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Abstract 

TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Information Technology 
Farhan, Muhammad: Automated Clump Splitting for Biological Cell Segmenta-
tion in Microscopy Using Image Analysis.  
Master of Science Thesis, 60 Pages. 
September 2010 
Major: Signal Processing 
Examiners:  Prof. Olli Yli-Harja and Dr. Antti Niemistö 
Keywords: cell, clump splitting, image analysis, concavity point, cell segmen-
tation, split line.  
 
Formation of clumps due to touching or overlapping of individual objects in an image is 
common. The process is natural in some cell cultures, for instance, yeast cells typically 
grow in clumps. Automated analysis of images containing such clumps requires the 
capability to split them into their constituent objects. Failure of the segmentation me-
thods to split the clumps leads to the requirement of developing clump splitting methods 
to be used as post-processing step towards overall segmentation. The goal of this thesis 
work is to study and develop an automated method for splitting cell clumps in images of 
biological cells. To achieve this goal we studied previous clump splitting methods found 
in the literature. One of the best methods is based on defining split lines by detecting 
and linking concavity points. We found that this method has deficiencies in it and first 
modified it to achieve improved clump splitting results. We also developed a novel me-
thod for clump splitting following a similar approach.  
 
Like any other concavity point-based clump splitting method, both these methods start 
with finding all the concavity points on the contour of the clumps. Contrary to the origi-
nal method, these methods look for every possible valid concavity point in a concavity 
region  using  curvature  analysis,  thus  minimizing  false  split  lines  as  well  as  under-
segmentation. The modified method then uses Delaunay triangulation to narrow down 
the list of all the possible split lines between all the concavity points to a list of candi-
date split lines. Finally, it uses a set of features such as saliency and alignment to define 
a cost function. The best split line is found for each concavity point yielding the mini-
mum value for the cost function. On the other hand, the novel method uses variable size 
rectangular window to search for the concavity point-pairs forming the split lines. This 
makes the method less dependent on user-defined parameters. We also propose some 
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post-processing steps that remove some non-cellular objects based on a priori informa-
tion on cell shapes. 
 
We compared the performance of these two methods with the performance of the origi-
nal method and of a widely used method that is based on the watershed transform. 
Three different sets of images of yeast cells were used. Precision and recall analysis was 
used to show that the two methods proposed in this thesis outperform the two methods 
taken from the literature. Although the targeted application of the methods is splitting of 
cell clumps, it can be applied to split clumps of other convex objects as well.  
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Chapter 1 

Introduction 
While performing image analysis in different domains it is often observed that the ob-
jects in the image form dense clusters or clumps. Manual detection of such clumps and 
their separation into their constituent objects can be relatively easy, assuming that the 
person who is doing the manual analysis possesses some prior knowledge about the 
objects in the image. However, if the same task needs to be performed for a large num-
ber of images, splitting of the clumps needs to be done automatically using some com-
puter-based algorithm. This is often a difficult task due to the nature of the clumps 
present in the images. Nevertheless, an accurate automatic splitting of clumps is often of 
paramount importance in terms of extracting accurate information from the images [18]. 
 
Generally, clumps are formed either due to touching or overlapping of objects with each 
other. In the case of biological cell cultures, cells tend to grow in such a way that they 
form clumps, such as growing of the bud from mother cells in yeast. In addition, when 
there is a large density of cells in a particular area of the image or if the cells in the im-
age are too close to each other, then due to optical projections the individual cells seem 
to  overlap  with  each  other  therefore  forming  a  clump  [29].  Moreover,  the  process  of  
preparing samples for future analysis and preserving the cells from being decayed as 
well as the varying behavior of individual cells on different stimuli contribute to the 
formation of cell clumps [39]. 
 
Resolving individual objects from these clumps using general image segmentation me-
thods or some basic morphological operations, such as erosion, is generally not possi-
ble. Even in cases where the segmentation of the image into foreground and background 
pixels is easily achieved because of high contrast between them, segmentation often 
fails to separate the individual objects from clumps. This may be because of the fact that 
the grey-level values of the objects forming the clumps often have a high degree of re-
semblance among themselves. Due to this reason, some specific clump splitting me-
thods are needed which will give high efficiency with low number of over- and under-
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segmented objects. These clump splitting methods are usually applied to the binary 
segmented images as a post-processing step towards overall segmentation. 
 
Splitting of clumps is essential in a wide range of applications in the field of computer 
vision ranging from biological to industrial applications [3, 10, 43]. In tasks related to 
microscopic images of cells that have clumped together, the requirement is to split the 
cell clumps into individual cells automatically so that some further biological analysis 
can be performed on single cells [24, 35, 41]. In industrial applications the task may be 
to scan and detect individual objects transported on a conveyor belt [3]. These objects 
may vary in size and shapes and often overlap with each other. Accurate detection and 
hence the subsequent analysis of those objects depends heavily on the accurate splitting 
of those clumps into the constituent objects.  
 
Construction of an automated clump splitting method which gives absolutely precise 
results for all images in even a small image data set still remains to be a challenging 
task. Given a particular image, it is quite easy to develop an algorithm which will accu-
rately split all the clumps present in that image. However, when it comes to doing this 
automatically for a large image set with varying cell features, it is quite difficult to 
achieve the desired results. It is typical that clump splitting method require different 
parameters for different images in the data set.  
 
There are three major approaches which are common in clump splitting methods. They 
are defined briefly as follows: 
 
1. Concavity point-based analysis: When merging or overlapping of two or more 

convex-shaped objects occurs, the resultant object is concave, and the points of con-
tact on the boundaries of the two objects are called concavity points. In concavity 
point-based analysis, see for example [10, 18, 39], first the concavity points in the 
clump are found. Then, the split lines are found by joining two concavity points 
provided that certain conditions are met. These methods depend heavily on how the 
decision  of  whether  or  not  a  split  line  is  defined  between  two  concavity  points  is  
made. Many of the methods found in the literature have proven unsatisfactory in 
practical applications. 
 

2. Mathematical morphology-based analysis: This includes methods based on basic 
morphological operations as well as methods based on the morphological watershed 
transformation, see for example [26, 14, 34]. These methods are also unsatisfactory 
because in practical applications they tend to produce over-segmentation and under-
segmentation, especially, when the objects vary a lot in size and shape. 

 
3. Model based or parametric fitting-based analysis: In this type of analysis some 

model is fitted on the image data, for example, ellipse fitting is used [6, 17]. Me-
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thods from this approach also need to find the concavity points to divide the contour 
into  segments  on  which  ellipse  fitting  is  performed.   The  problem  with  these  me-
thods is that they are often computationally complex and involve a large number of 
parameters. 
 

This thesis work is undertaken in order to solve the problem of splitting clumps in im-
ages  of  biological  cells.  Therefore  further  discussion  primarily  concentrates  on  the  is-
sues related to the clumps of biological cells and the ways to address them. The rest of 
the thesis is organized in the following way: 
 
Chapter 2 provides the readers with the basic knowledge of digital image analysis. The 
focus is in briefly describing the image processing algorithms which are going to be 
used in the subsequent chapters. A review of clump splitting methods found in the lite-
rature is presented in Chapter 3. Chapter 4 discusses modifications that were made to 
gain some improvements in one of the methods described in Chapter 3. Moreover, a 
novel clump splitting method is also presented. Chapter 4 concludes with a presentation 
of post-processing steps that can be used to improve initial clump splitting results. The 
results that we obtained from the modified method as well as from the novel clump 
splitting method are presented in Chapter 5. A qualitative as well as quantitative com-
parison of these methods with selected methods from the literature is also included. Fi-
nally, Chapter 6 concludes the thesis along with discussing possible directions of future 
work.



 
  

 
 

 

Chapter 2 

Fundamentals of Digital Image Analysis 

This chapter provides the reader with a basic understanding of digital images and image 
analysis. The concepts that are presented here will be repeatedly used in the subsequent 
chapters. We start with a discussion on digital images and their representation. Next we 
move on to describe some basic concepts of morphological image processing. We con-
clude our discussion by presenting some of the approaches used for image segmenta-
tion. It is worth to mention here that most of this chapter is adopted from [1, 13, 32].   

2.1 Digital Image 

In the process of image acquisition, the imaging system forms an image by capturing a 
part of the illumination coming from the source that is reflected from the scene. Thus 
the image can be described by a 2-D function dependent on the illumination of the 
source and the reflectance of the scene element being imaged and is given by [13] 
 
                                                 ,                                            (2.1)                   
 
where  and  are the 2-D spatial variables denoting the spatial coordinates of the im-
age, 0,  is the illumination function, and 0,1  is the reflectance 
function. The value of  at any point in space is always positive and corresponds 
to the intensity of light at that point in the scene [13].  
 
When an image is acquired, it may be continuous both in space and in intensity. Digital 
processing of these images is only possible once they are sampled and quantized. These 
processes are performed to discretize both the spatial coordinates as well as the intensity 
values. The sampling of the image can simply be perceived as placing a rectangular grid 
on  top  of  the  image,  whereas  quantization  is  the  process  of  representing  the  intensity  
values on those locations in terms of a real number representing one of finite number of 
intensity levels.  
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As soon as an image is digitized, it becomes possible to represent it by using an m x n 
matrix with m rows and n columns. Each element of this matrix is generally called pic-
ture element or pixel [13]. The amplitude value at each element of the matrix is propor-
tional to the intensity of the light at that spatial point in the image and the value general-
ly lies in the range of 0 to 2b-1 for b bit images. This defines the gray-level resolution of 
an image. The larger the value of b, the higher the gray-level resolution of the image. 
On the other hand, spatial resolution is generally defined by the number of pixels in the 
image and is given by m x n number of pixels. The quality of the image depends on both 
the gray-level and the spatial resolutions. 
 
A digital image can be binary, gray-scale or color image. The pixels in a binary image 
are represented by two intensity levels either 0 or 1. If the image is a gray-scale image, 
which has just the luminance intensity information but not the color information, then 
every pixel has a certain value of intensity in the range described above. However, the 
color images are envisaged as 3-D functions where there is a third dimension as well. 
This dimension is defined depending on the model used, such as Red Green and Blue 
(RGB) model, Hue Saturation and Intensity (HSI) model, for specifying color images. 
For  example,  in  the  RGB  model,  the  third  dimension  is  the  color  components  which  
consist of Red, Green and Blue channels and all the colors are formed by the additive 
combination of these basic RGB colors. Every color component can be thought of and 
can be processed as an individual gray-scale image, and then laid on top of each other to 
form a color image. A pixel in a color image is thus composed of b x 3 number of bits 
and so the matrix used to represent the image is m x n x 3 in size. 
 
In digital images, a set of pixels which are all connected to each other by a connectivity 
rule is called connected component. The pixels in these components generally have 
small variation in intensity among themselves whereas large variations from other 
groups of pixels thus giving rise to different objects [31]. Those pixels which are not a 
part of objects are called background pixels. These concepts are used while labeling the 
objects in the image for further analysis. 

2.2 Morphological Image Processing 

Mathematical morphology uses set theory to define, represent and analyze objects in 
digital images. Thus, in morphological image processing, set theory is used as a tool to 
determine the features for representing the shape of the region along with the features 
describing that representation in such a form so as to allow further processing. Apart 
from this, morphological image processing also offers some nonlinear filtering tech-
niques, typically used in pre- and post-processing steps in image analysis [13]. Morpho-
logical filters have the property that they are increasing and idempotent. Increasing im-
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plies that they are order preserving, whereas idempotence means that at one stage fur-
ther successive iterations do not change the signal anymore [1].  
 
Morphological operations are performed using a particular set in 2-D or 3-D integer 
space called structuring element. It can be of any size and shape depending on what it is 
used for. For instance, it can be a disk shaped element to process circular shaped objects 
in an image. It works similar to the window in filtering operations, sliding on the image 
with its center placed at the current pixel to be processed [13]. A structuring element 
can be considered as non-flat or flat based on whether or not it assigns some weight to 
different pixels of the window. Next, we discuss morphological image processing by 
first explaining the basic operations and then moving on to describe some of the basic 
algorithms of morphological image processing. 

2.2.1 Basic Morphological Operations  

The two main operations that are the basic building blocks in morphological image 
processing are dilation and erosion. They are used in many of the algorithms found in 
morphological image processing. Erosion and dilation are those morphological opera-
tions which do not have the property of idempotence [1]. Along with them the two other 
basic and important morphological operations that are frequently used are opening and 
closing. Extensions of them are close-opening and open-closing in which these opera-
tions are performed in the respective orders. We created an image, as shown in Figure 
2.1(a), for illustrating the results of the basic morphological operations when applied on 
that. We used an 11 x 11 flat disc-shaped structuring element of neighborhood 6 as 
shown in Figure 2.1(b). 
 

       
              (a)                               (b) 

Figure 2.1:  (a) Binary test image of size 220x230 pixels. (b) 11x11 flat disc-shaped 
structuring element with neighborhood 6. 
 

2.2.1.1 Dilation and Erosion 

In the dilation operation, the structuring element is first flipped about its origin and then 
the origin is moved across the image pixels, and all the image pixels below the origin of 
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the structuring element are turned bright if the overlap between the structuring element 
and the image is not an empty set. Mathematically it can be defined as 
 

                                                | Ø ,                                         (2.2) 

 
where  is the symbol for the dilation operation,  and  are the sets representing the 
image and the structuring elements respectively, and  is the set of all displacements of 
the structuring element. The effect of dilation is that it expands the objects in the image 
as well as fills the small holes and openings in the image [13]. Figure 2.2 illustrates the 
dilation operation on the test image of Figure 2.1. 
 

        

 
Figure 2.2:  Dilation. Result of dilation on test image of Figure 2.1. 
 
 
Erosion has the opposite effect of dilation on image pixels. In erosion, the origin of the 
structuring element is moved across the image pixels, and only those image pixels are 
kept to be bright, where, if the origin of the structuring element is placed and the whole 
structuring element resides inside the image object. Mathematically it can be written as  
 
                                                   |  ,                                            (2.3) 
 
where  is the symbol for the erosion operation. Erosion basically narrows or shrinks 
the image objects in addition to removing very small objects or thin parts of the objects 
[13]. Figure 2.3 shows the impact of erosion on the test image. 
 

 
 

Figure 2.3:  Erosion. Result of erosion on test image of Figure 2.1. 



Chapter 2   Fundamentals of Digital Image Analysis                                                               8 

 
In gray-scale morphology, dilation is the process in which the maximum intensity value 
among the image pixels underlying the structuring element is given to the image pixel 
located below the origin of the structuring element. Similarly, erosion in gray-scale 
morphology picks the minimum intensity value from the image pixels under the struc-
turing element and puts this value on the image pixel lying under the origin of the struc-
turing element. 

2.2.1.2 Opening and Closing 

Even though dilation and erosion are complementary to each other, they do not perfectly 
reverse each other’s action. Due to this reason, their successive application is order de-
pendent,  that  is,  the  order  in  which  they  are  applied  on  an  image  matters  in  the  final  
output [13]. Depending on the order in which these two operations are performed, two 
other basic morphological operations are obtained, namely opening and closing. Closing 
operations are extensive, that is, the output of a signal is greater than the signal itself at 
a particular point in space. On the other hand, openings are anti-extensive, that is, out-
put of a signal is smaller than the signal itself at a particular point in space [1]. 
 
In opening, the image is first eroded with a particular structuring element followed by 
dilation of the resultant image with the same structuring element. This way narrow 
bridges or small connections between objects as well as thin portions of objects are 
eliminated [13]. It also smoothes the object contour, for example, smoothens sharp 
edges as well as removes protrusions. It can be expressed mathematically as 
 
                                                     ,                                              (2.4) 
 
where  represents the morphological opening. The result of opening the test image of 
Figure 2.1 is shown in Figure 2.4(a). 
 
Closing, on the other hand is opposite to opening in which the image is first dilated then 
erosion is performed on the dilated image with the same structuring element. It basically 
plugs the gap between broken contour elements and also removes small holes in objects 
[13]. Similar to opening, it also smoothes the contour of the objects especially removes 
the inner edges, also shown in Figure 2.4 (b). Mathematically, it can be expressed as 
 
                                                     •  ,                                              (2.5) 
 
where • represents the morphological closing. The effect of the closing operation on the 
test image of Figure 2.1 is shown in Figure 2.4(b). 
 
In gray-scale morphology, opening and closing are obtained by using gray-scale erosion 
and dilation. Gray-scale opening removes the small light details in the image due to 
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application of the erosion before dilation. On the other hand, gray-scale closing removes 
dark details in the image due to application of the dilation before erosion [13]. 
 

            
(a)                                                 (b) 

Figure 2.4: Opening and Closing. Result of (a) opening and (b) closing on the test im-
age of Figure 2.1. 
 

2.2.2 Morphological Image Processing Algorithms 

In this part of the chapter we will discuss some of the algorithms for morphological im-
age processing that are used in this thesis.  

2.2.2.1 Boundary Extraction 

The boundaries of the objects in an image are extracted by first eroding the input image 
 by a suitable structuring element  and then subtracting the resultant image from the 

original image, mathematically written as 
 
                                                  ,                                                (2.6) 
 
where  is the boundary of set . The thickness of the extracted boundary depends 
upon the size of the structuring element being used. Figure 2.5 shows the boundary of 
the input image extracted by using morphological operators. 
 

         
(a)                                                       (b) 

Figure 2.5: Boundary extraction. (a) An object from an image and (b) its extracted 
boundary. 
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2.2.2.2 Convex Hull 

Finding the convex hull of a binary object is useful in many image analysis tasks. For a 
set to be convex, a line between any two points that belong to the set must be complete-
ly within the set. If the object is denoted by the set A then its convex hull is the smallest 
convex set C such  that  A is completely contained in C. The algorithm for finding the 
convex hull uses four structuring elements  of different types as depicted in Figure 
2.6(a). The convex hull of an object  is given by 
 
                                                            ,                                                   (2.7) 
where 
                                                            =  , 
and 
                                                    ,                                            (2.8) 
 
where  = 1,2,3,4 and  = 1,2,3,.. , also  =  is taken as the starting point and con-
vergence point is reached if for a particular value of ,  = . The symbol  is 
used for finding the match (“hit”) of the second set in the first set.  An image object and 
its convex hull are shown in Figure 2.6(b) and (c) respectively.  
 

              
(a)                                            (b)                                              (c) 

Figure 2.6: Finding the convex hull of a binary object. (a) Four different structuring 
elements. (b) An object from an image of size 180x240 pixels and (c) its convex hull.  
 

2.2.2.3 Skeleton Extraction 

The skeleton of an image object is defined as a one pixel thick line going through the 
centre of the object such that it has equal distance from the object boundaries on either 
side. It can be obtained by iteratively peeling the object by using erosion or opening 
until there remains a thickness of one pixel. The selected structuring element should 
ensure that the topology of the region is retained in the process [37]. 
 
The skeletons of the objects in a binary image are obtained by 
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                                                    ,                                                   (2.9) 
and 
 
                                         ,                             (2.10) 
 
where  is k-iterative erosions of A by B until  is reached such that one 
more erosion would make the output an empty set. Figure 2.7 demonstrates the opera-
tion of skeleton extraction. 
 

            
(a)                                          (b)                                        (c) 

Figure 2.7: Skeleton Extraction. (a) An object from an image, (b) its extracted skeleton 
with spurious branches, and (c) skeleton without spurious branches. 
 

2.2.3 Morphological Operations on Gray-Scale Images 

In Section 2.2.1, we discussed the gray-scale version of the basic morphological opera-
tions such as erosion, dilation, opening and closing. Here we discuss some of the other 
morphological operations performed on gray-scale images. These operations are used 
either to enhance the image details or to extract some important features from them. 

2.2.3.1 Gradient 

Gradient operations are used to find the sudden variations in intensity values among the 
pixels of a gray-scale image. The morphological gradient operation is applied on images 
to emphasize these intensity variations in addition to enhancing the details [13]. The 
subtraction of the eroded image from the dilated image gives the gradient, mathemati-
cally written as 
 
                                                    ,                                          (2.11) 
 
where  is the gray-scale image and  is the structuring element. Lower case denotes 
that these are functions in gray-scale morphology rather than the sets that are used in 
binary morphology. Figure 2.8 illustrates the morphological gradient operation. 
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(a)                                            (b) 

Figure 2.8: Image gradient. (a) Original gray-scale image and (b) its gradient.  

2.2.3.2 Top-Hat Transformation 

Top-hat transform is a morphological transformation which magnifies the details in the 
regions of image where the contrast is low. It also emphasizes the objects which are 
darker than their surroundings [27] as illustrated in Figure 2.9. It is simply obtained by 
subtracting the morphologically opened image from the original image, expressed as 
 
                                                           .                                                (2.12) 
 

         
(a)                                                (b) 

Figure 2.9: Top-Hat transformation. (a) Original gray-scale image from [12] and (b) 
image after application of top-hat transformation.  
 

2.2.3.3 Granulometry 

Sometimes it is necessary to know the sizes of the objects in the image in order to pro-
ceed towards the right direction in the image analysis. One example of the use of this 
size distribution is in finding the optimal size of the structuring element for subsequent 
morphological operations [26]. Granulometry is the morphological technique to get the 
size distribution of the objects present in a gray-scale image. The idea is that we open an 
image with a particular sized structuring element which removes all the image objects 
smaller than the size of the structuring element. Taking the difference of this image 
from the original one we get the image containing objects removed from original after 
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opening. We can then deduce how many objects with size comparable to this structuring 
element were initially there in the image. The process is applied iteratively with increas-
ing sizes of the structuring element. Later on the differences are normalized and a histo-
gram  is  obtained  which  gives  the  distribution  of  the  size  of  the  objects  in  the  image.  
Figure 2.10 shows an image containing objects of mainly two different sizes as is evi-
dent by two peaks in its size distribution found using granulometry. 
 

     
(a)                                                 (b) 

Figure 2.10: Granulometry. (a) Original gray-scale image with varying sizes of objects 
and (b) its size distribution histogram using granulometry. 
 

2.3 Image Segmentation 

Segmentation is the process in which an image is divided into certain segments or re-
gions  based  on  some  similarity  or  common  characteristics  among  the  pixels  of  each  
region. The aim is to get such a representation of the image that makes it easier to per-
form further analysis on the image. It is one of the basic and necessary steps in image 
analysis, which can mean separating the objects in the image from the background or, in 
a more general framework, segregating distinct individual objects from all the objects. 
Within  the  context  of  this  thesis,  the  former  definition  of  segmentation  is  applicable.  
The real importance of segmentation is realized when some quantitative analysis is to be 
performed on the image. Then it is of utmost importance to have the objects absolutely 
separated from each other as well as from the background to perform further analysis 
successfully [13]. Segmentation is not straightforward; often the objects do not have 
apparent boundaries perhaps due to lack in sharp intensity transition between them and 
the background. Some prior knowledge about a few basic features of the image objects 
such as size, shape, and gray-level intensity do provide significant amount of informa-
tion for the segmentation of those objects [32]. One example of taking image intensity 
into account is by assuming it as the height in the image. So the objects would be 
thought of as mountains, due to their high intensities, separated by valleys in an intensi-
ty landscape [40]. In that case, segmentation is achieved by locating those mountains in 



Chapter 2   Fundamentals of Digital Image Analysis                                                               14 

 
the landscape. One can find methods that use one or more of the above mentioned fea-
tures for segmentation.  
 
There are two main approaches used for image segmentation, one finds similarities 
among  pixels  of  a  certain  region  to  segment  the  image  into  different  regions  and  the  
other detects the discontinuities or sudden changes in the image intensity, for example, 
edges and boundaries of objects, to segregate the image into segments [13]. Threshold-
ing and region based segmentation are two common methods and are based on the for-
mer approach. Morphological watershed segmentation is also a commonly used method 
for not only segmenting objects from background but also partitioning touching or over-
lapping objects from each other [36]. Here we briefly describe thresholding and wa-
tershed segmentation algorithm to end the chapter.  

2.3.1 Thresholding 

Thresholding is one of the basic and the most natural ways to segment an image into 
foreground and background pixels, i.e., into a binary image. This approach is useful in 
the  case  when  there  is  a  high  degree  of  similarity  among  the  object  pixels  as  well  as  
among the background pixels. Basically, the idea behind this approach is to find a thre-
shold value T of intensity so that all the pixels with intensity value below T are marked 
as background pixels whereas others are marked as foreground pixels. Apart from using 
just a single value for threshold there can be a case in which more than one threshold 
values are required to successfully perform the segmentation. Such type of thresholding 
is often called multi-level thresholding [13]. There are different ways to find an appro-
priate threshold T. Perhaps the simplest one is finding the valleys in the histogram of 
intensity values such that the intensity values at the valleys are the segmentation thre-
shold values [13].  
 
Based on the manner in which T is obtained, we have three different types of threshold-
ing namely global, local and adaptive thresholding. In global thresholding the threshold 
values are found globally, that is, using the intensity values of the whole image. So the 
same threshold value is used for the whole image. Local thresholding takes into account 
the intensity values in the neighborhood of a certain pixel to find the threshold values. 
Therefore, different thresholds are selected for different parts of the image. Finally, 
adaptive thresholding is also a kind of local thresholding but it involves the spatial 
coordinates as well and adaptively thresholds the different regions in the image [13]. 
Figure 2.11 shows the result of thresholding on the given gray-scale image. 
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(a)                                                       (b) 

Figure 2.11: Thresholding. (a) Original intensity image and (b) its binarized image 
after applying thresholding.  
 

2.3.2 Watershed Segmentation 

The morphological watersheds or the watershed transform for image segmentation is 
basically a technique in which continuous boundaries, known as watershed lines, are 
found between the objects that may or may not be touching each other. The logic behind 
the name watershed comes from the concept in which the image is supposed to be com-
posed of regions, formed by the objects, such that every region possesses its own inten-
sity minimum. The catchment basin of that minimum is the set of points, on which if a 
drop of water is placed, it would end up falling to that point of minimum. The desired 
watershed lines are the locus of all those points, on which if a drop of water is placed, it 
can fall in any of the points of minimum that are adjacent to it [13].  
 
Practically, this partitioning is realized by supposing that there is a hole punched in 
every region of a minimum, and water is rising into the regions from below at a uniform 
rate. Then there will be a point in time when the water from one region tends to over-
flow  in  the  other  region  thus  trying  to  merge  them  together.  However,  a  dam  is  con-
structed which restrains the water from doing so. Seen from the top, the boundaries of 
the top of the dam would be visible that are analogous to the desired segmentation lines 
or the watershed lines [13]. Figure 2.12 depicts the watershed segmentation applied on 
the original image to get the image objects separated by watershed lines. 
 
Practically, there exist some false minima in the images which lead to over-
segmentation when the watershed transformation is applied directly [32]. In order to 
solve this problem, often marker-controlled watershed transformation is used. The idea 
is to use some features to obtain markers corresponding to the regions in the image. 
These markers are then used as the minima for subsequent application of watershed 
segmentation [32]. 
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(a)                                          (b) 

Figure 2.12: Watershed transformation. (a) Original image. (b) Image after application 
of Watershed segmentation. 
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Chapter 3 

Review of Clump Splitting Methods 
In this chapter we present a review of clump splitting methods found in the literature. 
As described briefly in Chapter 1, the clump splitting methods can be categorized into 
three different approaches: concavity point-based methods [10, 18, 19, 24, 37, 38, 39, 
43], mathematical morphology-based methods [7, 14, 20, 26, 34] and model- based or 
parametric fitting based methods [2, 6, 17, 30, 42]. Here in this chapter, we choose to 
discuss only those methods, from all the three approaches, which were found to be the 
most effective ones while being novel in their technique. In addition, the types of im-
ages that we have had in our data set also influenced the selection of the methods to be 
reviewed. 
 
Although the original image can also be used to perform clump splitting analysis, al-
most all the methods found in the literature assume that the images are binarized and 
discard  the  original  intensity  information.  As  already  mentioned  in  Chapter  2,  the  re-
sults of the overall automated analysis hugely depend on how accurately the binariza-
tion is done. 

3.1 Concavity Point-Based Methods 

Concavity points are the points on the boundary of clustered convex objects which are 
formed due to touching, overlapping or merging of two or more objects. Basically these 
are the points that are identified as the points with high concaveness and high value of 
curvature [10, 18]. Figure 3.1 shows three objects merged together to form a clump and 
the points of contact at the boundary of the two objects are the concavity points, hig-
hlighted with white dots. 
 
Concavity point-based methods are quite effective and well known for splitting of 
clumps in cell microscopy images. The reason behind these methods being popular is 
that they try to imitate the human approach of separating clumped objects by looking 
for some prominent points on the object contour and then drawing a line between those 
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point-pairs which satisfy a certain set of conditions. There are many different methods 
which vary in how those points are found in the images and how the split lines are cho-
sen.  

 
 

Figure 3.1: Concavity points. (a) Clump of objects with its concavity points marked 
with white dots. 
 

3.1.1 Spatial and Gradient Parameter-Based Cell Seg-
mentation  

The clump splitting algorithm proposed by Fernandez et al. in [10] uses spatial and gra-
dient parameters to find the line between concavity points for segregation of clumped 
objects in an image. The method was applied on the images containing clumps of plant 
cells. The decision about drawing a line between the two concavity points is influenced 
by two conditions: the distance between the two concavity points as compared to the 
perimeter of the clumped object and the flatness of the path between the concavity 
points. 
 
The authors use the top hat transform, see Section 2.2.3.2, to enhance the contrast be-
tween the foreground cells and cell clumps from the background. After that, contours of 
the cells are extracted by using a morphological algorithm for boundary extraction given 
by Equation 2.6 in Section 2.2.2.1. 
 
A concaveness measure is used to find the concavity point on the contour of the cell 
clumps. For every point j on the contour of the cell clumps the value of concaveness is 
found by 
 
                                              c (j)  =   A5

y 1
5
x 1

j 1
j -1  ,                                      (3.1) 

 
where   is the 5x5 window centered at  and A is the binary image. For every contour 
pixel , not only the foreground pixels in the 5x5 window centered at  but also the fore-
ground pixels in the 5x5 window centered at the two adjacent contour pixels to  is tak-
en into account to make the concaveness measure more robust. This way the concavity 
points along the contour would have a large value as compared to points on convex por-
tions and on straight lines along the contour. Finally, thresholding is applied to the con-
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caveness values, and pixels with high values of concaveness are found to be the concav-
ity points in the cell clump. The idea is depicted in Figure 3.2 (b). 
 

  
(a)                       (b)                     (c) 

Figure 3.2: Concaveness measure-based concavity point detection. (a) Image of cell 
clump. (b) Contour of cell clump with three different windows for evaluation of con-
caveness at a point. (c) Final image with concavity points marked with white points. 
 
 
Concavity point-pairs are then formulated so that a line can be drawn between them to 
split the cell clump into individual cells. The authors propose two parameters for find-
ing concavity point-pairs which they referred to as the spatial parameter and gradient 
parameter.  
 
The  spatial  parameter  condition  requires  that  the  Euclidean  distance  between  the  two  
concavity points and the perimeter of the cell clump have a relationship given by 
 
                                                             

 
 ,                                                         (3.2)   

 
where  is the Euclidean distance between two concavity points and  is the perimeter 
of cell clumps, that is, the number of contour points between those two concavity 
points. This condition makes sure that only those concavity points are joined by a line 
which  arise  due  to  overlapping  of  two cells  and  are  not  naturally  present  in  the  cells.  
Hence only for the former case the value of  will be smaller than the diameter of hy-
pothetic circumference of . 
 
The gradient parameter takes into account the gray-level intensity values along the line 
joining two concavity points and is given by  
 
                                                   | ,                                              (3.3) 
 
where  is the number of pixels in the line and  is the gray-level intensity value at the 
nth pixel of the line. It is required to have a minimum  value for a line to be a can-
didate line. A threshold value for the gradient is proposed to be 2*N, where N is total 
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number of gray-levels in the image, and it is expected that a candidate line gives a gra-
dient value less than this threshold to make the concavity point-pair a valid one.  
 
Each concavity point is examined against all the other concavity points to get the best 
pair for it, satisfying the above two conditions. Once the pairs are formed, they are 
joined by drawing a line in order to isolate the individual cells from the cell clump.  

3.1.2 Form Analysis-Based Segmentation of Cell 
Clumps 

Wang et al. presented a method in [37] for splitting of cell clumps in a microscopic im-
age containing cells. The method uses form analysis to differentiate cell clusters from 
individual cells. Although the size and form of cells usually vary quite a lot in a particu-
lar image data set, it can still be assumed without much error that the cells have an ellip-
tical form with not much difference in major and minor radius. Here in this method, a 
bounding polygon of a prototype form of the cell is fitted on the contour of the region 
under observation to examine its shape in order to separate single cells and cell clumps. 
Those regions which are not convex are identified as cell clumps and are therefore fur-
ther processed so that they are splitted into single cells.  
 

    
(a)                                           (b) 

Figure 3.3: Form analysis-based cell segmentation. (a) Original image with cell clumps 
and (b) skeletonized image with concavity points found using minimum distance from 
the skeleton. 
 
 
After identification of cell clumps, they are skeletonized, see Section 2.2.2.3 for details. 
Typically the contours of the objects are affected by noise and they need to be 
smoothed, because otherwise skeletonization may lead to some unnecessary branches. 
Moreover, some short branches that are not consistent with the topology of the underly-
ing objects, referred to as parasitic components, are often found after skeletonization is 
done. A morphological algorithm for pruning is used to remove them. Figure 3.3 shows 
cells and cell clumps along with their skeletons. 
 
In the next step the candidate points for split lines are found. This is done by using the 
information from the contour and the skeleton of the cell clumps. Each point on the con-
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tour of each cell clump is taken and its minimum distance from the skeleton is found. 
Using  this  distance  data  along  with  the  respective  index  of  contour  points,  a  distance  
histogram is formed which, after further processing with a band pass filter, gives alter-
nating peaks and valleys where the valleys correspond to the candidate points for split 
lines. These candidate points form a list with distance values of every point listed 
against  it.  Finally  thresholding  is  performed  on  the  distance  values  to  eliminate  those  
points which cannot be regarded as concavity points. Figure 3.3 (b) shows the concavity 
points found using minimum distance from the skeleton. 
 
The authors present a stepwise procedure which uses the found concavity points to get 
the split lines. The previously created list of concavity points is first sorted with respect 
to the decreasing distance value. Once the list is sorted, the concavity point with the 
largest distance measure is taken, and its possible partner concavity point is found by 
testing every other concavity point for certain conditions (defined below) to be met. 
After obtaining the first concavity point-pair, the partner concavity point for the point 
with the second largest distance is found, provided that that point was not already se-
lected as a partner of the a concavity point. This process is iterated until a partner is 
found for all the concavity points. Once a point is selected as a partner for a split line, it 
is no more considered to get a partner of its own; however, it is possible that it can be a 
partner for more than one concavity points. 
 
There are two major conditions regarding the construction of a split line, which are 
checked before verifying other conditions to narrow down the possible concavity point-
pairs. First condition is that the split line should pass through the skeleton. This requires 
the concavity point pairs to be facing each other. The second condition is that the split 
lines should neither intersect each other nor should they pass through the background. 
 
With the assumption that the cells have elliptical shape and have very little variation in 
their size and shape, the authors propose the following set of constraints for the selec-
tion of the partner for the given concavity point: 
 
 The ratio of length of the split line and the minimum number of pixels between 

the two concavity points along the region contour should be less than a predefined 
threshold as given by 

                                                            ,                                                  (3.4)  

 
         where  and  are the two concavity points,  is the Euclidean distance 

between  and ,  is the minimum number of pixels between  and  
along the region contour, and  is a predefined threshold.   
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 Since the split line divides the region into two, therefore the second condition is 
that the ratio of the area of those two regions should satisfy 

 

                                                            ,                                               (3.5) 

 
         where A1 and A2 are the areas of the two regions after the split and 2 is the prede-

fined threshold. 
 
 The third condition is related to the length of the split line and is given by 

 
                                                          ,                                                    (3.6) 
 
          where 3  is a predefined threshold value. 
 
 To qualify  as  a  split  line,  the  fourth  condition  is  that  if  there  are  two parallel  or  

almost parallel split lines, then the distance between them should be large in com-
parison to the maximum of the length of the two split lines as given by 

 

                                                       ,                                       (3.7) 

 
         where  and  are a pair of concavity point-pairs forming the two split lines, 

with  and  being on the same side of the skeleton and  and  on the other side, 
and 4  is a predefined threshold.  

 
 The degree of parallelism is defined by  

 
                                                          ,                                              (3.8)    
 
         where  is the angle between line  and line  and  is a predefined thre-

shold.  
 
 Finally there is a condition on the ratio of the length of the split line to the length 

of the maximum chord of the clump defined by  
 

                                                                ,                                               (3.9) 

 
         where  is the chord in the cluster with maximum length and   is a prede-

fined threshold. 
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There may be a case that more than one concavity points qualify for being the candidate 
partner for the concavity point under consideration. In that case the point that gives the 
minimum length split line is chosen. A line is drawn between those concavity point-
pairs and the same process is repeated until the whole cell clump is split into the consti-
tuent single cells. 

3.1.3 Rule-Based Splitting of Clumps 

In this method of splitting clumps, presented by Kumar et al. in [18], the authors pro-
pose certain rules to decide between the split and no-split classes. Instead of finding 
split lines directly, this method first finds the candidate split lines between the two con-
cavity points, and from those candidate lines the best line is selected based on a cost 
function.  

 
(a)                                                 (b)                                             (c) 

Figure 3.4: Rule-based clump splitting. (a) A clump of objects showing concavity points 
Ci, convex hull chords Ki, and concavity depth features CDi. (b) A clump of objects 
showing the directional vectors vi, vj and uij associated with the concavity points and 
the angles for calculation of CC and CL features. (c) A clump with only one concavity 
point defining the concavity angle CAi to be used for finding a line between concavity 
point Ci and a boundary point P. 
 
 
The method starts from locating the concavity points. Concavity points Ci are defined as 
the points on the boundary segment which have the maximum perpendicular distance 
from their respective chords. For each concavity point, concavity regions are found and 
then their respective boundary segments Bi and convex hull chords Ki are evaluated as 
shown in Figure 3.4(a).  
 
The  authors  propose  some  features  that  are  used  to  narrow  down  a  very  large  list  of  
possible split lines into very few ones. The first feature is concavity depth CDi, pro-
posed by Rosenfeld in [25] and also shown in Figure 3.4(a). It is defined as the length of 
a perpendicular line from a concavity point to its convex hull chord. It gives a concave-
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ness measure of a concavity point and is used to rule out those points which result from 
a noisy contour.  
 
The first split line related feature is saliency SAi. It is used to ensure that the concavity 
points constituting the split line have enough concaveness measure, that is, they are va-
lid concavity points, and the distance between them is also minimal. It is given by 
 

                                                 ,                                    (3.10) 

 
where subscripts  and  refer to the two concavity points and  is the Euclidean 
distance measure. A large value for 1 is required to ensure the candidacy. 
 
Naturally, two concavity regions, no matter how close they are, cannot share a split line 
unless they are aligned opposite to each other. This requirement is captured by two 
alignment features: concavity-concavity alignment CCij and concavity-line alignment 
CLij. A directional vector vi towards the concavity point and originating from the mid-
point of the corresponding convex hull chord is a parameter which defines the direction 
of the concavity region Si and is used to find the alignment features, as shown in Figure 
3.4(b). The angle between the directional vectors of the two concavity regions is used to 
find CCij, which indicates how much they are oppositely aligned, and is given by 
 
                                                ·   ,                                      (3.11)   
     
where i and j are the two directional vectors. Ideally the angle between i and j 
should be equal to  and therefore  be equal to 0. The angles between the split line 
and the directional vectors of the corresponding concavity regions also tell us how much 
the regions are aligned. CLij is the feature which takes this into account and is defined 
by 
 
                                  max   
                                          max  ,   ,              (3.12) 
 
where i and j are the angles between the split line and the directional vectors i and j 
respectively, as depicted in Figure 3.4(b). To qualify for being a candidate it is required 
that CLij also has a small value, ideally equal to 0.  
 
There are situations in clump splitting when a split line is needed between a concavity 
point and a boundary pixel on the other side of the concavity point. This situation arises 
when a concavity point is left without a pair. In that case the split line is formed be-
tween the concavity point Ci, the boundary pixel P and the midpoint of the correspond-
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ing convex hull chord Ki, as shown in Figure 3.4(c). In such situations two features con-
cavity angle CA and concavity ratio CR are used to determine if there should be a split 
line or not. They make sure that the concavity region is sharp, that the concavity region 
is deep, and that the region is the most concave of all the other concavity regions in the 
clump. They are defined as 
 
                                                          ,                                               (3.13)                           
 
                                                              ,                                                     (3.14) 

 
where  is the concavity point,  and  are the end points of convex hull chord, 

 is the largest concavity depth of the clump, and  is the second largest concavi-
ty depth. In the case that there is only one valid concavity point in the concavity region 

 is replaced by the concavity depth threshold value. The split line is made if the 
concavity is sharp and large enough, that is, a low value of  and a high value of  is 
required for split. 
 
Finally, to get the best split line of the chosen candidate lines, the authors propose a cost 
function given by 
 

                                                  
 
 ,                                   (3.15) 

 
where  and  are  the  weights  and  are  found by  using  a  linear  classifier  such  as  the  
SVM classifier. The value of  depends on how close to each other the concavity points 
are as well as on their concaveness. A large value of  ensures a perfect split. The au-
thors also observed that the decision boundary between the two classes, that is, split or 
no-split,  is  a  straight  line  in  2-D  feature  space  with   and  as its 
two features. 
 
The procedure is to recursively find the split lines between two concavity points satisfy-
ing the conditions stated above and, finally, if there still remains concavity points which 
could not get a pair then a split line between those concavity points and a boundary pix-
el is attempted so that in the end only single convex objects remain in the image. 

3.1.4 Delaunay Triangulation-Based Splitting of Nuclei 
Clumps 

This method for splitting clumps of cell nuclei is proposed by Wen et al. in [39]. It uses 
Delaunay triangulation for the formation of a reduced hypothesis space for the candidate 
split lines. This is followed by the application of certain geometrical constraints to re-
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duce the size of this space, which after some inference rules gives the desired set of split 
lines. 
 
The starting point of the method is finding the concavity points by defining the points 
having maximum curvature. The value of curvature is found at every point on the con-
tour of the cells and cell clumps using the expression 
 

                                                       ,                                                   (3.16)      

 
where  and  are the coordinates of the boundary pixels and the derivatives are found 
by using Gaussian derivative and convolving it with the boundary points. The list of 
values of  is  then  thresholded  to  get  the  points  of  local  maximum  curvature  (LMC),  
that is, the concavity points. The set of such points is denoted by 
 
                                                             ,  
 
where  is the ith point of the  total points of LMC. 
 

 
Figure 3.5: Geometric attributes of concavity points as described in the method in [39]. 
 
 
The line splitting the clumps are denoted by eij, with i and j being the indices of the two 
end points vi and vj of the edge respectively, as shown in Figure 3.5. For every split line 
there are features which are used during the application of geometrical constraints. The 
directional vectors of the tangent to the contour on those end points are denoted by Ti 
and Tj, whereas the angle between these directional vectors and the split line are denoted 
by ij and ji as shown in Figure 3.5.  
 
A large number of split lines can be defined between M points,  to be exact, but 
most of them are invalid. To deal with this, Delaunay triangulation (DT) is quite effec-
tive. For a set of M points on a plane DT gives connected triangles between them such 
that not a single concavity point lies interior to the circumcircle of any of those trian-
gles. DT is used here because of its properties that it discards intersecting split lines and 
also that its subgraph is a Euclidean minimum spanning tree (EMST). Moreover, the 
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property of DT that it maximizes the minimum of the interior angles of the triangles is 
desirable in this case. 
 
The  set  of  split  lines  obtained  after  DT is  still  quite  large  and  also  contains  triangles.  
The fact, that triangles of edges are not applicable in most cases of split, suggests that 
still many of the edges need to be eliminated from the edge set. For that purpose geome-
trical constraints are applied which are as follows: 
 
 The split line must be inside a clump and should neither pass through the back-

ground nor intersect the other split lines. 
 
 The angle between the two tangents Ti and Tj must be as close to 180 degree as 

possible, that is, the split line needs to be discarded if the condition, 
 , is satisfied, where  is a predefined threshold. 

 
 The split line must be approximately perpendicular to the two tangents, that is, the 

values of ij and ji must be close to 90 degrees. In other words, a split line must 
be ruled out if the condition 

 

                               max ·  | , | ·  | ,  

 
          where is a predefined threshold, is satisfied. 
 
Once the geometrical constraints are applied the final step is to get the final set * of the 
split lines. All the split lines associated with the concavity points, which have a degree 
(number of split line through it) equal to one, are accepted in the output list. All the re-
maining split lines with concavity points that are already included in the output list are 
discarded. If there are split lines forming a triangle, then the pair of split lines that give 
minimum convexity measure is retained. Convexity is defined by 
 

                                                      ,                                              (3.17) 

 
where  is the sum of angles of the tangents on the contour of ith partition and  is the 
total number of such partitions after splitting.  
 
After  the  execution  of  the  above  mentioned  steps,  the  finally  obtained  output  list,  re-
ferred to as *, is the list of pairs of concavity points which are joined by lines to seg-
ment the clumps into individual convex objects. 
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3.2 Mathematical Morphology-Based Methods 

Mathematical morphology-based methods are quite simple and widely used methods for 
separating cells from background as well as from the other cells. Many of these methods 
are developed using basic morphological image processing, such as erosion, dilation, 
opening, and closing, sometimes combined with certain image segmentation algorithms 
as well. The literature has a lot of methods [7, 14, 20, 26, 34] which can be classified as 
morphology-based methods, on the basis of the approach used to develop them. How-
ever, there exists a problem using them in that they do not deliver accurate results when 
the  cells  cluster  heavily,  forming  large  cell  clumps.  In  these  cases,  over  or  under-
segmentation or both occur quite often.   
 
Due to this problem, during this work, our sole purpose was to use the results of this 
widely used approach for comparison with our implemented method so as to emphasize 
the importance of our work. Here we discuss only the basic method from this approach 
which is not from a particular author, but in fact a more generalized approach using 
morphological image processing. 
 
The first step involves the construction of the marker image for the watershed transform 
and there are variations in deriving the marker image. The purpose of the marker image 
is to control, though it does not completely remove, the oversegmentation inherent in 
the watershed algorithm. Here, we discuss three different approaches to generate the 
marker images. 
 
In [20], the authors use a distance transform of the inverted binary image to convert it 
into a distance image. In the distance transform, the distance of every dark pixel from 
the  nearest  bright  pixel  is  found  using  the  Euclidean  distance  as  the  metric.  This  dis-
tance image is then opened by morphological opening, see Section 2.2.1, using a suita-
ble structuring element to discard regions smaller than the expected cell size. The au-
thors of [22, 32] apply h-maxima transformation to the distance transformed image to 
make sure that there is only one local maximum for every single object. The output is 
then inverted to create an image with one local minimum value for every individual 
object to be used as marker image for the subsequent application of watershed trans-
form. 
 
The authors of [14] propose the fusion of the distance transformed image with the mul-
ti-scale morphological gradient image to get the marker image. Since the morphological 
gradient, described in Section 2.2.3, relies on the size of the structuring element, the 
multi-scale approach is employed here. It uses both small and large structuring elements 
by 
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                                 ,                      (3.18) 

 
where  is a structuring elements having size (2i+1) by (2i+1),  f  is the gray-level im-
age and M is the multi-scale morphological gradient. This averaging also makes the 
measure more immune to noise than the simple gradient measure. After passing through 
the morphological opening procedure this gradient image is combined with the distance 
image to get the marker image for the watershed algorithm. 
 
The use of morphological granulometry, described in Section 2.2.3, for finding the size 
distribution of the image objects is also a good technique to get the marker image. The 
authors in [26] proposed to find the size s from the size distribution, and use a disc 
shaped structuring element (considering round objects) of the same size to perform the 
morphological opening of the image. The resulting image after the application of the 
morphological gradient on it gives a good marker image for the subsequent application 
of the watershed algorithm. 
 
Once the marker image is obtained, the watershed algorithm is applied on it, with the 
constraint that the markers are the only regional minima [13]. The obtained watershed 
lines are then used to define the cell contours of the final segmented image, which, if 
obtained accurately, contains every cell separated from the clump to which they be-
longed initially.   

3.3 Model-Based or Parametric Fitting-Based Me-
thods 

More often than not, cells in microscopic images are elliptical and can easily be mod-
eled with an ellipse with not much difference in the lengths of the major and minor 
axes. Thus some kind of template matching or ellipse fitting on the contour of the cell 
images can be effectively used to split cell clumps. There are numerous methods in the 
literature falling in this category [2, 6, 17, 30, 42]. Usually the methods from this ap-
proach are parameter-dependent. A complete review of the various methods is beyond 
the scope of this thesis. Hence we discuss a general approach used in these methods 
reviewing the methods presented in [2, 6]. 
 
Before fitting an ellipse to split cells from cell clumps, the initial step in these methods 
is polygon approximation of the contours of the cells and cell clusters. The purpose of 
polygon approximation is to smooth the contour of cells and cell clusters which may be 
affected by noise. This is needed because the next step is to find the concavity points 
along the contour and then fitting the ellipse on the contour which may be problematic 
if the contour is noisy.  
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The idea of polygon approximation is simple: two non-consecutive points on the con-
tour are taken and a straight line is drawn between them. Next the distance of every con-
tour point, between those two points, from that line is found. If any of the points has a 
distance value greater than a specified threshold, then a line is drawn between this point 
and the first of the initial two points. Moreover it is taken as the first point of the next 
two points, otherwise the initial line is retained and the second of the initially chosen 
points is taken as the first of the next two points until we reach the end of the contour 
points. During this process we keep discarding intermediate points, as we take only the 
end points to make the line, so that finally the number of points on the contour is less 
than originally. 
 
After polygon approximation, the concavity points are needed because they are actually 
the points at which the contour is segmented into different small curves. There are many 
different techniques to find these points such as the curvature based method [39] and the 
tangent based method [17]. The idea is to take all those points which are located in re-
gions that are concave. The concavity should be due to the merging of different individ-
ual cells rather than due to some irregularities or noise in the cell contour.  From each of 
those regions, one or more points are taken which has the maximum value of concave-
ness in that region and those points are called concavity points. 
 
Once concavity points are found, the cell contours are divided into contour sections 
from those concavity points. Naturally, these are the points from where the cells need to 
be segmented from the clump. In case of a cell clump, these contour sections are parts 
of the different cells. For one cell, there may be more than one contour section but one 
contour section belongs to only one cell.  
 
Next, an ellipse is fitted on each contour section. There are many ellipse fitting tech-
niques, least squares fitting [11] being the most popular one. Once an ellipse is fitted to 
every contour section then, there is some evaluation criteria applied to those ellipses. 
For example, the ratio of the major to the minor radii should not be larger than a speci-
fied threshold and the ellipse contour should contain maximum points from the contour 
section. Any ellipse that fails to get through any of these criteria is rejected. 
 
It often happens that two or more contour sections of the same cell have an ellipse fitted 
to each of it after the ellipse fitting step. Therefore the next step is the combination of 
those ellipses so that both the contour sections share a single ellipse due to being part of 
the same cell as shown in Figure 3.6. It is sometimes referred to as grouping of contour 
sections and completing the boundary of the cell they are part of. There are certain as-
pects that are taken into account while deciding whether two ellipses are to be combined 
or not. One of them is the distance between the centers of the two ellipses; if it is a larg-
er value than a specified threshold, then ellipses should be retained. Also the distance 
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from the  center  of  the  newly  fitted  ellipse  to  the  center  of  previously  fitted  ellipses  is  
taken into account in order to decide on combining the ellipses. 
 

 
       (a)                       (b)                         (c) 

Figure 3.6:  Ellipse fitting and ellipse combination. (a) Two contour sections of a single 
cell with (b) two different ellipses fitted on it. (c) Combination of the two ellipses of (b). 
 
 
Finally, there can be some post processing performed on the ellipse fitted image. One 
example is finding of the medial curve for two overlapping ellipses so that the output 
image contains the original cell image with curves separating individual cells from the 
clump. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  

 
 

 

Chapter 4 

New Methods for Clump Splitting 
The approaches and the methods that we described in the previous chapter were found 
to  result  in  false  split  lines  when the  clumps  are  more  complex.  However,  there  were  
some useful features in some methods, and if those features are collected and combined 
together with some modifications in the faulty segments, then we can obtain a signifi-
cantly improved method. In this chapter, we first present a method, also presented in 
[8], that is obtained in a manner discussed above and the achieved results are close to 
the desired one. Then we move on to describe a novel method for clump splitting which 
is developed during the course of this thesis. Although the steps followed are similar to 
the previously studied methods, the techniques to perform them are novel. 
 
In order to apply either of the clump splitting methods, the images are first passed 
through the image pre-processing steps; later on some post-processing is also necessary 
in order to get the split lines closely resembling the ones obtained manually. Before the 
application of the clump splitting methods it is assumed that the image is already seg-
mented and transformed into binary. 

4.1 Image Pre-Processing 

In the preprocessing phase, the binary image is first zero padded. This is needed because 
we may have certain images in which objects touch the image boundaries and finding 
the contour of the closed shape objects is not possible in that case. The contour of the 
image objects is then found. There are several methods to do that but the effective ones 
are presented in [4, 5]. Then, coordinates of the points of the object contour are found 
for each object. If there are any discontinuities in the detected contours, they are re-
moved. This is done by taking the 3x3 neighborhood of the current contour pixel (where 
the discontinuity is) and making the center element of the 3x3 block (i.e. the value of 
current pixel) as 0. If there is only one or no other bright pixel in this 3x3 block and also 
there are bright pixels in the 5x5 neighborhood of the current contour pixel, then there is 
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a discontinuity which needs to be removed. To do that, the 5x5 neighborhood of the 
current contour pixel is taken as the current block, and, depending on the location of 
bright pixel in the 5x5 block, one of the pixels of the 3x3 block is made to be bright, 
which is then placed into the original image. Labeling is then done to get the number of 
connected objects. Figure 4.1 illustrates an example case of removing discontinuities. 
 

              
(a)                               (b)                               (c) 

Figure 4.1: Contour discontinuity removal. (a) Part of an image of size 160x120 pixels 
showing broken contour with an arrow. (b) The 5x5 window centered at the current 
pixel in (a) pointed by the arrow. (c) Image after the gap is filled by putting a “1” at the 
empty location between the two bright pixels. 
 
 
Next, every labeled connected object is taken and its contour pixels are traced in a 
clockwise direction, starting from the left-topmost pixel (see Figure 4.2 for illustration 
of the process). The purpose is to make a list of spatial coordinates of the contour pixels 
along with their index values. This is done by using an initial mask (see Figure 4.2(b)) 
which starts the search in a clockwise direction. Once started, it can take any of the 8 
possible directions (see Figure 4.2(d)). This is because the mask (see Figure 4.2(e)) fa-
vors all of them. Therefore, a 3x3 distance matrix (see Figure 4.2(c)) is used to minim-
ize the conflict between the possible directions. If there is more than one direction to 
follow then in the case of conflict between horizontal and vertical locations with respect 
to current contour pixel (see Figure 4.2(f)) the 5x5 neighborhood of the current contour 
pixel  (see  Figure  4.2(h))  is  used  to  select  the  next  contour  pixel.  In  the  other  case  of  
conflict between diagonal locations with respect to current contour pixel (see Figure 
4.2(g)) the previous pattern is used to decide where to go next by using the 3x3 window 
and including the previous pixel (see Figure 4.2(i)).  
 
While moving to the next contour pixel, a 0 is placed at the previous contour pixel in 
the original image so that search proceeds in the forward direction (otherwise it could 
return back to the previous location). Also, before going to search every next contour 
pixel location, it is checked if the 3x3 neighborhood of the next contour pixel contains 
more  than  one  bright  pixel,  otherwise,  it  is  the  last  pixel  of  the  object  or  there  was  a  
problem in the contour found initially. In the former case, the coordinate values of the 
contour pixels of the currently analyzed object of the image are returned, and in the lat-
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ter case, that contour pixel is removed from the image and the whole process is repeated 
again. The whole process is depicted in Figure 4.2. Once all the objects of an image are 
processed, then those individual object images are added to make the pre-processed 
version of the original image of contours.       
 

 
         (a)                            (b)              (c)                (d)               (e) 

 
(f)               (g)                    (h)                    (i) 

Figure 4.2: Clockwise contour tracing. (a) Clockwise tracing of contour of an object in 
an image of size 180x230 pixels. (b) The initial 3x3 mask to start searching for the next 
pixel in clockwise direction. (c) The distance values for next positions. (d) The labeled 
possible directions. (e) 3x3 mask for searching 2nd pixel and onwards. (f) and (g) are 
possibilities available at one time which are solved by (h) and (i) respectively. 
 

4.2 Modified Clump Splitting Method 

The method presented in this section, also presented in [8], is derived from Kumar et al. 
[18]. The key features of this method are used with some changes in them, in order to 
make the method less prone to error. Along with those features, two key features from 
the method in Wen et al. [39] are also included in this method to get the improvement in 
the relevant aspects of the overall clump splitting method. 
 
The method for clump splitting starts with finding the concavity points in the image. 
Then Delaunay triangulation is applied to obtain the candidate split lines from which the 
best split lines are obtained for every valid concavity point such that a cost function is 
minimized for that particular concavity point.  
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4.2.1 Detection of Concavity Points 

All the concavity points on the boundary of the objects are first found. In all the availa-
ble methods, the best approach for the determination of concavity points is using curva-
ture-analysis, defined by Equation 3.17. It finds all the concavity points in a particular 
concavity region with the curvature values larger than a predefined threshold. This is an 
improvement in comparison to the approach used in [18] which defines only one con-
cavity point per concavity region. Figure 4.3 shows a clump of concave objects in 
which there is more than one concavity point in a concavity region. In the concavity 
point based analysis, it is obviously important to locate all the valid concavity points in 
the initial phase. Here we used the methods from [15, 16] in which the corners in the 
image are detected using curvature analysis. The detected corners are examined such 
that only the points lying on the concave regions of the contour are picked. This gives 
almost all the valid concavity points in the image. 
 

 
 
Figure 4.3: Concavity regions with multiple concavity points. A Clump of cells with 
more than one concavity point in one concavity region, marked with white squares. 
 

4.2.2 Listing Candidate Split Lines 

At this point we have N concavity points and we can have  split lines joining these 
concavity points. Obviously not every line joining two concavity points can be a split 
line. We therefore apply Delaunay triangulation, introduced in [39], on the found con-
cavity points to exclude invalid split lines. The remaining possible split lines are then 
referred to as the candidate split lines. The advantages of Delaunay triangulation are that 
it rules out the chance of intersecting split lines as well as maximizes the minimum of 
all the angles of the triangles that are made by the split lines. These two points are much 
needed since we do not want the split lines to intersect each other nor do we want small 
angles between the final split lines. 
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4.2.3 Finding the Best Split Lines 

Although most of the invalid split lines are discarded by the application of Delaunay 
triangulation on the set of concavity points, some invalid split lines still remain, and 
they are removed by applying a set of conditions on the features that are extracted from 
the image for every concavity point. The features that we used here are taken from [18] 
but they are modified in order to remove the deficiencies present in them. 

   
(a)                                       (b) 

Figure 4.4: Saliency problem. In (a), due to small concavity depth the valid blue split 
line makes the saliency value small enough that the green line in (b),in one of objects of 
the same image set, becomes possible. Since the value of alignment also supports that 
line it is possible that this green line is actually made.  
 

4.2.3.1 Saliency 

The first feature that is used here is the saliency feature, which takes into account the 
concavity depth [25] of the concavity points as well as the distance between them, as 
given by Equation 3.11. The idea behind the saliency feature is that the split lines are 
more likely to be valid if the concavity regions at both ends of the line have large 
enough concaveness measures and the distance between the two concavity points is 
small [18]. However, the problem in that expression of saliency is that, as the value of 
the minimum concavity depth increases, then for a particular saliency value the allowed 
distance between the two concavity points also increases [8]. This makes it very diffi-
cult to find a threshold value that result in a correct split line in all the cases. That is, if 
one of the two concavity depth values is small but a split line is valid, then even a small 
value of the distance between the two concavity points makes the saliency small. But 
due to non-linear increase in distance with respect to the decreasing saliency values, 
putting a very small saliency threshold would lead to the acceptance of long distance 
lines in the cases where the minimum concavity depth values are large. Figure 4.4 de-
picts these situations.  
 
In order to support our above arguments about incorrect definition of saliency expres-
sion in Equation 3.11, we construct a table (see Table 4.1) which highlights the nonli-
near relationship between saliency, minimum concavity depth and the length of a split 
line. For example, Table 4.1 shows the situation where for a minimum concavity depth 
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value of 10 pixels the value of saliency for a 25 pixel line is such that it would allow 
lines of length 35 pixels and 50 pixels for minimum concavity depth values of 15 pixels 
and 20 pixels, respectively. Also this non-linearity increases with distance values. Thus 
the main thing that we need is to define an expression of saliency such that it minimizes 
the non-linear decrease in the saliency values when both the minimum concavity depth 
and the distance values increase. We tried a few different expressions; one of them was 
to include both of the concavity depth values, but Table 4.2 show that this does not pro-
duce the desirable results.  
 
Table 4.1: Values of Saliency SA obtained using the original expression, in Equation 
3.11, for different distance and concavity depth values.   

Distance Values SA SA SA SA SA 

 
CD(min) = 

10 

CD(min) = 

15 

CD(min) = 

20 

CD(min) = 

25 

CD(min) = 

30 

10 0.500 0.600 0.667 0.714 0.750 

15 0.400 0.500 0.571 0.625 0.667 

20 0.333 0.428 0.500 0.556 0.600 

25 0.286 0.375 0.444 0.500 0.545 

30 0.250 0.333 0.400 0.454 0.500 

35     0.222     0.300     0.364     0.417     0.461 

40 0.200 0.273 0.333 0.385 0.429 

45 0.182 0.250 0.308 0.357 0.400 

50 0.167 0.231 0.286 0.333 0.375 

55 0.154 0.214 0.267 0.312 0.353 

60 0.143 0.200 0.250 0.294 0.333 

65 0.133 0.187 0.235 0.278 0.316 

70 0.125 0.176 0.222 0.263 0.300 

 
 
We therefore came up with a modified expression of saliency which takes into account 
the increase in both the minimum concavity depth values and the distance values by 
scaling them accordingly. That is, using large coefficients for scaling large values and 
small coefficients for scaling small values. This is achieved by using the squared values 
of both of the parameters in the denominator, thus the modified expression for saliency 
is  
 

                                                 ,                                 (4.1) 
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Table 4.2: Values of Saliency SA for different distance and concavity depth values ob-

tained by using   .    

Distance Values SA SA SA SA SA 

 
CDi+ CDj = 

20 

CDi+ CDj = 

25 

CDi+ CDj = 

35 

CDi+ CDj = 

50 

CDi+ CDj = 

60 
10 0.500 0.556 0.636 0.714 0.750 

15 0.400 0.454 0.538 0.625 0.667 

20 0.333 0.385 0.467 0.556 0.600 

25 0.286 0.333 0.412 0.500 0.545 
30 0.250 0.294 0.368 0.454 0.500 

35     0.222     0.263     0.333     0.417     0.461 
40 0.200 0.238 0.304 0.385 0.429 

45 0.182 0.217 0.280 0.357 0.400 

50 0.167 0.200 0.259 0.333 0.375 

55 0.154 0.185 0.241 0.312 0.353 
60 0.143 0.172 0.226 0.294 0.333 

65 0.133 0.161 0.212 0.278 0.316 

70 0.125 0.151 0.200 0.263 0.300 
 
 
Table 4.3: Values of Saliency SA obtained using the finally obtained expression, in Eq-
uation 4.1, for different distance and concavity depth values.  

Distance Values SA SA SA SA SA 

 
CD(min) = 

10 

CD(min) = 

15 

CD(min) = 

20 

CD(min) = 

25 

CD(min) = 

30 

10 0.0909 0.1224 0.1429 0.1538 0.1579 

15 0.0426 0.0606 0.0755 0.0870 0.0952 

20 0.0244 0.0355 0.0455 0.0541 0.0612 

25 0.0157 0.0232 0.0301 0.0364 0.0420 

30 0.0110 0.0163 0.0213 0.0260 0.0303 

35     0.0081     0.0120     0.0158     0.0194     0.0228 

40 0.0062 0.0092 0.0122 0.0150 0.0178 

45 0.0049 0.0073 0.0097 0.0120 0.0142 

50 0.0040 0.0059 0.0079 0.0098 0.0116 

55 0.0033 0.0049 0.0065 0.0081 0.0096 

60 0.0028 0.0041 0.0055 0.0068 0.0081 

65 0.0024 0.0035 0.0047 0.0058 0.0070 

70 0.0020 0.0030 0.0040 0.0050 0.0060 
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where, as previously  refers to the concavity depths of the two concavity points and 

 is the Euclidean distance measure. The obtained values for saliency are listed 
in Table 4.3, which shows that the current expression addresses the aforementioned 
problem of Equation 3.11. A large value of 0, practically between 0 and 1, is 
required to ensure the candidacy. Next, for finding the best split lines, the saliency value 
is thresholded so that large distance lines are taken away from further calculations. 

4.2.3.2 Alignment 

The second feature that is employed here to narrow down the list of candidate split lines 
is the alignment feature. It contains concavity-concavity alignment (CC) and concavity-
line alignment (CL) features, as defined by Equations 3.12 and 3.13, respectively. The 
alignment features heavily rely on the directional vectors of the concavity points in-
volved, and a slight error in the calculation of that parameter leads to false split lines. 
Thus the problem may arise when the directional vector, i, is computed for a concavity 
point, Ci.  
 
The definition of directional vector that was given in [18] is that it is a vector of length 
unity originating from the midpoint of the corresponding convex hull chord with its 
head towards the concavity point. For a concavity region which has only one concavity 
point, a good directional vector is often obtained according to this definition. However, 
this is not the case with every concavity point, since there are concavity regions which 
have more than one concavity point. In that case, taking the midpoint of convex hull 
chord as the other point of the directional vector leads to inappropriate directional vec-
tor. Moreover, sometimes the shape of the concavity regions is such that even if it has 
only one concavity point, the obtained directional vector does not satisfactorily achieve 
the purpose that it is used for. Hence, if the earlier definition of directional vector of 
[18] is used the obtained values of the alignment features are not always correct. In par-
ticular, in cases where there is more than one concavity point in a concavity region the 
directional vectors obtained by the previous definition do not conform to the natural 
condition that the directional vector must approximately bisect the region close to the 
concavity point rather than trying to bisect it from the convex hull chord. Figure 4.5(b) 
shows some examples in which it is clear that the found directional vectors are not per-
fect. Instead the directional vector should be a line which would split the region around 
the concavity point as illustrated in Figure 4.5(c). Another example is shown in Figure 
4.5(d) where the red vectors found with initial approach must be replaced with the blue 
ones found by our method.  
 
We developed a new approach for finding the correct directional vectors. As we already 
mentioned in Section 4.1 that while moving on the contour of a clump, we made a 
linked list of spatial coordinates of the contour with their index values. With that, for a 
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particular coordinate value its index can be obtained and hence the neighboring contour 
points can be accessed through incrementing or decrementing the index values. 
 
In order to find the directional vector of a concavity point its index value is obtained 
first. Using that index value two points on the contour, one on either side of the con-
cavity point, are accessed. The midpoint of the straight line connecting these two points 
is found. This point is then used as the tail-point of the directional vector. The head of 
the directional vector of course lies in the line connecting this point to the concavity 
point.  

         
(a)                                                (b) 

 
(c)                                                (d) 

Figure 4.5: Directional vector problem. (a) A Clump of cells. (b) Incorrect directional 
vectors for concavity points found by the definition in [18]. (c) Correct directional vec-
tors found by the modified method. (d) Another such clump with inaccurate directional 
vectors in red and correct ones in blue. 
 

4.2.3.3 Cost Function 

Once these features have been calculated for every possible concavity point-pair, they 
are utilized to evaluate a cost function for each point-pair. We assume that every valid 
concavity point is the consequence of two cells in contact with each other and that there 
must be a split line for every concavity point. With this assumption, the best split line is 
defined for every concavity point based on a cost function that is evaluated for every 
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possible pair of each concavity point. The point which gives the minimum value for the 
cost function is selected as the pair for that concavity point. The reason why the mini-
mum value is needed is that every feature contributing in the cost function needs to be 
minimal for the best split line. Thus the idea is to pick the best split line for every con-
cavity point even if it is duplicated but in the meantime reject those concavity point 
pairs where both the points have already been used in another split line. This way all the 
correct and valid split lines are taken into account and also the false split lines are ruled 
out. 
 
The expression for the cost function that we used is obtained by summing the saliency, 
CC alignment, and CL alignment feature multiplied by two and is given by, 
 
                                            2 .                                   (4.2) 
 
The logic behind multiplying the CL alignment feature by two is that sometimes two 
points  are  not  well  aligned  with  each  other,  but  due  to  their  directional  vectors  being  
almost perfectly anti-parallel, they get selected instead of those pairs for which the split 
lines are more aligned to both directional vectors, see Figure 4.6 for an example. Also, 
the range of the values for CC alignment is from -1 to +1 whereas for the CL alignment 
it is from 0 to 1, so the CL feature needs to be doubled in order to treat both features 
equally, and also to have a better look into the pairs before deciding about the best split 
lines. This fact is demonstrated in Figure 4.6 where we select the split line which is less 
anti-parallel and a little more aligned with the directional vectors. 
 

 
 
Figure 4.6: Alignment problem. Concavity point-pair marked by two blue arrows has a 
higher value of CC alignment than the pair marked by green and blue arrows in the 
right. However the latter pair gives correct split line when both the alignment features 
are examined simultaneously. 
 
 
There may be a case that a clump has only one concavity point or a concavity point is 
left without a pair after the split lines are obtained. In such a case, a split line is found 
for that concavity point by joining it with a boundary point of the object in the direction 
of its directional vector in the same way as it was described in Section 3.1.3. After all 
the split lines are found, they are drawn on the binary image. If the split lines result in a 
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very small object then that object is removed. The resulting image is clump splitted ver-
sion of the original image. 

4.3 Clump Splitting Method using Variable Size 
Rectangular Window-Based Concavity Point-
Pair Search 

The clump splitting method presented in this section is also a concavity point-based 
method in which the process starts with finding the concavity points on the contours of 
the objects. This is followed by finding the split lines which connect these concavity 
points, provided that certain conditions are fulfilled. There are a few concavity point 
detection methods which provide satisfactory results. However, the main problem that is 
faced  in  clump  splitting  is  the  selection  of  the  best  concavity  point-pairs  for  the  split  
lines. The available methods for this do not perform up to the expectations and result in 
unsatisfactory clump splitting, as false split lines are often obtained or true split lines are 
rejected. Although the results that we achieved with the modified method are better than 
the results obtained with the methods available in the literature, the problem with that 
method is that it relies on considering more than one concavity point while looking for 
the pair for a particular concavity point. Due to this reason we need to take into account 
different parameters in order to obtain the best split line. Since we often have a large set 
of images containing different kinds of clumped objects it can be difficult to obtain a set 
of parameters which is applicable to all the objects in every image in a particular image 
set. 
 
To solve this problem of finding the best split lines and to make the algorithm less de-
pendent  on  the  parameter  values,  we  propose  a  new  method  for  finding  the  best  split  
lines. It uses a variable size rectangular window to search for the pair of a particular 
concavity point. Similar to what we proposed in the modified method described in Sec-
tion 4.2, this method also finds the best split line for every concavity point, whether by 
joining it with other concavity point or with a boundary point on the other side of the 
concavity point. 

4.3.1 Detecting Concavity Points 

The first step is to extract all the concavity points that are formed due to two objects 
being in contact with each other. Since it is assumed that every obtained concavity point 
is valid, concavity point detection needs to be done carefully such that no single point is 
taken which is there just because of boundary irregularities.  
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There are several methods [10, 37, 43] in the literature which detect the concavity points 
in clumped objects along with the one that we used quite effectively in the previous 
method [39]. Although that method gives much better result than others, there is still 
some room for improvement in it.  
 
To make sure that the concavity point is valid we find the concavity angle, i.e., the angle 
between the lines joining the concavity point with equally distant points on either side 
of the concavity point on the object contour. For a concavity point to be valid the con-
cavity  angle  should  be  as  small  as  possible.  Thus  we  discard  points  due  to  boundary  
irregularities which give angle values larger than 150 degrees. Moreover, there are some 
cases in which we have both valid and invalid concavity points having the same appear-
ance. This is problematic, because if we take both of them then we may get over-
splitting. However, if we exclude both of them then it may not be costly because in that 
case there is a chance that the likely pair would make a split line joining a boundary 
point on the opposite side of the contour resulting in the final output being not much 
affected. 

4.3.2 Searching for the Best Split Lines 

In Section 4.2.3, it was described that there are cases in which it is very difficult to de-
cide which split line is the best one. This is because the values of the alignment features 
leave it uncertain which split line should be picked. Although this issue is dealt with by 
defining the cost function in such a way that it weighs the different features differently, 
however sometimes false split lines get selected. Thus, in order to focus on finding only 
the best split lines, we take into consideration the fact that the split lines should be with-
in a specific region in the direction of the directional vector of the concavity point. The 
directional vector is defined in the same way as in Section 4.2.3.2.  
 

 
(a)                                                     (b) 

Figure 4.7: Rectangular window-based concavity point-pair search. (a) Clumped object 
and the orientation of directional vectors of concavity points. (b) Rectangular window 
with varying width and length (shown with dashed lines) aligned in the same direction 
as the directional vector in order to search for the concavity point-pair. 
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We mentioned in Section 4.2.3.2 that the directional vector that defines the alignment of 
a concavity should ideally bisect the region close to the concavity point. This idea leads 
us to start searching for the concavity point pair in the direction of the directional vector 
and on either side of the line formed by extending the directional vector. This gives rise 
to a variable size rectangular window in the direction of the directional vector. This 
concept is illustrated in Figure 4.7. 
 
The idea basically is that we start from the concavity point and find its directional vec-
tor. Then by traversing along the contour of the object we pick one point on either side 
of the concavity point and both equally distant to it, such as points a and b in Figure 
4.8(a). The distance between these two points is referred to as width of the window, w. 
These two points are then used as two of the four corner points of the rectangular win-
dow. The other two points, points c and d in Figure 4.8(a), are found in the direction of 
the directional vector and at equal distance to a and b, respectively. This distance value, 
h, is a parameter which defines the length of the window and depends on the maximum 
length of the split line that we want to allow in a certain image set. Now, in order to find 
those two points we first need to know the angle, x, between the directional vector and a 
reference vector, see Figure 4.8(b). This angle is used to calculate the horizontal and 
vertical displacement from the current points by using the simple trigonometric relations 
on the triangle formed, as shown in Figure 4.8(a).  
 

  
                                                      (a)                                                               (b) 
Figure 4.8: Finding the co-ordinates of the window. (a) Formation of the window by 
using the already found points a(i,j) and b(i,j), directional unit vector and the reference 
vector to get the points c(i,j) and d(i,j). (b) Vector diagram showing the directional unit 
vector and reference vector and the angle formed between them. 
 
 
Once we have found the displacement values, we then need to add or subtract these dis-
placement values to the spatial coordinates of the current points, that is, points a and b, 
in order to reach the desired points c and d. The directional vector is used to decide 
whether addition or subtraction is to be performed. It is basically the sign of the x- and 
y- components of the directional vector which determines whether the displacement 
values are added or subtracted. Negative sign indicates that the particular component is 
to be subtracted from the respective component of the spatial coordinate of the current 
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point. Thus, on the basis of the direction of the directional vector there are four general 
orientations of the window as shown in Figure 4.9. 
 
It is shown in Figure 4.9 that in order to get the correct angle values, we need to have 
two reference vectors, but this can also be done with only one reference vector. In the 
case of opposite orientation, the value of the obtained angle would be larger than 90 
degrees. Thus finding the angle between the directional vector and that reference vector 
and subtracting the angle from 180 degrees gives us the right value of the angle. 
 

 
 
Figure 4.9: Possible orientations of the window. Four different orientations of the win-
dow based on the direction of the directional unit vector and the respective reference 
vectors and co-ordinate calculations. 
 
 
Once we get the coordinates of the four points of the window, we use this window as 
the mask for finding the concavity point pair to make the split line. Initially we set min-
imum width and a considerably large length of the window and look if there is any con-
cavity point lying in this window. We then gradually increase the width of the window 
until  we  find  a  concavity  point  inside  it  or  reach  the  maximum width.  Starting  with  a  
small window width prevents getting two concavity points in the search window. In the 
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case that there are two concavity points in the search window, the concavity point at 
minimum length from the subject concavity point is accepted as the pair. If no concavity 
point is found when the maximum window width is reached, the window length is in-
creased iteratively until a concavity point is found or the maximum window length is 
reached. 
 
This whole process is repeated for every concavity point present in the object and a list 
of the concavity point-pairs is formed. This list is then checked to remove the redundan-
cy and then all the split lines are drawn on the object by joining every concavity point-
pair. Once we are done with this then we look for any concavity point which was not 
assigned  a  pair  earlier.  In  most  cases  the  pairing  concavity  point  for  such  a  concavity  
point was discarded in the initial concavity point detection phase due to lack in con-
caveness or due to the presence of irregular boundaries.  
 
In such cases and in the case when there is only one concavity point in a clump (see, for 
example, Figure 3.4(c)), we draw a line from that concavity point to a point on the 
boundary of the object in the direction of the directional vector of the concavity point. 
The boundary point may not necessarily be the point of intersection of the object con-
tour and the line formed by the extension of directional vector. In fact, it is chosen from 
a contour segment such that it possesses a local maximum value of concaveness among 
a certain number of pixels in that segment of contour.  

4.4 Image Post-Processing 

The clump splitting methods described in the thesis merely define straight lines between 
the concavity point pairs and the relationship between the split lines is not taken into 
account.  For  example,  sometimes  we confront  a  situation  in  which  there  are  two split  
lines through a particular concavity point making an acute angle between them, as 
shown in Figure 4.10(a). Moreover, sometimes the other two concavity points involved 
in the two split lines also share a split line between them which forms a triangular object 
in an image, as illustrated in Figure 4.10(b).  If there is prior information that the objects 
have smooth boundaries, both of these cases lead to an output image which does not 
look pleasant and also in the latter case we have an extra object which has nothing to do 
with the cells present in the image. Therefore, we need to post-process the clump split-
ted output image to make the final output look better and smoother.  
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(a)                                      (b)                       

Figure 4.10: Post-processing cases. (a) Object with two split lines making acute angle 
between them. (b) A triangle is formed between the three concavity points.  
 
 
These two cases can be solved in the post-processing as follows. We begin with finding 
the two cases by checking the degree of all the concavity points present in the object. 
The term degree is used to specify the number of split lines passing through a concavity 
point. So going through the list of concavity point-pairs we find out which of the con-
cavity points have degree equal to two. Then we take the two other concavity points 
which share the split lines with the first concavity point and examine if they are forming 
a split line between them or they do not have any split line with any other concavity 
point. Once we get either of these conditions fulfilled then we form a triangle between 
the three points, if it was not already there, and find the centroid of that triangle. After 
finding the centroid we remove the concavity point-pairs formed by these three concavi-
ty points from the initial list and replace them with three concavity point-pairs each in-
volving the centroid and one of the three concavity points. Figure 4.11 shows the output 
of the post-processing step for our example cases. 
 

 
(a)                                   (b) 

Figure 4.11: Result after post-.processing. The objects of Figure 4.10(a) and Figure 
4.10(b) after the application of post-processing. 
 
 
 
 
 
 
 
 
 
 



 
  

 
 

 

Chapter 5 

Results 
In this chapter, we present results of clump splitting obtained using two methods from 
the literature, that is, the method from [18] discussed in Chapter 3 and the classic wa-
tershed-based method, as well as the two methods proposed in Chapter 4. The wa-
tershed-based method operates on the distance transformed binary image, see for exam-
ple the description in Section 3.2 or [32]. The motivation for choosing this method is 
that it is probably the most widely used method for clump splitting despite its tendency 
to sometimes perform over- and under-segmentation. We gathered the results by apply-
ing these methods on two different test cases comprising of three image sets. The image 
sets contain images of budding yeast cells of different sizes and shapes. Moreover, we 
also present a quantitative comparison of these results in order to validate the proposed 
methods. 

5.1 Test Case I: 

For the first test case, we have two image sets containing bright field images of the bud-
ding yeast Saccharomyces cerevisiae obtained with a Leica TCS SP2 microscope. For 
every image in the set, z-stacks of 20 images were taken using a 100X oil immersion 
objective (NA 1.40). One of the 20 images was selected for segmentation  by  first  find-
ing  the  best  in-focus  image  using  the Tenegrad  method  [33], according to which, 
the z-slice that has the greatest normalized variance can be thought to be the most in-
focus slice. Then the image that was one slice (about 300 nm) below the best focused 
image was selected, because more accurate segmentation results were obtained for this 
slightly out-of-focus image.  
 
Both image sets contain cell clumps of approximately circular and elliptical cells. The 
difference  between the  two sets  is  that  cells  in  the  first  set  are  bigger  in  size  than  the  
cells in the second set due to higher magnification used in imaging. However, the thing 
that is common between them is that most of the clumps that are formed by growing of 
bud from the mother cells contain cells of almost similar size for both the mother and 
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the grown cells. The cells are separated from the background using the segmentation 
method from [21]. 
 
For the validation process we use precision and recall analysis. We start from measuring 
precision (PR) and recall (RC) values from the clump splitted images by, 
 
                                                 ,     ,                                      (5.1) 

 
where TP, FP and FN stand for true positives, false positives and false negatives, re-
spectively. Perfect precision means that all the single objects detected by the method are 
also present in the ground truth image, whereas perfect recall means that none of the 
objects in the ground truth image are missed by the method. 
 
A more compact representation of the segmentation accuracy is obtained by using the F-
measure (FM) [9]. The F-measure is the harmonic mean of the precision and recall 
measures and is given by 
 
                                                       

 
 .                                                  (5.2) 

 
Through manual detection, we found that there are 772 single cells in Set 1 and 820 
single cells in Set 2. We evaluated the performance of the aforementioned methods on 
the  two test  sets.  We obtained  TP,  FP,  and  FN counts  by  manually  going  through the  
results of these methods and obtained PR, RC and FM values; see Table 1 and Table 2. 
 

Table 1. Performance values of the four methods on Set 1. 

 Total TP FP FN PR RC FM 

Kumar 
Method 

772 606 0 166 1.000 0.785 0.880 

Watershed 
Method 

772 747 24 25 0.969 0.968 0.968 

Modified 
Method 

772 733 13 39 0.983 0.950 0.966 

Window 
Method 

772 730 3 42 0.996 0.946 0.970 
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(a) (b) 

    
                                                                 
 
 
 
 

(c)                                                             (d) 

    
(e)                                                             (f) 

Figure 5.1: Clump splitting results for test case I. (a) A bright field image of yeast cells. 
(b) Segmented image showing only clumps. The resulting image after application of (c) 
Kumar method, (d) watershed-based method, (e) modified method, and (f) window-
based method on the image in (b).  
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Table 2. Performance values of the four methods on Set 2. 

 Total TP FP FN PR RC FM 

Kumar  
Method 

820 719 0 101 1.000 0.877 0.934 

Watershed 
Method 

820 810 16 10 0.981 0.988 0.984 

Modified 
Method 

820 788 0 32 1.000 0.961 0.981 

Window 
Method 

820 788 0 32 1.000 0.961 0.981 

 
 

It is clear from Table 1 and Table 2 that both the modified method and the window-
based method are superior to Kumar method and are comparable to Watershed-based 
method on the basis of the F-measure. Although in set 1 the precision for modified me-
thod and window-based method is slightly smaller than the precision for the Kumar 
method, both methods have a considerable gain over the Kumar method in the recall 
value. In both image sets, it is also visible that there is a trade-off between precision and 
recall measures for both of our methods and the watershed-based method. Of course, 
recall value for Watershed-based method is slightly higher than recall value for the 
modified method and the window-based method, but if we consider which method is 
making fewer false split lines then we would give more significance to precision values 
which is better for the two methods than for the watershed-based method.  
 
Figure 5.1(a) is taken from the first image set and the resulting images illustrate the su-
periority of our methods over the Kumar method and the watershed-based method. It is 
clear from Figure 5.1 that the Kumar method under-splits some clumps because of tak-
ing only one concavity point in one concavity region and also due to the wrong defini-
tion of directional vectors. This is in line with the FN measure in Table 1, which is very 
high for Kumar method. On the other hand, the Watershed-based method over-splits 
some clumps which is noticeable by the triangular non-cellular objects that are detected 
as cells. This is also clear from Table 1 where watershed-based method has a high value 
for FP showing that sometimes it detects false positives. In contrast, the modified me-
thod as well as the window-based method split all the clumps correctly. 

5.2 Test Case II: 

For test case II, we have one set of images of yeast cells triply stained with FITC-ConA, 
taken from the Saccharomyces Cerevisiae Morphological Database (SCMD) [28]. The 
cells in this set of images are small and mostly the clumps are due to growing of buds 
from the mother cells where the size of bud is much smaller than the size of its mother 
cells. We took a random sample of 35 images containing 1080 yeast cells that belonged 
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to cell clumps. The images were segmented by a local thresholding method that is based 
on the classic threshold selection method by Otsu [23]. Details on the segmentation me-
thod can be found in [8]. 
 
We evaluated the performance of the four clump splitting methods on the segmented 
images. We obtained true positive (TP), false positive (FP), and false negative (FN) 
counts by manually going through the results of these methods and obtained precision 
(PR), recall (RC) and F-measure (FM) values, see Table 3. 
 

Table 3. Performance parameters of the four methods on set 3. 

 TP FP FN PR RC FM 

Kumar  
Method 

807 11 273 0.987 0.747 0.850 

Watershed 
Method 

859 1 221 0.999 0.795 0.886 

Modified  
Method 

986 21 94 0.979 0.913 0.945 

Window  
Method 

982 20 98 0.980 0.910 0.943 

 
 
Both of the new methods presented in this thesis have a significantly higher FM value 
than the Kumar method and the watershed-based method. The PR value for our methods 
is slightly lower than for the Kumar method and the watershed-based method, but their 
RC values are much higher. 
 
Figure 5.2(a) is one of the 35 images constituting image set 3. Figure 5.2 (b)-(e) demon-
strates the performance of the methods on the segmented image. It is evident that the 
two  new  methods  presented  in  this  thesis  outperform  the  Kumar  method  and  the  wa-
tershed-based method. The Kumar method and the watershed-based method perform 
under-splitting, which is also obvious from looking at the FN values in Table 3. The 
modified method and the window-based method split the clumps more accurately which 
is also apparent from Table 3 where they have a lower value of FN as compared with 
the Kumar method and the watershed-based method. 
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(a)                                                           (b) 

              

(c)                                                             (d) 

       
(e)                                                             (f) 

Figure 5.2: Clump splitting results for test case II. (a) A fluorescent image of yeast 
cells. (b) Binarized image. The Resulting image after application of (c) Kumar method, 
(d) watershed-based method, (e) modified method, and (f) window-based method on the 
image in (b). 
 
  
 
 



 
  

 
 

 

Chapter 6 

Conclusion 

Two different methods for automated splitting of clumps of concave objects were pro-
posed in this thesis. Both of the methods are based on concavity point analysis in which 
split lines are obtained by joining concavity points that are found on the boundaries of 
the clumped objects. The methods were tested on images of yeast cells but they can be 
applied in splitting clumps of any other convex object. 
 
The first method proposed in the thesis, also presented in [8], is a modified version of 
the original method presented by Kumar et al. in [18]. Contrary to the original method, 
this method finds all concavity points in each concavity region of a clump. Also, this 
method makes sure that for a particular value of saliency the length of the split line in-
creases approximately linearly when concavity depth increases. Moreover this method 
emphasizes the fact that the split line must split the clump from the vicinity of the con-
cavity point rather than doing it from the mid-point of the corresponding convex hull 
chord. 
 
The second method is novel and was developed during the course of the thesis. It uses a 
variable size rectangular window to look for the pair of each concavity point. One of the 
main advantages of this method is that it is less dependent on user-defined parameters 
than most other methods presented in the literature. This method takes advantage of the 
fact that for most of the split lines the pair of the current concavity point is found in the 
direction of the directional vector of the corresponding concavity. The method starts 
with a minimum window width in order to avoid the possible situation of having more 
than one concavity point in the window as the candidate pair of the current concavity 
point, and iteratively increases the window size until a pair is found. 
 
The performance of both of the clump splitting methods was evaluated using two differ-
ent test cases comprising of three test image sets altogether. All of the three image sets 
contain images of yeast cells. In order to validate the two methods, we compared them 
with the original method from Kumar et al. [18] and with the classic watershed-based 
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method, see for example [32]. Quantitative as well as qualitative comparisons demon-
strate the superiority of our two methods over the two clump splitting methods taken 
from the literature. It was observed that the modified method outperforms the original 
method in both test cases. In fact, an increase up to 10 percentage points in F-measure, 
obtained using the harmonic mean of precision and recall measures, is achieved with the 
modified method. However, it was found to be comparable to the watershed-based me-
thod when the clumped cells are bigger and round shaped. On the other hand, the mod-
ified method performed better in the case when most of the clumped cells were small  
buds grown from the mother cells. The performance of the window-based method was 
found to be comparable to the modified method in the first test case. In addition to this 
quantitative performance enhancement, both of our methods employed post-processing 
steps which enhances the quality of the final clump splitted image.  
 
The clump splitting methods developed here as well as most of the other methods in the 
literature operate on the binary segmented image. None of the methods exploit the in-
tensity values of the gray-scale image to help in finding the split lines. One possible 
direction of future work is to find the split line between two concavity points following 
a minimum intensity path instead of making a straight line between them. This may also 
help in getting correct split lines for the cases in which there is a hole, formed due to 
clustering of objects, lying inside the boundaries of the clumped objects. Apart from 
these issues, development of completely new methods for fast detection of all the valid 
concavity points is also a possible extension of this work in the future. 
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