-networks is the main cause of this issue.

Adding to the issue, the SOAP messages tend to be large and bulky slowing down

the message transmission rate.

Because of the previously stated issues, DPWS has been over-criticized

regarding the encodings and overheads it relies on. Analysis by [Moritz et al. 10 and

Moritz et al. 10-2] has shown that DPWS as it is would not fulfill the requirements to

fit in a constrained-resource device environment. Results of his work showed

Efficient XML Interchange (EXI) and Fast Infoset (FI) as the most prominent

compressions for SOAP messages that should be considered. In [Jammes 11], the

author proposes an example implementation of EXI and DPWS, highlighting that

including a binary-XML encoding for the DPWS stack could improve considerably

38

the real-time performance of SOA at the device level. While in [Collado et al. 08]

they present an approach for XML data processing without the need of binary

encodings for real-time systems requirements.

Figure 16: DPWS/ EXI example

2.3.2 Ole for Process Control –Unified Architecture

2.3.2.1 Overview

OPC-UA is the next generation implamentation of the former OPC architecture

with the difference of applying cross-platform web services instead of the Microsoft

dependant COM/DCOM communication model. As its name Unified Architecture

implies, it unified several OPC data models such as Alarm and Events, Data Access

and Historical Data Access and other OPC specifications, as a set of services to

increase its domain within manufacturing production and business applications.

OPC-UA's popularity in the industry is constantly growing due to the premise that it

allows from top to bottom level integration whilst providing a backward

compatibility with previous OPC solutions that are widely deployed around the

world.

39

Figure 17: OPC-UA interaction in the automation levels [Burke 06]

OPC-UA consists of 13 specifications [OPC-UA 1, OPC-UA 2, OPC-UA 3,

OPC-UA 4, OPC-UA 5, OPC-UA 6, OPC-UA 7, OPC-UA 8, OPC-UA 9, OPC-UA

10 and OPC-UA 11] that define a standardized set of services and policies that

assemble this relatively new interoperability protocol. The specifications can be

divided in three main sections: the core, the access type and the utility type. The core

consists of the first 7 specifications that defines concepts, services, security model,

information model, address space, profiles and, service mappings. The access type

specification defines Data access, alarm and conditions, programs and historical

access. The last two specifications parts of the utility type have not been released yet.

The next subsection will deal with the overview of core specifications that are of

interest in this work.

Figure 18: OPC-UA stack overview [OPC-UA 6]

40

The majority OPC-specifications have in general a technology free definition.

However OPC-UA relies in several core technologies as depicted in Figure 18. UA

binary and UA XML are the two encoding supported. Related to the encodings, the

security, transport and contract protocols are also related to the encodings. It is

noticeable that OPC-UA provides two technology options for implementation.

2.3.2.2 OPC-UA specifications

OPC-UA Address Space [OPC-UA 3]

The OPC-UA address space provides a standard structure for servers to expose

data to clients. Figure 19 depicts the OPC-UA object model representation. Objects

are used to structure data closely following object oriented design concepts. These

can contain variables, methods and, other objects. Generally, objects are not used for

containing process data; instead, variables are in charge of this. There are two kinds

of variables, properties variables and data variables. The first one can be seen as the

metadata (configuration parameters) while the other one represents the data of an

object.

Figure 19: OPC-UA object model [OPC-UA 3]

The objects and components are represented in the address space as nodes and

they are described by attributes and linked by references. The attributes may contain

Id’s, names or descriptions while the references could define a source node, a

reference type or a target node.

Just as Object-oriented programming, the address space specification provides

the TypeDefinitionNodes that defines instances of Objects and Variables. These can

be seen as the schema or the original class for instantiating Variables and Objects.

The overall functionality of the address space is provide a view of the nodes

available in the server allowing the client to navigate its node elements using

services defined in [OPC-UA 4].

41

OPC-UA Services [OPC-UA 4]

This specification defines the standard service sets that OPC-UA provides to

clients for communication with the servers. Table 3 describes the core functionality

of these sets.

Table 5: OPC-UA service sets [compiled from OPC-UA 4]

Service set Description

Discovery service set Allow a client to discover the endpoints implemented by a

server and to read the security configuration for each of

those endpoints

Secure channel

service set

Allow a client to establish a communication channel to

ensure the confidentiality and integrity of messages

exchanged with the server

Session service set Allow the client to authenticate the User it is acting on

behalf of and to manage Sessions

Node management

service set

Allow the client to add, modify and delete nodes in the

address space

View service set Allow clients to browse through the address space or

subsets of the address space called views

Query service set Allows clients to get a subset of data from the address space

or the view

Attribute service set Allow clients to read and write attributes of nodes,

including their historical values. Also it allows clients to

read and write the values of variables

Method service set Allow clients to call methods. They may be called with

method-specific input parameters and may return method-

specific output parameters

MonitoredItem

service set

Allow clients to create, modify, and delete MonitoredItems

used to monitor attributes for value changes and objects for

events

Subscription service

set

Allow clients to create, modify and delete subscriptions.

subscriptions send notifications generated by

MonitoredItems to the client

From all the service sets, the relevant service sets that are of relevance to this

work are the MonitoredItem and subscription service sets. These provide OPC-UA

with eventing mechanism for monitoring of OPC-UA objects, variables or attributes.

Subscriptions may contain a set of MonitoredItems defined by the client. A

subscription will allow the client to monitor an item and receive notifications.

Notifications can be subscribed for data value change, Events via EventNotifier

42

definition or for aggregated values calculated from a time interval [OPC-UA 4].

Monitored items contain settings like mode, sampling interval and notification queue

size which sets the relationship and restrictions between client and the server for

notification delivery. The procedure for notification delivery in OPC-UA is

composed of: Publishing, Subscribing, and queuing.

The description of the notification process is as follows:

1) Client adds as MonitoredItem of certain node in the address space to a

subscription

2) Publish requests will be sent during an open session on a UA server.

These requests will not be bounded to a certain subscription.

3) Requests will be queued in the OPC-UA server session.

4) Later on publish responses will be sent back to the client.

The responses can include notification messages, a sequence number or a

“heartbeat” message to keep the connection alive. Notification messages may

include the properties of the message such as timestamps, values and name of the

MonitoredItems. Figure 20 depicts the notification model of OPC-UA. This model

has been criticized by some authors, claiming that this model is more synchronous

than asynchronous as seen in [Colombo 10].

Figure 20: MonitoredItem Model [OPC-UA 4]

OPC-UA Information Model [OPC-UA 5]

The information model is one of the core specifications of OPC-UA. This

specification is an extensible mechanism to model the server’s information to expose

the items, properties, metadata and diagnosis information as a hierarchical model in

the address space. In other words, the information model defines the address space of

an empty OPC-UA server. The basic information models can be extended allowing

standards to be built on top; this is one of the core features of the specification [Virta

et al. 2010].

43

The information in OPC-UA defines a standards information model for general

use. This information can be retrieved by a client in order to navigate through its

address space. The nodes consist of standardized: references types, dataTypes,

object, objectTypes, variable and, variableTypes.

2.3.2.3 Industrial experience state-of-the-art

Combining CAEX with OPC-UA for production monitoring and control system

support

As part of the transition of companies towards SOA, Schleipen [2008]

demonstrates a framework using OPC-UA address space and Information modelling

to include plant information using CAEX-based descriptions. Notifications arriving

to the server triggered the addition of new nodes. After the nodes were generated,

clients are notified of current changes in the address space for registration. OPC-UA

allowed synchronizing the production processes by notifying the clients about new

relevant information available. Hence OPC-UA can be used for support for

monitoring and control processes.

Figure 21: Interaction of clients with the address space [Schleipen 08]

Monitoring and control framework using OPC-UA

Van Tan et al. [2009] propose a framework for building monitoring and control

in factory automation. He defines a set of components that would allow bridging

existing software systems and OPC servers enabled devices. Using OPC-UA as

communication technology, he emphasizes that this technology is a good choice for

development of web-enabled industrial automation and manufacturing software

systems. Figure 22 shows the proposed architecture. The overall implementation

consists in an OPC-UA server acting as a gateway for integrating devices them into a

web-based environment. In this case client monitors would require of an OPC-UA

client to obtain information integrated by the server.

44

Figure 22: Architecture for monitoring and controlling of field devices [Van

Tan et al. 09]

 OPC-UA integration with ISA-88/95 for batch process management

Similar implementation by Virta et al. [2010] proposes integration for batch

process management using OPC-UA and ISA-88/95. However he emphasizes that

the information exchanged using the OPC UA can be configured to follow standard

information models. However, due to the binary nature of OPC-UA, he proposes the

use of a UA2XML adapter in order to connect to the business process engine which

commonly uses XML messaging as shown in Figure 23.

Figure 23: UA2XML conversion [Virta et al. 2010]

In other similar approach by Seilonen et al. [2011] propose the integration of an

Enterprise Asset Management for condition-based monitoring. He also made use of

the UA2XML adapter for the integration of the OPC-UA with the EAM system

WS’s. The results demonstrated that OPC-UA can be combined with existing

service-oriented frameworks such as Windows Communication Foundation (WCF)

in CBM applications through an adapter-based design.

45

2.3.3 Assessment on OPC-UA and DPWS

From all the technologies that implement SOA, Only two cope with the

requirements and demands that an industrial environment requires for SOA

implementations. As seen from table Table 4, technologies such as UPnP, JINi and

WS are technologies that can apply SOA. However, they have been studied and

discarded as technologies that could bring SOA to device levels.

On the other hand, DPWS and OPC-UA are suited best to lower down SOA into

the device level. Even though, they have similar end-goals, they are yet different

approaches for interoperability that would make these technologies difficult to

compare. Despite the fact that both technologies claim to use Web Services, the

differences must be addressed. OPC-UA intends to provide interoperability via

gateways and address spaces. For instance, building an address space for certain

protocol and navigate the values on the address space using already defined services

does not allow the process management to create modular services for business

processes. The services are not as descriptive as DPWS allows. For example the

service set of navigating node would not be of any worth for a Business Process

Management (BPM) application. Customized services on DPWS can have self

descriptive services that could be joined together into a service composition for

business process. As seen in [Virta et al. 10] adapters for OPC-UA are needed for

connectivity with typical XML based MES systems. In summary, both technologies

reach the interoperability end-goal; they both have drawbacks and advantages.

Nonetheless, as highlighted by Colombo et al. [2010], interoperability among these

two specifications can bring a better SOA implementation. Thus neither of these

technologies can be discarded.

Table 6: Contrast between OPC-UA and DPWS characteristics

Criteria OPC-UA DPWS

Implementation

level

Device level / although

profiling is possible to achieve

sensor level

Sensor level / using

enhancements and profiles

Plug-n-play

solution

Yes Yes

Dynamic

discovery

Nor available still Available

Services

definition

Standardized Customizable

Business process

management

compatibility

Currently based on adapters

[Virta et al. 2010]

BPEL compatible

Transport UA XML (not available yet) / XML/SOAP / XML-binary

46

technologies UA binary under research

Eventing

mechanism

Publish / Acknowledge Publish/subscribe

Information

modelling

Very extensible Limited

Mappings WSDL / XML-Schema

UA-schema

WSDL

Integration

approach

Via gateways and clients DPWS clients, plain web

service calls

Security Provides

authentication/sessions and

encryption

Can be implemented using

WS-Security

47

2.4 Rule engines

Rule engines are part of Expert Systems (ES) which are within the Artificial

Intelligence (AI) area, a computational system that intends to emulate the decision-

making ability of an expert human being. Reasoning and evaluation of the

knowledge within this system, can lead to conclusions that may predict desirable or

undesirable situations inside a system. ES may be based upon rules or knowledge

base (KB) as key part of the inference capabilities of the engine.

Three types of inference methods can be commonly found among the research

community. Substantial work has been done towards making hybrid

implementations of these methods and noticeable enhancements can be provided by

integrating different inference approaches as described in implementations such as

[Xiuqin et. al 09, Weidong & Warren 96]. Nonetheless hybrid approaches exist;

inference methods should be distinguished and categorized as shown in Figure 24,

due to the different nature among the engines.

Implementations

Characteristics

Type

Method

Rule engines

Forward chaining

(Data driven)

Backward chaining

(Goal-driven)
Deterministic engines

Process

 Usually employs Depth first

search (DFS) strategy

 Not reactive on incoming data

 Commonly an supported as

an extension in commercial

solutions

 Inference based on

domain-specific

languages (DSL)

Reactive

 Invoked by user

 Business rule

engines

 Automatic

inference

 Event-triggered

 CEP engines

- OpenRules

- Drools Expert

- OpenL Tablets

- Jena 2

- StreamInsight

- Esper / Nesper

- Tibco BE

- Drools Fusion

-DTRules- DROOLS Expert

- Sweet rules

Figure 24: Categorization of rule engines

Deterministic inference engines

These are most commonly relying in Domain Specific Languages for inference

using a custom algorithm. [Carvalho & Simoes 11] for example describes the use of

a deterministic engine based in OML (Open Modeling Language) for the

manipulation of ontologies while [Qichao et. al] introduces an improved metadata

model inference engine using Model Representation Language (MRL) as part of an

extension for MARS system that relies in a metadata configurable modeling tool

which cannot only infer single-tier domains but also multi-tier ones. Usually these

type of inference engines are easier to implement and maintain than the ones based

48

on forward or backward chaining, however the due to its constrained implementation

domain, its popularity is not as prominent as the other approaches.

Backward chaining inference engines

Also known as goal-driven inference engines, these reasoners iterates within its

own KB based on the data that is available. Differently from forward chaining, the

reasoned is triggered by a goal; it uses the available data once is triggered to search

for this end-goal. The most common algorithm for this implementations is the

Depth-first Search (DFS) which transverses a hierarchical graph of nodes in a

uniform manner [Cormen et. al 01]. Figure 7 depicts the control flow where can be

seen the goal as the trigger of the whole inference procedure.

Figure 25: Backward chaining control flow [JBossCom 11]

49

Forward chaining inference engines

In a certain extent, this is considered to be the opposite method of the backward

chaining. This method is also known as data-driven inference engines, meaning that

based on an event/data arrival; the system reacts by checking along its rule base to

fire outputs. Figure 26 depicts its control flow which, differently from backward

chaining, it exits the execution when no rule can be fired.

This method has two different approaches:

Process inference engines: A Non-automatic inference engine invoked by the

user. Commonly known as business rule engines, they look for the current data

inputs and compares for rule triggering.

Reactive engines: Commonly known as Complex Event Processors. This is an

event-triggered engine that provides automatic (reactive) inference.

Figure 26: Forward chaining control flow [JBossCom 11]

Reasoners in general react to either data and/or goals; however reactivity of the

reasoner is crucial for the implementation in an EDA environment. Manufacturing

systems are mostly modeled and characterized as discrete event systems. Their

behaviors are driven only by instances of different types of events [Cassandras &

Lafortune 99]. Due to this a system that requires to be invoked in order to obtain a

value or certain output cannot be efficiently used in EDA’s. Table 7 defines the

compliance of an inference method by its reactivity level.

50

Table 7: Contrast of inference engines

Inference method EDA compliance Reactivity Algorithms

Forward chaining/

Process inference

No / Invoking is

required (Client-server

paradigm)

Stateless RETE

 Linear

 Treat

 LEAPS

Forward chaining/

Reactive engines

Yes / Event triggered Stateful RETE

 Linear

 Treat

 LEAPS

Backward chaining No / Invoking is

required (Client-server

paradigm)

Stateless DFS

 RETE

Deterministic Yes / Publish –

subscribe paradigm

supported

Stateless /

Stateful

 Custom

2.4.1 Complex Event Processing

2.4.1.1 Overview

Complex Event Processing (CEP) is a technology which defines a set of tools

and techniques for analyzing and processing the complex series of related events that

drive modern distributed information systems [Luckham 02]. This technology

proposes a reactive alternative to process information in an ES to quickly identify

and solve problems. At the same time, it effectively utilizes events for enhanced

operation, performance, and security. CEP is applied to a broad spectrum of

information system challenges, including business process automation, schedule and

control processes, network monitoring, performance prediction, active monitoring

and, intrusion detection.

CEP solutions are strongly linked to fast moving data streams and event clouds.

They leverage the information to achieve operational insight in the areas of Business

Intelligence (BI), security, monitoring of Systems and, networks. These processors

handle events in real-time, seeking out the patterns and relationships within the data

that have a meaning to the organization. They can identify important complex

events, event patterns and situations that notify new opportunities, critical threats,

changing conditions, or other material factors that will impact the organization. CEP

solutions can also offer organizations increased capacity for competitive action and

improve their level of security.

51

According to the book of David Luckham [Luckham 02], “The power of events”,

the CEP processes are classified in two main categories:

 Processes that react to events by executing activities: Related to what it can be

called business logic of the CEP engines. The collection of static queries

running in the core of the application receive the events transforming the data

based on rules specified by an Event Processing Language (EPL).

 Connectors that transport events between activity processes: These types of

processes are related to the system integration perspective. Input and output

adapters are needed to convey the abstracted event to a system of interest.

The process architecture of a CEP defines the components that together

configure the two previous types of processes described previously. The architecture

is composed of four main components:

 A diagram that shows the processes in the system and their connections

 The flow of events along connectors

 Behavior specification that consists of rules which specify the process

behavior to events.

 Design constraint that specifies the limitations on process behaviors.

Complex events are generated by abstracting events called low-level events,

which are the events that do not have any level of abstraction, also known as “atomic

events”. The level of abstraction of a complex event depends on the correlation

between the low-level events and the iteration to higher layers as studied by [Jobst &

Preissler 06]. Figure 27 shows the relationship of low-level events with complex

events. All the connections shown between low-level events represent the correlation

rules specified in the EPL of the CEP.

Figure 27: Event abstraction [Adapted from Luckham 02]

This technology relies on different techniques, such as, event abstraction, pattern

detection, event hierarchies, event relationships and event-driven processes. From

these techniques, causal, temporal and spatial properties of the event cloud can be

analyzed. As exemplified by Figure 28, simple events with different characteristics

52

can be abstracted into a high-level complex event using pattern detection and event

relationships.

Figure 28: Event pattern matching [Adapted from Luckham 05]

2.4.1.2 Classification

Due the origin of CEP from the Aerospace and Defense industry, Eftimov [2006]

highlights the use of JDL Data fusion functional model to define the levels of CEP

may be appropriate. The JDL model specifies 4 levels depending on the increasing

complexity of data processing and inference of high-level information. Level 1

taking care of event refinement and adaptation. Level 2 joins spatial and temporal

relationships between groups of events to infer abstract patterns. Level 3 performs

the impact assessment based on predictive analysis of the results from level 2. Level

4 performs ongoing monitoring for process refinement that could be translated into a

feedback loop used in automatic control.

Figure 29: JDL Data Fusion Model [Tibco 07]

53

Currently commercial products do not provide more functionality than the first two

levels of JDL model. Substantial research is being done using Bayesian inference

engines to achieve more predictability that could leverage CEP functionality to

higher levels [Tibco 07].

Table 8: Available CEP solutions (See Appendix A)

Vendor Inference

type

JDL

model

level

Licencing Support Development

Progress

Apama

Rule based 1,2 Commercial Good Studio

StreamBase Rule based 1,2 Commercial Good Studio

Coral 8 Rule based 1,2 Commercial Good Java API

Esper and

Nesper

Rule based 1,2 Open

Source

Supported API C#/Java

Inference

Machines

Bayesian

Inference

1,2,3 Commercial Supported Not found

TIBCO

BusinessEvents

Rule based 1,2 Commercial Good Studio

MS

Streaminsight

Rule based 1,2 Commercial Good API C#

Rapide Rule based 1,2 Open

Source

No

support

API Java

RuleCore Rule based 1 Free No

support

API Java

2.4.1.3 CEP architecture

The architecture of complex event processing engines do not differ one to

another. The same five components can be found by any open or commercial tool

available in the market. Based on a list of the shown in Table 8 it is possible to

identify these five components:

Input adapters: Provide connectivity to external sources and streams of data

routing it towards the processing engine.

Processing engine: Holding static queries which are used for rule matching.

Database connectivity: Provides pull mechanism for passive databases or data

warehouses.

Configuration front-end: Configures the processing engine with queries, registries

patterns and actions using an application development tool most of the times

provided by the vendor.

Output adapters: Route information to external systems

54

The architecture resembles a bottleneck funnel, where the events from several

input adapters are guided towards an engine and then redistributed to interested

applications. Even though the word bottleneck is a curse word in production

engineering, CEP takes this concept to other level by deliberately funneling events to

generate compressed chunks of more relevant information without hindering the

monitoring process performance by excelling processing efficiency and high

throughput. Figure 30 depicts an example of a commercial CEP architecture.

Figure 30: Microsoft Stream Insight CEP architecture [Microsoft 11]

2.4.1.4 Event processing languages

Event correlation using CEP is tightly linked to event clouds and streams. In

order to aggregate this flow of events, static queries have to be defined. These

definitions are based through event processing languages that describe the rules and

data relevant to the processor. CEP solutions have non-standardized event processing

languages; due to this three different languages will be discussed in this analysis.

Generally, these languages represent base for other languages, meaning that any

other existing languages may be based in these or on the same concepts.

RAPIDE-EPL

The RAPIDE [Luckham 95] event pattern language or RAPIDE-EPL is a

declarative computer language for writing patterns of events. The patterns can

specify sets of events together with their parameters, timestamps, and causal

dependencies, and which events are causally independent of each other.

55

RAPIDE-EPL consists of mathematical expressions that describe patterns. It

does not include any algorithmic programming features like assignment or

conditional branches. It is as simple a language as can meet the basic requirements

for CEP. It has the ability to declare event types, and then match on them extracting

information from the event object. It contains mathematical semantics, temporal

operators and strong typing to avoid common errors in writing patterns.

EVERY StockTickEvent(symbol = "IBM", price > 80) WHERE timer: within(60 seconds) (1)

A -> (B or C) (2)

Program 1: EPL examples

Program 1 shows EPL queries that define the continuous query with a temporal

statement. The first statement will notice about every stock event that has as

parameters IBM and a prices larger than 80 in a time window of 60 seconds. The

second example exemplifies a causal pattern statement where even A needs to

happen first and then event B or C in order to set true the statement and send a CEP

event. Combination of causal, spatial and temporal statements is possible and it

could be as complex as needed to correlate events.

SASE+

Starting as a proposal from [Gyllstrom et al. 2008], SASE+ is a pioneering

language created in the University of Massachusetts. It has a high-level structure

similar to SQL for ease of use. The design of the language, however, is centered on

temporal event patterns that have not been sufficiently addressed in relational data

processing. The language features: event sequencing, negation, Kleene closure,

parameterized predicates and sliding window. SASE+ has one of the simplest

language structures. Table 9 explains the meaning of each statement, the structure of

the query look like follows:

Table 9: Description of SASE+ statements

Statement Description

[FROM < input stream >] Provides the name of an input stream.

PATTERN < pattern structure > Specifies the structure of a pattern to be

matched against the input stream.

[WHERE < pattern matching

condition >]

If present, imposes value-based constraints

on the events addressed by the pattern.

[WITHIN < sliding window >] Further specifies a sliding window over the

entire pattern.

[HAVING] < pattern filtering

condition >

Further filters each pattern match by

applying predicates on the constituent events.

[RETURN < output specification

>]

Transforms each pattern match into a result

event for output

56

CAYUGA EVENT LANGUAGE (CEL)

Based on the documentation made by [Brenna et al. 07], CAYUGA is an

expressive Complex Event Processing (CEP) system developed at the Cornell

Database Group. Cayuga uses non-finite automatons with buffers to match event

patterns to queries. The language is derived from “event algebra” and it is similar to

SQL and SASE.

Table 10: CAYUGA query structure

Statement Description

SELECT <attributes> Provides the name of an input stream.

FROM <algebra expression>

Specifies the calculations to be done

against the input stream.

PUBLISH <output stream> Names the output stream (for layered

processing or subscription).

2.4.1.5 CEP in manufacturing state-of-the-art

Complex processors have been contemplated in manufacturing systems for

several years. Luckham [1998] in his early work presents a case study of a silicon

chip fabrication line connected to a TIBCO Rendezvous Information bus. In his

work, he demonstrates that causal relationships of events between different levels of

abstraction are possible by using a complex event processor. He specifies a method

for abstraction hierarchies to define views in different levels of a distributed event-

based system. This methodology utilizes event pattern mappings which led to the

low level causes of errors in such systems. Subsequent studies on the field,

introduced the concept of Event Processing Agents (EPA) for data mining in

automation systems across the network [Perrochon et al. 1999]. Distribution of the

processing resources and parallelism using EPA’s allows a flexible and dynamic run-

time configuration of the processing framework as well as performance for high-

throughput event processors.

Several reports sharing the experiences of CEP in industrial environments are

available, highlighting benefits and opportunities of CEP [Magid et al. 10,

Vidackovic et al. 10, Kellner & Fiege 09]. Summarizing approaches and

methodologies, the most obvious advantages encountered are the abstraction of

information allowing users to define rules dynamically instead of the IT experts.

Extends the expressiveness of the system by detecting complex patterns and also

makes it flexible by externalizing rules, avoiding hard-coded rules. One of the most

important advantages included, is the relationship of data freshness and data value

where CEP stands out from passive systems due to its immediate response (Figure

31).

57

Figure 31: Data freshness to business value [Vidackovic et al. 10]

The contrast between CEP and BAM is the level where the data is reflected in a

monitor. On one hand, BAM focus displaying the current state of a business, while

on the other hand CEP focus in the state of events over time. This abstraction level

difference makes the definition of KPI’s to be declared from two different

viewpoints: Goal-Rule or Rule-Goal. Kellner & Fiege [2009] presents a

methodology based on the Zackman framework [Zackman 87] for building a

monitoring model from top-down perspective. The methodology proposed starts

from a Business Motivation Model (BMM) towards the specification of rules. Doing

so, the development process would be guided into situations with more impact and

higher return for CEP.

Plenty of work has been done within the manufactory domain in the area of CEP

and RFID, but few in ubiquitous manufacturing. Rosales et al. [2010] presents

architecture for RFID and Sensor Networks (SN) for process integration and

management. The approach mapped the CEP engine acting as a service connected to

a broker inside an integration bus. His implementation considers the benefits of CEP

and an event middleware for factory-wide connectivity breaking up the layers

between automation levels and enabling events cross unaware of its source location.

Figure 32: edUFlow system architecture [Rosales et al. 10]

58

2.4.2 Other event processing technologies

2.4.2.1 Event stream processing

This technology rises from the need to do real-time data analysis when in the

early 90’s no database was capable of such characteristic [Luckham 06]. The main

difference with CEP and ESP comes in the conceptual capabilities of each

technology. The cloud corresponds to CEP, meaning that events do not need to be in

order to be processed, while streams to ESP may need to come in an organized

manner in order to detect trends and patterns on streams. ESP is in general a subset

of a CEP. In more detail, Event stream processing is focused more on high-speed

querying of data in streams of events by applying mathematical algorithms to the

event data. Some applications were directed to stock-market feeds in financial

systems and algorithmic trading. On the other hand, CEP is focused more on

extracting information from clouds of events created in enterprise IT and business

systems. CEP includes event data analysis, but places emphasis on patterns of

events, and abstracting and simplifying information in the patterns. The goal is

mainly to support as much as possible the area of enterprise management decision

making. The first commercial applications with CEP were in the Business Activity

Monitoring, for example monitoring conformance to service level agreements.

2.4.2.2 Simple event processing

Simple event processing (SEP) consists in the analysis of atomic events for

further actions. It does not consider the abstraction or patterning of events but mostly

the action that an event may cause as reaction. Example of this technology is the

generation of an event based on the temperature of a sensor. The change in

temperature may trigger an event that while processed can be turned into an alarm.

2.4.3 Summary of rule engines

Semantic reasoners also known as rule engines come in different types

depending on their inference method. Three basic types of inference methods exist.

The most relevant to manufacturing of production processes leans towards the

reactive forward-chaining inference engines. The concept “Data freshness” shows

the important of a system to react early and on time for business processes to be

efficient. Non-reactive (goal-driven) inference methods are prone to process

information out of the data freshness zone due to its passive nature. Moreover,

reactive processors can be strategically modeled in a business-oriented (goal-

oriented) fashion as seen in [Kellner & Fiege 09]. Currently big IT players are

betting on CEP as technology for Business rule implementation which makes this

technology a target for implementations on future enterprise applications. Other

technologies such as ESP and SEP are basic subsets of CEP and due to this those

technologies alone cannot offer the full potential of a reactive rule engine as CEP.

This leaves CEP as the technology to follow in the implementation of this work.

http://complexevents.com/?p=19
http://complexevents.com/?p=19

3. Methodology approach

The selection and design processes of the manufacturing monitor will be

elaborated within this section. Architecture paradigms, technologies will be selected

based on the outcome of the technology review presented in the previous section.

3.1 Technology mapping and tool selection

As seen from the technology review, many techniques for monitoring have been

implemented and analyzed through the research community. Figure 33 shows a

summary of the techniques and modes identified in the technology review. Finding

the right technique was done based on criteria extracted from the review and by

directly applying it to the system under observation. Based on the outcome of the

review presented in chapter 2, the criteria detected for the selection of the right

approach is the following:

 Performance: Will the monitor operations hinder the SUO performance? Do the

operations need to be performed externally from the controlled SUO?

 Data freshness: Do the SUO need the monitoring results on runtime?

 Fault-tolerance: How critical is the SUO dependency on the monitor?

 State-of-the-art: What are the tendencies for future monitors?

 Scalability: Ease to integrate to other systems

 Dynamism of the system: Will the system requires re-configurability? Does the

system change its physical configuration?

Figure 33: Monitor techniques and modes map

60

A set of assumptions were made in order to select a monitoring method.

Information output incoming from the monitor should be as fresh as possible. Failure

of assembly lines or bottlenecks can be costly and fast reaction toward failures is

required immediately. For this reason, offline method is not suitable. Adding

monitoring code and data aggregation on controllers it’s a possibility, however

resource constrained devices might not possess the required processing power and

the system visibility to abstract information into a higher-level event. For this reason

online inline monitoring would not satisfy completely the goals of the monitor

implementation, still online inline could provide pre-processing to reduce data

transfer and increase abstraction of messages injected to the monitors processing

unit. Moreover, the monitor must be robust enough to actively report alarms and

events. At the same time it should be flexible enough to adapt other elements to its

framework and follow the current trends for fault detection and data processing.

Therefore, static centralized and decentralized techniques do not entirely comply

with those requirements; this reduces the options to only the programmable and

active monitoring techniques. Finally, considering the static nature and the

granularity level of the data in the system, it can be concluded that Programmable

Decentralized Monitoring is the technique that best matches the criteria to the SUO

proposed for this work (see section 4.2.1). Active distributed monitoring would be an

overstated implementation and its main feature of re-configurability would not be

practical in this case.

Using a decentralized monitoring technique leads us into the analysis of

technologies and paradigms of distributed systems. As the technique states, mobile

code should be able to re-configure distributed monitors on setup from a monitor

manager. In order to propose the environment for communication, standardized

communication technologies in the manufacturing domain were analyzed concluding

in an interoperability implementation of OPC-UA and DPWS. Both technologies are

middleware for system integration across several layers of automation. Furthermore,

their specifications implement eventing to provide an asynchronous paradigm that

leverages SOA towards SOA 2.0. The inclusion of publish/subscribe paradigm

benefits the monitor performance by acting on system happenings instead than on

user demand for information (client-server behavior).

Monitoring implementations involve data processing and mining form large data

warehouses in order to aggregate and detect patterns that trigger actions or alarms.

Data freshness is a concept that introduces the relevance of information of a monitor

against time. By actively processing information arriving to the monitor, relevance

of the information generated can be kept high and system reactivity improves.

Current approaches to process and analyze data consist in the use of rule engines. As

result from the state-of-the-art, it can be concluded that the only inference method

that comply with the data freshness concept is the reactive forward-chaining

inference engines. Other inference methods consists on goal driven and user invoke

61

methods that are prone to unnecessary data processing. Besides, this other methods

propose a polling mechanism for data processing which can cause delays and

additional processing.

Figure 34: state-of-the-art Technology map

Figure 34 shows the summary of the technology review presented. It maps the

technologies to their respective inference method and architectural paradigm. Based

on the previous assumptions, it can be concluded that CEP tackles the most of the

requirements that are commonly found in monitors for manufacturing systems such

as responsiveness, heterogeneous scalability, fault-tolerance, data freshness and,

performance. Given to the vertical integration provided by the middleware

technologies presented, it can be possible to extend the visibility of Business

Activity monitors which one of the driving technologies consist of CEP.

As seen from Table 8 several platforms for CEP are available and most of the

commercial solutions offer similar benefits and characteristics, however, source code

is not available in commercial solutions as well as expensive licensing is required.

Open source solutions such as Esper provide similar characteristics whilst making

available full documentation and support. In addition, Esper also provides a .NET

implementation called NEsper giving this framework advantage from other

commercial solutions such as MS Stream Insight which has only .NET

implementation. Moreover, NEsper offer to the data processing community the

capability to embed CEP engines into applications. Due to the aforementioned

reasons, the tool selected for implementation is NEsper CEP. NEsper is targeted for

EDA architectures which allow triggering custom made actions following an Event

Condition Action (ECA) paradigm.

OPC-UA bases its architecture on gateway servers and clients that can navigate

the servers address space via web methods. The platform independency advantage of

OPC-UA allows any third party client implementations to be compatible with any

server. However, due to the membership issues with the OPC foundation, OPC-UA

62

.NET v1.01 was the only option available for embedding a client into a processing

engine. This pushed the whole implementation towards a .NET environment.

Connectivity between legacy PLC systems and OPC-UA should be done by OPC-

UA adapters contained within an OPC-Server. For our experimental implementation,

Ignition OPC gateway provides the functionality needed for the test bed

connectivity. It packs web based OPC-UA functionality with sample modules that

allows connectivity to Modbus, DeviceNet and other field buses. Furthermore, it

uses binary-TCP encoding that gives high performance for data transmission.

The tool and stack selection for this work is summarized on Table 11. The .NET

framework provides a DPWS stack. However, it turned out that the stack is being

contained on the MS .Net Micro Framework which made it incompatible with the

other stacks available for OPC-UA and NEsper since they need .NET framework

3.0. For that reason an in-house DPWS stack was developed in order to subscribe

support WS-Eventing in the implementation. This would avoid having an ad-hoc

solution for overall integration.

Table 11: Selected tools for development

Name Functionality

OPC-UA .NET v1.01 Connecting to OPC-UA servers for

event and notification subscriptions

NEsper CEP/ESP Data aggregation and event

processing platform.

DPWS .NET (In house) WS-Eventing compliable stack able

to discover and subscribe for relevant

events.

Ignition OPC-UA server Act as gateway for legacy PLC

systems. Map devices on a navigable

address space

Windows SQL server 2005/2008 Event logging for historical analysis

3.2 CEP Monitor functional architecture

The architecture design intends to take advantage from the benefits of CEP. The

overall design consists of a funnel like structure where the events are filtered to

deploy actions and messages that extract information out of data. Following an

Object Oriented approach, the functionality of the monitor such as configuration,

external connectivity and processing was located within function blocks. The blocks

are clustered together with internal interfaces. Each component provides interfaces

for integration among other function blocks in the architecture. This approach allows

distributability of the system by defining interfaces between blocks.

63

The monitor architecture structure was designed based upon a combined analysis

of technologies, tools and techniques identified on the technology selection and the

requirements of the implementation use case. Each tool provides specific connectors

that allow the technologies to match into a coherent architecture. Founded on the

native composition of the CEP engines, the central component in this architecture is

the event processor. Considering the basic components of the CEP architecture, the

CEP should contain input adapters in order to route information towards the

processing engine.

Available ESB solutions provide functionality such as translation, routing, and

integration of heterogeneous systems. NEsper allows integration to enterprise service

buses via JMS and JMX. However, DPWS and OPC-UA already provide a standard

communication middleware making the use of the service bus redundant in a factory-

shop floor environment. Nonetheless, an input event manager component is needed

in order to manage subscriptions, event translation and, event registration to the CEP

engine. To ensure runtime flexibility for rule definition, the event manager and

processing engine requires of a configuration component to set up configuration of

the rules, event registration, event transformation, output configuration and routing.

Event Processing Service

(CEP)

Configuration UI

In
p

u
t
e

v
e

n
t
m

a
n

a
g

e
r

O
u

tp
u

t
e

v
e

n
t
m

a
n

a
g

e
rEvent source

Event source

Event source

In
p

u
t

a
d

a
p

te
r

In
p

u
t

a
d

a
p

te
r

In
p

u
t

a
d

a
p

te
r

Rule container

EPL rule

EPL rule
O

u
tp

u
t

a
d

a
p

te
rs

Rule action

Database

Rule action

TriggersTriggers

O
u

tp
u

t

a
d

a
p

te
rs

Figure 35: CEP Monitor functional architecture

Closely following the CEP architecture, four main function blocks were defined

in order to provide accessibility to heterogeneous events. From Figure 35, starting

from left to right, the first module identified is the input event manager. Its

functionality consists in the interaction with the CEP to transform events into an

understandable format for the processing engine. This module configuration has to

navigate and register the events available from data sources. Event registration is

crucial for the CEP in order to identify the type of event is handling. Events with

same body name in the message would be treated the same even though the event

64

source is different. Hence, this module gives a unique name to events for preventing

“event confusion”. The next component is the event processing service. This

component receives events from the input manager and matches them into rules.

Once a rule is matched, a rule action is triggered. The rule action may calculate,

transform, route or generate complex events for output adapters. For historical event

analysis and event logging, the processor provides database connectivity. This also

allows transforming the passive nature of the databases into active event based

behavior. The output adapter manager takes events and data generated by the event

processor and routes it into a specific output adapter. The output adapters can be

proprietary connections, interoperable Web Service or even an OPC-UA server.

Finally a UI configuration module is required in order to govern the properties of

each other module allowing flexible configuration of rules and actions. Table 12

describes in detail each of the components found in the functional architecture.

Table 12: Functional description of the architecture

Component Functionality description

Event source Provide an eventing mechanism for data exchange

Input event manager Subscribe for events on behalf of the input adapter

 Interface with the Configuration UI

 Manage input adapter configuration

Input adapter Receive information from event sources

 Transform event into internal data format

 Route event into the CEP engine

Rule container Create a pool of rules for multiple rule matching

EPL rule Define the business logic of the system via rules

 Pattern detection and data aggregation

Rule action Define extra business logic for post-processing

Configuration UI Provide UI for event subscription

 Provide UI for EPL rule definition

 Provide UI for rule action scripting

 Provide UI for CEP initialization and configuration

Processing engine Host the rule container for rule management

 Receive events and match it against rules

Output adapter

manager

 Receive complex events from the rule actions

 Manage output adapters for external connectivity

Output adapter Interface with external systems

65

4. Implementation

This chapter describes in detail the technical architectural and experimental

implementations of this work. Each of the components designed for the

implementation of the CEP-based monitor.

4.1 Monitor implementation

This section describes the tool implementation characteristics and functionality

as well as the relation between components and its technical structure.

4.1.1 Event manager implementation

As previously mentioned, an ESB’s could be used to route and transform events.

Nevertheless, OPC-UA and DPWS already gives a middleware for system

integration in a factory floor domain. For that reason, an event manager was

implemented giving the functionality of a micro ESB to homogenize events from

OPC-UA and DPWS.

NEsper CEP allows processing of POJO, MAP and XML input events. With that

in mind, SOAP messages incoming from DPWS-enabled devices are fully

compatible and they can be processed directly without any event transformation. In a

similar way OPC-UA XML encoding also is compatible with the processor.

However, two main issues are involved in this approach. One is that OPC-UA

binary would not be supported since the response is not natively in XML. Thus,

wrapping this information in a semantic language is required. And the most

significant issue is the “event confusion”. The CEP engine gets confused by having

XML events without a unique main XML element. Considering SOAP to have an

envelope as main element, the CEP engine would not be able to recognize events

from different sources. For that reason, the event manager should wrap the events

into a uniquely named XML element in order to avoid this situation. Each input

adapter wraps the events on arrival. The following subsections will describe in detail

the technical architecture of each adapter.

NEsper requires event schemas for event registration. The GUI developed for the

event manager, allows the monitor administrator to subscribe to events from the

input adapters and automatically register the events. The input manager generates

unique event names by combining endpoint information with the event name. For

instance, considering the case that a DPWS-device contains the address

192.168.2.100 and that it exposes an event called ItemTransferOut. The name of the

event would get internally transformed into ItemTransferOut2100 before registration

and submission to the CEP engine, this considering that every endpoint does not

contain an event of a similar name. This practice solves the issue of “event

confusion” and allows the registration of multiple events.

66

Figure 36 shows a detailed concept map diagram of the event manager

functionality. The event manager provides on set up the registration information to

the CEP engine whilst routing the wrapped events on runtime from the event sink to

the CEP engine. The generation of CEP events follows a similar transformation than

the schemas. Using the metadata of the incoming notification is possible to build the

corresponding event that would match the schema’s main element.

Figure 36: Event manager concept map

4.1.1.1 OPC-UA input adapter

OPC-UA manages subscriptions via standardized service sets. Therefore, an

OPC-Client capable of navigating thought the address space was implemented for

accessing to the desired nodes that contains the data of interest. OPC-UA V1.01

.NET stack serializes the notifications and makes them available with the notification

and monitoredItem objects in the Quickstart client implementation. The event can be

converted into a CEP event type by wrapping the message contained in these objects

with XML. Figure 37 shows an example of the attributed contained in an address

space node of OPC-UA. The wrapping of the events should be done with the least

information as possible taking in consideration that not all the information of the

notification is useful for the monitoring application.

67

In the device level, the OPC-UA notifications are triggered on value change. This

translates in notifications containing a publish timestamp, a value, and several other

attributes containing session information and subscription. The solution of this work

implements a static wrapping; the OPC-UA input adapter only wraps the timestamp,

ID and value in order to mimic the elements contained in the ItemTransferOut event

defined in CAMX specifications. A more dynamic and automatic event wrapping

would be needed in case of selecting different nodes on the address space with

different attributes. This could be possible by reading the information model of the

OPC-Server; however it is out of the scope of this work.

Figure 37: OPC-UA to XML wrapping

4.1.1.2 DPWS input adapter

DPWS enables devices to expose operations that can be subscribed to. The

DPWS input adapter possess a custom Configuration UI that allows WS-Dynamic

Discovery, WS-MetadataExchange and WS-addressing, The UI allows to display the

operations described in the WSDL files and subscribe to the desired events. On

event subscription, the event manager is notified to register the newly subscribed

event. On notification arrival, the input adapter transforms the event from SOAP to

plain XML to forward it to the CEP engine.

Differently from OPC-UA, DPWS notifications come in SOAP format.

However, as mentioned previously, this format brings problems with the CEP

engine. To overcome this, the message is parsed using XPATH. After that, the

elements are wrapped with a unique identifier based on the main element of the

event and the event metadata such as the event endpoint source. Figure 38 depicts

the transformation made in the DPWS input adapter once the message arrives to the

event sink.

68

Figure 38: SOAP message and internal CEP Event

4.1.1.3 Processing engine implementation

The NEsper CEP engine is the foundation of the event-based manufacturing

system monitor. This specific CEP provides routing, processing and post-processing

capabilities for incoming data based on rules and rule actions. These rules can be

defined via UI that sets up all the components needed for initializing the processing

unit. However, before start-up, the CEP engine goes through a process of

configuration. The configuration consists on several steps that are mostly made

through the configuration UI: EPL statement definition, validation of EPL statements

with the event registry, definition of the actions triggered by EPL statements and

finally initialization the engine. Explained as a sequence, first the user defines EPL

statements and actions in the configuration UI, after that, the CEP engine then loads

the registered events from the configuration file generated by the event manager.

Afterwards, the EPL statements are validated with the schemas to detect elements

that may not be included in the event. Initialization of the CEP is concluded if the

validation returns success. The CEP engine cannot initialize if any rule fails to

validate. This ensures that the rules are matching the expected events.

Figure 39: Concept map for CEP configuration and rule composition

The statement actions extend the UpdateListener class of NEsper API which

updates every time the related rule is matched. The action definitions are in charge of

69

routing and post-processing as well as implementing output adapters. Results of the

EPL statements are placed in EventBeans that can be accessed via getter methods in

the UpdateListeners Figure 39 shows a concept map for configuration and rule

definition.

The processing engine also provides connectivity to databases. This is done via

EPL statements. However, database connection and drivers should be handled during

the configuration phase. EPL just applies queries to databases. For more information

of EPL statements see Appendix B.

4.1.2 Output adapter implementation

There are three methods how the WS Output adapter may operate. The first

method consists in describing all of complex events in a WSDL. This requires of

dynamically building this contract on CEP configuration. The second requires

configuring a client that invokes a service in the consumer. The third method

requires of a generic set of operations described in a WSDL that provides to the

customer information on CEP available complex events. Differently from the first

one, this requires of consumer invocation. This last approach defies the concept of

EDA.

Figure 40: Output adapter description

The output adapters are directly associated to the actions registered in an EPL

statement. Once a rule is matched, the action associated with the rule will generate a

complex event. The complex event has to be available for other systems to consume.

For this reason and considering the interoperability that Web Service technologies

provide, A WS output adapter allows consumers to subscribe to the complex events

generated. The implementation made use of .NET WCF WebMethods for generating

an endpoint connection. Complex events generated within the UpdateListener inside

the action were exposed as one-way operations.

70

4.1.3 Configuration model description

The configuration is divided in two main sections: source configuration and CEP

configuration. During source configuration, the UI triggers the input adapters for

discovery and connection to data sources. It also displays the available messages in

order to select and subscribe. The DPWS input adapter is configured to load the

WSDL file, parse the service description and notify to the DPWS input adapter UI

about operations available for each source. The OPC-UA UI displays the address

space of the server. It allows subscription to nodes using the monitoredItem and

Subscription service sets. The CEP configuration consists in the setup of statements,

actions and registration of the actions to the specific EPL statement. The

actionListener is configured using C# plain classes. An on-the-fly compiler was

developed using the Reflection libraries of .NET in order to use C# as scripting code.

This provided the flexibility to load actions in runtime without compiling each time

an action is changed. A more detailed configuration process is depicted in Figure 41.

Figure 41: Deployment and configuration model

4.1.4 Runtime technical description

Runtime functionality becomes simple once the system is configured. Having

extense configuration instead of complex runtime functionality is a tradeoff that

benefits the process monitoring and increases its reliability in the end.

During runtime the monitor receives notification from heterogeneous event

sources. The event-based monitor input adapters act as a router while transforming

71

notifications for the CEP. All notifications going through the CEP are match against

rules. The business logic contained in the Action Listener is triggered when the

rule’s pattern is matched. Finally the listener directs the complex event into an output

adapter for further distribution of complex events into visual components of a

consumer. In cases when the complex events have to be fed back into the processor,

there are two approaches. The first consist in an EPL statement containing the

INSERT INTO clause that internally routes the event results into another EPL rule.

The second approach is to feed back the event using the SendEvent operation of the

CEP engine factory within the business logic of the ActionListener.

Figure 42: Platform functionality

4.2 Experimental implementation

The monitoring application was tested using a Flexlink Dynamic Assembly

System (DAS). DAS products consist of modular factory solutions for assembly,

inspection, testing and repair of products. The system main feature is the modularity

of its standard components that can interconnect with each other for reconfiguration

and scalability to meet production demands. Some of the modules available consist

of robot cell, workstations, conveyors, buffers and lifters. Figure 43 shows some of

the solutions provided by Flexlink. DAS 30 middle segment was the only module

used during this experimental study.

Figure 43: Flexlink products

72

4.2.1 Test bed

The module used for the test scenario consists of a DAS 30 middle segment. This

particular module consists of two workstations, a main line, a middle lifter and a

long conveyor used for coupling with other DAS products. Each workstation

consists of three conveyors from which two are cross-conveyors. This later type of

conveyors allows the pallets to turn 90 degrees for routing. The main line segment

also consists of two cross-conveyors and a middle single direction conveyor. The

middle lifter can transport the pallet to 4 different heights from which other modules

can be interconnected. Each conveyor segment is being controlled and monitored by

an INICO S1000 which is a DPWS enable device.

Figure 44: Test bed configuration

 A robot is located at one of the workstations. The robot is controlled with a

Nematron PCT-5800 controller. This particular kind of controller connects to other

components via MODBUS-over-Ethernet. However, an Ignition OPC-UA server

was used to access information instead of creating single input adapters for each

communication protocol. OPC-UA server solutions already provide modules for

legacy system connectivity, for that reason creating input adapters for the CEP-based

monitor would be unnecessary.

Each conveyor segment generates transport events. The transport events consist

of ItemTransferOut event as described by the CAMX (IPC-2541). Event messages

contain information about the dateTime, laneID and itemInstanceID. However, since

in this case this system will be monitoring the same product in the same line, these

last two values will be fixed. Differently from DPWS, the OPC-UA server exposes

73

in the address space the variables and outputs of the PTC-5800. A specific output of

the controller describes the process status of the robot. The notifications generated

by the OPC-Server contain a timestamp and a value that describes process start and

process end. Figure 45 describes the test bed scenario in detail.

Figure 45: Test bed description [Garcia 11]

4.2.2 Use case definition

Conveyor system testing and system performance analysis requires of precise

monitoring systems for an accurate detection of faults and productivity rates

respectively. The use case for this study involves monitoring of a DAS 30 based

manufacturing line for electronic assembly. During installation of DAS 30 systems

there are commonly physical miss alignments between conveyor systems. This

affects to efficiency of a pallet to transfer from one conveyor segment to another

generating unwanted delays. Furthermore, electronic assembly operations are only a

single task within the whole production chain, for that reason, productivity rates

must be generated on a monitor for system performance notification to other

operations of the production chain as well as for operator personnel.

Endurance tests are commonly performed to detect flaws in the system, as well to

verify the consistency in the process performance and system installation success. In

this experimental study the system under observation is processing constantly a

product in a loop sequence as shown in Figure 45. The system is orchestrated using a

Business Process Execution Language (BPEL) script. Events generated must be

74

received by the monitor and processed to notify performance indicators to the clients

of the monitor.

The monitor implemented must analyze the pallet transfer timings to calculate

the lap times based on single events generated by the production line. Moreover, the

monitor has to notify whenever a pallet transfer takes more time than the expected.

For this, complex events containing lap times should be generated as well as

complex events with average lap times. Finally flaws must be detected and notified.

4.2.3 Tests performed

Four main tests were prepared to fulfill the requirements of the use case defined

in this chapter and to evaluate the monitor capabilities for data aggregation and

processing:

Monitor testing

This test validates the usability of the monitor for the use case. Subscription and

connectivity is checked as well as the behavior of the monitor with sample events.

An INICO S1000 was configured to submit notifications with different rates by

changing the analog input of the device. Overall outcome from these analyses is the

definition of the capabilities and pitfalls of the monitor.

Lap time calculation

This test proves the use of the monitor for detection of patterns and aggregation

of data on a manufacturing environment. The generated events incoming from each

conveyor segment are processed using EPL for generation of complex events

containing the aggregated timestamp values of each TransferOut event in the system.

The information contained in the complex event must inform the user about the

processing lap times.

The test bed described previously defines a system which natively does not

possess any message that provides the overall lap time of each production lap. For

that reason, the monitor should aggregate the events that can be aggregated to obtain

the data needed for this calculation. In this case the EPL shown in Program 2 was

configured to detect the lapTime complex event.

The EPL selects all of the TransferOut events of the conveyors and robot station.

On runtime the events are matched against a pattern that causally detects when a full

circle is complete. The pattern consists of causal operators (->) that detects whether

the sequence of events has happened. On detection, an action containing getter

methods is triggered. The business logic of the action takes the times filtered from

each event and adds it up. The outcome is later posted as a notification in the CEP

configuration UI to show the calculation.

75

INSERT INTO
 lapTime
SELECT

A.TimeStamp as T1,
B.TimeStamp as T2,
C.TimeStamp as T3,
D.TimeStamp as T4,
E.TimeStamp as TR,
F.TimeStamp as T5,
G.TimeStamp as T6,
H.TimeStamp as T7,
I.TimeStamp as T8

FROM PATTERN [every
(A = TransferOut1Evt263 ->
B = TransferOut1Evt247 ->
C = TransferOut1Evt237 ->
D = TransferOut1Evt244 ->
E = RobotStationTransferOut ->
F = TransferOut1Evt228 ->
G = TransferOut1Evt222 ->
H = TransferOut1Evt230 ->
I = TransferOut1Evt240)]

WHERE E.Value = “True”
Program 2: EPL statement for lap detection

Average Lap time calculation

This test consists in the recursion of the lapTime complex event. The output

generated has to aggregate values and notify subscribed systems about the average

lap time of the last 5 laps. This test proves the recursive features of the monitor for

higher level data abstraction.

Feeding back the events from one statement to another is done by adding the

clause INSERT INTO on the EPL statements. When doing this, a second rule can be

defined for evaluating the average time every five instances of the complex event

generated in the previous test. Recursiveness of the CEP engine allows several rules

to be fed back internally into other rules without having to code input and output

adapters. In this case, lapTime complex event becomes a lapTimeAvg complex event.

Program 3 shows the EPL configured to detect five instances of the lapTime

complex event.

SELECT *,
Count (*) as myCount

FROM
lapTime.win:length_batch(5)

HAVING
Count (*) = 5

Program 3: EPL statement for detection of five lapTime complex events

76

The first clause defines a counter as well as selects all the information inserted by

the lapTime event. The second clause creates a length batch that allows only 5

events to be cached by the processor. This is important in order to clean the

UpdateListener for new calculations. Finally the HAVING clause triggers the action

by expecting the counter to be equal to five.

Flaw detection

This test proves the capabilities of the monitor to use its post-processing capabilities

to notify about flaws in the system. The circulating pallet generates TransferOut

events on each conveyor segment. The calculation of the difference of the

TransferOut timestamp of segment A against the TransferOut timestamp of conveyor

B can result in detection of conveyor misalignments that prevent the pallet to flow

smoothly. This is done after the lap complex event is generated, getting the filtered

results of the pattern matching and calculating time differences between each

conveyor segment interaction.

For this test, the script shown in Program 4 was registered to the EPL rule defined by

Program 2. This algorithm is executed every time the rule is matched. This script

calculates the transitions of each conveyor interaction. A threshold was defined to

detect if any transition takes more than 8 seconds to transfer. If the transition is

higher than this threshold a notification will be published.

// Get all times from the EPL rule results

Time[1] = (Double)eventBean.Get(“T1”);

Time[2] = (Double)eventBean.Get(“T2”);

Time[3] = (Double)eventBean.Get(“T3”);

Time[4] = (Double)eventBean.Get(“T4”);

Time[5] = (Double)eventBean.Get(“TR”);

Time[6] = (Double)eventBean.Get(“T5”);

Time[7] = (Double)eventBean.Get(“T6”);

Time[8] = (Double)eventBean.Get(“T7”);

Time[9] = (Double)eventBean.Get(“T8”);

Double threshold = 8;

Double previousValue = 0;

Double transition = 0;

foreach(double T in Time)

{

transition = T – previousValue;

If (transition > threshold)

{

 deployAlarm(“conveyorFlaw”);

}

 previousValue = T;

}

Program 4: UpdateListener script for detection of transition flaws

77

5. Results

This chapter presents the experimental results from the tests specified during

chapter 4 as well as a discussion of the conceptual results reached within this study.

5.1 Experimental results

5.1.1 Overall monitor functionality and limitation test

During this test, the system was set up for receiving a constant amount of events

from external sources at different rates. Performance, configuration and overall

limitations of the system were analyzed in this section.

The CEP-based monitor provides several UI that allows configuration of the

several function blocks. Subscription to events can be successfully done using the

Event Manager UI which allows navigating and subscribing to heterogeneous event

(see appendix C for more information on monitor initialization via UI). Receiving

events from different sources shows that a transformation layer is needed after event

subscription in order to process them a homogeneous manner. However, this

transformation requires processing time and restricts the engine’s high throughput.

Subscriptions to OPC-UA and DPWS are covered with rich clients in the UI;

nonetheless, the monitor relies on the SUO’s event description. The monitor can

only see what the SUO informs. If a SUO does not provide rich variety of events, the

monitor is incapable of executing calculations and inferences. On the other hand, the

monitor can navigate on the SUO’s events and form rules that can be derived into

KPI calculation or flaw detection. Also if the SUO does not have a certain event, the

monitor can generate this notification by aggregating other associated events.

All components were deployed over the same CPU hindering the processing

power. However, the main focus of this work consists of aggregation of

heterogeneous information and performance is more suitable for future work rather

than results for this implementation. Orchestration engine as well as the monitor

were deployed on a single i7 2.53 Mhz CPU with 4 GB of RAM. Due to that only 30

evt/sec were able to be processed with this implementation. In any case, the expected

quantity of external events for this test consists of 0.5 evt/sec. Due to that, the system

was reliable to apply further tests to solve the use case problem. If needed, future

distribution of the monitor into a dedicated server may improve the performance of

the overall processing power.

Having WS-output events requires building one-way operations for each rule

defined in the event processor. This implementation only allows up to two rules that

give two complex events. The operations are fixed, however it suffices the proof-of-

concept for the use case defined.

78

5.1.2 Lap time test results

The EPL statement defined in section 4.2.3 detects every lap sequence and

triggers successfully the configured action. The processing engine calculates and

notifies the aggregated data into a visual dashboard. Results show that the monitor

can aggregate and abstract events in a non-intrusive manner. Aggregated data from

incoming events is shown in Figure 46. The 6
th

 lap time shows a neglectable

increment in the average time probably due to the non-deterministic behavior of the

network.

Figure 46: Data aggregation for lap time calculation

Results show an average value of 36.1 seconds per lap. The monitor is able of

measuring performance of the line. However, there has to be a transition analysis to

understand the behaviors of each pallet transaction and validate if the lap time results

are correct.

5.1.3 Average lap test results

This test can be considered as a follow up of the previous test. The action

registered to the EPL defined in Program 3 is triggered every five times the lapTime

rule is matched. Aggregated values are successfully displayed on a dashboard

showing average times. Figure 47 shows the dashboard displaying a sample

aggregated value for the average lap times. As seen from Figure 46, from lap 1 to lap

5 the values are around 35.98 seconds giving a coherent value with the previous test

results.

Recursiveness of the system allows having rules only for detection while other

rules can be use for action. In this way, less action listeners will be required. This

feature of Nesper is located in the ESP part of the API. The event generated by

lapTime is inserted into the stream generated in this case lapTime stream which any

EPL statement can query.

1 2 3 4 5 6 7 8 9 10 11 12

Lap time 35,96 35,93 35,99 36,04 36,00 36,28 36,04 35,96 35,93 35,99 36,04 36,00

35,7000

35,8000

35,9000

36,0000

36,1000

36,2000

36,3000

36,4000

Se
co

n
d

s

Process performance

79

Figure 47: CEP output Visual dashboard

5.1.4 Flaw detection test results

Finally this test aims to validate the results of the first test. The lapTime rule

successfully filtered the information needed from the ItemTransferOut events of each

conveyor segment. The action triggered calculated the transition times of each

conveyor interaction showing some considerable delay in the 5
th

 transition as shown

in Figure 48. Similar conveyor transactions returned an average of four seconds for

transaction. The threshold of 8 seconds was broken on the fifth transaction,

triggering a notification. This output showed that results of the first test were not

optimal. Using the information from the complex event, two mistakes were found

after a brief inspection of the conveyor system. The first being a misalignment of the

conveyor, making the pallet to slip for some seconds before being successfully

transfer. And other located within the controller that contained a WAIT statement

placed by mistake. Corrections were made and a second run was performed to

compare results. As expected the system showed a significant change on the 5
th

transition, lowering the transaction time around three seconds as shown in Figure 49.

As seen from the results, the monitor cannot specifically tell the right location of

the flaw. The events generated by the SUO are just expressive enough to threat the

conveyor as a black box where a flaw exists but no specific cause is found. Therefore

the monitor’s flaw detection capability is directly dependant on the expressiveness of

the SUO.

80

Figure 48: Flaw detected on the 5
th

 transition of the pallet

Figure 49: Transition times after system correction

81

5.2 Conceptual results

Disparity between problems stated and results are presented in order to

corroborate the usefulness of the outcome of this work. This section presents the

conceptual results obtained by answering each of the questions stated in chapter 1.

 How to simplify integration of different heterogeneous information sources into

a single event-processing system?

As shown by this work, event-driven approaches are under the spotlight within

the research community. Web-based protocols for system integration in manufactory

also follow this tendency. Due to this, heterogeneous integration of event sources can

be tackled in different levels. Having direct contact with the information sources

makes the middleware protocols for system integration, such as OPC-UA and

DPWS, to be located in the first level. Legacy systems and devices can be exposed in

a standard format to others using these protocols. However, interoperability among

protocols is not yet complete. Complex event processing architectures allow

heterogeneous systems to connect via input adapters. These input adapters can be

considered as a second level for heterogeneous system integration. Translation and

homogenization operations convert event formats into a processable format for a

CEP. These operations can be made within an input adapter, or via an ESB. Both

approaches can be valid, however, study of this work shows that ESB, would be an

overstated solution in a factory shop-floor level due to the integration capabilities of

DPWS or OPC-UA based on middleware. Even so, the work presented had to

combined concepts from both approaches. ESB solutions provide translation features

that allow messages to be homogenized as well as a standard connectivity approach

for high-level systems. Input adapters are customizable; but still do not provide a

standard method for message transformation. Overall, the implementation presented

achieved heterogeneous connectivity on a factory shop level. Scaling the automation

pyramid for integration with the event-processor is no longer required due to the

trends that communication technology is following. The levels of automation have

no longer boundaries with one to another. This means that hierarchical view for

integration is no longer necessary due to the omnipresence of information exposed

by Message Oriented Middleware (MOM). Due to this, further expansion to systems

located in higher-layers would only require of an input/translation implementation to

integrate external systems to the event processor.

 How to automate event aggregation to provide new higher level event

generation?

Automatic event aggregation refers to a skill of a system to perform calculation

of incoming events by its own capabilities. The state-of-the-art presented shows that

event aggregation is currently managed by rule engines. CEP provides reactivity

82

features to a system allowing it to be aware of situations and generate alarms and

high-level events that notifies other systems

Higher level events are commonly constituted by low level events. The main

difference between these two is that low level events contain data while high level

events contain information. Data becomes information when set on a certain context.

CEP provides context-sensitive rules from which situations can be detected. For

instance, gathering information from simple timestamp value and aggregating it into

production performance KPI’s is an example of converting data into information

within a temporal context for production. In this case, the architecture developed

during this case allows higher event generation by defining rules containing

operations and patterns that offer the user capabilities to add rules to provide context

and transform data into information.

 How to leverage the factory-shop floor information?

Similarly as the previous question, factory-shop floor information can be

leveraged by converting low-level events such as sensor data into high-level events.

Rules apply aggregators and operations to transform data received into events and

alarms which notify on system changes within a context. Complex event detection

solves the “IT-blindness” caused by factory-shop floors by digesting the information

to other interested systems. At the same time, this technique allows reduction of the

event cloud volume into a more manageable and rich event cloud. In this work,

results showed an event cloud reduction rate of 1/9. This means that from 9 low-

level events containing data, one high-level event was produced. The significant

reduction of this quantity allows other systems to obtain messages when relevant;

this diminished the quantity of messages in the network adding reliability into the

monitoring system.

 What components could create a framework that can allow event management?

Event managers perform the task of composing, route and, process events in a

message oriented system. Four generic components were identified in this work to

create a fully functional event manager. To begin with, the first component has to

handle subscription and translation operations. Subscription as well as

homogenization of events allows processing engines to perform operations and

further distribution of events. These operations have the possibility to be

implemented completely within input adapters, or act in combination with an ESB as

backbone for event input and transformation. Independently of the selected

approach, the input adapter is vital components for the framework. Furthermore, the

second component identified consists of configuration interface. Commonly, event

managers require of offline configuration that define the operations and flow routes

that events must follow inside and outside the framework. Third component consists

of the processing engine. The engine loads rules configured and applies them to each

83

event received. This components as seen in the results, takes charge of the runtime

and even real-time aggregation and correlation. Without such component, the actual

event generation and routing is not possible. The fourth and last component consists

of output adapters. Feeding high-level events to consumers is the end goal of the

event manager. Similarly as the input adapter this component must translate the

events generated to an understandable format for external systems.

In summary, as shown in the architecture described within this work, these four

generic components are the minimum requirements for the successful deployment of

an event management platform. As results showed in the previous chapter, the tests

performed successfully demonstrate data aggregation, event routing and event

acquisition. Moreover, other concepts such as recursiveness and causality showed

potential in future implementation and research for situational and context

awareness.

84

6. Conclusions

This chapter evaluates the results and approaches taken during this work. In

addition it presents future work and research opportunities that can extend this work.

6.1 Implementation conclusions

Due to years of experience and dominance in the manufacturing market, OPC is

a de facto specification for interoperability of systems in factory-shop floor systems.

OPC-UA is constantly expanding and evolving by joining forces with other

specifications such as MTConnect and PLCopen. However, its architecture defies the

concept of the internet of things where each device can be accessed directly by any

system without the need of a gateway such as the one OPC-UA introduces. For that

case, DPWS enters the scene by including potential to each component to express

their operations using cross-platform Web Services. In other words, both

specifications provide the two most important means of communication in the

factory shop floor level. Furthermore, instead of being considered as competitors

they should be seen as complements due to their strengths and drawbacks. The

implementation presented successfully provides a mean for interoperability between

these two major specifications in a monitoring perspective. The implementation

breaks the boundaries between the specifications by marshalling their message

outputs with a processing unit that leverages information. High-level systems

currently rely on legacy services and connectors meaning that the transition towards

a fully DPWS and OPC-UA compliance is complicated. A middleware

implementation such as a Complex Event Processor has been proved to convey all

the information into high-level events that can be seen by other systems without

wasting their processing power deciphering and integrating thousands of messages

generated by factory shop floors. This justifies the means of this implementation

proposal to aggregate and convert the message into an internal message, due to the

fact that not all systems posses capabilities to understand each other. Moreover CEP

provides tools for transformation, routing, processing and generation of messages

which allows it to re-structure any message. Additionally, CEP allows messages

from DPWS can be sent to OPC-UA and vice versa proving the concept of

interoperability between specifications in an application level.

6.2 Result conclusions

The use case presented has demanded from the monitoring system to receive and

process semantic data incoming from heterogeneous systems in a factory shop

environment. The test results support the assumptions taken during the architectural

design of this implementation achieving all of the goals imposed. The outcome

shows the monitor reacting instantly whilst preventing information lag for notifying

the responsible and handling the situation accordingly.

85

Data aggregation becomes a crucial factor as exposed by the results of this work.

A substantial amount of messages are generated in the factory floor level. Not all of

the messages generated are relevant for a monitor or other system. These messages

as seen in the tests can be aggregated and leveraged for other systems whilst

reducing message transactions that cause networks to overload.

Additionally, it can be concluded that production losses can be decreased by

increasing system’s reactivity. Detecting transfer delays between pallets can save

several seconds during production cycles. KPI values that evaluate the status of the

manufacturing line trigger alarms that allow corrections. The corrections performed

translate into reduction of production cycles can be at the same time translated into

several thousand Euros saved per batch in terms of energy and efficiency.

Finally, the CEP-monitor implementation has been successfully deployed and

tested within a manufacturing environment. The added value of this work can be

summarized in increased reactivity, awareness, and, improved user experience for

configurability of business rules.

6.3 Future work and final thoughts

This work boundary consists in the interaction of OPC-UA and DPWS in a shop-

floor level monitoring. Further incorporation of Business Integration Solutions (BIS)

such as ESB can leverage all of the monitoring messages into ERP, MES, or other

production systems allowing supervisory control to be more reactive, whilst at the

same time allowing the system to react to more complex situations due to the

visibility reach of the monitor.

Rules and actions can be validated for syntactical errors; however semantic

errors cannot be detected. This restricts the configuration user to input rules that are

semantically correct. Rule validation in this monitor can be only done via trial and

error. Further formalization and validation methods are needed for testing rule

behaviors on the monitor.

Finally, Event-driven self-corrective systems could also be derived from the

capabilities of CEP. Its real-time processing capabilities open the possibility to use it

as an event-driven compensating control component for system corrections. This

could be further evaluated on a real-time demanding situation for self-corrective

actions that could increase process reliability.

86

REFERENCES

[Agarwala &

Schwan 06]

S. Agarwala, K. Schwan, “SysProf: Online Distributed

Behavior Diagnosis through Fine-grain System Monitoring”,

Distributed Computing Systems, ICDCS 2006. 26th IEEE

International Conference on Distributed Computing Systems,

pp. 8, 2006

[Balasubramanian et al.

09]

K. Balasubramanian et al., “Remote control of digital factory

through web”, SSST 2009. 41st Southeastern Symposium on

System Theory, pp.368-372, 2009

[Barbon et al. 06] F. Barbon et al., “Run-Time Monitoring of Instances and

Classes of Web Service Compositions,” in IEEE International

Conference on Web Services (ICWS’06), 2006.

[Barringer et al. 04] H. Barringer, A. Goldberg, K. Havelund, and K. Sen,

“Program Monitoring with LTL in EAGLE”, in Proceedings of

18th International Conference on Parallel and Distributed

Processing Symposium, 2004.

[Bayer 09] Bayer, Gerhard, “The Synergy of SOA, Event-Driven

Architecture (EDA), and Complex Event Processing (CEP)”,

presented at the International SOA conference 2009.

[Bernhard 02] S. Bernhard, “On-line and indirect tool wear monitoring in

turning with artificial neural networks: A review of more than

a decade of research”, Mechanical Systems and Signal

Processing, Volume 16, Issue 4, July 2002, Pages 487-546

[Bodden 05] E. Bodden, “J-LO A Tool for Runtime-Checking Temporal

Assertions,” Master’s thesis, RWTH Aachen University, 2005.

[Bohn et al. 06] H. Bohn et al., “SIRENA – Service Infrastructure for Real-

time Embedded Networked Devices: A service oriented

framework for different domains”, ICONS, pp. 43, 2006

[Brenna et al. 07] L. Brenna et al., “Cayuga: a high performance event processing

engine”, International conference on Management of data

(SIGMOD ’07).

[Burke 06] T. J. Burke, “OPC Foundation – OPC DevCon”, OPC DevCon,

10-12 October 2006, Munich, 2006.

[Cachapa et al. 10] D. Cachapa et al., “Monitoring functions as service

composition in a SoA-based industrial environment”, IECON,

36th Annual Conference on IEEE Industrial Electronics

Society, pp.1353-1358, 2010

[Cannata et al 08] A. Cannata et al., “SOCRADES: A framework for developing

intelligent systems in manufacturing”, IEEM, IEEE

International Conference on Industrial Engineering and

Engineering Management, pp.1904-1908, 2008

[Carvalho & Simoes 11] N. Carvalho, A. Simoes, “OML: A scripting approach for

manipulating ontologies”, CISTI, 6th Iberian Conference on

Information Systems and Technologies, pp.1-6, 2011

87

[Cassandras &

Lafortune 99]

C.G. Cassandras, S. Lafortune, “Introduction to Discrete Event

Systems”, The Kluwer International Series on Discrete Event

Dynamic Systems, Kluwer Academic Publishers, September

1999.

[Collado et al. 08] Collado, E. M., Cavia Soto, M. A., Delamer, I. M.,Lastra,

J.L.M., "Embedded XML DOM Parser: An Approach for

XML Data Processing on Networked Embedded Systems

with Real-Time Requirements", Journal on Embedded

Systems., 2008

[Colombo et al. 10] G. Candido et al., “SOA at device level in the industrial

domain: Assessment of OPC UA and DPWS specifications”,

INDIN, 8th IEEE International Conference on Industrial

Informatics, pp.598-603, 2010

[Cormen et. al 01] T. H. Cormen et al., “Introduction to Algorithms”, Second

Edition. MIT Press and McGraw-Hill, Section 22.3: Depth-

first search, pp. 540–549, 2001

[DAWAC 05]

IAEA, “Data processing technologies and diagnostics for

water chemistry and corrosion control in nuclear power plants

(DAWAC)” IAEA-TECDOC-1505, Vienna, 2006

[Delamer & Lastra 06] Delamer, I.M., Lastra, J.M.L., "Self-orchestration and

choreography: towards architecture-agnostic manufacturing

systems", Advanced Information Networking and

Applications, AINA’2006

[Delamer & Lastra 07-1] Delamer, I.M, & Lastra, J.M.L. "Evolutionary multi-objective

optimization of QoS-Aware" Engineering Applications of

Artificial Intelligence ,pp. 593-607, 2007

[Delamer & Lastra 07-2] Delamer, I.M., Lastra, J.M.L., "Loosely-coupled Automation

Systems using Device-level SOA", IEEE International

Conference on Industrial Informatics ,Vol.2, pp. 743-748, 2007

[de Souza et al. 08] L. de Souza et al., “SOCRADES: A Web Service Based Shop

Floor Integration Infrastructure”, The Internet of Things,

Springer Berlin / Heidelberg, Vol., no., 4952, pp.60-67, 2008

[Eckerson 11] W. Eckerson, “Performance Dashboards: Measuring,

Monitoring, and Managing your business”, Book, John Wiley

& Sons, 2
nd

 ed., 2011

[Eftimov 06] E. Eftimov, “Complex Event Processing – An Emerging

Paradigm in Business Intelligence, Security and Monitoring

and Control”, iSec Consulting, 20

[Fei et al. 06] L. Fei, K. Lee, F. Li, and S. P. Midkiff, “Argus: Online

Statistical Bug Detection,” in Proceedings of Fundamental

Approaches to Software Engineering 2006 (FASE’06), pp.

308–323, Springer-Verlag, 2006.

[Goodloe & Pike 10] A. Goodloe, L. Pike, “Monitoring Distributed Real-Time

Systems: A survey and future directions”, Available at: NASA

Center for AeroSpace Information, 2010

http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://en.wikipedia.org/wiki/Introduction_to_Algorithms

88

[Grubic et al. 08] S. Grubic et al., “A Survey on Testing and Monitoring

Methods for Stator Insulation Systems of Low-Voltage

Induction Machines Focusing on Turn Insulation Problems”,

IEEE Transactions on Industrial Electronics, vol.55, no.12,

pp.4127-4136, Dec. 2008

[Gyllstrom et al. 08] D. Gyllstrom et al., “On Supporting Kleene Closure over Event

Streams”, ICDE, IEEE 24th International Conference on Data

Engineering, pp.1391-1393, 2008

[Han 03] Y. Han, Y.H. Song, “Condition monitoring techniques for

electrical equipment-a literature survey”, IEEE Transactions

on Power Delivery, vol.18, no.1, pp. 4- 13, Jan 2003

[Hannelius et. al 08] T. Hannelius et al., “Roadmap to adopting OPC UA”, 2008.

INDIN 2008. 6th IEEE International Conference on Industrial

Informatics, pp.756-761, 2008

[Hardy 08] S. F. Hardy, “A New Approach for The Millennium: Holistic

Manufacturing”, 2008

[Havelund & Roşu 04] K. Havelund, G. Roşu, “Efficient monitoring of safety

properties” , Springer Berlin / Heidelberg , International

Journal on Software Tools for Technology Transfer, vol. 6, pp.

158-173, 2004

[Hongliang et al. 09] W. Hongliang et al., “The CAN bus monitor system for the

three phase inverters,” Electrical Machines and Systems, 2009.

ICEMS 2009, pp.1-4, 2009

[Hou et al. 03] T-H. Hou et al., “Intelligent remote monitoring and diagnosis

of manufacturing processes using an integrated approach of

neural networks and rough sets” , Springer, Journal of

Intelligent Manufacturing , vol.14, no.2, pp.239-253, 2003

[isa 95] The Instrumentation, Systems and Automation Society,

“ANSI/ISA-95.00.01-2000: Enterprise Control System

Integration”, 2000.

[Izaguirre 11] M.J.A.G. Izaguirre, et al., "OPC-UA and DPWS

interoperability for factory floor monitoring using complex

event processing", INDIN, 9th IEEE International Conference

on Industrial Informatics, pp.205-211, 2011

[Jammes & Smit 05] F. Jammes, H. Smit, “Service-oriented paradigms in industrial

automation”, IEEE Transactions on Industrial Informatics,

vol.1, no.1, pp. 62- 70, 2005

[Jammes et al. 05] F. Jammes et al., “Orchestration of service-oriented

manufacturing processes”, ETFA, 10th IEEE Conference on

Emerging Technologies and Factory Automation, vol.1, pp.8

pp.-624, 2005

[Jammes et al. 07] F. Jammes et al., “Service-Oriented Device Communications

Using the Devices Profile for Web services”, AINAW, vol.1,

pp.947-955, 2007

89

[Jardine et al. 05] A.K.S, Jardine, et al., “A review on machinery diagnostics and

prognostics implementing condition-based maintenance”,

Mechanical Systems and Signal Processing, Volume 20, Issue

7, October 2006, Pages 1483-1510

[JbossCom 11] Jboss Community, “Drools expert user guide”, Tool

documentation, 2011

[Jovane et al. 09] F. Jovane et al., “The manuFuture road: towards competitive

and sustainable high-adding-value manufacturing” Edition

illustrated, Springer, pp. 12-15, 2009

[Karnoskous et al 07] S. Karnouskos et al., “Integration of SOA-ready networked

embedded devices in enterprise systems via a cross-layered

web service infrastructure”, ETFA, IEEE Conference on

Emerging Technologies and Factory Automation, pp.293-300,

2007

[Karnouskos et al. 09] S. Karnouskos et al., “Towards the Real-Time Enterprise:

Service-based Integration of Heterogeneous SOA-ready

Industrial Devices with Enterprise Applications” , 13th IFAC

Symposium on Information Control, 2009

[Kellner & Fiege 09] F. Kellner, L. Fiege, “Viewpoints in Complex event

processing”, DEBS,2009

[Khoshkbarforoushha el

al. 10]

A. Khoshkbarforoushha et al., “Towards a Metrics Suite for

Measuring Composite Service Granularity Level

Appropriateness”, SERVICES-1, 6th World Congress on

Services, pp.245-252, 2010

[Krauze et al. 10] J. Krause et al., “Factory-wide predictive maintenance in

heterogeneous environments”, WFCS, vol., no., pp.153-156,

2010

[Kusunoki et al. 98] K. Kusunoki et al., “A CORBA-based remote monitoring

system for factory automation”, ISORC, Proceedings. 1998

First International Symposium on Object-Oriented Real-time

Distributed Computing, pp.396-402, 1998

[Lastra & Delamer 06] Lastra, J.M.L., Delamer, I.M., "Semantic web services in

factory automation: fundamental insights and research

roadmap", IEEE International Conference on Industrial

Informatics ,Vol.2, pp. 1-11, 2006

[Leitao 09] P. Leitao, “Agent-based distributed manufacturing control: A

state-of-the-art survey, Engineering Applications of Artificial

Intelligence”, Volume 22, Issue 7, Distributed Control of

Production Systems, October 2009, Pages 979-991

[Li et al. 09] B. H. Li et al., “Cloud manufacturing: A service-oriented new

networked manufacturing model”, Computer integrated

manufacturing systems, vol. 16, No. 1, pp. l -9, 2010.

[Liotta 02] A. Liotta et al., “Exploiting agent mobility for large-scale

network monitoring,” Network, IEEE , vol.16, no.3, pp.7-15,

May/Jun 2002

90

[Luckham & Vera 95] D.C. Luckham, J. Vera, “An event-based architecture

definition language,” Software Engineering, IEEE

Transactions on , vol.21, no.9, pp.717-734

[Luckham & Frasca 98] D. C. Luckham, B. Frasca. “Complex Event Processing in

Distributed System”. , 1998. Print.

[Luckham 02] D.C. Luckham, The power of events, Addison Wesley ,

Boston, San Francisco, New York et al., 2002.

[Luckham 04] D.C. Luckham, “The Beginnings of IT Insight: Business

Activity Monitoring” [Available Online]

http://www.ebizq.net/topics/bam/features/4689.html, 2004

[Luckham 05] D.C. Luckham, “Why we need a new technology to manage

Event Driven Systems”, [Available Online]

http://www.complexevents.com. 2005.

[Luckham 06] D.C. Luckham, “What’s the Difference Between ESP and

CEP?” Complex Event processing article , 2006

[Magid et al. 10] Y. Magid et al., ” Industry Experience with the IBM Active

Middleware Technology (AmiT) Complex Event Processing

Engine”, DEBS, 2010

[Marechaux 06] J-L. Marechaux, “Combining Service-Oriented Architecture

and Event-driven architecture using an enterprise service bus”,

IBM developer work, 2006

[Microsoft 11] Microsoft SQL server 2008 documentation, [Available online]

http://msdn.microsoft.com/enus/library/ee391536.aspx

[Ming et al. 09] L. Ming et al., “Event-driven service oriented framework for

integrative serviceability management of networked

manufacturing systems,” AIM, IEEE/ASME, pp.392-397,

2009

[monALISA 04] C. Legrand, “MonALISA: An Agent based, Dynamic Service

System to Monitor, Control and Optimize Grid based

Applications”, Proc. Of the Intl. Conf. on Computing in High

Energy and Nuclear Physics, pp. 907-910, 2004

[Moritz et al. 09] G. Moritz et al., “Devices Profile for Web Services in Wireless

Sensor Networks: Adaptations and enhancements”, ETFA,

pp.1-8, 2009

[Moritz et al. 10] G. Moritz et al., “encDPWS – message encoding of SOAP

Web Services”, PERCOM , pp.784-787, 2010

[Moritz et al. 10-2] G. Moritz et al., “Encoding and Compression for the Devices

Profile for Web Services”, WAINA , pp.514-519, 20-23 April

2010

[OASIS 06] OASIS, “Reference Model for Service Oriented Architercture

1.0”, OASIS standard, 2006

[OPC-UA 6] OPC Foundation, “OPC UA Part 6 – Mappings Specification ”

, http://www.opcfoundation.org, 2006

[OPC-UA 3] OPC Foundation, “OPC UA Part 3 – Address Space Model

1.00 Specification”, http://www.opcfoundation.org, 2006

http://www.complexevents.com/2006/08/01/what%e2%80%99s-the-difference-between-esp-and-cep/
http://www.complexevents.com/2006/08/01/what%e2%80%99s-the-difference-between-esp-and-cep/

91

[OPC-UA 4] OPC Foundation, “OPC UA Part 4 – Services 1.0

Specification”, http://www.opcfoundation.org, 2007

[OPC-UA 5] OPC Foundation, “OPC UA Part 5 – Information Model 1.00

Specification”, http://www.opcfoundation.org, 2006

[Panetto & Molina 08] H. Panetto, A. Molina, “Enterprise integration and

interoperability in manufacturing systems: Trends and issues”,

Computers in Industry, Volume 59, Issue 7, Enterprise

Integration and Interoperability in Manufacturing Systems,

September 2008, Pages 641-646

[Park 10] J-I. Park, “A smart factory operation method for a smart grid”,

CIE, pp.1-5, 2010

[Pellizzoni et al. 08] R. Pellizzoni et al., “Hardware runtime monitoring for

dependable cots-based real-time embedded systems”,

RTSS’08: Proceedings of the 29th IEEE Real-Time System

Symposium, pages 481–491, 2008.

[Perrochon et al. 99] L. Perrochon et al., “Event Mining with Event Processing

Networks”, PAKDD’99, LNAI 1574, pp.474-478, 1999

[Philippe et al. 00] J. Philippe, et al., “Two Taxonomies of Distributed Network

and System Management Paradigms,” Emerging Trends and

Challenges in Network Management, S. Erfani and P. Ray,

Eds., Plenum, 2000.

[Qichao et. al] L. Qichao et al., “Metamodel Recovery from Multi-tiered

Domains Using Extended MARS,” COMPSAC, IEEE 34th

Annual on Computer Software and Applications Conference,

pp.279-288, 2010

[Rosales et al. 10] P. Rosales et al., “Leveraging business process management

through complex event processing for RFID and sensor

networks,” CIE, 40
th
 International Conference on Computers

and Industrial Engineering, pp.1-6, 2010

[Schleipen 08] M. Schleipen, “OPC UA supporting the automated engineering

of production monitoring and control systems,” ETFA, IEEE

International Conference on Emerging Technologies and

Factory Automation, pp.640-647, 2008

[Schroeder et al. 08] K. Schroeder et al., “A Factory Health Monitor: System

identification, process monitoring, and control”, CASE , IEEE

International Conference on Automation Science and

Engineering, pp.16-22, 2008

[Seilonen et al. 11] J. Seilonen, “Service-Oriented Application Integration for

condition-based maintenance with OPC Unified Architecture”,

INDIN, 9th IEEE International Conference on Industrial

Informatics, pp.45-50, 2011

[Sleman & Moeller 08] A. Sleman, R. Moeller, “Integration of Wireless Sensor

Network Services into other Home and Industrial networks;

using Device Profile for Web Services (DPWS)”, ICTTA, 3rd

International Conference on Information and Communication

http://www.opcfoundation.org/

92

Technologies: From Theory to Applications, pp.1-5, 2008

[Tanenbaum & van

Steen 06]

A.S. Tanenbaum, M. van Steen, “Distributed Systems:

Principles and paradigms”, Prentice Hall 2
nd

 edition, 2006

[Tang et al. 07] C.S. Tang et al., “A Generic System Monitoring Technique by

Using Similarity Recognition on the Flowing Entity Pattern,”

Natural Computation, ICNC, vol.5, pp.389-393, 2007

[Tibco 07] D. Adams, “Predictive battlespace”, Tibco whitepaper, 2007

[Trinitis 00] J. Trinitis, “Interoperability Support in Distributed On-Line

Monitoring Systems”, High Performance Computing and

Networking , Springer Berlin / Heidelberg , vol.1823, pp. 261-

269, 2000

[Valipour et al. 09] M.H. Valipour, et al., “A brief survey of software architecture

concepts and service oriented architecture”, ICCSIT, 2
nd

 IEEE

International Conference, pp.34-38, 2009

[Van Hoof 07] J. Van Hoof, “SOA and EDA: Using Events to Bridge

Decoupled Service Boundaries”, SOA Magazine,: 2007

[Van Tan et al. 09] V. Van Tan et al., “A SOA-Based Framework for Building

Monitoring and Control Software Systems”, Emerging

Intelligent Computing Technology and Applications, Springer

Berlin / Heidelberg, Vol. 5722, pp. 1013-1027, 2009

[Vidackovic et al. 10] K. Vidackovic et al., “Business-Oriented Development

Methodology for Complex Event Processing”, DEBS, 2010

[Vieira et al. 03] G. E. Vieira, et al., ”Rescheduling Manufacturing Systems: A

Framework of Strategies, Policies, and Methods” Springer,

Journal of Scheduling, no 6, pp. 39-62, 2003

[Virta et al. 2010] J. Virta et al., “SOA-Based integration for batch process

management with OPC UA and ISA-88/95”, ETFA, IEEE

Conference on Emerging Technologies and Factory

Automation, pp.1-8, 13-16, 2010

[Walzer et al. 08] K. Walzer et al., “Event-driven manufacturing: Unified

management of primitive and complex events for

manufacturing monitoring and control”, WFCS, IEEE

International Workshop on Factory Communication Systems,

pp.383-391, 2008

[Weidong & Warren 96] C. Weidong, D.S. Warren, “Computation of stable models and

its integration with logical query processing”, IEEE

Transactions on Knowledge and Data Engineering, vol.8,

no.5, pp.742-757, Oct 1996

[W3C 04] W3C, “Web Services Architecture”, Technical report, 2004

[W3C 01] W3C ,” Web Services Description Language (WSDL) 1.1” ,

http://www.w3.org/TR/wsdl, 2001

[W3C 06] W3C ,”Web Services Eventing- Specification” ,

http://www.w3.org/Submission/WS-Eventing/, 2006

[Xiuqin et. al 09] J. Xiuqin et al., “Common and distinct neural substrates of

93

forward-chaining and backward-chaining syllogistic

reasoning”, CME, ICME International Conference on Complex

Medical Engineering, pp.1-6, 2009

[Zackman 87] J.A. Zackman, “A framework for Information Systems

Architecture” , IBM Systems Journal, vol.26, pp.276-292, 1987

[Zeeb et al. 09] E. Zeeb et al., “Service-Oriented Architectures for Embedded

Systems Using Devices Profile for Web Services”, AINAW,

vol.1, pp.956-963, 2007

[Zhaohua et al. 07] R. Zhaohua et al., “AgeMoS: An Agent-Based Generic

Monitoring Approach for Self-Management Systems”,

CSCWD, pp.452-457,April 2007

94

APPENDIX A – CEP platforms

PROGRESS APAMA

Apama event driven architecture is an event processing platform that is capable

in a bi-directional way to handle and process messages between the platform’s

correlator engine and the event source. It ensures real-time operational

responsiveness to fast moving events of any kind, leveraging a platform that

combines flexibility, performance and interoperability. Apama consists of four main

components for the design of event processing modules:

Apama’s corretator: provides real-time execution of event processing

scenarios, monitoring the events for patterns identified within Apama scenarios.

Apama’s Studio: is an Eclipse-based Integrated Development Environment

(IDE) for development, debugging, testing, profiling, back testing and deployment of

Apama applications.

Apama Data player: Supports the replay of event data that has been captured in the

event database. Used for complex historical analysis of the events.

Progress Apama

Features

 Graphical development tools accessible to business users

 Event processing language (Apama’s EPL). Available natively and in Java, it

delivers the deepest range of Complex Event Processing (CEP) available to the

market.

 Sophisticated analytics with native support for temporal arguments.

 Sub-millisecond response to detected event patterns.

 Highly scalable, patented event-driven architecture, supporting tens of

thousands of scenarios.

 Auto-generation of visually appealing user dashboards.

 Flexible event replay for testing new event scenarios and analyzing existing

ones.

Benefits

 Apama’s Integration Adapter Framework (IAF) provides bi-directional

connectivity to different event sources, messaging infrastructures and

databases. IAF is complemented by a functionally-rich set of APIs for

integration with customer-specific event data sources and application

environments.

 An integration environment that can synchronize RFID data streams with

business events captured from different middleware systems, applications and

other endpoints - without disrupting the current IT infrastructure.

Infrastructure connectivity

 Messaging transports: TCP/IP, UDP, CORBA, Java RMI, JMS (SonicMQ,

IBM MQ Series, WebMethods).

 Databases: ODBC, JDBC (for SQL Server, Oracle, DB2, MySQL, etc...) ,

KDB+ (KX Systems).

95

Coral 8

Coral 8 CEP engine is designed for high-volume, low-latency applications where

data analysis must occur in a question of milliseconds. It also provides important

information to key in a timely fashion or drive instantaneous actions. Coral 8

architecture consists in three main components:

Coral8 Server: The Coral 8 Server is the high-throughput, low-latency runtime

server for Coral8 applications. It offers features to deploy, integrate, and manage

Coral8 applications. It comes with a number of packaged adapters for common high-

speed data sources such as market data, messaging software and databases.

Coral8 Studio: The Coral8 Studio is a graphical environment for developing,

testing, and deploying Coral 8 components and modules. The Studio also acts as a

central management console for distributed network of Coral 8 Servers.

Coral8 Portal: The Coral8 Portal is a dashboard and visualization server that

allows users to dynamically query and work with real-time CEP output. It offers a

self-service environment that puts real-time information from CEP applications in

the hands of business users.

Coral 8

Features

 Transform large volumes of quickly changing and historical data into

immediate insight, with details that drive in-the-moment decisions,

recommendations, and actions.

 Configurable enterprise-class clustering and high availability. State persistence

and guaranteed messaging options can be configured. This enables fast, flexible

clustering for mission-critical environments without any extra application

programming.

 Uses Continuous Computation Language (CCL) as event processing language.

CCL has a SQL-like syntax.

Benefits

 Output is sent at the speed appropriate to the use. Continuous queries can send

results or alerts to fast-moving charts.

 Includes a large number of built-in adapters that connect to live data sources,

such as market and trade data, Internet/e-commerce interactions, RFID data,

transactions, sensor data, and others.

Programming Interfaces

 Publish-Subscribe API – used to stream event data into the CEP server, and to

subscribe to output streams from the CEP server. Available for C++, Java and

.NET. The Coral8 platform also includes SDKs for Perl and Python.

 User Defined Function Interface – used to link external function libraries that

can be called from within expressions in an event model running on the CEP

server.

 On-Demand Query Interface – allows you to run SQL queries against retained

data sets (windows) in the CEP server. Delivers a snapshot as a response (SQL

queries for an image followed by updates can be issued using the pub/sub API).

Price

96

 License cost is around 20k per core.

Esper/Nesper

NEsper is a CLR-based component for building CEP and ESP engines. NEsper is

based upon the Esper baseline, but includes customizations that are specific to the

.NET CLR. NEsper was created to make it easier to build CEP and ESP applications.

NEsper is open-source software available under the GNU General Public License

(GPL) license. NEsper and Esper share the same grammar meaning that the two

environments to be compatible

Esper supports a wide variety of event representations, such as Java beans, XML

document, legacy classes, or simple name value pairs. It can be easily embedded in

an existing Java application or middleware to add real-time event-driven capabilities

to existing platforms without paying high serialization cost or network latency for

every message received and action triggered.

Once event queries and pattern statements are registered in the Esper core

container, events flow in at real-time speed and trigger arbitrary logic bound to the

engine in the form of Plain Old Java Objects. This enables leveraging any existing

Java technology and ensures easily connection to existing SOA building blocks.

Esper and Nesper

Features

 Esper exceeds over 500 000 event/s on a dual CPU 2GHz Intel based hardware,

with engine latency below 3 microseconds average (below 10us with more than

99% predictability) on a VWAP benchmark with 1000 statements registered in

the system - this tops at 70 Mbit/s at 85% CPU usage. Esper also demonstrates

linear scalability from 100 000 to 500 000 event/s on this hardware, with

consistent results accross different statements.

 Esper is an Event Stream Processing (ESP) and event correlation engine (CEP,

Complex Event Processing). Targeted to real-time Event Driven Architectures

(EDA), Esper is capable of triggering custom actions written as Plain Old Java

Objects (POJO) when event conditions occur among event streams

 Business process management and automation (process monitoring, BAM,

reporting exceptions, operational intelligence)

 Finance (algorithmic trading, fraud detection, risk management)

 Network and application monitoring (intrusion detection, SLA monitoring)

 Sensor network applications (RFID reading, scheduling and control of

fabrication lines, air traffic)

Benefits

 OPEN SOURCE

Programming Interfaces

 Esper for Java and NEsper for .NET

Price

 Free

97

Tibco Business Events

BusinessEvents is another complex event processing (CEP) software that enables

organizations to identify patterns among the event cloud that surrounds their

business. It allows constructing a UML-based model to describe the applications,

servers and services. The models define the relationship between assets.

The CEP rule engine is based on industry-standard RETE protocol, and it can

support simultaneous application of thousands of rules to millions of events. The

modeling of states of events, describes how the application and services interact as

part of activities and processes. A state machine captures and stores in an in-memory

database the status of events relative to causes, roles and expected behavior for

instant correlation against other events. Data can persist for any length of time

depending on how long an event is relevant. Figure 10 shows the Tibco’s framework

for event processing.

Tibco Business Events

Features

 UML-Based Modeling: A UML-based state model describes how applications

and services interact as part of activities and processes.

 RETE-Based Rules Engine Based on industry-standard RETE protocol for

familiarity and stability, the Business Events rules engine has been recompiled

and tuned to support simultaneous application of thousands of rules to millions

of events.

 Events Capture Business Events can capture and process events being routed

across TIBCO's integration and messaging infrastructure as well as other

vendors' implementations of JMS and other integration platforms including

IBM's MQSeries messaging software.

Benefits

 Accelerates response to threats and opportunities by automatically identifying

obscure but important relationships between seemingly unrelated events before

they result in situations that impact customer experience or the bottom line.

 Improves resource allocation and problem resolution by helping organizations

prioritize situations that require the most urgent attention based on a

sophisticated analysis of likely outcome and secondary or indirect impacts.

 Applications include service assurance, fraud detection, logistics, compliance

and security.

98

APPENDIX B – NEsper EPL

NEsper EPL statement expressiveness for rule composition

Manufacturing monitors are changing from single sensor/single indicator towards

more descriptive dashboard solutions. Current HMI solutions display KPI values and

process variables that are calculated by aggregating information from distributed

sources. However this aggregation is not done real-time and due to this powerful

aggregators and historians may be used for calculation. In the case of CEP, the

aggregation is done on data arrival. Because of this, EPL statements should be

expressive enough to match these aggregators functionality while allowing real-time

processing. NEsper provides a rich EPL for rule definition that proves to be adequate

for different conditions. The EPL rules are defined using a DSL. Due to this, NEsper

as many other processors could be confused as a Deterministic Engine; However

Most of CEP solutions follows the forward chaining inference method. In addition,

currently there are no standard languages for event processing; this leads developers

to define DSL with different focuses and levels of expressivity.

NEsper EPL follows the native structure of SQL providing the following known

clauses while extending others for pattern recognition. The main clauses found in the

EPL vocabulary are the explained in Table 13.

NEsper do not limit its expressiveness with lone EPL clauses, it provides time

windows views, operators and expressions that extend this clauses for an improved

expressiveness. For manufacturing purposes, the expressiveness of EPL statements

should be adequate to calculate KPI’s, detect flaws in the system, and generate

alarms triggered by thresholds. To justify the expressiveness of NEper EPL in this

domain, it is necessary to assume these simple cases and categorize the clauses and

operators required to perform these operations.

The WHERE and HAVING clauses are used to filter events. By setting low and

high parameters, this clause gives the possibility to act as KPI thresholds. The

SELECT allows aggregation operators to expand its expressiveness, due to this it can

be used aggregate data and calculate KPI values. Furthermore, data aggregation can

be further extended by taking advantage of the Event-Condition-Action paradigm of

CEP solutions. A rule triggers an action which has the aggregation business logic.

This approach could be used for KPI formulas or operations where the EPL do not

satisfy. Flaws from equipment and bottleneck can be detected based on status

notification of equipment. The PATTERN clause offers to the business logic of the

CEP the capability to detect causal logical and temporal sequences of events. Using

this clause it’s possible to detect and even infer flaws in the system by looking for

sequences inside cloud of events.

99

Table 13: NEsper EPL clauses

Clause Examples Description

SELECT SELECT a.custId,

sum(a.price + b.price)

Select clause grabs specific

elements of an event. Aggregation

is possible by using expressions

common pre-define aggregators

(avg(), stddev() , sum())

FROM FROM pattern [every

a=ServiceOrder->

b=ProductOrder(custId=

a.custId)

Defines the event of interest for the

rule. It is extended by the pattern

cause in case of multiple events of

interest.

WHERE/

HAVING

where a.name in ('Repair',

b.name)

Filters events

INSERT INTO insert into

DoubleWithdrawalStream

select a.id, b.id, a.account

as account, 0 as minimum

from pattern [a=Withdrawal -

> b=Withdrawal(id = a.id)]

Input events into other streams to

increase abstraction.

GROUP BY select symbol, sum(price)
from TickEvent
group by symbol
having sum(price) >

var_threshold

Divides the output of an EPL

statement into groups

PATTERN pattern [every

a=ServiceOrder->

b=ProductOrder(custId=

a.custId)

Extendend by logical and/or causal

or lifecycle operators for pattern

matching (->, until, and, or, every)

OUTPUT select sum(price) from
OrderEvent.win:time(30 min)
output snapshot every 60
seconds

Control or stabilizes the rate at

which events are output and

to suppress output events

SQL tag select custId, cust_name
from CustomerCallEvent,
sql:MyCustomerDB ['select
cust_name from Customer
where cust_id = ${custId} ']

Allows combination of database

results with event streams and

clouds

100

APPENDIX C – Monitor configuration

and initialization

Figure 50: Event manager UI description (OPC-UA tab)

Figure 51: Event manager UI description (DPWS tab)

101

Figure 52: CEP deployment

Figure 53: OPC-UA server discovery and connection

102

Figure 54: Subscription for OPC-UA notifications

Figure 55: OPC-UA notification XML conversion

103

Figure 56:DPWS device discovery

Figure 57: DPWS event subscription

104

Figure 58: CEP engine UI (Event schemas loaded for EPL definition)

Figure 59: Event type registration for CEP engine

105

Figure 60: Rule ActionListener script UI

Figure 61: CEP initialization

106

Figure 62: Complex event generation

