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Future manufacturing systems will require to process large amounts of complex 

data due to a rising demand on visibility and vertical integration of factory floor 

devices with higher level systems. Systems contained in higher layers of the business 

model are rapidly moving towards a Service Oriented Architecture, inducing a 

tendency to push Web Technologies down to the factory floor level. Evidence of this 

trend is the addition of Web Services at the device level with Device Profile for Web 

Services and the transition of OPC based on COM/DCOM communication to OPC-

UA based on Web Services. DPWS and OPC-UA are becoming nowadays the 

preferred options to provide on a device level, service-oriented solutions capable to 

extend with an Event Driven Architecture into manufacturing systems. This thesis 

provides an implementation of a factory shop floor monitor based on Complex Event 

Processing for event-driven manufacturing processes. Factory shop monitors are 

particularly used to inform the workshop personnel via alarms, notifications and, 

visual aids about the performance and status of a manufacturing process. This work 

abstracts the informative value of the event-cloud surrounding the factory shop floor 

by processing its content against rules and formulas to convert it to valuable pieces 

of information that can be exposed to business monitors and dashboards. As a result, 

a system with a generic framework for integrating heterogeneous sources was 

reached, transforming simple data into alarms and complex events containing a 

specific context within the manufacturing process. 
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1. Introduction 

This chapter provides a solid background on the thesis work domain preparing 

the reader to understand the problematic with a clear definition of the problem and 

the justification of work. The work is described by setting objectives followed by a 

methodology which intends to achieve such objectives defining assumptions and 

limitations. 

1.1 Background 

Since the industrial revolution, manufacturing industries has taken an important 

role in economy with a significant effect on the environment and society. Nowadays, 

only in the EU, there are around 430 thousand manufacturing enterprises providing 

28 million people with jobs and generating about 20% of the EU output [Jovane et 

al. 09]. These enterprises are the motor of one of the most important industries in 

Europe, however, they require of constant tuning in order to maintain themselves 

against the constant increase of demand that is being subjected by the market. 

In the last decades, there has been an important progress in Information 

Technology (IT) which has directly modified the internal functionality of 

manufacturing companies. The introduction of IT in combination with classic 

manufacturing systems has evolved into smart automated systems capable to react 

automatically to certain production specific situations to increase productivity. Such 

systems are the result of an attempt to counteract the demands and requirements of a 

constantly evolving market. Due to this, many companies have invested greatly in 

automation technologies to provide more intelligence into their systems while at the 

same time generating the need for monitoring their automated processes. The 

introduction of Supervisory Control and Data Acquisition (SCADA) provided 

visibility to such processes by generating human-machine interfaces, giving a 

graphical interpretation of the process status. SCADA systems entirely rely on data 

acquisition from field devices to do these representations. Throughout the time, 

many industrial communication protocols have been developed due to the lack of 

standardization in the field. Many vendors have developed their own communication 

protocols that do not allow interoperability with others, a huge problem at the time of 

trying to interoperate with devices and applications from different vendors started. 

Higher integration costs and programming experts were needed in order to integrate 

to different systems. The need for interoperability made Ole for Process Control 

(OPC) to appear as a specification to standardize secure communication between 

applications and field devices [Hannelius et al. 08]. Costs for integration time were 

reduced considerably, leading vendors to adopt this specification.  

Recently, web-based technologies have become widely used and reliable, 

drawing attention within the factory automation domain. In particular, Web Services 
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(WS), which are the preferred technologies to implement a Service-Oriented 

Architecture (SOA) according to Jammes & Smit [2005]. WSs provide flexibility 

and interoperability of distributed systems regardless of the vendor architecture, 

suiting perfectly to the tendency of having decentralized intelligent components 

implemented throughout different layers of the business model. 

Nowadays, many Business Intelligence (BI) and Manufacturing Execution 

Systems (MES) solutions are available, and many of them rely on SOA paradigm. 

Because of this, there has been an inclination for vertical integration of SOA. This 

caused a transition of SOA into the lower levels of the automation layer. Evidence of 

this trend is the development of Device Profile for Web Services (DPWS) and Ole 

for Process Control- Unified Architecture (OPC-UA). Such protocols propose the 

addition of WS down into the device level as a result of the increasing capabilities of 

Programmable Logic Controllers (PLCs). WSs include event mechanisms to devices 

which can act as an interface for interoperability inside an enterprise, carrying 

valuable information about a process. Nonetheless, new challenges come across with 

these implementations due to an increasing amount of event data being generated 

which is surrounding the business IT systems creating a so called event cloud. 

Events contain information which sometimes is not relevant on its own and logging 

its data makes analysis more complicated. In the IT domain, events have been widely 

studied. Complex Event Processing (CEP) has been introduced, tested and adopted 

in monitoring tasks with the aim of avoiding the inaccurate task of analyzing 

substantial event logs manually, demonstrating to be a stable set of tools capable to 

filter, map and generate higher level events with more representative information of 

what is happening on a system [Luckham & Frasca 98]. 

Overall, SOA solves the interoperability and decentralization problems among 

applications by loosely-coupling components, while Event-Driven Architectures 

(EDAs) promises to extend SOA and complement the integration among other SOA 

based systems by coupling components with events [Van Hoof 07]. Extensive 

research is currently studying the possibility of a cross-layered enterprise visibility 

solution. Moving towards EDA has started a new need to implement complex event 

processing methods as automatic data aggregators for cross-layer data interpretations 

of many heterogeneous event sources in factory automation.   

1.2 Problem Definition 

Current market demands are pushing current automation systems to assume a 

position where visibility of every component of a company is needed, from process 

control up to business management. Product customization, maintenance, quality 

control and, business monitoring are some examples of requirements that pushes 

towards a holistic manufacturing monitoring which can provide a proper visibility 

[Hardy 08]. Due to this rising demand on visibility and vertical integration of factory 
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floor devices with higher level systems, future manufacturing systems will require to 

process large amounts of heterogeneous data describing different states and 

situations on different levels of a business.  

The bond between higher level systems and lower level systems is made 

currently by system experts. Meetings are held in order to take further actions across 

the layers of automation defined in ANSI/ISA-95 [Isa 95]. This non-automatic 

decision making and cross-layered monitoring of the current status of a business 

takes loads of valuable time. Information across layers is critical for manufacturing 

and it must be available at any time in any layer of the business model.  

The need to integrate and correlate information automatically across layers of the 

business model is arising. Transition from local monitors to a holistic monitoring 

solution is required, increasing the reaction speed a company to act accordingly to 

situations that can be triggered by different factors within a company. 

1.2.1 Justification for the work 

Integration of the different levels of automation for increasing visibility is a 

current topic of research. Factory floor systems are as well as Manufacturing 

Execution Systems (MES) and Enterprise Resource Planning (ERP) moving towards 

a Service Oriented Architecture. These systems together can construct what it is now 

the modern business architecture. This transition to SOA allows the integration of 

the relatively new device level SOA with the other higher level systems, this to 

improve a holistic visibility of an enterprise.  

SOA systems can be extended and interoperate with EDA [Van Hoof 07]. The 

inclusion of EDA in the automation model can provide a framework for horizontal 

and vertical integration of SOA based systems by including an event processing 

manager to handle the “cloud of events” which surrounds a business. Although event 

processing technologies has been already studied as solution of cross-layer visibility 

and control for Event Driven Manufacturing (EDM) [Walzer et al. 08]; 

interoperability among different factory-wide integration specifications is pending. 

This leaves a gap in the study of horizontal SOA integration on the device level. 

Furthermore, a more flexible implementation of SOA on factory floor can be 

achieved by adding up the benefits of different specifications [Colombo et al. 10]. 

Due to this, the inclusion of heterogeneous data aggregation and event processing is 

required in order to achieve a more flexible and complete integration of SOA based 

factory floor systems with the rest of the components distributed along the 

companies. 

1.2.2 Problem statement 

As previously mentioned, there is a need to enhance the enterprise visibility by 

aggregating data from heterogeneous sources within the factory floor level. A direct 
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connection of factory floor systems into higher level systems may lead to a state of 

“IT blindness”, due to the quantity of data generated at this level [Luckham 02] 

[Luckham 04]. This instead of helping will hinder the global visibility which is 

targeted. In order to provide better visibility to higher levels it is necessary to process 

hundreds of events incoming from the factory floor before making them available to 

other systems. Implementation of EDA and Event processing techniques can be 

introduced to overcome this situation, but at the same time it prompts the following 

questions which this thesis tries to solve:  

 How to simplify integration of different heterogeneous information sources into 

a single event-processing system?  

 How to automate event aggregation to provide new higher level event 

generation? 

 How to leverage the factory-shop floor information? 

 What components could create a framework that can allow event management? 

1.3 Work description 

1.3.1 Objectives 

1. Design and implementation of a mechanism for unification of event streams of 

heterogeneous systems into a common processing engine. 

2. Implementation of an event processing engine with automatic aggregation 

capabilities. 

3. Design and implementation of a framework for automatic web services / OPC-UA 

device integration with a complex event processor for improved visibility of the 

factory floor process. 

4. To define the principles for addition of new information sources on the factory 

floor 

5. The event processing engine should be capable of storing event information. 

1.3.2 Methodology 

Study and implementation of web based factory floor information systems 

A detailed study on integration protocols for factory floor information systems is 

done to understand similarities, benefits and drawbacks of each approach. In 

addition, a detailed analysis is made on current solutions available for event 

processing implementations on these to communication specifications. Finally, a set-

up of factory floor information systems in a distributed line is performed to establish 

the test bed for this thesis. 
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Selection of an event processing platform 

An extense research of available event processing platforms is done in order to 

compare their capabilities and select a platform that suits the integration approach. 

During this methodology step it has to be considered that some tools require 

licensing and not all the features might be available. Open source solutions may be 

suitable as well considering that performance is not on the scope of this thesis. 

Moreover, programming languages and input data formats also have to be well 

thought-out for fast prototyping for factory floor information system integration.  

Design and implementation of the event manager 

Based on the information gathered by the previous steps, the selection of 

technologies, tools and platforms is done in order to develop a processing engine 

capable of automatic event aggregation and processing. Afterwards, components of 

the proposed framework are implemented on a discrete manufacturing line to test its 

capabilities. 

Definition of requirements for factory floor system integration to the event 

management platform 

Considering the framework design, generic requirements are defined and mapped 

for the specification of a methodology to implement heterogeneous information of 

factory floor data into higher levels. 

Empirical study 

The empirical study was performed over a light assembly line. Such line consists 

of lifters, workstations, conveyors and cross-conveyors that are controlled with 

multiple devices that communicate with heterogeneous technologies. The devices 

provide subscriptions to notifications related to the process status. Notifications 

generated were submitted to a sink during process orchestration, pushed through 

complex event statements in a processing engine which filtered and aggregated such 

notifications for event patterning and relevant information extraction. 

Tests were performed in such system to detect complex situations extracted from 

atomic notifications as well as to prove the automatic registration of events from 

both communication technologies during the engine configuration process. 

1.3.3 Assumptions and limitations 

The current study applies for manufacturing systems composed of modular 

segments controlled with DPWS and OPC-UA communication technologies. The 

development scope does not go further than the automatic data aggregation for 

monitoring purposes using complex event processing. Event Processing Agents 

(EPA) were studied but not implemented during this development. 
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Assumption 1: Modular components in the manufacturing line must be able to 

provide subscription to notifications. 

Assumption 2: The manufacturing system is composed of two or more 

heterogeneous sources of notifications. 

Assumption 3: Notifications received contain more than a single value related to 

the process.  

Assumption 4: Orchestration of the process runs independently from the 

monitoring tool, no feedback is required to keep the process running. 

1.4 Thesis Outline 

 This thesis work is structured as follows. Chapter 2 presents a literature review 

containing concepts and technologies relevant for this work. Chapter 3 presents a 

methodology approach for the development of this work. Chapter 4 describes the 

technical implementation as well as the use case chosen for testing purposes. Chapter 

5 presents the results obtained for the tests performed. To finalize, Chapter 6 

presents conclusions, future work and final thoughts. 
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2. Literature review 

This chapter introduces technologies and tools related to this thesis work. 

Technologies within the scope of this study are described and explained with 

industrial examples made by the research community. Furthermore, the tools in the 

scope of this study consist of Event Processing technologies, its implementations and 

concepts will be covered in this chapter as well. 

2.1 Monitoring of distributed Manufacturing 

Systems 

The alignment of process performance and equipments state with business 

objectives has always been of top priority within the manufactory industry. Keeping 

track on process variables and performance is critical to analyze and predict the 

possible effects and deviations of these goals. Monitors are the main bridges between 

process and humans. Because of this, monitors are considered to be a critical part of 

any business process. Currently monitors have evolved in business applications as 

performance dashboards as explained by [Eckerson 11]. Such dashboards allow 

business people to monitor processes, analyze cause of problems and manage 

resources to improve decision making. But until now such applications have a rough 

connection with the layers of automation, limiting the visibility and crippling the 

reactivity of an enterprise. As mentioned by [Panetto & Molina 08, Karnouskos et al. 

09], proprietary solutions that currently exist to achieve enterprise integration are the 

main cause of this problem. Thus, a more heterogeneous enterprise integration and 

interoperability in manufacturing systems could be the solution to this problem. Such 

assertion has been the starting point and trend for future research focusing in 

aggregation and unification the information across the factory without compromising 

reliability and performance of the system. 

Early studies by Weaver [2001] show that Electronic commerce techniques have 

been previously used to solve the monitoring issues of Factory automation.  

Requirements such as universal data access, ubiquitous programming, data security 

and, user authentication can be solved using solutions borrowed from internet-based 

Electronic Commerce (EC) such as HTTP, IP, HTML and XML. In Weaver’s work, 

a web server was fed with factory information which later was later accessible by a 

web browser using java-applets showing a tendency of the time to move toward web 

environments for factory monitoring. This tendency has opened several research 

branches such as the analysis of current network and systems monitoring methods 

for implementation in Factory Automation and manufacturing domains [Park 10, 

[Balasubramanian et al. 09].  

The main contribution of this thesis work surrounds on a heterogeneous approach 

for monitoring of distributed automated manufacturing systems. Based on the main 
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trends previously explained, a review of current monitoring techniques is essential in 

order to scope, choose and implement the best technique/mode/architecture available 

for the realization of this work. However, a detailed classification is out of the scope 

of this work; however this will provide helpful input to the methodology for 

selection of the fittest approach.  

Since the nature of the manufacturing monitoring systems is application 

dependant, it is complicated to develop a taxonomic classification of these systems. 

Due to this, a short methodology as an attempt for analysis and classification of 

current monitoring works was applied. This methodology consisted in the research 

from several sources of information using several keywords related to factory 

monitoring to compile the work related to this area. Subsequently, the research 

results are filtered to the level of relevance in the field to finally highlight 

commonalities among the approaches. However, it must be considered as a coarse 

classification due to the extensive nature of this topic. It is only valid under the scope 

of this work which objective is the identification of available monitors for distributed 

systems. 

2.1.1 Classification of monitors  

Several works and publications have put in evidence that monitoring modes, 

techniques and, architectures tend to differ depending on the process or equipment 

demands, communication constraints and distribution of control as seen in different 

works [Goodloe & Pike 10, Leitao 09, Liotta 02, Bernhard 02, Han 03, Kusunoki et 

al. 98]. Due to this reason it is proposed to divide monitors in three identified 

classifications that contribute for later implementation decisions. 

2.1.1.1 Monitoring mode 

Classifying monitors by mode can be one of the proposed categories previously 

mentioned. Figure 1 depicts the hierarchy of monitoring types described by [Goodloe 

& Pike 10]. In this classification, the types of monitors are separated by the method 

of obtaining and handling data. Offline monitoring manipulates information once it 

has been collected from the process, making the required calculations while being 

disconnected from the process. On the other hand, online monitors focus on runtime 

and even real-time information for acquisition, processing and display of data. 

 

Figure 1: Monitoring modes as explained in [Goodloe & Pike 10] 
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Online monitoring can be divided in two sub classes as well. In one hand, Inline 

monitor proposes the addition of monitoring code within the execution code. In 

Havelund & Roşu [2004] work, they have proposed the use of inline monitoring for 

testing the finite execution trace of events generated by executing programs to detect 

errors. Using PathExplorer (PaX) as the monitoring environment, it allowed adding 

extra code in the algorithm execution program that allowed the identification of 

errors. According to the authors inline monitoring in this application has higher 

precision than offline monitoring due to the fact that one can know where the event 

comes from in the execution program. 

Alternatively, an outline monitor executes another external process for 

monitoring. Pellizzoni et al. [2008] gives a simple example of the use of online 

outline monitoring for Commercial-Off-The-Shelf (COTS) components. Runtime 

verification of the COTS peripherals can be achieved by the use of external hardware 

that is able to predict and detect disturbances in the transmission bus. In this case the 

hardware referred as monitor module; act as a non-intrusive external monitoring 

process. 

According to [Trinitis et al. 00 and DAWAC 05], online tools provide more 

benefits than offline monitoring. One of the benefits is that online monitoring is 

running in parallel while executing a process, hence it is possible to adjust and guide 

the trajectory of the processes during process execution. However this later is more 

expensive due to the needs of exclusive hardware and support for manipulation of 

the target systems making it a heavy system which lacks of portability. On the other 

hand offline diagnostics can provide more accurate results due to the time 

independence it has with the System under Observation (SUO) [Grubic et al. 08].  

Substantial research has been done due to the benefits of online monitoring 

[Barringer et al. 04, Bodden 05, Fei et al. 06, Barbon et al. 06]. In particular, Liotta 

[2002] on his work tries to define the real-benefit of using Mobile Agents (MAs) for 

monitoring of networks. His work defines an algorithm for network adaptability of 

agents following the premise that a distributed monitor can become fault-tolerant by 

dividing their task into several monitors, diminishing the probability to enter into a 

faulted state. Many other publications have later publish on this subject 

recommending the distribution of control and monitoring tasks as surveyed and 

analysed by [Leitao 09]. However the level of required adaptability is dependent on 

the dynamic behavior of the monitored system.  This leads to the fact that not always 

the most complex solution is the fittest in every case.  

A collection of seen advantages and disadvantages of different monitoring modes 

are shown in Table 1. 
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Table 1: Contrast of monitoring modes [Adapted from DAWAC 05] 

Monitoring 

mode 

Advantages Disadvantages Applicability 

Offline   More precise 

and complex 

algorithms can 

be applied 

 Results are useful 

only for time 

independent 

applications 

 Reaction is only 

possible with 

very slow 

processes 

 When no on-line monitor is 

available for certain 

parameter  

 The required frequency of 

analysis would induce more 

time for on-line monitor 

 The economical situation is 

not favourable to the on-line 

monitor and if the required 

frequency does not require a 

frequent value 

 Reliability, sensitivity or 

adequacy of the online 

monitor is not as good as the 

laboratory method. 

Online / 

Inline 

 Data can be 

processed 

during runtime 

 Simpler 

localization of 

flaws 

 

 Monitoring code 

is embedded with 

process code 

affecting 

performance 

 

 When high frequency of data 

generated allows early 

detection of anomalies 

 When risk of product 

contamination and human 

errors is reduced 

 When response needs to be 

fast 

 When some parameters 

cannot be measured by 

offline monitoring (grab 

sampling) 

Online/ 

Outline 

 Data can be 

processed 

during runtime 

 Better 

performance 

due to 

distribution of 

monitoring 

tasks 

 Robust data 

analysis 

without 

influencing the 

process 

execution 

 Better fault-

tolerance 

 

 More expensive 

implementations 

 Difficult to 

debug 
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2.1.1.2 Monitoring architectures 

Monitor architecture seem to depend on process requirements, reason why 

thousands of different architecture proposal exists. Even though several authors have 

tried to generalize the monitoring architecture of networks [Tang et al. 07 and 

Zhaohua et al. 07], different monitor architectures keep emerging to attack different 

problems. Some of them, heading towards a simpler implementation for less critical 

applications while other trying to bring performance and high fault-tolerance to 

applications such as hard real-time systems. The process in the end is the one that 

has to guide to a selection of a fitting architecture. Goodloe & Pike [2010] in his 

work describe three monitoring architectures to follow in future implementations, 

which based on his work; they cover most of the distributed monitoring approaches 

currently available. The categories proposed are consistent with other works found 

within the research community as seen in [Hongliang et al. 09, monALISA 08]. For 

the authors three base architectures are: Bus-monitor architecture, Single Process-

Monitor architecture and distributed Process-monitor architecture which will be 

explained using industrial state-of-the-art examples.  

Bus-monitor 

This architecture is the simplest of the implementations to be described. It 

consists in a silent monitor connected as part of the system reading messages through 

a bus. These monitoring architectures are commonly used to find faults in bus 

protocol messages or as well monitor performance of systems as in [Hongliang et al. 

09] where monitoring systems are being interfaced with a CAN bus interface 

allowing monitoring and control of the SUO.  However this architecture may 

interfere with the control messages of the system. One of the major drawbacks being 

also the low fault-tolerance, Nonetheless it requires the least hardware 

implementation making it in the least expensive approach to implement.  

Bus

Monitored system 

A

Monitored system

B

Monitored system

C

 

Figure 2: Generic bus monitoring architecture [Goodloe & Pike 10] 
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Single Process-Monitor 

As a resolution for the problems seen in the bus-monitor architecture, the single 

process monitor intends to solve the messaging interference between data messages 

and monitoring messages that may be caused by the violation of timeliness 

guarantees. The main difference comes in the addition of a dedicated monitoring bus. 

As a result, instead of having a single process sending data to a single monitor, 

multiple processes send monitoring information via a monitoring bus ensuring 

functionality of the monitored system. 

Implementations of this architecture propose to use different networks such as 

wireless sensor networks (WSN) for process monitoring. For example, [Ciancetta et 

al. 10] in his work shows a plug-n-play solution based on web services that consists 

on a dedicated network for monitoring while the system under observation contains 

its own control bus for process execution. 

Data bus

Monitoring bus

Monitored system 

A

Monitored system

B

Monitored system

C

 

Figure 3: Generic single process-monitor architecture [Goodloe & Pike 10] 

Distributed Process-Monitor 

This architecture proposes to distribute monitoring tasks among “guardians” that 

monitor different components of a process. These can communicate with each other 

allowing increasing fault-tolerance to a next level where the system under 

observation cannot interfere under any circumstances. Compared to the single 

monitor approach, reliability is potentially increased by the premise that the 

probability to fail of several monitors is less than one single instance monitoring the 

whole system.  

Implementations of this architecture are inclined to be of great scale and with 

variable number of composite monitored systems. monALISA [2004] is a good 

example of the latest massive deployment of agents globally. Based on JINI and 

Web Services technologies this architecture is able to provide complete monitoring, 
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control and global optimization services for complex systems. The high reach of 

scalability is determined by the capability of this system with a multi-threaded 

engine to host loosely coupled self-describing dynamic services. 

Data bus

Monitoring bus

Monitored system 

A

Monitored system

B

Monitored system

C

Monitor A Monitor B Monitor C

 

Figure 4: Generic distributed process monitors [Goodloe & Pike 10] 

2.1.1.3 Monitoring techniques 

According to Liotta [2002], management and monitoring of future networks is 

being affected by factors such as scalability, topology dynamics and diversity of 

complex services in heterogeneous networks. Conventional approaches for network 

monitoring using management protocols and distributed object technologies cannot 

satisfy requirements for future networked systems. [Philippe et al. 00] provides an 

extensive review of management technologies where four main techniques can be 

identified as shown in Table 2. 

InternetMonitoring station InternetMonitoring station
Monitoring station

Holon

Holon

Static 

centralized

Static 

decentralized

Programable or 

Active decentralized

Figure 5: Monitoring techniques [Adapted from Liotta 2002] 
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Table 2: Monitoring techniques [Adapted from Philippe et al. 00 and Liotta 02] 

Monitoring 

technique 

Description & drawbacks 

Static 

centralized 

monitoring 

One main monitoring station, every SUO is communicated directly. 

Used for small-scale networks using for example Simple Network 

management Protocol (SNMP). 

Drawbacks:  

 Limited responsiveness and accuracy.  

 Lack of scalability 

 Concentration of management intelligence (single point of failure) 

 Bottleneck  

 When using polling approach, it limits the tracking of problems in 

a timely manner and overflowing networks even when no change 

has happened. (SNMP) 

 

Static 

decentralized 

monitoring 

Consists of hierarchical management architecture where a main 

monitor is communicating with distributed area monitors. CORBA and 

JAVA-RMI are examples for implementing this technique.  

Drawbacks:  

 Monitoring functionality is restrained to simple and rudimentary 

operations. 

 Low adaptability to network changes 

 Marginally better scalability 

 Limited level of decentralization 

 

Programmable 

decentralized 

Monitoring 

This technique proposes the use of mobile code in network 

management.  Within the code new management functions can be 

dynamically introduced in the nodes as needed.  The main advantages 

are the decentralization of tasks and re-configurability of nodes. 

Drawbacks: 

 Relatively static mechanism (Deploys management logic at start-

up) 

 Deployment logic made centralized 

 

Active 

distributed 

monitoring 

A system that self reconfigures based on the monitoring system 

changes. The exploitation of distributed area monitors autonomy to 

optimize the monitoring tasks while decreasing network traffic and 

increasing responsiveness and robustness. 

Drawbacks: 

 This  technique does not provide any improvement if the 

monitored system is not of dynamic nature 

 

 



24 

 

From the techniques presented it can be noticeable that they intend to mitigate 

different problems. Even though, the active decentralized technique seems to have 

the least drawbacks of all, there has to be a system evaluation beforehand. The 

selection of a correct technique is directly related to the dynamic and granularity 

level of the system to monitor [Agarwala & Schwan 06, Liotta 2002]. 

Khoshkbarforoushha el al. [2010] proposes a semantic model for weighting the 

appropriateness of the granularity level (WGLA) this setting a basis for quantitative 

granularity appropriateness analysis. Based on a quantitative analysis one can 

determine the optimal granularity of services from which would serve as a guide for 

the monitoring technique selection. 

2.1.2 Business Activity Monitors 

Business intelligence (BI) is referred to the procedure of any software or IT 

solution that can transform important information out of data. This solutions show 

how a business is doing by analyzing historical data, identifying patterns and 

understanding trends. Current BI products mostly rely in historical data for data 

mining. Due to this, real-time decision support is not possible with these solutions. 

Increasing demands and ever changing fast-paced business environments has 

incorporated the requirement for fast reactivity on business. To overcome with this 

need, BI has been extended with Business Activity Monitors (BAM).  This 

technologies aim on real-time event-driven business analytics. Getting information 

from transactional data sources such as Web Services, BAM correlates 

heterogeneous events that can lead to real-time KPI definitions as well as trend and 

pattern identification for real-time business reactivity. BAM solutions consist of 

dashboards that can display business information. One of the core technologies that 

BAM integrates is CEP. Rules correlate, aggregate and analyze data into information 

real-time and directs it to BAM dashboards.  

According to Bayer [2009], CEP platforms commonly provide connectivity to 

custom applications through adapters. So before choosing a CEP engine it is 

necessary to evaluate a CEP solution in the context of the integration architecture 

guidelines compatible to the IT systems. For an event processing architecture it is 

better to consider first a mixture of SOA and EDA because they make business 

events available to BPM, BAM, and CEP tools in a standardized way. A possible 

combination of EDA and SOA would enable a layer of high-value services that 

could have a visual impact in the business.   

As seen from Figure 6, a typical CEP architecture has business events entering 

the CEP engine in form of data streams incoming from an EDA foundation. The 

integration adapters capture events starting the sequence of activities the CEP 

architecture performs. Events are transported to the CEP engine through messaging 

or web services. Rules and patterns create aggregated or complex event that could be 

sent to dashboards, BPM, BAM or a custom application.   
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Figure 6: Event Processing Architecture [Bayer 09] 

Due to the relatively new concept of service orientation in shop-floor devices, 

few works on BAM integration with shop-floor have been introduced. This leaves a 

research gap which this work intends to fill. 

2.2 Towards distributed system integration  

System distribution has been taking place during the past few decades. Its 

benefits combined with the continuous development of embedded systems, have 

stirred its applicability in system architectures. The main advantages of system 

distribution do not only involve performance and speed improvement; its mayor 

contribution comes from the reliability and scalability that a system can reach while 

hiding its underlying intricacies and heterogeneous nature.  

By definition, a distributed system in software engineering is: 

“A collection of independent computers that appear to its users as a single 

coherent system” 

Tanenbaum & van steen [2006]  

The definition may lead to the assumption that distributed systems are a 

networked bundle of computers. However, two categories may be divided from this 

concept: Tightly couple components and loosely-coupled components. Tightly-

coupled components are commonly related to the management of homogeneous 

multiprocessor computers. Usually they maintain a global view with computer 

resources. On the other hand, Loosely-couple components consist of a bundle of 
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heterogeneous multicomputer systems allowing local services to be available to 

remote clients. 

Distributed systems solve several of the recurring problems caused by centralized 

systems while at the same time adding different challenges. Single points of failure 

in the system are resolved, also performance, scalability and, reliability is improved. 

Nevertheless, management of the resources increases in complexity due to the 

networked nature of the distributed system. Information on distributed systems may 

be endangered more than centralized systems. In a nutshell, the main challenges to 

deploy a successful distributed system can be summarized in four main aspects that 

need to be ensured: secure communication, fault-tolerance, replication, coordination 

and management of systems.  

Subsequent from distributed computing era, several design principles and 

paradigms have been developed in the last decade. The concept of distributed 

services along networked loosely-couple components started to stand out with the 

beginning of service oriented architectures, and currently continues to be adopted 

and extended with other methodologies and concepts such as Event Driven 

Architectures and Event-Driven Service Oriented Architectures. 

Nowadays, service orientation and cloud computing towards a fully integrated 

enterprise is an ongoing topic of research. Transformation from the classical 

production-oriented manufacturing towards a service oriented manufacturing is 

taking place. The key of this transition comes from the development of 

manufacturing clouds based on the capabilities that SOA provides to the whole 

enterprise [Li et al. 2010]. The following subsections will cover in detail the 

architecture paradigms mentioned here and its current state on manufacturing 

systems. 

2.2.1 Service-oriented Architecture 

2.2.1.1 Overview  

Starting as a concept brought by the Information and Communication 

technologies sector, SOA opened new perspective for a high-level service-based 

communication infrastructure. According to the OASIS [2006] reference model for 

service oriented architectures the definition of SOA is:  

“A paradigm for organizing and utilizing distributed capabilities that may be 

under the control of different ownership domains. It provides a uniform means to 

offer, discover, interact with and use capabilities to produce desired effects 

consistent with measurable preconditions and expectations.” 

SOA paradigm core driver is services by which capabilities and needs are 

brought together from service provider entities to service consumers. Table 3 lists 

the set of characteristics that SOA introduces that comprise its design paradigms. 
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Table 3: SOA characteristics [adapted from Valipour et al. 09] 

Characteristics Description 

Discoverable and 

Dynamically Bound 

Ability of a costumer to discover a service during 

runtime based on certain criteria. 

Self-Contained and 

Modular 

Cohesive interfaces allowing a service to be 

modular in certain context The modules should be 

decomposed and composed into other modules.  

Interoperability Ability to communicate different platforms and 

languages with each other. 

Loose Coupling Having few well know dependencies among 

modules 

Location Transparency Ability to move a service from location to location 

without the consumer’s knowledge.  

Composability Ability to structure modules to assemble 

applications, federations or service orchestrations. 

Self-Recovery Ability of a system to recover from errors without 

human intervention during execution. 

 

Concisely, SOA intends to reduce the integration complexity of systems on a 

heterogeneous environment allowing them to be modular, reusable and flexible. The 

basic model of a SOA paradigm consists on a consumer and a provider. First, the 

consumer has to know the location and description of the produces. In order to do 

that, the provider exposes its service description on a directory allowing customers to 

obtain it. The interaction between them consists primarily of a request-response 

message pattern. This is closely related to a client-server paradigm where the 

producer acts passively and reacts on a consumer’s request. Figure 7 summarizes the 

basic characteristics of a SOA solution. 

 

Figure 7: Basic characteristics of SOA solution [Marechaux 06] 

For instance, WS technology provides a standardized vehicle that complies with 

the core characteristics of SOA. Service loose coupling, reusability and autonomy is 

achievable by the ever-present platform-independent XML standardized messaging. 
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Abstraction and a standardized service contracts are contained in a Web Service 

Description (WSD). Service discoverability is given by the WS-discovery 

specification. Composability can be achieved by using WS-Metadata, WS-

Federation and WS-Policy specifications. To be precise, SOA is not bound to a 

special technology; several technologies are available as explained by Zeeb et al. 

2009].  Nevertheless, Web Services is the preferred technology to implement 

service-oriented architectures due to the presented set of compliant specifications 

that allow implementing the majority of the characteristics of SOA. Insight on WS 

technology will be presented in the following subsections. 

2.2.1.2  Service Oriented Manufacture state-of-the-art 

Service Infrastructure for Real-time Embedded Networked Applications  

The European project SIRENA (Service Infrastructure for Real-time Embedded 

Networked Applications) is one of the pioneering projects to consider the Service 

Oriented paradigm in a manufacturing domain. Its main goal consisted in the 

definition of a framework to seamlessly connect heterogeneous devices and services 

hosted in such devices.  A technology analysis taking place during the project and 

compiled in Table 3, highlighted DPWS as the promising technology for 

implementing Service Oriented architecture on a device level.  

Table 4: Contrast of SOA compliable technologies [Bohn et al. 06] 

Criteria OSGi HAVi JINI UPnP WS DPWS 

Plug and Play  - x x x - X 

Device support X x x x - X 

Programming Lang 

independent 

- x - x x X 

Network media 

independent 

- - x X x x 

Large scalability x  x - x x 

Security X X x - x x 

High market acceptance X - x X x x 

 

Jammes & Smit [2005] reviewed the opportunities and challenges to solve in a 

Service Orientation. As a two edged sword, making a device visible and reusable to 

all layers of automation comes with major challenges. One of the major challenges 

comes in the management domain, where devices shall be managed by a higher-level 

system to facilitate configuration, monitoring, fault-diagnosis and maintenance. To 

demonstrate the SO paradigm in industrial devices, in [Lastra & Delamer 06, 

Delamer & Lastra 07-2, Jammes et al. 06] they present an industrial applicability of  

DPWS-enabled devices for the exposure of service. For instance, a dose maker 

implementation demonstrated the composability feature of the services allowing 
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them to be encapsulated in high-level services. Figure 8 depicts the logical 

representation of the services provided by different devices. An orchestration 

component acting acted as a controller, allowed granular services to perform the 

specific task as shown in [Delamer & Lastra 06].  

 

Figure 8: Dose-maker logical implementation [Jammes et al. 06] 

Service-Oriented Cross-layer infRAstructure for Distributed smart Embedded 

devices 

As a successive research project, SOCRADES was created based on the concepts 

and results SIRENA. The aim of the project consisted on the creation of an 

infrastructure for manufacturing where loosely-coupled smart embedded devices to 

communicate seamlessly with business level service based components. The closure 

of the gap between shop-floor and top floor systems conveyed the project towards 

considerable physical results with the implementation and orchestration of WS-

enabled controllers in an industrial environment. De Souza et al. [2008] presented a 

reference implementation where two devices were able to connect to ERP systems 

using WS as driving force. The use DPWS in a manufacturing domain allowed 

seamless vertical integration with business levels. Cannata et al. [2008] presented the 

impacts of SOA adoption in manufacturing systems. Among them Business Activity 

Monitoring would be possible due to the effective seamless integration. This 

integration would allow calculating real-time Key Performance indicators whilst 

having real-time reaction based on the increased granularity that an enterprise system 

can consist of. 

Cachapa et al. [2010] presents a monitoring methodology in a SOA-based 

industrial environment. The approach combines two types of monitoring indexes, 
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Feature-based and model-based. The first one consisting in the wrap-up of sensor 

data into XML to expose it as web service while the later one intends to compose the 

services into higher-level services detailing certain model. For his methodology, the 

identification of services for a monitoring application is crucial and it can be done by 

a two phase approach combining a top-bottom and bottom-top approaches to define 

the required services in a monitoring operation. 

 

 

Figure 9: SOCRADES general Architecture [Cannata et al. 08] 

Factory-wide Predictive Maintenance in Heterogeneous Environments 

Factory-wide data integration can lead to the calculation of situations that cannot 

be detected by a standalone system.  Jakob et al. [10] propose a framework for 

predictive maintenance that claims to automate the prediction process for fine 

granular data incoming from various machines. Their approach consists on a Service 

Oriented generic prediction process that can retrieve data and information from 

machines and modeling tools that exists already. They use a prediction control 

process that acts as an orchestrator to execute every step in the prediction process 

and later map the information in an ERP. Figure 10 shows the stair case architecture 

of the system as coined by the authors. 

Active monitoring is not visible in this approach based on the passive SOA 

nature of the system. The system has to be invoked and no active health alarming 

could be generated.  On the other hand, an EDA predictive maintenance tool would 

be able to do. 
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Figure 10: Factory wide predictive maintenance architecture [Krauze et al 10] 

2.2.2 Event-driven Architecture  

2.2.2.1 Overview 

Event-driven Architecture (EDA) is an architectural paradigm that uses events as 

main execution drivers. This paradigm follows the publish/subscribe model 

providing asynchronous messaging among components. Differently from SOA, the 

event-driven paradigm allows components to be extremely loosely-coupled. This 

concept comes primarily by the fact that publishers of events are not aware of the 

existence of subscribers and that they only share the semantics of the message [Van 

hoof 07]. The core implementation components consist of: Enterprise Integration 

Backbone (EIB), event management tools, event processing engine, event processing 

rules, service invocation, event transport, event specification and event data. The 

basic characteristics of EDA can be summarized in Figure 11.  

In a simplistic point of view, EDA system interaction consists of: Several 

consumers that subscribe to a messaging backbone, later publisher posts a message. 

The messaging backbone (broker) will route the messages subscribers that are 

interested in that particular message. 

 

Figure 11: Basic characteristics of EDA [Marechaux 06] 
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2.2.2.2 EDA in manufacturing  

Event-Driven Manufacturing: Unified Management of Primitive and Complex 

Events for Manufacturing Monitoring and Control  

According to Waltzer et al [2010] State-of-the-art event management systems 

only cover selected levels in the automation pyramid. The architecture shown in 

Figure 1, proposes an approach for event management that allows high-level systems 

and low level systems to communicate via events. The solution shows a reference 

framework for event management that can be separated in 5 main segments: Data 

acquisition, data processing, data persistence, data exposure and, configuration. The 

Data acquisition adapters and data exposure adapters are commonly used supply the 

system with incoming data allowing any external system to be interconnected to the 

manager. This is a centric approach based on a broker as a backbone system for 

messaging. A CEP for control and aggregation is proposed as part of the manager 

closely coupled to a publish/subscribe system to receive events and route its results 

to the consumer. The configuration of CEP is done by a configuration environment 

component that defines input and output message relationships among components. 

 

Figure 12: Unified Management Architecture 

Combining Service-Oriented Architecture and Event-Driven Architecture using an 

Enterprise Service Bus 

An Enterprise Service Bus (ESB) is an architecture model that allows the 

interaction of heterogeneous systems acting as a SOA enabler. ESB is currently the 

preferred model to consider due to the advantages of combining benefits of both 
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EDA and SOA. It exposes transport, event and, mediation services that facilitate 

integration using a strict asynchronous communication.  

An analysis presented by Marechaux [2006] describes the benefits of 

implementing an ESB instead of a standalone EDA or SOA. The first benefit 

presented is the standardized connectivity, which is achieved based on messaging 

backbones that allow heterogeneous systems to connect. This also provides 

pervasive integration that bridges systems, following the concepts of ubiquitous 

computing. Also this architecture model allows reliable integration whilst increasing 

robustness. Transport services guarantee reliability and transactional integrity which 

is crucial in a demanding environment. In [Delamer & Lastra 07-1] they propose a 

optimization for QoS-aware event driven middleware in electronics production. 

While in [Ming et al. 09], they study the benefits and drawbacks of current SO 

paradigms systems, proposing an Event-driven SOA (ED-SOA) as an improved 

solution for plant visibility. According to this author, WS-based SOA systems are 

not optimal for shop-floor systems considering the inefficiency of request-response 

mechanism on natural event producing systems such as factory floor equipment. And 

improved event-triggered service paradigm would be more efficient whilst allowing 

event processing systems to leverage this complex transactional information into a 

visible format for decision making. 

 

Figure 13: ED-SOA implementation in Factory-shop floor [Ming et al. 09] 

2.2.3 Web Services architecture  

A Web Service according to the W3C [2004] is a software system designed to 

support interoperable machine-to-machine interaction over a network. It possesses an 

interface described in a machine-processable format. In its abstract form it is a 
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resource characterized by the set of functionality that it provides. Considering an 

agent as a computational resource, an agent hosts a service in a piece of software of 

hardware that sends and receives messages. The agent may change but the abstract 

set of functionalities of the service is maintained.  

 

Figure 14: Web services general process [W3C 04] 

The scenario presented in Figure 14 is divided in 4 steps which defines the 

general process for system interaction using Web Services. Firstly, the requester and 

provider entities discover each other. Afterwards, transaction of contract and 

semantics is agreed. Subsequently, both parties input the semantics and Web Service 

description to finally interact with each other. These interactions between entities 

may be manual or automated.  

Web Services Architecture relies on several technologies and specifications such 

as: Extensible markup language (XML), Simple Object Access Protocol (SOAP) 

and, Web Service Description Language (WSDL). Also there are several 

specifications that govern specific process of the web service process interaction 

such as: WS-transfer, WS-Eventing, WS-Discovery, WS-Metadata, WS-Addressing, 

and WS-Notification among others. 

These technologies will be explained in Section 2.3.1 due to the fact that DPWS 

is an actual implementation of Web Services Architecture for embedded devices. 

2.3 Web-based communication protocols in 

manufacturing  



35 

 

Considering the results obtained from the previous section it is noticeable the 

strong trend towards SOA and EDA. The main focus of this section is on the 

description of the standards available that enable vertical enterprise integration in a 

manufacturing environment as well as the state of the art implementations by the 

research community. 

2.3.1 Device Profile for Web Services  

2.3.1.1 Overview 

The device profile for web services is an OASIS standardized device-level 

protocol that succeeds Universal Plug n’ Play (UPnP) for communication of 

networked embedded devices [Jammes & Smit 2005]. It is built on top of a set of 

web technologies that together comply in Service Oriented paradigms. This protocol 

relies in IP, TCP, UDP, HTTP, SOAP and XML making it suitable for cross-

platform integration.  

DPWS exposes devices as services that can be discovered, invoked or notified by 

any other networked devices that support Web Services. For instance, a DPWS-

enabled device can host services that can be dynamically discovered. At the same 

time it provides metadata exchange service to load the exposed services into clients. 

Other feature of DPWS is the compliance with the WS-eventing specification for 

eventing mechanism; this allows other components to communicate asynchronously 

via semantically rich events.   

2.3.1.2 Web service specifications 

SOAP 

This protocol is a recommendation from the W3C that once stood for “Simple 

Object Access Protocol”. It encodes data for structured information exchange. The 

core aspects of SOAP are neutrality and independence. This specification can be 

send over any transport protocol and it does not depend on any programming model. 

SOAP structure is XML-based and it consists of an envelope element containing a 

header element in that holds application-specific information and a body element 

which conveys the message contents. The platform-agnosticism characteristic of 

SOAP makes it preferable as transport protocol for Web Services. 

Web Service description Language [W3C 01] 

This W3C specification is used for describing network services as a set of 

endpoints operating on messages. It is extensible to allow description of endpoints 

and their messages regardless of what message formats or network protocols are 

used to communicate. The WSDL documents are structured in 6 main sections called 

definitions. Type definition describes data types used in the messages. Message 

defines input and output message parameters. These are bound to operations input 
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message and output message. Port type defines the Web Service operations and 

binds the messages to the operations. The Binding specifies interface and defines the 

transport with the binding style. Operations define the actions and the message 

encoding. Services define system functions that are exposed to web-applications. 

Overall specification is used to define the contractual mechanism in DPWS to 

expose the services and their endpoint to other clients. 

Web Service Eventing 

WS-Eventing specification defines the message structure and composition for 

subscription messages as well as the notification structure.  

Eventing in DPWS allows purely asynchronous messaging. Operations with one-

way message patterns can be subscribed by invoking a subscription request. 

Subscription request are submitted by the client containing the required subscription 

setup properties such as duration and event sink endpoints directions.  

The process consists in three basic steps. First, a client with knowledge of a 

service requests a subscription. The hosted service processes the requests and 

registers the client as consumer. The hosted device responds to a client and finally 

submits notifications to the registered consumers. The subscription mechanism of 

DPWS is depicted in Figure 15. 

Hosted service
Event 

sink

Action: Subscribe

Body: 

-Subscription

-- EndTo

-- Delivery Mode

-- Expiration

-- Filter

Action: SubscribeResponse

Body:

-Subscription response

-- Identifiers

-- Endpoint reference

-- Expiration

Notifications
Client

1

2

3

 

Figure 15: DPWS subscription mechanism 

Web Service Discovery 

Web service discovery specifies the procedure for message exchanges and 

conceptual content that a consumer and a service provider must use for detection of 

each other existence.  The WSA does not define a specific technology for discovery. 

DPWS on the other hand, specifies de use of SOAP-over-UDP to implement the 

discovery services. In a sample scenario for discovery, a consumer would multicast a 
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probe message to a broker. The broker would route the message to hosted services. 

Hosted services would then notify a probe match message to the consumer. 

Additional information can be found in [W3C 01]. 

2.3.1.3 Industrial experience state-of-the-art 

Device Profile for Web Services for Service Oriented Manufacturing 

Machine health monitoring is one example of the important measurements that 

manufacturers are interested for equipment maintenance. Wireless Sensor Networks 

(WSN) is a common solution that provides Condition-based Maintenance (CBM) to 

machinery. According to Sleman & Moeller [2008], the interoperability and dynamic 

discovery of DPWS can interface 6LoWPAN-based WSN with other IP-networked 

systems. In their methodology, DPWS can acts like a gateway allowing IP-based 

clients to subscribe to sensor data. This work is in concordance with solutions 

described by [Jammes et al. 07] where he points out the cost-effectiveness of a 

“wrap-and-reuse” basis for industrial solutions rather than a “rip-and-replace”.  As a 

gateway, DPWS can interact with any industrial field bus and expose the 

functionality of its components as web services. This proposes a solution as similar 

the one that OPC-UA and its address space provide. Nonetheless Jammes et al. 

[2007] also mentions that the gateway solutions are ad-hoc solutions that work today 

based on the current equipment restrictions. For that reason, future implementations 

should follow the SOA paradigm of having “smart devices” up to every corner of the 

industry. In [Moritz et al. 2009], DPWS was directly integrated to WSN. Results 

reflected the need of enhancements to the protocol in order to fit in the constrained 

resource sensor nodes. A set of considerations and profiling is needed to achieve a 

successful implementation of DPWS in a sensor node.  In [Delamer & Lastra 06], 

Enhancements for DPWS  

Reliability and real-time requirements that commonly are found in the factory 

shops and manufacturers are the common aspects that DPWS cannot guarantee. The 

non-deterministic nature of the standard IP-networks is the main cause of this issue. 

Adding to the issue, the SOAP messages tend to be large and bulky slowing down 

the message transmission rate. 

Because of the previously stated issues, DPWS has been over-criticized 

regarding the encodings and overheads it relies on. Analysis by [Moritz et al. 10 and 

Moritz et al. 10-2] has shown that DPWS as it is would not fulfill the requirements to 

fit in a constrained-resource device environment. Results of his work showed 

Efficient XML Interchange (EXI) and Fast Infoset (FI) as the most prominent 

compressions for SOAP messages that should be considered. In [Jammes 11], the 

author proposes an example implementation of EXI and DPWS, highlighting that 

including a binary-XML encoding for the DPWS stack could improve considerably 
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the real-time performance of SOA at the device level. While in [Collado et al. 08] 

they present an approach for XML data processing without the need of binary 

encodings for real-time systems requirements. 

 

Figure 16: DPWS/ EXI example 

 

2.3.2   Ole for Process Control –Unified Architecture 

2.3.2.1 Overview  

OPC-UA is the next generation implamentation of the former OPC architecture 

with the difference of applying cross-platform web services instead of the Microsoft 

dependant COM/DCOM communication model. As its name Unified Architecture 

implies, it unified several OPC data models such as Alarm and Events, Data Access 

and Historical Data Access and other OPC specifications, as a set of services to 

increase its domain within manufacturing production and business applications. 

OPC-UA's popularity in the industry is constantly growing due to the premise that it 

allows from top to bottom level integration whilst providing a backward 

compatibility with previous OPC solutions that are widely deployed around the 

world. 
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Figure 17: OPC-UA interaction in the automation levels [Burke 06] 

OPC-UA consists of 13 specifications [OPC-UA 1, OPC-UA 2, OPC-UA 3, 

OPC-UA 4, OPC-UA 5, OPC-UA 6, OPC-UA 7, OPC-UA 8, OPC-UA 9, OPC-UA 

10 and OPC-UA 11] that define a standardized set of services and policies that 

assemble this relatively new interoperability protocol. The specifications can be 

divided in three main sections: the core, the access type and the utility type. The core 

consists of the first 7 specifications that defines concepts, services, security model, 

information model, address space, profiles and, service mappings. The access type 

specification defines Data access, alarm and conditions, programs and historical 

access. The last two specifications parts of the utility type have not been released yet. 

The next subsection will deal with the overview of core specifications that are of 

interest in this work.  

 

Figure 18: OPC-UA stack overview [OPC-UA 6] 
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The majority OPC-specifications have in general a technology free definition. 

However OPC-UA relies in several core technologies as depicted in Figure 18. UA 

binary and UA XML are the two encoding supported. Related to the encodings, the 

security, transport and contract protocols are also related to the encodings. It is 

noticeable that OPC-UA provides two technology options for implementation.  

2.3.2.2 OPC-UA specifications 

OPC-UA Address Space [OPC-UA 3] 

The OPC-UA address space provides a standard structure for servers to expose 

data to clients. Figure 19 depicts the OPC-UA object model representation. Objects 

are used to structure data closely following object oriented design concepts. These 

can contain variables, methods and, other objects. Generally, objects are not used for 

containing process data; instead, variables are in charge of this. There are two kinds 

of variables, properties variables and data variables. The first one can be seen as the 

metadata (configuration parameters) while the other one represents the data of an 

object.  

 

Figure 19: OPC-UA object model [OPC-UA 3] 

The objects and components are represented in the address space as nodes and 

they are described by attributes and linked by references. The attributes may contain 

Id’s, names or descriptions while the references could define a source node, a 

reference type or a target node.  

Just as Object-oriented programming, the address space specification provides 

the TypeDefinitionNodes that defines instances of Objects and Variables. These can 

be seen as the schema or the original class for instantiating Variables and Objects. 

The overall functionality of the address space is provide a view of the nodes 

available in the server allowing the client to navigate its node elements using 

services defined in [OPC-UA 4]. 
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OPC-UA Services [OPC-UA 4] 

This specification defines the standard service sets that OPC-UA provides to 

clients for communication with the servers. Table 3 describes the core functionality 

of these sets. 

Table 5: OPC-UA service sets [compiled from OPC-UA 4] 

Service set Description 

Discovery service set Allow a client to discover the endpoints implemented by a 

server and to read the security configuration for each of 

those endpoints 

Secure channel 

service set 

Allow a client to establish a communication channel to 

ensure the confidentiality and integrity of messages 

exchanged with the server 

Session service set Allow the client to authenticate the User it is acting on 

behalf of and to manage Sessions 

Node management 

service set 

Allow the client to add, modify and delete nodes in the 

address space 

View service set Allow clients to browse through the address space or 

subsets of the address space called views 

Query service set Allows clients to get a subset of data from the address space 

or the view 

Attribute service set Allow clients to read and write attributes of nodes, 

including their historical values. Also it allows clients to 

read and write the values of variables 

Method service set  Allow clients to call methods. They may be called with 

method-specific input parameters and may return method-

specific output parameters 

MonitoredItem 

service set 

Allow clients to create, modify, and delete MonitoredItems 

used to monitor attributes for value changes and objects for 

events 

Subscription service 

set 

Allow clients to create, modify and delete subscriptions. 

subscriptions send notifications generated by 

MonitoredItems to the client 

 

From all the service sets, the relevant service sets that are of relevance to this 

work are the MonitoredItem and subscription service sets. These provide OPC-UA 

with eventing mechanism for monitoring of OPC-UA objects, variables or attributes. 

Subscriptions may contain a set of MonitoredItems defined by the client.  A 

subscription will allow the client to monitor an item and receive notifications. 

Notifications can be subscribed for data value change, Events via EventNotifier 
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definition or for aggregated values calculated from a time interval [OPC-UA 4]. 

Monitored items contain settings like mode, sampling interval and notification queue 

size which sets the relationship and restrictions between client and the server for 

notification delivery. The procedure for notification delivery in OPC-UA is 

composed of: Publishing, Subscribing, and queuing.  

The description of the notification process is as follows:  

1) Client adds as MonitoredItem of certain node in the address space to a 

subscription 

2) Publish requests will be sent during an open session on a UA server. 

These requests will not be bounded to a certain subscription.  

3) Requests will be queued in the OPC-UA server session.  

4) Later on publish responses will be sent back to the client.  

The responses can include notification messages, a sequence number or a 

“heartbeat” message to keep the connection alive. Notification messages may 

include the properties of the message such as timestamps, values and name of the 

MonitoredItems. Figure 20 depicts the notification model of OPC-UA. This model 

has been criticized by some authors, claiming that this model is more synchronous 

than asynchronous as seen in [Colombo 10].  

 

Figure 20: MonitoredItem Model [OPC-UA 4] 

OPC-UA Information Model [OPC-UA 5] 

The information model is one of the core specifications of OPC-UA. This 

specification is an extensible mechanism to model the server’s information to expose 

the items, properties, metadata and diagnosis information as a hierarchical model in 

the address space. In other words, the information model defines the address space of 

an empty OPC-UA server. The basic information models can be extended allowing 

standards to be built on top; this is one of the core features of the specification [Virta 

et al. 2010]. 
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The information in OPC-UA defines a standards information model for general 

use. This information can be retrieved by a client in order to navigate through its 

address space. The nodes consist of standardized: references types, dataTypes, 

object, objectTypes, variable and, variableTypes.  

2.3.2.3 Industrial experience state-of-the-art  

Combining CAEX with OPC-UA for production monitoring and control system 

support 

As part of the transition of companies towards SOA, Schleipen [2008] 

demonstrates a framework using OPC-UA address space and Information modelling 

to include plant information using CAEX-based descriptions.  Notifications arriving 

to the server triggered the addition of new nodes. After the nodes were generated, 

clients are notified of current changes in the address space for registration. OPC-UA 

allowed synchronizing the production processes by notifying the clients about new 

relevant information available. Hence OPC-UA can be used for support for 

monitoring and control processes.  

 

Figure 21: Interaction of clients with the address space [Schleipen 08] 

Monitoring and control framework using OPC-UA 

Van Tan et al. [2009] propose a framework for building monitoring and control 

in factory automation. He defines a set of components that would allow bridging 

existing software systems and OPC servers enabled devices. Using OPC-UA as 

communication technology, he emphasizes that this technology is a good choice for 

development of web-enabled industrial automation and manufacturing software 

systems. Figure 22 shows the proposed architecture. The overall implementation 

consists in an OPC-UA server acting as a gateway for integrating devices them into a 

web-based environment. In this case client monitors would require of an OPC-UA 

client to obtain information integrated by the server. 
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Figure 22: Architecture for monitoring and controlling of field devices [Van 

Tan et al. 09] 

 OPC-UA integration with ISA-88/95 for batch process management  

Similar implementation by Virta et al. [2010] proposes integration for batch 

process management using OPC-UA and ISA-88/95. However he emphasizes that 

the information exchanged using the OPC UA can be configured to follow standard 

information models. However, due to the binary nature of OPC-UA, he proposes the 

use of a UA2XML adapter in order to connect to the business process engine which 

commonly uses XML messaging as shown in Figure 23.  

 

Figure 23: UA2XML conversion [Virta et al. 2010] 

In other similar approach by Seilonen et al. [2011] propose the integration of an 

Enterprise Asset Management for condition-based monitoring. He also made use of 

the UA2XML adapter for the integration of the OPC-UA with the EAM system 

WS’s. The results demonstrated that OPC-UA can be combined with existing 

service-oriented frameworks such as Windows Communication Foundation (WCF) 

in CBM applications through an adapter-based design. 
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2.3.3   Assessment on OPC-UA and DPWS 

From all the technologies that implement SOA, Only two cope with the 

requirements and demands that an industrial environment requires for SOA 

implementations. As seen from table Table 4, technologies such as UPnP, JINi and 

WS are technologies that can apply SOA. However, they have been studied and 

discarded as technologies that could bring SOA to device levels. 

On the other hand, DPWS and OPC-UA are suited best to lower down SOA into 

the device level. Even though, they have similar end-goals, they are yet different 

approaches for interoperability that would make these technologies difficult to 

compare. Despite the fact that both technologies claim to use Web Services, the 

differences must be addressed. OPC-UA intends to provide interoperability via 

gateways and address spaces. For instance, building an address space for certain 

protocol and navigate the values on the address space using already defined services 

does not allow the process management to create modular services for business 

processes. The services are not as descriptive as DPWS allows. For example the 

service set of navigating node would not be of any worth for a Business Process 

Management (BPM) application. Customized services on DPWS can have self 

descriptive services that could be joined together into a service composition for 

business process. As seen in [Virta et al. 10] adapters for OPC-UA are needed for 

connectivity with typical XML based MES systems. In summary, both technologies 

reach the interoperability end-goal; they both have drawbacks and advantages. 

Nonetheless, as highlighted by Colombo et al. [2010], interoperability among these 

two specifications can bring a better SOA implementation. Thus neither of these 

technologies can be discarded. 

Table 6: Contrast between OPC-UA and DPWS characteristics 

Criteria OPC-UA DPWS 

Implementation 

level 

Device level / although 

profiling is possible to achieve 

sensor level 

Sensor level / using 

enhancements and profiles 

Plug-n-play 

solution 

Yes Yes 

Dynamic 

discovery 

Nor available still Available 

Services 

definition 

Standardized Customizable 

Business process 

management 

compatibility 

Currently based on adapters 

[Virta et al. 2010] 

 

BPEL compatible 

Transport UA XML (not available yet) / XML/SOAP / XML-binary 
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technologies UA binary under research 

Eventing 

mechanism 

Publish / Acknowledge Publish/subscribe 

Information 

modelling 

Very extensible Limited 

Mappings WSDL / XML-Schema 

UA-schema 

WSDL 

Integration 

approach 

Via gateways and clients DPWS clients, plain web 

service calls 

Security Provides 

authentication/sessions and 

encryption 

Can be implemented using 

WS-Security 

 

  



47 

 

2.4 Rule engines 

Rule engines are part of Expert Systems (ES) which are within the Artificial 

Intelligence (AI) area, a computational system that intends to emulate the decision-

making ability of an expert human being. Reasoning and evaluation of the 

knowledge within this system, can lead to conclusions that may predict desirable or 

undesirable situations inside a system. ES may be based upon rules or knowledge 

base (KB) as key part of the inference capabilities of the engine.  

Three types of inference methods can be commonly found among the research 

community. Substantial work has been done towards making hybrid 

implementations of these methods and noticeable enhancements can be provided by 

integrating different inference approaches as described in implementations such as 

[Xiuqin et. al 09, Weidong & Warren 96]. Nonetheless hybrid approaches exist; 

inference methods should be distinguished and categorized as shown in Figure 24, 

due to the different nature among the engines.  

Implementations

Characteristics

Type

Method

Rule engines

Forward chaining

(Data driven)

Backward chaining

(Goal-driven)
Deterministic engines

Process

 Usually employs Depth first 

search (DFS) strategy 

 Not reactive on incoming data

 Commonly an supported as 

an extension in commercial 

solutions 

 Inference based on 

domain-specific 

languages (DSL)

Reactive 

 Invoked by user

 Business rule 

engines

 Automatic 

inference

 Event-triggered

 CEP engines

- OpenRules

- Drools Expert

- OpenL Tablets

- Jena 2

- StreamInsight

- Esper / Nesper

- Tibco BE

- Drools Fusion

-DTRules- DROOLS Expert

- Sweet rules

Figure 24: Categorization of rule engines 

Deterministic inference engines  

These are most commonly relying in Domain Specific Languages for inference 

using a custom algorithm. [Carvalho & Simoes 11] for example describes the use of 

a deterministic engine based in OML (Open Modeling Language) for the 

manipulation of ontologies while [Qichao et. al] introduces an improved metadata 

model inference engine using Model Representation Language (MRL) as part of an 

extension for MARS system that relies in a metadata configurable modeling tool 

which cannot only infer single-tier domains but also multi-tier ones. Usually these 

type of inference engines are easier to implement and maintain than the ones based 
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on forward or backward chaining, however the due to its constrained implementation 

domain, its popularity is not as prominent as the other approaches. 

Backward chaining inference engines  

Also known as goal-driven inference engines, these reasoners iterates within its 

own KB based on the data that is available. Differently from forward chaining, the 

reasoned is triggered by a goal; it uses the available data once is triggered to search 

for this end-goal. The most common algorithm for this implementations is the 

Depth-first Search (DFS) which transverses a hierarchical graph of nodes in a 

uniform manner [Cormen et. al 01].  Figure 7 depicts the control flow where can be 

seen the goal as the trigger of the whole inference procedure.  

 

Figure 25: Backward chaining control flow [JBossCom 11] 
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Forward chaining inference engines  

In a certain extent, this is considered to be the opposite method of the backward 

chaining. This method is also known as data-driven inference engines, meaning that 

based on an event/data arrival; the system reacts by checking along its rule base to 

fire outputs.  Figure 26 depicts its control flow which, differently from backward 

chaining, it exits the execution when no rule can be fired.  

This method has two different approaches: 

Process inference engines: A Non-automatic inference engine invoked by the 

user. Commonly known as business rule engines, they look for the current data 

inputs and compares for rule triggering. 

Reactive engines: Commonly known as Complex Event Processors. This is an 

event-triggered engine that provides automatic (reactive) inference. 

 

  

Figure 26: Forward chaining control flow [JBossCom 11] 

Reasoners in general react to either data and/or goals; however reactivity of the 

reasoner is crucial for the implementation in an EDA environment. Manufacturing 

systems are mostly modeled and characterized as discrete event systems. Their 

behaviors are driven only by instances of different types of events [Cassandras & 

Lafortune 99]. Due to this a system that requires to be invoked in order to obtain a 

value or certain output cannot be efficiently used in EDA’s. Table 7 defines the 

compliance of an inference method by its reactivity level. 
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Table 7: Contrast of inference engines 

Inference method EDA compliance Reactivity Algorithms 

Forward chaining/ 

Process inference 

No / Invoking is 

required (Client-server 

paradigm) 

Stateless  RETE 

 Linear 

 Treat 

 LEAPS 
 

Forward chaining/ 

Reactive engines 

Yes / Event triggered Stateful  RETE 

 Linear 

 Treat 

 LEAPS 
 

Backward chaining No / Invoking is 

required (Client-server 

paradigm) 

Stateless  DFS 

 RETE 

Deterministic  Yes / Publish –

subscribe paradigm 

supported 

Stateless / 

Stateful 

 Custom 

 

2.4.1 Complex Event Processing 

2.4.1.1 Overview  

Complex Event Processing (CEP) is a technology which defines a set of tools 

and techniques for analyzing and processing the complex series of related events that 

drive modern distributed information systems [Luckham 02]. This technology 

proposes a reactive alternative to process information in an ES to quickly identify 

and solve problems. At the same time, it effectively utilizes events for enhanced 

operation, performance, and security. CEP is applied to a broad spectrum of 

information system challenges, including business process automation, schedule and 

control processes, network monitoring, performance prediction, active monitoring 

and, intrusion detection. 

CEP solutions are strongly linked to fast moving data streams and event clouds. 

They leverage the information to achieve operational insight in the areas of Business 

Intelligence (BI), security, monitoring of Systems and, networks. These processors 

handle events in real-time, seeking out the patterns and relationships within the data 

that have a meaning to the organization. They can identify important complex 

events, event patterns and situations that notify new opportunities, critical threats, 

changing conditions, or other material factors that will impact the organization. CEP 

solutions can also offer organizations increased capacity for competitive action and 

improve their level of security. 
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According to the book of David Luckham [Luckham 02], “The power of events”, 

the CEP processes are classified in two main categories:  

 Processes that react to events by executing activities: Related to what it can be 

called business logic of the CEP engines. The collection of static queries 

running in the core of the application receive the events transforming the data 

based on rules specified by an Event Processing Language (EPL). 

 Connectors that transport events between activity processes: These types of 

processes are related to the system integration perspective. Input and output 

adapters are needed to convey the abstracted event to a system of interest. 

The process architecture of a CEP defines the components that together 

configure the two previous types of processes described previously. The architecture 

is composed of four main components:   

 A diagram that shows the processes in the system and their connections   

 The flow of events along connectors 

 Behavior specification that consists of rules which specify the process       

behavior to events. 

 Design constraint that specifies the limitations on process behaviors. 

Complex events are generated by abstracting events called low-level events, 

which are the events that do not have any level of abstraction, also known as “atomic 

events”. The level of abstraction of a complex event depends on the correlation 

between the low-level events and the iteration to higher layers as studied by [Jobst & 

Preissler 06]. Figure 27 shows the relationship of low-level events with complex 

events. All the connections shown between low-level events represent the correlation 

rules specified in the EPL of the CEP. 

 

Figure 27: Event abstraction [Adapted from Luckham 02] 

This technology relies on different techniques, such as, event abstraction, pattern 

detection, event hierarchies, event relationships and event-driven processes. From 

these techniques, causal, temporal and spatial properties of the event cloud can be 

analyzed. As exemplified by Figure 28, simple events with different characteristics 
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can be abstracted into a high-level complex event using pattern detection and event 

relationships.  

 

Figure 28: Event pattern matching [Adapted from Luckham 05] 

2.4.1.2 Classification 

Due the origin of CEP from the Aerospace and Defense industry, Eftimov [2006] 

highlights the use of JDL Data fusion functional model to define the levels of CEP 

may be appropriate. The JDL model specifies 4 levels depending on the increasing 

complexity of data processing and inference of high-level information. Level 1 

taking care of event refinement and adaptation. Level 2 joins spatial and temporal 

relationships between groups of events to infer abstract patterns. Level 3 performs 

the impact assessment based on predictive analysis of the results from level 2. Level 

4 performs ongoing monitoring for process refinement that could be translated into a 

feedback loop used in automatic control. 

 

Figure 29: JDL Data Fusion Model [Tibco 07]  
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Currently commercial products do not provide more functionality than the first two 

levels of JDL model. Substantial research is being done using Bayesian inference 

engines to achieve more predictability that could leverage CEP functionality to 

higher levels [Tibco 07].  

Table 8: Available CEP solutions (See Appendix A) 

Vendor Inference 

type 

JDL 

model 

level 

Licencing Support Development 

Progress 

Apama  

Rule based 1,2 Commercial Good Studio 

StreamBase Rule based 1,2 Commercial Good Studio 

Coral 8 Rule based 1,2 Commercial Good Java API 

Esper and 

Nesper 

Rule based 1,2 Open 

Source 

Supported API C#/Java 

Inference 

Machines 

Bayesian 

Inference 

1,2,3 Commercial Supported Not found 

TIBCO 

BusinessEvents  

Rule based 1,2 Commercial Good Studio 

MS 

Streaminsight 

Rule based 1,2 Commercial Good API C# 

Rapide Rule based 1,2 Open 

Source 

No 

support 

API Java 

RuleCore Rule based 1 Free No 

support 

API Java 

 

2.4.1.3 CEP architecture 

The architecture of complex event processing engines do not differ one to 

another. The same five components can be found by any open or commercial tool 

available in the market. Based on a list of the shown in Table 8 it is possible to 

identify these five components:  

Input adapters: Provide connectivity to external sources and streams of data 

routing it towards the processing engine. 

Processing engine: Holding static queries which are used for rule matching. 

Database connectivity: Provides pull mechanism for passive databases or data 

warehouses. 

Configuration front-end: Configures the processing engine with queries, registries 

patterns and actions using an application development tool most of the times 

provided by the vendor.  

Output adapters: Route information to external systems 
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The architecture resembles a bottleneck funnel, where the events from several 

input adapters are guided towards an engine and then redistributed to interested 

applications. Even though the word bottleneck is a curse word in production 

engineering, CEP takes this concept to other level by deliberately funneling events to 

generate compressed chunks of more relevant information without hindering the 

monitoring process performance by excelling processing efficiency and high 

throughput. Figure 30 depicts an example of a commercial CEP architecture. 

 

Figure 30: Microsoft Stream Insight CEP architecture [Microsoft 11] 

2.4.1.4 Event processing languages 

Event correlation using CEP is tightly linked to event clouds and streams. In 

order to aggregate this flow of events, static queries have to be defined. These 

definitions are based through event processing languages that describe the rules and 

data relevant to the processor. CEP solutions have non-standardized event processing 

languages; due to this three different languages will be discussed in this analysis. 

Generally, these languages represent base for other languages, meaning that any 

other existing languages may be based in these or on the same concepts.  

RAPIDE-EPL 

The RAPIDE [Luckham 95] event pattern language or RAPIDE-EPL is a 

declarative computer language for writing patterns of events. The patterns can 

specify sets of events together with their parameters, timestamps, and causal 

dependencies, and which events are causally independent of each other.  
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RAPIDE-EPL consists of mathematical expressions that describe patterns. It 

does not include any algorithmic programming features like assignment or 

conditional branches. It is as simple a language as can meet the basic requirements 

for CEP. It has the ability to declare event types, and then match on them extracting 

information from the event object. It contains mathematical semantics, temporal 

operators and strong typing to avoid common errors in writing patterns. 

EVERY StockTickEvent(symbol = "IBM", price > 80) WHERE timer: within(60 seconds)    .... (1) 

A -> (B or C)                                                                       .... (2) 

Program 1: EPL examples 

Program 1 shows EPL queries that define the continuous query with a temporal 

statement. The first statement will notice about every stock event that has as 

parameters IBM and a prices larger than 80 in a time window of 60 seconds. The 

second example exemplifies a causal pattern statement where even A needs to 

happen first and then event B or C in order to set true the statement and send a CEP 

event. Combination of causal, spatial and temporal statements is possible and it 

could be as complex as needed to correlate events. 

SASE+ 

Starting as a proposal from [Gyllstrom et al. 2008], SASE+ is a pioneering 

language created in the University of Massachusetts. It has a high-level structure 

similar to SQL for ease of use. The design of the language, however, is centered on 

temporal event patterns that have not been sufficiently addressed in relational data 

processing. The language features: event sequencing, negation, Kleene closure, 

parameterized predicates and sliding window. SASE+ has one of the simplest 

language structures. Table 9 explains the meaning of each statement, the structure of 

the query look like follows: 

Table 9: Description of SASE+ statements 

Statement Description 

[FROM < input stream >]  Provides the name of an input stream. 

PATTERN < pattern structure > Specifies the structure of a pattern to be 

matched against the input stream. 

[WHERE < pattern matching 

condition >] 

If present, imposes value-based constraints 

on the events addressed by the pattern. 

[WITHIN < sliding window >] Further specifies a sliding window over the 

entire pattern. 

[HAVING] < pattern filtering 

condition > 

Further filters each pattern match by 

applying predicates on the constituent events. 

[RETURN < output specification 

>] 

Transforms each pattern match into a result 

event for output 
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CAYUGA EVENT LANGUAGE (CEL) 

Based on the documentation made by [Brenna et al. 07], CAYUGA is an 

expressive Complex Event Processing (CEP) system developed at the Cornell 

Database Group. Cayuga uses non-finite automatons with buffers to match event 

patterns to queries. The language is derived from “event algebra” and it is similar to 

SQL and SASE.  

Table 10: CAYUGA query structure 

Statement Description 

SELECT <attributes> Provides the name of an input stream. 

FROM <algebra expression> 

 

Specifies the calculations to be done 

against the input stream. 

PUBLISH <output stream> Names the output stream (for layered 

processing or subscription). 

 

2.4.1.5 CEP in manufacturing state-of-the-art 

Complex processors have been contemplated in manufacturing systems for 

several years. Luckham [1998] in his early work presents a case study of a silicon 

chip fabrication line connected to a TIBCO Rendezvous Information bus. In his 

work, he demonstrates that causal relationships of events between different levels of 

abstraction are possible by using a complex event processor. He specifies a method 

for abstraction hierarchies to define views in different levels of a distributed event-

based system. This methodology utilizes event pattern mappings which led to the 

low level causes of errors in such systems. Subsequent studies on the field, 

introduced the concept of Event Processing Agents (EPA) for data mining in 

automation systems across the network [Perrochon et al. 1999]. Distribution of the 

processing resources and parallelism using EPA’s allows a flexible and dynamic run-

time configuration of the processing framework as well as performance for high-

throughput event processors.  

Several reports sharing the experiences of CEP in industrial environments are 

available, highlighting benefits and opportunities of CEP [Magid et al. 10, 

Vidackovic et al. 10, Kellner & Fiege 09]. Summarizing approaches and 

methodologies, the most obvious advantages encountered are the abstraction of 

information allowing users to define rules dynamically instead of the IT experts. 

Extends the expressiveness of the system by detecting complex patterns and also 

makes it flexible by externalizing rules, avoiding hard-coded rules. One of the most 

important advantages included, is the relationship of data freshness and data value 

where CEP stands out from passive systems due to its immediate response (Figure 

31).  
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Figure 31: Data freshness to business value [Vidackovic et al. 10] 

The contrast between CEP and BAM is the level where the data is reflected in a 

monitor. On one hand, BAM focus displaying the current state of a business, while 

on the other hand CEP focus in the state of events over time. This abstraction level 

difference makes the definition of KPI’s to be declared from two different 

viewpoints: Goal-Rule or Rule-Goal. Kellner & Fiege [2009] presents a 

methodology based on the Zackman framework [Zackman 87] for building a 

monitoring model from top-down perspective. The methodology proposed starts 

from a Business Motivation Model (BMM) towards the specification of rules. Doing 

so, the development process would be guided into situations with more impact and 

higher return for CEP.   

Plenty of work has been done within the manufactory domain in the area of CEP 

and RFID, but few in ubiquitous manufacturing. Rosales et al. [2010] presents 

architecture for RFID and Sensor Networks (SN) for process integration and 

management. The approach mapped the CEP engine acting as a service connected to 

a broker inside an integration bus. His implementation considers the benefits of CEP 

and an event middleware for factory-wide connectivity breaking up the layers 

between automation levels and enabling events cross unaware of its source location.  

 

Figure 32: edUFlow system architecture [Rosales et al. 10] 
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2.4.2 Other event processing technologies 

2.4.2.1 Event stream processing 

This technology rises from the need to do real-time data analysis when in the 

early 90’s no database was capable of such characteristic [Luckham 06]. The main 

difference with CEP and ESP comes in the conceptual capabilities of each 

technology. The cloud corresponds to CEP, meaning that events do not need to be in 

order to be processed, while streams to ESP may need to come in an organized 

manner in order to detect trends and patterns on streams. ESP is in general a subset 

of a CEP. In more detail, Event stream processing is focused more on high-speed 

querying of data in streams of events by applying mathematical algorithms to the 

event data. Some applications were directed to stock-market feeds in financial 

systems and algorithmic trading. On the other hand, CEP is focused more on 

extracting information from clouds of events created in enterprise IT and business 

systems. CEP includes event data analysis, but places emphasis on patterns of 

events, and abstracting and simplifying information in the patterns. The goal is 

mainly to support as much as possible the area of enterprise management decision 

making. The first commercial applications with CEP were in the Business Activity 

Monitoring, for example monitoring conformance to service level agreements. 

2.4.2.2 Simple event processing 

Simple event processing (SEP) consists in the analysis of atomic events for 

further actions. It does not consider the abstraction or patterning of events but mostly 

the action that an event may cause as reaction. Example of this technology is the 

generation of an event based on the temperature of a sensor. The change in 

temperature may trigger an event that while processed can be turned into an alarm. 

2.4.3 Summary of rule engines 

Semantic reasoners also known as rule engines come in different types 

depending on their inference method. Three basic types of inference methods exist. 

The most relevant to manufacturing of production processes leans towards the 

reactive forward-chaining inference engines. The concept “Data freshness” shows 

the important of a system to react early and on time for business processes to be 

efficient. Non-reactive (goal-driven) inference methods are prone to process 

information out of the data freshness zone due to its passive nature. Moreover, 

reactive processors can be strategically modeled in a business-oriented (goal-

oriented) fashion as seen in [Kellner & Fiege 09]. Currently big IT players are 

betting on CEP as technology for Business rule implementation which makes this 

technology a target for implementations on future enterprise applications. Other 

technologies such as ESP and SEP are basic subsets of CEP and due to this those 

technologies alone cannot offer the full potential of a reactive rule engine as CEP. 

This leaves CEP as the technology to follow in the implementation of this work. 

http://complexevents.com/?p=19
http://complexevents.com/?p=19


3.  Methodology approach 

The selection and design processes of the manufacturing monitor will be 

elaborated within this section. Architecture paradigms, technologies will be selected 

based on the outcome of the technology review presented in the previous section.  

3.1 Technology mapping and tool selection 

As seen from the technology review, many techniques for monitoring have been 

implemented and analyzed through the research community.  Figure 33 shows a 

summary of the techniques and modes identified in the technology review. Finding 

the right technique was done based on criteria extracted from the review and by 

directly applying it to the system under observation. Based on the outcome of the 

review presented in chapter 2, the criteria detected for the selection of the right 

approach is the following: 

 Performance: Will the monitor operations hinder the SUO performance? Do the 

operations need to be performed externally from the controlled SUO? 

 Data freshness: Do the SUO need the monitoring results on runtime? 

 Fault-tolerance: How critical is the SUO dependency on the monitor? 

 State-of-the-art: What are the tendencies for future monitors? 

 Scalability: Ease to integrate to other systems 

 Dynamism of the system: Will the system requires re-configurability?  Does the 

system change its physical configuration? 

 

 

Figure 33: Monitor techniques and modes map 
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A set of assumptions were made in order to select a monitoring method. 

Information output incoming from the monitor should be as fresh as possible. Failure 

of assembly lines or bottlenecks can be costly and fast reaction toward failures is 

required immediately. For this reason, offline method is not suitable. Adding 

monitoring code and data aggregation on controllers it’s a possibility, however 

resource constrained devices might not possess the required processing power and 

the system visibility to abstract information into a higher-level event. For this reason 

online inline monitoring would not satisfy completely the goals of the monitor 

implementation, still online inline could provide pre-processing to reduce data 

transfer and increase abstraction of messages injected to the monitors processing 

unit. Moreover, the monitor must be robust enough to actively report alarms and 

events. At the same time it should be flexible enough to adapt other elements to its 

framework and follow the current trends for fault detection and data processing. 

Therefore, static centralized and decentralized techniques do not entirely comply 

with those requirements; this reduces the options to only the programmable and 

active monitoring techniques.  Finally, considering the static nature and the 

granularity level of the data in the system, it can be concluded that Programmable 

Decentralized Monitoring is the technique that best matches the criteria to the SUO 

proposed for this work (see section 4.2.1). Active distributed monitoring would be an 

overstated implementation and its main feature of re-configurability would not be 

practical in this case.  

Using a decentralized monitoring technique leads us into the analysis of 

technologies and paradigms of distributed systems. As the technique states, mobile 

code should be able to re-configure distributed monitors on setup from a monitor 

manager. In order to propose the environment for communication, standardized 

communication technologies in the manufacturing domain were analyzed concluding 

in an interoperability implementation of OPC-UA and DPWS. Both technologies are 

middleware for system integration across several layers of automation. Furthermore, 

their specifications implement eventing to provide an asynchronous paradigm that 

leverages SOA towards SOA 2.0. The inclusion of publish/subscribe paradigm 

benefits the monitor performance by acting on system happenings instead than on 

user demand for information (client-server behavior).  

Monitoring implementations involve data processing and mining form large data 

warehouses in order to aggregate and detect patterns that trigger actions or alarms. 

Data freshness is a concept that introduces the relevance of information of a monitor 

against time. By actively processing information arriving to the monitor, relevance 

of the information generated can be kept high and system reactivity improves.  

Current approaches to process and analyze data consist in the use of rule engines. As 

result from the state-of-the-art, it can be concluded that the only inference method 

that comply with the data freshness concept is the reactive forward-chaining 

inference engines. Other inference methods consists on goal driven and user invoke 
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methods that are prone to unnecessary data processing. Besides, this other methods 

propose a polling mechanism for data processing which can cause delays and 

additional processing. 

 

Figure 34: state-of-the-art Technology map 

Figure 34 shows the summary of the technology review presented. It maps the 

technologies to their respective inference method and architectural paradigm. Based 

on the previous assumptions, it can be concluded that CEP tackles the most of the 

requirements that are commonly found in monitors for manufacturing systems such 

as responsiveness, heterogeneous scalability, fault-tolerance, data freshness and, 

performance.  Given to the vertical integration provided by the middleware 

technologies presented, it can be possible to extend the visibility of Business 

Activity monitors which one of the driving technologies consist of CEP.  

As seen from Table 8 several platforms for CEP are available and most of the 

commercial solutions offer similar benefits and characteristics, however, source code 

is not available in commercial solutions as well as expensive licensing is required. 

Open source solutions such as Esper provide similar characteristics whilst making 

available full documentation and support. In addition, Esper also provides a .NET 

implementation called NEsper giving this framework advantage from other 

commercial solutions such as MS Stream Insight which has only .NET 

implementation. Moreover, NEsper offer to the data processing community the 

capability to embed CEP engines into applications. Due to the aforementioned 

reasons, the tool selected for implementation is NEsper CEP. NEsper is targeted for 

EDA architectures which allow triggering custom made actions following an Event 

Condition Action (ECA) paradigm.  

OPC-UA bases its architecture on gateway servers and clients that can navigate 

the servers address space via web methods. The platform independency advantage of 

OPC-UA allows any third party client implementations to be compatible with any 

server. However, due to the membership issues with the OPC foundation, OPC-UA 
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.NET v1.01 was the only option available for embedding a client into a processing 

engine. This pushed the whole implementation towards a .NET environment. 

Connectivity between legacy PLC systems and OPC-UA should be done by OPC-

UA adapters contained within an OPC-Server. For our experimental implementation, 

Ignition OPC gateway provides the functionality needed for the test bed 

connectivity. It packs web based OPC-UA functionality with sample modules that 

allows connectivity to Modbus, DeviceNet and other field buses. Furthermore, it 

uses binary-TCP encoding that gives high performance for data transmission.   

The tool and stack selection for this work is summarized on Table 11. The .NET 

framework provides a DPWS stack. However, it turned out that the stack is being 

contained on the MS .Net Micro Framework which made it incompatible with the 

other stacks available for OPC-UA and NEsper since they need .NET framework 

3.0. For that reason an in-house DPWS stack was developed in order to subscribe 

support WS-Eventing in the implementation. This would avoid having an ad-hoc 

solution for overall integration. 

Table 11: Selected tools for development 

Name Functionality 

OPC-UA .NET v1.01 Connecting to OPC-UA servers for 

event and notification subscriptions 

NEsper CEP/ESP Data aggregation and event 

processing platform. 

DPWS .NET (In house) WS-Eventing compliable stack able 

to discover and subscribe for relevant 

events. 

Ignition OPC-UA server Act as gateway for legacy PLC 

systems. Map devices on a navigable 

address space 

Windows SQL server 2005/2008 Event logging for historical analysis 

 

3.2 CEP Monitor functional architecture 

The architecture design intends to take advantage from the benefits of CEP. The 

overall design consists of a funnel like structure where the events are filtered to 

deploy actions and messages that extract information out of data. Following an 

Object Oriented approach, the functionality of the monitor such as configuration, 

external connectivity and processing was located within function blocks. The blocks 

are clustered together with internal interfaces. Each component provides interfaces 

for integration among other function blocks in the architecture. This approach allows 

distributability of the system by defining interfaces between blocks. 
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The monitor architecture structure was designed based upon a combined analysis 

of technologies, tools and techniques identified on the technology selection and the 

requirements of the implementation use case. Each tool provides specific connectors 

that allow the technologies to match into a coherent architecture. Founded on the 

native composition of the CEP engines, the central component in this architecture is 

the event processor. Considering the basic components of the CEP architecture, the 

CEP should contain input adapters in order to route information towards the 

processing engine.  

Available ESB solutions provide functionality such as translation, routing, and 

integration of heterogeneous systems. NEsper allows integration to enterprise service 

buses via JMS and JMX. However, DPWS and OPC-UA already provide a standard 

communication middleware making the use of the service bus redundant in a factory-

shop floor environment. Nonetheless, an input event manager component is needed 

in order to manage subscriptions, event translation and, event registration to the CEP 

engine. To ensure runtime flexibility for rule definition, the event manager and 

processing engine requires of a configuration component to set up configuration of 

the rules, event registration, event transformation, output configuration and routing. 
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Figure 35: CEP Monitor functional architecture 

Closely following the CEP architecture, four main function blocks were defined 

in order to provide accessibility to heterogeneous events. From Figure 35, starting 

from left to right, the first module identified is the input event manager. Its 

functionality consists in the interaction with the CEP to transform events into an 

understandable format for the processing engine. This module configuration has to 

navigate and register the events available from data sources. Event registration is 

crucial for the CEP in order to identify the type of event is handling. Events with 

same body name in the message would be treated the same even though the event 
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source is different. Hence, this module gives a unique name to events for preventing 

“event confusion”. The next component is the event processing service. This 

component receives events from the input manager and matches them into rules. 

Once a rule is matched, a rule action is triggered. The rule action may calculate, 

transform, route or generate complex events for output adapters.  For historical event 

analysis and event logging, the processor provides database connectivity.  This also 

allows transforming the passive nature of the databases into active event based 

behavior. The output adapter manager takes events and data generated by the event 

processor and routes it into a specific output adapter. The output adapters can be 

proprietary connections, interoperable Web Service or even an OPC-UA server.  

Finally a UI configuration module is required in order to govern the properties of 

each other module allowing flexible configuration of rules and actions.  Table 12 

describes in detail each of the components found in the functional architecture. 

Table 12: Functional description of the architecture 

Component  Functionality description 

Event source  Provide an eventing mechanism for data exchange 

Input event manager  Subscribe for events on behalf of the input adapter 

 Interface with the Configuration UI 

 Manage input adapter configuration 

Input adapter  Receive information from event sources 

 Transform event into internal data format 

 Route event into the CEP engine 

Rule container  Create a pool of rules for multiple rule matching 

EPL rule  Define the business logic of the system via rules 

 Pattern detection and data aggregation 

Rule action  Define extra business logic for post-processing 

Configuration UI  Provide UI for event subscription 

 Provide UI for EPL rule definition 

 Provide UI for rule action scripting 

 Provide UI for CEP initialization and configuration  

Processing engine  Host the rule container for rule management 

 Receive events and match it against rules 

Output adapter 

manager 

 Receive complex events from the rule actions 

 Manage output adapters for external connectivity 

Output adapter  Interface with external systems 
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4. Implementation 

This chapter describes in detail the technical architectural and experimental 

implementations of this work. Each of the components designed for the 

implementation of the CEP-based monitor.   

4.1 Monitor implementation 

This section describes the tool implementation characteristics and functionality 

as well as the relation between components and its technical structure. 

4.1.1  Event manager implementation 

As previously mentioned, an ESB’s could be used to route and transform events. 

Nevertheless, OPC-UA and DPWS already gives a middleware for system 

integration in a factory floor domain. For that reason, an event manager was 

implemented giving the functionality of a micro ESB to homogenize events from 

OPC-UA and DPWS. 

NEsper CEP allows processing of POJO, MAP and XML input events. With that 

in mind, SOAP messages incoming from DPWS-enabled devices are fully 

compatible and they can be processed directly without any event transformation. In a 

similar way OPC-UA XML encoding also is compatible with the processor. 

However, two main issues are involved in this approach.  One is that OPC-UA 

binary would not be supported since the response is not natively in XML. Thus, 

wrapping this information in a semantic language is required. And the most 

significant issue is the “event confusion”. The CEP engine gets confused by having 

XML events without a unique main XML element. Considering SOAP to have an 

envelope as main element, the CEP engine would not be able to recognize events 

from different sources. For that reason, the event manager should wrap the events 

into a uniquely named XML element in order to avoid this situation.  Each input 

adapter wraps the events on arrival. The following subsections will describe in detail 

the technical architecture of each adapter. 

NEsper requires event schemas for event registration. The GUI developed for the 

event manager, allows the monitor administrator to subscribe to events from the 

input adapters and automatically register the events. The input manager generates 

unique event names by combining endpoint information with the event name. For 

instance, considering the case that a DPWS-device contains the address 

192.168.2.100 and that it exposes an event called ItemTransferOut. The name of the 

event would get internally transformed into ItemTransferOut2100 before registration 

and submission to the CEP engine, this considering that every endpoint does not 

contain an event of a similar name. This practice solves the issue of “event 

confusion” and allows the registration of multiple events.  
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Figure 36 shows a detailed concept map diagram of the event manager 

functionality.  The event manager provides on set up the registration information to 

the CEP engine whilst routing the wrapped events on runtime from the event sink to 

the CEP engine.  The generation of CEP events follows a similar transformation than 

the schemas. Using the metadata of the incoming notification is possible to build the 

corresponding event that would match the schema’s main element. 

 

Figure 36: Event manager concept map 

4.1.1.1 OPC-UA input adapter 

OPC-UA manages subscriptions via standardized service sets. Therefore, an 

OPC-Client capable of navigating thought the address space was implemented for 

accessing to the desired nodes that contains the data of interest. OPC-UA V1.01 

.NET stack serializes the notifications and makes them available with the notification 

and monitoredItem objects in the Quickstart client implementation. The event can be 

converted into a CEP event type by wrapping the message contained in these objects 

with XML. Figure 37 shows an example of the attributed contained in an address 

space node of OPC-UA. The wrapping of the events should be done with the least 

information as possible taking in consideration that not all the information of the 

notification is useful for the monitoring application.  
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In the device level, the OPC-UA notifications are triggered on value change. This 

translates in notifications containing a publish timestamp, a value, and several other 

attributes containing session information and subscription. The solution of this work 

implements a static wrapping; the OPC-UA input adapter only wraps the timestamp, 

ID and value in order to mimic the elements contained in the ItemTransferOut event 

defined in CAMX specifications. A more dynamic and automatic event wrapping 

would be needed in case of selecting different nodes on the address space with 

different attributes. This could be possible by reading the information model of the 

OPC-Server; however it is out of the scope of this work. 

 

Figure 37: OPC-UA to XML wrapping 

4.1.1.2 DPWS input adapter 

DPWS enables devices to expose operations that can be subscribed to. The 

DPWS input adapter possess a custom Configuration UI that allows WS-Dynamic 

Discovery, WS-MetadataExchange and WS-addressing, The UI allows to display the 

operations described in the WSDL files and subscribe to the desired events.  On 

event subscription, the event manager is notified to register the newly subscribed 

event. On notification arrival, the input adapter transforms the event from SOAP to 

plain XML to forward it to the CEP engine. 

Differently from OPC-UA, DPWS notifications come in SOAP format. 

However, as mentioned previously, this format brings problems with the CEP 

engine. To overcome this, the message is parsed using XPATH. After that, the 

elements are wrapped with a unique identifier based on the main element of the 

event and the event metadata such as the event endpoint source.  Figure 38 depicts 

the transformation made in the DPWS input adapter once the message arrives to the 

event sink. 
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Figure 38: SOAP message and internal CEP Event 

4.1.1.3 Processing engine implementation  

The NEsper CEP engine is the foundation of the event-based manufacturing 

system monitor. This specific CEP provides routing, processing and post-processing 

capabilities for incoming data based on rules and rule actions. These rules can be 

defined via UI that sets up all the components needed for initializing the processing 

unit. However, before start-up, the CEP engine goes through a process of 

configuration. The configuration consists on several steps that are mostly made 

through the configuration UI: EPL statement definition, validation of EPL statements 

with the event registry, definition of the actions triggered by EPL statements and 

finally initialization the engine. Explained as a sequence, first the user defines EPL 

statements and actions in the configuration UI, after that, the CEP engine then loads 

the registered events from the configuration file generated by the event manager.  

Afterwards, the EPL statements are validated with the schemas to detect elements 

that may not be included in the event. Initialization of the CEP is concluded if the 

validation returns success. The CEP engine cannot initialize if any rule fails to 

validate. This ensures that the rules are matching the expected events.  

 

Figure 39: Concept map for CEP configuration and rule composition 

The statement actions extend the UpdateListener class of NEsper API which 

updates every time the related rule is matched. The action definitions are in charge of 
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routing and post-processing as well as implementing output adapters. Results of the 

EPL statements are placed in EventBeans that can be accessed via getter methods in 

the UpdateListeners Figure 39 shows a concept map for configuration and rule 

definition. 

The processing engine also provides connectivity to databases. This is done via 

EPL statements. However, database connection and drivers should be handled during 

the configuration phase. EPL just applies queries to databases.  For more information 

of EPL statements see Appendix B.  

4.1.2 Output adapter implementation 

There are three methods how the WS Output adapter may operate. The first 

method consists in describing all of complex events in a WSDL. This requires of 

dynamically building this contract on CEP configuration. The second requires 

configuring a client that invokes a service in the consumer. The third method 

requires of a generic set of operations described in a WSDL that provides to the 

customer information on CEP available complex events. Differently from the first 

one, this requires of consumer invocation. This last approach defies the concept of 

EDA.  

 

Figure 40: Output adapter description 

The output adapters are directly associated to the actions registered in an EPL 

statement. Once a rule is matched, the action associated with the rule will generate a 

complex event. The complex event has to be available for other systems to consume. 

For this reason and considering the interoperability that Web Service technologies 

provide, A WS output adapter allows consumers to subscribe to the complex events 

generated. The implementation made use of .NET WCF WebMethods for generating 

an endpoint connection.  Complex events generated within the UpdateListener inside 

the action were exposed as one-way operations.   
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4.1.3 Configuration model description 

The configuration is divided in two main sections: source configuration and CEP 

configuration. During source configuration, the UI triggers the input adapters for 

discovery and connection to data sources. It also displays the available messages in 

order to select and subscribe. The DPWS input adapter is configured to load the 

WSDL file, parse the service description and notify to the DPWS input adapter UI 

about operations available for each source.   The OPC-UA UI displays the address 

space of the server. It allows subscription to nodes using the monitoredItem and 

Subscription service sets.  The CEP configuration consists in the setup of statements, 

actions and registration of the actions to the specific EPL statement. The 

actionListener is configured using C# plain classes. An on-the-fly compiler was 

developed using the Reflection libraries of .NET in order to use C# as scripting code. 

This provided the flexibility to load actions in runtime without compiling each time 

an action is changed. A more detailed configuration process is depicted in Figure 41.  

 

Figure 41: Deployment and configuration model 

4.1.4 Runtime technical description 

Runtime functionality becomes simple once the system is configured. Having 

extense configuration instead of complex runtime functionality is a tradeoff that 

benefits the process monitoring and increases its reliability in the end. 

During runtime the monitor receives notification from heterogeneous event 

sources. The event-based monitor input adapters act as a router while transforming 
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notifications for the CEP. All notifications going through the CEP are match against 

rules. The business logic contained in the Action Listener is triggered when the 

rule’s pattern is matched. Finally the listener directs the complex event into an output 

adapter for further distribution of complex events into visual components of a 

consumer. In cases when the complex events have to be fed back into the processor, 

there are two approaches. The first consist in an EPL statement containing the 

INSERT INTO clause that internally routes the event results into another EPL rule. 

The second approach is to feed back the event using the SendEvent operation of the 

CEP engine factory within the business logic of the ActionListener.  

 

Figure 42: Platform functionality 

4.2 Experimental implementation 

The monitoring application was tested using a Flexlink Dynamic Assembly 

System (DAS). DAS products consist of modular factory solutions for assembly, 

inspection, testing and repair of products. The system main feature is the modularity 

of its standard components that can interconnect with each other for reconfiguration 

and scalability to meet production demands.  Some of the modules available consist 

of robot cell, workstations, conveyors, buffers and lifters. Figure 43 shows some of 

the solutions provided by Flexlink. DAS 30 middle segment was the only module 

used during this experimental study.  

 

Figure 43: Flexlink products 
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4.2.1 Test bed 

The module used for the test scenario consists of a DAS 30 middle segment. This 

particular module consists of two workstations, a main line, a middle lifter and a 

long conveyor used for coupling with other DAS products. Each workstation 

consists of three conveyors from which two are cross-conveyors. This later type of 

conveyors allows the pallets to turn 90 degrees for routing.  The main line segment 

also consists of two cross-conveyors and a middle single direction conveyor. The 

middle lifter can transport the pallet to 4 different heights from which other modules 

can be interconnected. Each conveyor segment is being controlled and monitored by 

an INICO S1000 which is a DPWS enable device.  

 

Figure 44: Test bed configuration 

 A robot is located at one of the workstations. The robot is controlled with a 

Nematron PCT-5800 controller. This particular kind of controller connects to other 

components via MODBUS-over-Ethernet. However, an Ignition OPC-UA server 

was used to access information instead of creating single input adapters for each 

communication protocol. OPC-UA server solutions already provide modules for 

legacy system connectivity, for that reason creating input adapters for the CEP-based 

monitor would be unnecessary.  

Each conveyor segment generates transport events. The transport events consist 

of ItemTransferOut event as described by the CAMX (IPC-2541). Event messages 

contain information about the dateTime, laneID and itemInstanceID. However, since 

in this case this system will be monitoring the same product in the same line, these 

last two values will be fixed. Differently from DPWS, the OPC-UA server exposes 
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in the address space the variables and outputs of the PTC-5800. A specific output of 

the controller describes the process status of the robot. The notifications generated 

by the OPC-Server contain a timestamp and a value that describes process start and 

process end. Figure 45 describes the test bed scenario in detail. 

 

Figure 45: Test bed description [Garcia 11] 

4.2.2 Use case definition 

Conveyor system testing and system performance analysis requires of precise 

monitoring systems for an accurate detection of faults and productivity rates 

respectively. The use case for this study involves monitoring of a DAS 30 based 

manufacturing line for electronic assembly. During installation of DAS 30 systems 

there are commonly physical miss alignments between conveyor systems. This 

affects to efficiency of a pallet to transfer from one conveyor segment to another 

generating unwanted delays. Furthermore, electronic assembly operations are only a 

single task within the whole production chain, for that reason, productivity rates 

must be generated on a monitor for system performance notification to other 

operations of the production chain as well as for operator personnel.  

Endurance tests are commonly performed to detect flaws in the system, as well to 

verify the consistency in the process performance and system installation success. In 

this experimental study the system under observation is processing constantly a 

product in a loop sequence as shown in Figure 45. The system is orchestrated using a 

Business Process Execution Language (BPEL) script. Events generated must be 
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received by the monitor and processed to notify performance indicators to the clients 

of the monitor.  

The monitor implemented must analyze the pallet transfer timings to calculate 

the lap times based on single events generated by the production line. Moreover, the 

monitor has to notify whenever a pallet transfer takes more time than the expected.  

For this, complex events containing lap times should be generated as well as 

complex events with average lap times. Finally flaws must be detected and notified. 

4.2.3 Tests performed 

Four main tests were prepared to fulfill the requirements of the use case defined 

in this chapter and to evaluate the monitor capabilities for data aggregation and 

processing: 

Monitor testing 

This test validates the usability of the monitor for the use case. Subscription and 

connectivity is checked as well as the behavior of the monitor with sample events. 

An INICO S1000 was configured to submit notifications with different rates by 

changing the analog input of the device. Overall outcome from these analyses is the 

definition of the capabilities and pitfalls of the monitor. 

Lap time calculation 

This test proves the use of the monitor for detection of patterns and aggregation 

of data on a manufacturing environment. The generated events incoming from each 

conveyor segment are processed using EPL for generation of complex events 

containing the aggregated timestamp values of each TransferOut event in the system. 

The information contained in the complex event must inform the user about the 

processing lap times. 

The test bed described previously defines a system which natively does not 

possess any message that provides the overall lap time of each production lap.  For 

that reason, the monitor should aggregate the events that can be aggregated to obtain 

the data needed for this calculation.  In this case the EPL shown in Program 2 was 

configured to detect the lapTime complex event.  

The EPL selects all of the TransferOut events of the conveyors and robot station. 

On runtime the events are matched against a pattern that causally detects when a full 

circle is complete.  The pattern consists of causal operators (->) that detects whether 

the sequence of events has happened. On detection, an action containing getter 

methods is triggered. The business logic of the action takes the times filtered from 

each event and adds it up. The outcome is later posted as a notification in the CEP 

configuration UI to show the calculation.    
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INSERT INTO  
  lapTime 
SELECT 

A.TimeStamp as T1, 
B.TimeStamp as T2, 
C.TimeStamp as T3, 
D.TimeStamp as T4, 
E.TimeStamp as TR, 
F.TimeStamp as T5, 
G.TimeStamp as T6, 
H.TimeStamp as T7, 
I.TimeStamp as T8 

FROM PATTERN [every 
(A = TransferOut1Evt263 -> 
B = TransferOut1Evt247 -> 
C = TransferOut1Evt237 -> 
D = TransferOut1Evt244 -> 
E = RobotStationTransferOut -> 
F = TransferOut1Evt228 -> 
G = TransferOut1Evt222 -> 
H = TransferOut1Evt230 -> 
I = TransferOut1Evt240)] 

WHERE E.Value = “True” 
Program 2: EPL statement for lap detection 

Average Lap time calculation 

This test consists in the recursion of the lapTime complex event. The output 

generated has to aggregate values and notify subscribed systems about the average 

lap time of the last 5 laps. This test proves the recursive features of the monitor for 

higher level data abstraction. 

Feeding back the events from one statement to another is done by adding the 

clause INSERT INTO on the EPL statements. When doing this, a second rule can be 

defined for evaluating the average time every five instances of the complex event 

generated in the previous test. Recursiveness of the CEP engine allows several rules 

to be fed back internally into other rules without having to code input and output 

adapters. In this case, lapTime complex event becomes a lapTimeAvg complex event.  

Program 3 shows the EPL configured to detect five instances of the lapTime 

complex event. 

SELECT *, 
Count (*) as myCount  

FROM 
lapTime.win:length_batch(5)  

HAVING  
Count (*) = 5 

Program 3: EPL statement for detection of five lapTime complex events 
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The first clause defines a counter as well as selects all the information inserted by 

the lapTime event.  The second clause creates a length batch that allows only 5 

events to be cached by the processor. This is important in order to clean the 

UpdateListener for new calculations. Finally the HAVING clause triggers the action 

by expecting the counter to be equal to five. 

Flaw detection 

This test proves the capabilities of the monitor to use its post-processing capabilities 

to notify about flaws in the system. The circulating pallet generates TransferOut 

events on each conveyor segment. The calculation of the difference of the 

TransferOut timestamp of segment A against the TransferOut timestamp of conveyor 

B can result in detection of conveyor misalignments that prevent the pallet to flow 

smoothly. This is done after the lap complex event is generated, getting the filtered 

results of the pattern matching and calculating time differences between each 

conveyor segment interaction. 

For this test, the script shown in Program 4 was registered to the EPL rule defined by 

Program 2. This algorithm is executed every time the rule is matched. This script 

calculates the transitions of each conveyor interaction. A threshold was defined to 

detect if any transition takes more than 8 seconds to transfer. If the transition is 

higher than this threshold a notification will be published. 

// Get all times from the EPL rule results 

Time[1] = (Double)eventBean.Get(“T1”); 

Time[2] = (Double)eventBean.Get(“T2”); 

Time[3] = (Double)eventBean.Get(“T3”); 

Time[4] = (Double)eventBean.Get(“T4”); 

Time[5] = (Double)eventBean.Get(“TR”); 

Time[6] = (Double)eventBean.Get(“T5”); 

Time[7] = (Double)eventBean.Get(“T6”); 

Time[8] = (Double)eventBean.Get(“T7”); 

Time[9] = (Double)eventBean.Get(“T8”); 

 

Double threshold = 8; 

Double previousValue = 0; 

Double transition = 0; 

foreach(double T in Time) 

{ 

transition = T – previousValue; 

If (transition > threshold) 

{ 

   deployAlarm(“conveyorFlaw”); 

} 

   previousValue = T; 

} 

Program 4: UpdateListener script for detection of transition flaws 
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5. Results  

This chapter presents the experimental results from the tests specified during 

chapter 4 as well as a discussion of the conceptual results reached within this study.  

5.1 Experimental results 

5.1.1 Overall monitor functionality and limitation test 

During this test, the system was set up for receiving a constant amount of events 

from external sources at different rates. Performance, configuration and overall 

limitations of the system were analyzed in this section.  

The CEP-based monitor provides several UI that allows configuration of the 

several function blocks. Subscription to events can be successfully done using the 

Event Manager UI which allows navigating and subscribing to heterogeneous event 

(see appendix C for more information on monitor initialization via UI). Receiving 

events from different sources shows that a transformation layer is needed after event 

subscription in order to process them a homogeneous manner. However, this 

transformation requires processing time and restricts the engine’s high throughput. 

Subscriptions to OPC-UA and DPWS are covered with rich clients in the UI; 

nonetheless, the monitor relies on the SUO’s event description. The monitor can 

only see what the SUO informs. If a SUO does not provide rich variety of events, the 

monitor is incapable of executing calculations and inferences. On the other hand, the 

monitor can navigate on the SUO’s events and form rules that can be derived into 

KPI calculation or flaw detection. Also if the SUO does not have a certain event, the 

monitor can generate this notification by aggregating other associated events.  

All components were deployed over the same CPU hindering the processing 

power. However, the main focus of this work consists of aggregation of 

heterogeneous information and performance is more suitable for future work rather 

than results for this implementation. Orchestration engine as well as the monitor 

were deployed on a single i7 2.53 Mhz CPU with 4 GB of RAM. Due to that only 30 

evt/sec were able to be processed with this implementation. In any case, the expected 

quantity of external events for this test consists of 0.5 evt/sec. Due to that, the system 

was reliable to apply further tests to solve the use case problem. If needed, future 

distribution of the monitor into a dedicated server may improve the performance of 

the overall processing power. 

Having WS-output events requires building one-way operations for each rule 

defined in the event processor. This implementation only allows up to two rules that 

give two complex events. The operations are fixed, however it suffices the proof-of-

concept for the use case defined. 
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5.1.2 Lap time test results 

The EPL statement defined in section 4.2.3 detects every lap sequence and 

triggers successfully the configured action. The processing engine calculates and 

notifies the aggregated data into a visual dashboard. Results show that the monitor 

can aggregate and abstract events in a non-intrusive manner. Aggregated data from 

incoming events is shown in Figure 46. The 6
th

 lap time shows a neglectable 

increment in the average time probably due to the non-deterministic behavior of the 

network.  

 

Figure 46: Data aggregation for lap time calculation 

Results show an average value of 36.1 seconds per lap. The monitor is able of 

measuring performance of the line. However, there has to be a transition analysis to 

understand the behaviors of each pallet transaction and validate if the lap time results 

are correct. 

5.1.3 Average lap test results 

This test can be considered as a follow up of the previous test.  The action 

registered to the EPL defined in Program 3 is triggered every five times the lapTime 

rule is matched. Aggregated values are successfully displayed on a dashboard 

showing average times. Figure 47 shows the dashboard displaying a sample 

aggregated value for the average lap times. As seen from Figure 46, from lap 1 to lap 

5 the values are around 35.98 seconds giving a coherent value with the previous test 

results.  

Recursiveness of the system allows having rules only for detection while other 

rules can be use for action. In this way, less action listeners will be required. This 

feature of Nesper is located in the ESP part of the API. The event generated by 

lapTime is inserted into the stream generated in this case lapTime stream which any 

EPL statement can query.  
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Figure 47: CEP output Visual dashboard  

5.1.4 Flaw detection test results 

Finally this test aims to validate the results of the first test. The lapTime rule 

successfully filtered the information needed from the ItemTransferOut events of each 

conveyor segment. The action triggered calculated the transition times of each 

conveyor interaction showing some considerable delay in the 5
th

 transition as shown 

in Figure 48. Similar conveyor transactions returned an average of four seconds for 

transaction. The threshold of 8 seconds was broken on the fifth transaction, 

triggering a notification. This output showed that results of the first test were not 

optimal.  Using the information from the complex event, two mistakes were found 

after a brief inspection of the conveyor system. The first being a misalignment of the 

conveyor, making the pallet to slip for some seconds before being successfully 

transfer. And other located within the controller that contained a WAIT statement 

placed by mistake. Corrections were made and a second run was performed to 

compare results. As expected the system showed a significant change on the 5
th

 

transition, lowering the transaction time around three seconds as shown in Figure 49.  

As seen from the results, the monitor cannot specifically tell the right location of 

the flaw. The events generated by the SUO are just expressive enough to threat the 

conveyor as a black box where a flaw exists but no specific cause is found. Therefore 

the monitor’s flaw detection capability is directly dependant on the expressiveness of 

the SUO.  
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Figure 48: Flaw detected on the 5
th

 transition of the pallet 

 

 

Figure 49: Transition times after system correction 
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5.2 Conceptual results 

Disparity between problems stated and results are presented in order to 

corroborate the usefulness of the outcome of this work. This section presents the 

conceptual results obtained by answering each of the questions stated in chapter 1. 

 How to simplify integration of different heterogeneous information sources into 

a single event-processing system?  

As shown by this work, event-driven approaches are under the spotlight within 

the research community. Web-based protocols for system integration in manufactory 

also follow this tendency. Due to this, heterogeneous integration of event sources can 

be tackled in different levels. Having direct contact with the information sources 

makes the middleware protocols for system integration, such as OPC-UA and 

DPWS, to be located in the first level. Legacy systems and devices can be exposed in 

a standard format to others using these protocols. However, interoperability among 

protocols is not yet complete. Complex event processing architectures allow 

heterogeneous systems to connect via input adapters. These input adapters can be 

considered as a second level for heterogeneous system integration. Translation and 

homogenization operations convert event formats into a processable format for a 

CEP. These operations can be made within an input adapter, or via an ESB. Both 

approaches can be valid, however, study of this work shows that ESB, would be an 

overstated solution in a factory shop-floor level due to the integration capabilities of 

DPWS or OPC-UA based on middleware. Even so, the work presented had to 

combined concepts from both approaches. ESB solutions provide translation features 

that allow messages to be homogenized as well as a standard connectivity approach 

for high-level systems. Input adapters are customizable; but still do not provide a 

standard method for message transformation. Overall, the implementation presented 

achieved heterogeneous connectivity on a factory shop level. Scaling the automation 

pyramid for integration with the event-processor is no longer required due to the 

trends that communication technology is following. The levels of automation have 

no longer boundaries with one to another. This means that hierarchical view for 

integration is no longer necessary due to the omnipresence of information exposed 

by Message Oriented Middleware (MOM). Due to this, further expansion to systems 

located in higher-layers would only require of an input/translation implementation to 

integrate external systems to the event processor.  

 How to automate event aggregation to provide new higher level event 

generation? 

Automatic event aggregation refers to a skill of a system to perform calculation 

of incoming events by its own capabilities. The state-of-the-art presented shows that 

event aggregation is currently managed by rule engines. CEP provides reactivity 
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features to a system allowing it to be aware of situations and generate alarms and 

high-level events that notifies other systems 

Higher level events are commonly constituted by low level events. The main 

difference between these two is that low level events contain data while high level 

events contain information. Data becomes information when set on a certain context. 

CEP provides context-sensitive rules from which situations can be detected. For 

instance, gathering information from simple timestamp value and aggregating it into 

production performance KPI’s is an example of converting data into information 

within a temporal context for production. In this case, the architecture developed 

during this case allows higher event generation by defining rules containing 

operations and patterns that offer the user capabilities to add rules to provide context 

and transform data into information. 

 How to leverage the factory-shop floor information? 

Similarly as the previous question, factory-shop floor information can be 

leveraged by converting low-level events such as sensor data into high-level events. 

Rules apply aggregators and operations to transform data received into events and 

alarms which notify on system changes within a context. Complex event detection 

solves the “IT-blindness” caused by factory-shop floors by digesting the information 

to other interested systems. At the same time, this technique allows reduction of the 

event cloud volume into a more manageable and rich event cloud. In this work, 

results showed an event cloud reduction rate of 1/9. This means that from 9 low-

level events containing data, one high-level event was produced. The significant 

reduction of this quantity allows other systems to obtain messages when relevant; 

this diminished the quantity of messages in the network adding reliability into the 

monitoring system.  

 What components could create a framework that can allow event management? 

Event managers perform the task of composing, route and, process events in a 

message oriented system. Four generic components were identified in this work to 

create a fully functional event manager. To begin with, the first component has to 

handle subscription and translation operations. Subscription as well as 

homogenization of events allows processing engines to perform operations and 

further distribution of events. These operations have the possibility to be 

implemented completely within input adapters, or act in combination with an ESB as 

backbone for event input and transformation. Independently of the selected 

approach, the input adapter is vital components for the framework. Furthermore, the 

second component identified consists of configuration interface. Commonly, event 

managers require of offline configuration that define the operations and flow routes 

that events must follow inside and outside the framework. Third component consists 

of the processing engine. The engine loads rules configured and applies them to each 
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event received. This components as seen in the results, takes charge of the runtime 

and even real-time aggregation and correlation. Without such component, the actual 

event generation and routing is not possible. The fourth and last component consists 

of output adapters. Feeding high-level events to consumers is the end goal of the 

event manager. Similarly as the input adapter this component must translate the 

events generated to an understandable format for external systems.  

In summary, as shown in the architecture described within this work, these four 

generic components are the minimum requirements for the successful deployment of 

an event management platform. As results showed in the previous chapter, the tests 

performed successfully demonstrate data aggregation, event routing and event 

acquisition. Moreover, other concepts such as recursiveness and causality showed 

potential in future implementation and research for situational and context 

awareness. 
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6. Conclusions 

This chapter evaluates the results and approaches taken during this work. In 

addition it presents future work and research opportunities that can extend this work. 

6.1 Implementation conclusions 

Due to years of experience and dominance in the manufacturing market, OPC is 

a de facto specification for interoperability of systems in factory-shop floor systems. 

OPC-UA is constantly expanding and evolving by joining forces with other 

specifications such as MTConnect and PLCopen. However, its architecture defies the 

concept of the internet of things where each device can be accessed directly by any 

system without the need of a gateway such as the one OPC-UA introduces. For that 

case, DPWS enters the scene by including potential to each component to express 

their operations using cross-platform Web Services. In other words, both 

specifications provide the two most important means of communication in the 

factory shop floor level. Furthermore, instead of being considered as competitors 

they should be seen as complements due to their strengths and drawbacks. The 

implementation presented successfully provides a mean for interoperability between 

these two major specifications in a monitoring perspective. The implementation 

breaks the boundaries between the specifications by marshalling their message 

outputs with a processing unit that leverages information. High-level systems 

currently rely on legacy services and connectors meaning that the transition towards 

a fully DPWS and OPC-UA compliance is complicated. A middleware 

implementation such as a Complex Event Processor has been proved to convey all 

the information into high-level events that can be seen by other systems without 

wasting their processing power deciphering and integrating thousands of messages 

generated by factory shop floors. This justifies the means of this implementation 

proposal to aggregate and convert the message into an internal message, due to the 

fact that not all systems posses capabilities to understand each other. Moreover CEP 

provides tools for transformation, routing, processing and generation of messages 

which allows it to re-structure any message. Additionally, CEP allows messages 

from DPWS can be sent to OPC-UA and vice versa proving the concept of 

interoperability between specifications in an application level. 

6.2 Result conclusions 

The use case presented has demanded from the monitoring system to receive and 

process semantic data incoming from heterogeneous systems in a factory shop 

environment. The test results support the assumptions taken during the architectural 

design of this implementation achieving all of the goals imposed. The outcome 

shows the monitor reacting instantly whilst preventing information lag for notifying 

the responsible and handling the situation accordingly. 
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Data aggregation becomes a crucial factor as exposed by the results of this work. 

A substantial amount of messages are generated in the factory floor level. Not all of 

the messages generated are relevant for a monitor or other system. These messages 

as seen in the tests can be aggregated and leveraged for other systems whilst 

reducing message transactions that cause networks to overload.  

Additionally, it can be concluded that production losses can be decreased by 

increasing system’s reactivity. Detecting transfer delays between pallets can save 

several seconds during production cycles. KPI values that evaluate the status of the 

manufacturing line trigger alarms that allow corrections. The corrections performed 

translate into reduction of production cycles can be at the same time translated into 

several thousand Euros saved per batch in terms of energy and efficiency.  

Finally, the CEP-monitor implementation has been successfully deployed and 

tested within a manufacturing environment. The added value of this work can be 

summarized in increased reactivity, awareness, and, improved user experience for 

configurability of business rules. 

6.3 Future work and final thoughts 

This work boundary consists in the interaction of OPC-UA and DPWS in a shop-

floor level monitoring. Further incorporation of Business Integration Solutions (BIS) 

such as ESB can leverage all of the monitoring messages into ERP, MES, or other 

production systems allowing supervisory control to be more reactive, whilst at the 

same time allowing the system to react to more complex situations due to the 

visibility reach of the monitor. 

Rules and actions can be validated for syntactical errors; however semantic 

errors cannot be detected. This restricts the configuration user to input rules that are 

semantically correct. Rule validation in this monitor can be only done via trial and 

error.  Further formalization and validation methods are needed for testing rule 

behaviors on the monitor. 

Finally, Event-driven self-corrective systems could also be derived from the 

capabilities of CEP. Its real-time processing capabilities open the possibility to use it 

as an event-driven compensating control component for system corrections. This 

could be further evaluated on a real-time demanding situation for self-corrective 

actions that could increase process reliability.  
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APPENDIX A – CEP platforms 

PROGRESS APAMA 

Apama event driven architecture is an event processing platform that is capable 

in a bi-directional way to handle and process messages between the platform’s 

correlator engine and the event source. It ensures real-time operational 

responsiveness to fast moving events of any kind, leveraging a platform that 

combines flexibility, performance and interoperability. Apama consists of four main 

components for the design of event processing modules:  

Apama’s corretator: provides real-time execution of event processing 

scenarios, monitoring the events for patterns identified within Apama scenarios.  

Apama’s Studio: is an Eclipse-based Integrated Development Environment 

(IDE) for development, debugging, testing, profiling, back testing and deployment of 

Apama applications. 

Apama Data player:  Supports the replay of event data that has been captured in the 

event database. Used for complex historical analysis of the events. 

Progress Apama 

Features 

 Graphical development tools accessible to business users 

 Event processing language (Apama’s EPL). Available natively and in Java, it 

delivers the deepest range of Complex Event Processing (CEP) available to the 

market. 

 Sophisticated analytics with native support for temporal arguments. 

 Sub-millisecond response to detected event patterns. 

 Highly scalable, patented event-driven architecture, supporting tens of 

thousands of scenarios. 

 Auto-generation of visually appealing user dashboards. 

 Flexible event replay for testing new event scenarios and analyzing existing 

ones. 

Benefits 

 Apama’s Integration Adapter Framework (IAF) provides bi-directional 

connectivity to different event sources, messaging infrastructures and 

databases. IAF is complemented by a functionally-rich set of APIs for 

integration with customer-specific event data sources and application 

environments. 

 An integration environment that can synchronize RFID data streams with 

business events captured from different middleware systems, applications and 

other endpoints - without disrupting the current IT infrastructure. 

 

Infrastructure connectivity 

 Messaging transports: TCP/IP, UDP, CORBA, Java RMI, JMS (SonicMQ, 

IBM MQ Series, WebMethods). 

 Databases: ODBC, JDBC (for SQL Server, Oracle, DB2, MySQL, etc...) , 

KDB+ (KX Systems). 
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Coral 8 

Coral 8 CEP engine is designed for high-volume, low-latency applications where 

data analysis must occur in a question of milliseconds. It also provides important 

information to key in a timely fashion or drive instantaneous actions. Coral 8 

architecture consists in three main components: 

Coral8 Server: The Coral 8 Server is the high-throughput, low-latency runtime 

server for Coral8 applications. It offers features to deploy, integrate, and manage 

Coral8 applications. It comes with a number of packaged adapters for common high-

speed data sources such as market data, messaging software and databases. 

 

Coral8 Studio: The Coral8 Studio is a graphical environment for developing, 

testing, and deploying Coral 8 components and modules. The Studio also acts as a 

central management console for distributed network of Coral 8 Servers. 

 
Coral8 Portal: The Coral8 Portal is a dashboard and visualization server that 

allows users to dynamically query and work with real-time CEP output. It offers a 

self-service environment that puts real-time information from CEP applications in 

the hands of business users. 

 

Coral 8 

Features  

 Transform large volumes of quickly changing and historical data into 

immediate insight, with details that drive in-the-moment decisions, 

recommendations, and actions. 

 Configurable enterprise-class clustering and high availability. State persistence 

and guaranteed messaging options can be configured. This enables fast, flexible 

clustering for mission-critical environments without any extra application 

programming. 

 Uses Continuous Computation Language (CCL) as event processing language. 

CCL has a SQL-like      syntax. 

Benefits 

 Output is sent at the speed appropriate to the use. Continuous queries can send 

results or alerts to fast-moving charts. 

 Includes a large number of built-in adapters that connect to live data sources, 

such as market and trade data, Internet/e-commerce interactions, RFID data, 

transactions, sensor data, and others. 

Programming Interfaces 

 Publish-Subscribe API – used to stream event data into the CEP server, and to 

subscribe to output streams from the CEP server. Available for C++, Java and 

.NET. The Coral8 platform also includes SDKs for Perl and Python.  

 User Defined Function Interface – used to link external function libraries that 

can be called from within expressions in an event model running on the CEP 

server.  

 On-Demand Query Interface – allows you to run SQL queries against retained 

data sets (windows) in the CEP server. Delivers a snapshot as a response (SQL 

queries for an image followed by updates can be issued using the pub/sub API).  

Price  
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 License cost is around 20k per core. 

Esper/Nesper 

NEsper is a CLR-based component for building CEP and ESP engines. NEsper is 

based upon the Esper baseline, but includes customizations that are specific to the 

.NET CLR. NEsper was created to make it easier to build CEP and ESP applications. 

NEsper is open-source software available under the GNU General Public License 

(GPL) license. NEsper and Esper share the same grammar meaning that the two 

environments to be compatible 

Esper supports a wide variety of event representations, such as Java beans, XML 

document, legacy classes, or simple name value pairs. It can be easily embedded in 

an existing Java application or middleware to add real-time event-driven capabilities 

to existing platforms without paying high serialization cost or network latency for 

every message received and action triggered. 

Once event queries and pattern statements are registered in the Esper core 

container, events flow in at real-time speed and trigger arbitrary logic bound to the 

engine in the form of Plain Old Java Objects. This enables leveraging any existing 

Java technology and ensures easily connection to existing SOA building blocks. 

Esper and Nesper 

Features  

 Esper exceeds over 500 000 event/s on a dual CPU 2GHz Intel based hardware, 

with engine latency below 3 microseconds average (below 10us with more than 

99% predictability) on a VWAP benchmark with 1000 statements registered in 

the system - this tops at 70 Mbit/s at 85% CPU usage. Esper also demonstrates 

linear scalability from 100 000 to 500 000 event/s on this hardware, with 

consistent results accross different statements. 

 Esper is an Event Stream Processing (ESP) and event correlation engine (CEP, 

Complex Event Processing). Targeted to real-time Event Driven Architectures 

(EDA), Esper is capable of triggering custom actions written as Plain Old Java 

Objects (POJO) when event conditions occur among event streams 

 Business process management and automation (process monitoring, BAM, 

reporting exceptions, operational intelligence)  

 Finance (algorithmic trading, fraud detection, risk management)  

 Network and application monitoring (intrusion detection, SLA monitoring)  

 Sensor network applications (RFID reading, scheduling and control of 

fabrication lines, air traffic)  

Benefits 

 OPEN SOURCE 

Programming Interfaces 

 Esper for Java and NEsper for .NET 

Price  

 Free 
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Tibco Business Events 

BusinessEvents is another complex event processing (CEP) software that enables 

organizations to identify patterns among the event cloud that surrounds their 

business.  It allows constructing a UML-based model to describe the applications, 

servers and services. The models define the relationship between assets.  

 

The CEP rule engine is based on industry-standard RETE protocol, and it can 

support simultaneous application of thousands of rules to millions of events. The 

modeling of states of events, describes how the application and services interact as 

part of activities and processes. A state machine captures and stores in an in-memory 

database the status of events relative to causes, roles and expected behavior for 

instant correlation against other events. Data can persist for any length of time 

depending on how long an event is relevant. Figure 10 shows the Tibco’s framework 

for event processing. 

 

Tibco Business Events 

Features  

 UML-Based Modeling: A UML-based state model describes how applications 

and services interact as part of activities and processes. 

 RETE-Based Rules Engine Based on industry-standard RETE protocol for 

familiarity and stability, the Business Events rules engine has been recompiled 

and tuned to support simultaneous application of thousands of rules to millions 

of events. 

 Events Capture Business Events can capture and process events being routed 

across TIBCO's integration and messaging infrastructure as well as other 

vendors' implementations of JMS and other integration platforms including 

IBM's MQSeries messaging software. 

Benefits 

 Accelerates response to threats and opportunities by automatically identifying 

obscure but important relationships between seemingly unrelated events before 

they result in situations that impact customer experience or the bottom line. 

 Improves resource allocation and problem resolution by helping organizations 

prioritize situations that require the most urgent attention based on a 

sophisticated analysis of likely outcome and secondary or indirect impacts. 

 Applications include service assurance, fraud detection, logistics, compliance 

and security. 
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APPENDIX B – NEsper EPL 

NEsper EPL statement expressiveness for rule composition 

Manufacturing monitors are changing from single sensor/single indicator towards 

more descriptive dashboard solutions. Current HMI solutions display KPI values and 

process variables that are calculated by aggregating information from distributed 

sources. However this aggregation is not done real-time and due to this powerful 

aggregators and historians may be used for calculation. In the case of CEP, the 

aggregation is done on data arrival. Because of this, EPL statements should be 

expressive enough to match these aggregators functionality while allowing real-time 

processing. NEsper provides a rich EPL for rule definition that proves to be adequate 

for different conditions. The EPL rules are defined using a DSL. Due to this, NEsper 

as many other processors could be confused as a Deterministic Engine; However 

Most of CEP solutions follows the forward chaining inference method. In addition, 

currently there are no standard languages for event processing; this leads developers 

to define DSL with different focuses and levels of expressivity. 

NEsper EPL follows the native structure of SQL providing the following known 

clauses while extending others for pattern recognition. The main clauses found in the 

EPL vocabulary are the explained in Table 13. 

NEsper do not limit its expressiveness with lone EPL clauses, it provides time 

windows views, operators and expressions that extend this clauses for an improved 

expressiveness.  For manufacturing purposes, the expressiveness of EPL statements 

should be adequate to calculate KPI’s, detect flaws in the system, and generate 

alarms triggered by thresholds. To justify the expressiveness of NEper EPL in this 

domain, it is necessary to assume these simple cases and categorize the clauses and 

operators required to perform these operations. 

The WHERE and HAVING clauses are used to filter events. By setting low and 

high parameters, this clause gives the possibility to act as KPI thresholds. The 

SELECT allows aggregation operators to expand its expressiveness, due to this it can 

be used aggregate data and calculate KPI values. Furthermore, data aggregation can 

be further extended by taking advantage of the Event-Condition-Action paradigm of 

CEP solutions. A rule triggers an action which has the aggregation business logic. 

This approach could be used for KPI formulas or operations where the EPL do not 

satisfy. Flaws from equipment and bottleneck can be detected based on status 

notification of equipment. The PATTERN clause offers to the business logic of the 

CEP the capability to detect causal logical and temporal sequences of events. Using 

this clause it’s possible to detect and even infer flaws in the system by looking for 

sequences inside cloud of events. 
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Table 13: NEsper EPL clauses 

Clause  Examples Description 

SELECT SELECT a.custId, 

sum(a.price + b.price) 

Select clause grabs specific 

elements of an event. Aggregation 

is possible by using expressions 

common pre-define aggregators 

(avg(), stddev() , sum()) 

FROM FROM pattern [every 

a=ServiceOrder-> 

b=ProductOrder(custId= 

a.custId) 

Defines the event of interest for the 

rule. It is extended by the pattern 

cause in case of multiple events of 

interest. 

WHERE/ 

HAVING 

where a.name in ('Repair', 

b.name) 

Filters events  

INSERT INTO insert into 

DoubleWithdrawalStream 

select a.id, b.id, a.account 

as account, 0 as minimum 

from pattern [a=Withdrawal -

> b=Withdrawal(id = a.id)] 

Input events into other streams to 

increase abstraction.  

GROUP BY select symbol, sum(price) 
from TickEvent 
group by symbol 
having sum(price) > 

var_threshold 

Divides the output of an EPL 

statement into groups 

PATTERN  pattern [every 

a=ServiceOrder-> 

b=ProductOrder(custId= 

a.custId) 

Extendend by logical and/or causal 

or lifecycle operators for pattern 

matching (->, until, and, or, every) 

OUTPUT select sum(price) from 
OrderEvent.win:time(30 min) 
output snapshot every 60 
seconds 

Control or stabilizes the rate at 

which events are output and 

to suppress output events 

SQL tag select custId, cust_name 
from CustomerCallEvent, 
sql:MyCustomerDB ['select 
cust_name from Customer 
where cust_id = ${custId} '] 

Allows combination of database 

results with event streams and 

clouds 
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APPENDIX C – Monitor configuration 

and initialization 

 

 

Figure 50: Event manager UI description (OPC-UA tab) 

 

 

 

Figure 51: Event manager UI description (DPWS tab) 
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Figure 52: CEP deployment 

 

 

 

Figure 53: OPC-UA server discovery and connection 
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Figure 54: Subscription for OPC-UA notifications 

 

 

Figure 55: OPC-UA notification XML conversion 
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Figure 56:DPWS device discovery 

 

 

 

Figure 57: DPWS event subscription 
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Figure 58: CEP engine UI (Event schemas loaded for EPL definition) 

 

 

 

Figure 59: Event type registration for CEP engine 
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Figure 60: Rule ActionListener script UI 

 

 

 

Figure 61: CEP initialization 
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Figure 62: Complex event generation 


