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ABSTRACT 

Azarakhsh Hamedi: Bayesian networks in additive manufacturing and reliability engineering 
Master of Science Thesis 
Tampere University 
Automation Engineering, Factory Automation and Industrial Informatics 
February 2019 

 

A Bayesian network (BN) is a powerful tool to represent the quantitative and qualitative fea-
tures of a system in an intuitive yet sophisticated manner. The qualitative aspect is represented 
with a directed acyclic graph (DAG), depicting dependency relations between the random varia-
bles of the system. In a DAG, the variables of the system are shown with a set of nodes and the 
dependencies between them are shown with a directed edge. A DAG in the Bayesian network 
can be a causal graph under certain circumstances. The quantitative aspect is the local condi-
tional probabilities associated with each variable, which is a factorization of the joint probability 
distribution of the variables in the system based on the dependency relation represented in the 
DAG. 

In this study, the benefits of using BNs in reliability engineering and additive manufacturing is 
investigated. In the case of reliability engineering, there are several methods to create predictive 
models for reliability features of a system. Predicting the possibility and the time of a possible 
failure is one of the important tasks in the reliability engineering principle. The quality of the cor-
rective maintenance after each failure is affecting consecutive failure times. If a maintenance task 
after each failure involves replacing all the components of an equipment, called perfect mainte-
nance, it is considered that the equipment is restored to an “as good as new” (AGAN) condition, 
and based on that, the consecutive failure times are considered independent. Not only in most of 
the cases the maintenance is not perfect, but the environment of the equipment and the usage 
patterns have a significant effect on the consecutive failure times. In this study, this effect is in-
vestigated by using Bayesian network structural learning algorithms to learn a BN based on the 
failure data of an industrial water pump. 

In additive manufacturing (AM) field, manufacturing systems are normally a complex combi-
nation of multiple components. This complex nature and the associated uncertainties in design 
and manufacturing parameters in additive manufacturing promotes the need for models that can 
handle uncertainties and are efficient in calculations. Moreover, the lack of AM knowledge in 
practitioners is one of the main obstacles for democratizing it. In this study, a method is developed 
for creating Bayesian network models for AM systems that includes experts’ and domain 
knowledge.  

To form the structure of the model, causal graphs obtained through dimensional analysis con-
ceptual modeling (DACM) framework is used as the DAG for a Bayesian network after some 
modifications. DACM is a framework for extracting the causal graph and the governing equations 
between the variables of a complex system. The experts’ knowledge is extracted through a prob-
ability assessment process, called the analytical hierarchy process (AHP) and encoded into local 
probability tables associated with the independent variables of the model. To complete the model, 
a sampling technique is used along with the governing equations between the intermediate and 
output variables to obtain the rest of the probability tables. 

Such models can be used in many use cases, namely domain knowledge representation, de-
fect prognosis and diagnosis and design space exploration. The qualitative aspect of the model 
is obtained from the physical phenomena in the system and the quantitative aspect is obtained 
from the experts’ knowledge, therefore the model can interactively represent the domain and the 
experts’ knowledge. In prognosis tasks, the probability distribution for the values that an output 
variable can take is calculated based on the values chosen for the input variables. In diagnosis 
tasks, the designer can investigate the reason for having a specific value in an output variable 
among the inputs. Finally, the model can be used to perform design space exploration. The model 
reduces the design space into a discretized and interactive Bayesian network space which is very 
convenient for design space exploration. 
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1. INTRODUCTION 

Limited resources and fierce competition in the market encourages the manufacturers to 

adopt new manufacturing technologies which are more flexible, more predictable, more 

agile and needs less preparation time (d’Aveni, 2015). This urges manufacturers to use 

more complex manufacturing equipment and processes. Handling this complexity re-

quires more knowledge and sophisticated methods and models.  

One of the consequences of using more complex systems and models is facing uncer-

tainty in the system (de Rocquigny, Devictor, & Tarantola, 2008). Uncertainty in manu-

facturing systems may have different source and it is classified by Nannapaneni et al. 

(2016) three categories. Uncertainty may be because of the quality of the data, e.g. in-

adequate, missing, erroneous data. Another category of uncertainty occurs because of 

assumptions and approximations in the models used. These two types of uncertainty 

happened because of lack of knowledge and called epistemic uncertainty. The third cat-

egory of uncertainty is because of natural varieties in the manufacturing process and 

called statistical or aleatory uncertainty. 

Uncertainty shows itself in industrial practice in different situations. As Rocquigny et al. 

(2008) discuss, uncertainty may occur because of variability or error in measurements in  

variables, having an expected value for a variable, having confidence intervals for some 

variables, variables relating to the risk percentage, having probability of exciding a 

threshold or having ranges for variables in the design phase. Some areas such reliability 

of the equipment are in direct relation with uncertainties in the system (O’Connor & 

Kleyner, 2012). 

On the other hand, one of the obstacles to using new complex equipment and systems 

in manufacturing is the lack of expert’s knowledge of using those processes among de-

signers and practitioners. Creative design and manufacturing with new technologies like 

additive manufacturing need special tools, knowledge, and expertise which is sparse due 

to the recentness of these technologies (Gardan, 2014). New concepts such as design 

for X (DFX) combines the state of the art models and the expert’s knowledge of manu-

facturing equipment and processes to provide interactive tools for designers. Such sys-

tems enable designers to maximize their creativity in the early design stage while the 
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system can show the result of their choices in real-time with some degree of uncertainty 

(Laverne, Segonds, D’Antonio, & Le Coq, 2017). 

One of the of the approaches to creating a model that can handle the uncertainty includes 

experts’ knowledge, provides an interactive interface and is efficient in computation is 

using Bayesian networks. There are several other approaches such as fuzzy logic, neu-

ral networks, and rule-based expert systems but none of them can handle all of the men-

tioned criteria at the same time (McNaught & Chan, 2011). 

The need for bidirectional inferable models, i.e. Semantic (up-down evidence reading) 

and perceptual (down-up evidence reading) inferable models, leads to initial deployment 

of the Bayesian networks. A Bayesian network is a graphical probabilistic model that 

represents a qualitative and a quantitative relationship between a set of random varia-

bles. The qualitative part is described using directed acyclic graphs (DAG) to show the 

dependencies between random variables and the quantitative part is the probabilistic 

relationships between those variables. The quantitative part is based on local probability 

distributions between the random variables and it represents a particular factorization of 

the joint probability distribution of the variables based on the relations specified through 

the DAG (Pearl, 2004). 

In this representation, each random variable is represented with a node or vertex in the 

graph and a directed arc, also called an arrow or an arc, from node 𝐴 to 𝐵 shows that 

node 𝐵 is dependent to 𝐴 and 𝐴 is possibly a cause for the node 𝐵. Since there can be 

many different factorizations for a joint distribution, there can be as many BNs for the 

same distribution. A fully connected network is the best realization of the joint probability 

distribution in the form of a Bayesian network. The missing arcs between nodes is a 

valuable information in a BN. They represent the conditional independence between the 

random variables and help representing the joint distribution in a more compact form 

(Judae Pearl, 1988). 

The other benefit of using a Bayesian network is that using it, it is possible to encode the 

expert’s knowledge into a model. The experts’ knowledge can be extracted in the form 

of the dependency relations between variables, i.e. the structure of the network, or the 

quality of interactions between variables, i.e. the probability tables (Williamson, 2001). 

After creating the model, using the DAG and the probability tables, it is possible to per-

form Bayesian inference between the variables of the model. The inference process cal-

culates the effect of changes in the probability distribution of one or several nodes on the 

probability distributions of the other nodes. Several inference algorithms have been de-

veloped which can perform this task efficiently. This enables the Bayesian networks to 
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be not only fast and efficient in calculations, but also have an interactive nature (Guo & 

Hsu, 2002). 

1.1 Research Objective and Scope  

This study tries to investigate the possibility of using a systematic approach to create 

models for the uncertainty associated problems in the industrial domain using Bayesian 

networks.  

There are two general approaches for creating Bayesian network models for a problem 

in a system, namely the knowledge elicitation approach and the machine learning ap-

proach. BNs can be obtained in a subjective manner by eliciting experts knowledge and 

the domain knowledge for the dependency of the variables and the probability distribu-

tions (Koller, Friedman, Getoor, & Taskar, 2007). Multiple methods have been developed 

to obtaining expert’s and domain knowledge for the structure of the Bayesian networks 

(K.W. Przytula & Thompson, 2002; Richardson & Domingos, 2003) and the correspond-

ing probability distributions (Nunes et al., 2018).  

The other method of creating a Bayesian network model is to use the available data in 

the domain and obtain a Bayesian network using machine learning algorithms. Although 

several methods have been developed to perform the machine learning (Daly, Shen, & 

Aitken, 2009) which are quite effective and efficient, the main problem is acquiring suit-

able data and preparations of the data to be used in the machine learning process (sec-

tions 3.1.5-3.1.7).  

Therefore, the first objective of this research is to develop a systematic method to create 

interactive Bayesian network models for complex systems in order to predict the results 

of the choice of design and manufacturing parameters in the early stage design phase. 

The second objective of this research is to create a predictive Bayesian network model 

for an industrial problem using the data and machine learning to get familiar with the 

challenges and develop a systematic approach for similar problems. 

The methods that are created and gathered in this study are implemented in two indus-

trial case studies. A problem in an additive manufacturing system is chosen to be 

modelled with a BN model using experts’ and domain’s knowledge and an equipment 

reliability case study is chosen to be modelled with BNs using machine learning and data. 
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1.2 Case Studies 

One of the emerging technologies for which helps to address the needs in today’s fast 

pacing manufacturing is additive manufacturing (AM). AM is the process of manufactur-

ing of parts by adding materials is layer by layer directly from their digital blueprints 

(d’Aveni, 2015). There are several obstacles in integrating AM technologies into produc-

tion systems, one of which is the high degree of complexity in AM systems. Such systems 

are created by adjoining several complex subsystems and this makes it very difficult to 

create a holistic model for them to predict and assure the quality of the manufactured 

parts (Kathryn et al., 2016). 

The other reason for the complexity of AM processes is the sheer number of input vari-

ables and that a big portion of the processes within the system are not identified. There-

fore, finding the right parameters for the system to reach desirable dimensional, mechan-

ical and metallurgical characteristics is a multi-criteria problem (Stavropoulos & 

Foteinopoulos, 2018). Moreover, the other major challenges in democratizing AM is lack 

of knowledge and expertise of AM among designers and practitioners (Lindqvist, Piili, & 

Salminen, 2016), therefore the models should be able to contain and represent experts’ 

knowledge in the field.  

One of the challenges in manufacturing using AM is the defects in the manufactured 

parts. Additive manufacturing process causes a number of defects in the parts and since 

the process is complicated and fast pacing, it is hard to create exact models for them 

(Mindt, Desmaison, Megahed, Peralta, & Neumann, 2017). Moreover, choices in design 

and manufacturing parameters have a significant effect on the extent of these defects. 

Therefore, there is a significant amount of uncertainty associated with the variables of 

the system (Béraud, Vignat, Villeneuve, & Dendievel, 2014). 

The other case study in this thesis is addressing the failure prediction in reliability engi-

neering principle. Failure in manufacturing equipment imposes costs to the production. 

These costs can be the cost of downtime, excess maintenance, lost production, equip-

ment repair, equipment replacement, and safety risks. These can affect companies in 

short or mid-terms and it can even lead to loss of business in the long term. Taking 

advanced maintenance policies can reduce cost and risk significantly. Manufacturers 

can take advantage of preventive or planned maintenance by creating predictive models 

of the failures from the historical data of their equipment components (Letot, Equeter, 

Dutoit, & Dehombreux, 2017). Using such models and considering the current situation 

of the machinery, the optimal time of maintenance of the system can be predicted and 

costly failure can be prevented. 
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Modelling the mechanism of failure is necessary to perform preventative and predictive 

maintenance. The well-known parametric models can describe the systems with good 

accuracy, but they lack the ability to adopt the changes in multiple variables of the model 

at the same time (Langseth, 1998).  

The quality of each maintenance procedure, which is taking place after each failure, is 

affecting the expected time to the next failure. The maintenance quality can be ranging 

from perfect, i.e. bringing the equipment back to the “as good as new” condition, to a 

maintenance that makes the equipment’s health even worse than before the mainte-

nance. The other factor which is important in the reliability of the equipment is the usage 

of the equipment and the environment of the operation (Carlo & Arleo, 2017). All these 

factors should be considered when a model is created for the reliability of equipment. 

One of the major issues is the quality of the data in real-world cases. In the field of pre-

diction and health management in reliability engineering, the data for the health condition 

of the equipment is very hard to find, partly due to the privacy policy of the companies 

and partly due to the nature of such systems. Field systems are typically not properly 

instrumented and the process of collecting data is time-consuming and expensive 

(Saxena, Goebel, Simon, & Eklund, 2008). The data used in this study is a single variable 

dataset of the failure times of industrial water pumps. 

The other problem with the health condition data in the industrial domain is being subject 

to missingness and censoring. Missingness occurs when a data point is being failed to 

record 3.1.7). Censoring is a condition specific to failure data and it is basically the data 

which becomes invisible due to reasons such as ending the study or occurring before 

the study begins etc. (section 2.3.1). 

1.3 Problem Definition 

As mentioned before, this study tries to investigate the modelling process using BNs with 

two approaches in the industrial domain. The objectives of this research are implemented 

on the problems of the case studies. Therefore, the research questions of this study are: 

How to model the probability of occurrence of a defect in an additive manufacturing pro-

cess or: 

• How to use the benefits of Bayesian networks in creating interactive models for 
curling defect problem in the additive manufacturing process which contains 
experts’ knowledge in the field of AM? 

And the expected result in this field is: 
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• To create a methodology for creating Bayesian network models for problems in 
complex systems in a systematic manner.  

And the research questions in reliability engineering are: 

• How to use machine learning in Bayesian networks for predicting failure times 
historical time to failure data? 

Expected result for the case study in reliability engineering is: 

• To extract a predictive model from data to estimate the next time to failure.  

1.4 Methodology 

To answer the first research question, this study tries to use dimensional analysis con-

ceptual modelling (DACM) framework to obtain the structure of the Bayesian network 

and analytical hierarchy process (AHP) and a sampling technique to obtain the probabil-

ity distributions.  

DACM is proposing a series of methods to simplify, organize and simulate the behaviour 

of a system in the form of cause-effect relationships using qualitative information about 

that system. The result is a directed graph containing the causal relationships between 

the variables of the system and the governing equations between those variables 

(Coatanéa, Roca, Mokhtarian, Mokammel, & Ikkala, 2016).  

AHP is initially developed as a method to derive priorities for different criteria in a multi-

criteria decision problem. AHP decomposes the criterion for decision problem into sub-

criteria and acquires the expert’s preferences on those sub-criteria by performing two by 

two comparisons between them and finally synthesises a weight for each of them using 

special mathematical machinery (Saaty & Vargas, 2012).  

To address the second research question, this study also tries to exploit the machine 

learning approach for obtaining a Bayesian network model for an industrial system using 

data. Several challenges are associated with the quality of the data in most of the indus-

trial cases.  

This study attempts to encounter the problems which are normally associated with da-

tasets available in the field of reliability engineering in a systematic manner. Then a 

model for the problem is created using a machine learning technique and the model is 

validated against the dataset.  
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1.5 Thesis Outline 

This thesis is formed in five sections. After the introduction in this section, in the second 

section, the relevant background about Bayesian networks, additive manufacturing and 

reliability engineering is described briefly. This section creates the context of the case 

studies and shows the importance and the need for performing this study.  

In the third section, the theoretical aspects of the methods used in the study are de-

scribed in detail. The parts of Bayesian networks theory that are used in the study, the 

AHP and DACM methods which are used in developing the additive manufacturing case 

study and the methods developed for two case studies as well as the state of the art 

methods are described in this section. 

The fourth section is dedicated to the details about the implementation of developed 

methodologies in the case studies. All steps are described in details and the resulting 

model is presented 

In the fifth section, first, a brief discussion about the result of the case studies is pre-

sented and finally, the conclusion of the study is discussed.  
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2. BACKGROUND 

This section provides background about the Bayesian networks and the case studies of 

this thesis. First, the Bayesian network is introduced briefly and then some information 

regarding additive manufacturing systems and prognosis and health management is pro-

vided in order to set the context and show the importance of the research. The focus of 

the section is mostly on the case studies and the detail of the Bayesian network is de-

scribed in section 3.1 in detail. 

2.1 Bayesian networks 

A Bayesian network (BN) is a graphical probabilistic model, which represents the quali-

tative and quantitative relationships of a set of random variables a single model. A di-

rected acyclic graph (DAG), which is also called the structure of the BN, is illustrating the 

dependency the random variables. The random variables are shown with nodes and the 

dependencies between them are shown with a directed edge. In Bayesian networks the 

qualitative part, the DAG can be considered as a causal graph under certain circum-

stances (see section Backgrounds3.1.1).  

The quantitative part of a BN is the conditional probability distributions of the set of ran-

dom variables which their dependency relations are shown in the DAG. Having the DAG, 

the joint distribution of the random variables can be factorized into a multiplication of 

conditional probability distributions. This enables BNs to provide a compact representa-

tion of the joint probability distributions. In this representation, each random variable is 

represented with a node (vertices) and a directed arc (also called arrow of arc) from node 

A to B shows that node B is conditioned on node A in that particular factorization of that 

joint distribution. Since there can be many different factorizations for joint distribution, 

there can be as many BNs for the same distribution. The valuable information in a BN is 

the missing arcs between nodes. They are representing the conditional independence of 

random variables in that particular variable set (Ghahramani, 2001; McNaught & Chan, 

2011). 

The variables in a BN can be continuous, categorical, discrete valued or a combination 

of them. if the variables are continuing variables, the numerical values and their proba-

bility distribution functions are used and If they are categorical, intervals or discreet, they 
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are described with categories or states and conditional probability tables (CPTs) (see 

section Backgrounds3.1.1). 

Bayesian networks allow us to use the information from a subset of variables in the sys-

tem to predict the behaviour of any other subset of variables in that system and make 

rational decisions according to that (Munteanu & Bendou, 2001). 

The structure of a Bayesian network can be obtained using two general approaches. The 

first approach is trying to use machine learning techniques to learn the structure from the 

data recorded about the system previously. Therefore, the resulting network approxi-

mates the joint probability of that dataset. Williamson (2001) calls these networks as 

abstract structures. The other approach is to have an interpretation of the Bayesian net-

work in which the graph is representing a causal representation of the system and it may 

be subjective or objective. In the subjective case, the relation between two nodes, which 

is represented by a directed arc, is a direct causal relationship. In the objective case, this 

relation is the belief of an agent about the causal relationship between the variables of 

the system (nodes). 

Advantages and uses of using Bayesian networks 

Heckerman (1995) counted a few advantages of using Bayesian networks as follows. 

First, handling incomplete data is a natural feature of Bayesian networks. Most of the 

other data analysis methods, e.g. regression and classification are prone to magnificent 

errors in case system variables are highly anti-correlated and for example, one of them 

is unobserved. Bayesian networks can encode statistical dependencies between varia-

bles, so they can handle incomplete data.  

Secondly, using Bayesian networks, one can learn the causal relationship between var-

iables in that domain. This can include valuable information about a system and the result 

can be utilized in other analysis methods. Moreover, using the causal network, it is pos-

sible to perform interventions and investigate the predicted results. 

The third advantage is that Bayesian networks model domain knowledge and the data 

at the same time. Therefore, using the causal relationships in the Bayesian networks and 

Bayesian and non-Bayesian statistical tools makes a sophisticated package for data 

analysis. 

Bayesian networks are used in several domains such as medical diagnosis, map learn-

ing, natural language processing, image processing, computational biology, civil infra-

structure networks, epidemiology, etc. (Koller & Friedman, 2013). 
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McNaught and Chan (2011) named a few uses of Bayesian networks in the industry as 

follows. Bayesian networks have been vastly used in fault diagnostics and failure predic-

tion in manufacturing due to the uncertain nature of events in those principles. BNs are 

also used for reliability and risk assessment of manufacturing processes. The cause-

effect modelling in BNs is a good tool to be used for manufacturing process scheduling 

under uncertainty. Also, BNs have been used in the field of predictive maintenance to 

determine the optimal time for a maintenance task to be performed. In a more general 

perspective, a set of Bayesian network models for different aspects of a factory have 

been combined to maximize the productivity of the factory. In a similar approach, BNs 

have been used as recommender systems to the customers of a customized manufac-

turing system to choose the best combinations. 

2.2 Additive manufacturing 

Additive Manufacturing (AM) is the process of joining material, layer by layer, Line by line 

or piece by piece, in order to fabricate a product directly from its digital 3D model. The 

term additive is used in opposition to subtractive manufacturing in which a product is 

created by subtracting material from a material block (ISO/ASTM, 2015).  

As Yunlong and Yaoyao (2015) stated, additive manufacturing has three main ad-

vantages to previous methods. First, the production of highly complex parts can be done 

in a single process and the manufacturing cost will not increase with the complexity. 

Secondly, multi-material parts with complex material combinations can be produced eas-

ily with this method. And finally, manufacturing preparation time can be significantly de-

creasing since parts can be manufactured directly from their digital 3D models. 

Initial use cases of AM was rapid prototyping for architects and designers (Ngo, Kashani, 

Imbalzano, Nguyen, & Hui, 2018). But nowadays, AM has several use-cases in the fields 

such as aeronautical, maritime, turbomachinery, biomedical, spare parts manufacturing, 

modification of manufactured parts and restoration of broken parts. In the aerospace 

industry, AM enables engineers to create optimized components with low weight, reduce 

the manufacturing lead-times and improve but-to-fly ratios (Ding, Shen, Pan, & Cuiuri, 

2016). Maritime use cases are including but not limited to afloat manufacturing of spare 

parts and maintenance of equipment (Strickland, 2016). Complex multi-part components 

in turbomachinery such as disk-blades and burners can be manufactured as a single part 

using AM (Klocke et al., 2014). In the field of biomedical applications, AM facilitated cre-

ating customized implants, biodegradable implants, etc. (Bartolo et al., 2012). 
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A wide range of materials is used in additive manufacturing, and new materials are added 

to this range continuously. A non-exhaustive list of these materials includes concrete, 

ceramics, polymers and metals and composites. Concrete is mostly used in building 

houses using additive manufacturing (Wu, Wang, & Wang, 2016). Among the polymers, 

acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) are the most frequently 

used materials (Gonzalez-Gutierrez et al., 2018). In metal AM, Titanium alloys such as 

Ti6AL4V, steel alloys such as SS316 or H13, Aluminium alloys such Al-Si-Mg, super 

alloys such as IN625 and many other alloys are used (Frazier, 2014). Poor mechanical 

properties of polymers lead to the use of Carbon Fibre Reinforced Plastic (CFRP) in 

additive manufacturing (Ning, Cong, Qiu, Wei, & Wang, 2015). 

In terms of the available standards, American Society for Testing and Materials (ASTM) 

committee F42 is one of the most active parties in defining standards for Additive man-

ufacturing materials, parts and processes (ASTM, 2018). The European Committee for 

Standardization (CEN) is also an active organization in the standardization of AM through 

several actions and projects (CEN-CENELEC, 2018). International Organization for 

Standardization (ISO) has the ISO/TC 261 committee working on AM, many of them with 

collaboration with ASME F42 committee (ISO, 2018).  The other entity which is active in 

this field is the National Institute of Standards and Technology (NIST) in the United 

States (NIST, 2018a). NIST is running multiple projects for supporting standardization of 

real-time control of additive manufacturing systems, quality assurance AM systems, sys-

tem integration for AM, and characteristics of additive manufacturing materials (NIST, 

2018b). Monzón et al. (2015) reviewed the efforts on developing and implementing 

standards for AM until 2015. 

Although AM brings many advantages to manufacturing, there are some shortcomings 

as well. Cost of manufacturing with AM relatively high compared to mass production, 

production is very material and equipment –agnostic and the assuring reliability of the 

manufactured part is always a big challenge. Although there have been massive invest-

ments in the standardization of AM, the process is quite difficult and time-consuming 

(Jurrens & Energetics Incorporated, 2013; Pellegrino, Makila, McQueen, & Taylor, 2016).  

The process of printing a part using AM starts with a digital model 3D of the object. The 

second step is to add support structures to the part, so that overhanging parts can be 

printed. Then the model should be cut into slices using slicer software, which replicates 

the layers which are going to be manufactured (Kathryn et al., 2016). 
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2.2.1 Additive manufacturing technologies 

In 1986, Charles W. Hull has patented the first method of additive manufacturing called 

stereolithography or SLA (Charles W. Hull, 1986). Since then, there has been a signifi-

cant amount of research on the topic. Nowadays, there are several techniques in additive 

manufacturing namely material extrusion, powder fusion, material jetting, binder jetting, 

direct energy deposition and sheet lamination etc. In the rest of this subsections, a short 

description of four of these techniques is provided. 

Stereo Lithography (SLA) 

In Stereo Lithography (SLA) or Vat Photo-polymerization (VP) a photosensitive liquid 

monomer, polymer or resin is cured or solidified using a controlled source of ultraviolet 

light, electron beam or laser. The light applied with the shape of each slice to polymerize 

the liquid into a solid layer. Then the platform moves downwards to make space for a 

new layer of liquid of the solidified layer. The process continues until the whole object is 

shaped layer by layer as shown in  Figure 1 (Wong & Hernandez, 2012). 

 

Figure 1.  SLM process (Proform, 2018) 

Part manufactured by SLM can be post-processed with light curing, to reach to better 

mechanical properties, and surface enhancement. SLM can be used for manufacturing 

ceramic parts by adding ceramic particles or using polymer-driven ceramifiable mono-

mers (Ngo et al., 2018). 
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Possible defects in SLA are shrinkage, curling defect and distortions due to removing 

the part from the platform. Shrinkage is the direct effect of forming polymers from mon-

omers. The curling defect in SLA happens as a result of shrinkage between the layers. 

And finally, the process of removing the manufactured part from the platform may cause 

further distortions in the part due to the liberation of internal forces cumulated between 

layers (Bugeda, Cervera, Lombera, & Onate, 1995). 

Material Extrusion 

Material Extrusion AM (MEAM) is the process of softening the material and passing it 

through a nuzzle and deposit is layer by layer in order to manufacture a 3D part. A MEAM 

machine usually consists of a two-axis (x and y) CNC manipulator which moves the ex-

truder and a platform which moves in z-axis which moves the manufacturing part down-

wards to be ready for printing the next layer. The material can be in the form of solid 

filaments, powders or powder plus bounder liquid and the softening process is normally 

done by heating. The extrusion process can be done by either plunges, screws or wheels 

as shown in  Figure 2 (Gonzalez-Gutierrez et al., 2018).  

 

Figure 2. Material Extrusion Additive Manufacturing (Gonzalez-Gutierrez et al., 
2018) 

This technique can be used for manufacturing with metals, polymers, ceramics and com-

posites. In case the material is used as the form of filaments, the process is called Fused 

Filament Fabrication (FFF) or Fused Deposition Modelling (FDM). FDM is the most com-

mon method of AM. FDM machines are available from around one hundred Euros up to 

several thousand Euros, from desktop home versions up to industrial production ver-

sions. The other reason is that the process of manufacturing is safe and simple and the 

filaments have a good variety of materials (Gonzalez-Gutierrez et al., 2018). 
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Cooling profile of FDM manufactured parts have a direct relationship with distortions and 

porosity in them. The mechanical properties of the parts are affected by the bond be-

tween the layers of the manufactured part, which is, in turn, is affected by the temperature 

of the extruder and the temperature of the last layer of the part (Stavropoulos & 

Foteinopoulos, 2018). Poor surface finish and mechanical properties are the main flaws 

of this technology. Using fibre reinforced filaments can be a solution for the latter problem 

(Ngo et al., 2018). 

Powder Fusion 

In powder fusion AM, a thin layer of fine powder which is spread and packed on the top 

of a descendant platform is fused together using pressure, heat or a binder. The source 

of the heat can be a laser beam or an electron beam. The fusion process can take place 

at two levels. In Selective Laser Sintering (SLS) the powder particles are not getting fully 

melted but they fuse together in molecular level. In a Selective Laser Melting (SLM) or 

Electron Beam Melting (EBM), the powder particles are melt and the fusion happens in 

a liquid phase, shown in  Figure 3 (Stavropoulos & Foteinopoulos, 2018). 

 

Figure 3. Powder bed fusion (Frazier, 2014) 

The quality of parts is highly dependent on the powder shape, size, material and distri-

bution. The other effective parameter is the chemistry and rheology of the binder, in the 

binder based processes, and the amount and flow of heat energy input to the system in 

the heat based processes. The heat sintering and melting process cause high residual 

stress in the manufactured parts. These stresses are the source of several defects in the 

parts, such as deformations, curling defect, lack of thickness, etc. Therefore, thermal and 

thermo-mechanical modelling of the process is of utmost importance for optimizing the 
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manufacturing process for minimizing the defects (Ngo et al., 2018; Stavropoulos & 

Foteinopoulos, 2018). In the next subsection, a detailed description of defects in the SLM 

process is provided. 

Post-processing procedures that usually take place in powder bed techniques are coat-

ing, sintering and infiltration. Superior resolution, good surface quality and good mechan-

ical properties of the parts manufactured with powder bed techniques make them one of 

the most favourable techniques, especially in metal AM (Ngo et al., 2018). 

Direct Energy Deposition (DED) 

The reason for calling this technique direct energy depositions (DED) that here the en-

ergy is guided and focused to a narrow region and the material is deposited and melted 

simultaneously in the same region. There are several variations for these methods and 

this technology is mainly used for metal AM. The form of the material feed can be powder 

or filament and the energy source can be laser, electron beam, or electric arc 

(Stavropoulos & Foteinopoulos, 2018). Figure 4 is showing a simplified schematic of an 

electron beam DED. 

 

Figure 4. A generic powder and electron beam DED system (Frazier, 2014) 

If a DED process uses metal wire filaments and electric arcs, it is called Wire and Arc 

additive manufacturing (WAAM) (Figure 5). While the powder bed based AM techniques 

are focused on fine details of the parts, WAAM systems are able to build larger parts (in 

the scale of 5.8𝑚 × 1.2𝑚 × 1.2𝑚) with higher deposition rates (3 to 10.63 kilograms per 

hour) (Ding et al., 2016). DED manufacturing systems normally consist of a robotic arm 
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and a turning table, therefore they normally have a minimum of five degrees of freedom. 

Therefore, it is possible to manufacture parts which are difficult to manufacture with the 

other technologies. DED is also used for modifying parts and repairing cracks in metal 

parts (Pinkerton, Wang, & Li, 2008). 

 

Figure 5. Wire and Arc Additive manufacturing (McAndrew et al., 2018) 

2.2.2 Defects in Additive Manufacturing  

The shape, strength and the size of an AM manufactured part is depending on 1- the raw 

material used, 2- the manufacturing equipment such as precision of equipment and 

equipment characteristics, and 3- the process parameters, powder bed temperature, 

manufacturing environment temperature, such as energy input, nozzle temperature, trav-

erse speed, welding torch angle etc. (Kathryn et al., 2016). 

Defects in additive manufacturing can be classified into two levels. Defects can cumulate 

during the manufacturing process and affect the geometry of the part. These defects are 

normally a result of residual stresses in the workpiece due to the thermal cycle in the 

manufacturing process, plastic strains caused by shrinkage and constraints of clamping. 

Distortions may stop the building process if they become magnificent enough (Mindt et 

al., 2017).  

The other group are defects such as surface roughness, porosity, cracks, splatters and 

denudation can be described as microscopic defects. For a detailed description of differ-

ent defects and the factors affecting it in Taheri et al.’s (2017) work.  

Defects in Powder Bed Fusion 
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In the PBF process with SLM, lack of thickness and curling defect are the two common 

geometry related defects. Curling defect occurs on the overhang surfaces where parts 

are not supported with a support structure as shown in  Figure 6. The heat conduction 

rate of an unsupported overhanging part can be up to one hundred times less than a 

solid material supported part. Employing excessive heat energy, e.g. high laser power, 

in the layer of an unsupported overhanging part leads to a magnificent thermal constraint 

on that layer. If this constraint exceeds the strength of the material, a plastic deformation 

happens. Cumulating these relatively small deformations in multiple layers leads to a curl 

in the overhanging part (D. Wang, Yang, Yi, & Su, 2013).  

               

Figure 6. Curling defect in overhanging parts (Tounsi & Vignat, 2017) 

Curling defect is not purely dependent on the geometry of the part, but also on the choice 

of the support structure (Tounsi & Vignat, 2017), and process parameter settings (Béraud 

et al., 2014). Toward reducing this defect, as shown in  Figure 7, the support structures 

are used to dissipate excessive heat and to resist distortion by increasing the inertia of 

the part. While using more dense support structure seems beneficial to minimize the 

curling effect, it increases the manufacturing time and material cost (Mokhtarian, 

Coatanéa, Paris, Mbow, Pourroy, Marin, Vihinen, et al., 2018).  

 

Figure 7. An overhanging part with a support structure (Tounsi & Vignat, 2017) 

2.3 Reliability in machinery  

Reliability, as De Carlo (2013) defines and discusses, is “the probability that a component 

(or an entire system) will perform its function for a specific period of time when operating 
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in its design environment”. Based on this definition, reliability is a measure for judging 

that the component is working or not, and the exact environmental and usage conditions 

should be defined. A broader definition describes reliability as the science to analyse, 

predict, prevent and mitigates the failures in the time domain.  

Failure, or hard failure, is an inoperable state or an event in a system, in which the system 

or any part of it is not working as specified previously (Dudenhoeffer, 1994). Faults, or 

soft failures, on the other hand, are the defects which are happening and may or may 

not cause a failure in the system. Therefore, as shown in Figure 8, failures can be the 

result of a long term process in which an initial defect escalate among the time and 

reaches a critical condition that causes the failure in the machine (Lee et al., 2014).   

 

Figure 8. Perception of degradation, diagnostics and prognostics in health manage-
ment (Lee et al., 2014) 

Failures can be further classified in repairable or non-repairable. In repairable failures, 

the system can return to its operational state with repair or replacement of a minimal 

number of system part in a short time. Non-repairable failures are the ones that need the 

system to be completely replaced or require an extensive overhaul to restore the system 

(Dudenhoeffer, 1994). 

Prognosis and health management  

Prognosis and health management (PHM) is an umbrella term which covers many activ-

ities in order to maintain the health of a system by diagnosing the faults and taking ap-

propriate decisions based on the prognosis of possible failures. The aim of PHM is to 

reduce the downtime of the machinery and preventing associated costs.  

To create a PHM system, the faults within the system should be identified and the causes 

for it should be diagnosed. Moreover, the health of a system can be prognosed based 

on the history of the system and its current situation. The health management discipline 

assesses the impact of failures and minimizes the possible costs and losses by carrying 
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on timely and appropriate maintenance actions based on the output of diagnostics and 

prognostics (Lee et al., 2014). 

To be more precise, diagnosis is detecting the failure mode within a system or among 

the subsystems. It analyses the nature of a problem and provides the means to isolate 

it. On the other hand, prognosis tries to indicate the time to the next failure time and 

remaining useful lifetime of the system until a complete failure occurs. Prognostics con-

tinuously uses the indication of degradations in the system and considers the time factor 

to make the most accurate predictions (Lee et al., 2014). 

Fault Diagnosis 

To create a fault diagnosis system the essential components are a data collection sub-

system to record events and sensor data, a signal processing subsystem to transform 

sensor data into information and detect faults and a database or knowledge representa-

tion system to determine the source of the fault. The knowledge representation subsys-

tem can be implemented using databases, ontologies, physics models, black box mod-

els, or Bayesian networks (Lee et al., 2014). 

Bayesian networks have been used as a sophisticated tool for creating knowledge rep-

resentation models for diagnostics in the industrial domain. The possibility of represent-

ing uncertainty in the system, expressiveness of BNs, possibility of including expert’s 

knowledge in the model, modularity and forward and backward simulation are some of 

the advantages of using BNs in diagnostics. The BN structure can be obtained using 

expert’s knowledge regarding cause and effects of a failure in the system, mapping al-

ready existing models such as fault trees into BNs or using structural learning algorithms 

which learn the structure from data. A recent literature review on uses of BNs in diag-

nostics can be found in an article by Cai et al. (2017) work. 

Failure Prognosis 

On the other hand, prognosis ties to model the degradation of a component and predict 

the time that a fault or a failure occurs in it. Several methodologies have been developed 

to create the model and perform the prediction, and described by first hitting time pro-

cess, remaining useful lifetime (RUL) evaluation, etc. (Letot et al., 2017).  

Degradation modes can be classified into normal models, which is estimating the relia-

bility of a model in normal conditions, and accelerated models, which try to estimate the 

degradation in normal condition given the data obtained in a condition that the time or 

stress on the component is accelerated (Letot et al., 2017). 
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Bayesian networks are very well suited for prognosis uses in reliability engineering. Var-

iables which are influencing degradation in equipment, variables related to the operating 

environment and usage variables are uncertain variables which may have complicated 

interrelations. The ability to represent dependencies and conditional independencies be-

tween variables, efficient calculation scheme, compact representation and interactive in-

terface of Bayesian networks make them a sophisticated tool in fault prognostics 

(Langseth & Portinale, 2007).  

Maintenance 

As Letot et al. (2017) describe, maintenance is the act of performing periodic tasks in 

order to ensure that the functionality of the components is available until the next sched-

uled maintenance period.  

Several maintenance policies and method have been developed so far, namely correc-

tive maintenance (CM), preventative maintenance (PM), reliability centred maintenance 

(RCM) and Condition-based maintenance (CBM) etc. Corrective maintenance is the sit-

uation in which the equipment is maintained after a failure happens and its purpose is to 

put the equipment back to the functional state (Peysson, Ouladsine, Noura, Leger, & 

Allemand, 2008).  

As Lee et al. describe (2014), Preventative maintenance (PM) uses the mean time be-

tween failures as a reference for scheduling maintenance for machinery. The strong as-

sumption upon static and deterministic conditions limits this type of maintenance and this 

method cannot be used under dynamic conditions. PM increases the availability of the 

system compared to CM and decreases cost up to a tenth the costs of CM (Carlo & 

Arleo, 2017), but it is still not optimal for the costs and the time of maintenance. Moreo-

ver, the failure history of a system is not the only factor that is effective in predicting the 

failure time. 

On the other hand, for dynamic systems which the future behaviour is not predictable 

based on the historical observations and the domain knowledge, reliability centred 

maintenance (RCM) is more suitable. RCM uses statistical tools such as failure modes 

and effective critically analysis (FMECA) to predict the probability of having expected 

reliability in a certain period by identifying the failure modes and estimate the time before 

those failure modes may happen. Nevertheless, RCM is prone to fail if the changes in 

the dynamics of the system are magnificent. 

Condition-based maintenance (CBM) consists of two major activities, data acquisition 

and condition monitoring. This method is mainly used when the system conditions are 
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deterministic, stationary or static and the sensor outputs are a good indicator of the sys-

tem health.  

The other concept in maintenance is the quality of the maintenance. As an alternative to 

the classical maintenance quality classification described in the literature such as EN 

13306:2010, i.e. corrective maintenance and preventative maintenance, a newer classi-

fication suggests that a maintenance activity can be perfect, imperfect, minimal, worse 

or worst, based on the restoration of the equipment after maintenance (Carlo & Arleo, 

2017). 

De Carlo and Arleo (2017) described these five types of maintenance as follows. A 

maintenance procedure is called perfect maintenance, when it restores the equipment 

to an “as good as new” (AGAN) condition. AGAN is a condition in which the maintained 

equipment would have the same failure rate and lifetime distribution as new equipment 

and generally is achieved by replacement of all the components with a new one. 

Imperfect maintenance renders the equipment to a younger condition, but not to an 

AGAN condition. The maintained equipment failure rate and lifetime distribution lay 

somewhere between its premaintenance condition and AGAN condition. 

Minimal maintenance restores the equipment just to an “as bad as old” (ABAO) condition, 

in which, the failure rate and lifetime distribution of the equipment are similar to 

equipment which has the same age and never failed yet. Minimal repair is done by only 

replacing faulty components of the equipment. Figure 9 depicts the effect of these three 

types of maintenance on the failure rate of equipment. 

 

Figure 9. Perfect, imperfect and minimal maintenance and their effect on the failure 
rate (Carlo & Arleo, 2017) 
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Worse maintenance is when the maintenance accidentally causes the equipment to fall 

into a worse operating condition in terms of failure rate and the lifetime of it. Finally, worst 

maintenance is the conditions that worse maintenance is accompanied by creating a 

new failure of breaks in the system. 

2.3.1 Characteristics of failure data 

The data collected for failures in systems are normally a time series. The data normally 

consists of readings of several sensors in the system, time stamps for start time, events 

in the system, maintenance times and failure times (NASA, 2007). Among the sensor 

data, oil quality and vibration data describe the performance of the machine very well 

and have been traditionally used for diagnosis purposes. There are several other useful 

sensor data including, but not limited to, temperature, acoustic emissions, ultrasonic, etc. 

The data from several sensors and other sources can be fused together to achieve su-

perior descriptive qualities (Lee et al., 2014). 

The process of detection and prediction of failure can be divided into two periods. The 

first period is the observation interval in which some variables in the system are ob-

served. The second period is the prediction time in which the system is predicting a fail-

ure in the future time (Kelleher, Namee, & D’Arcy, 2015). The variables for which the 

data is recorded in the process of observation can be divided into two groups. Covariates 

are the variables which represent the characteristics and the environment of the me-

chanical equipment and response variables are describing the survival times of the 

equipment (Langseth, 1998).  

One of the most important characteristics of the failure data is that this type of data con-

tains censored observations. As Miller et al. (1998) described, data may have four types 

of censoring. Type one is when the failure in equipment has been observed for a period 

and the observation is stopped or finished. Then for the equipment which has not failed 

in that period, there is no failure data recorded, even though it may fail any time after the 

recording stopped. The second type of censoring is when it is decided to stop recording 

the failure times after a certain number of failures happened.  

The third type of censoring in data happens mostly in medical applications and it’s when 

the data collection becomes impossible at a random time at the middle of the study. It 

happens, for example, when the follow up becomes impossible due to patients’ condi-

tions, the patient drops out, etc. It is important to note that for random censoring, a crucial 

assumption is that the patients are randomly chosen and their type three censored times 

and their possible failure (decease) time are assumed to be independent.  



23 

 

 

 

Finally, the other type of censoring is interval censoring. For example, if before the be-

ginning of the observation, some of the equipment has already experienced failures and 

there is no record for that it is called left-censored data. If the failures are happening after 

the data recording stopped, it is called right-censored data and it is similar to type one 

censoring. 

This study tries to provide a brief review of the classical and current methods for fault 

diagnosis and failure prognosis in section 3.5.1. Afterwards, the methods for creating 

failure predicting models from single-valued TTF data is reviewed in section 3.5.2. Then 

a Bayesian network based model for predicting the TTF values and censored TTF values 

is developed based on a single-valued dataset in section 4.2.  
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3. METHODOLOGY  

This study takes advantage of several methods from different principles to create mean-

ingful models for the systems using experts’ knowledge and data. Bayesian belief net-

works use several methods from statistics and computer science to obtain the Bayesian 

network structure from the data, estimate the parameters of the network, perform infer-

ence between nodes, etc.  

The structure of the Bayesian networks for a problem in a system can also be obtained 

using the governing equations of the system, domain knowledge, experts’ knowledge 

and literature. This process can be carried out systematically using dimensional analysis 

conceptual modelling (DACM) framework which gathers multiple methods from several 

domains to produce causal graphs between variables of the system and acquire the 

governing equations between them. The causal graph can be translated into a Bayesian 

network structure and the governing equations can be used to obtain some of the net-

work’s parameters. To extract experts’ knowledge and use them as parameters for the 

rest of the nodes, Analytical Hierarchy Process (AHP) from multicriteria decision-making 

domain is used in this study. 

This section also reviews the classical and well-known methods in topics of the case 

studies. The methods for modelling complex systems in additive manufacturing are re-

viewed and then a detailed description of the method developed in this study is provided. 

In the reliability engineering case study, the classical methods in fault diagnosis and fail-

ure prognosis in the field of equipment health management is reviewed. Then the method 

for creating a predictive model from time to failure datasets with a single value is de-

scribed. 

The rest of this section is formatted as follows. In the first subsection, a detailed descrip-

tion of Bayesian networks and related knowledge and methods that are used in this study 

is reviewed in section 3.1. Then, in sections 3.2 and 3.3, a brief description of the aspects 

of the AHP and DACM that are used in this study is provided. And finally, the methods 

used in the case studies reviewed and the developed methods are described in detail in 

sections 3.4 and 3.5. 

3.1 Bayesian networks 

 



25 

 

 

 

3.1.1 Backgrounds 

To set the ground for a description of the properties and processes in the Bayesian net-

work, it is needed to review the basis of the Bayesian networks theory. In this sub-sec-

tion, a brief review of Bayesian probabilities, independence between random variables, 

directed acyclic graphs and causal graphs, the principle of the common cause, Markov 

causal condition and faithfulness condition, the formal definition of a Bayesian network, 

d-separation and i-maps is provided. 

Probabilistic event and probability distributions 

A sample space Ω = {𝜔1, 𝜔2, … , 𝜔𝑛}  for a random procedure is the set of outcomes 𝜔𝑖, 

possible for that random procedure. An event 𝐸, which is the phenomenon of interest in 

probability study, can be defined as a subset of the set Ω. Events in this sense can only 

have a true/false character. Then, a probability distribution is a function from events 

space to the space of the real numbers in the range [0,1] and P ∶  ℙ (Ω) → [0,1], in which 

ℙ (Ω) is called the power set of Ω (Daly et al., 2009). 

Since events are subsets of outcomes set, it is possible to use set operations to define 

the probability of occurrence of two events A and B as 𝑃(𝐴 ∩ 𝐵). Therefore, the condi-

tional probability of occurrence of A, given that event B is occurred is: 

𝑃(𝐴|𝐵) = 
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (1) 

In which 𝑃(𝐵) must be strictly positive. Equation (1) implies that the probability of occur-

rence of evet 𝐴, given that event 𝐵 is occurred is equal to the joint probability of 𝐴 and 𝐵 

divided by the probability of 𝐵. Then intuitively by changing the place of 𝐴 and 𝐵 it can 

be stated that 

𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵|𝐴)𝑃(𝐴)  (2) 

And by rearranging the equation a convenient formula is forming as 

𝑃(𝐴|𝐵) =
𝑃(𝐴) 𝑃(𝐵|𝐴)

𝑃(𝐵)
 (3) 

which is known as the Bayes’ formula. 𝑃(𝐴) is called prior probability, a priori, or uncon-

ditional probability of the event 𝐴. It means the probability of happening of the event 𝐴 

without considering any information about event 𝐵. It is also called antecthe edent set of 

propositions and may lead to consequences when the inference rules are applied to 
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them. 𝑃(𝐴|𝐵) is called posteriori probability and is the conditional probability of A given 

B. 𝑃(𝐵|𝐴) is the called likelihood of occurrence of event B given event A has occurred. 

𝑃(𝐵) is acting as a normalization constant and it is the conditional probability of variable 

𝐵 (Daly et al., 2009). 

If for two events 𝐴 and 𝐵 

𝑃(𝐴|𝐵) = 𝑃(𝐴) 𝑎𝑛𝑑 𝑃(𝐵|𝐴) = 𝑃(𝐵) (4) 

Then the events 𝐴 and 𝐵 are independent. Moreover, the events 𝐴 and 𝐵 are condition-

ally independent if we have a third variable 𝐶 such that 

𝑃(𝐴|𝐵 ∩ 𝐶) = 𝑃(𝐴|𝐶) 𝑎𝑛𝑑 𝑃(𝐵|𝐴 ∩ 𝐶) = 𝑃(𝐵|𝐶) (5) 

In which two equation imply each other if the probability of events 𝐴, 𝐵, 𝐶 are strictly 

positive (Daly et al., 2009; Ghahramani, 2001) 

Random variable 𝑋 can be defined as a function from the sample space of Ω to a meas-

urable space 𝑀, which is the space of measurable quantities of the variable 𝑋. When the 

statement 𝑃(𝑋 = "𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒") is made, reading as the probability of random variable 𝑋 

being equal to “a measure”. 𝑋 to be equal to “a measure is an event, say event 𝐴. In fact, 

the intention is to calculate the probability of the event A and it can be described 

as 𝑃(𝐴) = {𝜔|𝜔 ∈ Ω, 𝑋(𝜔) = "𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒"}. This long notation is not normally used and 

instead the first expression is commonly used. 

A joint distribution, e.g. 𝑃(𝑋, 𝑌), is a multidimensional version of the probability 

distribution. Similar to single dimensional version, it is possible to calculate the probability 

of an event by specifying values to the random variables in the joint probability distribu-

tion. 

The conditional probability rule and the Bayes rule can be rewritten using the notation of 

Random variables. From the definition of conditional probability in equation (1) the fol-

lowing equation can be obtained 

𝑃(𝑋, 𝑌) = 𝑃(𝑋)𝑃(𝑌|𝑋)  (6) 

Which is called the chain rule of conditional probabilities. This formula can be extended 

to multiple variables in the form of this equation 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)…𝑃(𝑋𝑛|𝑋1, … , 𝑋𝑛−1)  (7) 
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This equation implies that the joint probability of 𝑛 random variables can be expressed 

in terms of, for example, the probability of the first one, the probability of the second one 

given the first, and so on. The order of this expression is not important, and the result 

remains the same with any order of combinations. A more general context, this can be 

as a factorization of the joint probability distribution. A factor is a function from a set of 

random variables, say 𝐷 to the set ℝ. 𝐷 is called the scope of the factor. A factor with 

nonnegative entries is nonnegative itself (Koller & Friedman, 2013, p. 24,104).  

To calculate the probability distribution of one of the variables of a joint distribution, i.e. 

marginalize it, the probabilities of all other random variables in the joint distribution can 

be summed up. 

𝑃(𝑋) =  ∑ 𝑃(𝑋, 𝑌 = 𝑦)

𝑦 ∈𝑀(𝑌)

 (8) 

In which 𝑀(𝑌) is the measure space or the domain of random variable Y. 

Independence and conditional independence between variables 

Two random variables 𝑋 and 𝑌 are called independent, or marginally independent, if 

there exist a distribution 𝑃 in which the following equation holds 

𝑃(𝑋|𝑌) =  𝑃(𝑋) 𝑎𝑛𝑑 𝑃(𝑌|𝑋) = 𝑃(𝑌) (9) 

With 𝑃(𝑥) and 𝑃(𝑌) are both positive. The independence between random variables 𝑋 

and 𝑌 is shown by (𝑋 ⊥ 𝑌). From the equation (9) and using the chain rule an equivalent 

definition is that a distribution 𝑃 satisfies (𝑋 ⊥ 𝑌) if and only if 𝑃(𝑋, 𝑌)  =  𝑃(𝑋)𝑃(𝑌) (Koller 

& Friedman, 2013, p. 24). 

Now, if 𝑋, 𝑌, 𝑍 are sets of random variables in a probability distribution 𝑃 and satisfy 

(𝑋 ⊥ 𝑌 | 𝑍) for all the values of all the variables in them, 𝑋 and 𝑌 are conditionally inde-

pendent given 𝑍. The variables in the 𝑍 are called observed variables. Similar to the 

second definition of marginal independence, it can be stated that the distribution P sat-

isfies (𝑋 ⊥ 𝑌 | 𝑍) if and only if 𝑃(𝑋, 𝑌|𝑍)  =  𝑃(𝑋|𝑍)𝑃(𝑌|𝑍). 

Conditional independence holds five main properties, namely symmetry, decomposition, 

weak union contraction and intersection. Symmetry denotes that if 𝑋 and 𝑌 are independ-

ent given 𝑍, then symmetrically 𝑌 and 𝑋 are independent given 𝑍 or (𝑋 ⊥  𝑌 | 𝑍)  ⇒  (𝑌 ⊥

 𝑋 | 𝑍). Decomposition states that is X is independent of 𝑊 and 𝑌 given 𝑍, then 𝑋 and 𝑌 

are independent themselves or (𝑋 ⊥  𝑌,𝑊 | 𝑍)  ⇒  (𝑋 ⊥  𝑌 | 𝑍,𝑊). Weak union says that 

if 𝑋 is independent of 𝑌 and 𝑊 given 𝑍 then 𝑋 and 𝑌 are independent, given 𝑊 and 𝑍 or 
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(𝑋 ⊥  𝑌, 𝑊 | 𝑍)  ⇒  (𝑋 ⊥  𝑌 | 𝑍,𝑊). To know more details about the rest of properties 

please refer to (Koller & Friedman, 2013, p. 25) 

The importance of conditional independence is that by finding them in a joint distribution, 

the space needed for saving and representing the data increases dramatically, and the 

representation can be more interpretable for humans. For example, an 𝑛 dimensional 

joint distribution of binary variables needs 2𝑛 − 1 storage spots. Now if it is represented 

in the following factorized form 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑃(𝑋1|𝑋2, 𝑋3, … , 𝑋𝑛)𝑃(𝑋2, … , 𝑋𝑛−1)  (10) 

And we know that 𝑋1 is independent of 𝑋3, … , 𝑋𝑛 given 𝑋2, then the joint probability can 

be represented as 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑃(𝑋1|𝑋2)𝑃(𝑋2,… , 𝑋𝑛−1)  (11) 

Which is a more compact and representation. 

Directed Acyclic graph and causal graph 

A graph is defined as a set of vertices or nodes and a set of edges or arcs which are 

connecting those vertices to each other. A directed graph is a graph that its edges have 

a direction associated with them. A directed acyclic graph (DAG) is a directed graph, in 

which there is no sequence of edges that loop around a cycle. This means that it is not 

possible to return to start from a node and return to the same node by following the 

direction of the arcs. If we ignore the direction of the arcs it is possible that we have loops 

in the graph (Daly et al., 2009, p. 102). 

In a directed graph, node 𝐴 is a parent for node 𝐵 and node 𝐵 is a child for node 𝐴 if 

there is a directed arc from 𝐴 to 𝐵. The Decedents of a node are the children of that and 

the children of those children and so on. A directed path is a series of nodes starting with 

𝐴 and ending to 𝐵 in which each node in the series is the child of the previous node. An 

undirected path is a series of nodes in which each node is a child of a parent of the 

previous node (Daly et al., 2009, p. 102). 

A causal graph is a directed acyclic graph in which there exists a directed arc from node 

𝐴 to node 𝐵 only if there is a direct causal relationship between the node 𝐴 is the node 

𝐵. Two nodes have a direct causal relationship if their causal relation does not pass 

through any other nodes. A causal path is a directed path that represents a sequence of 

causal relationships. 

The principle of the common cause 
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As Williamson describes in the second chapter of the book Foundation of Bayesianism 

(2001), The principle of the common cause is the link between the probabilistic depend-

ency and the causality. As a definition, suppose that two variables are probabilistically 

dependent and neither is casing the other one, then two conditions are occurring: 

1- They have one or more common causes, which is called existence condition and  

2- They are conditionally independent given those common causes which are called 

screening condition. 

This theory is the base ground for statistical experimentation. 

This theory has at least two counterexamples, one for each condition. For the existence 

condition, the variables can be accidentally correlated meaning there may be no suitable 

obvious common cause for those variables. To solve the problem in such situations, two 

strategies are mainly used, namely causal extension and setting restrictions. Causal ex-

tension tries to extend the intuitive concept of causality and extend the causality to a 

hidden or latent or unmeasured common cause. This strategy has at least two flaws, first 

it is difficult to find the latent common cause and second, extending the causality concept 

from its intuitive character may lead causality to lose its meaning (Williamson, 2001, pp. 

85–87).  

Setting restrictions strategy is performed in two forms, correlation restrictions or causal 

restrictions, where the former is speaking about the type of correlation two variables have 

and the latter is speaking about that the nature of the variables should support the causal 

relationship (Williamson, 2001, pp. 87–88). 

For the screening condition, there may be some extra-causal constraints, such as over-

lap in definition or logical, mathematical and physical laws, which leads to a probabilistic 

correlation for the variables. For more details on these counterexamples and the strate-

gies for dealing with them and the difficulties associated with these strategies, please 

consult Williamson (2001).  

In the case of a Bayesian network, which is a representation of causal relations ships 

using the causal graph and probabilistic independence relationships represented by CPT 

and MPTs, the relation between causation and probability should be further explored and 

a solution should be found to avoid the problems in the relation between causation and 

association. One of the solutions is Markov causal condition. 

Markov causal condition and the faithfulness condition 
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Assume that there exists a causal graph 𝐺, with a set of vertices 𝑉 and a set of edges 𝐸, 

and a probability distribution 𝑃 over the vertices 𝑉 which is generated by the causal re-

lationships represented using the graph 𝐺. Therefore, the set 𝑉 represents both the ran-

dom variables of the system and the nodes in the causal graph between them. 

In this condition, for the node 𝐴, the parent nodes are the direct causes and the children 

nodes are the direct effects. Markov causal condition says that, conditioned on all direct 

causes of the node 𝐴, the node 𝐴 is independent, probabilistically independent, of all 

variables in the set V which are not direct causes or effects of the node 𝐴. In other words, 

if 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴) are the set of parent nodes for the node 𝐴 in the graph 𝐺, then the causal 

Markov condition is defined by Hausman and Woodward (1999) as: 

“For all distinct variables 𝐴 and 𝐵 in the variable set 𝑉, if 𝐴 does not cause 𝐵, then” 

𝑃(𝐴|𝐵 & 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴)) = 𝑃(𝐴|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴))  (12) 

The converse of the Markov causal condition is called the Faithfulness condition and it 

is described as that a distribution 𝑃 over the variables in the set 𝑉 satisfies no independ-

ence relationships beyond those represented by the graph 𝐺 (Uhler, Raskutti, Bühlmann, 

& Yu, 2012).  

The combination of the Markov and the Faithfulness conditions imply that “A causes B if 

and only if 𝐴 and 𝐵 are probabilistically dependent conditional on the set of all the direct 

causes of 𝐴 in a probability distribution generated by the given causal structure among 

the variables in 𝑉 ”. Moreover, causal Markov condition implies that if two nodes 𝐴 and 

𝐵 do not have any causal relationships and have no common ancestors, they are inde-

pendent conditional on an empty set, i.e. they are unconditionally independent (Hausman 

& Woodward, 1999). 

A Bayesian network 

Now that all the building blocks of what is called a Bayesian network are described, it 

can be defined as follows.  

A Bayesian network is a pair of a graph 𝐺 and an associated probability distribution 𝑃, 

(𝐺, 𝑃), in which the graph is created by a set of vertices 𝑉 and edges 𝐸 and it satisfies 

the Markov causal condition with the joint probability distribution 𝑃 over vertices 𝑉. 

The joint probability distribution P can be rewritten into a product of conditional distribu-

tions based on the causal relationships given by the causal graph. Conversely, a joint 
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probability distribution of a set of variables can be obtained by multiplication of condi-

tional probability distribution (Koller & Friedman, 2013). 

D-Separation 

D-separation is a graph-based conditional independence test which can be obtained 

from the Markov causal condition. As Ghahramani (2001) describes, having the node 

setts 𝐴, 𝐵 and 𝐶 as disjoint subsets of the set 𝑉,  𝐴 and 𝐵 are conditionally independent 

if there is a set 𝐶 which d-separates them. This means that for every undirected path 

between a node in 𝐴 and a node in 𝐵, there is a node 𝐷 such that  

1. 𝐷 has converging arrows and 𝐷 itself and its descendants are not in 𝐶  

2. 𝐷 does not have a converging arrow and 𝐷 is in 𝐶 

 

Perfect-map or I-map 

Having the Markov causal condition, d-separation is a sufficient condition for conditional 

independencies in 𝑃. Moreover, if a graph 𝐺 is found which replicates the conditional 

independencies in 𝑃, this graph is called the faithful graph to 𝑃. If a graph 𝐺 and a prob-

ability distribution of the nodes of the graph, 𝑃, are satisfying the combination of these 

two statements as shown in the equation (13), then 𝐺 is an I-map or a perfect-map of 𝑃 

(Daly et al., 2009, p. 102). 

𝐴 ⊥𝐺 𝐵 | 𝐶 ⇔  𝐴 ⊥𝑃 𝐵 | 𝐶  (13) 

In an I-map, the arcs in the graph are directly modelling the dependencies between the 

nodes and the dependencies between nodes will result in having a direct arc between 

the nodes. In this process, one of the either Markov causal condition or faithfulness con-

dition is assumed to be applying, meaning that “an effect is independent of its non-ef-

fects, given its direct causes and that the conditional independencies in the graph are 

equivalent to those in its probability distribution” (Daly et al., 2009, p. 103). 

 

Probability tables and network parameters 

The probability distributions used in this study are discrete probabilities, although in prac-

tice they can be discrete or continuous. The probability distribution of each node is called 

the local probability distribution. The local probability distributions are marginal for the 

root node (the nodes with no parents) and conditional for the nodes which have parents. 

The conditional probability for each node given its parents are presented in conditional 

probability tables (CPT) and the marginal probability distributions are presented in mar-

ginal probability tables (MPT). The values in the probability tables are called the 
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network’s parameters of the network and can be obtained by experts’ knowledge elicita-

tion or learnt from the data alongside learning the structure. 

The Joint distribution of the system can be presented in a compact way using the Bayes-

ian network and the Global Semantics of Bayesian networks is the product of such con-

ditional distributions for all the network.  

𝑃(𝑥1, 𝑥2, … 𝑥𝑛)  =  ∏𝑃(𝑥𝑖|𝑝𝑎𝑖)

𝑖

 (14) 

Assuming the number of parents for each node are bounded, the number of parameters 

needed is growing just linear and can be calculated as (𝑁𝑛𝑜𝑑𝑒 − 1) × ∏(𝑁𝑝𝑎𝑟𝑒𝑛𝑡𝑠) in 

which N is the number of states for a node. Local semantics in Bayesian Networks states 

that each node is independent of its nondependent nodes (Markov condition or assump-

tion). By choosing the direct causes of a node as parents of that node, the local condi-

tional independence conditions will be satisfied and therefore the local semantics are 

useful in constructing Bayesian Networks (Conrady & Jouffe, 2007). 

Software for BNs 

Several opensource and commercial software packages are developed for representa-

tion, machine learning and inference in Bayesian networks. A list of available software 

packages, their type of licence, their pricing, their platform and their abilities are provided 

in a list in Appendix C. 

3.1.2 Association Measures 

One way to discover associations between variables in a dataset is by using information 

theory-based and probabilistic measures. Entropy, Kullback-Leibler Divergence, Mutual 

Information, Pearson correlation, Spearman rank-order, Phi and Point biserial are a few 

of them. In the rest of this subsection a description of Entropy, Kullback-Leibler Diver-

gence, Mutual Information, Pearson correlation which will be used later in this manu-

script. 

Entropy, Kullback-Leibler Divergence and Mutual Information 

Entropy is a formal quantification of uncertainty. It shows how even the probability distri-

bution of a random variable is. In other words, entropy is the measure of information one 

can get, on average, from each value of the distributed variable in the domain. One of 

the interpretations of entropy can be calculated using Shannon’s formula: 
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𝐻(𝑋) = 𝐸𝑃(𝑋)[− log 𝑃(𝑋)]  = −∑𝑝(𝑥𝑖) ln 𝑝(𝑥𝑖)

𝑖

 (15) 

In which 𝐸𝑃(𝑋)[ ] is the expected value with respect to the distribution of random variable 

X. This formula calculates the number of bits needed to describe the random variable X. 

Since the probability distribution of a random variable is non-negative, the value of en-

tropy is non-negative too. The lower range of entropy value of a discrete variable can be 

zero and it happens when the discrete random variable has no uncertainty, i.e. the prob-

ability of one of the values in the random variable is equal to 1 and for the rest of values 

it is equal to 0. This implies the situation that we are certain about the outcome of the 

random event. On the other hand, if the distribution of probabilities of a random variable 

is uniform, the value of entropy will grow to its maximum. This situation is called complete 

uncertainty in which the entropy value is a function of the number of states of the variable 

(Conrady & Jouffe, 2007). 

In the case of a dataset with multiple random variables, another interpretation of entropy 

can be the measure of structuredness and regularities in the data (Yao, 2003). A more 

structured dataset tends to have lower entropy. For any two variables 𝑋 and 𝑌 in a joint 

probability distribution, entropy is defined as 

𝐻(𝑋, 𝑌) = 𝐸𝑃(𝑋,𝑌)[− log 𝑃(𝑋, 𝑌)]  = −∑∑𝑝(𝑥𝑖 , 𝑦𝑗) ln 𝑝(𝑥𝑖 , 𝑦𝑗)

𝑗𝑖

 (16) 

The degree of deviation of two probability distributions can be measured by calculating 

the relative entropy of two distributions. This measure is also known as Kullback-Leibler 

(KL) divergence or I-divergence and can be calculated as 

𝐷(𝑃||𝑄) = 𝐸𝑃(𝑋) [
𝑃(𝑋)

𝑄(𝑋)
] = ∑𝑝(𝑥𝑖) ln

𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
𝑖

 (17) 

In which 𝑃(𝑋) and 𝑄(𝑋) are probability distributions and 𝑃 is absolutely continuous with 

respect to 𝑄, i.e. 𝑃(𝑥) → 0 if 𝑄(𝑥) → 0. KL divergence is a non-negative with a minimum 

value of 0 in case 𝑃(𝑋)  =  𝑄(𝑋). The maximum value is obviously for the case that 𝑃(𝑋) 

is maximum (equals to 1) while 𝑄(𝑋) has its lowest value. The other attribute of this 

measure is that it is not symmetric, meaning 𝐷(𝑃||𝑄) ≠ 𝐷(𝑄||𝑃). 

Observation of other predictive random variables can increase the amount of information 

and consequently the entropy value increases. The entropy of a random variable, 𝑋, 
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given the observations of another random variable, 𝑌, is called conditional entropy and 

can be calculated as 

𝐻(𝑋|𝑌) =  − ∑𝑝(𝑥𝑖 , 𝑦𝑗) log
𝑝(𝑥𝑖 , 𝑦𝑗)

𝑝(𝑦𝑗)𝑖,𝑗

= − ∑𝑝(𝑥𝑖 , 𝑦𝑗) log 𝑝(𝑥𝑖|𝑦𝑗)

𝑖,𝑗

 (18) 

The value of conditional entropy is non-negative and non-symmetric, which the later 

means 𝐻(𝑋; 𝑌)  ≠  𝐻(𝑌, 𝑋). It can also be expressed as  

𝐻(𝑋|𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) (19) 

The difference between the marginal entropy of a variable of choice, 𝑋, and the condi-

tional entropy of the same variable given the observations of another random variable, 

𝑌, is called entropy reduction or mutual information between 𝑥 and 𝑦. Mutual information 

can show us what will be the benefit of observing a particular random variable in predict-

ing the variable of choice. In this way, we can find out which variable has the most pre-

dictive importance. 

𝐼(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = ∑∑ 𝑃(𝑥𝑖)𝑃(𝑥𝑖|𝑦𝑗) log2 (
𝑃(𝑥𝑖|𝑦𝑗)

𝑃(𝑥𝑖)
)

𝑗𝑖

 (20) 

It can also be expressed using conditional entropy and entropy of 𝑋 and 𝑌 

𝐼(𝑋;𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (21) 

The other interpretation of mutual information can be obtained with KL divergence and 

the degree of independence of two variables. Mutual information can be described as 

KL divergence of the joint probability distribution of 𝑋 and 𝑌, i.e. 𝑃(𝑋, 𝑌), with a probability 

distribution if random variables 𝑋 and 𝑌 are independent and their joint probability distri-

bution is obtained by multiplying the marginal distribution of 𝑋 and 𝑌, meaning 𝑄(𝑋, 𝑌) =

𝑃(𝑋) × 𝑃(𝑌). In this way, the real probability distribution of 𝑋 and 𝑌 is compared with a 

situation with an assumption of independence of 𝑋 and 𝑌. 
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𝐷(𝑃(𝑋, 𝑌)||𝑄(𝑋, 𝑌)) = 𝐷(𝑃(𝑋, 𝑌)||𝑃(𝑋) × 𝑃(𝑌)) =  𝐸𝑃(𝑋,𝑌) [
𝑃(𝑋, 𝑌)

𝑃(𝑋) × 𝑃(𝑌)
]

=  ∑∑𝑃(𝑥𝑖 , 𝑦𝑗) log2

𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑥𝑖) × 𝑃(𝑦𝑗)
𝑗𝑖

= ∑∑𝑃(𝑥𝑖)𝑃(𝑥𝑖|𝑦𝑗) log2 (
𝑃(𝑥𝑖|𝑦𝑗)

𝑃(𝑥𝑖)
)

𝑗𝑖

 

(22) 

Mutual information in a non-negative and symmetric value. 

According to Yao (2003), conditional entropy and mutual information can be used to de-

termine one-way associations between variables. If two variables 𝑋 and 𝑌 have a 

functional association, i.e. they have a deterministic relationship with each other that 

implies 𝑃(𝑋|𝑌) is either 1 or 0, these equations will hold: 

𝐻(𝑋|𝑌) = 0 (23) 

𝐻(𝑋, 𝑌) = 𝐻(𝑌) (24) 

𝐼(𝑋;𝑌) = 𝐻(𝑋) (25) 

A functional dependency is the strongest one-way association between variables. The 

value of mutual information is in its maximum and the conditional entropy value is mini-

mum. On the contrary, probabilistic independence between two variables 𝑋 and 𝑌 implies 

these equalities: 

𝐻(𝑋|𝑌) = 𝐻(𝑋) (26) 

𝐻(𝑌|𝑋) = 𝐻(𝑌) (27) 

𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) (28) 

𝐼(𝑋;𝑌) = 0 (29) 

Two random variables are associated if they are not independent. For two independent 

variables, the value of mutual information is minimum, and the condition entropy reaches 

its maximum. Moreover, the joint uncertainty about 𝑋 and 𝑌 is the sum of the uncertainty 

of each of them. 

Pearson Product–Moment Correlation  
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Pearson correlation shows how linear is the relation between the variables. Pearson cor-

relation coefficient is normally shown by 𝑟 and the formula for two variables is 

𝑟 =

∑ (
𝑥𝑖 − 𝑥̅

𝑠𝑥
)(

𝑦𝑖 − 𝑦̅
𝑠𝑦

)𝑛
𝑖=1

𝑛 − 1
 

(30) 

In which n is the sample size, 𝑥̅ (or 𝑥̅) is the sample mean for variable 𝑥 (or 𝑦) 𝑠𝑥 (or 𝑠𝑦) 

is the sample standard deviation for variable 𝑥 (or 𝑦) and can be calculated as  

𝑠𝑥 = √
1

𝑛 − 1
∑𝑥𝑖 − 𝑥̅

𝑛

𝑖=1

 (31) 

Pearson correlation can have values between -1 and 1, where values close to zero show 

a weak linear relationship. Values close to 1 show a strong forward correlation and val-

ues close to -1 shows a strong reverse correlation between variables under study 

(Boslaugh & Watters, 2008). 

3.1.3 Varieties of Bayesian networks 

 

There are several varieties of Bayesian networks, each of which are created to meet 

certain needs within the scientific and engineering community. Here as an example, 

three of these varieties, namely naïve Bayesian networks, dynamic Bayesian networks 

and influence diagrams are described briefly. For further information regarding the vari-

eties please consult Koller & Friedman’s (2013) 

Naïve Bayesian networks 

A Naïve Bayesian network is a network with only one parent. It assumes a target random 

variable that is the effect of all other random variables in V, and those cause variables 

are conditionally independent of each other. This means, to use this method, it should 

be assumed that none of the causes has any dependency with others. Despite its 

oversimplified structure and unrealistic assumption, the performance of naïve Bayesian 

networks for use cases like classification is surprisingly good (Judae Pearl, 1988; 

Langley, Iba, & Thompson, 1992). 

Hidden Markov Models and Dynamic Bayesian networks 

A Hidden Markov Model (HMM) is a dynamic model which describes the probability dis-

tribution for a sequence of observations. Although the observations can be of any type 
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of data which can represent a probability distribution, we assume in our study that the 

values are sampled over equally spaced time intervals and discrete (or discretised) 

(Ghahramani, 2001). 

S1 S2 S3 S4 S5

Y1 Y2 Y3 Y4 Y5

...

 

Figure 10. A simple Hidden Markov Model 

As Ghahramani (2001) described, an HMM should have three properties. The first one 

is that in an HMM, hidden variables are discrete. It should have some states which are 

not observable (hidden) and it should satisfy the Markov property - that is given the value 

of the previous state, the current state should be independent of all the states prior to 

the previous states. The output of the system is satisfying the Markov output property, 

i.e. given the current input, the output is independent of states and observations of all 

other time. 

𝑃(𝑆1:𝑇, 𝑌1:𝑇) = 𝑃(𝑆1)𝑃(𝑌1|𝑆1) ∏ 𝑃(𝑆𝑡|𝑆𝑡−1)𝑃(𝑌𝑡|𝑆𝑡)

𝑡=2,…,𝑇

 (32) 

Where 𝑆1:𝑇 is the states of the system and 𝑌1:𝑇 are the observations of the system. To 

calculate any probability distribution in any state, it is enough to know the initial state 

𝑃(𝑆1) and the state transition matrix 𝑃(𝑆𝑡|𝑆𝑡−1), and the output model defining 𝑃(𝑌𝑡|𝑆𝑡).  

In a state space linear-Gaussian model, each real-valued observation 𝑌𝑡 in each time 

step is generated by a k-dimensional state variable 𝑋𝑡, which is a first order Markov 

process such that: 

𝑃(𝑋1:𝑇, 𝑌1:𝑇) = 𝑃(𝑋1)𝑃(𝑌1|𝑋1) ∏ 𝑃(𝑋𝑡|𝑋𝑡−1)𝑃(𝑌𝑡|𝑋𝑡)

𝑡=2,…,𝑇

 (33) 

This model is a factorization of the joint probability distribution and can be interpreted as 

a Bayesian network which is similar to HMM’s. 

The difference between this model and HMM is that 𝑆 is replace with the hidden variable 

𝑋 and the state transition matrix 𝑃(𝑋𝑡|𝑋𝑡−1) is normally decomposed to a function that 

calculates the mean value of the 𝑋𝑡 and a zero mean random noise 



38 

 

 

 

𝑋𝑡 = 𝑓𝑡(𝑋𝑡−1) + 𝑤𝑡 (34) 

This is called the transient function. In a similar manner, the observation probability is 

decomposed to 

𝑌𝑡 = 𝑔𝑡(𝑌𝑡−1) + 𝑣𝑡 (35) 

With assuming a Gaussian Noise for both equations and linear functions for 𝑔 and 𝑓, the 

linear-Gaussian state space model would be 

𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝑤𝑡 (36) 

𝑌𝑡 = 𝐴𝑌𝑡−1 + 𝑣𝑡 (37) 

Where 𝐴 is the state transition matrix and 𝐶 is the observation matrix. The interesting 

point with HMMs and state space models (SSM) is that they provide a closed system 

with their state transition probabilities/matrixes, inputs, and outputs. This means in an 

HMM, a discrete K-valued input matrix will map to a discrete K-valued matrix through a 

𝐾 × 𝐾 transition matrix. Similarly, a Gaussian distributed hidden state in an SSM, after a 

linear transformation and adding a Gaussian noise, will result in another Gaussian dis-

tributed hidden state. 

To model time-dependent systems using one can use a Dynamic Bayesian Network 

(DBN). The system state at time 𝑡 is described by a set of variables 𝑋𝑡 and the sensory 

data 𝐸𝑡 describes the observations of the system at the same time. A model for the sen-

sor can be a conditional probability distribution of the observable variables given the 

state variables, i.e.  𝑃(𝐸𝑡|𝑋𝑡). Furthermore, the states at time 𝑡 is related to state at time 

𝑡 + 1 with the transitional model 𝑃(𝑥𝑡+1|𝑥𝑡). The other concept is keeping the track of the 

world, meaning computing the current conditional probability given all previous observa-

tions 𝑃(𝑥𝑡|𝑒1, 𝑒2,… , 𝑒𝑡) (Conrady & Jouffe, 2007). 

Dynamic Bayesian Networks are a generalization of Kalman Filters (Kalman, 1960) and 

Hidden Markov Models. The representation will more compact and more interpretable in 

a DBN. Each node in an HMM represents a state of the system and in a DBN they rep-

resent the dimensions of the system.  

Influence diagrams 

Bayesian networks can be used not only for showing the probability of certain states 

happening but with some modifications, they can be used as a decision aid tool. If two 
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additional type of node, namely decision nodes and utility nodes, are added to a Bayes-

ian network, the network can provide the means to make a powerful tool to make deci-

sions under uncertainty. A decision node is representing the possible choices in the sys-

tem and the utility nodes represent the value of a particular event in the system. The 

resulting network is called influence diagrams, decision graphs or decision networks 

(Daly et al., 2009, p. 106). 

Causal Bayesian Networks and Causal Discovery 

Bayesian networks can have many interpretations depending on the view of their con-

structors and their usages. The basic interpretation is that in BNs, arcs are representing 

the probabilistic dependencies between random variables and their combination with the 

conditional probability tables. 

In another view, BNs are representing the causal relations between variables. A Causal 

Network is a Bayesian Network in which the parents are direct causes of each node. This 

may be used to predict the result of any intervention (change on purpose not observing 

the evidence) in any nodes. In a causal network, if we change the probability of happen-

ing of each of node, with a certain answer, i.e. changing the probability of happening of 

a state to 100% or 0%, the arrow from that node to its parent node can be removed. 

Modelling a system as a causal model will lead to a composition of stable mechanism 

which can be reconfigured locally with local changes in the model according to the inter-

ventions (Conrady & Jouffe, 2007, Chapter 10). 

Causal discovery is the act of finding the cause and effect relationship between variables 

using raw data. In many occasions, it is taught from experiments that the dependency 

between variables can be in some specific causal directionality and not others. If these 

results are used in a systematic way, they can be used to infer causal relations from the 

raw data. The strength of the dependencies of one structure can be used to determine 

the most compatible structure (Conrady & Jouffe, 2007, Chapter 10). 

One main source of information to obtain causal effects is random experiments. For most 

use cases, random experiments are needed to distinguish the effects of a system. For 

example, imagine the effect of a new medicine is going to be tested. An experiment 

should be made with two groups of patients who are randomly taking the medicine or 

placebo. Then the dependence of the result can be tested, and causal relation can be 

discovered. The problem with the first approach is that the experiments can be costly, 

time-consuming or even impossible. The other source can be observational data, e.g. 

the data from other similar procedures or big data, and then using machine learning tools 

in Bayesian networks to find the conditional dependency relations between variables. 
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For more detail please consult Conrady and Jouffe (2007) and Heckerman (Heckerman, 

Meek, & Cooper, 2006) 

3.1.4 Evidential reasoning 

Having evidence for some of the nodes in the network, it is possible to calculate the 

probability of any proposition with the aid of the given conditional probabilities in the 

network. These calculated probabilities can often be used to describe the structure of 

the model itself. There are three types of reasoning in Bayesian networks. Diagnostic 

Reasoning is going directly from effect to cause. It can be shown as a conditional prob-

ability of the cause given the effect. The second type is prognosis, in which the reasoning 

starts from a cause, and predict the effect. Finally, the last type is Inter-Causal reasoning. 

Once we condition on a common effect using an observation of its value, it is possible to 

compute the probabilistic relation of one cause to the other cause via that effect (Conrady 

& Jouffe, 2007, Chapter 4). 

Nature of the evidence 

The evidence can be of two different natures. Hard Evidence is the piece of information 

about the value of a node or the value of one of the states of the node. On the contrary 

to hard evidence for inference, evidence can be in the numerical or probabilistic form. 

This evidence can be some assumptions about possible conditions of a domain (Conrady 

& Jouffe, 2007, Chapter 4). 

The difficulty of the reasoning task 

"Reasoning in Bayesian networks subsumes the satisfiability problem in propositional 

logic and, hence, is NP-hard." (Pearl, 2004). The process of reasoning in a BN is per-

formed through inference algorithms. The inference is to find the marginal probability 

distribution of a node, after performing changes in the distribution of the other nodes in 

the network, e.g. changing in probability distributions of a node based on the new evi-

dence.  For small size Bayesian networks, it is possible to marginalize a node by sum-

ming over all possible states of all other nodes in the graph, i.e.  

𝑃(𝑥𝑛) =  ∑∑… ∑ 𝑝(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑥𝑛−1𝑥2𝑥1

 (38) 

But the number of summations will grow exponentially with the number of nodes in the 

network. To reduce the complexity of reasoning, several algorithms are developed to 

calculate the marginal probability with a lower complexity (Guo & Hsu, 2002). Some of 
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these algorithms are performing the inference in the exact form while the others are using 

some heuristics and stochastic methods to approximate the inference problems. 

In this study, Belief propagation algorithm (sum-product algorithm) and junction three 

algorithm which is the mostly used exact algorithm is described in the rest of this sub-

section (Koller & Friedman, 2013). 

Belief Propagation Algorithm or Sum-Product Algorithm  

Belief Propagation Algorithm or Sum-Product Algorithm is based on the fact that the 

marginal probability can be calculated by summing over all possible states of all other 

nodes in the graph. These algorithms solve the inference problem in a linear time com-

plexity (Yedidia, Freeman, & Weiss, 2001). 

For undirected graphs with no loops which are singly connected, belief propagation al-

gorithm can be used for performing exact and approximate inferences. As Ghahramani 

(2001) described, this method propagates the information received by observing some 

evidence in the network.  It updates the marginal probabilities of all variables through a 

local message passing protocol. Since this method is for singly connected graphs, the 

node 𝑁 for which we have new evidence separates the graph to two sets. The set, 𝑆+(𝑁) 

is containing 𝑁 and its parents and the other nodes connected to its parents. The other 

set, 𝑆−(𝑁) is 𝑁's children and the other nodes connected to 𝑁 through its children. 

The message to be passed from the node 𝑁 to its children is the changes in the proba-

bilities of each state of the node 𝑁 given the evidence observed in the  𝑆+(𝑁) set, there-

fore if 𝑁 has 𝐾 different states, the message is a 𝐾 dimensional vector. The message 

from 𝑁 to each of its parents is the probability of the evidence observed in the set 

 𝑆−(𝑁) ∪ {𝑁} given each state of that parent. 

The marginal probability of each node is proportional to the product of the message re-

ceived from its parents, weighted by the conditional probability of the node given its par-

ents and the message received from its children. 

𝑃(𝑁|𝑆) ∝ [ ∑ 𝑃(𝑁|𝑝1,… , 𝑝𝑘)∏𝑃(𝑝𝑖|𝑒
+(𝑝𝑖))

𝑘

𝑖=1{𝑝1,…𝑝𝑘}

]∏𝑃(𝑐𝑗 , 𝑒
−(𝑐𝑖)|𝑛)

𝑙

𝑗=1

 (39) 

For a more detailed description of this algorithm, the reader is referred to (Mooij, 2008) 

and (Yedidia et al., 2001). 

Junction Tree or Clique Tree Algorithm 



42 

 

 

 

Junction tree algorithm can be used in case there exist more than one undirected path 

between two nodes in the graph, i.e. multiply connected networks (Ghahramani, 2001). 

This algorithm consists of seven steps (Kahle, Savitsky, Schnelle, & Cevher, 2008) and 

starts with moralizing the network, meaning transforming the directed graph to an undi-

rected graph.  This is done by adding an undirected edge between the parent nodes and 

then changing directed edges to undirected edges by adding an edge in the reverse 

direction. The second step is to triangulate the graph. This means for any cycle in the 

undirected graph, if the number of nodes is bigger than three, we should add an edge to 

a pair of non-consecutive nodes in that cycle, which is called a chord. Now, in the third 

step, we can form the junction tree. Junction trees are tree graphs created using a hy-

pergraph formed from the cliques of the triangulated graph in the last step. A hypergraph 

is a set of all nonempty subsets of a graph. 

 A junction tree should have another property which is called running intersection prop-

erty or junction property, which is that the intersection of any two nodes in a path in a 

junction tree should be contained in every node in that path. In the fourth step, the con-

ditional probability distribution (CPT) tables are used to assign potentials for each clique; 

the potential is the joint probability distribution of that clique.  

Since the main reason for forming the junction trees is to apply a message-passing al-

gorithm, in the fifth step, the algorithm defines a root node to start the message passing 

procedure from it. After setting the root node, the algorithm uses one of the messages 

passing algorithms in graphical models to pass the changes in the nodes all the way to 

the leaf node and backward. Therefore, the message-passing step, step six, consists of 

two messages and the junction tree guarantees the convergence of the algorithm. In the 

seventh step, we use the result of the last step, which is the modified joint distribution of 

each clique to calculate the marginalized distribution of node of choice. 

A measure of conflict in evidential reasoning  

Adding new evidence to a node in a network is not always decreasing the uncertainty. 

To detect and measure the "conflict" in the evidence, it is possible to compare the joint 

probability distribution (JPD) in the network before and after using the evidence. To do 

so, the entropy of the JPD of a fully unconnected model, the straw model, of the system 

is used as a reference. If the entropy of the network after using the evidence is bigger 

than the entropy of the straw model, the evidence is conflicting (Conrady & Jouffe, 2007). 

The global conflict value for the current set of evidence with 𝑛 observations can be cal-

culated with: 
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𝐺𝐶(𝐸) =  log2 (
∏ 𝑃(𝑒𝑖|𝑒1, … , 𝑒𝑖−1)

𝑛
𝑖=1

∏ 𝑃(𝑒𝑖)
𝑛
𝑖=1

) (40) 

Bayes factor has a hypothetical piece of evidence that has not been observed used is 

equal to: 

𝐵𝐹(𝐸, ℎ) =  log2

𝑃(ℎ|𝐸)

𝑃(ℎ)
 (41) 

And the local conflict or local consistency can be calculated by summing global conflict 

and Bayes factor values. 

𝐿𝐶(𝐸, ℎ)  =  𝐺𝐶(𝐸)  +  𝐵𝐹 (𝐸, ℎ)  = log2 (
∏ 𝑃(𝑒𝑖|𝑒1, … , 𝑒𝑖−1)𝑃(ℎ|𝐸)𝑛

𝑖=1

∏ 𝑃(𝑒𝑖)
𝑛
𝑖=1 𝑃(ℎ)

) (42) 

3.1.5 Machine learning in Bayesian networks 

Both the network parameters (MTPs and CPTs) and network structure of a Bayesian 

network can be learnt from the data using machine learning algorithms. In the rest of this 

subsection, first the method of learning parameters in this study is reviewed and then the 

structural learning algorithms are briefly described. 

Learning the parameters 

For learning a Bayesian network’s parameters there can be two approaches. In the first 

case, the conditional probability tables,  𝑃(𝑥𝑖|𝑝𝑎𝑖) for a qualitatively described Bayesian 

network structure can be estimated using the maximum likelihood method from the da-

taset associated with the network. On the other hand, a pure Bayesian approach includes 

designing a network using expert knowledge and hyper parameter nodes. In this case 

the data act as the piece of evidence to perform Bayesian updating meaning updating 

the distributions of the hyper parameters. The procedure of updating uses gradient based 

or expectation maximization based approaches with is similar to neural networks (Daly 

et al., 2009, pp. 112–115; Koller et al., 2007, pp. 42–47). 

In the case of this study, where the network variables are discrete, a much simpler 

method is used to estimate the parameters. This method, called the counting method, 

counts the number of occurrences of the data point in the dataset for each state. For the 

MPTs, it is enough to count the number of data points for each estate of that variable 

and for CPTs, this number should be counted for each state, considering the combination 
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of the stats of their parent node. For more detail on the process, please consult Conrady 

& Jouffe (2007, pp. 99–105). 

Structural learning 

To learn a Bayesian network's structure, at least three groups of methods are available. 

The first group are score-based approaches which utilize a metric to determine the qual-

ity of candidate networks given the observed data. The metric is normally defined as the 

likelihood of the data given the network and it trades off the complexity of the network 

versus the degree of fit to the given data. These group of algorithms are less sensitive 

to the quality of data. The second group is constraint-based algorithms, in which, the 

conditional independence between variables in the dataset is used to determine the best 

structure. Statistical tests identify marginal and conditional dependencies and based on 

that links are added or removed between nodes (Conrady & Jouffe, 2007; Munteanu & 

Bendou, 2001). The third group is the dynamic programming approaches in which using 

score-based dynamic programming techniques, optimal models for a small set of varia-

bles can be obtained and the models can be combined if necessary (Daly et al., 2009, 

sec. 4.11).  

Score-based algorithms 

The score-based algorithms are working based on a searching approach. They normally 

start with an empty set of arcs between variables and move on with searching in the 

neighbourhood for a structure that describes the joint distribution better. A neighbour-

hood is the set of graphs, which are different in only one atomic graphical element, e.g. 

deletion or addition of one arc or change of direction in only one arc. The score can be 

measured, for example, according to the likelihood of the structure being true, given the 

data. Then a heuristic search algorithm is used to find the network that maximized the 

score of the network (Scutari, 2010). 

The process of the search is a hard task and heuristic algorithms including greedy 

search, genetic and evolutionary algorithms, simulated annealing, particle swarm opti-

mization is used to reduce the complexity. The other approach is to search is the space 

of equivalent classes, which is the algorithm that is used in this study and is described 

later in this subsection (Daly et al., 2009, sec. 4.5-4.7). 

Choosing the right scoring function for the learning process is an important criterion. The 

highest match between the dataset and the model is always for a fully connected net-

work, which has the maximum number of parameters and in most of the cases compli-

cated and useless. Therefore, the score for learning process should consider at least two 
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measures at the same time, namely the complexity of the model and the goodness of fit 

to the data. So, most of the scores are rewarding for a better match to data and penalizing 

the complexity. Bayesian Dirichlet criterion (BDc), Bayesian information criterion (BIC), 

Akaike information criterion (AIC), minimum description length (MDL), minimum mes-

sage length (MML) are a few of these scoring criteria. The other important property of 

these scores is that they are decomposable, meaning they can be calculated locally for 

each node and then combined to have a holistic score for the model (Daly et al., 2009, 

p. 112). 

As an example, a brief description of one of the criteria used in this study, the MDL 

criterion, is provided as follows. Minimum Description Length (MDL) is a principle which 

is based on the idea that the best way for capturing features in the data is to construct a 

model which represents the data in the shortest description possible for both the data 

and the model (Rissanen, 2006). Therefore, MDL a two-component score, consisting of 

the number of bits required for representing a model and the data given that model. The 

best solution has the lowest value for MDL. In terms of the Bayesian network, the model 

is the network and the probability tables. The other component, in our case, is the log-

likelihood of the data, given the model, which has an inverse relationship with the Bayes-

ian network model given the observations data.  

In the case of this study, MDL is calculated as:  

𝑀𝐷𝐿 (𝐵, 𝐷)  =  𝛼𝐷𝐿(𝐵) +  𝐷𝐿(𝐷|𝐵) (43) 

In which 𝛼 is a constant called structural coefficient, 𝐷𝐿(𝐵) is the number of bits to rep-

resent the Bayesian network 𝐵, and 𝐷𝐿(𝐷|𝐵) is the likelihood (number of bits to repre-

sent) of dataset 𝐷 given the Bayesian network 𝐵. The minimum value for the first com-

ponent occurs when we have a set of fully unconnected nodes. On the other hand, the 

minimum value for the second component occurs when all nodes in the network are 

connected, i.e. fully connected network. The criteria is to minimize the sum and to mini-

mize the sum, the best trade-off between these two should be found (Conrady & Jouffe, 

2007). 

Constraint-based methods 

The second group of structural learning algorithms are working based on Bayesian rules 

to find the structure and called constraint-based algorithms. These algorithms analyse 

the probabilistic relationships between variables with conditional independence tests and 

based on that, create networks that satisfied d-separation conditions. These algorithms 
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normally use a statistical test such as 𝜒2 and 𝐺 tests to determine dependencies between 

variables (Daly et al., 2009, sec. 4.8). 

The generic procedure has three steps 1- finding an undirected graph, called a skeleton, 

to represent the independencies with some search method, 2- setting the V-structures, 

i.e. structures with converging directions and 3- setting the direction of the other arcs to 

satisfy the cyclic property of the graph (Conrady & Jouffe, 2007).  

The EQ method 

Finding the best network in the search space of possible networks is an NP-hard com-

putational task. Heuristic search algorithms that are normally used can easily trap in local 

minima. Munteanu and Bendou (2001) developed the EQ framework to solve this prob-

lem and it uses the space of essential graphs of an equivalent class to search for a 

suitable graph.  

Two Bayesian Networks are Equivalent if they represent the same joint probability distri-

bution. In a more formal way, the Bayesian network 𝐵 and 𝐵’ are equivalent for a set of 

variables V, in a joint probability distribution, if for each parameter 𝜃 of 𝐵, we have a 

parameter 𝜃’ for 𝐵’ such that 

𝑃(𝑉/𝑆, θ) = 𝑃(𝑉/𝑆′ , θ′) (44) 

Verma and Pearl (1991) defined the condition for two BNs to be in the same equivalence 

class as having the same skeleton and the save V-structures. In a DAG, the skeleton is 

the graph with undirected edges and a V-structure is a configuration like this:𝐴 → 𝐵 ← 𝐶.  

In a Bayesian Network from an equivalence class, an essential edge is an edge, which 

is present in all the BNs of that class. Therefore, all the edges in V-structures of an 

equivalence class are essential. However, there can be other essential edges in an 

equivalence class. An Essential Graph of a Bayesian Network is a partially directed acy-

clic graph that its edges are similar to that graph and the essential edges are directed 

(Garrido, 2008). Therefore, the essential graphs set is a subset of the Equivalent class 

in which in addition to V-structures, the essential edges are directed too. 

The graphs belonging to an equivalent class have the same performance score, e.g. 

MDL or BDc, and this can lead to a problem in the learning procedure (Munteanu & 

Bendou, 2001). A search algorithm, which uses such scores of the BN to find the best 

graph, may choose the wrong graph, with a similar score with the correct graph in the 

same equivalence class, in an intermediate point of the search. Extension of the search 
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procedure based on the wrong intermediate graph will lead to finding a graph with wrong 

causal relations. 

The EQ framework proposes a local scoring scheme to solve this problem. In each es-

sential graph, transformation algorithms create non-empty subsets of graphs, called in-

stantiable graphs, by making small changes in the structures in the essential graphs set. 

A small transformation means suppression or addition of only one single edge. On the 

other hand, the score of a Bayesian network can be decomposed as the sum of the local 

scores calculated from a node and its parents. Using this fact, they calculated the change 

in the score of the whole BN after performing the small transformation. Since each of the 

instantiable graphs is belonging to the same equivalence class and the score of all the 

graphs in an equivalence class is the same, we can use the calculated score for each 

transformed graph as the score of the whole equivalence class. The score can be calcu-

lated as: 

∆𝑆(𝐺′, 𝐺) = 𝑆(𝐺′) − 𝑆(𝐺) = 𝑆(𝐴|𝑃𝑎𝐺′(𝐴)) − 𝑆(𝐴|𝑃𝑎𝐺(𝐴)) (45) 

In which, 𝐺 is the current essential graph and 𝐺’ is the instantiable graph after small 

transformation; 𝑆(𝐺) is the score of the whole BN, 𝑆(𝐴|𝑃𝑎(𝐴)) is the score of a node 

given its parents. Using this score, the best instantiable graph will be used to continue 

the learning procedure.  

The procedure of learning the structure then can be summarized as follows (Munteanu 

& Bendou, 2001):  

1. Setting constraints in order to avoid making non-instantiable graphs from essen-

tial graphs in the transformation process and creating rules according to these 

constraints 

2. Making operators for creating new instantiable graphs by adding or removing 

edges and V structures according to the rules and calculating the change in the 

local score for each of them 

3. Creating the essential graph corresponding to the created instances and 

4. Calculating the score for the found equivalence class and compare to others to 

find the best structure 

It is also possible to include the prior expert knowledge to the process of learning the 

structure of a network. Forbidding relations, fixing portions of the structure, or using prior 

distributions over the network parameters are the techniques that help to accurately learn 

the network’s structure with the fewer amount of data (Conrady & Jouffe, 2007). 
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Structural Coefficient (𝛂) 

Structural Coefficient (SC) is a tool for controlling the complexity of the structure of a 

network. This value can determine the significance threshold for the learning process. In 

the case of this study, α is used in calculating MDL score which is used in the EQ learning 

process. SC controls the internal number of observations, 𝑁′, where the equation for it 

is:  

𝑁’ =  𝑁/𝑆𝐶 (46) 

With N as the number of samples in the dataset. 

An SC value equal to one (1) helps to prevent overfitting of the model to the training data 

if a large amount of data is available for machine learning. For datasets with relatively 

few numbers of data points, this number should be decreased to increase the number of 

observations. An SC value equal to zero will result in all the relationships between vari-

ables become significant and the trained network will become a fully connected network. 

In case the dataset is too big, the value should be increased to train using a sample of 

the training data (Conrady & Jouffe, 2007). 

3.1.6 Validation of the Bayesian network 

Contingency Table Fit (CTF) 

One of the measures to check the fitness of the Bayesian network model with the data 

set is to check the contingency table fit (CTF) value. A fully connected Bayesian network 

is always the best representation of the contingency table, i.e. a network in which none 

of the conditional independencies between random variables is considered in the struc-

ture of the network. On the other hand, an unconnected network assumes that there is 

no dependency between variables and is the worst representation of the contingency 

table. By comparing the networks structured in the machine learning with a fully con-

nected network and an unconnected network networks, it is possible to measure the 

descriptive power of the network for any dataset (Conrady & Jouffe, 2007). 

In the case of Bayesian networks, it is possible to use an information theory based metric, 

e.g. entropy, to measure the fit. A detailed description of the entropy and conditional 

entropy is provided in section 3.1.2. Using the entropy, conditional entropy and the con-

ditional dependencies of the variables in the Bayesian network, it is possible to calculate 

the entropy for the whole network. The CTF value then can be calculated by comparing 
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the entropy of the current network with the entropy of a fully connected network and the 

entropy of an unconnected network (Bayesia, 2018): 

𝐶𝑇𝐹 =  
𝐻(𝐵) − 𝐻(𝑢𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑) 

𝐻(𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑) − 𝐻(𝑢𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑)
  (47) 

The CTF value in the case of this study can be between 0 and 1, in which 0 means the 

worst fit and 1 means the best fit. 

Running the learning process for multiple times 

To find a suitable value for SC, it is possible to train the network with a range of SC 

values and calculate the CTF value for each of them. By plotting the CTF value versus 

structural coefficient, it is possible to judge that how adding complexity will affect the 

precision of the result, based on the SC value. If increasing SC value does not result in 

better CTF, then probably the model is overfitting to the data. The elbow in the plot, i.e. 

where increasing SC is not resulting in better predictions, is the best SC value that can 

be used. 

3.1.7 Pre-processing of data for Bayesian networks 

Most of the well-known algorithms developed in Bayesian networks environment, includ-

ing the algorithms used in this study, are based on discrete valued random variables. If 

the data is continuous, it should be discretized before it can be used. 

Discretization of continuous variables 

Discretization is to transform continuous data to a set of finite non-overlapping intervals 

(Muhlenbach & Rakotomalala, 2005). Machine learning algorithms for learning the struc-

ture of a Bayesian network and performing inference in BNs are mostly developed for 

discrete variables space. Although there are structural learning algorithms for continuous 

variables, they lack either in expressiveness or in interpretability. Therefore, discretiza-

tion of a continuous variable is inevitable and yet in most of the cases, it leads to a better 

result. Discretization is the process of transforming quantitative data into nominal quali-

tative data. This process leads to a loss of information in the data and finding an optimal 

discretization is an NP-complete task (Mabrouk & Gonzales, 2010). 

To find a suitable discretization method, researchers proposed several heuristic based 

methods (Kotsiantis & Kanellopoulos, 2006) and taxonomy based methods (García, 
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Luengo, Sáez, López, & Herrera, 2013). Discretizers can be classified according to mul-

tiple criteria, namely supervised and unsupervised or univariate and multivariate tech-

niques (Bakar, Othman, & Shuib, 2009).  

In supervised discretization, all variables are discretized to have the best representation 

of with respect to one of the variables in the dataset while unsupervised methods are 

discretizing the data without any prior knowledge about the associations hidden in the 

data. Supervised discretization is considered when the aim is to make a classification for 

a target variable (Muhlenbach & Rakotomalala, 2005). 

Univariate discretizers consider only one variable in the dataset while multivariate 

discretizers consider the interaction between multiple variates simultaneously to find the 

best intervals. These interactions contain hidden information about other variables which 

is the primary criteria if the data is going to be used for investigating the dependencies 

and causal relations in the dataset using, for example, Bayesian network structure learn-

ing (S. Monti & Cooper, 1998; Stefano Monti & Cooper, 1998).  

Since there are a significant number of techniques available for discretization, a selected 

number of most frequently used ones is reviewed in the rest of this subsection. Interested 

readers are referred to (Bakar et al., 2009; Dougherty, Kohavi, & Sahami, 1995; García 

et al., 2013) for more information.  

Equal distance or equal interval width is an unsupervised method that makes bins with 

equal repetition in the range of a variable. For a continuous variable with a minimum 

value 𝑥𝑚𝑖𝑛 and a maximum value 𝑥𝑚𝑎𝑥 and 𝑘 equally sized bins, the bin width will be 

calculated as 

𝛿 =
𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥

𝑘
 (48) 

And then these bins are a size to calculate thresholds 𝑥𝑚𝑖𝑛 + 𝑖𝛿 , 𝑘 = 1, 2, . ..  , 𝑘 − 1. This 

method is sensitive to outliers and can return bins with no data point with unclean data. 

To avoid this problem, the normalized equal distance algorithm can be used to remove 

outliers before equal partitioning.  

The equal frequency method creates bins with an equal number of observations and 

results in a uniform distribution in the bins. Therefore, for a continuous variable with 𝑁 

values, the number of values in each bin is 𝑁/𝑘. 

The other algorithm is called K-Means which discretise the variables using the clustering 

idea. The variables cluster around a 𝑘 number of values which are the mean value of the 
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variables in that clusters (Joiţa, 1995).In case the distribution and the variable domain of 

the variables are unknown, it is best to use this algorithm.  

Discretization in Bayesian network learning 

In some studies, univariate supervised algorithms used for multivariate discretization for 

Bayesian networks. In these algorithms, each node is considered as a target value and 

the univariate discretization is performed for all those variables. 

For learning the structure of Bayesian networks, one of the first efforts has been done 

by (Friedman & Goldszmidt, 1996) and (S Monti & Cooper, 1999; Stefano Monti & 

Cooper, 1998). They both tried to perform the discretization in the framework of structural 

learning in Bayesian networks. They combined discretization and learning in the search 

based structural learning process to find the best discretization for each network they 

find in the search space.  

In another effort, Nguyen et al.  (2014) introduced Interaction Preserving Discretizations 

(IPD) in which they form micro-bins for each variable and then try to merge the bins using 

the entropy-based score to identify the optimal discretization for each variable. Mabrouk 

et al. (2010) have shown that entropy-based discretization result is suboptimal and de-

veloped an algorithm which performs discretization for BNs based on clustering scheme 

which has outperformed the previous methods. In their method, first, they approximate 

the joint distribution of continuous variables with a mixture of non-truncated Gaussian 

distributions and then use the EM method to determine the number of cut point and the 

mean values and the variances of the Gaussian distributions. The cut points will produce 

some intervals in continuous variables, which are now modelled by a summation of 

Gaussian distributions. The parts of the Gaussian distributions that are left outside of 

each interval is considered as a loss of information; so, in the second step, they tried to 

minimize this loss. 

As mentioned before, for training Bayesian networks, it is important to preserve the de-

pendencies between variables in the discretization process. Therefore, many ap-

proaches tried to perform the discretization based on the structure of the BN. This leads 

to the development of multiple Bayesian Discretization-Learning algorithms which 

performs the discretization alongside with the search for the best structure for the BN 

(Friedman & Goldszmidt, 1996; Mabrouk & Gonzales, 2010; Stefano Monti & Cooper, 

1998). 
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In the case of this study, a univariate genetic algorithm optimization based method is 

used for discretization. The algorithm is called R2-GenOpt which maximizes the 𝑅2 be-

tween the continuous variable ant its corresponding discrete variable. It uses the genetic 

algorithm to find the optimal discrete representation of the continuous values of a varia-

ble. The algorithm is also able to find the optimal number of the states for the discrete 

variable. The algorithm is developed by S.A.S (Bayesialab-S.A.S, 2019). 

Missing Values Processing 

Having missing values is a common phenomenon in datasets. Missing can happen be-

cause of a failure in the recording system, human mistakes, errors in sensors or a non-

response in a survey. When dealing with a large amount of data, the intuitive approach 

is to remove the records with missing data. This approach is also called likewise deletion 

or case-wise deletion. It has been shown (Koller & Friedman, 2013) that this approach 

can lead to a magnificent amount of bias if it is not done carefully.   

Conrady and Jouffe (2007) provided a very good description of different types of missing 

values and the mechanisms behind the missingness. The rest of this subsection is writ-

ten based on their book. Missing value can be classified into four types: 

1. Missing Completely at random (MCAR) 

In this class, the missing mechanism is totally independent of other variables. For this 

class, it is possible to confidently remove the data points with missing values without 

affecting the distribution of the data. The problem is that it is not possible to confirm that 

the missingness is in this class.   

2. Missing at random (MAR) 

The missing mechanism in the MAR class is dependent on observed variables. In this 

case, it is not possible to remove the data points with missing values because it will 

change the distribution of the variable with the missing values with respect to the other 

variables. 

3. Missing Not at Random (MNAR) or Not missing at random (NMAR) 

In this situation, the missing mechanism is depending on hidden or unobserved causes. 

The result of deleting missing values here is similar to MAR class. 

4. Filtered Values 

Filtered values are the values which are not missing at all, they are the value which was 

not existing in the first place. Most often, these values are not possible if some other 
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variables take some specific values. The missing values in this class are similar to miss-

ing values in the MAR class. The difference is that the filtered value should not be pro-

cessed as a missing value, but it should be considered as a special type of observation. 

 

Figure 11. Missing value mechanisms (Conrady & Jouffe, 2007) 

In addition to potentially changing the distribution of the variables, the likewise deletion 

approach can reduce the number of data points. As mentioned before, this method is 

only suitable when we know the missing values are in MCAR type or the number of 

missing values is relatively small.  

The other approach to process the missing values is to replace them with some fixed 

values. The replacing value can be coming from an expert’s knowledge or, for example, 

can be the mean or mode of the variable with the missing value. Replacing the missing 

values with the mean or modal value will add the number of instances for those values 

and will lead to magnificent changes in the distribution of the data. Therefore, this method 

is not recommended in general. 

The third approach can be replacing the missing values with some inferring method. 

Static imputation is the first method in this group, in which, the missing values are re-

placed with a random draw from the non-missing values of the same variable. Using this 

method, the resulting distribution of the variables will be similar to likewise deletion, but 

with no decrease in the amount of data and not additional bias. The second method in 

this group is the structural expectation maximization method. This method replaces the 

missing variables according to the network structure. 

Expectation Maximization method 

Expectation maximization (EM) is a method to replace the missing values using the avail-

able values and the parameters calculated using them. This method consists of two 

steps. The first step uses a maximum likelihood estimator to find an expected value for 



54 

 

 

 

the missing value, based on the parameters calculated from the other incomplete data. 

Since our data is in discrete form, parameters can be estimated by counting the number 

of datapoint in each state of the variable. The estimator replaces the missing values with 

a number in the range between 0 and 1. In the second step, a new set of parameters are 

calculated using the real data and the estimated values. At this point, one iteration of the 

EM algorithm is finished. Using the new parameters, a new set of likelihoods will be 

calculated for the missing values and the procedure will be continued. In each iteration, 

the likelihood value for the network will be compared with the previous iteration, and if it 

does not change, it means that the algorithm reached local minima. The method guar-

antees reaching a local minimum (Koller & Friedman, 2013). 

3.1.8 General concerns about using Bayesian methods 

There are concerns about using Bayesian statistics in the scientific community. The ma-

jor concern is that Bayesian statistics are considering statisticians subjective knowledge 

as the beginning point for creating models. In case that the amount available data is 

limited, the final posterior model will look like the prior knowledge and if the amount of 

data is magnificent, the posterior model will look like the data (Swiler, 2006). 

The other concern about Bayesian networks is the approaches to obtain the Bayesian 

network. As mentioned before, there are two general approaches to learn Bayesian net-

works, namely a machine learning approach and the interpreted approach. The problem 

with the machine learning approach is that in most of the real world cases, the amount 

of the data is not sufficient for the learning algorithms to obtain a reliable network. More-

over, the quality of the data is not reliable. In the interpreted approach, the main problem 

is with the reliability of the independence assumptions that can be made. For example, 

it may be difficult to elicit the knowledge of an expert (Williamson, 2001). That is why 

systematic solutions for the interpreted approach is needed. 

3.2 Analytical Hierarchy Process 

In contrast to classical probabilities which is the actual probability of a physical happen-

ing, Bayesian probability is the statisticians’ degree of belief in a happening (Heckerman, 

2008). In this scene, to measure a Bayesian probability, there is no need to perform 

repeated trails. One question which comes to mind is, how and on what scale one can 

measure the degree of belief in some happening? 

There can be many different probability assessment methods to answer this question 

and be used to the marginal and conditional probability tables for a Bayesian network. 
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Probability assessment method normally relays on the knowledge of experts in the do-

main under study. The issue with these methods can be the degree of sensitivity of a 

system to the precision of the assessments. In most decisions making tasks, the deci-

sions are not sensitive to small deviations in assessed probabilities. Nevertheless, sen-

sitivity analysis methods are the well-established methods to investigate if extra precision 

is needed (Heckerman et al., 1995). 

The other problem in probability assessment can be due to the means a question is 

phrased. An unsuitable question can cause the expert not to be able to reflect their true 

beliefs and lead to lack of accuracy in the assessment. For that, the Analytical Hierarchy 

Process (AHP) method which is used in the multi-criteria decision-making domain can 

be used to collect information from the experts more accurately. 

AHP was initially developed to derive priorities in multi-criteria decision problems (Saaty 

& Vargas, 2012). In general, AHP has three principles, namely decomposition, measure-

ment of preferences and priority synthesis. The workflow of the process starts with de-

fining the goal of the study, which is the description of the problem under study. Then 

the criteria and the sub-criteria that the decision must be evaluated should be defined. 

After decomposing the criteria, a pairwise comparison between elements  

The steps for an AHP process is described by Saaty and Vergas (2012) as follows: 

1. Defining the objective or goal of the study and identifying the domain of the study is 

done in this step. The objective is the question which should be answered by the 

multi-criteria decision-making technique. The objectives can be broken down to sub-

objectives if possible.  

2. The structure of the problem should be decomposed and the criterion, the sub-crite-

rion should be identified and the alternatives of the decision making. Criteria are the 

means which should be satisfied in order to reach the objectives and sub-objectives. 

The domain of the study should be investigated to find the important criteria, stack 

holders and actors in the domain. The criteria can have negative (cost) or positive 

(benefit) impact on the objective. Then the possible solution alternatives of the prob-

lem should be identified. Each alternative is affected by a combination of criterion 

with different orders of magnitude. Then the hierarchical structure of the problem 

should be formed. A sample hierarchy for a problem with one goal, 6 criteria and 3 

alternatives are shown in Figure 12. 
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Figure 12. A tree level hierarchy (Saaty & Vargas, 2012) 

3. In this step, the matrix of pairwise comparisons is created. The criteria should be 

compared with each other and, after that, the sub-criteria should be compared pair-

wise. This is a relative comparison in which the criteria are compared in pairs accord-

ing to a common attribute. These comparisons are based on a set of fundamental 

scales which is described in Table 1. 

Table 1.  Fundamental scales for AHP pairwise comparison (Saaty & Vargas, 2012) 

Intensity of  
importance 

Definition Explanation 

1 
Equal Importance Two activities contribute 

equally to the objective 

2 
Weak to 

 

 

Moderate importance 

Experience and judgment 

slightly favour one activity 

over another 
3 

4 
Moderate plus to 

 

 

Strong importance 

Experience and judgment 

strongly favour one activity 

over another 
5 

6 
Strong plus to 

 

Very strong or demonstrated 

importance 

An activity is favoured very 

strongly over another; its dom-

inance demonstrated in prac-

tice 
7 

8 
Very, very strong to 

 

 

Extreme importance 

The evidence favouring one 

activity over another is of the 

highest possible order of affir-

mation 
9 

1-1/2-1/3-1/4-1/5-

1/6-1/7-1/8-1/9 

These are the reverse values 

for the numbers above for the 

case the relation is reversed. 

These show the reverse rela-

tionship between two com-

pared activities. 

 



57 

 

 

 

The fundamental scales are meant to show the fraction one criteria in more important 

comparing to another criterion. Using the fundamental scales, one can create the matrix 

of comparison as follows 

𝐴 =  

𝐶
𝐶1

𝐶2

⋮
𝐶𝑛

𝐶1 𝐶2 … 𝐶𝑛

[

𝑎11 𝑎12 … 𝑎1𝑗

𝑎21 𝑎22 … 𝑎2𝑗

⋮ ⋮ ⋱ ⋮
𝑎𝑖1 𝑎𝑖2 … 𝑎𝑖𝑗

]
 (49) 

In which each element, 𝑎𝑖𝑗 is the result of the comparison 𝐶𝑛 between two criterions. The 

comparison matrices are always positive and reciprocal, meaning for any 𝑖 and 𝑗, 𝑎𝑖𝑗 =

1
𝑎𝑗𝑖

⁄ . 

4. In the next step, the weights and consistency ratios should be calculated. The com-

parison between variables, and consequently, the values of the comparison matrix 

should be checked for consistency. This means the comparison between criterion 𝑖 

and 𝑘, should be predictable with a comparison between criterion 𝑖 and 𝑗 and a com-

parison between the criterion 𝑗 and 𝑘. This implies a relation like 𝑎𝑖𝑘 = 𝑎𝑖𝑗 × 𝑎𝑗𝑘. This 

happens if the matrix of comparison is in the ideal form 

𝐴′ =

[
 
 
 
 
 
 
𝑤1

𝑤1

𝑤1

𝑤2
𝑤2

𝑤1

𝑤2

𝑤2

⋯

𝑤1

𝑤𝑛
𝑤2

𝑤𝑛

⋮ ⋱ ⋮
𝑤𝑛

𝑤1

𝑤𝑛

𝑤2
⋯

𝑤𝑛

𝑤𝑛]
 
 
 
 
 
 

 (50) 

In which, 𝑊 = (𝑤1, 𝑤2 , … , 𝑤𝑛) are the real weights for each criterion. If we want to calcu-

late 𝑊 from the matrix 𝐴 above, we can multiply it from right by 𝑊 

[
 
 
 
 
 
 
𝑤1

𝑤1

𝑤1

𝑤2
𝑤2

𝑤1

𝑤2

𝑤2

⋯

𝑤1

𝑤𝑛
𝑤2

𝑤𝑛

⋮ ⋱ ⋮
𝑤𝑛

𝑤1

𝑤𝑛

𝑤2
⋯

𝑤𝑛

𝑤𝑛]
 
 
 
 
 
 

× [

𝑤1

𝑤2

⋮
𝑤4

] = 𝑛 × [

𝑤1

𝑤2

⋮
𝑤4

] (51) 

In the real-world analysis, the experts’ opinion 𝑎𝑖𝑗 may not be exactly equal to the ideal 

matrix values 
𝑤𝑝

𝑤𝑘
 . Then the solution for finding the weights will change to 𝐴 × 𝑊 =
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 𝜆𝑚𝑎𝑥 × 𝑊 where 𝜆𝑚𝑎𝑥 is the largest Eigen value of the matrix 𝐴 which is a perturbed 

version of the matrix 𝐴’. 

According to Saaty and Vargas (2012), the exact solution for obtaining weights matrix 

from the matrix of comparisons is to raise the matrix of comparisons to high power and 

then summing over the rows and normalize the results. They also proposed two methods 

for approximating the weights. The first one is to normalize the geometric means of each 

row, i.e. calculating  √(𝑎𝑚1. 𝑎𝑚2. … . 𝑎𝑚𝑗)
𝑗

 , 𝑚 = 0,… 𝑖 for all rows of matrix A and then 

averaging the resulting values of all rows (Tomashevskii, 2014). The second approxi-

mate way is to normalize the elements of each column and then averaging over each 

row. In this method, first, we calculate the sum of each column and then divide each 

element of the matrix by that, i.e. 𝑚𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=0

 . Then the weights can be calculated by 

averaging over each row of the resulting matrix of pervious step, i.e. 𝑤𝑛 =
∑ 𝑚𝑖𝑗

𝑛
𝑗=1

𝑛
. 

Now that we can calculate the approximate values for weights the only question is how 

consistent the matrix of comparisons is. If the matrix 𝐴 is consistent, the value of 𝜆𝑚𝑎𝑥 

would be equal to 𝑛 and otherwise 𝜆𝑚𝑎𝑥 ≥ 𝑛. 𝜆𝑚𝑎𝑥 can be easily calculated by adding 

the columns of 𝐴 and multiplying the resulting vector by the weights vector. 

If 𝜆𝑚𝑎𝑥 ≠ 𝑛, we need to have a measure of inconsistency, to validate the matrix of com-

parison. This can be measured by calculating the ratio between the variance of error 

incurred in estimating 𝐴, the consistency Index (CI) and the ratio of error incurred in a 

reciprocal comparison matrix with randomly chosen values, the Random Consistency 

Index (RI). The value of CI is calculated from 𝐶. 𝐼. = (𝜆𝑚𝑎𝑥 − 𝑛)/(𝑛 − 1) and the values 

for R.I. can be obtained from Table 2. 

Table 2. Table of random consistency index (Saaty & Vargas, 2012) 

N 
1 2 3 4 5 6 7 8 9 10 

Random Con-

sistency Index 

(R.I) 

0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

 

Using the table above, a consistency ration (CR) can be calculated as 𝐶𝑅 = 𝐶𝐼/𝑅𝐼 . If 

the value of CR is lower than 10%, the inconsistency is acceptable, and in case it is more 

than that, the matrix of comparisons should be revised. 



59 

 

 

 

5. The alternative solution can be evaluated based on the criteria and the weights cal-

culated in the previous step. Each alternative can be scored based on the combina-

tion and the value of the criterion it has and the calculated weights for each criterion. 

Then the scores can be the basis for an absolute comparison between the alterna-

tives. 

3.3 Dimensional Analysis Conceptual Modelling 

Dimensional Analysis Conceptual Modelling (DACM) is proposing a mechanism to or-

ganize, simplify and simulate the behaviour of a system in the form of cause-effect rela-

tionships using qualitative information about that system. In their work, Coatanéa and his 

colleagues (2016) used Dimensional analysis theory to find causal relationships between 

the phenomena happening in a system. 

Dimensional analysis 

Dimensional analysis (DA) is originally used to find the relationship among the variables 

in a system based on the dimensions of these variables. One of the theories used in DA 

is the principle of dimensional homogeneity. Having an equation like 

𝑦 = ∑𝑦𝑖𝑥𝑖

𝑖

 (52) 

To be a physical relation, all the 𝑎𝑖𝑥𝑖 must have the same dimension as 𝑦 (Bhashkar & 

Nigam, 1990). As an example, the principle of dimensional homogeneity constraint the 

variables of both sides of the equation 𝐹 = 𝑚𝑎 to have the same dimensionality. There-

fore, the dimension of Force, 𝐹 must be the multiplication of the dimensions of Mass, 𝑚 

(𝑀) and Acceleration 𝑎 (𝐿 × 𝑇−2) and that is 𝑀 × 𝐿 × 𝑇−2. 

Π-theorem 

The other theory that is used in the dimensional analysis is the Π-theorem introduced by 

Vaschy-Buckingham (1914). If a physical system is described by a mathematical equa-

tion, it can be written as: 

𝐹(𝑄1, 𝑄2,… , 𝑄𝑛, 𝑟′, 𝑟′′, … ) = 𝑜. (53) 

In which 𝑄1, 𝑄2,… , 𝑄𝑛 are the variables of the system which are of 𝑛 distinct kinds and 

𝑟′, 𝑟′′, … are a set of ratios between the variables involved in the equation. The ratios can 

be for example the ratio between the variables describing the dimensions of a physical 

object, which can be fixed, e.g. in an equilateral triangle, or not. Now, if the ratios do not 
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change during the phenomenon described with the equation, and all the required system 

variables are considered in the equation, the equation is a complete representation of 

the relations among the variables of the system. Therefore, the equation is reduced to: 

𝐹(𝑄1, 𝑄2,… , 𝑄𝑛) = 𝑜. (54) 

Such an equation is called a complete equation and the coefficients of it are dimension-

less numbers. This means they are not dependent on the fundamental units which the 

variables 𝑄 are described with, but they are depending on some fixed iterations of 𝑄 

which characterize the system and differentiates it from other systems. 

As an example, to describe the area surrounded by a curved line with every point of it in 

a constant distance with one central point, e.g. the surface of a circle, this equation can 

be used: 

𝑆

𝑟2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (55) 

In which 𝑆 is the surface and 𝑟 is the distance between the curve line and the central 

point, e.g. radius of the circle. If the value of the constant is equal to approxi-

mately 3.1415, i.e. the 𝜋 number, the distance between the points of the curve line to a 

central point is constant, i.e. the shape of the curved line will be a circle. The constant 

will remain equal to 𝜋 as long as the shape is a circle and vice versa. 

Another example can be the relation between absolute temperature (𝜃), specific volume 

(𝑣), and pressure (𝑝) of a gas in a closed container.  

𝑝𝑣

𝜃
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (56) 

Here the constant is not dimensionless, and it depends on the units chosen for 𝑝, 𝜃 and 𝑣, 

even for a given gas. Further exploration in such systems shows that the equation can 

be written as: 

𝑝𝑣

𝑅𝜃
= 𝑁 (57) 

In which 𝑅 is a value that is fixed for any given gas with fixed 𝑝, 𝜃 and 𝑣, but changes 

with the type of gas. 𝑅 is a quantity that can be measured by a unit derived from the units 

of 𝑝, 𝜃 and 𝑣, and if we do so, 𝑁 will be a dimensionless constant and the equation is a 

complete equation. 
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Every complete equation with the form of equation (53) can be written in the form 

∏ = 𝑓(∏,∏,… ,∏)

𝑛210

 (58) 

In which 𝛱𝑖 are the dimensionless products. Moreover, a dimensionless number can be 

of the form 

𝜋𝑘 = 𝑦𝑖 . 𝑥𝑗

𝛼𝑖𝑗
. 𝑥𝑙

𝛼𝑖𝑙 . 𝑥𝑚
𝛼𝑖𝑚 (59) 

In which 𝑥𝑖 are the repeating variables, 𝑦𝑖 are the performance variables and 𝛼𝑖𝑗 is the 

exponents for the repeating variables.  

Bond graphs 

Bond graphs are used for providing a graphical description of the dynamic behaviour of 

a physical system (Broenink, 1999). As shown in Figure 13, the theory of bond graphs 

introduces 3 types of fundamental variables, overall system variables, Power variables 

and State variables. 

 

Figure 13. Fundamental variables and their interconnections in the bond 
graph context (Mokhtarian, Coatanéa, & Paris, 2017) 

The overall system variables including energy and efficiency rate in the block. The power 

variables can be in the form of effort or flow. As an example, an electrical voltage is an 

effort and an electrical current is a flow. As shown in Figure 13, inputs effort and flow will 

be transformed into outputs effort and flow, through the state variables and the mathe-

matical relationships between them. In state variables, displacement is the outcome of 

the integration of flow over time and the momentum is the result of the integration of 

effort over time. Coatanéa et al. (2016) added a third variable to the state variables called 

connecting variable, which describes the material, component-specific properties, geo-

metric dimensions, tolerances, etc.. The output power variables are generated from the 

differentiation of a combination of the state variables.  
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DACM 

DACM combined the principles in bond graphs and dimensional analysis to create a 

causal model of a system and then find the possible conflicts in it. The process starts 

with indicating the boundaries for the model. Then the functional model of the system is 

created. Next, variables of the system are assigned to the functional model. At this stage, 

applying DACM’s causal rules and colour patterns leads to a coloured causal graph be-

tween variables of the system. Using this causal graph and dimensional analysis, the 

governing equations of the system can be extracted. The causal graph and the 

behavioural equations can be used further for qualitative and quantitative simulations. 

 

Figure 14. DACM modelling approach (Mokhtarian, Coatanéa, Paris, Mbow, 
Pourroy, Marin, & Ellman, 2018) 

Figure 14 depicts the sequence of steps for creating a model and the theories that are 

integrated into the framework for each step. Steps in DACM 

1- Indicating the model’s objective and borders 

A model can address the phenomena in a system in any scope and any degree of gran-

ularity. Since models are created to address a problem within a system and not the whole 
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system, rationales and boundaries should be set at the beginning of the modelling pro-

cess. These borders are chosen based on the problem at hand and the expert’s 

knowledge. 

2- Functional modelling 

The overall functionality of the model is decomposed into a chain of functions that are in 

interaction with each other. Functions are boxes containing verbs of actions that are 

connected to each other in the sequence of occurrence. DACM uses the generic func-

tional model of bond graph theory for the causal ruled is bond graph is already validated 

and also it can take advantage of the analogy among the energy domains (Paynter & 

Briggs, 1961). Moreover, DACM uses the set of functional vocabulary introduced by Hirtz 

et al. (2002) to reduce the variability in modelling and use the systematic approach pro-

vided by them. Table 3 shows the mapping between functional vocabulary and generic 

functional blocks 

Table 3. Functional mapping for models transformation to generic functions blocks 
(Coatanéa et al., 2016) 

Possible name of functions to  

describe the organs 

 

Functional  

basis  

vocabulary 

Generic  

functional  

blocks 

To transform effort into flow or  

flow into effort   

To resist effort or flow 

To Magnitude To Magnitude  

(Resistor: R) 

 

To transform flow into displacement  

To store displacement  

To transform displacement into effort  

To provide effort 

To Magnitude 

To Provision 

 

To Provision  

(Capacitor: C) 

 

 

To transform effort into momentum  

To store momentum 

To transform momentum into flow 

To provide flow 

To Magnitude 

To Provision 

To Provision  

(Inertia: I) 

 

 

To transform input effort into output effort  

of another magnitude 

To transform input flow into the output flow  

of another magnitude  

To Signal 

To Magnitude 

To Convert 

To Convert  

(Transformer: TF)  

 

 

To transform input effort into the output 

flow  

of another magnitude  

To transform input flow into output effort  

into output effort of another magnitude 

To Convert To Convert  

(Gyrator: GY) 

 

 



64 

 

 

 

To connect the efforts of different magni-

tudes  

when flows are similar 

To connect the flow of different magnitudes  

when efforts are similar 

To Branch 

To Channel 

To Connect 

To Support 

To Connect  

(Flow Junction: JF) 

(Effort Junction: JE) 

 

 

To provide a constant effort  

To provide a constant flow 

To Provision To Provision  

(Source of Effort: 

SE) 

(Source of flow: SF) 

 

3- Assigning system variables to the functional structure 

After forming the functional model in step 2, a set of fundamental categories of variables 

used in bond graph theory is assigned to the functional model. Table 4 shows a list of 

these variables and their categories. State variables are allocated to the boxes of func-

tional model and power variables are allocated to the arrows.  

Table 4. The fundamental category of variables in bond graph theory (Mokhtarian, 
Coatanéa, Paris, Mbow, Pourroy, Marin, & Ellman, 2018) 

Primary Category of Variable Secondary Category of Variable  

 
Overall System variables 

Energy (En) 

Efficiency rate (η) 

 
Power Variables (P) 

Generalized Effort (E) 

Generalized Effort (F) 

 
State Variables 

Generalized Displacement (D) 

Generalized Momentum (M) 

Connecting Variables (C) 

 

4- Develop a causal ordering of variables 

In this step, the cause-effect relationships among the variables are defined in the form 

of a causal graph. Colour should be assigned to the variables placed in the functional 

model and their colours should be chosen as below: 

• The variables which are imposed on the system by the environment or decided 

to be fixed in the design process are called exogenous variables and coloured in 

black.  

• The variables which have some degree of freedom, do not depend on other var-

iables and can be chosen in the design process are called independent variables 

and coloured in green. 
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• The variables which are dependent on other variables and are hard to control are 

called dependent variables and they can be selected during the design process. 

• The last group are the Performance variables. These are the variables that de-

signers try to minimize, maximize or set a target value for them and are important 

to evaluate the overall performance of the system. These variables are coloured 

in red. 

Using the order of functions in the functional model the order of appearance of variables 

in it and the rules in bond graphs theory, the causal relationships between variables are 

extracted in the form of a causal graph. Mokhtarian et al. (2017)  developed an iterative 

algorithm, called causal ordering algorithm, to develop a causal graph from the functional 

model created in the last stem, in a systematic manner (Figure 15). 

 

 

Figure 15. Causal ordering algorithm (Mokhtarian et al., 2017) 

 

5- Construct the model’s behavioural equations 

Using the causal relationships in the previous step and the combination of rules in di-

mensional analysis and Π-theorem, the governing laws of the system can be generated. 

This process is also automated through the algorithm developed by Mokhtarian et al. 

(Mokhtarian et al., 2017).  
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3.4 Methodology in Additive manufacturing 

This section starts with providing a background on the methods used for modelling addi-

tive manufacturing systems, as an example of a complex system. Then the methodology 

developed for this study is described in section 3.4.2. 

3.4.1 Background 

Previous efforts for modelling additive manufacturing processes are focused on using 

microscopic finite element (FE) models. For example, Masoomi et al. (2017) modelled 

the thermal procedures including heat transfer and phase changes in a Laser PBF pro-

cess using a three dimensional FE analysis. In their study, they used the model to inves-

tigate the effect of thermal processes in microstructure characteristics of the manufac-

tured parts. For more examples of such studies, the interested reader can check (Chua, 

Lee, & Ahn, 2018; Ding, Pan, Cuiuri, & Li, 2014; Fu & Guo, 2014; Schoinochoritis, 

Chantzis, & Salonitis, 2017) 

Some researchers considered a mesoscopic scope for their models. They used the phys-

ics of melting pull formation and the flow of the melted materials and the process of 

solidification to predict the result of manufacturing. Moreover, they managed to simulate 

and predict the process behind microscopic defects such as splatter, pores and denuda-

tion in the manufacturing process. For example, Khairallah et al. (2016) created a fine-

scope model which assumes the metal powder is made of randomly distributed particles. 

They demonstrated the effect of Marangoni convection and recoil pressure on the 

formation of pores in AM of 316 stainless steel. 

The other approach is the experimental approach in which the conditions that result in 

specific controlled process characteristics are found through experiments (Ghouse et al., 

2017). The major challenge with this approach is that experiments are expensive and 

time-consuming. Moreover, additive manufacturing processes are not material-agnostic 

and machine-agnostic, meaning that changing the material or using the same material 

in another machine will lead to a new process which needs to be optimized again (Tapia, 

Khairallah, Matthews, King, & Elwany, 2018). 

Surrogate models are also utilized to optimize processes in additive manufacturing. Sur-

rogate models or response surface models are approximations of an exact model that 

are computationally efficient and can provide accurate enough results based on a few 

simulation results (Viana, Gogu, & Haftka, 2010). Tapia et al. (2018) developed a mod-

elling framework to create Gaussian process based surrogate models. In their study, 
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they used their framework to create surrogate models out of the physics-based models 

available in the literature for process planning in laser powder bed fusion AM. 

There have been studies to combine microscopic, macroscopic and mesoscopic models 

and use them to create holistic models. Mindt et al. (2017) proposed such a model for 

integrated computational materials engineering (ICME) use cases, in which a holistic 

model is used in order to predict the quality of the manufactured parts. 

3.4.2 DACM to Bayesian networks 

The method used in this study is an extension of the DACM framework. One of the out-

comes of the DACM framework is a causal model between the variables of the system. 

DACM also extracts the governing equations between variables in the system. Since the 

causal graph is a directed acyclic graph, it can be a starting point to create a Bayesian 

network model for the system.  

As mentioned before, the benefits of creating a Bayesian model are 1- expert’s 

knowledge can be included in model 2- it can include the uncertainties of the system in 

the model 3- the model can be used interactively for exploring the variables space 4- 

Bayesian inference makes it possible to understand the interaction between variables 5- 

the network can be used in diagnostic path to find out the reason for having a specific 

value in the output nodes 6- the network can be used in prognosis path to see the effect 

of any combination of input nodes on the output nodes 7- available Bayesian inference 

engines provide fast and efficient means to observe the result of changes in variables on 

the other variables. 

 

Figure 16. The workflow for creating a Bayesian network using DACM Frame-
work’s outputs 

As mentioned in section 3.1, a Bayesian network has two aspects. A DAG which is the 

qualitative relation between the variables. The other aspects are the quantitative value, 

which is the value for variables and the marginal and conditional probability tables related 

to each of them. The rest of this section describes a methodology for obtaining both 

aspects of a BN model using DACM framework. The workflow is as follows 

1- Creating and modifying the causal graph: 



68 

 

 

 

A causal graph is created to address the problem within the system using the DACM 

framework. The Causal graph is relating the DACM’s independent variables and exoge-

nous variables to the dependent variables and the performance variables. Figure 17 

shows a sample Causal graph created using the DACM Framework. 

 

Figure 17. Sample Causal Graph Created with DACM Framework 

 

This causal graph should be modified to be used as the DAG for a Bayesian network. 

The first change is to remove the exogenous variables from the causal graph. Nodes in 

a BN are discrete or continues random variables which can have a number of states or 

a continuous domain.  

Exogenous variables are constant values, which are used to describe the relationship 

between variables in governing equations. Since the nodes in a BN are random variables 

which are not constant, exogenous variables should be removed from the graph. The 

effect of these variables will not be eliminated in the system because they already exist 

in governing equations between variables. The resulting graph is shown in  Figure 18.  
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Figure 18. The network after removing Exogenous variables 

 

The second change is to add a set of intermediate nodes in graphs to avoid ending up 

with dependent nodes with too many inputs arcs. Having a node with multiple input arcs 

can lead to a huge CPT and make inference hard, if not impossible. For example, a node 

with four states and ten parents with three states each will have a CPT with 4 × 310 =

 236,196 states.  

There is a governing equation, or a Π-equation associated with each dependent node. 

For a dependent node with too many inputs from other nodes, the governing equation 

can be separated into smaller chunks and each chunk can be calculated in an interme-

diate node. Then the values calculated in the intermediate nodes can be used as inputs 

to that dependent node. In this way, not only the number of inputs is decreasing, but also 

the calculated values can be reused in other nodes if necessary. The sample graph will 

change to Figure 19 after adding two intermediate nodes for “Dependent variable 2”. 
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Figure 19. Sample graph after adding intermediate variables 

Using intermediate nodes has a downside as well. As these nodes are aggregating the 

information of their parent node, some information can be lost in the process. For exam-

ple, if an intermediate node has three parents and each of them has three states, the 

total number of states are 33  =  27. Now if the information from these 27 states is ag-

gregated in an intermediate node with three states which is representing the information 

of those 27 states, it is possible that a significant amount of data is lost in the process. 

In cases that the model needs to be very accurate, the intermediate nodes can be 

avoided. Also using more states for the intermediate node can reduce the information 

lost. 

2- Finding value ranges for independent variables and using AHP to obtain 

Marginal Probability tables for independent variables 

Independent variables can be either continuous or discrete. Regardless of the attribute, 

these variables have a specific domain of values. For examples in the case of manufac-

turing a bolt, its dimensions can vary from a few millimetres to a few centimetres. This 

range for variables can be extracted from the previous work in the literature, data sheets, 

standards, experts’ knowledge, etc. in the domain of each variable, some of the values 

are more likely to be used or are more suitable in certain situations. This augments a 

level of uncertainty to the choice of values for each variable in the system. This uncer-

tainty is modelled using a probability distribution over the domain of the variables. 

If the Bayesian model is going to work with discrete distributions (as in the case of this 

study), continuous variables should be discretized, i.e. their domain should be divided 

into a number of intervals. Although having a good resolution for the discretization is 
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important, the complexity of the model increases considerably with the number of inter-

vals (Cooper, 1990). A rule of thumb may be having a minimum of 3 and maximum of 10 

states, based on the context and the complexity of the network. 

To obtain the probability tables for independent variables in a BN, one can randomly 

choose some probability distribution, e.g. some random distribution, or use a method of 

probability assessment (Shadbolt & Smart, 2015). Using expert’s knowledge, it is possi-

ble to 1- include extra information about the domain in the model 2- help designers to 

make informed decisions in the early stage design phase and 3- reach to desired MAP 

distribution after updating the model with a fewer amount of data. 

In this study, AHP is used to collect expert’s knowledge for the independent variables. 

AHP tables are created to obtain the preference of an expert for each interval of each 

independent variable. For a variable with three intervals, the AHP table will be similar to 

Table 5. 

Table 5. AHP table for a variable with three intervals 

Independent variable A Interval 1 Interval 2 Interval 3 weights 

Interval 1 
1.0000       

Interval 2 
  1.0000     

Interval 3 
    1.0000   

  
MEV=       

  
C.I.=       

 

After creating all the tables needed, the tables alongside a description can be sent to the 

expert to be filled. The description instructs how to read the table and how to do the 

pairwise comparison. A sample of instruction document is available in Appendix A. after 

collecting the expert’s preferences, the mathematical machinery described in section 3.2 

is used to calculate a weight for each interval. These weights can be directly used as the 

probability of choosing an interval by an expert (Saaty & Vargas, 2012, sec. 21) (Saaty 

& Vargas, 1998).  

3- Setting constraints for the model 

In this step, avoid impossible combinations of values for independent variables some 

constraint should be added to the causal graph. For example, in an L-PBF system, the 
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amount of heat input energy, coming from a laser beam, cannot be more than the energy 

needed for melting the whole part. Therefore, there should be a constraint between the 

mass of the part being manufactured, and the amount of energy deployed for each layer. 

Also, a part cannot have any combination of dimensions, e.g. some exceedingly long 

and narrow beams may not have the tolerance for their own weight force after being 

manufactured. 

Constraints can be in multiple forms. Ratios are one of the forms for setting constraint, 

in which an upper and lower value for the ratio of two or more variables are considered. 

For example, for two variables 𝐴 and 𝐵, a threshold for their ratio can be chosen, 

namely 𝑟. Then the values within the range of 𝐴 and 𝐵 such that  
𝐴

𝐵
< 𝑟, should be omitted 

from the simulation running based on the model.  

The second set of constraint can occur when one variable is limiting another variable. 

For example assume variable 𝐴 has a domain (𝑎1, 𝑎2) and the variable 𝐵 has the do-

main (𝑏1, 𝑏2). Now imagine these two variables are the diameters of two pipe that should 

fit in each other, e.g. pipe B should fit in the pipe A. Then the constraint is that any value 

for the diameter of the pipe B should be smaller than the value for the diameter of the 

pipe A. 

The other type of constraints appears when a variable cannot exist without the existence 

of certain values for other variables. This happens in situations like when a function within 

the functional model of a system appears only when another function gets a certain 

value. For example, in a boiler’s output, the steam temperature is only valid when the of 

the boiler reaches the boiling point. 

The constraints can be deployed in the graph with if conditions. Figure 20 shows the 

model in Figure 19 after addition of some ratio constraints between variables “independ-

ent 3” and “independent 4”, and “independent 4” and “independent 2”. 
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Figure 20. The graph after adding ratio constraints 

 

The other kind of constraints which can be added are the ones that can refine the model 

based on the experts’ knowledge. For example, having a magnificent amount of support 

structures for a part with an overhanging shape will lead to a time-consuming support 

removal post processing and causes wasting the raw material. Therefore, the preference 

of manufacturers is to minimize the support structure while benefiting from it, so the pos-

sible curling defect remains in a tolerated range. This information can be obtained by 

consulting with experts’ and using AHP to quantify their knowledge and embed them into 

the graph. 

4- Creating conditional probability tables for the rest of the nodes using the 

sampling technique 

 

Since DACM provides the governing equations for dependent variables, a Monte Carlo 

like sampling technique is used to obtain probability tables for dependent variables 

(Niinimaki, 2015). Let’s calculate the CPT for the variable “dependent 5”. As shown in 

Figure 21, variable “dependent 5” has two parents, “Independent 1” and “independent 

5”. 
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Figure 21. Dependent 5 and its two parent nodes, independent 5 and inde-
pendent 1. 

Let’s assume the governing equations is: 

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 5 = 𝑓(𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 5, 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 5, 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 1) (60) 

Note that the variable “exogenous 5” which has been removed from the graph in step 1, 

shows up in the governing equation (60) again. The sampling technique starts with find-

ing the domain of dependent variables based on the domain of their parents and the 

governing equation. Using the maximum and minimum values in the domains of the in-

dependent variables and the governing equation, the domain of the dependent variable 

are calculated. Then this range is divided into several intervals which are called states, 

similar to step 2,. The process is shown in Figure 22. 

 

Figure 22. The process of finding the range of the dependent variable 
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The procedure continues with picking random sample values from the domain of each 

independent variable and calculating the corresponding value within the domain of de-

pendent variable. By repeating the sampling for several times, say thousands of times, 

several data point in the dependent variables is calculated tables as shown in Figure 23.  

 

Figure 23. Sampling method for finding probability distribution of dependent 
nodes 

 

The number of datapoints for each state of the dependent variables can be counted to 

form the conditional probability tables. A sample probability table for the variable “De-

pendent 5” is shown in Table 6. In this sample, each variable has 3 states, characterized 

with Low, Average and High attributes.  

Table 6. A sample CPT for variable Dependent 5. 

Independent 1 Independent 5 
Dependent 5 

Low Average High 

Low 

Low 34.8% 
  

Average    
High    

Average 

Low    
Average    
High    

High 

Low    
Average    
High    
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Suppose that 10000 samples are taken from each of the independent variables, and 

2000 of them are from the “Low” state of each independent variable. Then suppose after 

calculating the dependent variable for each set of samples, 768 of them happened to 

occur in the first interval of the dependent variable. Then the probability of happening for 

this interval, given the parent nodes are having value in their “Low” state is 
768

2000
= 34.8%. 

3.5 Methodology in Reliability Engineering 

Several groups of methods are available for prognosis and diagnosis in the area of prog-

nosis and health management (PHM), for instance, reliability model-based methods and 

anomaly detection methods for fault diagnostics and statistical methods, and survival 

analysis for failure prediction. 

In the rest of this section, first, a short review of the non-Bayesian and Bayesian methods 

for modelling faults and predicting failures in mechanical systems is provided. Then, the 

methods used in this study are briefly described.  

3.5.1 Background 

Fault diagnosis 

Leonhardt and Ayoubi (1997) suggest that a fault diagnostic system consists of two main 

steps, symptom extraction and diagnostic. Symptom extraction is the act of determining 

the symptoms of a failure, either using analytical symptom generation by computers or 

using the heuristics of an expert human operator. Diagnostics is described (ibid) as a 

binary measure which indicates a system is failed or not, hence it is a mapping from 

continuous symptom space into a discrete diagnosis space. To perform this mapping, or 

better said this interpretation, three general methodologies are available, classification 

methods, inference methods and combinations of these two like neuro-fuzzy systems. 

Classification methods, as described by Leonhardt & Ayoubi (1997), use reference pat-

terns for learning and interpret using methods such as statistics, neural networks, geo-

metric methods and fuzzy classifiers. One of the methods in this class is anomaly detec-

tion. Anomaly detection focuses on finding abnormal behaviour in time series data of the 

sensors (Salfner, Lenk, & Malek, 2010). Several statistics based and machine learning 

based methods have been developed for anomaly detection (Schwabacher, 2005). 

These methods are used both for diagnosing the reasons of anomalies (Lu, Li, Wu, & 

Yang, 2009) and for predicting the failure within a fixed period in future (Brotherton, 

Jahns, Jacobs, & Wroblewski, 2000). 
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The inference-based methods of diagnostics systems use linguistic rules for performing 

the interpretation. Among the such this class of diagnostics systems for diagnosing faults 

in industrial systems, fault tree analysis (FTA) (Patil, Waghmode, Chikali, & Mulla, 2009) 

and reliability block diagrams (RBD) (Čepin, 2011) are among the well-known methods. 

To bring an example, and extending it in the rest of the subsection, FTAs are described 

in more details as follows. 

FTA is a graphical tree based top-down method, which is used to represent the logic of 

the effect of faults and events in the components of a system on that system. The mod-

elling procedure starts with choosing one of the undesired states of a component as the 

root node, which is called the top event. Then using logical gates, e.g. AND, OR, XOR 

and the Voting gate, the causes for that state are added to the tree according to their 

logical relationship to the root node and the other nodes. The intermediate nodes are 

called cause events and the root nodes are called bottom event (Zhi-qiang Cai, Sun, Si, 

& Wang, 2010). FTAs can be used in early design stages to get a better understanding 

of the possible failure situations or it can be used in the operational stage of the system 

to diagnose the reason of failures in the system. Advantages of using FTAs include 

(Chelson, 1971):  

1- Its structure lead to better organization and a more precise analysis of failures  

2- It can be used as an event-oriented reliability model for a system. It is also pos-

sible to include probabilistic computations into it. 

3- It indicates the dependencies and independencies between variables in the reli-

ability model. 

One of the negative aspects of the FTA is being a failure-oriented modelling method, 

meaning it is checking for failures in the system instead of the success of the system. 

The other negative aspect is if the analysis is carried to a very detailed level of the sys-

tems, the number of variables can be overwhelming. Therefore, the recommendation is 

to use the FTA for critical systems and use other analysis methods for the other parts. 

A newer classification groups the fault diagnostics methods into three classes of model-

based, data-driven and signal processing-based approaches (B. Cai et al., 2017). In this 

classification, model-based methods try to create mathematical models for the industrial 

systems and use that for diagnosing the problems. Signal processing-based methods 

use detection theory-based tools to distinguish the roots of the fault by comparing the 
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signals with the signals from a healthy system. Data-driven methods use artificial intelli-

gence (AI) in general to perform the diagnosis. These methods are suitable for complex 

systems where the other methods cannot be easily used.  

Bayesian networks based methods for fault diagnosis 

Bayesian networks have gained significant attention in reliability engineering use cases 

due to their ability for modelling uncertainty since the 1990s (Langseth & Portinale, 

2007). There are three general methods to obtain a Bayesian network in reliability use 

cases, namely machine learning, using expert knowledge, or converting some other 

model into a Bayesian network. 

In cases that the expert’s knowledge is limited or hard to acquire but enough data about 

the system is in hand, using machine learning methods to generate models from the data 

is the method of choice.  Bacha et al. (2015) developed a structure and parameter learn-

ing algorithm along with a unique data acquisition system to receive to construct a Bayes-

ian network using real-time data for faults in an industrial direct current (DC) motor. Alt-

hough they have not used any mathematical modelling and their model is acquired using 

structure learning for Bayesian networks, the resulting model shows a high degree of 

accuracy. As another example, Yavuz et al. (2006) developed a structure learning algo-

rithm to generate Bayesian networks for fault diagnostics in aeroplanes. In their method, 

they developed an algorithm based on the particle swarm technique to obtain a Bayesian 

network model from data without using any expert knowledge of the domain. 

Using experts’ knowledge is the method of choice for creating Bayesian networks in re-

liability use cases (Langseth & Portinale, 2007).  As an example, Yontay (2016) has 

developed a method to analyse the reliability of systems in the early stage design in his 

doctoral dissertation. In his work, he developed a framework to incorporate different 

sources of expert’s knowledge to create reliability assessment models and combine the 

knowledge elicited from the experts into a single Bayesian network.  

From the group of methods that are transforming a model acquired from other disciplines 

into a Bayesian network, some example is using modelling frameworks like bond graphs 

and translating them into Bayesian networks (Lo, Wong, & Rad, 2003),  translating and 

extending FTA with Bayesian networks (Bobbio, Portinale, Minichino, & Ciancamerla, 

2001) or translating reliability block diagrams into Bayesian networks (Torres-Toledano 

& Sucar, 1998). To bring an example of the transformation process, a methodology for 

transforming an FTA into a fault predicting Bayesian network (FPBN) is described as 

follows. 
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fault predicting Bayesian networks (FPBN) are developed to integrate all the information 

regarding failure prediction and represent it with nodes and arcs in a Bayesian network 

(Zhiqiang Cai, Sun, Si, & Wang, 2009). Cai et al. (2009) described FPBN with a 

set {𝑋, 𝐴, 𝑃}. 𝑋 is the set of all variables, which are represented as nodes in the Bayesian 

network. 𝐴 is the set of the edges connecting the nodes to each other. 𝑃 is the set of 

conditional probability distributions of each node in 𝑋, given the parents of that node. 

The nodes in this model are further classified is three classes 𝑋 =  {𝑀, 𝐶, 𝐸}. 𝑀 is the set 

of failure modes, meaning the nodes that describe the actual state of the parts, acces-

sories or subsystems in a system. 𝐶 is the set of failure causes and is the real cause of 

a certain failure. The states of these nodes can be obtained by direct information, model 

inference, reliability calculation and experts’ estimation. Finally, 𝐸 is the set of failure 

detection nodes, i.e. is the visible states of the sensors or indicators, which can be 

changed based on the state of other failure modes or failure cause nodes. The values of 

all nodes are discreet, and they are normally chosen as true and false values. 

The direction of the arcs in FPBN has some considerations as well. Only failure cause 

nodes can affect the failure mode nodes. Moreover, both failure cause and failure mode 

nodes can affect failure detection nodes. On the other hand, it is difficult to assign cau-

sality between failure cause nodes and these relations can be learnt from the data. 

To create FPBN based on Fault Tree Analysis, Bobbio et al. (2001) and later on Zhi-

qiang et al. (2010) developed a method to translate Fault trees to FPBNs directly. To 

translate the structure, the top node can be considered as a failure mode node. The 

cause nodes and root nodes can be the set of cause mode node in the FPBN. To com-

plete the model, a set of detection information nodes can be added to the FPBN, which 

are equal to detection nodes. These nodes are representing the fault detection sensors 

and systems in the equipment. The direction of the arrows then is chosen based on the 

same logic used in FPBN. The arrow’s direction is from the cause nodes towards the 

failure mode node and failure detection nodes. 

The CPTs of failure cause can be determined with the same method described for 

FPBNs.  On the other hand, for the failure mode nodes and fail detection nodes, the 

logical relations can be used to obtain the CPTs. CPTs of a node 𝑋1 which is connected 

to other nodes {𝑋2, 𝑋3, 𝑋4, … } by an AND gate is calculated as follows 

𝑃(𝑋1|𝑋2,𝑋3,… , 𝑋𝑛) = {
1, (𝑋2 = 1, 𝑋3 = 1,… , 𝑋𝑛 = 1)

0, 𝑒𝑙𝑠𝑒
 (61) 

In addition, for the OR gate, the equation is 
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𝑃(𝑋1|𝑋2, 𝑋3,… , 𝑋𝑛) = {
0, (𝑋2 = 0, 𝑋3 = 0,… , 𝑋𝑛 = 0)

1 , 𝑒𝑙𝑠𝑒
 (62) 

The relation for the NOT gate is 

𝑃(𝑋1 = 1|𝑋2) = {
0, 𝑋2 = 1
1, 𝑋2 = 0

 (63) 

A voting gate is a decision gate, which will show 1 in the output if a specific number of 

its input is equal to 1. Therefore, the equation for calculating the CPTs for this gate is 

 𝑃(𝑋1 = 1|𝑋2,𝑋3,… , 𝑋𝑛) = {
1,∑𝐵(𝑋𝑖) ≥ 𝑘

𝑛

𝑗=2

0, 𝑒𝑙𝑠𝑒

  (64) 

Failure Prognostics 

Several statistical (parametric and nonparametric), data-driven, and model-based meth-

ods have been developed to predict the remaining lifetime of the equipment from the 

historical records of time to failure data. One of the methods is survival analysis which 

aims to perform such predictions. Methods in survival analysis discipline are in two 

groups, parametric and non-parametric. Parametric methods consist of estimation meth-

ods to find parameters for several classes of probability distributions, regression models, 

etc. Non-parametric methods consist of test methods and regression methods like Cox’s 

proportional hazard models (Miller et al., 1998).  

As mentioned before, survival analysis is a discipline which aims to predict the lifetime 

of alive creatures, machines, electrical equipment etc. As described by Miller et al. 

(1998), in general, the survival analysis is formulated as follows. Assume that 𝑇 is a 

random variable which represents the lifetime and has the density function of  𝑓(𝑡) and 

distribution function 𝐹(𝑡). The survival function of 𝑡 is defined as: 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑃{𝑇 > 𝑡} (65) 

Which formulates the chance of survival. The hazard function or hazard rate is defined 

as: 

𝜆(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡)
 (66) 

This function is interpreted as: 
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𝜆(𝑡). 𝑑𝑡 ≅ 𝑃{𝑡 < 𝑇 < 𝑡 + 𝑑𝑡 ┤|  𝑇 > 𝑡}

= 𝑃 {
𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡, 𝑡 + 𝑑𝑡)
 | 

𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 𝑝𝑎𝑠𝑡
𝑡𝑖𝑚𝑒 𝑡

}    
(67) 

The integral of the survival function over time is: 

∫ 𝜆(𝑢)𝑑𝑢
𝑡

0

= ∫
𝑓(𝑢)

1 − 𝐹(𝑢)
𝑑𝑢

𝑡

0

= − log(1 − 𝐹(𝑢))|
𝟎

𝒕
 =  − 𝑙𝑜𝑔 𝑆(𝑡) (68) 

Which after realignment leads to: 

𝑆(𝑡) = 𝑒− ∫ 𝜆(𝑢)𝑑𝑢
𝑡
0  (69) 

Which implies that the survival function of 𝑇 is an exponential function of the hazard 

rate’s integral over past time. 

As De Carlo and Arleo (2017) state, hazard function of equipment normally has the 

shape of a “bathtub” curve, meaning it has a descending part at the beginning, a hori-

zontal part at the middle and raising part at the end of lifetime of equipment. The de-

scending part showing decreasing failure rate (DFR) illustrating the fact that brand-new 

equipment suffers early failures due to potential manufacturing defects. The middle hor-

izontal part is called the constant failure rate (CFR) and shows the useful lifetime of the 

equipment. The last raise in the failure rate is called the increasing failure rate (IFR) 

which is due to the wear-out in the equipment’s end of useful life.  

Each of these sections can be modelled with a suitable probability distribution based on 

the specific failure rate in each equipment. The probability distributions mostly used in 

survival analysis are exponential distributions, gamma distributions, Weibull distribu-

tions, Rayleigh, lognormal, Pareto for the DFRs and CFRs and there are also specific 

distributions to cover IFRs (Miller et al., 1998). 

The parameters for these distributions to fit the survival curve can be estimated using 

maximum likelihood methods or linear combinations or order statistics. Linear and log-

linear models are also among the parametric methods for modelling the survival rate of 

a system (Miller et al., 1998). 

Several non-parametric methods have been also developed to predict the survival of the 

systems. Specific methods are available for the datasets with only one variable, which is 

relevant for the case of this study. One of the methods for single variable data is life 

tables in which the time domain is divided into intervals, normally equal distance, and 

then the information such as number of working equipment at the beginning of each 
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interval, number of failures during each interval, number of lost to follow-ups in each 

interval and number of withdrawal in each interval and the probability of surviving given 

being functional in each interval is recorded into a table called the life table. Then these 

data are used to estimate the mean and variance of the survival times using several 

algorithms with different degrees of accuracy (Miller et al., 1998). 

The other method for single variable data is called product-limit estimator of Kaplan-

Meier estimator (Kaplan & Meier, 1958). In Kaplan-Meier estimator, the intervals of the 

time domain are not equidistance and the survival probability are assumed to be inde-

pendent of the other survival probabilities. Therefore, the probability of survival in 

consecutive time intervals is calculated by multiplying the probability of survival in all the 

intervals up to that interval, i.e. 

𝑆(𝐼𝑡) = 𝑃{𝑇 > 𝐼𝑡} = 𝑃{𝑇 > 𝐼1}𝑃{𝑇 > 𝐼2|𝑇 > 𝐼1}…𝑃{𝑇 > 𝐼2|𝑇 > 𝐼1}

= 𝑃1. 𝑃2 …𝑃𝑘 

𝑃𝑖 =  𝑃{𝑇 > 𝐼𝑖 |𝑇 > 𝐼𝑖−1} 

(70) 

𝑆() is the survival rate in the interval 𝐼 and 𝑃 in the probability of survival in each interval 

given that the system is survived in the previous intervals. The estimates are drawn with 

respect to intervals in time in a step shaped curves called Kaplan-Meier curves (Rich et 

al., 2010). There are also other non-parametric types of estimators for single variable 

data such as hazard function estimators and robust estimators for mean and median etc. 

(Miller et al., 1998).  

In cases that the data for multiple interacting variables, covariates, are available, one of 

the most well-known non-parametric regression methods for estimation of survival times 

in Cox (1972) regression, which is an extension to the hazard model. Consider a group 

of independent covariates 𝑥 = 𝑥1, … 𝑥𝑛 where 𝑥𝑖 = 𝑥𝑖1, … 𝑥𝑖𝑛 . also consider that these 

covariates are associated with the survival time 𝑇𝑖 = 𝑇1 …𝑇𝑛 and censoring time 𝑐𝑖 =

𝑐1, … 𝑐𝑛. Cox’s proportional hazard model implies that hazard rate is the product of a 

scalar depending on a set of regression coefficients 𝛽 and a hazard function 𝜆0(𝑡), such 

that: 

𝜆(𝑡; 𝑥) = 𝑒𝛽′𝑥  𝜆0(𝑡) , 

𝛽 = (𝛽1, … 𝛽𝑝)
′
 

(71) 
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where both regression and hazard function are unknown. The term 𝑒𝛽′𝑥 can be replace 

by any positive function of 𝛽′𝑥. Then it is proved that the hazard function forms a family 

of distributions in this form: 

𝑆(𝑡; 𝑥) = exp {−∫ 𝜆0(𝑢)𝑑𝑢
𝑡

0

}𝑒
𝛽′𝑥

 (72) 

Then to find the parameters of this distribution, Cox suggests a conditional likelihood 

which calculates the likelihood only for the equipment that their failure times are not cen-

sored. Using this, and maximum likelihood method, the parameters of this distribution 

can be calculated.  

In this model, 𝜆0(𝑡) is also called the base line hazard function. The coefficients represent 

the effect of each covariate on the hazard function. A negative coefficient decreases the 

hazard function and a positive coefficient increases the hazard function. One drawback 

of the model is that the effect of different covariates is assumed to be constant over the 

time. For more detailed information please consult Cox (1972) and Miller et al. (1998). 

Bayesian networks-based methods for failure prognosis 

Most of the alternatives for survival analysis are not able to predict the time to event 

values and instead they predict the occurrence of events in the systems (Štajduhar, 

Dalbelo-Bašić, & Bogunović, 2009). One of the best alternatives to survival analysis for 

predicting failures is the Bayesian networks-based methods. Creating prediction models 

for failures in a system using Bayesian networks helps in many ways. First, it gives a 

qualitative insight about what can be changed to improve the lifetime of a system. It also 

provides the means to predict the failures in similar equipment and perform preventative 

and predictive maintenance to improve the reliability and availability of the system. More-

over, It can depict the interconnection between covariates in a sophisticated manner and 

it represents the knowledge in the system very well (Langseth, 1998).  

Like Bayesian networks based methods for diagnostics, there are several methods to 

obtain a Bayesian network in the context of failure prognosis, namely translating other 

models into a Bayesian network, creating a Bayesian network for fault prognosis from 

the scratch using expert’s knowledge, or machine learning.  

Weber et al. (2001) developed a method to use structured analysis and design technique 

(SADT) (Ross, 1977) to develop failure models based on failure mode, effects, and crit-

icality analysis (FMECA) (USA Department Of Defense, 1980) using functional modelling 
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approaches and then representing them in the form  of a Bayesian network for fault pre-

diction. They used the functioning and malfunctioning studies at the design phase to form 

the structure of the BN and obtained the probability tables using FMECA. 

In the case of using expert’s knowledge to form a network from the scratch, Medjaher et 

al. (2009) used the expert’s knowledge and domain knowledge to form the structure of a 

Dynamic BN and then obtained the parameters of the network using FMECA. Another 

good work in this area is the study by Bartram and Mahadevan (2013) in which they used 

the expert’s knowledge and published reliability data to determine the structure and pa-

rameters of a dynamic Bayesian network. Then they used the DBN to perform diagnosis 

on the system via particle filtering. They also predicted the remaining useful life of the 

system using the DBN and Monte Carlo sampling. 

BN structure learning using machine learning 

Langseth (1998) used machine learning to develop a Bayesian network model for anal-

ysis of survival times of mechanical equipment. A portion of a dataset called “Offshore 

Reliability DAta” (OREDA) containing the failure data of 29 equipment and 2921 failure 

times and 300 censored survival times have been used. Each failure time contains 10 

attributes describing the inventory, one describing the severity of the failure and on hold 

the time to failure. The dataset is divided into two subsets, a training set which includes 

all the censored data and 70% of the rest of the data, and the test set. The network 

obtained from the data is used for both qualitative analysis and quantitative analysis. In 

the qualitative analysis the effect of covariates on the response variables, i.e. “time to 

fail” and to “severity class”, has been investigated. The quantitative analysis was to use 

the model to predict survival times. The predicted survival times were validated against 

a test dataset and the result of a Cox regression analysis. The qualitative part does not 

show a significant improvement from the regression model, but the qualitative aspect 

provides a sophisticated representation power for the characteristics of the system. 

One of the key issues while using machine learning for obtaining BN is the issue of cen-

sored values. Most of the studies which tried to create models for prognosis use cases 

tried to predict the occurrence of an invent, not the time to event values. Therefore, most 

of the method used for handling censored data for structure learning in BNs are focusing 

on whether counting a period with no events are an event-free period or not. For 

example, Langseth (1998) handles the censored data by using all of them in the training 

set as an event-free period.  

Some researchers only considered the data point which has been observed to a certain 

minimum amount of time. The rest of the datapoint is not used for the model learning 
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process. This approach can create a large amount of bias in the datasets which have a 

large number of censored values (Delen, Walker, & Kadam, 2005).  

The other approach is to separate the censored times into two groups. One group is 

labelled as event-free if the censored times are not bigger than a 𝑇∗ value. The rest of 

the censored times are doubled and used in both event free and event-occurred out-

comes and a probability for each of them is assigned based on Kalan-Meier method 

(Jahanbani Fard, 2015). Štajduhar and Dalbelo-Bašic´(2010) used this approach and 

extended it with a weighting method for handling censored data and developed a ma-

chine learning algorithm for learning Bayesian networks’ structure and parameters from 

the data. 

For cases where the time to failure is important, one approach can be to neglect the 

occurrence with censored failure times. If the data is not heavily censored, i.e. the 

amount of censored data is about 10% of data points, this approach will not affect the 

process of learning significantly (Štajduhar et al., 2009).  

A methodology to create a prognosis system. 

Letot et al. (2017) described the classic methodology to create an adaptive model to 

predict the failures in brand new equipment. This four-stage methodology corresponds 

to four different maintenance policies and depicts the relations between the policies and 

the level of knowledge about the reliability and degradation of the equipment.  

The first stage is to run the equipment until it fails. Then corrective maintenance (CM) is 

being performed to restore the equipment to them as good as new condition. The initial 

failure times are also obtained from the equipment. In the second stage, based on the 

failure data acquired in the first stage, parametric models can be created for the failure 

times and preventative maintenances can be performed on the equipment. 

In the third stage, the degradation in the components of the system can be monitored 

and based on this monitoring data, condition-based maintenance models can be created. 

The variables to be monitored can be detected using experiments, sensitivity analysis 

and the return of experience. The quality of the monitored values should be tuned to be 

suitable for creating the model. The model can be designed based on threshold values 

for the monitored variables, which surpassing them should lead to performing 

preventative maintenance. 

And finally, predictive models for degradation and adaptive maintenance models can be 

obtained based on the historical data of degradation in the components. The process of 

choosing the suitable model for degradation is complex, and normally goodness of fit 
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criterion is used as a guide. After the model is created, the current degradation in com-

ponents can be inspected and baes on this information, the optimized time for the next 

preventative maintenance, or even the optimal time for preventative replacement of a 

component can be predicted. 

Handling censored data and missing values 

Having censored data is the challenge in most of the real world data sets for reliability 

engineering related tasks. The general approach for handling censored values is 

modeling it with a probability distribution and using the maximum likelihood method for 

estimating the parameters (Millard, Neerchal, & Dixon, 2012). For the values which are 

missed to record in the dataset, based on the nature of missingness, different methods 

can be used. The description of the types of missingness and the methods can be seen 

in section 3.1.7. 

3.5.2 The methodology for this study 

This study tries to investigate the possibility of using Bayesian networks for modeling 

failures in the industrial domain. The dataset used in this study is a single variable da-

taset of time to failure for industrial pumps.  

Failures in industrial pumps, in case the available data is only for time to failure, are 

traditionally modeled with homogenous or non-homogenous counting processes 

(Dudenhoeffer, 1994). A process {𝑁(𝑡), 𝑡 ≥ 0} is a counting process if: 

1. 𝑁(𝑡) ≥ 0, 

2. 𝑁(𝑇) is an integer 

3. If 𝑖 < 𝑗, then 𝑁(𝑖) < 𝑁(𝑗) 

4. For 𝑖 < 𝑗, 𝑁(𝑗) − 𝑁(𝑖) is the number of events occurring in the interval (𝐼, 𝑗) 

In case of having a constant failure rate, it is possible to model the failures in a pump 

with a homogenous Poisson process. A counting process {𝑁(𝑡), 𝑡 ≥ 0} is a homogenous 

Poisson process if with a rate 𝜆 > 0, 

1. 𝑁(0) = 0 

2. The number of events occurring in disjoint time intervals is independent. This 

attribute is also stated as independent increments 

3. The number of events in any interval of length 𝑡 =  𝑡𝑗 − 𝑡𝑖  is Poisson distributed 

with mean 𝜆𝑡: 
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𝑃[𝑁(𝑡𝑗) −  𝑁(𝑡𝑖) = 𝑛] =  𝑒−𝜆(𝑡𝑗− 𝑡𝑖)
(𝜆(𝑡𝑗 − 𝑡𝑖))

𝑛

𝑛!
 

𝑡𝑗 < 𝑡𝑖  , 𝑛 = 0,1, … 

(73) 

Moreover, the conditional probability that the system will survive until time 𝑡𝑗 given that it 

is operating at the time 𝑡𝑖 is 

𝑅(𝑡𝑖 , 𝑡𝑗) = 𝑒−𝜆(𝑡𝑗− 𝑡𝑖) 

𝑡𝑗 < 𝑡𝑖 
(74) 

A non-homogenous Poisson process is similar to the homogenous Poisson process, but 

the occurrence function is a function of the age of the system, i.e., 𝜆 =  𝑓(𝑡). Normally 

pump failure data indicate that the rate of failures increases with the age of the pump. 

Methods of this study 

Bayesian networks are generally used to model the interaction between several varia-

bles. In this study, the data consists of consecutive failure times of several similar pumps. 

Usually, the maintenance policy for these pumps is corrective maintenance, and the 

quality of maintenance is close to perfect. Therefore, normally it is confidently assumed 

that the consecutive failure times are independent of each other.  

As mentioned before, the time to failure of a system is not only depending on time, but 

the environment of operation and the usage pattern is effective on the failure times of 

the equipment. Therefore, the assumption of having independent consecutive time to 

failures (TTF) can be doubted, because the usage and environment conditions will not 

change after corrective maintenance on equipment. 

Some of the TTF times in the dataset are censored because the observation of pump 

failures is stopped at a certain time and the TTFs after that time is not recorded. Since 

these unobserved times are censored failure times (CF), therefore there might be a 

relationship between their duration and the recorded failure times 

To investigate the effects of these condition on the failure times, this study attempts to 

create Bayesian network models from TTF and CF data while relaxing the assumption 

of independence of TTF distributions. A Bayesian learning algorithm is used to find a 

dependence relationship between consecutive TTFs and CFs, i.e., a causal graph which 

shows a causal relationship between consecutive failures and CFs. The Bayesian learn-

ing algorithm finds the relations between the variables using an association metric. 

These algorithms are described in section 3.1.5.  
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The methods used for this case study is mostly described along with the implementation 

in section 4.2, and a summary is only provided here. To create the model, first, the da-

taset should be modified. The single variable TTF dataset, which is representing the 

consecutive TTFs for multiple pumps, is reorganized to separate TTF variables, i.e. time 

to first failure, time to second failure and so on. This is possible because the pumps are 

made by the same manufacturer and with same mechanical design. The instance of 

different pumps can be considered as a unit pump. Having multiple instances for each 

TTF, a distribution for each of them becomes available. Moreover, the censored TTF 

times are grouped into separate CFs based on the TTF they are related to. 

The algorithms for structural learning and inference used in this study are designed for 

discrete variables. The time to failure data are continuous variables. Therefore they 

should be discretized. The methods for discretization are discussed in section 3.1.10. 

Since the genetic algorithm based method is the optimal method, it is used for discreti-

zation.  

Then for learning the structure of the Bayesian network, the EQ algorithm is used. The 

EQ algorithm is described in section 3.1.5. The threshold for the minimum association 

metrics is set in a low value, so even a small dependency is considered between the 

variables of the system. The metrics of associations used in EQ is described in section 

3.1.5 and the metrics are described in section 3.1.2. 

To select the network, contingency table fit used as the metric. Based on the minimum 

value of acceptable structural coefficient chosen for the structural learning algorithm, the 

resulting network may be ranging between a fully connected network to completely un-

connected network. As described in section 3.1.6, if the acceptable structural coefficient 

is low, the final network will be close to a fully connected network and vice versa. The 

detailed description of the process of creating the model is described in section 4.2. 
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4. IMPLEMENTATION AND RESULTS 

This section is describing the process of implementing the methods described in section 

3 on the case study problems. Section 4.1 is providing the detail for the additive manu-

facturing case study, and section 4.2 is dedicated to the reliability engineering case 

study. 

4.1 Additive manufacturing case study 

The methodology described in section 3.4 is used to tackle one of the common defects 

in PBF additive manufacturing of cantilever shaped parts, namely the curing defect, 

which is described in section 2.2.2. In the case study, a model for the curling defect 

problem in an L shaped part is created. The model aims to relate the choice design and 

manufacturing parameters to the performance variables in a conceptual design phase.  

4.1.1 The causal model for curling defect 

As described in section 2.2.2, the overhanging parts’ manufacturing process may result 

in a curling defect in them. This defect is happening due to thermal constraints on the 

part in each layer due to magnificent increase in temperature because of the amount of 

energy input in each layer and fast rate of cooling down due to the high thermal flow of 

metallic parts (Tounsi & Vignat, 2017).  

Mokhtarian et al. (2018) developed a DACM model for this kind of defect. This study 

uses their model as the starting point and then try to modify the graph to correct some 

deficiencies. Then using the method described in section 3.4, the graph is translated to 

a Bayesian network. A brief description of the step by step procedure of creating the 

causal graph is as follows. 

At the first stage, DACM oversees the problem from the functional perspective and at-

tempts to develop a functional model describing the occurrence of the curling defect in 

the process. The model aims to describe this phenomenon using a simple cantilever 

deflection model without complicating the problem by going too much into detail. The 

functional model, shown in Figure 24, is divided into three domains. These three domains 

are 1- cyclic functions of the AM process, 2- useful functions of the support structure and 

3- non-desired functions. Then the behavioral laws are collected from the literature and 
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not created using the DACM algorithms. However, having a functional model, behavioral 

laws are used as a basis to generate the causal graph.  

 

Figure 24. The functional model for the cantilever part manufactured with curl-
ing defect, updated from Mokhtarian et al. (2018) 

The functional model of the support structure includes two functionalities of the supports. 

The function ‘to dissipate’ heat energy is used to define by the conduction variables, and 

the function ‘to increase inertia’ contains the variables defining the supports geometry 

and material density (Mokhtarian, Coatanéa, Paris, Mbow, Pourroy, Marin, Vihinen, et 

al., 2018).  

Two changes are made to the model developed by Mokhtarian et al. (2018) in this study 

to improve it. First, the heat dissipation due to convection had changed to heat dissipa-

tion through conduction, for conduction seems to be more relevant due to the nature of 

materials in the system. Convections needs a fluid or gas medium to happen and as in 

this system, metal powder cannot act like any of them. On the other hand, the high ther-

mal conductivity of metal powder can be a good means for heat dissipation.  

The other change is in the inertia calculations. The original model, the effect of the inertia 

created by supports where neglected. The original inertia is formulated as the Eq. (80) 
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and to consider the effect of the supports on the total inertia, the Eq. (81) should be 

added to it. 

The non-desired functions of the supports are related to the generation of a thermal con-

straint, which leads to creating the bending moment, and the function ‘to resist’, which 

acts against the deflection. Table 7 represents the variables with their associated dimen-

sions. 

Table 7. Variables for the DACM model of Curling defect 

Variables Symbol Dimension 

Heat Energy input 
q ML-2T-2 

Coefficient of conduction 
k MT-3t-1 

The temperature difference be-

tween layers 
ΔT t 

The surface of Heat Exchange 
S L2 

Number of supports 
n -- 

Thickness of supports 
t L 

Material Density 
ρ ML-3 

The total mass of the supports 
Ms M 

The width of the supports 
w L 

The height of the supports 
H L 

Length of the part 
L L 

Thermal constraint 
σ ML-1T-2 

Thermal expansion 
α t-1 

Elasticity Modulus 
E ML-1T-2 

Moment of Inertia 
IGZ L4 

Moment induced by thermal con-

straint 
M ML2T-2 
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Curling defect 
δ L 

The thickness of the beam  
b L 

Length of the base 
c L 

 

The models provided by DACM Framework include a causal graph and behavioral equa-

tions between variables. The governing equations described in Pi number forms are: 

𝜋𝛥𝑇 = 𝛥𝑇. 𝑘. 𝑆. 𝑞−1. 𝐻−1 (75) 

The formula for 𝛥𝑇 is different from the original formula from Mokhtarian et al.’s paper 

(2018). In the original paper, the heat dissipation is through heat convection, but in this 

study, it is changed to heat conduction since it seems more reasonable, as mentioned 

before. Alongside with the change to heat dissipation, the surface of heat exchange is 

also changed. In the initial model, it was the vertical surfaces of the supports, because 

the heat was supposed to be absorbed by the powder around supports. In this study, the 

surface changed to the vertical cross section of supports and the base, because the heat 

assumed to be absorbed by the base plate of the machine. The rest of governing equa-

tions are as follows. 

𝜋𝑀𝑠
= 𝑀𝑠 . 𝐻

−1.  𝑆−1 . 𝜌−1 (76) 

𝜋𝜎 = 𝜎.  𝐸−1. 𝛼−1. 𝛥𝑇−1 (77) 

𝜋𝑀 = 2.𝑀. 𝜎−1. 𝑤−1 . 𝑏−2 (78) 

Since the formula for the thermal constraint is only used for calculating moment induced 

by thermal constraint, the thermal constraint formula is embedded into the moment in-

duced by thermal constraint formula. Then the formula will change to equation (79). 

 

𝜋𝑀 = 2.𝑀. 𝐸−1. 𝛼−1 . 𝛥𝑇−1. 𝑤𝑝−1. 𝑏−2 (79) 

𝐼𝐺𝑍𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟
=

(𝐻 + 𝑏)3. 𝑤

12
 

(80) 
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𝐼𝐺𝑍𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠
=

𝑡.𝐻

12
(𝑡2 + 𝐻2) + 𝑡. 𝐻 ((

3

2
. (𝑛 + 1). (𝐿 − 𝑐) + (𝑛. 𝑐))

2

+ (
𝐻

2
+ 𝑏)

2

) 
(81) 

𝐼𝐺𝑍 = 𝐼𝐺𝑍𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟
+ 𝐼𝐺𝑍𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠

 (82) 

𝜋𝛿 = 𝛿. 𝐸. 𝐼𝐺𝑧 . 𝑀
−1. 𝐿−2 (83) 

The values for Pi numbers of this study are equal to one. Formulas are arranged to 

calculate the variable the Pi number is made for. Using the governing equations and the 

functional model the causal graph between the variables of the system can be produced. 

The causal graph is demonstrated in Figure 25. 

 

Figure 25. The causal graph obtained from the functional model and the gov-
erning equation Mokhtarian et al. (2018) 

An ideal objective of the current case study is to minimize the curling defect (δ) while 

minimizing the total mass of the support structure (Ms). The causal graph produced by 

DACM method needs some modifications before it can be used as a Bayesian network, 

as mentioned in section 3.4.2.  
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4.1.2 Translating the causal graph to a Bayesian network.  

The causal graph in Figure 25 and the governing equations (75)-(83) are then used as a 

basis to establish a probabilistic model; a Bayesian Network model. Model is reformed 

into Figure 26 for better visibility. 

 

Figure 26. The causal graph produced by DACM Framework for curling defect 
in PBF 

The process of transformation, as described in section 4.1.2, consists of four steps 

shown in Figure 27. 

 

Figure 27. The workflow for creating a Bayesian network using DACM as de-
scribed in section 4.1.2 

 

In the first step of transforming the causal model into a Bayesian network, the exogenous 

variables are removed from the graph. Moreover, the number of input arcs to the node 

Moment of inertia is too many, so an intermediate node called “moment of inertia of sup-

ports” is created as an intermediate variable. The values of the intermediate variable are 

then added to the node “moment of inertia”. The resulting graph is shown in Figure 28. 
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Figure 28. The graph after removing exogenous variables and adding inter-
mediate variable “Moment of inertia of supports”. 

The second modeling step requires to find valid ranges for the independent variables 

and dividing ranges into intervals. The ranges have been extracted from the case studies 

used in the literature or the manuals of the machines and datasheets for the materials 

used in the process. In this study, Titanium alloy Ti6AL4V powder is used for manufac-

turing the parts. The values for dimensions are coming from Tounsi, and Vignat’s study 

(2017) and the values for the exogenous variables are coming from Yan and Yu (2015) 

and are shown in Table 8. 

Table 8. The values for the exogenous value and independent variables 

Variables 

Interval Descrip-

tion Values and Ranges 

Sym-

bol  Base Units 

Modulus 

of Elasticity 

Fixed Values for 

Titanium Ti-6AI-4V 

Alloy 

113.8 × 109  𝐸  𝑔.𝑚𝑚−1. 𝑠2  

Coefficient 

of Conduction 
7.1 × 106  𝐾  𝑔.𝑚𝑚. 𝑘−1 . 𝑠−3 

Thermal  

Expansion 

8.7 × 106  

(AZOM, 2018) 𝛼  𝐾−1  

Density 

4.43 × 10−3 (AZOM, 

2018) 𝜌   𝑔.𝑚𝑚−3 
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It also requires integrating expert’s preferences for choosing the intervals for an ideal 

design and manufacturing condition. Note that the independent variables in the model 

are the ones that can be modified conveniently to change the performance variables. As 

mentioned in section 4.1.2, the expert’s preferences at this stage are captured using the 

Heat Energy  

Input 

Low 

Average 

High 

100-150  

150-250  

 250-400 (Sheldon, 2015) 𝑞  g ⋅ mm2 ⋅ s−2 

Thickness  

of supports 

Low 

Average 

High 

0.1-0.3  

0.3-0.6  

0.6-1  𝑡  𝑚𝑚  

Height  

of the part 

Low 

Average 

High 

1-3  

3-6  

6-12 𝐻  𝑚𝑚 

Length  

of the base 

Low 

Average 

High 

1-4  

 4-7  

7-10 𝑐 𝑚𝑚 

Length of the 

straight part 

Low 

Average 

High 

5-15 

15-25  

25-40 𝐿  𝑚𝑚  

The thickness 

of the straight 

part 

Low 

Average 

High 

1-2  

2-4  

4-6 𝑏  𝑚𝑚  

The width of 

the part 

Low 

Average 

High 

1-3  

3-6  

 6-12 𝑤𝑝  𝑚𝑚  

The width of 

the supports 

Low 

Average 

High 

0.3-4.2 

4.2-8.1 

8.1-12 𝑤  𝑚𝑚  

Number of 

Supports 
4 levels 1-5, 5-10, 10-15, 15-20 𝑛  number 
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Analytical Hierarchy Process (AHP) method. The experts’ knowledge is collected 

through AHP tables. The tables have been sent to experts along with a description on 

how to form AHP questions and how to fill tables. For instance, the experts are asked 

about their preference for choosing an interval with higher values over an interval with 

average values to reduce the curling defect. Experts are answering based on their 

knowledge on the domain and their experience. A sample of the documents sent to ex-

perts is presented in Appendix A. 

After experts’ preferences collected, a Python script is used to calculate the weights and 

consistency indexes. The python code is accessible at (Hamedi, 2018). For example, the 

resulting table for calculating the thickness of supports is shown in Table 9. 

Table 9. The weights calculated for the variable thickness of the support 
 using AHP and experts’ knowledge. 

Thickness of sup-

ports 

High  

(0.1-0.3mm) 

Medium  

(0.3-0.6mm) 

Low  

(0.6-1mm) weights 

High (0.1-0.3mm) 1.0000 0.2500 0.1429 0.0786 

Medium (0.3-0.6mm)   1.0000 0.3333 0.2628 

Low (0.6-1mm)     1.0000 0.6586 

  MEV=     3.0324 

  C.I.=     0.0162 

 

Completed AHP tables for all of the independent variables and calculated weights and 

consistency indexes are available in Appendix B. 

In the third step, the constraints of the system should be added to the model. For this 

model, two types of constraints are used. Dimensional aspects of the part should have 

some limitation relative to each other. For example, imagine a part with a small thickness 

of the beam and small width and an exceedingly long length of the beam. Manufacturing 

such a shape for an L shape cantilever is normally not desirable. Moreover, for parts with 

such geometric aspects, the curling defect will be magnificent due to the small surface 

for heat conduction, and the curling defect can be cumulated in the length of the beam. 

For solving the curling defect for the part with such dimensionality, a good option is 

changing the position of the part so that the beam stands vertically. 
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To set the constraints for dimensional variables, a ratio between the length of the straight 

part and the other dimensional variables is considered. To prevent dimensional values 

to get exceedingly large or too small relative to each other, the ratio values between them 

should be bound from both sides.  

The other type of constraint aims to limit the surface of the supports. The sum of cross-

section surfaces of the supports cannot exceed the lower surface of the beam. Moreover, 

to make it easier to remove the supports, the thickness and the number of supports must 

be way smaller than the lower surface of the beam. The value chosen for the ratios is 

obtained through consulting with the experts. Table 10 shows the variable ratios chosen 

and the values for the ratios. 

Table 10. Ratio values for dimensional constraints 

Ratio name Variables Values 

Beam’s Thickness Ratio 𝑐1 =
𝑏

𝐿
  

1

10
≤ 𝑐1 ≤

2

10
  

Part’s Width Ratio 𝑐2 =
𝑤𝑝

𝐿
  

1

6
≤ 𝑐2 ≤

1

2
  

Base Length Ratio 𝑐3 =
𝑐

𝐿
  

1

4
≤ 𝑐3 ≤

1

2
  

Part’s Height Ratio 𝑐4 =
𝐻

𝐿
  

1

3
≤ 𝑐4 ≤ 1  

The thickness of supports 

Ratio 

𝑐5 =
𝑛.𝑡

𝐿
  

25

10000
≤ 𝑐1 ≤

1

2
  

 

Moreover, the heat input to the system should be proportional to the amount of material 

in the system. For example, if the amount of heat is way more than the heat needed for 

melting a part with a certain mass, the whole material in the system will melt, and the 

process cannot be continued. Therefore, a constraint between the amount of energy and 

the mass of the part should be considered. This constraint can be set as a function of 

the mass of the part.  

For the nodes like the number of supports and the width of the support, constraints are 

set to refine the model and include experts’ knowledge. There are some disadvantages 

with using a higher number of supports, including increasing manufacturing time, the 

difficulty of removing the supports and waste of material in the support structures. Hence, 
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the number of supports should be limited. The width of the supports can also be chosen 

based on the width of the part. Therefore, the experts’ preference had been elicited for 

the intervals of these variables using AHP tables. The AHP tables are available in Ap-

pendix B. After adding all these constraints; the final graph is shown in Figure 29. 

 

Figure 29. The final Bayesian network structure for the curling defect case 
study 

Note that the independent nodes such as “number of supports” and “width of the sup-

ports”, the color was chosen in the graph is green instead of blue, although they are 

shown as dependent variables in the graph. That is because although they are not inde-

pendent, it is still possible to change their values directly. 

In the fourth and the last step, the ranges and intervals for the dependent variables and 

performance variables should be calculated as described in section 3.4.2. The process 

starts with calculating the range for dependent variables. For example, for the node “Heat 

Exchange surface of base”, first the domain should be calculated, based on the ranges 

of the variables it depends on, i.e., “Width of the part” and “Length of the base”. The 

equation for calculating the surface is 𝑆𝑏𝑎𝑠𝑒 = 𝑤𝑝 × 𝑐 and therefore, the calculated do-

main for the surface of heat exchange is 1 × 1 = 1 and 12 × 10 = 120. This domain is 

then divided into three intervals, Low (1-15), Average (15-30) and High (30-120). The 

complete table for the domains and the intervals for all the independent and performance 

variables is shown in the Table 10. 
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Table 11. Independent variable, their values, and formulas 

Variables 

Intervals  

Description Values and Ranges Formula/Symbol  Units 

Heat Ex-

change  

surface of the 

base 

Low 

Average 

High 

1 − 15 

15 − 30  

30 − 120 
𝑆𝑏  =  𝑤. 𝑐 𝑚𝑚2 

Heat Ex-

change  

surface of 

supports 

Low 

Average 

High 

0.03 − 10 

10 − 20 

20 − 240 
𝑆𝑠  =  𝑤. 𝑡. 𝑛 𝑚𝑚2 

Mass of the 

part 

Low 

Average 

High 

1.83 − 400 

400 − 1000  

1000 − 7200 

𝑀𝑝  

=  𝑏. 𝐿. 𝑤 +  𝑐. 𝐻.𝑤

+  𝑛. 𝑡 . 𝐻. 𝑤 𝑔 

Temperature  

difference be-

tween layers 

Low 

Average 

High 

Very High 

9.124 − 500 

500 − 1000 

1000 − 2000 

2000 − 65637 

𝛥𝑇 =  
106 . 𝑞. 𝐻

𝑆. 𝑘
  𝐾 

Moment of in-

ertia of the 

supports 

Low 

Average 

High 

Very High 

17.33 − 10000 

10000 − 20000 

20000 − 50000 

50000 − 15734173 
Equation (81)  𝑔.𝑚𝑚2 

Moment of In-

ertia 

Low 

Average 

High 

0.66 − 20 

20 − 200 

200 − 5832 

𝐼𝑔𝑧  =
𝑤𝑝. (𝐻 + 𝑏)3

12
 𝑔.𝑚𝑚2 

Moment in-

duced by ther-

mal constraint 

Very low 

Low 

Average 

High 

Very High 

1.937 × 1010 − 3 × 1010  

3 × 1010 − 5 × 1011 

5 × 1011 − 8 × 1012 

8 × 1012 − 1013  

1013 − 1.404 × 1017 

𝑀 

=
1

2
. 𝐸. 𝛼. 𝛥𝑇.𝑤𝑝. 𝑏2 𝑔.𝑚𝑚2. 𝑠−2 

Total mass of 

the supports 

Very low 

Low 

Average 

High 

Very High 

1.329 × 10−4 − 0.1 

0.1 − 0.5 

0.5 − 1 

1 − 5 

5 − 12.758 
𝑀𝑠  =  𝑆𝑠 . 𝐻. 𝜌 𝑔 

Curling defect 

Very low 

Low 

Average 

High 

Very High 

7.2954 × 10−7 − 0.05 

0.05 − 0.2 

0.2 − 2 

2 − 10 

10 − 2.990 × 106 

𝛿 =
𝑀. 𝐿2

𝐸. 𝐼𝑔𝑧
 

𝑚𝑚  
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Now, using these domains and the intervals of the parents, we can calculate the CPT of 

the child node using the method described in section 3.4.2. The CPTs for all of the nodes 

of the model can be found in (Hamedi, 2019).  

Validation of the model 

After forming the CPTs, the Bayesian network is ready for validation. The validation pro-

cess can be done in multiple ways including performing experiments, using the data from 

the other studies or asking experts to validate the model (Geiger, Paz, & Pearl, 2014; 

Haiqin Wang, 2006; Schietekat, Waal, & Gopaul, 2016). Performing experiments and 

comparing the results with the prediction of the model may be the optimal method for 

validating the model. Since the resources for performing experiments is not available for 

this study, this option is not possible. 

The second way is to use the data from the other studies and validate the model against 

them. The problem with this method is that it is very difficult, if not impossible to find other 

studies which use a similar set of variables. 

The last method is to use experts’ knowledge for validating the model. The model in this 

study has been evaluated by a small group of experts, but no systematic validation pro-

cess has been done on the model. 

4.2 Reliability engineering case study 

The purpose of this section of this thesis is to provide a predictive model for failure in the 

pumps according to their consecutive failure time history; and in the next step, provide a 

recommender system for predictive maintenance on the pumps.  

Based on the type of data and the characteristics of the task, the question above is parted 

into these questions. 

1. How to breakdown the variables in the dataset to a set of meaningful variables? 

2. How to model the missing value mechanism in our predictive model? How to 

process the missing values? 

3. How to discretize the continuous variables for the failure times in a way that the 

dependency between variables is reserved and the discrete variable is easily 

interpreted?  

4. what constraints do we need to set for the learning algorithm, to avoid unwanted 

causal relations?  
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5. How to validate the Bayesian network created with the machine learning algo-

rithm?  

6. How to use Bayesian reasoning to predict the next failure time?  

The rest of this section tries to answer these questions for this case study. 

4.2.1 Data preparation 

The dataset for this case study contains the failure data of 74 pumps used in a paper an 

industrial plant in Finland. For each pump, the starting date, the times between the start 

and each failure, the times between the start and each maintenance, and the cumulated 

lifetime is recorded. A few entries of the main dataset are shown in Table 12. 

Table 12. The dataset for pump failure times 

ID No 

     

1 10/23/1995 11/7/2016    

 0 2718    

 Started 
Cumulated life-

time 
   

2 11/21/1995 1/14/1998 10/6/2000 11/7/2016  

 0 381 511 1948  

 Started Failure Failure 
Cumulated 

lifetime 
 

3 11/24/1995 7/6/2004 11/7/2016   

 0 1231 2954   

 Started Failure 
Cumulated 

lifetime 
  

4 11/27/1995 7/31/2000 11/9/2000 2/23/2010 11/7/2016 

 0 826 835 2070 3131 

 Started Failure Failure Failure 
Cumulated 

lifetime 

 

The data 

The failure times are the times in which the pumps failed and stopped functioning. The 

maintenance policy has been mostly corrective maintenance. The quality of the mainte-

nance has been near perfect, so after each failure, the whole parts of the pumps have 
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been changed, and the pumps assumed to be as good as new (AGAN) after each 

maintenance. 

The censoring in the data is random right censoring. As shown in Figure 30 and Table 

12, each pump is started at a random time and monitored until a specific date. The cu-

mulated lifetime is the age of the pump at the time the data collection is ended. This 

value shows the duration that the pump has been working from the starting time, and it 

is not failed yet; therefore there is a censored record after this period for a new failure. 

 

Figure 30. The process and timeline of data collection 

Figure 30 shows the timeline for the instances of pumps, their start time, their failure 

times and the last date of data recording. Pumps are installed at separate times and may 

or may not have failures during the data recording period. Since all of the pumps are 

manufactured with the same mechanical design and material, the time of their setup 

does not have any effect on their failure times. Therefore, the starting times of all in-

stances can be aligned by shifting them to the left. Figure 31 shows the timelines after 

shifting.  

 

Figure 31. The pump failure timelines after alignment 
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Based on the assumption about the similarity of the pumps, it can be assumed that all 

the pumps are the instances of one pump. Therefore, the timeline will look like Figure 

32. 

 

Figure 32. The failure timeline for an instance of the pump 

Table 13 shows some statistics about the dataset. The total number of data points are 

74 instances. The number of instances for each failure, the number of censored values 

for each failure and the percentage of not censored data points are presented in the 

table. Percentage of not censored values is calculated by dividing the number of previous 

failures by the censored values of the current failure. 

Table 13. Number of censored and not censored failures 

 Instances Censored Not Censored % 

Number of 

pumps 74   

Failure 1 70 4 94.59% 

Failure 2 57 16 77.14% 

Failure 3 30 27 52.63% 

Failure 4 12 17 43.33% 

Failure 5  8 4 66.67% 

Failure 6 2 6 25.00% 

Failure 7 1 1 50.00% 

Failure 8 1 0 100.00% 

Failure 9 0 1 0% 

 

The time from the starting of the pump to each failure time is named total time to failure 

(TTTF) in this study. The data is rearranged in a way that each failure time of a pump is 

associated with the corresponding failure number, i.e., the time to failure (TTF) value for 

each failure occurrence is calculated. The TTF between every two consecutive failures 

is calculated by subtracting their TTTF values. A simple excel formula has been used to 

calculate the subtraction. The first 15 rows of the rearranged data are shown in Table 

14. 
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Table 14. Pre-processed dataset 

Pump 
ID 

TTF1 TTF2 TTF3 TTF4 TTF5 TTF6 TTF7 TTF8 

Cen-
sored 
time 

Cumu-
lated  
lifetime 

1 
        2718 2718 

2 381 130       1437 1948 

3 1231        1723 2954 

4 826 27 1217      1061 3131 

5 1137 601       916 2654 

6 597 1660       231 2488 

7 1101 263 767      1 2132 

8 567 2 149      2283 3001 

9 770 815       909 2494 

10 758 276 208 201 594    197 2234 

11 897 0       1932 2829 

12 2471 
       193 2664 

13 37 N/R N/R N/R 238 6 809 166 169 1745 

14 
        2585 2585 

15 1057 477       1212 2746 

 

In addition to censoring in the data, there are several datapoints which their values are 

missing. For the cases that there is a missing value for any failures, and it is not possible 

to calculate the TTF. Those data points are considered as missing values. An “N/R” value 

is placed in the data set for the cells with a missing value, as shown in Table 14.  

The censored times (CT) for each TTF value are moved to a value called CT#, in which 

# is corresponding to the number of censored TTF. These values are shown in the col-

umns CT1 to CT9 of Table 15. For each row, the TTF values after the last failure are 

impossible values, meaning that it is not possible to have a TTF 𝑖 + 1 when there is no 

TTF 𝑖 . Therefore, these values are marked with an asterisk (∗) as not available, so the 

software can detect and handle them as filtered value, not missing values. 

Table 15. Censored failure times for each TTF 

ID CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 

1 2718 * * * * * * * * 

2 * * 1437 * * * * * * 

3 * 1723 * * * * * * * 

4 * * * 1061 * * * * * 

5 * * 916 * * * * * * 

6 * * 231 * * * * * * 



106 

 

 

 

7 * * * 1 * * * * * 

8 * * * 2283 * * * * * 

9 * * 909 * * * * * * 

10 * * * * * 197 * * * 

11 * * 1932 * * * * * * 

12 * 193 * * * * * * * 

13 * * * * * * * * 169 

14 2585 * * * * * * * * 

15 * * 1212 * * * * * * 

 

The number of datapoint for the variable TTF7, TTF8, CF7, and CF9 is only one data 

point, and there is no data point for the CF8. Therefore, it is not possible to use them for 

creating the model, and they are omitted from the dataset. 

Missing values 

The missingness of data for failure times in the dataset has two reasons. Some failure 

times have not been recorded due to an unknown reason. These are shown with a num-

ber 0 in the database. The other missing failure data are missing because they have not 

happened at all (in case of the first failures) or the previous failure has not happened yet 

(failure 𝑖 + 1 when failure 𝑖 is not happened). These missingness can be modeled using 

the censoring concept in survival analysis, but the Bayesian missing value models can 

give a better perspective and it can be integrated into the structural learning process as 

well (see section 3.1.7), therefore, the missing value concept is used to address this 

issue. 

Type of missingness should be characterized to determine the method for handling the 

missing values. For the first group of missing values, the values that are not recorded, it 

is not possible to classify them in any specific class. For the second group, since the 

missingness of failure 𝑖 + 1 is dependent on missingness of failure 𝑖, it is possible to 

classify them as missing at random (MAR). Assuming that the missingness is MAR, the 

Structural Expectation Maximization is chosen as the missing value estimation method, 

which has shown good results in the literature (Friedman, 1998). 

4.2.2 Discretization of variables and machine learning of the 

structure 

The type of variables in the data is continued, and the algorithm used in this study is 

based on discrete variables. Therefore, the variables should be discretized using one of 

the methods mentioned in 3.1.7. The genetic optimization-based algorithm implemented 
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in the software can preserve dependencies in the variables and can provide the optimal 

discretization, so it is used to discretize the variables in the dataset. The algorithm finds 

the best number of states and the optimal intervals for each state to discretize the varia-

ble into them. The maximum number of states for a variable can be set, and the variable 

decides whether using that number or choosing a smaller number of states. Note that 

the length of the state intervals will not be equal. 

To have a good resolution in the model variables, the number of intervals chosen for the 

discretization algorithm is ten states. Table 16 and Table 17 shows the number and the 

range of intervals obtained from the discretization algorithm for the TTF variables and 

CF variables respectively. 

Table 16. Intervals of the states of discretized TTF values 

TTF # TTF1 TTF2 TTF3 TTF4 TTF5 TTF6 

Interval 1 <=89 <=50 <=46 <=116 <=238 <=6 

Interval 2 <=326 <=163 <=149 <=142 <=301 <=815 

Interval 3 <=478 <=276 <=239 <=193 <=594 * 

Interval 4 <=658 <=407 <=470 <=201 <=1565  
Interval 5 <=897 <=509 <=563 <=363 *  
Interval 6 <=1231 <=640 <=644 <=379   
Interval 7 <=1554 <=815 <=819 *   
Interval 8 <=1751 <=989 <=1170    
Interval 9 <=1988 <=1282 <=1217    
Interval 10 <=2471 <=1673 <=1556    
Interval 11 * * *    

 

Table 17. Intervals of the states of discretized CF values 

CF # CF1 CF2 CF3 CF4 CF5 CF6 

Interval 1 <=7 <=4 <=33 <=48 <=1 <=0 

Interval 2 <=1850 <=193 <=231 <=180 <=3 <=197 

Interval 3 <=2585 <=292 <=342 <=363 <=554 <=380 

Interval 4 <=2718 <=308 <=912 <=475 * <=400 

Interval 5 * <=650 <=1051 <=643  <=577 

Interval 6  <=675 <=1285 <=743  * 

Interval 7  <=1014 <=1437 <=855   
Interval 8  <=1687 <=1673 <=932   
Interval 9  <=1723 <=1932 <=1065   
Interval 10  <=2000 <=2275 <=2283   
Interval 11  * * *   
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The intervals marked with an asterisk (∗) are the intervals which contained the filtered 

values. The algorithm obtained all ten states for the variables TTF1, TTF2, TTF3 and 

CF2, CF3, CF4 but for the rest of the variables, the optimal number of states is less than 

ten. 

Model learning 

This study relies on machine learning in BNs to find a Bayesian network which describes 

the relation between TTF variables and CF variable. Finding the best Bayesian network 

in the search space of all possible BNs is NP-hard (Munteanu & Bendou, 2001). The 

heuristic search algorithms, which are normally used, can easily trap in local minima. To 

tackle this problem,  Munteanu and Bendou (2001) developed the EQ framework to use 

the space of essential graphs of an equivalent class to search for a suitable graph. The 

detailed description of the EQ framework and algorithm can be found in section 3.1.5. 

As described in section 3.1.5, there are equivalent classes for a Bayesian network. 

These classes describe the joint probability of the random variables of the system in the 

same way, but the causal relationships between variables can be irrational in some of 

them.  It is important to set constraints for the structural learning algorithm to avoid having 

models with irrational causal relationships.  

These constraints can be extracted with the aid of experts. In the case of this study that 

the number of variables is limited and possible relations between variables are intuitive, 

the expert knowledge has not been used, and the constraints have been extracted by 

the author. Since the failures are happening in consecutive order, the failure 𝑖 can affect 

the next failure, i.e., failure 𝑖 + 1 but it cannot affect the previous failure, i.e., failure  𝑖 −

1. These constraints apply to CF variables and between consecutive CF and TFF values 

and TTF and CF value as well. Therefore, to avoid such relations, arcs between these 

variables are set as forbidden, so the structural learning algorithm ignores networks with 

such relations in them.  

4.2.3 Network selection and Validation 

The structural learning algorithm can find multiple networks based on the threshold set 

for minimum association metric. In the Bayesialab software, this metric is set using a 

value called structural coefficient (SC) value. A suitable Bayesian network should be 

neither too complicated nor too simplified. A complicated BN is a network with a structure 

close to a fully connected network. Although such a model can represent the joint prob-

ability distribution of dataset more accurately, it would be very hard to interpret the 

network and inference in it. 



109 

 

 

 

On the other hand, an overly simplified BN has a structure close to an unconnected 

network, which is the worst representation of the joint probability distribution of the 

random variables. To find the middle ground between these extremes, the structural co-

efficient analysis tool in the software is used. The tool runs the learning algorithm for 

multiple times for different CS values and calculates the contingency table fit (CTF) value 

for the network found in each iteration. CTF describes the quality of representing the joint 

probability distribution by the model and it is a value between 0 and 1, with 0 stands for 

the worst fit and 1 stand for the best fit. A description of this metric is provided in section 

3.1.6. Figure 33 is showing a portion of the result of running the tool for 60 values of SC 

in the range of 0.60 and 0.01. 

Figure 33. The SC and CTF curve 

In this Figure, the x-axis is showing the structural coefficient values, and the Y-axis is the 

normalized value of CTF. As shown in Figure 33, the value of the contingency table fit, 

shown by a green line, is increasing with the decrease in the value of the structural co-

efficient. That is because by lowering the SC value, the resulting network is getting close 

to a fully connected BN, which is the exact representation of the joint distribution.  
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The chosen network is created by an SC value of 0.6 and CTF value of 1. The reason 

for choosing this network is that it is the least complicated network that includes all the 

variables (except CT1) in the model and has a complete CTF value. The resulting net-

work is shown in Figure 34. 

 

Figure 34. BN structure learned from the dataset 

The model shows, for example, that there is a dependency between the consecutive TTF 

values. The TTF1 to 4 are affecting each other sequentially and each of them is affecting 

the next CF respectively. There are also some relations like the relation found between 

TTF2 and CF5 which are not following the sequential effect, similar to TTF1 to 4, but it 

is still logical to have such a relationship. The number of datapoint for the variables like 

TTF5, TTF6, CF5, and CF6 is quite insufficient to be used for any machine learning 

method, but the algorithm could find logical relations for them. 

The variable CF1 is not included in the model by the algorithm. This result is logical 

because censored failure 1 cannot be influenced by any other variable in this system. 

CF1 is the censored instances of TTF1 which is the first influencing variable in the model. 

Note that the model can be restructured into a tree-shaped graph having the TTF1 value 

as the top node. 

It is also possible to see the marginal probability distributions for each variable using the 

Bayesialab software, which is shown in Figure 35 and Figure 36 for TTF and CF values 

respectively. 
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Figure 35. Monitor screens for TTF variables 

 

Figure 36. Monitor screens for CF variables 
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The filtered values are shown in the last state with a funnel sign. For the TTF1 and TTF2, 

shown in Figure 35, the filtered values are only 5.47% and 23.25% of all the data. But as 

there are fewer data points available for the TTF 3 to 6, the amount of filtered values is 

increasing accordingly.  

Among the CF values, shown in Figure 36, CF3 has the largest number of occurrences. 

The variable CF 1 is not included in the model by the structural learning algorithm, but 

the monitor is shown here to demonstrate its marginal distribution. For the rest of the 

variables, as shown before, the number of unavailable value (filtered values) are signifi-

cant. 

The discussion regarding the results of this model and the shortcomings is provided in 

section 5.2. 
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5. DISCUSSION AND CONCLUSION 

This section starts with a discussion about the result of two case studies and in the end, 

the conclusion for this study is provided. 

5.1 Additive manufacturing case study 

The model for the additive manufacturing case study can be used to 1- represent the 

knowledge in the domain 2- to diagnose the reason for the curling defect and 3- to ex-

plore the design space in the initial conceptual design phase. Each of these use cases 

is discussed in this the rest of this subsection.  

5.1.1 Knowledge representation 

The Bayesian network has been used in various cases to represent the knowledge in 

the corresponding domain. For example Del Águila and Del Sagrado (2012) used BNs 

to create a decision support system in software engineering domain, Gupta and Pedro 

(2004) developed a Bayesian network to represent the human common sense in 

linguistics for humanoid robots to be able to respond to situations and Sedki and Beaufort 

(2012) developed a method that uses cognitive mapping to produce a Bayesian network 

for representing the knowledge in a domain. 

In the field of Additive manufacturing, Wang et al. (2018) developed a knowledge man-

agement system in which they developed a BN to model the knowledge in the domain of 

AM to help designers in early-stage design steps. Their model consists of an overview 

model and a detailed information layer, and they used the knowledge and data available 

in the literature to form the structure of the model and learn the parameters of the model. 

The model in this study contains and visualizes the experts’ knowledge in the domain 

trough probability distributions of the independent nodes and the structure of the network. 

The knowledge about the system under study is also augmented into the model through 

the causal graph and the constraints. 

A general view of the marginal probability tables of each independent and performance 

node is depicted in Figure 37. 
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Figure 37. The probability of occurrence of each interval for each node for in-
dependent and performance variables  

Bayesialab software demonstrates the marginal probability table for each variable as a 

box, which is called a monitor (Bayesialab, 2018). Each box shows a set of information, 

including the name of the variable on the top of the box, the mean value and the standard 

deviation of the probability distribution of each node and a “value” which is here it is equal 

to the mean value of the distributions. The marginal distribution for each interval of the 

independent variables is displayed with the blue bars, having the probability values on 

the left side of them and the names of the intervals on the right side. 

The first two boxes with red frames on the upper right corner of Figure 37 shows the 

marginal probability tables for performance variables. For example, given the current 

setting for the independent variables and the constraints, there is only 5.38% chance 

that the final part would have a curling defect with more than 10mm. This shows that the 

experts’ knowledge has been extracted for the variable configuration, at least in theory, 
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in most of the cases will lead to having a very small defect. Although the results are 

mostly in the safe region, i.e., less than 0.05mm, there is still a need for models to predict 

the cases which have a higher amount of defect. 

The other element which is reflected in the model is that given the expert’s knowledge 

about their preference on intervals and the constraint of the system, the marginal prob-

ability for each state of each value is recalculated. For example, for the variable “Width 

of the part” the probability for the intervals obtained through AHP is shown in Table 18. 

Table 18. Probabilities for intervals of “Width of the part”  
variable obtained with AHP 

Width of the part Probabilities 

Low 23.85% 

Medium 62.50% 

High 13.65% 

 

But after setting constraints, these probabilities have changed to the values shown in 

Table 19. 

Table 19. Probabilities for intervals of “Width of the part”  
variable after setting constraints 

Width of the part Probabilities 

Low 1.28% 

Medium 75.31% 

High 23.41% 

This is due to the removal of the values which create unwanted combinations through 

constraints set for the model. 

The causal graph represents dependencies and independencies between variables of 

the system and Bayesian inference principles simulate the interactions between varia-

bles based on these relations. A simple example is demonstrated as follows, to 

demonstrate some of the basic interactions between the variables of the model.  

Based on the description of the DACM model in the section 4.1.1, an increase in the 

number of supports has a positive effect, which is reducing the curling defect, and a 

negative effect, which is increasing the total mass of the supports. So, using the monitors 

for the variables “Number of Supports”, “Total mass of supports” and “Curling defect”, 

this sort of interaction between the nodes can be demonstrated. The default values for 

marginal probabilities for each of these nodes shown in the top row of Figure 38. 
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Figure 38. Changes in Curling defect and Mass of the supports due to 
changes in the number of supports 

Hard evidence can be set for any of the states of this node in the monitor to show the 

effect of changing the number of supports. Here, the hard evidence represents choosing 

one of the intervals of a variable, and by doing so, the software propagates the effect of 

this evidence through the network and demonstrates the posterior marginal distributions 

for the other nodes. As an example, if in a small number of supports are chosen in the 

design phase without any change in the other variables, after calculating the posterior 

distributions, according to the model we can expect that the value for the curling defect 

increases by 37.98% in average and the value for the mass of the supports decrease by 

77.40% in average, as shown in the second row of Figure 38. This means that if the 

value for the number of supports is fixed within its first interval, all combinations of all 

other variables will lead to a probability distribution for the performance variables with 

the mean values and standard deviations described in the middle row of Figure 38. 

On the other hand, if the number of supports increases, this should lead to less curling 

defect in average and more mass for the supports in average, which is evident in the last 

row of Figure 38. By choosing the interval with the highest values for the variable “num-

ber of supports” in the monitor window and after calculation of posterior distributions, the 

value of curling defect decrease by 34.22% in average and the value of the mass of 

supports increases by 69.04% in average for all possible combinations of the other var-

iables.  

Changes for marginal probabilities can also be seen in both variables in Figure 38. For 

example, having the highest values for the variable” number of supports” increases the 

chance for having a curling defect in the lowest interval, i.e., less than 0.02mm, from 
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16.23% to 21.95% for all combinations for the other variables. This change can be 

observed by comparing the value in the first row of Figure 38 with the third row. 

5.1.2 Prediction and Diagnosis 

One of the frequent uses of BNs in the industry is for fault diagnosis and providing deci-

sion support for the practitioners (K Wojtek Przytula, Dash, & Thompson, 2003). The 

reason for such a vast use is that Bayesian network can reflect the experts’ knowledge 

and uncertainty simultaneously, therefore it can reflect the uncertain nature of fault diag-

nosis very conveniently and represent experts’ knowledge on possible solutions for the 

problem. 

The amount of literature in this domain is significant, but to bring a few studies in the 

industrial domain, a brief literature review is provided as follows. McNaught and Chan 

(McNaught & Chan, 2011) developed a fault diagnosis system in manufacturing systems. 

The system supports the personnel to diagnose the faults during production system test-

ing. Another example of a systematic procedure for creating Bayesian networks for fault 

diagnosis in industrial systems using bond graph theory is presented in the study of Lo 

et al. (2003). Li et al. also developed a method to create BNs for diagnosis of faults in 

manufacturing based on a method called defect factor analysis. In this method, they use 

the experts’ knowledge to form a set of factors which result in defects and their relations 

and also the probability tables. The method is implemented on diagnosing the defects if 

machining processes.  

In the case of this study, the model can be used for diagnosing the reason for having a 

specific value in the performance variables. This means that specifying an interval for a 

performance variable, i.e., hard evidence that a performance variable is in a specific 

interval, the model can calculate the posterior distribution for all the other variables in the 

model, i.e., show the most probable combination of other value. The use for this diagno-

sis is at the early design stage. Having a specific tolerance range for each of the perfor-

mance variables, the designer can check the most probable values for each interval in 

design variables and the manufacturing variables. 

For example, by setting the value for curling defect to between 2mm to 10mm, the pos-

terior probability for all the design and manufacturing variables are shown in Figure 39. 
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Figure 39. Diagnosing the reason for having a curling defect between 2mm to 
10mm. 

Fault prediction is the other use case of Bayesian networks in the industrial domain. 

Wang et al. (2017) used Bayesian networks to predict tool abnormalities in the process 

of manufacturing semiconductors. Their model is predicting the faults based on the cur-

rent status of sensors in a real-time manner. 

The model in this study can be a very useful tool for predicting the effect of choosing a 

combination of design and manufacturing variables on the performance variables. For 

example, if a designer knows the intervals for some of the design variables, they can see 

the probability distribution of the defect with all possible combinations for the other vari-

ables in the model. In this way, the designer can see the result of each decision in the 

process of design and make informed decisions. The model can also be integrated into 

a computer-aided design (CAD) software to make an interactive design environment. 

For example, assume that the height of the part, the thickness of the cantilever, the length 

of it are known, but the designer wants to know the effect of their choices for the other 

variables on the amount of defect. The initial combination of variables is shown in Figure 
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40 with choosing the average values for the thickness of the straight part and the length 

of the part, and the interval with the highest values for the height of the part. 

 

Figure 40. The monitors for the model with the initial parameter design config-
uration 

The model suggests that the probability of having less than 0.05mm curling defect with 

all combinations for all the other variables is 79.59%. This interval is the most desirable 

interval for the amount of curling defect. There is also an 8.2% chance that the curling 

defect is more than 2mm. 

Now assume that the designer wants to see the effect of choosing design parameters 

for the supports and check if their effect on the amount of defect. Since the length of the 

part is in the average range, having a high number of supports and having them with 

maximum width may help to reduce the defect. Also, since the process of removing sup-

ports is costly and time-consuming, the designer prefers to have the support structurs 

with a small thickness so that they can be removed easily. The resulting probability dis-

tribution for the curling defect variable is shown in Figure 41. 
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Figure 41. The monitors for design variables after choosing more design vari-
ables  

The posterior distribution is shown in Figure 41. The probability distribution of the curling 

defect shows that the mean value has changed from 36574.191 to 4.027. This means 

that all combinations for all the other design variables will lead to values for curling defect 

that are around 4.027 on average. Moreover, the chance for having more than 2mm 

defect is almost zero. The designer can continue with the design process, but they can 

be sure that the amount of defect won’t be in very high values. 

5.1.3 Design Space Exploration 

One of the benefits of extending the causal graph obtained by DACM is that it provides 

the possibility of exploring in the design space efficiently. Design space exploration 

(DSE) is the process of exploring the design variables’ space to discover sets of suitable 

combinations of designs alternatives (Sharpe, Morris, Goldsberry, Seepersad, & 

Haberman, 2017). Design space exploration is the process of discovering and evaluating 

valid design alternatives before implementing (Kang, Jackson, & Schulte, 2011). 

Often the simulation models are complicated and computationally expensive. Therefore, 

some surrogate modelling is used to map the complicated model into a model which is 

simpler and is accurate enough. Several methods are developed to perform the mapping 

including set-based methods (Jawad Qureshi, Dantan, Bruyère, & Bigot, 2014), interval-

based methods (Panchal, Fernández, Paredis, Allen, & Mistree, 2007), graph and grid-

based methods (Schulz et al., 2017), space mapping methods (J. W. Bandler, Cheng, 

Hailu, & Nikolova, 2004). 

The method introduced and implemented in this study can be classified as a space map-

ping method. For example, Bandler et al. (2013; 2004) developed the Aggressive Space 
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Mapping (ASM) method in which they mapped accurate and complicated models into a 

set of coarse models which are accurate enough but fast to evaluate. The process of 

ASM can be summarized as (J. Bandler, 2013): 

1- Preliminaries: Creating a library of fast, parameterized course models and devel-

oping inexpensive means to evaluate them. 

2 & 3- In a specific problem: choose a suitable “course” model for the system and 

extract the parameters. The course model is expected to be capable of meeting the 

system specifications, both in inputs and outputs. The relationship between these 

two models can be represented as: 

𝑥𝑐 =  𝑃(𝑥𝑓) (84) 

In which 𝑥𝑐  and 𝑥𝑓  are respectively the vectors representing the course model and the 

fine model. The function 𝑃 is expected to be a linear mapping between these two models 

if they are a good match. Then in the course model is being optimized with a conventional 

method which results in the solution 𝑥𝑐
∗. Finally, the parameters of the fine model can be 

calculated using the inverse: 

𝑥𝑓
∗ = 𝑃−1(𝑥𝑐

∗) (85) 

Assign the optimized parameters to the fine model and run it. If the specifications are 

met, you have a sufficiently accurate course model. 

4- Further iterations: use the real data from the situation or generated data from the 

fine model to update the course model with a mapping. This step is called pa-

rameter extraction. Then the steps on step 3 can be repeated to exceed the op-

timization specifications or to some fixed number of iterations. 

Similar methods have been developed using Bayesian networks to empower designers. 

Shahan and Seepersad (2009) developed a method using Bayesian networks for collab-

orative design problems in distributed design projects. In their method, each designer 

develops a small Bayesian network that represents the regions of interests in their design 

space. Then these Bayesian networks are combined to form a global network which 

shows the interest of each designer. Sharpe et al. (2017) developed Kernel-based 

Bayesian network classifiers in which they used a Genetic Algorithm method to learn a 

Bayesian network structure and parameters from a small set of data and then used the 

BN to explore the design space. Conti and Kaijima (2017) developed a Bayesian network 

meta-model to enable bidirectional inference in a design analysis system. They used 
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machine learning to learn network structure and parameters from a set of simulated data 

and then used that to simulate the result of choosing specific design parameters on the 

outputs or find the most probable parameters to have a specific value in the output. Later 

on, they developed a method for developing meta-models which are not limited to Bayes-

ian networks and implement it on a case study using Bayesian networks (Conti & Kaijima, 

2018). Another example of Bayesian network structure learning algorithms for supporting 

early stage design support can be found in Matthews’ (2007) work. 

In this study, the mapping is from the space of interactions between continues variables 

through accurate mathematical equations into a space of probabilistic interactions be-

tween discretized values with a limited range. The benefit of this mapping is that not only 

the mapped model is easy to evaluate; it is enriched with experts’ knowledge. 

As an example, the process can be formed as defining a target tolerance for the defect 

and then trying to find the best combination for the other variables to have minimal ma-

terial loss. Assuming that defect less than 0.2mm is acceptable, we can set hard 

evidence for the first two intervals of the “Curling defect” in its monitor. Then the posterior 

distribution for the other variables is calculated by the software, as shown in Figure 42. 

 

Figure 42. Posterior distributions after setting a target value of having less 
than 0.2mm of defect  

The designer then can start exploring this design space to reach the efficient values for 

all the variables in systematic design space exploration (DSE) method. DOE methods 

such as Taguchi (Mistree, Lautenschlager, Erikstad, & Allen, 1993) method or Bayesian 

methods (Nabifar, 2012) can be used to explore the design space of this model. Further 

discussion of these methods is out of the scope of this study. 
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5.2 Reliability engineering case study 

A model for describing the interrelation between the consecutive TTF values and CF 

values is presented in section 4.2.3. The initial hypothesis of this study was that although 

near perfect maintenance is taking place after each failure in the system, consecutive 

failure times are not independent of each other. This shows that the maintenance proce-

dures are not perfect, or the conditions of the working environment and usage pattern is 

affecting the failure times. Consecutive failure times and censored failure times are 

separated into a set of variables and dependency between them is investigated through 

using a structural learning algorithm. The resulting model of dependencies is shown in 

Figure 43. 

 

Figure 43. The BN showing the dependencies between TTF and CF variables 

Table 20 shows some association and independence metrics of the nodes in the model. 

The mutual information (MI) is an asymmetric measure that shows having some infor-

mation about one node can help finding out some information about the other node. The 

minimum amount of MI can be as low as zero, and the maximum of it can be equal to 

the entropy of the parent node. Pearson correlation is determining the strength of any 

possible linear relationship between two nodes, which is asymmetrical again. Pearson 

correlation has a range between 1 and -1. Positive values represent direct linear relation, 

and negative value show reverse linear relation. A description of these measures and 

the formula for calculating them is presented in section 3.1.2. 



124 

 

 

 

Table 20. Association metrics between nodes in the model 

Relationship Analysis 

Parent Child Mutual information Pearson's Correlation 

TTF2 CF3 0.7918 -0.7356 

TTF1 TTF2 0.7344 -0.0727 

TTF2 TTF3 0.5962 -0.5855 

TTF3 CF4 0.5387 -0.1319 

TTF1 CF2 0.482 -0.4263 

TTF3 TTF4 0.2404 -0.0989 

TTF2 TTF5 0.1524 0.2435 

TTF1 CF6 0.1286 0.5135 

TTF4 CF5 0.0788 -0.2364 

TTF5 TTF6 0.0258 0.2269 

 

As shown in Table 20, the strength of the relation for TTF1−>TTF2, and TTF2−>CF3 

are the strongest with the almost similar MI value of 0.7344 and 0.7918. The Pearson’s 

correlation for TTF2−>CF3 is high as well, but for TTF1−>TTF2, the value is close to 

zero. This might be because the relationship between these two variables is highly non-

linear. The next strong relations are TTF2−>TTF3, TTF3−>CF4, TTF1−>CF2 and 

TTF3−>TTF4. Since the number of data points for the variables TTF5, TTF6, CF5, and 

CF6 are very scarce, the dependencies found by the algorithm between them and the 

other parameters are quite weak. This fact is shown in the MI value between these vari-

ables and the other nodes in Table 20. 

The relation between the TTFs, and between TTFs and CFs are not in a manner to find 

a trend or a general rule or equation for them, but the model can help to estimate the 

most probable next time to failure and estimate a distribution for the non-event period 

based on the history of the failures and working hours of an equipment. 

For example, imagine that a pump experience two failure in up to now. The first failure 

(TTF1) has occurred between 89 to 326 hours of work of the pump and the second failure 

(TTF2) has occurred between 407 and 509 hours after the first failure.  
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Figure 44. Monitor windows after setting evidence for the failures 

As shown in Figure 44, after setting the evidence for the variables TTF1 and TTF2, the 

posterior distribution for the variables TTF3 and CF3 is calculated by the Bayesialab 

software. The monitors show that having this history from the pump and based on the 

model, the most probable interval that the next failure may occur in is the interval be-

tween 239 and 470 hours. The model suggests that based on the historical data, 31.54% 

of the failures have happened in this interval. The average value calculated for the TTF3 

variable is about 424 hours with a standard deviation of 52.88 hours. This can provide a 

more accurate measure for the most probable value for TTF3. The model also shows 

that 60% of the data points in TTF3 for such an arrangement in TTF2 and TTF1 are 

missing. 

The monitor for the censored TTF3 (CF3) variable is also shown in Figure 44. The inter-

vals can give some insight about the probability to have no event in each interval. Also, 

the mean value of no event hours and its standard deviation is shown on the top of the 

monitor. 

5.3 Conclusion 

This study aimed to investigate the possible uses of Bayesian networks in industrial do-

mains. Two approaches for making Bayesian network models have been studied and 

used in two case studies.  
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The first research question of the study is answered by developing a method to create 

Bayesian networks for complex systems. The method is developed by combining and 

extending a systems’ engineering methodology framework, DACM, and a multicriteria 

decision making method, AHP. The method completed by designating the constraints of 

the system into the Bayesian network model. Based on this method, a case study for 

modelling the process behind the curling defect in powder bed fusion systems is 

developed. The steps for creating the model is shown and the uses of the model have 

been discussed. It is shown that the resulting model can be used for knowledge repre-

sentation, diagnosis and prognosis, and design space exploration. 

The possibility for using machine learning algorithms for obtaining Bayesian network 

models is also studied. The second research question of the study is answered by de-

veloping a failure prediction Bayesian network model for a single variable dataset. The 

corrective maintenance after a failure are assumed to be a perfect maintenance. This 

study attempts to relax this assumption and investigate the relation between consecutive 

failure times and create a predictive model. The other challenge of this case study was 

the limited amount of data, missingness of the datapoint and an extensive amount of 

censored values. All these challenges have been addressed using Bayesian network 

specific approaches. The resulting model can be used to predict the next time to failure 

values. 

Limitation and suggestions 

The method developed for modelling complex systems can be extended by augmenting 

the graph theory with concepts of ideality and contradiction from TRIZ theory. TRIZ is  a 

problem-solving, analysis and forecasting theory developed by the Russian scientist 

Genrich Altshuller and his colleagues (Savransky, 2001). Ideality looks to the world with-

out assuming any limitations and create models for this ideal system. Contradiction on 

the other hand, detects the limitations and flaws of the system and brings the model to a 

more realistic state. 

One of the limitations of this study is that the models are not verified. Both models can 

be verified against and confirmed using data. In the AM study, experimental data of parts 

with curling defect could be used, but it has not happened due to lack of resources. 

Similarly, in the reliability study more data for the failure times was not available. 

The model can also get updated with the experimental data. Having the model as the 

prior and updating it with the experimental data using, for example, Maximum a posteriori 

method, a posterior model can be obtained. This new model is closer to the real world 

process and more reliable. 
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APPENDIX A: SAMPLE DESCRIPTION FOR HOW 
TO FILL THE AHP TABLES 

This study aims at finding a combination of variables to minimize the ‘curling’ defect and 

‘defect in the parts with overhanging surfaces, at the early design stages. The design 

space for finding the best combination of variables is exponentially growing in dimension 

as the number of variables increase. Therefore, it is necessary to find a way to reduce 

the complexity of this task. One way to cope with this problem is to use the experts’ 

knowledge to find out the suitable values for variables and focus on finding the combina-

tion of variables in the design space. We use the Analytical Hierarchy Process (AHP) as 

the method of knowledge elicitation (Shadbolt & Smart, 2015) in the form of preference 

of choosing an interval of values for a variable. Then, Bayesian networks can be used to 

relate these probabilities to each other and help us to find the best combination. 

The ranges of the variables are divided into three or four intervals to create the AHP 

tables. The experts are supposed to compare intervals pairwise and express their pref-

erence with a numerical value.  Table 21 is an example of the AHP table created for this 

study. In an AHP table, if an interval in the row is preferred over an interval in the column, 

a value in the range of one (1) to nine (9) can be chosen to show this preference. The 

highest preference is shown by nine (9) and the lowest preference (neutral) is shown by 

one (1). Eventually, experts can select any natural number from one (1) to nine (9). Con-

versely, if an interval in the row is less preferable than an interval in the column, a value 

between one (1) and (1/9) can be chosen to show this. One (1) is showing the least 

disfavor and 1/9 shows the highest disfavour.  

The arrows in Table 21 show how one should read the table. It is enough to fill the upper 

triangle of the matrix and the lower triangle of the matrix is calculated by reversing the 

values in the upper triangle.  

Table 21. AHP table for scan velocity 

Scan velocity Low Average High weights 

200-500 mm/s Low 1.0000    

500-900 mm/s Average  1.0000     

900-1300 mm/s High   1.0000  

  MEV=    

  C.I.=    
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To provide an example of asking questions to fill the Table 21, one can ask a question 

in this form: 

“In an L-PBF process for making a part with the shape A, what is your preference to 

choose low Scan Velocity over an average scan velocity to obtain a good part?” 

If the low value of Scan Velocity is more preferable in the process of manufacturing that 

specific part shape with L-PBF, a number in the range one (1) to nine (9) can be chosen, 

say four (4). This number is shown in green in Table 22.  

Similarly, if there is a disfavor for the average value of scan velocity over high values of 

scan velocity, the expert may choose a number in the range of one (1) to 1/9, say 1/3 in 

this case. Table 22 shows the AHP table with the obtained values. 

Table 22. AHP Table with values 

Scan velocity Low Average High weights 

200-500 mm/s Low 1.0000 4.0000 2.0000  

500-900 mm/s Average  1.0000 1/3.000  

900-1300 mm/s High   1.0000  

  MEV=    

  C.I.=    

 

The attached AHP tables are designed to collect knowledge about preferable intervals 

for both manufacturing and design parameters. The tables require to be filled in a way 

that they represent the best practice in choosing parameters for manufacturing a high- 

quality part 
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APPENDIX B: AHP TABLES FOR CURLING DE-
FECT CASE STUDY 

Length of the base High  Average Low  weights 

High (7-10) 1.0000     0.5816 

Average (4-7)   1.0000   0.3090 

Low (1-4)     1.0000 0.1095 

  MEV=     3.0037 

  C.I.=     0.0018 

 

Length of the straight 

part High Average Low Weights 

High (25-40) 1.0000 0.3333 2.0000 0.2222 

Average (15-25)   1.0000 6.0000 0.6667 

Low (5-15)     1.0000 0.1111 

  MEV=     3.0000 

  C.I.=     0.0000 

 

Height of the part High Average Low weights 

High (1-3) 1.0000 3.0000 6.0000 0.6548 

Average (3-6)   1.0000 3.0000 0.2499 

Low (6-12)     1.0000 0.0953 

  MEV=     3.0183 

  C.I.=     0.0091 

 

Width of the part High Average Low weights 

High (1-3) 1.0000 0.2500 0.5000 0.1365 

Average (3-6)   1.0000 3.0000 0.6250 

Low (6-12)     1.0000 0.2385 

  MEV=     3.0183 

  C.I.=     0.0091 

 

Thickness of the 

straight part High Average Low weights 

High (1-2) 1.0000 0.3333 0.5000 0.1466 

Average (2-4)   1.0000 5.0000 0.6571 

Low (4-6)     1.0000 0.1963 

  MEV=     3.1632 

  C.I.=     0.0816 
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Thickness of supports High Average Low weights 

High (0.1-0.3) 1 0.25 0.1429 0.0786 

Average (0.3-0.6)   1 0.3333 0.2628 

Low (0.6-1)     1 0.6586 

  MEV=     3.0324 

  C.I.=     0.0162 
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APPENDIX B: AHP TABLES FOR CURLING DE-
FECT CASE STUDY 

Width of the part Low 

Width of the support Low 0.3*W Average 0.6*W High 1*W weights 

Low 0.3*W 1.0000 4.0000 5.0000 0.6738 

Average 0.6*W   1.0000 3.0000 0.2255 

High 1*W     1.0000 0.1007 

  MEV=     3.0858 

  C.I.=     0.0429 

Width of the part Average 

Width of the support Low 0.3*W Average 0.6*W High 1*W weights 

Low 0.3*W 1.0000 0.2500 0.2000 0.0936 

Average 0.6*W   1.0000 0.3333 0.2797 

High 1*W     1.0000 0.6267 

  MEV=     3.0858 

  C.I.=     0.0429 

Width of the part High 

Width of the support Low 0.3*W Average 0.6*W High 1*W weights 

Low 0.3*W 1.0000 0.2000 0.1667 0.0780 

Average 0.6*W   1.0000 0.3333 0.2872 

High 1*W     1.0000 0.6348 

  MEV=     3.0940 

  C.I.=     0.0470 

 

Mass of the part Low 

Heat Energy Input 

Low (100-

150) 

Average (150-

250) 

High (250-

400) weights 

Low (100-150) 1.0000 6.0000 9.0000 0.7557 

Average (150-250)   1.0000 5.0000 0.1881 

High (250-400)     1.0000 0.0562 

  MEV=     3.1632 

  C.I.=     0.0816 

Mass of the part Average 

Heat Energy Input 

Low (100-

150) 

Average (150-

250) 

High (250-

400) weights 

Low (100-150) 1.0000 3.0000 5.0000 0.6370 

Average (150-250)   1.0000 3.0000 0.2583 

High (250-400)     1.0000 0.1047 

  MEV=     3.0385 

  C.I.=     0.0193 
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Mass of the part High 

Heat Energy Input 

Low (100-

150) 

Average (150-

250) 

High (250-

400) weights 

Low (100-150) 1.0000 0.3333 2.0000 0.2493 

Average (150-250)   1.0000 3.0000 0.5936 

High (250-400)     1.0000 0.1571 

  MEV=     3.0536 

  C.I.=     0.0268 

 

Length of the 

straight part Low 

Number of supports >5 >10 >15 >20 weights 

>5 1.0000 2.0000 6.0000 9.0000 0.5232 

>10   1.0000 5.0000 8.0000 0.3427 

>15     1.0000 3.0000 0.0916 

>20       1.0000 0.0425 

  MEV=       4.0925 

  C.I.=       0.0308 

Length of the 

straight part Average         

Number of supports >5 >10 >15 >20 weights 

>5 1.0000 0.3333 0.5000 2.0000 0.1682 

>10   1.0000 0.5000 3.0000 0.3284 

>15     1.0000 2.0000 0.3835 

>20       1.0000 0.1198 

  MEV=       4.2153 

  C.I.=       0.0718 

Length of the 

straight part High 

Number of sup-

ports >5 >10 >15 >20 weights 

>5 1.0000 0.1667 0.1250 0.1111 0.0359 

>10   1.0000 0.2500 0.2000 0.1215 

>15     1.0000 0.3333 0.2918 

>20       1.0000 0.5507 

 MEV=       4.2807 

  C.I.=       0.0936 
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APPENDIX D: SOFTWARE PACKAGES FOR BAYESIAN NETWORKS 

Software packages and online services for learning and inference in BNs 

Name Description availability API 
Learn-

ing  

Infer-

ence  
License  Link Price 

Bayes 

Server 

Commercial low-price tool 

with good features 
Offline  

Direct: .NET and JAVA 

Indirect: Python, R, MATLAB, 

Excel functions, Apache 

Spark: through .NET and 

JAVA API 

yes Yes commercial 1 

Academic: 283€ - 

568€ 

Commercial: 568€-

1137€ 

BayesPy 
Python API from  

AALTO University 
Offline Python  No Yes MIT License 2 Free 

WEKA 
Developed in University of 

Waikato New Zeeland 
Offline Java Yes Yes  - 3 Free 

Bayes 

Fusion 

Developed in University of 

Pittsburgh for BNs and influ-

ence diagrams 

Offline  

C++ 

wrappers for Java and .NET 

are available 

Yes  Yes 

Commercial, 

Free for  

academic use 

4 
Academic: free 

Commercial: contact 

Paul 

Govan’s 

BN 

An R library for Bayesian 

networks 

Offline/ 

Online  
R Yes Yes 

Apache 2.0  

License 

5 & 

6 
Free 

MSBNx 
Microsoft Bayesian Networks 

platform 
Offline 

COM-based API through Ac-

tiveX 
No Yes - 7 - 

Bayesialab 
Commercial software with 

good tools 

Online/ Of-

fline 

Java – can export to Java, 

.NET, JS, Python, R, MATLAB 
Yes Yes Commercial 8 

Academic use 490€, 

extensions have sep-

arate prices  

Agena 

risk 

Commercial tool for risk anal-

ysis and decision support 
Offline Java  Yes No 

Commercial 

and Free 
9 

Free limited version 

full version upon sub-

scription 
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1- https://www.bayesserver.com/ 

2- http://www.bayespy.org/index.html 

3- https://www.cs.waikato.ac.nz/ml/index.html 

4- https://www.bayesfusion.com/ 

5- https://github.com/paulgovan/BayesianNetwork 

6- https://paulgovan.shinyapps.io/BayesianNetwork/ 

7- https://msbnx.azurewebsites.net/ 

8- http://www.bayesialab.com/ 

9- http://www.agenarisk.com/ 
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