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ABSTRACT 
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Master’s Degree Program in Automation 
KOIVUMÄKI, JANNE:  
Master of Science Thesis, 73 pages, 50 Appendix pages 
November 2012 
Major: Hydraulic Engineering 
Examiner: Professor Jouni Mattila 
Keywords: Robotics, Model-Based Control, Subsystem Dynamics Based Con-
trol, Virtual Stability, Rigid Body Dynamics, Hydraulic Cylinder, Cartesian Motion 
Control. 
 
 
The controller design and modelling of hydraulically driven robots is a challenging task. 
This comes inter alia due to inherent nonlinear dynamics associated with hydraulic 
actuators, highly nonlinear characteristic of the robot dynamics and various 
uncertainties and disturbances of mathematical models.  
 In this master’s thesis a new control theory, namely Virtual Decomposition 
Control (VDC), is studied. The VDC approach is developed especially for precision 
control of complex robots. In VDC approach the robotic system to be controlled is first 
virtually decomposed into subsystems. Then, the subsystems dynamics based control 
can be applied, to make each subsystem qualified to be virtually stable. Finally, the 
virtual stability of every subsystem results in the stability and convergence of entire 
robot.  An  effectiveness  of  this  approach  comes  from  the  fact  that  no  matter  how  
complicated a robotic system is the dynamics of the subsystems remain relatively 
simple with fixed dynamic structures invariant to target systems. 
 The purpose of this thesis was to study and implement VDC into hydraulic 2-
DOF manipulator actuated with hydraulic cylinders. The parameter adaptation for 
uncertain parameters was not studied in scope of this thesis. The objective of this thesis 
was also test performance of VDC-controller in practice and compare achieved results 
to corresponding PID-controller results. 
 The theory of VDC approach was successfully applied into studied manipulator 
and the  and  stability of subsystems were mathematically guaranteed leading to 
stability of entire system. In experimental measurements certain Cartesian motion 
trajectory was driven with both VDC- and PID-controller. With VDC- controller 
roughly 7 times better piston position tracking performance was achieved for first 
cylinder and about 4.4 times better performance for second cylinder was achieved. 
Moreover, the very same Cartesian motion trajectory was driven with twice faster and 
half slower execution times. The stability of PID-controller was lost in both of these 
cases, whereas VDC-controller managed to drive these trajectories without problems.  
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Hydraulisten robottien säädön suunnittelu ja mallintaminen on tunnetusti haastava 
tehtävä. Tähän vaikuttavat muun muassa voimakkaat epälineaarisuudet hydraulisten 
toimilaitteiden ja robottien dynaamisessa käyttäytymisessä sekä käytettyjen 
matemaattisten mallien ja parametrien epävarmuus ja häiriötekijät. 
 Tässä diplomityössä keskitytään tarkastelemaan uutta mallipohjaista 
säätömenetelmää nimeltä Virtual Decomposition Control (VDC). VDC menetelmä on 
kehitetty erityisesti rakenteellisesti monimutkaisten robottien säätöön. Kyseinen 
menetelmä perustuu tutkittavan järjestelmän virtuaaliseen ”hajottamiseen” 
alijärjestelmiksi. Tämän jälkeen järjestelmälle suoritetaan mallipohjainen 
alijärjestelmien dynamiikkaan perustuva säädön toteutus, jonka päämääränä on 
alijärjestelmien virtuaalinen stabiilius. Kaikkien alijärjestelmien virtuaalinen stabiilius 
takaa lopulta koko järjestelmän stabiiliuden. Käytetyn menetelmän tehokkuus perustuu 
siihen, että todella monimutkaisetkin järjestelmät kyetään pilkkomaan rakenteeltaan 
yksinkertaisiin alijärjestelmiin, jolloin koko järjestelmän dynaamisten mallien käsittely 
helpottuu huomattavasti. 
 Diplomityön päämääränä oli soveltaa VDC menetelmää kahden vapausasteen 
hydrauliseen manipulaattoriin. Parametrien sovittaminen (parameter adaptation) jätettiin 
tässä diplomityössä tarkastelujen ulkopuolelle. VDC-säätimen suorituskyky testattiin 
käytännössä ja saatuja tuloksia verrattiin PID-säätimellä saatuihin vastaaviin tuloksiin. 
 VDC menetelmää käsittelevä teoria kyettiin onnistuneesti soveltamaan 
tutkimusvälineenä olleeseen manipulaattoriin. Manipulaattorin alijärjestelmät kyettiin 
matemaattisesti todistamaan  and  stabiilisiksi,  tämän  taaten  lopulta  koko  
järjestelmän stabiiliuden. Kokeellisissa mittauksissa manipulaattorilla ajettiin sekä 
VDC- että PID-säätimellä sama määrätty Karteesinen rata. VDC-säätimellä saavutettiin 
noin seitsemän kerta tarkempi sylinterin männän aseman seurantatarkkuus toiselle 
järjestelmän sylintereistä ja noin neljä ja puoli kertaa tarkempi sylinterin männän 
aseman seurantatarkkuus toiselle järjestelmän sylintereistä. Mittauksissa ajettiin edellä 
mainittu Karteesinen rata myös puolet nopeammalla ja puolet hitaammalla 
suoritusajalla. Molemmissa tapauksissa PID-säätimen stabiilius menetettiin. VDC-
säätimellä kyseiset radat kyettiin suorittamaan ilman ongelmia.  
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NOMENCLATURE AND ABBREVIATIONS 
 
The following notations are applied throughout this thesis unless otherwise specified: 
 

 An italic letter in lower case represents scalar. 
 A bold letter in lower case with an overhead right arrow, such as , represents a 

directed (physical) vector; a bold letter in lower case, such as v, represents a 
valued vector. 

 A bold letter in upper case, such as U, represents a matrix. 
 A bold letter in upper case surrounded by a pair of braces, such as {A}, 

represents a coordinate frame. 
 

   The dot notation for derivative operator 
   Integral operator 

   Leibniz’s notation for derivative operator 
( ×) ×   A skew-symmetric matrix operator from vector  
{ }   A coordinate system (frame) 

  Bulk modulus of fluid 
  Pressure drop across the orifice 

   VDC-controller position error feedback gain 
   Partial differentiator operator 

  Parameter vector of rigid body related to frame { } 
  Parameter vector of applied friction model 
  Parameter vector of servo valve control equation 

   Manipulator joint angle 
( )   A monotonic function with force input 
( ) Bounded and differentiable function characterizing the profile of 

the Stribeck and viscous friction 
  Angular velocity vector of frame { } 

×
×   Empty 3x3 square matrix 

  Piston area of cylinder in chamber A 
   Inverse of matrix A 

   Transpose of matrix A 
×  A vector of centrifugal and Coriolis terms of rigid body related to 

frame  { } 
   Valve flow coefficient from chamber to return 
   Valve flow coefficient from supply to chamber 

  Force/moment vector of frame { } 
  Net force/moment vector of frame { } 
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  Force vector of frame { } 
  The actuation force of cylinder piston 
  Friction force of cylinder piston 
  Net pressure force of cylinder piston 

  A vector of gravity terms of rigid body related to frame { } 
( , ) A function characterizing behavior of cylinder seal bristles in 

cylinder friction model 
( )   The moment of inertia matrix around the center of mass 

×   A 3×3 identity matrix 
Jq   Geometric Jacobian matrix 

×   Positive definite gain matrix of rigid body related to frame { } 
   Derivative gain of PID-controller 
   Piston force feedback gain of VDC-controller 

   Integral gain of PID-controller 
   Proportional gain of PID-controller 
   Ultimate gain of PID-controller 
   Velocity feedback gain of VDC-controller 

( )   Differentiable switching function 
Lp   Lebesgue space 

  Effective length of cylinder 
   Number of joints within the open chain 

×   Mass matrix of rigid body related to frame { } 
  Moment vector of frame { } 

   A mass of rigid body related to frame { } 
   Number of open chains in virtually decomposed system 
 Number of objects in virtually decomposed system 
   Virtual power flow with respect to frame {A} 
  Pressure in cylinder chamber A 
   Supply pressure 
   Pressure of return line 
  Flow rate entering in cylinder chamber A 
  Desired position in joint space 
  Required position in joint space 
  Desired velocity in joint space 
    Required velocity in joint space 

×   Rotation matrix of frame {B} with respect to frame {A} 
3 Vector pointing from the origin of frame {A} toward the center of 

mass and expressed in frame {A} 
( )   Selective function 
    Transition time between two points defined in Cartesian frame 



 x 

   Oscillation period of asymptotically stable PID-controller 
×  Force/moment transformation matrix from frame {A} to frame {B} 

 Control voltage of servo valve 
 Control term of servo valve control voltage 

 Linear/angular velocity vector of frame { } 
 Linear velocity vector of frame { } 

( ) Pressure drop related function 
( ) Non-negative accompanying function 

 Initial Cartesian position along x-axis of Cartesian frame 
 Desired Cartesian position along x-axis of Cartesian frame 
 Desired Cartesian velocity in Cartesian frame 
 Final Cartesian position along x-axis of Cartesian frame 
 Desired position given in actuator space 
 Desired velocity given in actuator space 
 Required position given in actuator space 
 Required velocity given in actuator space 

×  Regressor matrix of rigid body related to frame { } 
×  Regressor matrix of applied friction model 
×  Regressor matrix of servo valve control equation 

 Initial Cartesian position along x-axis of Cartesian frame 
 Desired Cartesian position along x-axis of Cartesian frame 
 Desired Cartesian velocity in Cartesian frame 
 Final Cartesian position along x-axis of Cartesian frame 

 
 
 
CAD Computer Aided Design 
DOF Degree Of Freedom 
IHA Department of Intelligent Hydraulics and Automation 
PID Proportional, Integral, Derivative 
TUT Tampere University of Technology  
VDC Virtual Decomposition Control 
VPF Virtual Power Flow 
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1 INTRODUCTION 

The robots and robotic manipulators have been used in industry for many decades. The 
first programmable robot was designed as early as 1954, by George Devol, and first 
commercially available robot appeared in markets already in 1959. Robotic 
manipulators were used in industries after 1960, and saw sky rocketing growth in the 
80s. Rapid growth of robot industry in 80s occurs primarily because of the huge 
investments by the automotive industry. (Jazar 2010, p.2). 
 The first industrial robots were nothing but numerical control of mechanical 
linkages that were basically designed to do some simple material handling tasks (Jazar 
2010, p.2). In addition to material handling tasks, industrial robots are nowadays 
designed to accomplish also different manipulation and measurement task. (Sciavicco 
2001, p.4-5). It is quite obvious that today’s highly automated industrial targets of 
robotic applications, such as welding, milling, assembling and object inspections to 
name a few, require much more motion capability and sensing. Moreover, many of 
today’s industrial robotics applications demands high accuracy, forces and repeatability 
that they are hardly attainable without robots (Jazar 2010, p.2-3). 

Apart from industry, more and more advanced robots are needed in extreme and 
hostile environments, such space, nuclear and underwater. In these applications, whole 
new  level  of  autonomy  of  robots  is  required.  Also  complexity  of  these  systems  has  
usually significantly increased and more versatile operations are demanded. (Jazar 2010, 
p.2-3) (Sciavicco 2001, p.4-5). 

In the view of the above, it is quite clear that nowadays robotics is very 
interdisciplinary field of science. According to books concerning into field of robotics, 
such as (Craig 2005), (Jazar 2010), (Sciavicco 2001), the robotics can be seen as a 
fusion of different branches of science such as mechanics, electronics, information 
theory, automation theory, mathematics and computer science.   

1.1 Hydraulics in View of Control System 

Hydraulic actuators are well-known of their high power-to-weight ratio, compactness 
and reliable performance. In (Watton 1989), it is said that in applications where high 
power is needed with a requirement from good-to-precision control, it is inevitable that 
fluid power systems will be used. Furthermore, the relatively high power-to-weight ratio 
of hydraulics together with advantages of electronic signal processing produces a 
flexible and efficient means of power transfer and control. Usage of hydraulic 
components is also said to provide a rapid system response (Sirouspour 2001).  



 2 

 However, the inherent nonlinear dynamics associated with hydraulics actuators 
substantially challenge the controller design (Zhu 2005), (Zhu 2010, p.169), (Niksefat 
1999). In view of (Linjama 1998), turbulent flow equations to model flow through 
valves is also significantly nonlinear. Also, determination of the parameters of 
mathematical models of hydraulic systems, such as system compliances and valve 
characteristics, can be difficult and time-consuming task (Niksefat 1999).  

1.2 Special Characteristics of Control in Robotics 

The primary purpose of robot manipulators is to perform certain manipulation tasks in 
its environment (Muhammad 2011, p.26). Completion of a generic task requires the 
execution of a specific motion prescribed to the manipulator’s end-effector. The correct 
execution of the end-effector motion is entrusted to the control system which shall 
provide the joint actuators of the manipulator with the commands consistent with the 
desired motion trajectory. (Sciavicco 2001, p.14) 
 Control  of  end-effector  motion  demands  an  accurate  analysis  of  the  
characteristics of the mechanical structure of manipulator. Modeling a manipulator is 
therefore a necessary premise to finding motion control strategies. Modeling of a 
robotic manipulator can be divided to kinematic and dynamic analysis. Kinematic 
analysis of a manipulator structure concerns the description of the manipulator motion 
with respect to fixed reference Cartesian frame by ignoring the forces and moments that 
causes motion of the structures. (Sciavicco 2001, p.14-15) 
 The kinematics of a manipulator represents the basis of a systematic, general 
derivation of manipulators dynamics, i.e., the equations of motion of the manipulator as 
a function of the forces and moments acting on it (Sciavicco 2001, p.15). The dynamics 
of rigid robot is also well-known to be modeled by a set of coupled highly nonlinear 
differential equations (Huang 2010, p.83). The dynamic model of manipulator is used 
for mechanical design of the structure, choice of actuators, determination of control 
strategies, and computer simulation of manipulator motion (Sciavicco 2001, p.15).     
 The control systems are essential to robots, as they produce desired behavior, 
maximize potential performances, and deliver achievable accuracy, subject to 
robustness requirements (Zhu 2010, p.4). The problem of manipulator control is to find 
the time behavior of the forces and torques to be delivered by the joint actuators so as to 
ensure the execution of the reference trajectories. This problem is quite complex, since a 
manipulator  is  an  articulated  system  and  thus  the  motion  of  one  link  influences  the  
motion of the others. (Sciavicco 2001, p.15-16) Also highly nonlinear characteristic of 
the robot dynamics increases largely the difficulty of the controller design. The 
controller design of robot is generally said to be not easy even when the dynamic model 
of system is precisely known. This comes from the various uncertainties and 
disturbances of mathematical models. (Huang 2010, p.83). 
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1.3 Towards Virtual Decomposition Control 

Robot manipulators have been widely used in the industrial applications in the past 
decades. However, most of these applications are restricted to slow-motion operations 
without interactions with the environment. This is mainly due to limited performance of 
the available controllers in the market that are based on simplified system models. Thus, 
more advanced control strategies are needed to increase the operation speed with more 
servo accuracy. (Huang 2010, p.1) 

The most widely used control scheme for industrial robots is based on the joint 
Proportional, Integral, and Derivative (PID) servo control. While this scheme is easy to 
implement and is able to move a robot to its desired position in steady state, the 
dynamic properties of the robot can be vitiate this approach, since the dynamic coupling 
among the joints and the mass matrix variations can invalidate the PID control. A 
typical second-order system, representing a one Degree Of Freedom (DOF) robot G(s), 
subject to a PID controller C(s), is illustrated in Figure 1. (Zhu 2010, p.5) 
 

 
Figure 1: A PID feedback controlled system. 

 With this kind of arrangement, a PID controller is able to deliver acceptable 
control performances at low frequencies, but it is unable to produce adequate control 
performances at high frequencies beyond the cut-off frequency, i.e. bandwidth of 
controller is poor. Also, in order to prevent overshoots in contact motion, the joint PID 
controllers are designed to be over-damped in most circumstances. As a result, these 
robots are capable only of performing regulation tasks that require accuracies only in 
the steady state. For task requiring tracking accuracies the joint PID control is generally 
inadequate. (Zhu 2010, p.5) 
 Due to the limitations of PID control, researchers have long been seeking 
advanced control approaches that are able to achieve higher control performances. One 
solution is to use so called dynamic based feedforward plus PID feedback control 
(simply called dynamics based control), as illustrated in Figure 2. 
 

 
Figure 2: Dynamic based control. 
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In dynamics based control a new feedforward block F(s) is added. If the feedforward 
transfer function F(s) takes exactly the inverse dynamics of the system G(s) to  be  
controlled, subject to that F(s)  =  1/  G(s) holds indefinitely, then the ideal transfer 
function  ( )

( )
= 1, [0, ), can be achieved.  This result implies that “infinite” 

control bandwidth is possible as long as a proper feedforwad control is designed. 
Having high bandwidth allows accurate execution of dynamically challenging tasks, 
which would be otherwise impossible by using PID controlled robots. High bandwidth 
also allows rapid executions of tasks which were previously executed by PID controlled 
robots by much slower speed. (Zhu 2010, p.6-7) 

In dynamic based control approach, the feedforward term F(s) mainly 
contributes to high control accuracies, whereas the feedback term is primarily used to 
overcome uncertainties, to maintain stability, and to address transition issues. The 
design of F(s) is completely based on the robot inverse dynamics and can thus be 
obtained independently from the feedback controller C(s). The dynamics based control 
approach is also generally applicable to highly coupled nonlinear systems such as 
robots. Due to these advantages of the dynamic based control approach, it has been 
taken as baseline approach from which the Virtual Decomposition Control (VDC) has 
originally evolved. (Zhu 2010, p.6-7)  

Control of complex systems, such as robots, has long been a challenging topic 
for the past five decades (Zhu 2011). In complex robotic systems the uncertainties, high 
nonlinearity, and strong couplings in the dynamics becomes even far more challenging 
to model precisely than aforementioned in chapter 1.2 and this obviously makes the 
control problem even more complicated and difficult to solve (Zhu 1997). 

One of the major technical challenges of dynamic based control in complex 
robotic systems is that the control design is based on the complete dynamic models of 
robots. This same control design feature occurs also in most of the books on control of 
robotics, such as (Craig 2005), (Sciavicco 2001), and (Lewis 2004) to name a few.  
Usually, robots with two or three DOF were taken as examples in simulations or 
experiments in order to make control implementations manageable. However, 
substantial technical challenges in control implementations arise when the number of 
DOF of motion is well over six. This is due to fact that the complexity (computational 
burden) of robot dynamics is proportional to the fourth power of the number of DOF of 
motion. (Zhu 2010, p.8) 

The  Virtual  Decomposition  Control  (VDC)  is  one  of  the  most  efficient  
approaches toward precision control of complex robots (Zhu 2011). With respect to the 
technical challenges arisen from the application of dynamics based control to complex 
robots, one possible solution is to base control directly on subsystem dynamics, rather 
than on the complete dynamics of the robot with hyper degrees of freedom. Thus,  the 
essence  of  the  VDC  approach  is  the  use  of  each  subsystem  dynamics  rather  than  
dynamics of the entire system. In view the fact that no matter how complicated a robotic 
system is, the dynamics of the subsystems (rigid links and joints) remain relatively 
simple with fixed dynamic structures invariant to target system. This means that control 
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computations are proportional to number of subsystems. (Zhu 2010, p.9). The VDC 
approach is included with parametric uncertainty to construct model-based feedforward 
compensation terms and guarantees the stability of the entire complex robot with 
mathematical certainty, leading to precise motion/force tracking control with the control 
bandwidth being independent of the feedback control gains (Zhu 2011).  

The VDC is capable of accomplishing a variety of control objectives such as 
motion control, internal force control, and optimizations, without restrictions on target 
systems. Furthermore, one of the advantages of using VDC approach is that the change 
of the dynamics of s subsystem only affects the respective local control equations 
associated with this subsystem, while keeping the control equations associated with the 
rest of the system unchanged. For example, when an electrical motor is replaced by 
hydraulic actuator, only the control equations for this particular joint change, whereas 
the control equations for the rest of the system keep unchanged. (Zhu 2010, p.9) 

1.4 Objectives of Thesis 

According to (Linjama 1998, p.12), the modeling and control of hydraulic cranes 
(manipulators) incur difficult problems which arise from the strong nonlinearities, the 
complexity of the system and uncertainties of physical parameters. On the other hand, 
the VDC introduced in previous section, has been reported to achieved significant 
control results, as in (Zhu 2002), (Zhu 2005) and (Zhu 2011), in various different 
applications.  

In view of challenges towards control issues arisen in sections 1.1 and 1.2, 
hydraulic manipulators serves a fruitful and challenging application to study the VDC in 
practice. The objectives of this thesis are: 

 Implement theory of VDC into hydraulically operated 2-DOF manipulator. 
 Carry out measurements with hydraulically operated 2-DOF manipulator. 
 Compare achieved VDC-controller results to corresponding results achieved 

with PID-controller. 

1.5 Restrictions 

The generic formulation for Virtual Decomposition Control (VDC) approach is 
represented in (Zhu 2010). However, this complete generic formulation is far too 
profound to deal with in scope of this thesis. Thus, only essential and inevitable parts of 
theory of VDC approach are represented.  

This  thesis  restricts  to  cover  only  2-DOF  in  motion.  Due  to  this  fact,  some  
simplifications are made. Firstly, for convenience, in robotics well-known and broadly 
used Denavit-Hartenberg convention to attach body frames is not used. Also regressor 
matrices ×  and parameter vectors  covering 6-DOF in motion and 
defined in section 2.6 are simplified to cover only 2-DOF in motion. 
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As mentioned in (Linjama 1998, p.13) and (Mattila 2000, p.10), the control 
problem of hydraulic manipulators is very wide-ranging and challenging field. Thus, it 
is obvious that only some parts of this control problem of hydraulic manipulators are 
considered herein. This thesis concentrates only on free space motion studies, i.e. all 
contacts and interactions between manipulator and environment are neglected and left to 
future studies. Also parameter adaptation is neglected and left out in scope of this thesis. 
 In  scope  of  this  thesis,  only  control  of  prismatic  hydraulically  actuated  joints  
(hydraulic cylinders) are studied. This comes due to fact that all rotational joints 
appearing in this thesis are unactuated. In view of (Zhu 2010, p.169), in hydraulic 
cylinder actuated systems, the friction in the motion is usually dominated by the piston 
friction between the piston seal and the cylinder. Therefore, the bearing frictions of all 
rotational unactuated joints are neglected and assumed to be zero.  
 To make general presentation and mathematical formulation more manageable, 
all objects and links of open chains1 are handled as a rigid body and thus all flexibilities 
of system are neglected and left to future studies. 

1.6 Structure of Thesis 

This  thesis  is  divided  into  seven  different  chapters.  First,  in  the  next  chapter  all  the  
mathematical preliminaries to be used later on VDC are given. Then, in chapter 3 a 
general formulation of the VDC is given. This chapter introduces only the essential 
formulation  and  theory  of  VDC  approach  to  be  applied  later  into  studied  system.  In  
chapter 4, studied hydraulic manipulator, namely HIAB 031, is introduced. This chapter 
covers formulation of direct kinematics, inverse kinematics, and differential kinematics 
of studied manipulator. In chapter 5, a theory of the VDC is applied into studied system. 
In chapter 6, first an experimental implementation is discussed and then measured 
results with VDC- and PID-controller are given. Finally, in chapter 7 conclusions about 
the results and observations of this thesis are given. Also, future work is discussed in 
this chapter. 
 
 
 
  

                                                
1 objects and open chains will be specified more detailed in subsections 3.1.2 and 3.1.1, respectively. 
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2 MATHEMATICAL PRELIMINARIES 

In this chapter the necessary mathematical preliminaries, which are essential to 
understand and apply the VDC approach into studied system, are defined. Mathematical 
preliminaries to be presented in this chapter are based on the (Zhu 2010). 
 First, in section 2.1 coordinate systems applied in this thesis are introduced. 
Then, in section 2.2 rotation matrix for describing orientation is introduced. In section 
2.3, linear/angular velocity vector and force/moment vector of body frame are defined, 
leading to the duality of linear/angular velocity and force/moment transformations, 
which is to represented in section 2.4. After that, equations describing rigid body 
dynamics are given in section 2.5 and in section 2.6 linear parametrizised expression for 
rigid body dynamics is defined. In section 2.7, the definitions for virtual power flow and 
simple oriented graph are given. Finally, definition and mathematical background for 
the concept of virtual stability is given in section 2.8.   

2.1 Coordinate Systems 

Coordinate systems (called frames for simplicity) defined in (Zhu 2010, p.24) and used 
in this thesis are constructed by three mutually orthogonal three-dimensional unit 
vectors as base. By this definition, frame {A} can be represented as follows:  
 
  { } = [ ]       (2.1) 
 
where   are axis of frame {A}. 

An illustrated example of orthogonal three-dimensional frame {A} defined in 
(2.1) is represented in Figure 3. 

 
Figure 3: Orthogonal three-dimensional coordinate system {A}. 
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2.2 Description of Orientation by Rotation Matrix 

In scope of this thesis, the rotation matrices are used to transforms a physical vector 
expressed in frame {A} to the same physical vector expressed in frame {B}. The 
rotation matrix × , denoting the rotation of frame {B} with respect to frame 
{A}, is defined in (Zhu 2010, p.25) as 
 
  { } = { }       (2.2) 
 
 In scope of this thesis,  all  frames are applied such a way that rotation between 
two frames, namely {A} and {B}, is able to be described only about -axis. In view of 
(Sciavicco 2001, p.23), the rotation about -axis can be described as 
 

  =
cos sin 0
sin cos 0

0 0 1
,      (2.3) 

 
where angle  denotes the rotation of frame {B} with respect to frame {A} and about 

-axis. 

2.3 Expressions of Velocities and Forces in Body Frame 

In view of (Zhu 2010, p.29), the linear velocity vector  of frame {A}, 
expressed in frame {A}, and the angular velocity vector  of frame {A}, 
expressed in frame {A}, are wanted to integrate to facilitate the transformations of 
velocities between different frames. Thus, the linear/angular velocity vector of frame 
{A} can be defined as 
 
Definition 2.1. Let  be the linear velocity vector of frame {A}, expressed in 
frame  {A}, and  be the angular velocity vectors of frame {A}, expressed in 
frame  {A}. The linear/angular velocity vector of frame {A} is defined by (Zhu 2010, 
p.29) as 
 

  .        (2.4) 

 
Similar to Definition 2.1., the force vector  applied to the origin of 

frame a {A}, expressed in frame {A}, and the moment vector  applied to the 
origin of frame a {A}, expressed in frame {A}, are wanted to integrate to facilitate the 
transformations of velocities between different frames. In view of (Zhu 2010, p.29), the 
force/moment vector of frame {A} can be defined as  
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Definition 2.2. Let  be the force vector that is being measured and expressed 
in frame {A} and  be the moment vector that is being measured and expressed 
in frame {A}. The force/moment vector of frame {A} is defined by (Zhu 2010, p.29) as 
 

  .        (2.5) 

2.4 The Duality of Linear/Angular Velocity and 
Force/Moment Transformations 

As defined in (Zhu 2010, p.29), if two given frames, denoted as {A} and {B}, are being 
fixed to a common rigid body moving freely and subject to a pair of physical force and 
moment vectors defined in (2.4) and (2.5),  the duality between the linear/angular 
velocity transformations and the force/moment transformations can be written as 

 
  =        (2.6) 
 = .       (2.7) 

 
In equation (2.7)  
 

  = ×

( ×)
×     (2.8) 

 
denotes a force/moment transformation matrix that transforms the force/moment vector 
measured and expressed in frame {B} to the same force/moment vector measured and 
expressed in frame {A} and in equation (2.6) × denotes a linear/angular 
velocity transformation matrix that transforms the linear/angular velocity vector 
measured and expressed in frame {A} to the same linear/angular velocity vector 
measured and expressed in frame {B}. 
 Furthermore, in (2.8) ×

×  denotes  an  empty  3×3 square matrix and 
cross product × ×  is understood to be skew-symmetric matrix operator 
defined as  
 

  × =
0

0
0

      (2.9) 

 
where , , and  are the distances from origin of frame {A} to origin of frame {B}, 
along the axes of frame {A}. 
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By applying formulation of taking inverse from transformation matrix 
introduced in (Craig 2005, p.158), the transformation matrix defined in (2.7) can be 
inversely written as 

 

 = ×

( ×)
×       (2.10) 

 
Thus, in view of (2.10), the equations (2.6) and (2.7) can be inversely written as 
 
  =        (2.11) 
  = ,       (2.12) 
 
respectively.  

2.5 Rigid Body Dynamics in a Body Frame 

Similar to Definition 2.2., the net force/moment vector  applied to the origin 
of frame a {A}, expressed in frame {A}, can be defined in view of (Zhu 2010, p.30) as 
 
Definition 2.3. Let  be the net (summation) force vector that is being 
measured and expressed in frame {A} and  be the net (summation) moment 
vector that is being measured and expressed in frame {A}. The net (summation) 
force/moment vector of frame {A} is defined in (Zhu 2010, p.29) as 
 

  .        (2.13) 

 
According to (Zhu 2010, pp.30-31), if two frames, denoted as {A} and {B}, are 

fixed  to  a  rigid  body and  frame {A} is used to express the rigid body dynamics, and 
frame {B} is assumed to be located at the center of mass, the dynamic equation of the 
rigid body in free motion, expressed in the inertial frame {I}, can be written as 

 

 + + =      (2.14) 

 
where 
 

          =
( ×)

( ×) ( ×)
×    (2.15) 

 
denotes the mass matrix of rigid body, 
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 =
( ×)

( ×)( ×)
 

          
( ×)( ×)

× + × ( ×)( ×)( ×)
×  (2.16) 

 
denotes the matrix of centrifugal and Coriolis terms, and 
 

           =
( ×)

×      (2.17) 

 
denotes the gravity terms.  

Furthermore, in (2.15) – (2.17)  ×  denotes the identity matrix,  
denotes the mass of rigid body, × ×  is skew-symmetric angular velocity 
matrix,  denotes the gravitational vector, and ×  is defined as 
 

  = ( ) ,       (2.18) 
 
where ( ×  denotes the moment of inertia matrix around the center of mass. 
(Zhu 2010, pp. 30-31)  

2.6 Linear Parametrization Expression 

If parameter uncertainties in dynamic equation of the rigid body in free motion defined 
in (2.14) is wanted to take into account, the parameter adaptation is required. Even 
though parameter estimation is not incorporated in the control equations in scope of this 
thesis, the linear parametrization expression for rigid body dynamics, defined in (2.14), 
is wanted to be applied in the view of the further studies. 
  The linear parametrizised dynamic equation for the rigid body in free motion 
with design vector  is defined in (Zhu 2010, p.32) as 
 

  + +     (2.19) 

 
The detail expressions of the regressor matrix ×  and the parameter vector 

 are given in Appendix A. 

2.7 Virtual Cutting Points and Simple Oriented Graph 

A concept of virtual cutting point is central to the VDC approach. Virtual cutting points 
allow a robotic system to be conceptually “broken down” into subsystems. The cutting 
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points are virtual in the sense that the robotic system is cut conceptually rather than 
physically. Definition for virtual cutting point is given in (Zhu 2010, p.34) as 
  
Definition 2.4. A cutting point is a directed separation interface that conceptually cuts 
through a rigid body. At the cutting point, the two parts resulting from the virtual cut 
maintain equal position and orientation. The cutting point is interpreted as a driving 
cutting point by one part and is simultaneously interpreted as a driven cutting point by 
another part. A force vector  and a moment vector are exerted from one 
part to which the cutting point is interpreted as a driving cutting point to the other part 
to which the cutting point is interpreted as a driven cutting point. 
 
 Simple oriented graphs will be used to represent the topological structure and 
control relations of a complex robot. A following definition for simple oriented graph is 
given in (Zhu 2010, p.34) as 
 
Definition 2.5. A graph consists of nodes and edges. A directed graph is a graph in 
which all the edges have direction. An oriented graph is a directed graph in which each 
edge has a unique direction. A simple oriented graph is an oriented graph in which no 
loop is formed. 
 
In simple oriented graph, each subsystem is represented by a node, while each cutting 
point is represented by a directed edge defining the reference direction of these forces 
and moments passing through this cutting point. The forces and moments at a cutting 
point are exerted from the subsystem to which the cutting point is interpreted as a 
driving cutting point to the adjacent subsystem to which the cutting point is interpreted 
as a driven cutting point. Some nodes are called source nodes that have pointing-away 
edges only, and some nodes are called sink nodes that have pointing-to edges only. (Zhu 
2010, p.35) 

2.8 Virtual Stability 

After a system is virtually decomposed into subsystems, a natural concern in on the 
properties of each subsystem should have in order to maintain the stability of the entire 
system. These properties are being addressed in this section around the central concept 
of the virtual stability to be defined below. 

2.8.1 Lebesgue Space 

Lebesgue spaces, more precisely L2 and L   spaces, are in significant role in the concept 
of virtual stability. Following two definitions given in (Zhu 2010, p.15) and represented 
below are essential on scope of this thesis. 
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Definition 2.6. Lebesgue space, denoted as Lp with p being positive integer, contains all 
Lebesgue measurable and integrable functions f(t) subject to  
 

  = lim | ( )| < +     (2.20) 

 
Two particular cases are given: 

(a) A Lebesgue measurable function f(t) belongs to L2 if  and  only  if  

lim | ( )| < +  
(b) A Lebesgue measurable function f(t) belongs  to  L  if  and  only  if  

max [ , )| ( )| < +  
 
Definition 2.7. A vectored Lebesgue measurable function 

( ) = [ ( ), ( ), … , ( )] , = 1,2, , implies (   for all 
{1, }. 

2.8.2 Non-negative Accompanying Functions 

In this thesis, every subsystem or a node in simple oriented graph is assigned a non-
negative accompanying function to conduct the stability and convergence analysis. A 
non-negative accompanying function ( ) is defined (Zhu 2010, p35) as 
 
Definition 2.8. A non-negative accompanying function (  is a piecewise 
differentiable function possessing the following properties 
 

(i) ( ) 0 > 0,  
(ii) ( ) . 

2.8.3 Virtual Power Flow 

The Virtual power flows (VPFs) are used to characterize the dynamic interactions 
among subsystems.  The Virtual power flow (VPF) is defined in (Zhu 2010, p.35) as 
 
Definition 2.9. With  respect  to  frame {A}, the virtual power flow (VPF) is defined as 
the inner product of the linear/angular velocity vector error and force/moment vector 
error, that is 
 

  =      (2.21) 
 
where  and  represents the required (design) vectors of  
and , respectively. 
 



 14 

Now, let  two frames, denoted as {A} and {B}, be attached to a common rigid 
body. If the required linear/angular velocity vectors and the required force/moment 
vectors are subject to the same constraints as that imposed on the linear/angular velocity 
vectors and on the force/moment vectors, that is 
 

  =       (2.22) 
  =       (2.23) 

 
then it follows from (2.4), (2.5) and (2.21)  (2.23) that 
 
   =        (2.24) 
 
holds. (Zhu 2010, p.36) 

 Accordint to (Zhu 2010, p.36), equation (2.24) indicates that the VPF defined 
by (2.21) is invariant to frames fixed to a common rigid body.  

2.8.4 Virtual Stability 

Based on the above definitions about Lebesgue space, non-negative accompanying 
function and VPFs, the definition for virtual stability of  subsystem  is  given  in  (Zhu  
2010, p.35) as   
 
Definition 2.10. A subsystem that is virtually decomposed from complex robot is said to 
be virtually stable with its affiliated vector x(t) being a virtual function in L  and its 
affiliated vector y(t) being a virtual function in L2, if and only if there exists a non-
negative accompanying function 
 
  ( ) ( ) ( )       (2.25) 

 
such that 
 
  ( ) ( ) ( ) + { } + {    (2.26) 
 
holds, where P and Q are two block-diagonal positive-definite matrices, set  contains 
frames being placed at the driven cutting point of this subsystem and set  contains 
frames being placed at the driving cutting points of this subsystem, and pA and PC 
denote the virtual power flows in Definition 2.9. 
 

The following lemma represented in (Zhu 2012, p.37) shows that two adjacent 
subsystems that are virtually stable are equivalent to a single subsystem that is virtually 
stable. 
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Lemma 2.1. Every two adjacent subsystems that are virtually stable can be equivalent 
to a single subsystem that is virtually stable in the sense of Definition 2.10.. Every 
virtual function in  affiliated with any one of the two adjacent subsystems remains to 
be a virtual function in  affiliated with the equivalent subsystem for = 2, .  
 
 Finally, when every subsystem is guaranteed to be virtually stable in the sense of 
Definition 2.10., the following theorem given in (Zhu 2010, p.38) ensures that the  
and  stability of the system can be guaranteed. 
 
Theorem 2.1. Consider the system that is virtually decomposed into subsystems and is 
represented by a simple oriented graph. If every subsystem is virtually stable in the 
sense of Definition 2.10., then all virtual functions in  are functions in   and all 
virtual functions in  are functions in . 
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3 VIRTUAL DECOMPOSITION CONTROL 
APPROACH 

The general formulation for Virtual Decomposition Control (VDC) approach is 
represented in (Zhu 2010). However, this complete general formulation is far too 
profound  to  deal  with  in  scope  of  this  thesis.  In  view  of  this  fact,  only  the  essential  
formulation and theory from (Zhu 2010) to apply VDC into studied system will be 
introduced in this chapter. 

First in section 3.1, virtual decomposition is illustrated by conceptually 
“breaking” complex robotic system into subsystems, namely into objects and rigid links. 
In section 3.2, kinematics of decomposed subsystems is covered. In sections 3.3, 
dynamics and control of objects completed with virtual stability analysis are explored in 
more detail and respectively, dynamics and control of rigid links completed with virtual 
stability analysis are explored in sections 3.4. After the dynamics and control issues of 
objects and rigid links has been addressed, first in section 3.5, the required 
force/moment vector computations of the entire system are given, and then, in section 
3.6, the dynamics and control issues of joints are to be addressed. Finally, in section 3.7, 
the joint/actuator position control implementation is given. 

3.1 Virtual Decomposition 

The VDC approach is based on the concept of a virtual decomposition. A complex 
robotic system, represented in (Zhu 2010, p.65), is illustrated in Figure 4 and is used 
here as an illustrative example to clarify virtual decomposition process.  
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Figure 4: Example of some complex robotic system. (Zhu 2010, p.65) 

As represented in (Zhu 2010, p.65), in a virtual decomposition, system is first 
virtually decomposed into no objects and nc open chains by placing conceptual virtual 
cutting points defined in Definition 2.4. After being virtually decomposed, a complex 
robotic system, represented in Figure 4, can be represented as a simple oriented graph 
defined in Definition 2.5. Simple oriented graph of complex robotic system is illustrated 
in Figure 5. 

 
Figure 5: Simple oriented graph of complex robotic system represented in Figure 4. (Zhu 2010, p.66) 

In next subsections 3.1.1 and 3.1.2,  a nodes (or subsystems) of simple oriented 
graph, namely open chains and objects, are to be defined and examined in more 
detailed.  
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3.1.1 One-DOF Open Chains 

According to (Zhu 1997), an open chain is a base floating free-motion single chain 
constructed by a series of rigid links connected one by one through one-DOF joints. All 
joints of original system must be included in the open chains.  

In studied system (to be represented in chapter 4) all decomposed open chains 
contains only one-DOF. In view of this fact, in this chapter the theory covering only 
one-DOF open chains will be represented.  

 
Figure 6: jth one-DOF decomposed open chain.  

In Figure 6 is illustrated the jth decomposed one-DOF open chain, {1, }. 
The jth one-DOF open chain, comprises of 2 rigid links, namely link j and link j1, 
connected by one joint, namely joint j. The jth open chain has two cutting points located 
at both ends. The driven cutting point is located at the bottom of the link j and the 
driving cutting point at the top of link j1. Frame {Bj} is fixed to the driven cutting point 
in link j and frame {Tj} is fixed to the driving cutting point in link j1. The force/moment 

vector  in frame {Bj} is exerted (directed) toward the jth open chain, and the 

force/moment vector  in  frame  {Tj} is exerted (directed) away from the jth open 
chain. (Zhu 2010, p.65) 
 In Figure 6 there are also two so called subsidiary cutting points. Aim  of  
subsidiary cutting points is at virtually isolate the joints from the rigid links. For joint j a 
pair  of  frames,  denoted  as  {Bj1}  and  {Tj1}, is located to the joint j with  frame  {Bj1} 
being fixed to link j and frame {Tj1} being fixed to link j1. (Zhu 2010, p.65) 

In view of Definition 2.4, the cutting point associated with frame {Bj} is called 
the driven cutting point of link j. The subsidiary cutting point associated with frame 
{Bj1}, is called the driving cutting point of joint j and is simultaneously called the driven 
cutting point of link j1. The subsidiary cutting point associated with frame {Tj1} is 
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called the driving cutting point of link j and is simultaneously called the driven cutting 
point of joint 1. Finally, the cutting point associated  with  frame  {Tj} is called the 
driving cutting point of link j1. 

3.1.2 Objects 

An object is a rigid body on which the motion and force control specifications are given. 
(Zhu 2010, p.68) In object there can be a several driven and driving cutting points with 
at least one driven cutting point. An object may or may not be contact with 
environment. A rigid link with three or more joints must be handled as an object, 
because it cannot form a single chain and thus it cannot be included in an open chain. 
Also  all  rigid  bodies  which  are  in  contact  with  the  environment  must  be  taken  as  
objects.  (Zhu  1997)  In  scope  of  this  thesis,  only  contactless  situations  are  to  be  
considered.  

In Figure 7 is illustrated the ith object, {1, }, of decomposed system.  

 
Figure 7: The ith object of decomposed system. (Zhu 2010, p.69) 

In ith object frame {Oi} is fixed to describe the motion and force specifications. If the 
jth open chain, given in Figure 6, is adjacent to the ith  object  with  frame  {Bj} being 
placed at the cutting point between  them,  then  this  cutting  point  is  called  a  driving 

cutting point of the ith object. The force/moment vector  in  frame  {Bj} is exerted 
from the ith object toward the jth open chain. Alternatively, if the jth open chain, given 
in Figure 6, is adjacent to the ith object with frame {Tj} being placed at the cutting point 
between them, then this cutting point is called a driven cutting point of the ith object. 

The force/moment vector  in frame {Tj} is exerted from the jth open chain toward 
ith object. (Zhu 2010, p.68-69) 

3.2 Kinematics Computations  

First, before dynamics and control issues of the system can be considered, all 
kinematics computations including velocity transformations among different body-
attached frames are needed to be carry out by propagating from the open chain 1, 
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through  open chain j (for all {2, }) and object i (for all {1, 1}), to object 
.  

First, in subsections 3.2.1 and 3.2.2, velocity transformations considering to the 
jth one-DOF open chain (illustrated in Figure 6) and the ith object (illustrated in Figure 
7), respectively, are to be given. 
 Then, in subsection 3.2.3, an important design vector, namely required velocity 
vector, is introduced and required velocity transformations considering to the jth one-
DOF open chain and the ith object are given. 

3.2.1 Velocity Transformations of jth Open Chain 

Consider the fact that the linear/angular velocity vector  at the driven cutting 
point of jth one-DOF open chain is known2. Hence, in the view of equation (2.6), the 
linear/angular velocity vector of frame { } of jth open chain (illustrated in Figure 6) 
can be given as 
 

  =        (3.1) 

 
 The jth joint of jth one-DOF open chain can be either revolute joint or prismatic 
joint. Let  be  the  angular  velocity  of  revolute  joint  and   be the linear velocity of 
prismatic joint. Now, in view of (2.6) and (3.1), the relationship between the velocity of 
jth joint and the linear/angular velocity vectors of the adjacent links can be expressed 
for revolute joint as 
 

  = +  

  = +       (3.2) 

 
where = [0,0,0,0,0,1] . If the jth joint is prismatic equation (3.2) will take form of 
 

  = +  

  = +       (3.3) 

 
where = [1,0,0,0,0,0] . 
 
 

                                                
2  can be obtained either from velocity transformation from known inertial frame, if j=1, or it is 

corresponding with known linear/angular velocity vector  of adjacent ith object 
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 Finally,  in view of (2.6),  (3.2) and (3.3),  the linear/angular velocity frame { } 
can be given as 
 

        =        (3.4) 

3.2.2 Velocity Transformation of ith Object 

Consider the fact that the velocity of driven cutting point of ith object is now known in 
view of (2.6) and equation (3.4). Thus, in view of (2.6), for the ith object (illustrated in 
Figure 7) the following relationships hold for velocity transformations  
 

  =  

  =        (3.5) 

3.2.3 Required Velocities and Required Velocity Transformations 

When the required velocities for the jth joint of jth one-DOF open chain is specified for 
all {1, }, to validate (2.22), the required velocity transformations for jth one-DOF 
open chain can be written in view of (3.1) (3.4) as 
 

  =        (3.6)  

 
in case of revolute joint 
 

  = +  

  = +       (3.7) 

 
and in case of prismatic joint 
 

  = +  

  = + ,       (3.8) 

 
and finally, 
 

        = .      (3.9) 

 

Note that  in equation (3.6) is known by similar manners to  (see 
subsection 3.2.1). 
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 For the ith object, required velocity vectors can be written in view of (2.22), 
(3.9), and (3.4) as 
 

  =  

  =        (3.10) 

3.3 Dynamics and Control of ith Object 

The VDC approach allows the dynamics and control issues of the ith object, represented 
in section 3.1.2, to be handled independently, provided that ith object combined with its 
respective control equations qualifies to be virtually stable in sense of Definition 2.10. 
In  this  section  the  dynamics  and  control  equations  for  the  ith object,  in  view of  (Zhu 
2010, pp.72-78), are given. 

3.3.1 Dynamics of ith Object 

Referring back to (2.14), the dynamics of the ith object can be expressed as 
 

  + + =     (3.11) 

 
where the linear/angular velocity vector  is obtained from (3.5). On the other 
hand, the net force/moment vector in frame {Oi} is governed by 
 

  =      (3.12) 

 

3.3.2 Required Net Force/Moment Vectors of ith Object  

After  is being obtained from (3.10), a new design vector, namely the 
required net force/moment vector, is specified as 
 
  = +      (3.13) 
 
where ×  is a positive-definite gain matrix characterizing the velocity 
feedback control. The term  denotes the model based feedforward compensation 
term by using the required velocities and their time derivatives. The regressor matrix 

×  and the parameter vector  are defined according to (2.19) and 
further given in Appendix A by substituting frame {Oi} for frame {A}.   
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3.3.3 Required Force/Moment Vector Transformation of ith Object 

Similar to (3.12), the force resultant equation is applied to the required forces. It follows 
that  
 

  =     (3.14) 

 
holds. 

3.3.4 Virtual Stability 

In this subsection, it will be shown that according to (Zhu 2010, pp.76-78) each object 
combined with its respective control equations qualifies to be virtually stable in sense of 
Definition 2.10. 
 
Lemma 3.1. Consider the ith object described by (3.11)  and combined with its 
respective control equation (3.13). If non-negative accompanying function for this 
object is chosen as  
  

  =     (3.15) 

 
then it follows that 
 

   

  +      (3.16) 
 
holds. 
 
The following theorem given in (Zhu 2010, p.81) ensures that ith object combined with 
its respective control equations qualifies to be virtually stable in the sense of Definition 
2.10. 
 
Theorem 3.1. The ith object described by (3.5), (3.11), and (3.12), combined with its 
respective control equations (3.10), (3.13),and (3.14), is virtually stable with its 
affiliated vector  being a virtual function in both L2 and L , in the sense of 
Definition 2.10. 
 
The complete proof for above Theorem (i.e. virtual stability of ith object) can be found 
in (Zhu 2010, p. 77-78) 
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3.4 Dynamics and Control of Rigid Links 

In this section the dynamics and control issues of the jth one-DOF open chain, described 
in section 3.1.1, will be covered in the view of (Zhu 2010, pp.78-82).  Aim of this 
section is to represent that both links of the jth one-DOF open chain combined with its 
respective control equations qualifies to be virtually stable in sense of Definition 2.10. 

3.4.1 Dynamics of Rigid Links 

Referring back to (2.14), the dynamics of the link j1 and link j of the ith one-DOF open 
chain can be expressed as 
 

  + + =     (3.17) 

  + + =    (3.18) 

 

where the linear/angular velocity vector  is known and  is obtained 
either from (3.2) or from (3.3), depending on the type of joint. 

On the other hand, in view of (2.7) and Figure 6 the above net force/moment 
vectors can be further expressed as 
 

  =       (3.19) 

  =  

  =       (3.20) 

3.4.2 Required Net Force/Moment Vectors of jth One-DOF Open Chain 

After the required linear/angular velocity vectors  are  are being 
specified (see subsection 3.2.3), the required net force/moment vectors, can be specified 
as  
 

   = +     (3.21) 

  = + ,     (3.22) 

 
where ×  and ×  are symmetric positive-definite matrices 

representing the velocity feedback control gain matrices. The terms  and 

 denote the model-based feedforward compensation terms with the regressor 

matrices ×  and ×  and the parameter vectors  and 
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 being defined according to (2.19) and further given in Appendix A by 

substituting frames { } and { } for frame {A}, respectively.  

3.4.3 Required Force/Moment Vector Transformation of jth One-DOF 
Open Chain 

After  and  are being obtained from (3.21) and (3.22), the required 
force/moment vectors in frame { } and { } can be written as 
 

  = +       (3.23) 

  = +  

  = +       (3.24) 

3.4.4 Virtual Stability 

The following theorem given in (Zhu 2010, p.81) ensures that the jth one-DOF open 
chain combined with its respective control equations qualifies to be virtually stable in 
the sense of Definition 2.10. 
 
Theorem 3.2. Each rigid link of the jth open chain described by (3.18) or (3.17) subject 
to (3.1), (3.4), (3.19)  (3.20), combined with its respective control equations (3.6), 
(3.9), and (3.21) or (3.22), and (3.23) – (3.24), is virtually stable with its  affiliated 

vector  or , being a virtual function in both L2 and  L , in the 
sense of Definition 2.10. 
 
The complete proof for above Theorem (i.e. virtual stability of ith open chain) can be 
found in (Zhu 2010, p. 81-82). 

3.5 Required Force/Moment Vector Computations of the 
Entire System  

The required net force/moment vectors of the entire system can be computed along the 
opposite directions of the simple oriented graph, starting from the sink nodes towards 
the source nodes. Equation (3.14) is used for a node representing an object and 
equations (3.23) and (3.24) are used for a node representing a one-DOF open chain. The 
alternative connections of objects and open chains allows the alternative use of (3.14) 
and (3.23) and (3.24), leading to the completion of the computations. (Zhu 2010, pp.82-
83) 
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3.6 Dynamics and Control of Joints 

After the dynamics and control issues of the ith object and jth open chains has been 
addressed the dynamics and control issues of jth joint is to be addressed. The objective 
in  the  scope  of  this  thesis  is  to  show that  a  jth one-DOF joint, illustrated in Figure 6, 
combined with its control equations qualifies to be virtually stable in the sense of 
Definition 2.10.  

Due to fact that all revolute joints in scope of this thesis are unactuated, 
following assumption is used throughout this thesis.  

 
Assumption 1. The friction torques in all unactuated rotational joints are zero. 
 
In view of above, in this section dynamics and control issues are addressed to cover 
only prismatic joints.  

3.6.1 Joint Dynamics of Prismatic Joints 

In view of (Zhu 2010, p.83), the dynamics of one-DOF prismatic joint can be written as 
   

  + ( ) =      (3.25) 
 
where   is  the  equivalent  mass,   is  the  joint  displacement,   is  the  
joint control force,  represents the net force devoted to the joint dynamics, 

 denotes the force/moment vector in frame { } exerted from link j to link 
j1, and  ( )  is the friction model for prismatic joint. 

3.6.2 Control Equations 

The relationship between the required velocity of the jth joint of the jth one-DOF open 
chain and the required linear/angular velocity vectors of its adjacent links in the case of 
prismatic joint is already defined in (3.8).  
 After  being obtained (3.29), the joint control equations are designed as 
 
  = +       (3.26) 

  = +        (3.27) 
 

where > 0 denotes the feedback gain of joint j and  is obtained from 
(3.23).  
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3.6.3 Virtual Stability 

The following theorem ensures that a jth one-DOF joint combined with its respective 
control equations qualifies to be virtually stable in the sense of Definition 2.10. 
 
Theorem 3.3. The joint j of the jth open chain described by (3.3)  and (3.25), combined 
with its respective control equations (3.8),(3.26), and (3.27), is virtually stable with its 
affiliated variable  being a virtual function of in both L2 and L , in the sense of 
Definition 2.10. 
 
The complete proof for above Theorem (i.e. virtual stability of joint j in the jth one-
DOF open chain) can be found in (Zhu 2010, p. 85-86). 

3.7 Joint Position Control Implementation 

The VDC is based on velocity control, i.e. control objective is to make controlled actual 
velocities to track required velocities. In VDC objective is to design a velocity 
controller that takes care of all dynamics of the system. When velocity controller with 

/  stability and asymptotic stability is designed, the required velocity can be 
“modified” to accomplish an ultimate control objective.  

If the control objective is to make the manipulators position trajectory track to 
its desired position trajectory, the position control can be performed through a velocity 
controller by incorporating a position error term into the required velocity. In position 
control implementation new term namely desired velocity is introduced. A desired 
velocity serves the reference trajectory of a velocity with respect to time. In view of 
(Zhu 2010, p.51), the required velocity of the joint j of  the  jth open chain can be 
designed to be in a case of revolute joint as 

 
 = + ,       (3.28) 

 
where  denotes the desired joint velocity,  is a position error term, where  
denote the desired joint angle and  is actual measured joint angle,  and > 0 is  a  
control parameter.  
 Similar to (3.28), the respective equation for the prismatic joint, can designed to 
be as  
 
  = + ,      (3.29) 
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4 STUDIED HYDRAULIC MANIPULATOR 

In this thesis the VDC approach is applied into hydraulically operated HIAB 031 
manipulator. HIAB 031 contains two hydraulic cylinders (Cylinder 1 and Cylinder 2) 
which are used to operate two booms (Boom 1 and Boom 2) of manipulator. There 
exists also third cylinder which is used to operate the telescopic boom inside the boom 
2, but in scope of this thesis telescopic cylinder is set to be fixed and non-operated. An 
external load, denoted as M, is attached at the tip of the manipulator. Studied 
manipulator is illustrated in Figure 8. 

 
Figure 8: HIAB 031 hydraulic manipulator with attached mass. 

As from Figure 8 can be seen, boom 1 is coupled with joint 1 (1-DOF rotational 
joint) to rigid boom from its other end and with joint 2 (1-DOF rotational joint) to boom 
2 from another end. In a system a linear motion of cylinders (Cylinder 1 and Cylinder 2) 
is converted to rotational motion of joints (Joint 1 and Joint 2). Described construction 
provides 2-DOF in motion. More detailed information about structural dimensions of 
HIAB 031 can be found on Appendix C. 

4.1 Direct Kinematics of HIAB 031 

The  aim  of  direct  kinematics  is  to  compute  the  position  and  orientation  of  the  end-
effector as a function of the joint variables (Sciavicco 2001, p.39). In our case, the tip of 
the boom 2 is considered as an end-effector of system. 
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Figure 9: Frames and dimensions of manipulator to compute direct kinematics. 

In order to compute direct kinematics of manipulator, four frames, namely { }, 
{ }, { } and { }, are attached in the assembly. Attached frames and structural 
dimensions needed in direct kinematics computations are represented in Figure 9. Frame 
{ } is a fixed and non-moving base frame of assembly. The y-axis of frame { } is set to 
be pointing away from gravity.  Frames { } and { } are attached to link 1 and link 
2 at the location of joint 1 and joint 2, respectively, to represent a rotation of links. The 
rotation of link 1 and link 2 are represented with joint variables  and , respectively. 
Frame { } is attached at the tip of link 2 and x-axis of frame { } is  set  to  be  parallel  
with centerline of link 2. 
 In view of direct kinematic equations defined in (Sciavicco 2001), the 
transformation matrix from frame { } to frame { } can be given as 
 

 =

cos( ) sin( )
sin( ) cos( )

cos( ) cos( )
sin( ) sin( )

0
0

 

 =
0 0 0 1

        (4.1) 

where 
 

 = , and  = .      

 
In equation (4.1)  represents a rotation matrix from frame { } to frame { }, 
describing the orientation of frame { } with respect to frame { }. Term  represents a 
Cartesian position vector, describing the position of origin of frame { } with respect to 
origin of frame { } expressed in frame { }. 
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4.2 Inverse Kinematic of HIAB 031 

The inverse kinematics consists of the determination of the joint variables 
corresponding to a given end-effector position and orientation (Sciavicco 2001, p.66).  
The inverse kinematic of manipulator can be derived from transformation matrix 
defined in (4.1) by using e.g. algebraic solution technique represented in (Sciavicco 
2001, pp.67 - 68). Thus, the joint angles  and  can  be  given  as  a  function  of  
manipulator tip position in x and y with respect to reference frame { } as 
 

 , cos ( ) ( )     (4.2) 

 , = sin
, , ( )

,
 (4.3) 

4.3 Differential Kinematics of HIAB 031 

Differential kinematics defines the relationship between the joint velocities and the 
corresponding end-effector linear velocities in Cartesian space. This mapping is 
described by a matrix, termed geometric Jacobian. (Sciavicco 2001, p.79) 
 In the view of the equation (4.1), the Cartesian position of HIAB 031 with 
respect to frame { } can be given as    
 

  = = 1 cos( 1) + 2 cos( 1 + 2)
1 sin( 1) + 2 sin( 1 + 2) +

   (4.4) 

 
Note, that in (4.4) the Cartesian position = 0 in z and can be thus neglected.  
 The geometric Jacobian of HIAB 031, can be defined in the view of (Jazar 2011, 
p.359) and (4.4) as 
  

 = = sin( ) sin( + ) sin( + )
cos( ) + cos( + ) cos( + )   (4.5) 

 
The relationship between the joint velocities and the corresponding end-effector linear 
velocities  of  HIAB  031  can  be  written  in  the  view  of  (Sciavicco  2001,  p.79)  and  
equation (4.5), as 
 
  =         (4.6) 
 
where = [ ]  represents a Cartesian velocity vector, describing the 
velocity of origin of frame { } with respect to origin of frame { } expressed in frame 
{ }, and = [ 1 2]  represents a respective angular velocity vector of HIAB 
031 joints.  
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Further, the equation (4.6) can be written inversely as 
 
  =         (4.7) 
 
where, 
 

 = ( )
cos( + ) sin( + )

cos( ) + cos( + ) sin( ) + sin( + )  (4.8) 
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5 APPLYING VDC APPROACH INTO THE HIAB 
031  

In this chapter the VDC approach, introduced in chapter 3, is applied into HIAB 031 
hydraulic manipulator, introduced in chapter 4.  

5.1 Virtual Decomposition of HIAB 031 

Using of hydraulic cylinders to provide a rotational movement produces closed chains 
in the kinematic structure of system. A closed chain means that sequence of links forms 
a  loop  in  a  system  (Sciavicco  2001,  p.  39).  In  our  case,  formed  closed chains of  a  
system are illustrated in Figure 10. Both closed chains contain three un-actuated 
rotational one-DOF joint and one actuated linear joint. 

 
Figure 10: Closed chains of system. 

 
 As was introduced in section 3.1, in a virtual decomposition a system is first 
needed to be virtually decomposed into objects and open chains by placing conceptual 
cutting points. Because of existence of closed chains, system is first virtually 
decomposed into objects and closed chains by placing four cutting points to the both 
ends of cylinders joints (see Figure 11). 
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Figure 11: Placing of cutting points at HIAB 031. 

In a simple oriented graph, introduced in section 2.7, there can be only objects, open 
chains and cutting points. This implies that both closed chains are needed to be further 
decomposed and expressed as a form of open chains. Conversion from closed chain 
structure to open chain structures can be seen from Figure 12 and Figure 13.  
 In view of the Definition 2.4, frames { } and { }, where j denotes the number 
of open chain, are needed to attach to the driven cutting point and driving cutting point 
of open chains, respectively, to describe the motion and force specifications. Also 
subsidiary cutting points are needed to attach. The virtual composition for the closed 
chains is made in view theory represented in subsection 3.1.2. The decomposed one-
DOF open chains of system can be seen from Figure 12 and Figure 13.  
 As from Figure 12 and Figure 13 can be seen, there has been made one addition, 
into open chains with  prismatic  joint  (open chain 2 and open chain 4), compared to 
general one-DOF open chain structure represented in Figure 6. This come due to fact 
that, in the open chains with prismatic joints the frames in the driven cutting point, 
namely { } and { }, are not coincide with axis of actuation of respective joint. Thus, 
one  “extra  frame”,  namely  { }  and  { }, into open chain 2 and open chain 4, 
respectively, is needed to add. Function of these frames is to represent the rotation from 
frame in driven cutting point to actuation axis of respective joint. The structure of open 
chain 2 and open chain 4 is identical to structure represented in Figure 6, if frames 
{ } and { }, with = 2, 4, in Figure 12 and Figure 13, are compare to frames { } 
and { } in Figure 6.  
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Figure 12: Closed chain 1 conversion to open chains. 
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Figure 13: Closed chain 2 conversion to open chains. 
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As introduced in section 3.1.2, frames are also needed to attach at the objects of 
system to describe the motion and force specifications.  Attached frames of object 1 and 
object 2 can be seen from Figure 14 and Figure 15, respectively. 

 
 

 
Figure 14: Frames of Object 1. 

 
 
 

 
Figure 15: Frames of Object 2. 

 
In Figure 14 and Figure 15, origins of frames { } and { } are fixed to the center of 
masses of object 1 and object 2, respectively. Furthermore, frames { }  and  { } 
possess a same orientation with respect to frames { } and { }, respectively. 

In view of Figure 11, Figure 12, and Figure 13, a simple oriented graph can be 
formed and is represented in Figure 16. The rigid non-moving structure of manipulator 
which locates beneath cutting point 1, is modeled as zero-mass object as no motion 
control specification is assigned to the this part of manipulator.    
 



 37 

 
Figure 16: Simple oriented graph of HIAB 031. 

In view of Figure 12, Figure 13, Figure 16, Figure 14 and Figure 15, it follows 
that 
 

 The jth open chain has one driving cutting point associated with frame { }  and 
one driven cutting point associated with frame { }  for all {1, 2, 3, 4}.  

 The open chains with  revolute  joint  (open chain 1 and open chain 3) has one 
subsidiary cutting point associated with frame { }, for = {1, 3}. 

 The open chains with prismatic joint (open chain 2 and open chain 4)  has one 
subsidiary cutting point associated with frame { }, for = {2, 4}. 

 The zero-mass object has one driving cutting point associated with frame { } 
and two driven cutting points associated with frames { } and { }. 

 The object 1 has  two  driving cutting point associated with frame { } and 
{ }, and two driven cutting points associated with frames { }  and  { }. 
Frame { } is fixed at the center of mass of object 1 to describe the force and 
the motion specifications. 

 The object 2 has two driven cutting point associated with frames { } and { }. 
Frame { } is fixed at the center of mass of object 2 to describe the force and 
the motion specifications. 

 
Finally, base frame { } and goal frame { }, introduced in section 4.1, are attached to 
the system to finalize description of manipulator kinematics. All 22 attached frames of 
system can be seen from Figure 17. 
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Figure 17: Attached frames of decomposed system. 

5.2 Kinematic Equations of HIAB 031 

In this section kinematics equations for each open chain and object of system will be 
given in view of theories represented in subsections 3.2.1 and 3.2.2, respectively. For a 
consolidate a general presentation, in following subsections a kinematic equations of 
open chain 1 and open chain 2 are elaborated under closed chain 1, and respectively a 
kinematic equations of open chain 3 and open chain 4 are elaborated under closed chain 
2. 

5.2.1 Joint Variables of System 

The joint angles  and , represented in Figure 9, can be converted through geometry 
to respective closed chain angles  and , represented in Figure 17, as 
 
          (5.1) 
          (5.2) 
 
where and represents conversion between joint angles and closed chain angles. 

Joint velocities  and  can be computed by taking the time derivatives from 
joint angles  and , respectively.  

As there was mentioned earlier, both closed chains of assembly contains three 
unactuated rotational joints and one actuated linear joint. Due to geometrical constraints 
of closed chains, by knowing joint variables  and , other three joint variables in the 
closed chains can be computed with the law of cosine, respectively, as 
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  = + + 2 cos( ) _     (5.3) 

  = cos _

_
     (5.4) 

  = cos _

_
     (5.5) 

  = + + 2 cos( ) _     (5.6) 

  = cos _

_
     (5.7) 

  = cos _

_
     (5.8) 

 
where L11 and L12 denote the link lengths of open chain 1, L31 and L32 denote the link 
lengths of open chain 3, and x2_0 and x4_0  denote the initial lengths of cylinder 1 and 
cylinder 2, respectively. 

Taking the time derivatives of (5.3) - (5.8) yields 
 

  ( )

_
      (5.9) 

  _ ( )

_ ( )
     (5.10) 

  _ ( )

_ ( )
     (5.11) 

  ( )

_
      (5.12) 

  _ ( )

_ ( )
     (5.13) 

  _ ( )

_ ( )
     (5.14) 

 

5.2.2 Linear/Angular Velocity Vectors of Closed Chain 1 

The fixed and nonmoving frame { } is attached at the driven cutting point of closed 
chain 1 and the linear/angular velocity vector of this frame is known and can be written 
as 
 
  =[0, 0, 0, 0, 0, 0]       (5.15) 
 

In view of theory represented in subsection 3.2.1 and Figure 12, the relationships 
among the linear/angular velocity vectors of closed chain 1 can be written as 
 
  = =        (5.16) 

  = +       (5.17) 

  =        (5.18) 
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  = +       (5.19) 

  = +      (5.20) 

  = +       (5.21) 

  = =        (5.22) 
with 
 
  = [0, 0, 0,0,0,1]       (5.23) 
  = [1, 0, 0,0,0,0]       (5.24) 
 

5.2.3 Linear/Angular Velocity Vectors of Object 1 

In view of theory represented in subsection 3.2.2 and Figure 14, the relationships among 
the linear/angular velocity vectors of object 1 can be written as 
 
  =       (5.25) 

  =  

            =        (5.26) 
 

5.2.4 Linear/Angular Velocity Vectors of Closed Chain 2 

Similar to closed chain 1, the relationships among the linear/angular velocity vectors of 
closed chain 2 can be written, in view of theory represented in subsection 3.2.1 and 
Figure 13, as  
 
  = =        (5.27) 

  = +       (5.28) 

  =        (5.29) 

  = +       (5.30) 

  = +      (5.31) 

  = +       (5.32) 

  = =        (5.33) 
 

5.2.5 Linear/Angular Velocity Vectors of Object 2 

Similar to object 1, the relationships among the linear/angular velocity vectors of object 
2 can be written, view of theory represented in subsection 3.2.2 and Figure 14, as 
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  =        (5.34) 

  =  

            =        (5.35) 

5.3 Dynamics of HIAB 031 

In this section dynamic equations of studied system are represented. For a consolidate a 
general presentation, in following subsections a dynamic equations of open chain 1 and 
open chain 2 are elaborated under closed chain 1, and respectively a dynamic equations 
of open chain 3 and open chain 4 are elaborated under closed chain 2. 

5.3.1 Dynamics of Object 2 

In view theory represented in subsection 3.3.1, the dynamics of the object 2 can be 
expressed as 
 

  + + =    (5.36) 

 
where  is obtained from (5.35). On the other hand, in view of (3.12) the net 
force/moment vector in frame {O2} is governed by 
 
  =        (5.37) 
 
where  denotes the external force exerted to the tip of boom 2. As external load 
is incorporated into structure of object 2 and there will be no contacts with the 
environment, the external force vector  is known and can be written as 
 
  = [0 0 0 0 0 0]       (5.38) 
 

In view of (5.36), (5.37) and (5.38), the force resultant in cutting point 4 can be 
computed as 

    
=        (5.39) 

 

5.3.2 Dynamics of Closed Chain 2 

In view of theory represented in subsection 3.3.2, the dynamics of rigid bodies in open 
chain 3 and open chain 4 can be expressed as 
 

  + + =    (5.40) 
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  + + =    (5.41) 

  + + =    (5.42) 

  + + =    (5.43) 

 
where , ,  and  are obtained from (5.27), (5.28), (5.30) and (5.31), 
respectively. 

The force resultant of the frame { } located at the cutting point 4, can be 
expressed with a force components exerted from open chain 3 and open chain 4 as 
 
  = +        (5.44) 
 
where  is obtained from (5.39). 

Let  be the internal force vector between two open chains with its 
reference direction pointing from the cylinder 2 to the link 31, and expressed in frame 
{ }. It follows from (5.44) that 
  
  = +       (5.45) 

  =       (5.46) 
 
hold. In (5.45) and (5.46),  and  represent load distribution factors, with 
characteristics of + = 1. Mathematical derivations for  and  are given in 
Appendix D, whereas the procedure to calculate internal force vector  is 
given in Appendix E. 
 Now, the force resultant equations of the two rigid bodies affiliated with the 
open chain 3 can be written as 
 
  = +       (5.47) 

  = +       (5.48) 
 
Furthermore, the force resultant equations of the two rigid bodies affiliated with open 
chain 4 can be written as 
 
  = +       (5.49) 

  = +                  (5.50) 
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In view of (2.7)  the force resultant equation of frame { } can be written as 
 
  =  

         = +     (5.51) 
 
The force resultant equation of the frame { } located in the cutting point 3 can be 
written as 
 
   = + .        (5.52) 
 

In view of (5.49), the actuating force of the cylinder 2 can be given  as 
 
  = .        (5.53) 
 

5.3.3 Dynamics of Object 1 

In view of the theory represented in subsection 3.3.1, the dynamics of the object 1 can 
be expressed as 
 

  + + =    (5.54) 

 
where  is obtained from (5.26).  

On the other hand, in view of (3.12), the net force/moment vector of frame {O1} 
is governed by 
 
  =      (5.55) 
 
where  is obtained from (5.52). 

In view of (5.54) and (5.55), the force resultant in the frame { } locating at 
the cutting point 2 can be computed as 

 
  = ( + ) 

   = +     (5.56) 
 

5.3.4 Dynamics of Closed Chain 1  

Similar to closed chain 2, the dynamics of rigid bodies in open chain 1 and open chain 
2 can be expressed as 
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  + + =    (5.57) 

  + + =    (5.58) 

  + + =    (5.59) 

  + + =    (5.60) 

 
 The force resultant in the frame { } located at the cutting point 2, can be 
expressed with a force components exerted from open chain 1 and open chain 2 as 
 
  = +        (5.61) 
 
where  is obtained from (5.56). 

Let  be the internal force vector between two open chains with its 
reference direction pointing from the cylinder 1 to the link 11, expressed in frame 
{TCC1}. It follows from (5.61) that 
  
  = +       (5.62) 

  =       (5.63) 
 
hold.  In (5.62) and (5.63),  and  represent the load distribution factors, given in 
Appendix D, whereas the procedure to calculate internal force vector  is 
given in Appendix E. 
 Now, the force resultant equations of the two rigid bodies affiliated with the 
open chain 1 can be written as 
 
  = +       (5.64) 

  = +       (5.65) 
 
Furthermore, the force resultant equations of the two rigid bodies affiliated with open 
chain 2 can be written as 
 
  = +       (5.66) 

  = +                  (5.67) 
 
In view of (2.7) the force resultant equation of frame { } can be written as 
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  =  

         = +     (5.68) 
 
The force resultant equation of the frame { } locating at the cutting point 1 can be 
given as 
 
   = + .        (5.69) 
 

In view of (5.66), the actuating force of the cylinder 1 can be written as 
 
  = .        (5.70) 

5.4 Control Equations of HIAB 031 

In view of the theories represented in subsection 3.2.3 and sections 3.3 and 3.4, the 
control equations for the objects and rigid links, respectively, of studied system will be 
given in this section.  

5.4.1 Required Velocities 

By knowing the required closed chain velocities  and , similar to (5.9) - (5.14), 
all the remaining required joint variables of studied 2-DOF hydraulic manipulator can 
be represented as 
 

  ( )

_
      (5.71) 

  _ ( )

_ ( )
     (5.72) 

  _ ( )

_ ( )
     (5.73) 

  ( )

_
      (5.74) 

  _ ( )

_ ( )
     (5.75) 

  _ ( )

_ ( )
     (5.76) 

 

5.4.2 Required Velocity Transformations  

In view of (5.16), the required linear/angular velocity vector of frame {BCC1} is known 
and can be written as 
 
  = [0, 0, 0, 0, 0, 0]      (5.77) 
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Now, by knowing the required linear/angular velocity vector of frame { } 

defined in (5.77) and required joint velocities defined in (5.71) - (5.76), in view of the 
theory represented in subsection 3.2.3, all required linear/angular velocity vectors of 
studied system can be written as 
 
  = =       (5.78) 

  = +      (5.79) 

  =       (5.80) 

  = +      (5.81) 

  = +      (5.82) 

  = +      (5.83) 

  = =       (5.84) 

  =       (5.85) 

  = =     (5.86) 

  = =       (5.87) 

  = +      (5.88) 

  =       (5.89) 

  = +      (5.90) 

  = +      (5.91) 

  = +                     (5.92) 

  = =                  (5.93) 

  =                  (5.94) 

  = =                (5.95) 
 

5.4.3 Applied Regressor Matrix and Parameter Vector for Studied 2-DOF 
Manipulator  

Due to fact that studied system possesses only 2-DOF, regressor matrix ×  and 
parameter vector  of rigid body defined in (2.19) and given in Appendix A, are 
simplified  to  form  of   ×  and . Derivations of simplified regressor 
matrix ×  and parameter vector  are given in Appendix B. In scope 
of this thesis, all regressor matrices and parameter vectors of rigid links and objects are 
computed according to formulation of Appendix B.      
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5.4.4 The Required Net Force/Moment vectors of  

In the view of the theory represented in subsection 3.3.2, the required net force/moment 
vectors of object1 and object2 can be computed in view of (3.13), as 
 
  = +                (5.96) 

  = + ,                (5.97) 
 

5.4.5 The Required Net Force/Moment Vectors of Rigid Links in Closed 
Chains  

In view of the theory represented in subsection 3.4.2, the required net force/moment 
vectors for rigid links of closed chain 1 can be computed in view (3.21) and (3.22), as 
 
  = +              (5.98) 

  = +              (5.99) 

  = +              (5.100) 

  = +              (5.101) 
 
and similar to closed chain 1, the required net force/moment vectors for rigid links of 
closed chain 2 can be computed in view (3.21) and (3.22), as 
 
  = +              (5.102) 

  = +              (5.103) 

  = +              (5.104) 

  = + .            (5.105) 
 

5.4.6 The Required Force/Moment Vector Transformations of Studied 
System 

In view of the section 3.5, after all the required net force/moment vector of objects and 
rigid links of studied system has been defined, the required force/moment vectors of the 
entire system can computed along the opposite direction of the simple oriented graph. 

In view of theory represented in subsections 3.3.3, the required force resultant 
equation of object 2 can be written as 
 
   = .                        (5.106) 
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As external load is incorporated into structure of object 2 and there will be no contacts 
with the environment, the required external force vector  is known and can be 
written as = [0 0 0 0 0 0] . Thus, the required force/moment vector in the frame 
{ } located cutting point 4 can be computed from (5.106) as 

 
  =                (5.107) 
 

Similar to (5.45) and (5.46), the required force/moment vectors at the driven 
cutting points of the Object 2 can be computed as   
 
  = +                (5.108) 

  =                (5.109) 
 
where,  and  denotes the load distribution factors defined in Appendix D, whereas 

 denotes the required internal force/moment vector obtained with similar 
procedure described in Appendix E.  

Now, in view of theory represented in subsection 3.4.3, the required 
force/moment vectors of the open chain 3 are computed as 
 
   = +               (5.110) 

  = +               (5.111) 
  
and the required force/moment vectors of the open chain 4 are computed as 
 
  = +               (5.112) 

  = +             (5.113) 
 
Finally, the required force/moment vector in cutting point 3 is computed as 
 
   = +                (5.114) 
 

In view of the theory represented in subsection 3.3.2 and (5.55), the required 
force resultant equation of object 1 can be written as 
 
  =              (5.115) 
              
The required force/moment vector in cutting point 2 can be computed from (5.115) as 
 
  = +              (5.116) 
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The required force/moment vector transformations of closed chain 1 can be 

computed similar to closed chain 2 required force/moment vector transformations by 
replacing frame frames {T3}, {T4}, {B31}, {B3}, {B42}, {B41} and {B4} to frames {T1}, 
{T2}, {B11}, {B1}, {B22}, {B21} and {B2}, respectively, and distribution factors  and 

 to  and , respectively, leading to 
 
  = +                (5.117) 

  =                (5.118) 

  = +               (5.119) 

  = +               (5.120) 

  = +               (5.121) 

  = +             (5.122) 

   = +                (5.123) 
 

Finally, According to (5.53) and (5.70), the required actuating forces along the 
cylinder axis are designed to be as  
 
  =                 (5.124) 

  =                 (5.125) 
 

In view of the joint  torque constraints (E.1) (E.3) defined in Appendix E, the 
required torques of the three unactuated joints of closed chain 2 and closed chain 1, 
respectively, can be written as  
 
  = 0                 (5.126) 

  = 0                 (5.127) 

  = 0                 (5.128) 

  = 0                 (5.129) 

  = 0                 (5.130) 

  = 0                 (5.131) 
 

5.5 Dynamics and Control of Hydraulic Cylinders 

As represented in section 3.6, after dynamics and control issues of all objects and open 
chains of studied system has been addressed, the dynamics and control issues of 
actuated  joints  has  still  to  be  considered.  The  studied  system  represent  in  chapter  4,  



 50 

contains two actuated prismatic joints (cylinder 1 and cylinder 2), while all the 
remaining joints are unactuated. This section concentrates on the dynamics and control 
issues of these actuated joints, in view of the theory represented in section 3.6. 

5.5.1 Hydraulic Fluid Dynamics 

In (Zhu 2010, pp.181-184) the fluid dynamics for hydraulic cylinder are given and can 
be applied into studied system. In this section the equations to model hydraulic fluid 
dynamics are to be represented.  

According to (Zhu 2010, p.181), when high-bandwidth servo valve is used for a 
hydraulic cylinder, it is reasonable to ignore the servo valve’s dynamics so that the 
valve position is considered to be proportional to its control voltage within a frequency 
range of interest.  

The control arrangement of cylinder is illustrated in Figure 18. 
 

 
Figure 18: Control of cylinder. 

 Each control edge (S A,  B R,  S B,  A R) of valve can be modeled as an 
orifice. Based on the Bernoulli’s static flow equation, the rate of flow passing through 
an orifice, denoted as , is proportional to the product of the valve control voltage and 
the square root of the pressure drop across the orifice (Zhu 2010, p.182), that is 
  
                   (5.132) 
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where > 0 is a constant, =  is a pressure drop across the orifice, and  is 
the valve control voltage.  
 By considering equation (5.132), it can be noticed that if direction of flow in 
orifice is reversed ( > ), a pressure drop across the orifice becomes negative and 
pressure drop related term  in becomes imaginary. Imaginary characteristic can be 
overcome by replacing pressure-drop related term with pressure-drop related function 
defined as 
 
  ( ) ( ) | |              (5.133) 
 
where a sign function can be defined as 
 

  ( ) =
1 > 0
0 = 0

1 < 0
             (5.134) 

 
As a structure of used servo valve constrains, opening and closing of control edges 
occurs in pairs.  Used servo valve is modeled as zero lapped, meaning that when control 
edges S A  and  B R are opened, control edges S B  and  A R are closed, and vice 
versa. This behavior of control edges can be modeled as function of control voltage  
with selective function defined as  
 

  ( ) = 1, > 0
0, 0                 (5.135) 

 
As illustrated in Figure 18, let  and  be the flow rates entering the left and 

right chamber of cylinder, respectively, and let  and  be the pressures inside the left 
and right chamber of cylinder, respectively.  It follows from (5.132), (5.133) and 
(5.135) that 
 
  = ( ) ( ) + ( ) ( )           (5.136) 
  ( ) ( ) ( ) ( )                 (5.137) 
 
hold, where > 0, > 0, > 0, and > 0 are four constants and > 0 and 

> 0 denote the supply and return pressures, respectively, with . 
 The dynamic equation for the fluid compressibility inside a cylinder chamber 
can be written as 
 

  = ( )                (5.138) 
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where  denotes the specific chamber pressure,   denotes the effective bulk modulus, 
 denotes the chamber volume, and  denotes the flow rate of fluid entering the 

chamber. 
In view of (5.138), the pressure dynamic equations of the two chambers can be 

written as 
 

 = ( )                (5.139) 

 =
( )

( + )               (5.140) 

 
where > 0 and > 0 denotes the piston areas at both chambers of cylinder,  
denotes the displacement cylinder, and  is the effective length of the cylinder. 
 The pressures of the two chambers can be converted into net pressure force of 
cylinder 1 as 
  
  =                 (5.141) 
 
Now, by premultiplying  and  to (5.140) and (5.139), respectively, and using 
(5.136), (5.137), and (5.141) yields 
 

  = +                (5.142) 

 
where 
 
  =  

  = ( ) + ( ) ( ) 

  + ( ) + ( ) ) 

  ( )                  (5.143) 
 
with  
 

  ( ) =

( ) ( )
( ) )
( ) )

( ) ( )

             (5.144) 

 

  = .              (5.145) 



 53 

 
The following assumption is made in scope of this thesis. 
 
Assumption 3. The following relationship holds 
 
    0 < <                      (5.146) 
 
Thus, in view of (5.143) and Assumption 3, the univalence between  and  exists, 
provided that 
 

  
( ) + ( ) > 0              (5.147) 

  ( ) + ( ) > 0              (5.148) 

 
hold. In view of this statement, for given  one can find a unique valve control voltage 

 as 
 
  = ( )  

  ( )                        (5.149) 

 
when both (5.147) and (5.148) are satisfied.  

5.5.2 Cylinder Control Equations 

Also cylinder control equations given in (Zhu 2010, p.184-185) can be applied directly 
to studied system.  
 In view (5.149), the designed valve control voltage can be written as 
 
  = ( )  

  + ( )              (5.150) 

where 

  = + +  

   + + ( ) 
 = + + ( ).                (5.151) 
 
By incorporating piston position control law given in (3.29) in (5.151), the above 
equation can be written as  



 54 

 

  = + +  

   + + ( ) 
 = + + (( + [ ]) )          (5.152) 
 
with 
  = +                  (5.153) 

  =                  (5.154) 

  =                (5.155) 

 
where  is a required actuating force of cylinder obtained from (5.125),  is an 
applied piston friction model for cylinder, represented in Appendix F,  denotes the 
required piston force,  denotes the measured piston force,  and  denotes the 
desired cylinder piston velocity and the desired piston position, respectively,  and  
denotes the measured cylinder piston velocity and the measured piston position, 
respectively, > 0 and > 0 are two feedback gains and > 0 is  a  position  
feedback gain. 

5.6 Virtual Stability of Studied System 

In the view of theory represented in subsection 3.3.4 all decomposed objects, illustrated 
in simple oriented graph in Figure 16, qualifies to be virtually stable in sense of 
Definition 2.10. 
 In the view of theory represented in subsection 3.4.4, both unactuated open 
chains, namely open chain 1 and open chain 3, illustrated in simple oriented graph in 
Figure 16, qualifies to be virtually stable in sense of Definition 2.10. 
 In the view of theory represented in subsection 3.6.3, both actuated open chains, 
namely open chain 2 and open chain 4, illustrated in simple oriented graph in Figure 16, 
qualifies to be virtually stable in sense of Definition 2.10. 
 Proofs of virtual stability of studied hydraulic manipulator are given in 
Appendix G and Appendix H. 
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6 EXPERIMENTAL IMPLEMENTATION AND 
RESULTS 

In this chapter experimental implementation and results are given. First, in section 6.1 
experiment set-up is defined. Then, in section 6.2, the control law for implemented PID-
controller is given. In section 6.3, an applied Cartesian position control laws are intro-
duced and given. Finally, in section 6.4, measured results with VDC- and PID-controller 
are given and discussed. 

6.1 Experiment Set-Up 

The experimental measurements were carried out in heavy machinery laboratory of 
Department of Intelligent Hydraulics and Automation (IHA) in Tampere University of 
Technology (TUT). 
 An applied theory of VDC (introduced and defined in chapter 5) into studied 
manipulator was implemented by using Simulink® block diagram environment 
developed by MathWorks®. Before moving to actual real-time measurements, the 
correct behavior of generated VDC model was verified with off-line simulations. For 
off-line simulations, a simulation model of studied manipulator was implemented by 
using Simulink® SimMechanics toolbox, which is a tool to model mechanical systems. 
 After off-line simulations, a generated VDC model was compiled to real-time 
code and code was uploaded into dSpace CP1103 PPC controller board. Controller 
board was embedded with real-time processor and comprehensive I/O, with high I/O 
speed and accuracy. (dSpace 2009) System was controlled and monitored with dSpace 
ControlDesk 3.7.1. ControlDesk was also used to capture and record system data during 
measurements. Sample time for control loop in dSpace was set to be 16 ms. 
 In the view the fact that typically used backward difference as a derivative leads 
easily very noisy output signal, the estimation algorithm given in (Harrison 1995) was 
used as a derivative throughout this thesis. The estimation algorithm uses current value 
of signal together with five past values as 
 

  ( ) = ( ) ( ) ( ) ( ) ( ) ( ) (6.1) 

 
where,  is a signal to be derived,  is a derivative of  and  denotes the sample time 
of system. 
 The uncertain parameters of an applied parameter vector  (see 
Appendix B) of rigid bodies were found out by utilizing SolidWorks 3D mechanical 
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CAD program. First, all the rigid bodies (rigid links and objects) of studied system were 
CAD  program.  After  3D  CAD  model  of  all  rigid  bodies  were  realized,  all  unknown  
parameters of rigid bodies, needed to solve components of parameter vector , 
were calculated from rigid body models. Calculated rigid body parameter vectors are 
given in Appendix I. Also applied valve flow coefficient parameter vector  and 
cylinder control parameter vector  are defined in Appendix I. 
 The joint angles  and  of studied manipulator (see Figure 9), were measured 
with SICK DGS60 incremental encoders, providing 40000 puls/rev. With given 
encoders an angular resolution of 0.0009 deg was obtained. Given joint angular 
resolution can be converted to respective cylinder piston position resolution3. The 
minimum piston position resolution for both cylinders was calculated to be about 0.005 
mm.  
 All system pressures (supply pressure, return line pressure and chamber 
pressures of both cylinders) were measured with Trafag NAH (Type: 8253.74.2317) 
hydraulic pressure transmitters, providing a pressure range from 0 bar to 250 bar. 
Pressure transmitters had a pressure resolution of 0.25 bars. 
 Two  different  Bosch  Rexroth  servo  solenoid  valves  were  used  to  control  
cylinders.  Valve 1 to control cylinder 1 (Type: 4WRPEH10-C4B-100L) with a nominal 
flow of 100 l/min @ p=35 bar per notch; and valve 2 to control cylinder 2 (Type: 
4WRPEH10-C4B-50L) with a nominal flow of 50 l/min @ p=35 bar per notch. Both 
valve had the bandwidth of 100 Hz @ ± 5% signals.   

6.2 Implemented PID-Controller 

The results achieved with VDC controller were compared to corresponding results 
achieved with PID controller. Similar to VDC-control, PID-control was implemented in 
actuator space and thus piston position errors and piston velocity errors were used as 
error variables. An applied the joint PID control law can be written as  
 
  ( ) + ( ) + ( ) = 0 ,    (6.2) 
where 
 
  ( ) = ( ) ( )      (6.3) 
  ( ) = ( ) ( )      (6.4) 
 
and > 0 denotes the proportional gain, > 0 denotes the integral gain and > 0 
denotes the derivative gain. Furthermore, ( ) denotes the position error between 
desired position and measured position, and ( ) denotes the velocity error between 
desired velocity and measured velocity. 

                                                
3 Note that conversion between joint angular resolution and piston position resolution is not linear. 
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 Parameters of implemented PID-controller ( , , ) were tuned according to 
Ziegler-Nichols method. In this method integral gain  and derivative gain  are first 
set to be zero. Then, the ultimate gain  was determined by increasing proportional 
gain  until controlled output value began to oscillate and oscillation period  was 
measured. Finally, values for PID-control gains were determined according to Ziegler-
Nichols tuning method (Ziegler 1942) as 
 
  = 0.6         (6.5) 

  = 2         (6.6) 

  =         (6.7) 

6.3 Cartesian Position Control 

The  objective  of  Cartesian  position  control  was  to  control  end-effector,  i.e.  origin  of  
frame  {G}, with respect to defined base frame {B} (see Figure 17). In Cartesian 
position control implementation, desired Cartesian motion trajectories (position 
trajectory and velocity trajectory) were needed convert to respective desired joint 
motions (in our case desired piston motions).  

The desired end-effector position in Cartesian space was defined with position 
components  and , where  stood for desired Cartesian position with respect to x-
axis of Cartesian base frame {B}  and    stood for desired Cartesian position with 
respect to y-axis of Cartesian base frame {B}. Similar, the desired end-effector velocity 
in Cartesian space was defined with Cartesian velocity components  and . 

The desired Cartesian positions in  and  were converted to respective 
desired joint space values  and  by utilizing inverse kinematics equations defined 
in (4.2) and (4.3). Further, the desired actuator space values (desired piston positions) 

 and  were obtained by utilizing closed chain geometric equations (5.3) and (5.6) 
through (5.1) and (5.2). 

Respectively, the desired Cartesian velocities in  and  was converted to 
respective desired joint space velocities  and  by utilizing differential kinematics 
equation defined in (4.7). The desired actuator space velocities (desired piston 
velocities)  and  were obtained by utilizing closed chain differential geometric 
equations (5.9) and (5.12)4. 

In scope of this thesis, a performance of VDC was tested by using diamond-like 
square Cartesian trajectory. An applied Cartesian path is given in Figure 19. In Figure 
19 a reachable Cartesian workspace of HIAB 031 is outlined with red line. The driven 
square Cartesian path inside the reachable workspace is outlined with black line. 

 

                                                
4 Note, that in equations (5.9) and (5.12), =  and = holds, respectively. 
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Figure 19: Square path in Cartesian workspace. 

The Cartesian paths between points A, B, C and D were carried out by utilizing Quintic 
rest-to-rest path trajectory generator introduced in (Jazar 2010, pp.736-737) and given 
in (6.8) and equation of straight line given in (6.9)5 
  
  ( )    (6.8) 

  ( ) = ( ( ) )      (6.9) 

 
where,  and   denotes  the  initial  Cartesian  positions  and,   and   denotes the 
final Cartesian positions. Six coefficients ( ) of fifth order time 
varying polynomial Quintic path function given in (6.8) can be solved from below 
equation 
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=    (6.10) 

 
                                                
5 In case of singularity X X = 0, desired path can be solved inversely by defining 
  X (t) = (Y (t) Y ) + X   

 Y (t) = a + a t + a t + a t + a t + a t  
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where,  denotes the desired transition time between two Cartesian points, ,  and 
 denotes the initial position, velocity and acceleration, respectively, and ,  and  

denotes the desired final position, velocity and acceleration, respectively. 
 The desired Cartesian velocities were solved by taking time derivatives from 
equations (6.9) and (6.10), yielding to 
 
  ( ) + 2 + 3 + 4 + 5    (6.11) 

  ( ) = ( )       (6.12) 

 
An illustrative example of forms of motion trajectories (position, velocity and 

acceleration) generated by Quintic path generator are given in Figure 20 under the 
following conditions = 0, = 0, = 0, = 1, = 0, = 0 and  = 2. 

 
Figure 20: Motion trajectories of generated by Quintic path generator.  

6.4 Results 

The very same square Cartesian path was driven with both VDC- and PID-controllers. 
The driven Cartesian path is illustrated in Figure 19. Specific values for the Cartesian 
points in path were = (2.3, 0), = (2.8, 1), = (2.3, 2) and = (1.8, 1).  

The desired piston position paths for cylinder 1 and cylinder 2, generated by 
Cartesian motion trajectory generator described in (6.8) and (6.9), are illustrated in 
Figure 21. The axis of time is intentionally left blank as different Cartesian transition 
times were applied. The maximum stroke for both cylinders is 0.545 m. As from Figure 
21 can be seen, during Cartesian motion trajectory piston positions between 0.15 m – 
0042 m are achieved for cylinder 1 and piston positions between 0.15 m – 0044 m are 
achieved for cylinder 2. 



 60 

 
Figure 21: Desired piston positions for cylinder 1 and cylinder 2 generated by cartesian path generator. 

The defined Cartesian motion trajectory was driven under three different 
Cartesian transition times = 2.5 ,   = 5  and = 10 .  In  Figure  22  is  
illustrated the desired piston velocity trajectories generated by desired Cartesian motion 
trajectory generator, described in (6.11) and (6.12), under different Cartesian transition 
times. Note that in Figure 22 the time spans of different transition times are scaled to be 
same for the convenience6. 

 
Figure 22: Desired piston velocity trajectories under different Cartesian transition times. 

Cartesian transition time , providing a maximum piston velocity of about 0.09 
m/s for cylinder 1 and 0.075 m/s for cylinder 2, was treated as a nominal condition for 
both VDC- and PID-controllers and controllers were tuned in the predominant 
                                                
6 In truth, time span under  = (time span )/2 and 

  time span under  = 2 (time span ). 
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conditions of this transition time. The Cartesian transition time  was found out to be 
quite near the performance limits of system as about 70 percentages of valves full 
capability were utilized. On the other hand, Cartesian transition time t  can be 
considered to quite slow for system as only about 10 percentages of valves full capacity 
were utilized.  

The following tuning parameters, given in Table 1, were used in measurements. 

Table 1: Applied tuning parameters for VDC- and PID controllers. 

 CYLINDER 1 CYLINDER 2 
VDC-controller = 0.110 = 0.044 

 = 3.40 10  = 3.00 10  

 = 11 = 7 

 = 500  for all rigid links and objects. 

PID-controller = 13.20 = 19.20 

 = 72.53 = 102.40 

 = 0.60 = 0.90 

  
The measured piston position tracking errors for cylinder 1 and cylinder 2 are 

given in Figure 23 and Figure 24, respectively. In both figures measured results with 
VDC-controller under three different Cartesian transition times ( ,  and ) are 
given and with PID-controller measured results under nominal Cartesian transition time 

 are given. Cartesian motion trajectory with transition times   and  was not 
been able to driven with PID-controller as it went unstable under these conditions. 

 
Figure 23: Cylinder 1 piston position tracking errors with VDC- and PID-controller. 
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Figure 24: Cylinder 2 piston position tracking errors with VDC- and PID-controller. 

The maximum piston position tracking errors during the Cartesian trajectory are 
given in Table 2: 

 
Table 2: The maximum piston position tracking errors during driven 
Cartesian position trajectories. 

 Maximum piston position 
tracking error for cylinder 1. 

Maximum piston position 
tracking error for cylinder 2. 

VDC  0.351 mm 0.585 mm 
VDC .  0.909 mm 0.960 mm 
VDC  0.247 mm 0.587 mm 
PID  2.471 mm 2.579 mm 

 
As from Figure 23, Figure 24 and Table 2 can be seen, under the nominal Cartesian 
transition time  roughly 7 times better piston position tracking ability for cylinder 1 
was achieved with VDC-controller compared to PID-controller. Piston position tracking 
ability for cylinder 2 was about 4.4 times better with VDC-controller compared to PID-
controller.  
 As aforementioned, PID-controller lost stability in attempts to drive Cartesian 
motion trajectory under Cartesian transition times  and . As from Figure 23 and 
Figure 24 can be seen, a stability was easily maintained with VDC-controller under 
different Cartesian transition times.  
 By comparing achieved VDC-controller results, one salience was that under 
Cartesian transition times  and , much better results was achieved with cylinder 1 
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compared to cylinder 2. The difference between these cylinders can be explained with 
some problems in dynamical behavior of cylinder 2. It was noticed that around the 
operational piston position of 0.175 m, the piston position error of cylinder 2 seems to 
be increasing. This feature can be seen quite well from Figure 24 in the first graph 
(VDC ) by looking behavior of cylinder 2 between time span 15s – 20s and from 
third graph (VDC )  between time span  27.5s  –  37.5.  Note  also  that  PID-controller  
had some problems around this operational piston position (see Figure 24, graph PID 

 and time span 15s – 20s). 
In Figure 25 are illustrated measured piston velocity trajectories with VDC- and 

PID-controller. In below figure required (or in case of PID desired) velocity profiles are 
given with black line and measured piston velocities are given red (cylinder 1) or 
magenta (cylinder 2) line. 

 
Figure 25: Measured piston velocity trajectories with VDC- and PID-controller. 

In Figure 26 and Figure 27 are illustrated piston velocity tracking errors for 
cylinder 1 and cylinder 2, respectively. Note that with VDC-controller piston velocity 
tracking errors were measured from required piston velocity7, defined in (3.29), whereas 
with PID-controller piston velocity tracking errors were measured from desired piston 
velocity trajectory given in Figure 22.  
 

                                                
7 In position control implementation, defined in (3.29), a desired piston velocity is incorporated into re-
quired piston velocity and it serves the reference trajectory of a velocity, given in Figure 22, with respect 
to time.  
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Figure 26: Cylinder 1 piston velocity tracking errors with VDC- and PID-controller. 

 

 
Figure 27: Cylinder 2 piston velocity tracking errors with VDC- and PID-controller. 
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The maximum piston velocity tracking errors during the driven Cartesian 
trajectories are given in Table 3. 

 
Table 3: The maximum piston velocity tracking errors during driven Cartesian 
motion trajectories. 

 Maximum piston velocity 
tracking error for cylinder 1. 

Maximum piston velocity 
tracking error for cylinder 2. 

VDC  3.35 mm/s 5.99 mm/s 
VDC .  7.15 mm/s 13.15 mm/s 
VDC  3.69 mm/s 10.14 mm/s 
PID  10.70 mm/s 14.54 mm/s 

 
By looking cylinder 2 measured piston velocity trajectory with VDC and under 

 (Figure 25, third row, second column) and cylinder 2 piston velocity tracking error 
with VDC and under  (Figure 27, third plot), some high frequency oscillation can be 
seen. This implies that slightly smaller VDC-controller gains are needed, if studied 
manipulator is wanted to driven at smaller velocities than  provides. From Figure 25 
can be also seen that PID-controller was tuned quite near to asymptotic stability as some 
oscillation occurs at the end of trajectory.  

In Figure 28 is illustrated a measured end-effector velocities in Cartesian space 
during driven Cartesian path for both VDC- and PID-controller under different Carte-
sian transition times. Given end-effector velocities were calculated from measured pis-
ton velocities, given in Figure 25. Similar to Figure 22, the time spans of different tran-
sition times in Figure 28 are scaled to be same for convenience. 

 

 
Figure 28: Measured end-effector velocities in Cartesian space with VDC- and PID-controller. 
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 As from Figure 28 can be seen, under the nominal Cartesian transition time  
the maximum end-effector velocity in Cartesian space was about 0.38 m/s. Under the 
Cartesian transition time , the maximum end-effector velocity of about 0.75 m/s in 
Cartesian space was achieved.  

In Figure 29 there are illustrated required and measured piston forces with VDC-
controller under nominal Cartesian transition time  for both cylinder 1 and cylinder 2. 
Piston forces with PID-controller were not measured as force feedback wasn’t 
incorporated into PID control law. As from Figure 29 can be seen, measured piston 
force tracks quite well required piston force in both cylinder 1 and cylinder 2 case. 
However, peak piston force tracking error for both cylinders were around 7.5 kN (see 
Appendix I, Figure 40). In consequence of this, piston force error feedback gains  in 
cylinder control equation (5.152) were needed to design quite small for both cylinders to 
maintain stability. Information given by Figure 29 reveals that there is still some 
potential to improve performance of VDC-controller by adjusting uncertain parameters 
of rigid links and objects defined in (B.17). This can be done by incorporating parameter 
adaptation, given in (Zhu 2010, p.32), into VDC control equations.  
  

 
Figure 29: Required and measured piston forces with VDC-controller and Cartesian transition time of 5 s. 

 In Figure 30 and Figure 31 are illustrated measured valve control voltages for 
valve 1 and valve 2, respectively. 
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Figure 30: Measured control voltages of cylinder 1 control valve with VDC- and PID-controller. 

 

 
Figure 31: Measured control voltages of cylinder 2 control valve with VDC- and PID-controller. 
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As from Figure 30 and Figure 31 can be seen, a smooth control without unnecessary 
high frequency (and high amplitude) oscillation were achieved for VDC-controller 
under all applied Cartesian transition times. Figure 30 and Figure 31 also illustrates, that 
Cartesian transition time of .  could considered to be near to performance limit of 
system as about 70 percentages (%) of valves capability was utilized. On the other hand, 
Cartesian transition time  enabled only about 10 percentages (%) of valves 
capability. In view of above, an applied Cartesian motion trajectory with .  can  be  
considered to be fast in the view of system performance. On the other hand, Cartesian 
transition time   can be considered to be a slow (in view of system performance) in 
which slow velocity friction, sensor noises and control valve non-linearities dominate. 
Thus, the performances of controllers were tested in very wide scale. 

In studies of Zhu, e.g. (Zhu 2005) and (Zhu 2011), the ratio of the maximum 
position tracking error to the maximum velocity has been used as an indicator for the 
position tracking performance of a given robot. In (Zhu 2005), a hydraulic manipulator 
containing a very similar cylinder actuated joint (compared to joints studied in this 
thesis) was controlled with complete VDC-controller8.  In  (Zhu 2005),  the  ratio  of  the  
maximum position tracking error to the maximum velocity is reported to be 0.005 (s) 
for single hydraulically operated joint. In (Mattila 2000), the control of same hydraulic 
manipulator than in this thesis was studied and the ratio of the maximum position 
tracking error to the maximum velocity was about 0.0133 (s) for cylinder 1 and about 
0.0300 for cylinder 2. In this thesis, for studied manipulator under a nominal Cartesian 
transition time , the ratio of the maximum position tracking error to the maximum 
velocity was calculated to be 0.0039 (s) for cylinder 1 and 0.0077 (s) for cylinder 2 and 
thus the achieved results can be seen very good. However, especially as parameter 
adaptation was not yet incorporated into VDC, the accuracy of used sensory system can 
be seen more or less questionable. Thus, more scientific evidences about performance 
and accuracy of used sensory system are required. Regardless of this, the performance 
comparisons between VDC- and PID-controller can be seen fully applicable. 
 During VDC and PID measurements no cavitations in cylinder chambers were 
detected. For further interest, more detailed information about accomplished 
measurements can be found in Appendix J, Appendix K, Appendix L and Appendix M. 
In Appendix J is documented measurements with VDC-controller under Cartesian 
transition time .  In Appendix K is documented measurements with VDC-controller 
under Cartesian transition time . . In Appendix K is documented measurements with 
VDC-controller under Cartesian transition time . In Appendix M is documented 
measurements with PID-controller under Cartesian transition time . 

 
 

                                                
8 In (Zhu 2005), the parameter adaptation was incorporated into control laws. 
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7 CONCLUSIONS AND FURTHER WORK 

In this thesis, a new control theory, called Virtual Decomposition Control (VDC), was 
studied. The theory of VDC approach was successfully applied into studied hydraulic 2-
DOF manipulator actuated with two hydraulic cylinders and the  and  stability of 
subsystems were mathematically guaranteed leading to stability of entire system.  

In experimental measurements the achieved results with VDC-controller were 
compared to corresponding results with PID-controller. Control of studied system was 
conducted in actuator space and the very same Cartesian motion trajectory was driven 
with both controllers. The defined Cartesian motion trajectory was driven with three 
different velocities, such that during fastest trajectory (with Cartesian transition time 

. =2.5s) about 70 percentage of control valve capability were utilized and during 
slowest trajectory (with Cartesian transition time =10s) only about 10 percentage of 
valve capability were utilized. An applied Cartesian motion trajectory with .  can be 
considered to be fast in the view of system performance. On the other hand, Cartesian 
transition time   can be considered to be a slow (in view of system performance) in 
which slow velocity friction, sensor noises and control valve non-linearities dominate. 
Thus, the performances of controllers were tested in very wide scale. 

In measurements both controllers (VDC and PID) were tuned under predominant 
conditions  of  nominal  Cartesian  transition  time of  =5s. VDC-controller was able to 
drive Cartesian motion trajectories with all three different Cartesian transition times 
without problems, whereas stability of PID-controller was lost under Cartesian 
transition  times  of  .  and . This implies that much better control robustness for 
VDC-controller (compared to PID-controller) was achieved. Stability limits of VDC-
controller were not studied.  

With VDC-controller, the piston position tracking errors for both cylinders were 
managed to kept under 1 mm even at fastest Cartesian transition time . . On contrast, 
with PID-controller with 50 % slower Cartesian transition time , the maximum piston 
position  tracking  errors  for  both  cylinders  were  around 2.5  mm.  With  VDC controller  
under Cartesian transition time , the maximum piston position tracking error for first 
cylinder of system was managed to kept under 0.25 mm. If performances of VDC- and 
PID-controller were compared under same Cartesian transition time , roughly 7 times 
better piston position tracking performance was achieved with VDC-controller 
(compared to PID-controller) for first cylinder of system. Corresponding results for 
second cylinder of system were about 4.4 times better with VDC-controller than PID-
controller. Some problems with dynamical behavior cylinder 2 were noticed.  
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 In studies of Zhu, e.g. (Zhu 2005) and (Zhu 2011), the ratio of the maximum 
position tracking error to the maximum velocity has been used as an indicator for the 
position tracking performance of a given robot. In (Zhu 2005), a hydraulic manipulator 
containing a very similar cylinder actuated joint (compared to joints studied in this 
thesis) was controlled with complete VDC-controller9.  In  (Zhu 2005),  the  ratio  of  the  
maximum position tracking error to the maximum velocity is reported to be 0.005 (s) 
for single hydraulically operated joint. In (Mattila 2000), the control of same hydraulic 
manipulator than in this thesis was studied and the ratio of the maximum position 
tracking error to the maximum velocity was about 0.0133 (s) for cylinder 1 and about 
0.0300 for cylinder 2. In this thesis, for studied manipulator under a nominal Cartesian 
transition time , the ratio of the maximum position tracking error to the maximum 
velocity was calculated to be 0.0039 (s) for cylinder 1 and 0.0077 (s) for cylinder 2 and 
thus the achieved results can be seen very good. However, especially as parameter 
adaptation was not yet incorporated into VDC, the accuracy of used sensory system can 
be seen more or less questionable. Thus, more scientific evidences about performance 
and accuracy of used sensory system are required. Regardless of this, the performance 
comparisons between VDC- and PID-controller can be seen fully applicable. 
 In (Zhu 2005), an actual piston force was measured directly from piston with 
loadcell.  In  this  thesis,  the  VDC  was  applied  into  a  hydraulic  system  without  using  
loadcells10. This was the first time in context of VDC and thus achieved results have 
novelty in this stand. The piston force computation from cylinder chamber pressures 
was proven to be practical method to compute piston forces in hydraulic VDC 
applications. 
 As a future work, similar measurements with enhanced angle sensory data will 
be required to do. Furthermore, as mention in section 6.4, even though measured piston 
force was tracking required piston force quite well, the correspondence between them 
can be likely improved by incorporating parameter adaptation into control equations. 
Parameter adaptation will be favorable to performed also other uncertain parameters 
defined in (5.145) and (5.155). Studies concerned to link flexibilities and contact with 
environment are still under evaluation. 
  
  
 
 

                                                
9 In (Zhu 2005), the parameter adaptation was incorporated into control laws. 
10 The actual piston forces were computed from cylinder chamber pressures according to equation 
(5.141). 
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APPENDIX A: REGRESSOR MATRIX AND 
PARAMETER VECTOR OF OBJECTS AND RIGID 
LINKS 

In this appendix formulation for the regressor matrix ×  and the parameter 
vector  of rigid body, to which frame {A} is attached as appeared in (2.19), is 
given.  
 According to (Zhu 2010, p.386-388), the non-zero elements in ×  are 
listed as 
 
 (1,1) = (1) + (5) (3) (6) (2) + (1)  (A.1) 

 (1,2) (5) (5) (6) (6)     (A.2) 

 (1,3) (6) + (5) (4)     (A.3) 

 (1,4) = (5) + (6) (4)      (A.4) 

 (2,1) = (2) + (6) (1) (4) (3) + (2)  (A.5) 

 (2,2) = (6) + (4) (5)      (A.6) 

 (2,3) (4) (4) (6) (6)     (A.7) 

 (2,4) (4) + (6) (5)     (A.8)

 (3,1) = (3) + (4) (2) (5) (1) + (3)  (A.9) 

 (3,2) (5) + (4) (6)     (A.10) 

 (3,3) = (4) + (5) (6)      (A.11) 

 (3,4) (4) (4) (5) (5)     (A.12) 
 (4,3) = (3,1)        (A.13) 
 (4,4) (2,1)        (A.14) 
 (4,6) = (3,3)        (A.15)
 (4,7) (2,4)        (A.16) 
 (4,8) = (3,2)        (A.17) 
 (4,9) (2,2)        (A.18) 
 (4,10) = (6) (6) (5) (5)     (A.10) 

 (4,11) = (4) + (5) (6) (6) (5)   (A.20) 

 (4,12) (6) (5)       (A.21) 
 (4,13) = (5) (6)       (A.22) 
 (5,2) (3,1)        (A.23) 
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 (5,4) = (1,1)        (A.24) 
 (5,5) (3,2)        (A.25) 
 (5,7) = (1,4)        (A.26) 
 (5,8) (3,3)        (A.27) 
 (5,9) = (4) (4) (6) (6)     (A.28) 
 (5,10) = (1,3)        (A.29) 
 (5,11) = (6) (4)       (A.30) 

 (5,12) = (5) + (6) (4) (4) (6)   (A.31) 

 (5,13) (4) (6)       (A.32) 
 (6,2) = (2,1)        (A.33) 
 (6,3) (1,1)        (A.34) 
 (6,5) = (2,2)        (A.35) 
 (6,6) (1,3)        (A.36) 
 (6,8) = (5) (5) (4) (4)     (A.37) 
 (6,9) = (2,4)        (A.38) 
 (6,10) (1,4)        (A.39) 
 (6,11) (5) (4)       (A.40) 
 (6,12) = (4) (5)       (A.41) 

 (6,13) = (6) + (4) (5) (5) (4)   (A.42) 

 
where ( , )  denotes  an  element  of   ×  at  row  j and column k for 

{1,6} and {1,13}; three variables ( ) ,   ( ) , and ( )  

denote the jth element of  6, 6, and 6, respectively, for all 

{1,6}; and ( )  denotes the jth element  with 
= [0 0 9.8]  for all {1,3}. (Zhu 2010, p.388) 

The 13 elements of   are listed as 
 
 =          (A.43) 
 =          (A.44) 
 =          (A.45) 
 =          (A.46) 
 =          (A.47) 
 =          (A.48) 
 =          (A.49) 
 =        (A.50) 
 =        (A.51) 
 =        (A.52) 
 =          (A.53) 
 =          (A.54) 
 =          (A.55) 
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where  denotes the kth element of  for all {1,13};  is the mass;       

= , , 3 denotes a vector pointing from the origin of frame 
{A} toward the center of mass  and expressed in frame {A}, and , , , , 

, and  are elements of . (Zhu 2010, p.389) 
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APPENDIX B: DERIVATION OF REGRESSOR 
MATRIX AND PARAMETER VECTOR FOR 2-DOF 
SYSTEM 

Since the regressor matrix depends on the joint position, velocities, and accelerations, it 
should be updated in every control cycle (Huang 2010, p.83). Due to this fact, it is very 
desirable to try design regressor matrices as elemental form as possible, as computation 
of the complex regressor matrices during each sampling period in the real-time 
realizations is very time consuming (Huang 2010, p.vii). 

As mentioned in chapter 4, the studied system can provide only 2-DOF of 
motion. Basically this means that system can provide motion only in one certain defined 
plane. With an appropriate frame attachment (see Figure 17), all linear motions subject 
to any rigid bodies of system (objects and rigid links) can be restricted to occur only in 
xy-plane (along x-axis and y-axis) with respect to attached body frame {A} of rigid 
body. Furthermore, in this case all rotational motions subject to any rigid body of 
system can be occur only about z-axis with respect to attached body frame {A} of rigid 
body. 
 In view of aforementioned, all  motions along z-axis (3) , about x-axis 

(4)  and about y-axis (5)  are cancelled out from every linear/angular 
velocity vectors 6 defined in (2.4) subjecting to 
 
   ( ) = 0, for all {3,5}.     (B.1) 
 
Obviously, also all motions in required linear/angular velocity vectors 6along z-
axis (3) , about x-axis (4)  and about y-axis (5) , are 
required to be zero. Also terms (3) , (4) , and (5)  

in derivative of required linear/angular velocity vector  will naturally take 

form of zero. These can be expressed as 
 
  ( ) = 0, for all {3,5}     (B.2) 
  ( ) = 0, for all {3,5}.      (B.3) 
 

Similar  to  motion  generation  ability  of  studied  system,  it  is  quite  obvious  that  
studied 2-DOF system can generate forces only in certain plane. With an appropriate 
frame attachment (see Figure 17), all linear forces subject to any rigid bodies of system can be 
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restricted to occur only in xy-plane (along x-axis and y-axis) with respect to attached body frame 
{A} of rigid bodies. Furthermore, all moments subject to any rigid bodies of system can be 
occur only about z-axis with respect to attached body frame {A} of rigid body.  In  view  of  
(2.14) and (2.19), all required net force/moment vectors  of system can be 
computed through regressor matrix and parameter vector. Duo to fact, that for all 

{3,5} there are not required forces in ( )  elements of  and these 
elements are fully described by jth row of regressor matrix, respectively, it can be 
written as 

 
 ( , ) = 0, for all {3,5}, and {1,13}   (B.4) 

 
where ( , )  denotes an element of  ×  at row j and column k. 

By substituting these zero elements defined in (B.1) - (B.4) into regressor matrix 
defined in Appendix A, the non-zero elements of ×  can be listed as 
  

  (1,1) = (1) (6) (2) + (1)   (B.4) 

  (1,2) (6) (6)      (B.5) 

  (1,3) (6)      (B.6) 

  (2,1) = (2) (6) (1) + (2)   (B.7) 

  (2,2) = (6)       (B.8) 

  (2,3) (6) (6)      (B.9) 
  (6,2) = (2,1)       (B.10) 
  (6,3) (1,1)       (B.11) 
  (6,5) = (2,2)       (B.12 
  (6,6) (1,3)       (B.13) 

  (6,13) = (6)      (B.14) 

 
which can be put into matrix form as 
 

=

(1,1)
(1,2)
0
0
0
0

(1,2)
(2,2)
0
0
0

(6,2)

(1,3)
(2,3)
0
0
0

(6,3)

0
0
0
0
0
0

0
0
0
0
0

(6,5)

0
0
0
0
0

(6,6)

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0

(6,13)

 (B.15) 

 
By taking a slight look of (B.15) and its corresponding parameter vector defined 
Appendix A, it is easy to notice that parameter vector elements , for all 
{4,7,8,9,10,11,12}, has no effect to required net force/moment vectors  in 
studied 2-DOF case and they can be removed from parameter vector for avoiding 
unnecessary parameter estimation.  
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Removing of discussed elements will lead to new regressor matrix 2
6×6 

taking form of 
 

 2 =

(1,1)
(1,2)
0
0
0
0

(1,2)
(2,2)
0
0
0

(6,2)

(1,3)
(2,3)
0
0
0

(6,3)

0
0
0
0
0

(6,5)

0
0
0
0
0

(6,6)

0
0
0
0
0

(6,13)

  (B.16) 

 
where elements ( , ) are  obtained  from  (B.4)  –  (B.14).  Finally,  the  new  
corresponding parameter vector  can be given as 
 

 = 2

2

        (B.17) 
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APPENDIX C: STRUCTURAL DIMENSIONS OF 
HIAB 031 

 

 
Figure 32: Structural dimension of HIAB 031 

 
Numerical values for structural constant parameters of HIAB 031 are achieved from 
(Linjama 1996) as 
 
 = 1.6    = 0.369  
 = 1.689    = 0.069  
 = 0.228    = 1.131  
 = 0.957    = 0.069  
 = 0.953    = 0.288  
 = 0.404    = 0.112  
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and remaining structural dimensions can be computed from above as 
 

 = +    = +  

 = +    = +  

 = tan   = tan  

 = tan   = tan  
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APPENDIX D: DERIVATION OF LOAD 
DISTRIBUTION FACTORS 

In this appendix an equations to calculate the load distribution factors  and  of 
closed chain 2 are given. The load distribution factors  and  of closed chain 1 can 
be obtained by similar manner by substituting respective closed chain 1 equations in 
(D.1) – (D.18). 
 As the name implies, load distribution factors defines how the exerted force is 
distributed between rigid links. In our case, load distribution between two open chains is 
wanted to find out. In Figure 33 can be seen second closed chain of studied system.  
 

 
Figure 33: 2nd closed chain of studied system. 

The force resultant  exerted on the cutting point 4 and expressed in 
frame {Tcc2} is known and can be computed in view of (5.39). Also closed chain angle 
q22 is known and defined in (5.8). Note that initially angle  will be given as negative. 

In Figure 34 is illustrated a known force resultant  in first quarter of 
frame {Tcc2}.   In  view  of  Newton’s  third  law  of  motion,  there  exist  an  equal  but  
opposite reaction force generated by closed chain 2.  

The direction  of reaction force  can be computed as  
 

  = tan = tan
( )
( )  

       = tan
( )
( )     (D.1) 
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where (1) denotes the first element  and (1) denotes the second 

element .  
 As from (D.1) and Figure 34 can be seen, the direction of force resultant 

and respective reaction force  occurs as positive in first and 

third quarters of frame {Tcc2}. This comes due to fact that in these cases sign( (1)) 

= sign( (2)), which will lead to positive direction angle . 
   

 
Figure 34: Forces in frame { } with positive direction angle . 

Let first consider situations with positive direction angles , as represented in 
Figure 34. For simplifying calculations, angle  is wanted to express in same direction 
as angle . Thus, angle  is redefined as 
 
  )| |       (D.2) 
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The support forces, namely  and , generated by Link31 
and Link42, respectively, can be computed with the law of sines as 

 

 ( )
( )

      (D.3) 

 
 

  ( )
( )

,      (D.4) 

 
where the angles  and  are defined as 

 
=          (D.5) 

  =          (D.6) 
 

The components of support forces  and  parallel to 

reaction force , denoted as  and , 
respectively, can be computed as 

 
 cos( )       (D.7) 

 cos( )       (D.8) 
 
On the other hand, force components  and  given in 
(D.6) and (D.7), respectively, can be obtained by product of load distribution factor and 
respective support force, as  

 
       (D.9) 

                 (D.10) 
 

By substituting (D.7) into (D.9) and (D.8) into (D.10), yields 
 

  = cos( ) ( )
( )

                   (D.11) 

   

  = cos( ) ( )
( )

.                   (D.12) 

 
Now, the load distribution factors  and  can be solved with positive direction 
angles 0 by substituting (D.9) into (D.11) and (D.10) into (D.12), leading to 
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  = cos( ) ( )
( )

 , 0               (D.13) 

  = cos( ) ( )
( )

 , 0                          (D.14) 

 
If the force resultant  occurs  in  second  or  fourth  quarter  of  frame  

{Tcc2}, the direction angle  defined in (E.1) will occur as negative. This comes due to 

fact, that in these cases sign( (1))  sign( (2)). The situation with negative 
direction angle is illustrated in Figure 35. 

 

 
Figure 35: Forces in frame { } with negative direction angle . 

Similar to (D.3) – (D.14), the load distribution factors  and  for negative 
direction angles  < 0, can derived to be in view of Figure 35 as 

 

  = cos( ) ( )
( )

,   < 0               (D.15) 

  = cos( ) ( )
( )

,   < 0                     (D.16) 
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where the angle  can computed as 
 
                    (D.17) 
 
 Finally, the load distribution factors  and  from an known arbitrary force 
resultant , can be computed in view of (D.12) - (D.14) as 
 

  =
cos( ) ( )

( )
, 0

cos( ) ( )
( )

, < 0
               (D.18) 

  =
cos( ) ( )

( )
, 0

cos( ) ( )
( )

, < 0
               (D.19) 
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APPENDIX E: DERIVATION OF INTERNAL FORCE 
VECTOR  T  

In this appendix a derivation to calculate internal force vectors  are given. 
Internal force vector  of closed chain 2 is used as an illustrative example. 

The internal force vector  of closed chain 1 can  be  obtained  by  similar  
manners by substituting respective closed chain 1 equations in (E.1) – (E.20). 
 In view of Assumption 1, the torque constraints at the three unactuated joints can 
be expressed as 
 
  = 0        (E.1) 

  = 0        (E.2) 

  = 0        (E.3) 
 
After the load distribution factors  and  being specified, the three meaningful 
elements in  (the two force elements in x and y and the moment element in z 
are determined by satisfying the constraints (E.1) - (E.3).  

The moment element  of  can be determined in view of constraint 
(E.1)  
 
 = 0         (E.4) 
 
by using (5.46)  
  
 = 0       (E.5) 

 =        (E.6) 

 =        (E.7) 
 

Now, note the fact that frames { }  and  { } are set to be coincide (see 
Figure 13). Thus, the effect of force element  to produce torque in frame { } is 

cancelled out and the force element  can determined through (E.2) by using 
(5.41)(5.45) and (5.47) as 
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     = 0         (E.8) 

 + = 0      (E.9) 

 + + = 0               (E.10) 

                    (E.11) 
 
Consider the fact that force/moment vectors  and , load distribution factor  

and  transformation matrix  are known.  Now, the equation (E.11) can be written 
in form of 

     ×

( ×)
0
0
0

= 0
0
0

              (E.12) 

 

 0
0
0
0

0
0
0

0
0
1
0

0

0
0
0

0

0
0
0

0

0
0
0
0
0
1

0
0
0

= 0
0
0

             (E.13) 

 
Note, that in (E.13) elements  and  will  have  form of  zero,  indefinitely,  due  to  
appropriate frame attachment (lengths from { } to { } along y- and z-axis are zero). 
Thus, the force element  can  be  solved  from  (E.13)  by  using  the  last  row  of  

×    as 
 
      + =                  (E.14) 

 =                      (E.15) 

 
 Consider the fact that force elements  and  are now known. The 

force element  can be solved through (E.3) by using (5.46), (5.49) and (5.50) as 
 
 = 0                   (E.16) 

       + = 0                    (E.17) 

       + + = 0               (E.18) 

       + + = 0               (E.16) 



 89 

 

       = + +  (E.17) 
 
Again, the force/moment vectors , , , load distribution factor , and  

transformation matrices  and  are known.  Now, the equation (E.17) can 
written in form of 
 

 0
0
0

0
0
0

0
0
1

0

0
0
0

0

0
0
0

0

0
0
0
0
0
1

0
0
0

= 0
0
0

                       (E.18) 

 
Finally, the force element  can be solved from (E.18) by using the last row of 

×    as  
 
      + + =                (E.19) 

 =                     (E.20) 
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APPENDIX F: APPLIED FRICTION MODEL FOR 
CYLINDERS 

According to (Zhu 2005) a suitable friction model is necessary for achieving a good 
output force control of cylinder. This comes due to fact that the piston friction makes a 
large difference between the output force and the chamber pressure force. 
 A friction model proposed in (Zhu 2010, p.181) and represented in (Zhu 2005) is 
used to model cylinder piston frictions in both cylinders of HIAB 031.  

A Coulomb-viscous friction model with dc offset 
 
  = ( , ) ( ) ( , ) ( ) +  
            + ( ) + ( ) ( )              (F.1) 
 
is used as part of the friction model devoted to sliding motion, where  is a selective 
function defined as  
 

  ( ) 1, > 0
0, 0                (F.2) 

 
( , ) is a differentiable function defined as  

 

  ( , )
1,

, 0 < <
0, 0

             (F.3) 

 
with > 0 being a constant,  denotes the average deformation of bristles in friction 
model described in (Canudas 1995), where the derivative of  is governed by 
 

  = | |                  (F.4) 

 
where  denotes the piston velocity. In (F.1), the first two terms on the right-hand side 
are devoted to the Coulomb friction, the constant  denotes a dc offset, and the last 
term in the right-hand side is devoted to the Stribeck and viscous friction with which 

( ) is a bounded and differentiable function characterizing the profile of the Stribeck 
and viscous friction.  
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Similar to (Zhu 2005), the ( ) is chosen as 
 
  ( ) 1                 (F.5) 
 
to accommodate the Stribeck effect only, since the operational velocity cylinder is very 
low. Parameters  and  correspond to the positive piston velocity , and  and 

 correspond the negative piston velocity . 
 Based on the experimental observations, it is found that the friction force in 
presliding motion is a function of the output force. The mathematical formulation can be 
expressed as 
 
  = [ ( ) + ( )] ( )             (F.6) 
 
where  denotes the output force, and  and  are two positive constraints 
associated with positive and negative output forces, respectively, and ( ) is a 
monotonic function defined as 
 
  ( ) =

| |
                (F.7) 

 
with > 0 being a constant. 
 Finally, the total piston friction force is represented as 
 
  = [ ( )] ( )                (F.8) 
 
where ( ) [0, 1] is a differentiable switching function that ensures a smooth 
transition between sliding motion and presliding motion with ( ) 1 for presliding 
motion and ( ) 0 for sliding motion. In view of (Zhu 2005), the applied switching 
function of friction model is selected to be  
 
  ( ) =

( ( ))
                (F.9) 

with 
 
  ( ) = 10 | ( )| ( )                (F.10) 
 
where > 0  is a constant and ( 0 if (0) = 0.  
 In view of (Zhu 2010, p.181), the selected friction model defined in (F.8) is 
wanted to represent in linear parameterizised form as 
 
  = .                   (F.11) 
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The regressor matrix  in (F.11) can be written as  
 

  =

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ) )

( ) ( ) )

,             (F.12) 

 
where  denotes the desired output force, and the parameter vector  is defined  as 
 

  =              (F.13) 
 
(Zhu 2005). 
  The following parameters were used in an applied friction model =
500 , = 0, 2000 /( ) and = 800 . Given friction 
parameters are extracted from (Linjama 1996), where same system (HIAB 031) in 
different context was studied. Friction profiles with given parameters are illustrated in 
Figure 36. 
 

 
Figure 36: Friction force profiles with applied parameters and with output force  = 30000 N. 
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APPENDIX G: VIRTUAL STABILITY OF STUDIED 
HYDRAULIC MANIPULATOR 

In this appendix the virtual stability with respect to zero-mass object, object 1, object 2, 
open chain 1 and open chain 3 will be presented. All Equations, Theorems, Lemmas 
and Proofs of this chapter are applied in view of (Zhu 2010. pp.177-181). 

In view of (3.15) the non-negative accompanying function of object 2 can be 
selected as 
 

  =      (G.1) 

 
and in view of (3.16) the derivative of (G.1) is 
 

   

  +                 (G.2) 
 
Theorem 5.1. The object 2 described by (5.35) - (5.37), combined with its respective 
control equations (5.95) and (5.97), is virtually stable with its affiliated vector 

 being a virtual function in both  and , in the sense of Definition 2.10. 
 
Proof: It follows from (5.35), (5.55), (5.95), (5.106), and (2.21) that 
 

   

   = ( ) 

                  + ( ) 

  ( ) 
   = +                   (G.3) 
   
Consider the fact that object 2 has all driven cutting points associated with frames { } 
and  { }. Substituting    (G.3) into (G.2) and using (G.1) and Definition 2.10. 
completes the proof. 
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Theorem 5.2. The open chain 3 described by (5.28), (5.29), (5.40), (5.41), (5.48), 
(5.47), and (E.2), combined with its respective control equations (5.88), (5.89), (5.102), 
(5.103), (5.111), (5.110), and (E.2), is a virtually stable with its affiliated vectors 

 and  being virtual function in both  and , in the sense of 
Definition 2.10. 
 
Proof: Select the non-negative accompanying function of the open chain 3 as 
 
  = +                    (G.4) 
 
where 
 

  =                           (G.5) 

  =                (G.6)  

 
are the two non-negative accompanying functions assigned to the two rigid links 
affiliated with the open chain 3.  
 With appropriate frame substitution, it follows from (5.40), (5.41), (5.102), 
(5.103), and Lemma 3.1. that 
 

   

  +                      (G.7) 

   

  +                     (G.8) 
 
 In view of (2.21), (5.28), (5.29), (5.48), (5.47), (E.2), (5.88), (5.89), (5.111), 
(5.110), and (5.127), it results in  
   

  =                 (G.9) 

  =              (G.10) 
 
 Substituting    (G.9) and  (G.10) into (G.7) and (G.8) yields 
 
  = +  

   

   
  + .                  (G.11) 
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 Consider the fact that open chain 3 has one driving cutting point associated with 
frame { } and one driven cutting point associated with frame { }. Using    (G.4) -     
(G.6),  (G.11) and Definition 2.10. completes the proof. 
                  
 
Lemma 5.1. The open chain 4 described by (5.30)-(5.32), (5.41), (5.42), (5.49), (5.50), 
(5.53), and (E.1), (E.3) and combined with its respective control equations (5.90)-
(5.92), (5.104), (5.105), (5.112), (5.113), (5.124), (5.126), and (5.128), is a virtually 
stable with its affiliated vectors.  
 Let 
 
  = +                  (G.12) 
 
be the non-negative accompanying functions assigned to the open chain 4, where  
 

  =              (G.13) 

  =              (G.14) 

 
are the two non-negative accompanying functions assigned to the two rigid bodies 
(cylinder 2 piston rod and cylinder 2 base) affiliated with the open chain 4. Then, the 
time derivative of  (G.12) can be expressed as  
 
  = +  

   

   
  + + ( )( )              (G.15) 
 
where  and  denote the two virtual flows by Definition 2.9. at the two cutting 
points of the open chain 4. 
 
Proof: Similar to (G.7) and (G.8), it follows from (5.41), (5.42), (5.104), (5.105),  and 
Lemma 3.1. that 
 

   

  +                   (G.16)   

   

  +                   (G.17) 
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hold. 
 In view of (2.21), (5.30) - (5.32), (5.49), (5.50), (5.53), (E.1), (5.90) - (5.92), 
(5.112), (5.113), (5.124), (5.126),and (5.128), it result in 
 

   
   = + ( )( )             (G.18)   

   
   =                            (G.19) 
 
Finally, Substituting (G.18) and (G.19) into (G.16) and (G.17) yields  (G.15). 

 
  

In view of (3.15) the non-negative accompanying function of object 1 can be 
selected as 

  =                          (G.20) 

 
and in view of (3.16) the derivative of (G.20) is  
 

   

  +               (G.21) 
 
Theorem 5.3. The object 1 described by (5.26), (5.54) and (5.55), combined with its 
respective control equations (5.86) and (5.96), is virtually stable with its affiliated 
vector  being a virtual function in both  and , in the sense of Definition 
2.10. 
 
Proof: It follows from (5.26), (5.37), (5.86), (5.115), and (2.21) that 
 

   

   = ( ) 

                  + ( ) 

  ( ) 

   ( ) 
   = +                (G.22) 
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Consider the fact that object 1 has all its driving cutting points associated with frames 
{ } and { } and all its driven cutting points associated with frames { } and { }. 
Substituting  (G.22) into  (G.21) and using (G.20) and Definition 2.10. complete the 
proof. 
                  
 
Theorem 5.4. The open chain 1 described by (5.17), (5.18), (5.57), (5.58), (5.64), 
(5.65), and (E.2), combined with its respective control equations (5.79), (5.80), (5.98), 
(5.99), (5.119), (5.120), and (5.130), is a virtually stable with its affiliated vectors 

 and  being virtual function in both  and , in the sense of 
Definition 2.10. 
 
Proof: Select the non-negative accompanying function of the open chain 1 as 
 
  = +                  (G.23) 
 
where 
 

  =                         (G.24) 

  =              (G.25) 

 
are the two non-negative accompanying functions assigned to the two rigid links 
affiliated with the open chain 1.  
 With appropriate frame substitution, it follows from (5.57), (5.58), (5.98), (5.99) 
and Lemma 3.1. that 
 

   

  +                    (G.26) 

   

  +                   (G.27) 
 
 In view of (2.21), (5.17), (5.18), (5.64), (5.65), (E.2), (5.79), (5.80), (5.119), 
(5.120), and (5.130) it results in  
   

  =               (G.28) 

  =              (G.29) 
 
 Substituting   (G.28) and  (G.29) into  (G.26) and  (G.27) yields 
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  = +  

   

   
  + .                  (G.30) 
 
 Consider the fact that open chain 1 has one driving cutting point associated with 
frame { } and one driven cutting point associated with frame { }. Using  (G.23) -  
(G.25),  (G.30) and Definition 2.10. completes the proof. 
                  
 
Lemma 5.2. The open chain 2 described by (5.19)-(5.21), (5.59), (5.60), (5.66), 
(5.67),(5.70), (E.1), and (E.3) and combined with its respective control equations 
(5.81)-(5.83), (5.100), (5.101), (5.121), (5.122), (5.125), (5.129), and (5.131),  is  a  
virtually stable with its affiliated vectors  
 Let 
 
  = +                  (G.31) 
 
be the non-negative accompanying functions assigned to the fourth open chain, where  
 

  =              (G.32) 

  =              (G.33) 

 
are the two non-negative accompanying functions assigned to the two rigid bodies 
(cylinder 1 piston rod and cylinder 1 base) affiliated with the open chain 2. Then, the 
time derivative of   (G.31) can be expressed as  
 
  = +  

   

   
  + + ( )( )              (G.34)  
 
where  and  denote the two virtual flows by Definition 2.9. at the two cutting 
points of the open chain 2. 
 
Proof: It follows from (5.59), (5.60), (5.100), (5.101), and Lemma 3.1. that 
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  +                   (G.35) 

   

  +                   (G.36) 
 
hold. 
 In view of (2.21), (5.19)-(5.21), (5.66), (5.67), (5.70), (E.1), (E.3), (5.81)-(5.83), 
(5.121), (5.122), (5.125), (5.129), and (5.131) it result in 
 

   
   = + ( )( )             (G.37)   

   
   =                            (G.38) 
 
Finally, substituting  (G.37) and  (G.38) into  (G.35) and (G.36) yields   (G.34). 

 
 
Theorem 5.5. The zero-mass object described by (5.16) and (5.69), combined with the 
control equations (5.78) and (5.123), is virtually stable in the sense of Definition 2.10. 
 
Proof: it follows from (5.69) and (5.123) that 
 
  = + ( )             (G.39) 
 
holds. 
 Let the non-negative accompanying function be zero. Premultiplying  (G.39) by 
( )  and using (2.21), (5.16) , and (5.78) yields 
 
  0 =                 (G.40) 
 
which proves the theorem in view of Definition 2.10. 

 
 
 Above Theorems 5.1 - 5.5 ensure that the virtual stability of object 2, object 1, 
zero-mass object, open chain 3, and open chain 1. However, appearance of  (

)( ) and ( )( ) in the right-hand side of (G.15) and   
(G.34), respectively, prevents the virtual stability of the open chain 4 and open chain 2 
from being held. These terms will be addressed in the next Appendix H. 
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APPENDIX H: VIRTUAL STABILITY OF 
HYDRAULIC ACTUATOR ASSEMBLY 

In this appendix the virtual stability with respect to hydraulic actuator (open chain 2 and 
open chain 4) will be presented. Due to similar kinematic structures, equations 
concerned to cylinder 1 can be directly applied to cylinder 2 by replacing open chain 2 
equations and frames { } and { } to respective open chain 4 equations and frames 
{ }  and  { }.  All  Equations,  Theorems,  Lemmas  and  Proofs  of  this  chapter  are  
taken directly from (Zhu 2010. pp.185-187). 
 
Lemma 5.3. Consider the hydraulic cylinder 1 dynamic described by (F.8), (F.11), 
(5.142), (5.143) and combined with the control equations (5.151), (5.153), (5.154) and 
(5.155). The time derivative of non-negative accompanying function of the cylinder 1 
(open chain 2) 
 

  =                (H.1) 

 
is 
 

  ( )( )              (H.2) 
 
Theorem 5.6. The open chain 2 described by (5.19) (5.21), (5.59), (5.60), (5.66), 
(5.67),(5.70), (E.1), (E.3), (F.8), (F.11), (5.142) and (5.143) combined with the control 
equations (5.81) (5.83), (5.100),   (5.101), (5.121), (5.122), (5.125), (5.129), (5.131), 
(5.151), (5.153), (5.154) and (5.155) is a virtually stable with its affiliated vectors and 
variables ,  and  being virtual functions in both  
and , in sense of Definition 2.10. 
 
Proof: The proof follows directly from Lemmas 5.2 and 5.3. Define the non-negative 
accompanying function of the open chain 2 as  
 
  = +                               (H.3) 

 
where  and  are defined by  (G.31) and (H.1), respectively. It follows from   (G.34) 
and (H.2) that 
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  = +  

   

   

  +                 (H.4) 

 
holds. 
 Consider the fact that open chain 2 has one driving cutting point associated with 
frame  { } and one driven cutting point associated with frame { }. Using  (G.31), 
(H.1), (H.3), (H.4) and Definition 2.10. completed the proof. 

 
 
Theorems 5.1 – 5.6 ensure that all objects and open chains of assembly combined with 
their respective control equations are virtually stable in  the  sense  of  Definition  2.10.  
Therefore, the complete hydraulically actuated manipulator (HIAB 031) is virtually 
stable, in view of Lemma 2.1. 
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APPENDIX I: AN APPLIED PARAMETER 
VECTORS FOR STUDID SYSTEM 

Parameter Vectors of Rigid Bodies: 
 
As mentioned in section 6.1, parameters of all parameter vectors of studied system were 
computed by utilizing SolidWorks 3D CAD program. As from Appendix B can be seen, 
a parameter vector  of rigid body can be given by solving four parameters 
related to rigid body. These parameters are: 
 
   Mass of rigid body  

  Distance from body frame { } to the center of mass along x-axis and 
expressed in body frame { }. 

   Distance from body frame { } to the center of mass along y-axis and 
expressed in body frame { }. 

  Moment of inertia around the center of mass about z-axis and axpressed 
in body frame { }. 

 
Computed parameters for all rigid bodies are given in Table 4. For additional 
information about rigid bodies and body frames, see Figure 12, Figure 13, Figure 14 and 
Figure 15.   
 
       Table 4: Computed parameter for rigid bodies. 

Rigid Body 
Body 
frame 

 [kg]  [m]  [m]  [kg m2] 

Link1  { } 20.0570 0.4421 0.1023 3.2254 
Link11 { } 18.7600 0.1786 0.1237 1.2397 
Link21 { } 17.3599 0.3580 0 3.1306 
Link22 { } 10.3500 0.3300 0 1.6832 
Object 1 { } 6.2278 0 0 0.0655 
Link3 { } 55.1400 0.5380 0.1065 22.7132 
Link31 { } 9.5960 0.1388 0.0768 0.3830 
Link41 { } 17.3599 0.3580 0 3.1306 
Link42 { } 10.3500 0.3300 0 1.6832 
Object 2 { } 575.000 0 0 81.0880 

 
In view of (B.17) and Table 4, the parameter vectors for each rigid body can be 
computed as 



 103 

 

 

  = 2 2  

 
Note, that r  and r  for body frames {O } and {O } are zero because these frames 
are set to be located at the center of masses of Object 1 and Object 2, respectively. The 
measured distances from frame {T } to {O } were: 
  

  r _ = 0.0232 m 

  r _ = 0.1490 m 
 
Similar, the measured distances from frame {T } to {O } were: 
 

  r _ = 1.2178 m 

  r _ = 0.6110 m 
 

Above dimensions were needed in computations of transformation matrices U
×  and U × . 

 
 
Valve Flow Coefficient Parameter Vectors: 
 
The valve flow coefficient parameter vector  defined in (5.145) contains four 
flow coefficient parameters for each valve control edge. Preliminary values for these 
parameters were first extracted from manufacturer’s datasheet. Then, fine tuned values 
for these parameters were found out during test measures by changing values as long as 
best the correspondence between required velocity and measured velocity were found. 
Applied values for both control valves are given in Table 5. 
 

Table 5: An applied parameters into valve flow coefficient parameter vectors. 

 Parameter Applied value  

Valve 1  6.20 10-8 

  6.20 10-8 

  6.20 10-8 

  6.20 10-8 

Valve 2  3.55 10-8 

  3.55 10-8 

  3.55 10-8 

  3.55 10-8 
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Parameter Vector of Cylinder Control: 
 
The cylinder control parameter vector  defined in (5.155) contains three 
different parameters  denoting the effective bulk modulus,  denoting the area 
cylinder  chamber  A  and    denoting the area cylinder chamber B (see Figure 18). 
Following values for parameters in parameter vectors for cylinder 1 and cylinder 2 were 
used. 
 

Table 6: An applied parameters into cylinder control parameter vectors. 

  [MPa]  [m2] [m2] 
Cylinder 1 1100 5.026 10-3 3.436 10-3 
Cylinder 2 1100 5.026 10-3 3.436 10-3 
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APPENDIX J: MEASURED VDC-CONTROLLER 
RESULTS WITH CARTESIAN TRANSITION TIME 
OF 5 s. 

 
Figure 37: Desired and measured Cartesian paths with VDC-controller under Cartesian transition time of 5 s. 

 
The Cartesian position tracking error in Figure 38 is given in the view of equation (J.1). 

  = ( ) + ( )      (J.1) 

 
Figure 38: Cartesian position tracking error with VDC-controller under Cartesian transition time of 5 s. 
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Figure 39: Required and measured piston velocity trajectories with VDC-controller under Cartesian transition 

time of 5 s. 

 
Figure 40: Piston velocity tracking errors with VDC-controller under Cartesian transition time of 5 s. 
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Figure 41: Desired and measured piston position trajectories with VDC-controller under Cartesian transition 

time of 5 s. 

 
Figure 42: Piston position tracking errors with VDC-controller under Cartesian transition time of 5 s. 
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Figure 43: Required and measured piston forces with VDC-controller under Cartesian transition time of 5 s. 

 

 
Figure 44: Piston force tracking errors with VDC-controller under Cartesian transition time of 5 s. 
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Figure 45: System pressures during with VDC-controller under Cartesian transition time of 5 s. 

 

 
Figure 46: Valve control voltages with VDC-controller under Cartesian transition time of 5 s. 
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APPENDIX K: MEASURED VDC-CONTROLLER 
RESULTS WITH CARTESIAN TRANSITION TIME 
OF 2.5 s. 

 
Figure 47: Desired and measured Cartesian paths with VDC-controller under Cartesian transition time of 

2.5s. 

 
The Cartesian position tracking error in Figure 48 is given in the view of equation (J.1). 

 
Figure 48: Cartesian position tracking error with VDC-controller under Cartesian transition time of 2.5 s. 
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Figure 49: Required and measured piston velocity trajectories with VDC-controller under Cartesian transition 

time of 2.5s. 

 

Figure 50: Piston velocity tracking errors with VDC-controller under Cartesian transition time of 2.5s 
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Figure 51: Desired and measured piston position trajectories with VDC-controller under Cartesian transition 
time of 2.5s. 

 

Figure 52: Piston position tracking errors with VDC-controller under transition time of 2.5s. 
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Figure 53: Required and measured piston forces with VDC-controller under Cartesian transition of 2.5s. 

 
Figure 54: Piston force tracking errors with VDC-controller under Cartesian transition time of 2.5s. 
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Figure 55: System pressures with VDC-controller under Cartesian transition time of 2.5s. 

 

 
Figure 56: Valve control voltages with VDC-controller under transition time of 2.5s. 
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APPENDIX L: MEASURED VDC-CONTROLLER 
RESULTS WITH CARTESIAN TRANSITION TIME 
OF 10 s. 

 
Figure 57: Desired and measured Cartesian paths with VDC-controller under Cartesian transition time of 10s. 

 
The Cartesian position tracking error in Figure 58 is given in the view of equation (J.1). 

 
Figure 58: Cartesian position tracking error with VDC-controller under Cartesian transition time of 10s. 
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Figure 59: Required and measured piston velocity trajectories with VDC-controller under Cartesian transition 

time of 10s. 

 

 
Figure 60: Piston velocity tracking errors with VDC-controller under Cartesian transition time of 10s. 
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Figure 61: desired and measured piston position trajectories with VDC-controller under Cartesian transiton 

time of 10s. 

 
Figure 62: Piston position tracking errors with VDC-controller under Cartesian transition time of 10s. 



 118 

 

 
Figure 63: Required and measured piston forces with VDC-controller under Cartesian transition time of 10s. 

 
Figure 64: Piston force tracking errors with VDC-controller under Cartesian transition time of 10s. 
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Figure 65: System pressures with VDC-controller under Cartesian transition time of 10s. 

 

 
Figure 66: Valve control voltages with VDC-controller under Cartesian transition time of 10s. 
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APPENDIX M: MEASURED PID-CONTROLLER 
RESULTS WITH CARTESIAN TRANSITION TIME 
OF 5 s. 

 
Figure 67: Desired and measured Cartesian paths with PID-controller under Cartesian transition time of 5 s. 

 
The Cartesian position tracking error in Figure 68 is given in the view of equation (J.1). 

 
Figure 68: Cartesian position tracking error with PID-controller under Cartesian transition time of 5 s. 
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Figure 69: Desired and measured piston velocity trajectories with PID-controller under Cartesian transition 

time of 5 s. 

 

 
Figure 70: Velocity tracking errors with PID-controller under Cartesian transition time of 5 s. 



 122 

 

 
Figure 71: Desired and measured piston position trajectories with PID-controller under Cartesian transition 

time of 5 s. 

 
Figure 72: Piston position tracking errors with PID-controller under Cartesian transition time of 5 s. 
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Figure 73: System pressures during Cartesian drive with PID-controller under Cartesian transition time of 5 s. 

 

 
Figure 74: Valve control voltages with PID-controller under Cartesian transition time of 5 s. 


