
JONI RÄSÄNEN
IMPLEMENTATION OF RECORDING AND PLAYBACK IN
VIDEO CALL

Master of Science Thesis

Examiners: Ass. Prof. Jarno Vanne
and Prof. Timo Hämäläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 9th of December 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

JONI RÄSÄNEN: Implementation of recording and playback in video call
Tampere University of Technology
Master of Science Thesis, 53 pages, 1 Appendix page
August 2016
Master's Degree Programme in Information Technology
Major: Computer Science
Examiners: Ass. Prof. Jarno Vanne and Prof. Timo Hämäläinen
Keywords: MP4, Voice Over IP (VOIP), Real-time Transport Protocol (RTP), RTP
Control Protocol (RTCP), RTP/RTCP Reception Hint Track, Demultiplexing, Video
call, Open-source

Recording a video call recording is bene�cial in cases like job interviews and business

meetings. Skype or Google Hangouts for example have no recording implemented

without additional plugins. MP4 �le container is capable of containing di�erent

types of media tracks, is widely used and is supported by media players and has

a feature called RTP/RTCP Reception Hint Tracks. Hint tracks contain media

transmission instructions, which can be used, e.g., to record RTP stream into a

�le. Without this information the video call session cannot be replayed afterwards.

The purpose of this Thesis is to implement and verify the usage of RTP and RTCP

Reception Hint Tracks in video call recording.

No open-source MP4 multiplexing library or a media player with support for RT-

P/RTCP Reception Hint Tracks was found, so the support had to be implemented

in both the library and the media player. The setup includes Linphone and L-

SMASH for recording and VLC media player for playback. The created MP4 �le

has two RTP Reception Hint Tracks, two RTCP Reception Hint Tracks, and two

media tracks. The GSM audio is chosen because it is supported by Linphone, L-

SMASH, and VLC media player. H.264/AVC is chosen for video, because it is the

best available codec supported by the three software.

Tests were carried out using two laptops with both having recording enabled. From

the tests it is concluded that using the RTP Reception Hint Track increases the total

CPU usage by less than 1% and the size of the recorded video call by 4% over the

conventional media tracks. The implementation shows that RTP Reception Hint

Tracks meet well the needs of implementations with choice of di�erent codecs.

ii

TIIVISTELMÄ

JONI RÄSÄNEN: Videopuhelun tallentaminen ja toisto
Tampereen Teknillinen Yliopisto
Diplomityö, 53 sivua, 1 liitesivu
Elokuu 2016
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotiede
Tarkastajat: Apulaisprof. Jarno Vanne ja Prof. Timo Hämäläinen
Avainsanat: MP4, Voice Over IP (VOIP), Real-time Transport Protocol (RTP), RTP
Control Protocol (RTCP), RTP/RTCP Reception Hint Tracks, demultipleksointi, Videop-
uhelu, Avoin lähdekoodi

Videopuheluiden tallentaminen on hyödyllinen ominaisuus työhaastatteluissa ja puhe-

linkokouksissa. Skypessä tai Google Hangoutissa ei esimerkiksi ole mahdollisuutta

tallentaa puhelua ilman lisäosia. MP4 säiliö voi sisältää erityyppisiä mediaraitoja

ja siinä on ominaisuus nimeltä RTP Reception Hint raita. Hint raidoissa on me-

dian lähetysohjeita ja niihin voidaan tallentaa esimerkiksi RTP virtaa. Ilman näitä

tietoja videopuheluistuntoa ei voida toistaa. Tämän työn tavoitteena on toteuttaa

ja tarkistaa RTP/RTCP Reception Hint raidan soveltuvuutta videopuhelun tallen-

tamiseen.

Yksikään avoimen lähdekoodin MP4 multipleksointi kirjasto tai mediasoitin ei tue

RTP/RTCP Reception Hint raitoja, joten tuki täytyi toteuttaa molemmissa. Jär-

jestelmä käyttää Linphonea ja L-SMASH:ä tallentamiseen ja VLC mediasoitinta

toistoon. Luotu MP4 tiedosto sisältää kaksi RTP Reception Hint raitaa, kaksi

RTCP Reception Hint raitaa ja kaksi mediaraitaa. GSM audio valittiin, koska

se on ainoa Linphonen, L-SMASH:n sekä VLC mediasoittimen tukema audiokood-

ekki. H.264/AVC valittiin, koska se on paras näiden kolmen ohjelman tukemista

videokoodekeista.

Testaus suoritettiin kahdella kannettavalla tietokoneella, jotka molemmat tallensi-

vat. Näistä testeistä kävi ilmi, että RTP Reception Hint raitaa käytettyessä proses-

sorin käyttö kasvaa alle 1% ja bittinopeus kasvaa 4% verrattuna mediaraitana tal-

lentamiseen. Toteutettu järjestelmä osoittaa RTP Reception Hint raidan täyttävän

hyvin sellaisten videopuheluiden tarpeet, joissa on useampi koodekki valittavana.

iii

PREFACE

First I would like to thank Nokia for presenting this opportunity to research the

topic of video calls and get more familiar with the internal workings of video call

applications and MP4 �le format. Their guidance with MP4 was greatly appreci-

ated. I would also like to thank my co-worker and friend Marko on helping with

tougher parts of the implementation work and listening to me describe in great de-

tail every frustration and small success I had. A thank you also goes to the rest of

the Ultravideo team for the advice they gave when I asked.

A big thanks goes to my supervisor and Thesis counselor/reviewer Jarno for over-

seeing the project work and for help and encouragement in my quest for Thesis

completion. His timely and throughout review helped me developed as a better

writer and the amount of e�ort it took did not go unnoticed. Thanks also goes

to reviewer Timo for very fast review of my thesis so I could graduate in August

instead of September.

Tampere, 03.08.2016

Joni Räsänen

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Implementation aspects of a video call . 3

2.1 Video call . 3

2.1.1 Video encoding . 5

2.1.2 Audio encoding . 5

2.1.3 Linphone . 6

2.1.4 Filter graphs . 7

2.2 Media Streaming . 11

2.2.1 RTP stream . 11

2.2.2 RTP timestamp . 12

2.2.3 RTCP stream . 13

2.2.4 SIP . 14

2.2.5 SDP . 15

2.3 Media capture . 17

2.3.1 MP4 Hint Tracks . 20

2.3.2 RTP and RTCP Reception Hint Track 20

2.3.3 Multiplexing an MP4 �le . 26

2.4 Media playback . 26

2.4.1 VLC media player . 26

2.4.2 Demultiplexing an MP4 �le . 27

3. Implementation of video call recording . 28

3.1 Media recording in Linphone . 28

3.1.1 Audio/Video �lter graph modi�cations 30

3.1.2 MP4 �le creation . 31

3.1.3 Media recording �lters . 32

v

3.1.4 RTP Recording �lter . 32

3.1.5 RTCP Recording module . 33

3.2 Media multiplexing in L-SMASH . 34

4. Media playback in VLC . 35

4.1 MP4 demux module modi�cations . 35

4.2 Demultiplexing RTP packets . 36

4.3 Synchronization of RTP Reception Hint tracks 37

5. The overall video call system . 38

5.1 System architecture . 38

5.2 Recording modi�cations . 41

5.3 Playback modi�cations . 42

6. Analysis . 43

6.1 Performance . 43

6.2 Discussion . 45

6.2.1 Process of implementing a video call recording 45

6.2.2 Video call system evaluation . 45

6.2.3 RTP Reception Hint Track evaluation 47

7. Conclusions . 48

Bibliography . 50

APPENDIX A. Linphone Filter statistics after 1 minute video call 54

vi

LIST OF FIGURES

2.1 Libraries of Linphone. 6

2.2 Audio �ltergraph of Mediastreamer2 library. 8

2.3 Video �ltergraph of Mediastreamer2 library. 9

2.4 RTP packet header structure. One row is 32 bits. 12

2.5 RTCP sender info. One row is 32 bits. 14

2.6 Structure of an MP4 �le showing the mandatory boxes. 18

2.7 MP4 RTP sample header and RTCP sample header structure. 21

2.8 MP4 Hint Track RTP packet. 21

2.9 MP4 Hint Track RTP sample constructor. 22

2.10MP4 RTP Reception Hint Track Sample Entry. 23

2.11 Example RTP Reception Hint Track sample. 24

2.12 VLC high level data �ow from �le to screen. 27

3.1 Modi�ed parts of Linphone. 29

3.2 Modi�cations done to Linphone audio �lter graph. 30

3.3 Modi�cations done to Linphone video �lter graph. 31

5.1 Recording screenshot of Linphone. 39

5.2 Playback of recorded MP4 �le using VLC. 39

5.3 The overall video call system with data �ow shown. 40

5.4 Resulting MP4 moov-box contents. 41

vii

LIST OF TABLES

2.1 Open-source video call applications considered. 4

2.2 Mediastreamer2 �lters common to both graphs. 9

2.3 Mediastreamer2 audio �lter explanations. 10

2.4 Mediastreamer2 video �lter explanations. 10

2.5 SDP session description. 16

2.6 SDP time description. 16

2.7 SDP media description. 16

2.8 Explanations for mandatory boxes in an MP4 �le. 19

2.9 MP4 boxes related to RTP/RTCP Reception Hint Tracks. 25

3.1 Values of RTP packet structure in implementation. 33

4.1 Example Linphone SDP message with GSM and H.264 payloads. . . . 36

6.1 Comparison of recording �lter CPU usage of program CPU usage. . 43

viii

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface

AVC Advanced Video Coding

AVPF Audio-Visual Pro�le with Feedback

CSRC Contributing Source

DT Decoding time

ETSI European Telecommunications Standards Institute

FIR Full Intra Request, RTCP feedback message

GSM Global System for Mobile Communications Codec

GPL GNU General Public License

GUI Graphical UI

GOP Group of Pictures

H.263 A Video coding format

H.264 A Video coding format also known as AVC

H.323 Audio-visual protocol standard

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

ISOBMFF ISO Base Media File Format

LGPL GNU Lesser General Public License

MP4 MPEG-4 Part 14, Multimedia format

MPEG Moving Picture Experts Group

NAL Network Abstraction Layer

NALU NAL Unit

NP-API Netscape Plugin API

NTP Network Time Protocol

PDU Protocol Data Unit

PLI RTCP feedback message

PPS Picture Parameter Set

PSTN Public Switched Telephone Network

QoS Quality of Service

RFC Request for comments

RPSI RTCP feedback message

RTCP RTP control protocol

ix

RTP Real-time transport protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

SLI RTCP feedback message

SPS Sequence Parameters Set

SRTP Secure RTP

SRTCP Secure RTCP

SSRC Synchronization Source

UI User Interface

VCL Video Coding Layer

VOIP Voice-over IP

TLV Type-Length-Value

WAV Waveform Audio File Format

WebRTC Web Real-Time Communication

W3C World Wide Web Consortium

1

1. INTRODUCTION

Real-time Transport Protocol (RTP) [1] is developed by Internet Engineering Task

Force (IETF) for real-time data transfer over wired and wireless networks. The qual-

ity of an RTP stream is monitored by RTP Control Protocol (RTCP) [1]. RTP and

RTCP are commonly used in Voice over Internet protocol (VoIP) applications which

can also be accompanied by video communication. A typical video call encompasses

video and audio transmitted over a network in order to enable conversation between

participants. However, VoIP applications tend to miss recording and playback func-

tionalities for video. Skype [2], for example, requires external software or an add-on

for recording [3]. One reason is that video storage and streaming are technically

very di�erent tasks.

MP4 (MPEG-4 Part 14) is a container format developed by the Moving Picture

Experts Group (MPEG). The format is an extension of ISO Base Media File Format

(ISOBMFF) [4]. MP4 is able to encapsulate various media contents such as video,

audio, or subtitles into a single container. ISOBMFF was further extended with a

feature called RTP Reception Hint Tracks, which are used to record an RTP stream

to a �le with additional information such as sycnhronization information that would

be lost if the recording was done using traditional media tracks. RTP Reception Hint

Track follows the structure of RTP Hint Track, which does not contain the media

data in a track, but references to an existing media track. This Thesis presents a

demostration, which takes a live environment of a video call and combines it with

a passive environment of the video recording. For this the RTP/RTCP Reception

Hint Tracks are well suited.

The goals of the Thesis are: 1) Implement a video call system where user is able to

record the video call for later playback; and 2) verify and evaluate the usage of RTP

Reception Hint Tracks in recording RTP streams of a two-way video call.

RTP and RTCP Reception Hint Tracks provide many bene�ts, such as: 1) An

original video call can be reproduced from an MP4 �le and re-sending of RTP packets

1. Introduction 2

can be done from an MP4 �le to a new destination without losing synchronization

information. 2) The more information (IP addresses, ports used, etc.) being retained

in a �le, the better tracking of the media sources can be facilitated within the �le

itself. 3) Desynchronization caused by potential clock drift can be corrected. 4)

Packet losses can be detected during playback. 5) The recording operation does not

require reconstruction of a correct media bit stream from the packet payloads, which

could be challenging particularly in the case of packet losses.

In this work, an end-to-end video call demonstration has been used as a proof of

concept to illustrate and validate the bene�ts of RTP and RTCP Reception Hint

Tracks. The proposed system has been built on three open-source software tools:

1) Linphone version 3.8.2 [5], which has been extended for recording RTP/RTCP

Reception Hint Tracks for incoming streams and media tracks for outgoing streams;

2) L-SMASH library version 2.11.2 [6], which has been extended for supporting RT-

P/RTCP Reception Hint Track recording; and 3) VLC media player version 2.2.2

[7], which has been modi�ed to demultiplex an MP4 �le containing Reception Hint

Tracks and playing its content. The supported operating systems for all modi�ca-

tions are Windows and Linux. GSM audio codec is chosen because it is supported

by Linphone, L-SMASH, and VLC media player. H.264/AVC codec is chosen for

video recording, because it compresses the video more e�ciently than any other

video codec supported by Linphone, L-SMASH, and VLC.

The remainder of this Thesis is organized as follows. Chapter 2 speci�es the back-

ground for the implementation aspects of a video call system recording and playback

using the RTP and RTCP Reception Hint Tracks. Chapter 3 describes the designed

extensions to Linphone and L-SMASH for recording RTP/RTCP Reception Hint

Tracks in MP4 �le format. Chapter 4 shows the proposed implementation for the

recorded MP4 �le playback in VLC media player. Chapter 5 integrates recording

and playback functionalities together into a bidirectional video call demonstrator.

Chapter 6 evaluates the performance of the system and discusses its quality and

possibilities for further research. Chapter 7 gives the conclusion.

3

2. IMPLEMENTATION ASPECTS OF A VIDEO

CALL

2.1 Video call

Multimedia communication over the Internet is getting more popular. Previously

voice was carried over Public Switched Telephone Network (PSTN), but nowadays

it is increasingly done over the internet. Whatsapp [8], for example, has recently

added an option for VoIP calling. Sometimes, VoIP is used interchangeably to

include video calling. In this Thesis, VoIP refers to voice only communication and

video call refers to video and audio communication between two participants. Video

conferencing refers to communication between two or more participants with video

and audio.

Video call as a concept got introduced short time after the telephone was �rst

patented [9]. First actual videophone service operated in Germany in 1936 - 1940

[10] [11]. In the 1960s, videophones were announced by the Bell Labs. Videophones

still exist today, but they have been mostly replaced by software based solutions or

software phones. VoIP was invented by Alon Cohen and Lior Haramaty in 1995.

Video calling was made popular by Skype [12].

Video call and conferencing are increasingly used in business context to replace

remote meetings. They need at least a camera for the video input, a microphone for

the audio input, a screen for the video output, and speakers or headphones for the

audio output for each participant. The screen sharing feature can also be included

in case of personal computers. A connection between participants is required for

all types of calls. For software phones, an Internet connection is enough. A list of

contacts can be kept in a remote server or each participant can have their own list.

A fully featured software phone has the following parts: 1) A way for user to interact

with the software such as a Graphical User Interface (GUI); 2) a way to initiate a

2.1. Video call 4

call session; 3) a way to set call parameters; 4) media processing such as encoding

and decoding; 5) media transportation; and 6) Quality of Service (QoS) monitoring.

Multimedia applications have several general-purpose protocols de�ned for these

purposes such as Session Initation Protocol (SIP) [13] for session initation, Session

Description Protocol (SDP) [14] for session negotiation, RTP for media transporta-

tion and RTCP for QoS. They are detailed in Sections 2.2.4, 2.2.5, 2.2.1 and 2.2.3,

respectively. There also exists a standard called H.323 for audio-visual communica-

tion, which is a collection of protocols including RTP [15].

There are numerous closed and open-source implementations of software phone out

of which Skype is currently the most popular having over 300 million active users

as of 2016 [16]. Skype was �rst released by Ahti Heinla, Priit Kasesalu, and Jaan

Tallinn and it is currently owned by Microsoft. Skype uses proprietary protocol

for its networking [17]. It was originally based on a peer-to-peer architecture, but

moved away to use an architecture based on supernodes. A more recent contender

to video calling is a standard called Web Real-Time Communication (WebRTC)

[18] and software built on it. WebRTC was developed by Google and released

in 2011. There are ongoing standardisation activities in IETF [19] for relevant

protocols and in World Wide Web Consortium (W3C) [20] for browser Application

Programming Interfaces (API). Browser API enables video conferencing capabilities

for websites and mobile applications without having to implement features such as

codecs. Google Hangouts is the most wellknown application using WebRTC.

Table 2.1 lists open-source video call applications. Video conferencing is only

present in Jitsi with use of Jitsi Videobridge and in Homer conferencing when broad-

casting a media �le. Licenses of applications are mostly GPL with Jitsi being Apache

2.0 license.

Table 2.1 Open-source video call applications considered.

Name Licence Language Recording Video conferencing
Empathy [21] GPL C No No
Ekiga [22] GPL C/C++ No No
Homer Conf. [23] GPLv2 C++ Yes Only broadcast
Jitsi [24] Apache 2.0 Java No With Jitsi Videobridge
Linphone [5] GPL C Audio No

Recording is not a common property in video call systems. Skype, for example, does

not have a built-in recording feature, but it relies on external application or plugins

2.1. Video call 5

for recording a video call. Among open-source software, only Homer conferencing

and Linphone had some kind of recording feature implemented.

2.1.1 Video encoding

In a video call, the media is often compressed to reduce bit rate. The process of

converting media data to a compressed format is called encoding. The process of

decompressing the bit stream back to original format is called decoding. Encoding

is usually done after media capture and decoding before playback.

The current mainstream video coding standard is Advanced video coding (AVC).

AVC is published as twin text by ITU, ISO and IEC as ITU-T Rec. H.264 [25]

| ISO/IEC 14496-10 [26]. It is commonly referred to as H.264/MPEG-4-AVC,

H.264/AVC or MPEG-4 Part 10 AVC. In this Thesis, H.264/AVC is used. The

�rst version of H.264/AVC was released in 2003.

The H.264/AVC bit stream consists of Intra and Inter pictures among other types.

Inter frames require information from a previous Intra frame in order to be displayed.

H.264/AVC picture can be divided into smaller framgents called slices. To send an

H.264/AVC picture over a network with RTP, an H.264/AVC picture has to be

converted to Network Abstraction Layer (NAL) Units (NALU) which are designed

to be network friendly representation of the bit stream. Each NALU contains one

H.264/AVC picture slice. The following NALU types are used in this work: 1) type

1 is a coded slice of Inter picture; 2) type 5 is a coded slice of an Intra picture; 3)

type 7 is Sequence parameters set (SPS); and 4) type 8 is Picture Parameter Set

(PPS). SPS and PPS specify parameters of the stream, which are needed for the

decoder to be able to decode the stream [25].

2.1.2 Audio encoding

A previously popular audio codec used for audio compression in video call sys-

tems is Full-Rate Global System for Mobile Communications (GSM). GSM full-rate

and GSM half-rate were used in GSM mobile phones working in 2G cellular net-

works. GSM has been speci�ed by European Telecommunications Standards Insti-

tute (ETSI) and the latest version of GSM standard [27] was released in 2001. In

the 1990s, it was a good compromise between bit rate and quality, but it loses to

2.1. Video call 6

any modern speech codec. GSM sample rate is 8000 samples/s and GSM codec

encodes 160 speech samples to 260 bits which is one speech frame. The libgsm [28]

is a commonly used free implementation of GSM codec. The libgsm implementation

pads the GSM speech frame to 33 bytes. This makes the libgsm bit rate constant

13.2 kbit/s regardless of content whereas H.264/AVC video bit rate is dependent on

the content. This Thesis utilizes H.264/AVC for video encoding and GSM for audio

encoding.

2.1.3 Linphone

This Thesis utilizes an open-source video call application called Linphone [5]. Lin-

phone is a voice-over internet protocol (VOIP) software supporting both video and

audio calls and audio conferences. It was �rst launched in 2001 on Linux by Simon

Morlat and it has since then been ported to Windows, iOS, android, Blackberry

OS5-7, Windows Phone, and web browsers. Linphone name is contraction of Linux

phone and it is developed by Belledonne Communications. The libraries and their

relations in Linphone are shown in �gure 2.1. This Section describes Linphone,

Liblinphone, oRTP, and Belle-sip, Section 2.1.4 describes the functionality of Medi-

astreamer2.

Figure 2.1 Libraries of Linphone.

Program front end is responsible for showing the program interface to user. Linphone

has di�erent front ends such as console interface, a Desktop GUI, a front end for

iOS, a front end for Android written in Java, a front end for Windows Phone 8

2.1. Video call 7

written in C#, and a web software phone written in Javascript. In addition there

is a wrapper written in Python. The support of Web browser will be removed due

to the removal of the Netscape Plugin API (NP-API) from Google Chrome in April

2015 and coming removal from Firefox at the end of 2016. Windows, Linux, and

Mac OS versions use the GTK+ [29] for GUI elements and it is written in C [5].

Front end is dependent on Liblinphone, which is the core engine responsible for

con�guration, initiation, and running of video calls. LibLinphone allows for the ad-

justing of call parameters and it records parameters to a con�guration �le that is

loaded at the start of the program. Liblinphone negotiates the call with Belle-SIP

library and starts the call using API of Mediastreamer2 library. Belle-sip library is

responsible for SIP [13] and SDP [14] communication with clients. SDP is described

in Section 2.2.5 and SIP is described in Section 2.2.4. RTP and RTCP [1] are im-

plemented by oRTP library, which also handles operating system abstraction. RTP

is described in Section 2.2.1 and RTCP is described in Section 2.2.3. Liblinphone,

Belle-SIP, oRTP, and Mediastreamer2 are written in C.

2.1.4 Filter graphs

Mediastreamer2 is a Software Development Kit (SDK) for media processing and

streaming. The key features of Mediastreamer2 are the audio and video �lter graphs

implemented according to pipe and �lter design pattern which is also sometimes

called pipeline design pattern. Pipe and �lter design pattern means there are suc-

cessive �lters for data processing. These �lters are run on their own threads and

they concurrently wait for input to process. Mediastreamer2 library takes care of

�lter graph initiation, timing, transferring of data, and destruction. There are also

producer �lters without inputs and sink �lters without outputs.

Mediastreamer2 library supports the following audio formats: OPUS, Speex, G711,

GSM [27], iLBC, AMR, AMR-WB, G722, SILK, and G729; and the following video

formats: VP8 in web version, H263, H263-1998, MPEG4, and H.264/AVC [25]. Me-

diastreamer2 utilizes RTP, RTCP, Secure RTP (SRTP) [30], and zRTP. For RTCPs

Full Intra Request (FIR) control message de�ned in [31] is supported among other

control messages. Support for di�erent sound architectures and optimized rendering

for di�erent outputs is included as well as support for di�erent camera APIs. Medi-

astreamer2 supports audio conferencing and video calls, but not video conferencing.

2.1. Video call 8

Figure 2.2 and �gure 2.3 describe complete audio and video �lter graphs of Medi-

astreamer2 library. In these graphs a box represents a �lter and arrow shows how

the data moves. Left columns of the graphs are for data sending and right columns

for data receiving. For both audio and video, chosen codec determines decoder,

encoder, and RTP payload format used. There is no connection between audio and

video �lter graphs, i.e., they run independently of each other. Both audio and video

graph have a separate timing module and there is no direct connection between the

�lter graphs. All �lters are initiated and terminated at the same time. Table 2.2

shows descriptions for �lters common to both audio and video �lter graphs.

Figure 2.2 Audio �ltergraph of Mediastreamer2 library.

2.1. Video call 9

Figure 2.3 Video �ltergraph of Mediastreamer2 library.

Table 2.2 Mediastreamer2 �lters common to both graphs.

Filter name Purpose

Encoder Encodes the bit stream to chosen codec format.

Decoder Decodes the encoded bit stream for playback.

RTP Sender Packetizes the the bit stream packets to RTP and sends them to

receiver.

RTP Receiver Receives the RTP packet stream and converts it to media packets

by stripping RTP header.

Tee Copies incoming packets to all inputs.

Table 2.3 describes �lters exclusive to audio �lter graph. The audio stream contains

a speci�c set of �lters such as volume adjusting, volume equalization, and an Audio

Mixer �lter that combines both uncompressed incoming and outgoing audio stream

and records combined audio stream to a Waveform Audio File Format (WAV) �le

with a recording �lter. There is also a player �lter that can play sound �les from

the computer during a video call. In case of GSM codec, the GSM encoder module

in Mediastreamer2 references libgsm-library discussed earlier. In addition there is a

separate �lter graph for audio conferencing not depicted here.

2.1. Video call 10

Table 2.3 Mediastreamer2 audio �lter explanations.

Filter name Purpose

Sound Reader Reads sound from soundsystem. Chosen reader de-

pends on sound architecture in use.

Audio Resampler Converts the audio sample rate.

Equalizer Equalizes audio frequencies for better sound fre-

quency balance.

Echo Canceler Eliminates possible echo in video call by comparing

outgoing and incoming streams.

Volume Adjusts the volume of the stream.

DTMF Generator Generates DTMF dial tones.

Audio Mixer Mixes two audio stream to one.

Player Plays sounds from computer such as sound call ring-

ing or other sound e�ects.

Recorder Records the stream to a WAV �le.

Sound Write Uses sound architecture to play sound.

Packet Loss Concealment Conceals packet losses.

Table 2.4 explains �lters exclusive to video �lter graph. Video �lter graph has no

recording �lter, i. e., no video recording has been implemented either. There is no

�lter graph for video conferencing. For H.264/AVC video encoding, an H.264/AVC

plugin has to be installed to Mediastreamer2. This plugin uses x264 [32] encoder.

Table 2.4 Mediastreamer2 video �lter explanations.

Filter name Purpose

Source A web camera or still image indication lack of web

camera if web camera is not present.

Pixel format Converter Converts pixel format to another.

Size Converter Scales the image to a desired resolution.

JPEG Writer Writes a screen capture image to a �le.

Output A screen that can be displayed to a user.

Inter Ticker Communication A way of communication ticker information with

audio �lter graph.

2.2. Media Streaming 11

2.2 Media Streaming

There are several protocols de�ned for use with media streaming applications. Here,

the emphasis is on protocols used by Linphone where the session can be initialized

by SIP, the session format can be described by an SDP message as a part of SIP,

and the media can be transported with RTP.

In inter-computer communication, special attention has to be paid for the order in

which bytes are arranged in a computer memory. There are two commonly used byte

orders: litte-endian and big-endian. In big-endian format, the most signi�cant byte

is stored in the �rst byte and following bytes are in decreasing order of signi�cance.

Little-endian is a reverse of big-endian. Because di�erent machines can have di�erent

byte orders, the default byte orders of internet protocol suite is de�ned as big-endian

and referred to as network byte order. This means that all �elds of network protocols

including RTP packet header are in network byte order.

2.2.1 RTP stream

RTP is an essential part of video call systems. It is on top of low level protocols

such as TCP or UDP that do not take into account such features as synchronization

of transportation. That is, RTP is an applications layer protocol. RTP is needed

on top of IP protocol because IP is not designed to support real-time voice or video

communications [12]. Problems in the network such as packet loss and packet delays

need to be addressed in a video call software. RTP is often accompanied by RTCP

for Quality of service monitoring (QoS). RTP and RTCP are de�ned in [1] which is

an Internet Engineering Task Force (IETF) request for comments (RFC) standard.

RTP is designed for multi-participant multimedia conferences. An RTP stream is

composed of RTP packets, each of which consists of a header and a payload. Protocol

Description Unit (PDU) [33] is one measurement of protocol characteristics. For

RTP stream, PDU consists of the header and payload of an RTP packet. Payload

is an audio or a video sample or part of it.

RTP header structure is shown in �gure 2.4. The RTP header �elds and their

functions are as follows: 1) Version (V) of the RTP is set to 2 for RFC 3550 [1];

2) padding (P) is set if the packet contains padding after payload; 3) extension (X)

is set if there is a header extension after the header; 4) CSRC count (CC) tells

2.2. Media Streaming 12

the number of contributing source (CSRC) identi�ers following the �xed header;

5) marker (M) is pro�le dependent identi�er for signi�cant events; 6) payload type

(PT) identi�es the format and interpretation of payload, which for GSM is 3 and for

H.264/AVC is dynamically set within SDP message; 7) sequence number identi�es

the packet by increments of one and can be used by a receiver to detect packet losses;

8) timestamp is described in Section 2.2.2; 9) synchronization source (SSRC); and

10) CSRC identi�ers is a list of 0 to 15 items.

Figure 2.4 RTP packet header structure. One row is 32 bits.

H.264/AVC video has its own RTP payload speci�cation de�ned in [34]. NAL is an

H.264/AVC representation intended for network usage. Creation of NALU is done

in two phases. The Video Coding Layer (VCL) outputs encoded slices and NAL

encoder encapsulates VCL output into a NALU. H.264/AVC has three di�erent

packetization modes available: 1) Single NAL unit mode; 2) Non-interleaved mode;

and 3) Interleaved mode. Linphone uses single NAL unit mode for H.264/AVC in

which a single NAL unit packet contains only one NAL unit.

2.2.2 RTP timestamp

RTP timestamp re�ects the sampling instant of the RTP packet data. The frequency

of RTP timestamp follows the sample rate of contained media. For GSM audio, the

clock frequency is 8000 samplings per second and for H.264/AVC video 90000 per

second. Sample rate is included in the SDP message. RTP timestamp is incremental

2.2. Media Streaming 13

and designed to allow for synchronization and jitter calculations. The timestamps of

consecutive packets will have the same value if they are generated at the same time.

This is the case with H.264/AVC video picture divided into multiple slices/NALUs.

The starting value of RTP timestamp is usually random for security reasons. Because

RTP timestamps can advance at di�erent rates and have random o�set at the start,

the synchronization of two independent RTP streams needs a common reference

clock for both streams. This reference clock is the wallclock time of a RTP sender

and synchronization can be done with a RTCP Sender.

2.2.3 RTCP stream

The primary function of RTCP streams is to provide feedback for the quality of

the RTP stream. The RTCP messages are sent periodically and the recommended

minimum interval is 5 seconds. The RTCP transmission interval in oRTP is 10

seconds. For RTCP [1] de�nes the following packet types: 1) Sender report; 2)

Receiver Report; 3) Source description items; 4) BYE; and 5) Application-speci�c

functions. RTCP packet structure consists of a �xed RTCP header and a structured

element that depends which of the listed packet type it is. Only RTCP sender report

is discussed in detail because others are not relevant to this work.

RTCP sender report holds the following parts: 1) RTCP header; 2) a sender infor-

mation section shown in �gure 2.5; and 3) an arbitary number of reception report

blocks. The RTCP header has the following �elds: 1) version (V) equal to 2; 2)

padding (P) bit; 3) reception report count (RC); 4) packet type (PT) with sender

report type being indicated by a value of 200; 5) length of this RTCP packet minus

one; and 6) SSRC. The �elds and their meaning of sender info shown in �gure 2.5

are as follows: 1) 64-bit NTP timestamp indicates the sending wallclock time of the

report; 2) RTP timestamp indicates the corresponding time as previous NTP times-

tamp with random o�set; 3) senders packet count tells the number of packets that

have been sent in this stream session; and 4) senders octet count tells the amount

of data transferred in this stream session. RTP timestamp scale is the sample rate

of the corresponding RTP stream. The NTP RTP timestamp relation can be used

to synchronize two or more separate RTP streams by taking into account random

o�set and possibly di�erent sample rates.

RTCP has additional messages de�ned in RTP Audio-Visual Pro�le with Feed-

back (AVPF) [35]. The AVPF RTP pro�le provides a method of timely feedback

2.2. Media Streaming 14

Figure 2.5 RTCP sender info. One row is 32 bits.

to repair a broken stream. This is done by low delay RTCP feedback messages.

When AVPF is set to immediate feedback mode, it sends the feedback right af-

ter an event has occurred instead of the several second interval as in a traditional

RTCP transmission. AVPF has three types of feedback messages de�ned in [35]: 1)

transport layer messages; 2) Payload-speci�c feedback messages; and 3) application

speci�c feedback messages. Transport layer has one message called NACK. Pro�le

de�nes the following payload speci�c feedback messages: 1) Picture Loss Indication

(PLI); 2) Slice Loss Indication (SLI); and 3) Reference Picture Selection Indication

(RPSI). Applications layer messages are applications speci�c. Furthermore, IETF

RFC standard [31] de�nes the following RTCP AVPF feedback messages: 1) H.271

Video Back Channel; 2) FIR; 3) Temporary Maximum Media Stream Bit Rate; and

4) Temporal-Spatial Trade-o�. This work uses only FIR messages. When FIR is

received a Decoder Refresh point is sent as soon as possible in terms of an encoder

state and network resources. With H.264 RTP stream, this means sending out an

Intra picture, so that decoding can be restarted from this picture. Mediastreamer2

supports all listed RTCP feedback messages.

2.2.4 SIP

SIP [13] has been developed by IETF and it is used for session control. Its use

cases include discovering other instances or agreeing on what kind of session shall

2.2. Media Streaming 15

be created. SIP is a general purpose protocol and is meant for creating, modifying,

and terminating sessions such as video calls. SIP is not dependent on the session

type.

Linphone uses SIP for determining contact list informations such as location and

availability and for managing the video call. At the start of a call, Linphone uses

SIP to ask for capabilities and sets up the video call. SIP can also be used to modify

video call by, for example, enabling or disabling the video feed of a video call. SIP

is a plain text format meaning the messages are transmitted in human readably

format. The SIP relies on SDP for describing the session outlook.

2.2.5 SDP

SDP [14] is an RFC standard developed by the IETF for negotiating parameters for

audio and video streaming. As with SIP, SDP is also a plain text format. SDP is

often used alongside SIP and RTP, but can also be used as a standalone protocol.

Whereas SIP negotiates the session, SDP can be used to format the description of

the session. The SDP message format is shown in tables 2.5, 2.6, and 2.7.

The whole session description message is shown in table 2.5. The left column is for

the symbol of the �eld and the right column gives the explanation for them. Symbols

marked with * are optional. The session is separated into additional sections called

time description and media description. The purpose of the session description is to

convey enough information that an application can join the session.

Time description part of SDP message is shown in table 2.6. Session timing speci�es

the start and end time of the session both of which can be set to zero for permanent

session.

Media Description shown in table 2.7 concerns the description of media used in

a session. It starts with an "m=" �eld and ends with either next "m=" �eld or

the end of session description. The format of "m=" line is m=<media> <port>

<proto> <fmt> where <media> is either "audio", "video", "application" or "mes-

sage", <port> is the port which stream is sent to, <proto> is the transport protocol

(in case of Linphone it is RTP), and <fmt> is the media format description mean-

ing payload numbers if <proto> is RTP. Attributes start with "a=" and are a way

of extending SDP. AVPF messages discussed in Section 2.2.3 are speci�ed as SDP

2.2. Media Streaming 16

Table 2.5 SDP session description.

Symbol Meaning
v= protocol version
o= originator and session identi�er
s= session name
i=* session information
u=* URI of description
e=* email address
p=* phone number
b=* zero or more bandwidth information lines

One or more time descriptions (see table 2.6)
z=* time zone adjustments
k=* encryption key
a=* zero or more session attribute lines

Zero or more media descriptions (see table 2.7)

Table 2.6 SDP time description.

Symbol Meaning
t= time the session is active
r=* zero or more repeat times

attribute �elds. One attribute type is rtpmap which maps dynamic RTP payload

types to codec used. The rtpmap format is a=rtpmap:<payload type> <encoding

name>/<clock rate> [/<encoding parameters>] where <payload type> is the pay-

load to be mapped, <encoding name> is the encoding name that this media stream

will contain, <clock rate> is the sample rate of this stream which is 8000 for GSM

audio and 90000 for H.264 video.

Table 2.7 SDP media description.

Symbol Meaning
m= media name and transport address
i=* media title
c=* connection information
b=* zero or more bandwidth information lines
k=* encryption key
a=* zero or more media attribute lines

2.3. Media capture 17

2.3 Media capture

A media container holds one or more data tracks that have a synchronized presen-

tation. Possible container track types are audio, video, and data tracks such as

hint tracks. A container is created through a process called multiplexing in which

track data is inserted into container and information about tracks and the �le itself

is recorded to a �le header. The playback of a container tracks requires a process

called demultiplexing in which data from container track is processed into decodable

form. Media or hint data recorded to containers can be either readily available in a

�le or it can be live-captured as in case of a video call recording.

MP4 (MPEG-4 Part 14) is a media container format developed by the MPEG. The

format is an extension of ISOBMFF [4]. ISOBMFF and MP4 tracks are either audio,

video, or hint tracks and they use box as a basic syntax element. A box is comprised

of a four-character boxtype, the size of the box, and its payload. Figure 2.6 shows

the mandatory boxes of an MP4 �le. Each rectangle is an MP4 box. As seen in

the �gure 2.6, boxes may be nested so that the payload contains other boxes. Box

colours help distinguish the layers of the box hierarchy. Table 2.8 explains the

meaning of the boxes.

2.3. Media capture 18

Figure 2.6 Structure of an MP4 �le showing the mandatory boxes.

2.3. Media capture 19

Table 2.8 Explanations for mandatory boxes in an MP4 �le.

Four-cc Meaning

ftyp File type box holds major brands, minor brands, and compatible

brands information meaning which speci�cation they adhere to.

mdat Media Data box holds media data which can be video pictures, audio

frames or hint samples. The samples are recorded so that samples

played at the same time are easy to access.

moov Movie box holds the metadata for the presentation and is usually close

to beginning of the �le enabling playback of incomplete �le or close to

the end of the �le.

mvhd Movie Header box de�nes media independent information relevant for

the entire presentation such as creation time, modi�cation time, movie

timescale, and duration.

trak Track box is a container for a single track of the presentation. There

can be more than one track in the presentation and each one has its

own 'trak'-box. Track either contains media data or packetization in-

structions in case of hint tracks.

tkhd Track Header box speci�es the characteristics of the track.

mdia Media box has all the information about track media data.

mdhd Media Header box holds information on the media in track, but is not

dependent type of media.

hdlr Handler Reference box declares presentation process of the media. Hint

Track would be handled by a hint handler.

minf Media Information box holds characteristic information.

dinf Data Information box holds media location objects.

dref Data Reference box declares locations of media data.

stbl Sample Table box contains information to determine sample on time

axis and determining their type, size, container, and o�set from con-

tainer.

stsd Sample Description box gives information about coding type and ini-

tialization information for coding. The information is track speci�c.

Decoding time is the time during playback that the sample is to be

decoded.

stts Decoding Time to Sample box allows indexing of decoding time to

sample number. Samples are grouped to chunks.

stsc Sample To Chunk box table can be used to �nd which sample belongs

to which chunk.

stco Chunk O�set box gives the location of each chunk.

2.3. Media capture 20

2.3.1 MP4 Hint Tracks

Hint tracks contain media transmission instructions which can be used, e.g., to

record an RTP stream into a �le [36]. All MP4 Hint Tracks are de�ned in [4]. Hint

Track contains: 1) instructions on how to extract media data for playback from a

track and 2) information for resending the contained media stream recorded to Hint

Track itself or to media track the Hint Track is referencing. In case of reception

Hint Tracks the media data is contained in hint samples instead of media samples.

The following boxes are associated with the Hint Tracks: 1) Hint Media Header box

('hmhd') which contains information on bit rate and the size of PDUs within the hint

track; 2) sample entry box inside stbl which has the hint track type four character

code of the track; 3) Track Reference box ('tref') box for referencing information in

other tracks; and 4) User Data Box ('udta') for additional information.

The primary purpose of this Thesis is to verify the usage of RTP and RTCP Re-

ception Hint Tracks in video call recording. RTP Reception Hint Track is modelled

after the RTP Hint Track which is also called the RTP server hint track for its

intended use with streaming servers. Reception Hint Tracks enables the recording

of a stream whereas other hint tracks contain only instructions on sending a media

track as a media stream. Reception Hint tracks contain data necessary for playing

and streaming the media stream contained. There are currently �ve types of Recep-

tion Hint Tracks. RTP, RTCP, SRTP, SRTCP, and protected RTP Reception Hint

Track.

2.3.2 RTP and RTCP Reception Hint Track

An essential part of RTP Reception Hint Track is recording of SDP message. Media

speci�c information of SDP message is stored as Track SDP information and session-

level information is stored as Movie SDP information. Storing of SDP message inside

'udta'-box enables determining the type of the media in the recorded RTP stream

during playback.

Hint track samples di�er from media samples by having additional structures for

specifying each sample. RTP sample header is shown in �gure 2.7. The �eld

packetcount tells how many RTP packets are contained within this sample. The

�elds reserved are not in use any of the hint track boxes.

2.3. Media capture 21

Figure 2.7 MP4 RTP sample header and RTCP sample header structure.

Recorded RTP packets use an RTP packet structure shown in �gure 2.8. The �elds

V, P, X, CC, M, PT are same as in �gure 2.4. If extra �ag (E) is set to 1 then there

is one or more Type-Length-Value (TLV) boxes. In RTP Reception Hint Tracks

bframe (B) and repeat �ag (R) are zero.

Figure 2.8 MP4 Hint Track RTP packet.

Each RTP packet structure contains one constructor. There are four types of con-

structors [4]. RTP Reception Hint tracks contains one RTPsample constructor

shown in �gure 2.9. RTPsampleConstructor has the following �elds: 1) constructor

type equal to 2; 2) trackre�ndex tells which track the sample refers (for RTP Re-

ception Hint Track this is set to -1 indicating the hint track itself). 3) length is the

length of the payload; 4) samplenumber indicates which sample the payload belongs

to; 5) sampleo�set �eld tells where the payload is located; 6) bytesperblock; and 7)

samplesperblock. The latter two are legacy �elds prior to MP4 which are set to 1.

2.3. Media capture 22

Figure 2.9 MP4 Hint Track RTP sample constructor.

Inside every 'stbl'-box, there is a sample entry with four character code. The RTP

Reception Hint Track sample entry ('rrtp') is shown in �gure 2.10. The �elds

hinttrackversion and highestcompatibleversion are set to 1. maxpacketsize �eld is

the largest possible size for packets in a stream. There are the following additional

boxes: 1) The timescale entry box ('tims') matches the timescale of the RTP times-

tamps. 2) The time o�set ('tsro') box is the RTP timestamp of the �rst recorded

RTP packet in a stream. Because the starting value of RTP timestamp is random

the o�set has to be recorded for synchronization between tracks. 3) The timestamp

synchrony ('tssy') box identi�es whether the RTP timestamps present in recording

are synchronized. The value 0 indicates that the synchronization status is unknown,

1 indicates RTP timestamps have not been modi�ed, and 2 indicates that the RTP

timestamps have been synchronized with the RTP timestamps of other RTP Re-

ception Hint Tracks. The RTCP Reception Hint Track sample entry follows the

structure of RTP Reception Hint Track without additional boxes.

2.3. Media capture 23

Figure 2.10 MP4 RTP Reception Hint Track Sample Entry.

Equation 2.1 shows the relation of RTP timestamps and recorded time information

in RTP Reception Hint Track sample. The Decode time (DT) of the �rst RTP

packet is zero. For the following packets DT is the RTP timestamp di�erence from

the �rst recorded timestamp and tsro.o�set is set to the RTP timestamp of the

�rst recorded packet. The additional o�set in the equation is the o�set �eld of the

rtpo�setTLV-box.

RTPtimestamp = (DTi + tsro.offset+ offset)mod32 (2.1)

RTP Reception Hint Track samples are composed of a sample header and an equal

number of the following: 1) details from an RTP packet header; 2) a sample con-

structor; and 3) an RTP packet payload. Sample gathers all RTP packets that have

the same RTP timestamp. As H.264 video picture is divided to multiple NALUs, a

H.264 RTP Reception Hint Track sample has all these RTP packets in same sample.

The �gure 2.11 shows an example of RTP Reception Hint Track sample holding

three recorded RTP packets with the same timestamp. The data boxes in red are

2.3. Media capture 24

presented earlier. The blue boxes represent the payload whose size depends on codec.

If a sample would have an additional packet, it would add an additional RTP packet

structure, RTPsampleconstructor structure to the end of packets and one payload

to extradata.

Figure 2.11 Example RTP Reception Hint Track sample.

RTCP Reception Hint Tracks are used to maintain inter-stream synchronization

especially when recording starts mid-stream or clock drift exists [4] [36]. RTCP

Reception Hint Track is used for synchronization of corresponding RTP Reception

Hint Track. This is done by recording RTCP sender reports shown in �gure 2.5

as samples which enables using NTP timestamps to be used in sycnhronization.

The relation of RTP and NTP timestamps can be used for synchronization of RTP

timestamps within RTP Reception Hint Tracks to other RTP Reception Hint Tracks.

Edit List ('elst') box makes possible synchronization with media tracks. RTCP

Reception Hint Tracks refer to an RTP Reception Hint Track. Track reference box

('tref') is needed with reference type cdsc for RTCP Reception Hint Track to tell

2.3. Media capture 25

which RTP Reception Hint Track it is referring. Table 2.9 shows all the boxes

related to RTP/RTCP Reception Hint Track implementation.

Table 2.9 MP4 boxes related to RTP/RTCP Reception Hint Tracks.

Four-cc Meaning

rrtp Received RTP Hint Sample Entry Box is used with RTP Reception

Hint Track to describe characteristics of samples within track. It is

shown in �gure 2.10. Has three additional boxes: tims, tsro and tssy.

rtcp Received RTCP Hint Sample Entry is identical to RTP Hint Sample

Entry. It has no additional boxes.

tims Timescale Entry Box tells the clock frequency of RTP timestamps. It

is shown in �gure 2.10.

tsro Time O�set Box used in deriving value of RTP timestamp in equation

2.1. Structure is shown in �gure 2.10.

tssy Timestamp Synchrony Box tells whether timestamps of this track has

been synchronized with other RTP Reception Hint Tracks. It is shown

in �gure 2.10.

udta User Data Box is a container for user information boxes such as 'hnti'-

box.

hnti Movie Hint Information Box contains the movie part of SDP message

shown in table 2.5. Movie part is all the lines before �rst media

description.

hnti Track Hint Information Box contains one media description of SDP

message shown in table 2.7.

tref Track Reference Box is a container box for track references such as

'cdsc'-box.

cdsc Content Description Reference Box for telling which RTP Reception

Hint Track RTCP Reception Hint Track is associated with.

elst Edit List Box describes when the track is played.

hmhd Hint Media Header Box contains general information of contained

stream.

nmhd Null Media Header Box may be used if other media header boxes are

not applicable.

2.4. Media playback 26

2.3.3 Multiplexing an MP4 �le

Dictionary of Computer Science de�nes multiplexing as "The process of combin-

ing multiple messages simultaneously on the same physical or logical transmission

medium" [37]. In case of a container multiplexing refers to the process of including

several types of media to tracks inside the container. Creating a container usually

happens after encoding so the data is in a compressed format.

L-SMASH is an MP4 writer and �le-format library written in C. It is capable of

creating an MP4 container and writing audio and video data into a �le. It supports

both multiplexing and demultiplexing. L-SMASH was started by Nakamura Yusuke

in 2010 as an H.264/AVC multiplexer for MP4. Later, it has been expanded to

support various standards such as ISOBMFF [4]. It is used through an API and has

functions for operating the library and �le creation.

The whole L-SMASH project encompasses around 50000 lines of code. It can cre-

ate multiple tracks inside an MP4 �le and samples are appended individually to a

particular track. The MP4 track header data is inputted to library when creating

a track and written to a �le after the recording samples is �nished. The samples

are recorded into the �le as they arrive. L-SMASH supports 55 codec identi�ers for

audio and 78 codec identi�ers for video. It is used by video service Vimeo [38] and

H.264/AVC encoder x264 [32].

2.4 Media playback

A media player is needed to play the contents of media container such as MP4. The

media player has to support both the container format and the codec used for media.

Popular open-source media players include VLC Media Player [7] and Media Player

Classic - Home Cinema [39] of which the former is used in this Thesis.

2.4.1 VLC media player

VLC is an open-source media player written mostly in C and developed by the

VideoLAN project. Its core is licensed in LGPL and the other parts in GPL or

LGPL. VLC is capable of streaming media over the internet, saving it to a �le and

claims to support all formats. It can play one or more video tracks at the same time

2.4. Media playback 27

but only one audio track. Windows, Linux, MAC OS, Android and iOS versions of

VLC exist. Bindings to several languages enable its usage in other programs.

VLC uses modular design and consists of VLC core and large number of modules.

VLC core is responsible for loading the modules. Figure 2.12 shows the main

modules needed in VLC �le playback. A �le is �rst read by an access module which

in this case is the �lesystem access module. After that, the stream module takes

care of byte order. In case of an MP4 �le, the demux module represents an MP4

demultiplexer. After demux module, a decoder module decodes the stream. An

output module includes the video or audio �lter modules and also the modules for

displaying the GUI elements of VLC Media Player.

Figure 2.12 VLC high level data �ow from �le to screen.

2.4.2 Demultiplexing an MP4 �le

Demultiplexing is the process of taking individual streams from a container and

sending them, e.g., for decoding. A media player has to be able to demultiplex

di�erent containers. The demultiplexing process is taken into account when design-

ing a speci�cation for a container and demultiplexing process has to follow such

speci�cation or standard. Demultiplexing reads the data in container and uses it to

facilitate the decoding and playback of the stream. The data in MP4 boxes shown

in table 2.8 is readily available without the need to decode the bit stream.

VLC MP4 demux module supports wide variety of possible audio and video tracks,

but it has no hint track support. VLC Demux module works in four steps: 1) the

boxes are read from �lestream and the box structure is recorded to VLC; 2) the VLC

track is created from recorded boxes, VLC track holds data such as timescale and

some of the boxes needed for facilitating demultiplexing; 3) the elemental stream

module is created; and 4) the samples are demultiplexed one by one.

28

3. IMPLEMENTATION OF VIDEO CALL

RECORDING

3.1 Media recording in Linphone

The purpose of this Thesis is to implement a video call recording and playback

using RTP/RTCP Reception Hint Tracks. Storage of SRTP, SRTCP, and protected

RTP are out of scope of this Thesis. None of the open-source video call software

has video call recording implemented. Among existing alternatives, Linphone was

chosen because it had existing audio recording feature which makes the needed

modi�cations to UI minimal. Ekiga[22] and Homer Conferencing [23] were also

considered, but Ekiga lacked any recording features and the development activity

of Homer Conferencing was seen too low. Jitsi [24] was left out of consideration

because it is written in Java.

The development of Linphone recording feature went alongside with updates to Lin-

phone. The �nal Linphone version used is 3.8.3. This version was chosen because

further version updates would have involved large modi�cations to RTP send and

receive �lters that would have required e�ort to reimplement the RTP header pars-

ing. Linphone lacked support for multi-person video conferences, so recording for

only two participants is implemented. L-SMASH was chosen for multiplexing of an

MP4 �le.

Linphone is extended to record 1) incoming audio/video RTP packets into RTP

Reception Hint Tracks; 2) RTCP sender reports into RTCP Reception hint tracks;

and 3) outgoing audio/video content into media tracks. The RTCP Reception Hint

Tracks are recorded to provide synchronization information for their corresponding

RTP Reception Hint Tracks. The incoming packets are assumed to originate from

another Linphone running on a separate computer. GSM codec is chosen for audio

and H.264 codec for video.

3.1. Media recording in Linphone 29

Section 3.1.1 shows the high level modi�cations to Linphone. More detailed im-

plementation of �le creation module, media recording �lters, RTP recording �lters,

RTCP recording module are shown in Sections 3.1.2, 3.1.3, 3.1.4, 3.1.5 respectively.

The rest of this Section shows modi�cations to Linphone outside Mediastreamer2

library. All modi�cations were primarily developed in MinGW [40] environment on

Windows and modi�cations were tested also on Linux.

Figure 3.1 shows which parts of Linphone were modi�ed. LibLinphone needed

modi�cations for capturing the SDP message and for providing video stream data

to recording. Recording is implemented in Mediastreamer2 library as �lters in �lter

graph. Belle-Sip did not need modi�cations. L-SMASH was added to Linphone to

facilitate multiplexing.

Figure 3.1 Modi�ed parts of Linphone.

Linphone H.264/AVC stream has intra pictures every 10 seconds. This would cause

a random delay of 0 to 10 seconds before the stream can be played during playback.

To make the �rst intra picture come faster a full intra request (FIR) can be used

or the video stream can be changed to all-intra. The FIR request is preferred to

using all-intra because all-intra would cause bit rate increase. It would also require

modi�cations to Encoder �lter in video �lter graph which would have an impact on

bitstream and possibly have unpredictable consequences in other �lters. The FIR

3.1. Media recording in Linphone 30

request is sent by enabling AVPF in oRTP and in linphone con�gure �le. Sending

the request happens when recording starts, which results in intra picture arriving

within few pictures when the recording button is pressed by the user.

3.1.1 Audio/Video �lter graph modi�cations

Liblinphone calls directly recording functions in Mediastreamer2 API so the func-

tionality of these functions is changed to control �lters through a controlling module.

These �lters were inserted into Mediastreamer2 �lter graphs to obtain the requested

data. Figure 3.2 and �gure 3.3 show the added �lters and their locations in audio

and video �lter graphs of Mediastreamer2 library on Windows, respectively. The

gray boxes are existing �lters that did not require modi�cations whereas black boxes

are new �lters added by this work to facilitate di�erent recording operations.

In �gure 3.2 there are three new �lters added and one �lter was modi�ed. Firstly

a GSM recorder �lter was added to record a GSM track. Secondly the same Tee

�lter which already exists in Mediastreamer2 was added to direct output from GSM

encoder to GSM recorded. Thirdly, in order to get the RTP packets in a correct

format, an RTP receiver �lter was modi�ed so that it does not strip the needed RTP

header and outputs the whole RTP packet to a separate �lter output. In both video

and audio graphs, a new �lter called RTP recorder was attached to this output.

Video �lter graph modi�cations are shown in �gure 3.3. Video recording follows

the same principle as with audio recording expect GSM recorder has been replaced

by H.264 recorder. Same RTP recorder is used in both �lter graphs.

Figure 3.2 Modi�cations done to Linphone audio �lter graph.

Initialization of recording and user actions for recording are handled in a separate

3.1. Media recording in Linphone 31

Figure 3.3 Modi�cations done to Linphone video �lter graph.

control module. Whenever the user starts, pauses or ends the recording, the control

module calls each �lter consecutively to perform respective action. The �lters have

functions for initializing, opening, closing, uninitializing, and processing. Each new

�lter in Linphone creates an MP4 track. In addition there are two RTCP tracks

that are created from RTCP sender reports captured. SDP message shown in table

2.5 has a media section for each transported media stream. The media sections are

divided to their respective tracks and movie part of the message is handled by the

�le module presented in next Section. See 'hnti'-boxes in table 2.9 for where each

part is stored within the MP4 �le.

3.1.2 MP4 �le creation

The �le module is used to create the MP4 �le through L-SMASH. The tasks of

the �le module include the creation of MP4 �le header and opening/closing the �le

on �lesystem. As L-SMASH is not thread safe this module takes care of multi-

threaded access to a �le by mutual-exclusion. Each �lter asks to use L-SMASH

speci�c structures and the �le module uses a mutex to ensure only one �lter uses

L-SMASH at a time. The brands in 'ftyp'-box are set as isom and avc1, see table

2.8 for 'ftyp'-box. This also leaves out from the MP4 �le boxes that are not

part of ISOBMFF. Edit List Box ('edts') shown in table 2.9 was left out because

no media player supported playing two audio tracks at the same time so possible

desynchronization between GSM audio track and GSM RTP Reception Hint Track

could not be detected in because the listener would only hear one at a time.

3.1. Media recording in Linphone 32

3.1.3 Media recording �lters

GSM audio is chosen because it was supported by Linphone, L-SMASH, and VLC

media player and because it does not require additional plugins. The MP4 track

header and samples are created using L-SMASH. The samples are recorded into the

�le while the video call is taking place. Because RTP packet payloads are GSM

samples inside MP4 GSM media track, they can be appended to track without

modi�cations.

H.264/AVC codec is chosen for video recording, because it compresses the video more

e�ciently than any other video codec supported by Linphone, L-SMASH, and VLC.

In Linphone, a separate plugin is needed for H.264/AVC. Linphone H.264/AVC

stream uses slices that divide the picture to multiple RTP packets. When recording

H.264/AVC stream to a �le, the RTP packets have to be combined to a picture

which is then recorded as sample to a H.264/AVC track inside an MP4 container.

Video recording was done by combining the NALUs into a picture and removing

start codes.

3.1.4 RTP Recording �lter

RTP Recording �lter records incoming RTP packets to corresponding RTP Recep-

tion Hint Track. The recording is done in two parts. First, the sample is constructed

from one or more RTP packets and then it is appended to the track. RTP Recep-

tion Hint Tracks are not synchronized during recording but synchronization is done

during playback using the recorded RTCP Reception Hint Tracks.

In case of audio, the necessary information from RTP header is copied to RTP

packet. The sample is constructed as 1) sample header (see �gure 2.7); 2) RTP

Packet structure (see �gure 2.8); 3) sample constructor (see �gure 2.9); and 4) RTP

packet payload (audio sample). The packet DTS is set as RTP timestamp of the

recorded RTP packet minus the RTP timestamp of �rst recorded RTP packet. The

RTP packet structure �elds and their values are shown in table 3.1. The relative

time �eld is set to 0 since it is used for tra�c smoothing and there is no plan on

resending the RTP stream from track.

3.1. Media recording in Linphone 33

Table 3.1 Values of RTP packet structure in implementation.

Field name Value Meaning

relative time 0 Not in use.

version (V) 2 RFC 3550 RTP

padding bit (P) 0 No padding.

extension bit (X) 0 No header extensions.

CSRC count (CC) 0 No CSRCs.

marker bit (M) 0 or 1 1 for last slice of a video picture and 0 for others.

payload type (PT) 3 or 96 3 for GSM and dynamic (96) for H.264/AVC.

RTPsequenceseed - Same as in sequence number in RTP packet.

reserved 0 Always 0 for RTP reception Hint track.

extra �ag (E) 0 No TLV boxes included.

bframe (B) 0 Always 0 for RTP reception Hint track.

repeat �ag (R) 0 Always 0 for RTP Reception Hint Track.

entrycount 1 One constructor.

In case of video, the sample constructing is more complicated. All slices belonging

to the same picture must be recorded to one sample. This is done by gathering all

RTP packets with the same RTP timestamps until a packet with di�erent timestamp

arrives. In addition, packetcount in RTPsample is set and RTP Packet structures,

constructors for each packet, and the payloads are added. See �gure 2.11 for an

example of H.264/AVC RTP Reception Hint Track sample. Constructor is RTP-

sampleconstructor shown in �gure 2.9.

3.1.5 RTCP Recording module

RTCP recording is not done in a �lter, but in terms of controlling the recording, it

is treated like recording �lters. RTCP recorder uses L-SMASH to create necessary

header information and to append samples to a track. The RTCP recording module

produces an RTCP Reception Hint Track in the MP4 �le. In both audio and video

mediastreams sender report RTCP messages are sent to RTCP recording module.

Sender report timestamps are converted to host byte order and set as the DTS of

the sample. The sample rate is the same as with the corresponding RTP Reception

Hint Track.

3.2. Media multiplexing in L-SMASH 34

3.2 Media multiplexing in L-SMASH

Linphone lacks the functionality to encapsulate media data into an MP4 �le. Using

an existing library for that saves the e�ort of implementing the MP4 �le format.

However, an open-source library with support for RTP/RTCP Reception Hint Tracks

was not found, so the support for it had to be implemented. L-SMASH was chosen

for multiplexing the MP4 �le. This work extends L-SMASH with support for RT-

P/RTCP Reception Hint Tracks and for hint tracks in general. The modi�ed version

of L-SMASH library can also be used to record RTP/RTCP Reception Hint Tracks

in other RTP applications. For a complete MP4 �le all the mandatory boxes of table

2.8 and all the Hint Track related boxes shown in table 2.9 are needed. All the

mandatory boxes and 'udta'-box, 'elst'-box and 'tref'-box of hint track functionality

have been implemented. The rest of the hint track boxes were implemented.

The implementation of 'hmhd'-box was most challenging. The �eld maxBitrate of

'hmhd'-box indicates the largest bit rate of a sample and avgBitrate the average

bit rate of all the samples of the track it belongs to. They were implemented by

reusing existing fuction for btrt-box after all the samples have been recorded. The

PDU sizes are calculated in runtime by reducing the sizes of RTPsample header,

RTP packet structure, and constructor from sample size and adding the size of RTP

header. The maxPDUsize calculation was implemented by comparing the sample

PDU size to previous largest size and replacing if it was larger. For this it, was

necessary to get the length of payload from constructor for calculation. The codec

information to Sample Entry box for RTP Reception Hint Track ('rrtp') needed to

be added including input �elds to interface, which meant adding a necessary a new

type of summary with needed �elds. The data for additional boxes was implemented

in codec speci�c data struct in L-SMASH.

35

4. MEDIA PLAYBACK IN VLC

4.1 MP4 demux module modi�cations

The recorded MP4 container �le can be be played back by a player. In this work, the

support for RTP/RTCP Reception Hint Track playback was implemented within the

popular VLC media player since none of the existing players support RTP/RTCP

Reception Hint tracks.

In the implementation, VLC media player reads the MP4 �le containing RTP/

RTCP Reception Hint Tracks as well as media tracks and processes them according

to �gure 2.12. The MP4 demux module is chosen for demultiplexing. It demul-

tiplexes RTP/RTCP Reception Hint Tracks to elemental streams and synchronizes

them to each other using corresponding RTCP Reception Hint Tracks. In the pro-

posed VLC extension, the playback of RTP Reception Hint Track is implemented

as suggested in [4] and [36]. Modi�cations in VLC are limited to MP4 demuxer

module so implementing RTP Reception Hint Track support is relatively easy. That

is smaller part of program functionality has to be known before making the changes.

The supported codecs are Speex and GSM for audio and H.264/AVC for video. The

modi�cations were done in Ubuntu Linux using GCC compiler. Windows version of

VLC software was created using MinGW Linux tool chain.

The �rst step of implementing supporting for the RTP Reception Hint Track is

initializing data needed for playback of a track. An SDP message of table 2.5 is

parsed to �nd out whether the RTP Reception Hint Track contains audio or video.

Next, an elemental stream is created. It involves parsing the rest of the SDP message

for media information. Table 4.1 shows an example of a Linphone SDP message

with H.264/AVC and GSM payloads. The identi�er rtpmap shows the mapping of

payload types to codecs and the identi�er rtcp-fb shows minimum interval of RTCP

messages and additional RTCP feedback message types. Such message is recorded

to an MP4 �le as described in Section 2.2.5. VLC demux module parses the SDP

4.2. Demultiplexing RTP packets 36

message �eld at a time until it �nds the codec type and sample rate used. For

H.264/AVC track, it can be found in "a= & rtpmap:96 H264/90000" line, where

H264 is the codec H.264/AVC and 90000 is the sample rate. For GSM, payload type

is the number 3 in "m= & audio 7078 RTP/AVPF 3 101" as described in Section

2.2.5. Implementation is able to parse any SDP message which follows the format

speci�ed in [14].

Table 4.1 Example Linphone SDP message with GSM and H.264 payloads.

Symbol Value
v= 0
o= thinkpad 978 2342 IN IP4 192.168.0.3
s= Talk
i=* IN IP4 192.168.0.3
t 0 0

a=* rtcp-xr:rcvr-rtt=all:10000 stat-summary=loss,dup,jitt,TTL voip-metrics
m= audio 7078 RTP/AVPF 3 101
a= rtpmap:101 telephone-event/8000
a= rtcp-fb:* trr-int 5000
m= video 9078 RTP/AVPF 96
a= rtpmap:96 H264/90000
a= fmtp:96 pro�le-level-id=42801F
a= rtcp-fb:* trr-int 5000
a= rtcp-fb:96 nack pli
a= rtcp-fb:96 nack sli
a= rtcp-fb:96 nack rpsi
a= rtcp-fb:96 ccm �r

4.2 Demultiplexing RTP packets

The �elds in samples and are converted from network byte order to host byte order

using existing VLC functions. Demultiplexing a sample for GSM and Speex RTP

packets involves stripping RTP sample header, RTP Packet, and constructor parts

from sample data and leaving payload. The remaining RTP payload is sent forward

to the elemental stream as a media sample. With H.264/AVC video, in addition to

stripping, all RTP payloads of the same sample are combined to a single picture.

The number of RTP packets in the sample is identi�ed in the packetcount �eld of

the header. The data from constructor is used to determine the location of each

payload and the synchronization markers are removed from the picture data. These

4.3. Synchronization of RTP Reception Hint tracks 37

modi�cations result in a sample that can be passed on to elemental stream module

for further processing such as decoding.

4.3 Synchronization of RTP Reception Hint tracks

The RTCP header and sender info blocks are read from sample data of RTCP Re-

ception Hint Track. There is a random o�set in the �rst samples in RTP Reception

Hint Tracks due to the arbitrary starting point of the recording and random o�set of

RTP timestamps as described in Section 2.3.2. The o�set is synchronized using the

NTP timestamps of RTCP sender report so that both tracks start simultaneously.

This was done by recording NTP and RTP timestamps of the �rst RTCP sender

reports and calculating the RTP timestamp of the �rst RTP Reception Hint Tracks

sample using equation 2.1. This RTP timestamp is then converted to NTP times-

tamp using the captured NTP and RTP timestamps from sender report. The o�set

is calculated between NTP timestamps of di�erent tracks. This o�set is converted

to RTP timescale using sample rate and added to each DTS of each sample of the

track which had larger NTP timestamp for �rst sample in e�ect delaying that track

by calculated o�set.

RTCP Reception Hint Track enables the synchronization of clock drift. However,

this was not implemented because the e�ect of clock drift was found to be neglible.

Testing clock drift correction would have required a special recording arrangement

where clock drift is added to it. A quick attempt was made for clock drift correction,

but it did not succeed and was determined not to be worth the e�ort.

38

5. THE OVERALL VIDEO CALL SYSTEM

5.1 System architecture

Figure 5.1 and 5.2 present two snapshots of the proposed video call system with

two participants (A and B). The respective block diagram of this proof-of-concept

architecture is shown in �gure 5.3. The system starts with a video call taking place

between two participants. One participant initiates the video call and the other

answers.

In �gure 5.1, the participant A is recording a two-way Linphone video call. The

video call is being recorded into an MP4 �le on computer A. Linphone creates the

MP4 �le using the L-SMASH library. The MP4 �le includes RTP and RTCP Recep-

tion Hint Tracks for incoming GSM audio and H.264/AVC video and media tracks

for outgoing GSM audio and H.264/AVC video. The tracks are played back by VLC

media player as shown in �gure 5.2 where only the playback functionality of the

instance A is depicted. The playback of RTP Reception Hint Tracks is synchronized

using RTCP Reception hint tracks. Participant A opens the MP4 �le with modi�ed

version of the VLC Media player. VLC plays H.264/AVC video stream, RTP Re-

ception Hint Track video stream and either GSM audio stream or RTP Reception

Hint Track audio stream.

5.1. System architecture 39

Figure 5.1 Recording screenshot of Linphone.

Figure 5.2 Playback of recorded MP4 �le using VLC.

5.1. System architecture 40

Figure 5.3 The overall video call system with data �ow shown.

The �le recording ends and header data is written when either of the participants

presses the record button again or the video call ends. It is also possible to record

multiple segments of the same video call, in which case the new segment is recorded

into a separate �le.

Figure 5.4 shows 'moov'-box (See table 2.8 and �gure 2.6) with next level boxes

of the created MP4 �le. The four character codes for sample entry boxes of each

track are shown in parenthesis. The �nal MP4 �le has six tracks: two media tracks,

two RTP Reception Hint Tracks, and two RTCP Reception Hint Tracks. GSM

and H.264/AVC tracks include the recorded outgoing audio and video streams and

RTP Reception Hint include the recorded incoming audio and video RTP streams.

Incoming RTCP sender reports are recorded for both incoming audio and video as

RTCP Reception Hint Tracks. 'udta'-box holding movie level 'hnti'-box with part

of SDP message is also shown in the �gure.

5.2. Recording modi�cations 41

Figure 5.4 Resulting MP4 moov-box contents.

5.2 Recording modi�cations

Before modi�cations Linphone was not able to record video and the audio was

recorded uncompressed. Now the audio is recorded as GSM compressed which takes

less space. In the original version, the audio tracks were mixed together, but now the

audio tracks are recorded as separate tracks, because of RTP Reception Hint Track

can contain only one RTP stream. For recording to work, Linphone call settings

have to be changed to use H.264/AVC video format and GSM audio format only.

These are not the default options. For decoding of MP4 RTP Reception Hint Track

playback in VLC to start immediately with FIR request, AVPF has to enabled in

Linphone con�guration �le.

Linphone and L-SMASH modi�cations were tested to work on Windows and Linux

operating without any major problems. Linphone encompassed about 2000 new

lines of code and L-SMASH modi�cations were about 600 lines of code. The system

is capable of generating MP4 �les that follow ISOBMFF [4]. Therefore, the system

is also used to generate a conformance �le for RTP/RTCP Reception Hint Tracks.

With these modi�cations, L-SMASH supports RTP/RTCP Reception Hint Tracks

and hint tracks. All the modi�cations were submitted as a Pull Request to L-SMASH

Github repository.

5.3. Playback modi�cations 42

5.3 Playback modi�cations

VLC automatically recognizes when MP4 �le has an RTP Reception Hint track

and uses modi�ed MP4 demultiplexer in playing the �le. Playback is successful if

recorded RTP stream is in GSM, Speex or H.264 format. VLC implementation is

tested to work in both Linux and Windows operating systems.

VLC modi�cations consist of approximately 700 new lines of code. The modi�ed

VLC code was updated to VLC nightly version and submitted to VLC main reposi-

tory as a patch. Patch was accepted and is part of the current VLC nightly version

3.0.0. The inclusion of RTP Reception Hint track in VLC also dissaminates aware-

ness of RTP Reception Hint Tracks.

43

6. ANALYSIS

6.1 Performance

The performance of RTP Reception Hint Track recording �lters were compared to

that of audio and video track recording �lters in terms of CPU time. Table 6.1

tabulates the results of six runs of Linphone recording using the implemented system

(Chapter 5). Recording took place on both computers, i.e., two set of test results

were generated from one video call. In total, 3 calls were made, a 1 minute call, a 10

minute call, and a 60 minute call. Both computers record similar video feeds using

di�erent cameras (see �gure 2.3 and 5.3).

In summary, recording RTP Reception Hint Track takes 1.8 to 2.8 times as much

processing power as recording just media tracks. On computer A, the relative CPU

usage is larger than that on computer B, because video encoding takes more time on

computer B due to more complex video data. The RTP recording �lters are slower

compared to media recording �lters on computer B. This di�erence could mean that

RTP recording �lters do better when the media data is less complicated.

Table 6.1 Comparison of recording �lter CPU usage of program CPU usage.

Computer Time
Media (GSM & H.264/AVC) RTP (GSM & H.264/AVC)

CPU time CPU time Slowdown
A 1 min 0.33 % 0.59 % 1.8x
B 1 min 0.22 % 0.50 % 2.3x
A 10 min 0.36 % 0.87 % 2.4x
B 10 min 0.25 % 0.71 % 2.8x
A 60 min 0.39 % 0.84 % 2.1x
B 60 min 0.24 % 0.56 % 2.4x

RTP or media recording �lters are not optimized for speed so no de�nite conclusion

on comparison between media recording and RTP Reception Hint Track recording

can be drawn. However, the CPU usage times are less than 1% of total CPU time

6.1. Performance 44

for both recording �lter types so there is no meaningful penalty for recording as

RTP Reception Hint Track. A performance log for the �rst test case is shown in

Appendix A. It can be seen that about 82% of program CPU usage comes from

encoding H.264/AVC video. Hence, the choice of codec, encoding software and

encoding parameters is much more potential source of performance increase than

the type of MP4 track chosen for recording.

Using RTP Reception Hint Tracks increases the sample size compared to media

tracks. The increase is constant for audio. For video increase is dependent on the

number of RTP packets in one video sample. The added sample for RTP Reception

Hint Track can be calculated as in equation 6.1. The packetcount �eld is one for

audio samples and is the number of slices for video samples. headersize = 4 B,

RTPpacketsize = 12 B and constructorsize = 16 B can be calculated from �gures

2.7, 2.8, and 2.9 respectively where each row is four bytes. For GSM audio, there is

always one RTP packet per sample increasing the RTP Reception Hint Track sample

structure to 4 B + 12 B + 16 B = 32 B. Compared to GSM media track sample

size of 33 B, this is an 97% increase so RTP Reception Hint Tracks nearly double

the sample size.

RTPsamplesize = headersize+(RTPpacketsize+ constructorsize) ∗ packetcount
(6.1)

The video samples are usually so large that the e�ect of recording as RTP Reception

Hint Track is negligible. The size calculations of an example of a video picture

containing one inter video picture goes as follows: It has six RTP packets of sizes

1116 B, 1124 B, 1124 B, 1132 B, 1126 B, and 382 B totaling 6004 B. In this case,

the o�set of RTP Reception Hint Track samples is: 4 B + (12 B + 16 B) * 6 =

172 B increasing the size of this sample by 3%.

For 18 frames per second video excluding intra frames, the bit rate will be 864.6

kbit/s. In Linphone Intra pictures arrive every 10 seconds and were excluded because

their combined e�ect on bitrate is small. The bit rate of GSM stream is 13.2 kbits/s

so the the total bit rate of the video call is 864.6 kbit/s + 13.2 kbit/s = 877.8 kbit/s.

Since there are 50 audio frames/s in GSM the RTP Reception Hint Track structures

account for 18 * 172 B + 50 * 32 B = 37.6 kbit/s, i.e., they increase bit rate by

4.3%. Considering the storage capacity of modern hardware, 4.3% is not a large

6.2. Discussion 45

increase expect in cases where only audio streams are recorded and storage space is

an issue.

6.2 Discussion

This Section discusses the process of implementation, merits, and shortcoming of

video call system and evaluation of RTP/RTCP Reception Hint Track when com-

pared to plain media tracks.

6.2.1 Process of implementing a video call recording

The development of the video call system took about one year to complete (11

person months). Linphone modi�cations took around 80% of total development

time where as L-SMASH and VLC parts took the remaining 20%. Linphone seemed

to su�er from code bloat. This is possibly due to Linphone being old and not having

enough refactoring done to it over the years. VLC is also an old project, but has a

much more modular design with a separation between VLC core and modules. An

estimate of created code would be about 2000 lines of C code for Linphone, 600 lines

of C code for L-SMASH, and about 700 lines of C code for VLC.

MinGW was not an ideal platform, because it lacked a visual debugger. Porting

Linphone to Visual studio was tried unsuccessfully with a moderate e�ort. When

testing with virtual machine, it was concluded that compiling Linphone with Ubuntu

was much easier, faster, and worked without any additional steps. This is an in-

dication that Linphone was developed under Ubuntu or a similar operating system

and is therefore most tested to work on it. The compilation of VLC media player

was tried on Windows, but the instructions were out of date and Windows compila-

tion was not supported properly. Again, compiling within Linux operating system

was much easier. It can be concluded that when making modi�cations to an ex-

isting open-source software, most convenient development environment is the one

primarily used by the development team of the software.

6.2.2 Video call system evaluation

Recording a video call enables returning to the session, which can be essential, e.g.,

in job interviews and business meetings. Furthermore, the implmemented video call

6.2. Discussion 46

system could be improved to provide a better user experience through the following

improvements: 1) Implementing SRTP and SRTCP Reception Hint Tracks would

enable recording of encrypted video calls. They would make the recording system

more applicable to usage scenarios where privacy or security is concerned during

the call. 2) The sound quality of the video call could be improved, because the

chosen GSM codec is not up to the same standards as modern sound codecs such

as Opus [41]. 3) FIR request can be used to determine the point at which the other

participant starts recording the video call. This can also be an unwanted side e�ect.

A solution would be to disable FIR request and either use all-intra H.264/AVC

stream or leave out the support for immediate video recording.

From user point of view, the lack of video conferencing can be considered as a

major shortcoming of the implemented system since other applications such as Skype

and Jitsi provide support for it. Implementing a video conferencing system with

recording would require one of the following modi�cations: 1) Implement video

conferencing to Linphone; 2) implement video call recording in some VoiP software

capable of video conferencing; or 3) implement a complete new video conferencing

system capable of recording. The Option 1 would be problematic because of code

bloat within Linphone. As of version 3.8.2, Linphone audio conferencing features are

implemented as a separate module without any consideration for video conferencing.

For the option 2 only suitable open-source software is Jitsi, but it is written in Java,

so L-SMASH could not be used without implementing new language bindings for

L-SMASH. Hence the option 3 is the recommended one for expanding the video call

system to video conferencing system with recording.

Another drawback of the implemented video call system is the ability to only play

one audio track at a time. Thus, a convenient usage of the system would require

switching between audio tracks every time another person starts talking. Two so-

lutions for that are possible: 1) Implement simultaneous playback of two or more

audio tracks within a player; or 2) mixing all audio tracks to one. The solution 2

would require less e�ort than solution 1, since it was already existing in Linphone

and there is no problem adding a third audio track to MP4 �le. RTP Reception

Hint Tracks are not compatible with the solution 2.

6.2. Discussion 47

6.2.3 RTP Reception Hint Track evaluation

The main advantage of using RTP/RTCP Reception Hint track is that more infor-

mation is retained with regards to timestamps during a video call. The following

bene�ts were discovered in usage of RTP/RTCP Reception Hint Tracks: 1) Both

resending and playback of the stream are possible; 2) Start o�set synchronization

and clock drift synchronization are enabled; and 3) A support is provided to all

codecs that can be transported with RTP stream.

Di�erent codecs were tested during the development. In addition to GSM codec, the

Speex codec was tested and RTP Reception Hint Track recording worked without

any modi�cations to Linphone or L-SMASH, but VLC needed small modi�cations

to recognize a di�erent codec from the SDP message. Hence, new codecs could be

added in the proposed system by modifying playback only. For additional codec

support, the following steps need to be implemented in VLC: 1) recognize RTP

payload type from within SDP message. 2) demultiplexing of sample. For audio,

this step is not necessary, but for video slices may need to be combined to a picture.

There are some disadvantages to using RTP/RTCP Reception Hint Tracks. In

addition to small size increase the tracks cannot be mixed together at recording

stage which can create a problem if media player does not support simultaneous

playback. This is the case, e.g., with VLC media player. For better evaluation of

RTP/RTCP Reception Hint Tracks, a demo setup that resends recorded RTP/RTCP

Reception Hint Tracks should be constructed. Resending would enable such features

as remote playback of video calls. For an answering machine could be implemented

for VoIP applications.

48

7. CONCLUSIONS

This Thesis showed an end-to-end video call system that deploys RTP and RTCP

Reception Hint Tracks in video call recording and playback. The proposed setup

uses Linphone and L-SMASH to record the video call in MP4 format and VLC

media player to play the recorded MP4 �le. The MP4 �le has six tracks, two RTP

Reception Hint Tracks, two RTCP Reception Hint Tracks, and two media tracks.

GSM was chosen as audio codec and H.264/AVC as video codec. The video call

system works on both Windows and Linux operating systems. The new features

implemented in this work include recording �lters to Linphone as well as support

for RTP and RTCP Reception Hint Tracks for L-SMASH and for VLC media player.

The changes to VLC media player were included to o�cial VLC nightly repository.

The usage of RTP Reception Hint Tracks in a video call system is feasible in terms of

performance and size requirements. The CPU usage of RTP Reception Hint Track

recording stayed under 1% of the total CPU usage of the program and the bit rate

increase over traditional media tracks was 4% in a typical video call. Video encoding

accounts for over 80% of Linphone CPU time.

The proposed proof-of-concept system validates the feasibility and bene�ts of the

RTP/RTCP Reception Hint Track feature, so augmenting a video call capture with

them is recommended in RTP based tra�c, provided that a compatible player is

available. Adding support for playback of RTP/RTCP Reception Hint track is

recommended in media players to enable wider usage of RTP Reception Hint track

in RTP stream recording. RTP Reception Hint Tracks also meet particularly well

the needs of multi-codec implementations where a video call recording and playback

can be done with di�erent audio and video codecs.

In the future, the proposed system could be extended with �ve new features. Firstly,

the RTP Reception Hint Tracks could be used to detect possible packet losses during

recording. Secondly, an answer machine for video calls could be implemented by

allowing a sender to re-create and send the original RTP streams. Thirdly, the

7. Conclusions 49

RTCP Reception Hint Tracks could be used to correct potential clock drift during

playback by using the NTP timestamps in RTCP sender reports. The listener could

then choose whether to play the �le as it was received or as it was sent. Fourthly

Linphone could be extended to include video conferencing. Finally RTP Reception

Hint Track could be switched to SRTP Reception Hint Track and RTCP Reception

Hint Track to SRTCP Reception Hint Track for enabling the usage of encryption

within a video call.

50

BIBLIOGRAPHY

[1] S. Casner, R. Frederick, V. Jacobson, and H. Schulzrinne, RFC 3550, RTP:

A Transport Protocol for Real-Time Applications, Network Working Group,

IETF, July 2003, 104 p, [Online]. Available: https://tools.ietf.org/html/

rfc3550

[2] Skype, Skype Technologies, Microsoft Corporation, [Online]. Available: http:

//www.skype.com/

[3] How can I record my Skype calls? Skype Help, [Online]. Available: https://

support.skype.com/en/faq/FA12395/how-can-i-record-my-skype-calls

[4] ISO Base Media File Format, document ISO/IEC 14496-12 and ISO/IEC 15444-

12, ISO/IEC, Jul 2012.

[5] Linphone: Open-source VOIP project, Belledonne communications, [Online].

Available: http://www.linphone.org/

[6] L-SMASH, [Online]. Available: http://l-smash.github.io/l-smash/

[7] VLC media player, VideoLAN, [Online]. Available: http://www.videolan.

org/vlc/index.html

[8] WhatsApp, WhatsApp Inc., Facebook, [Online]. Available: https://www.

whatsapp.com/

[9] Edison's Telephonoscope (TRANSMITS LIGHT AS WELL AS SOUND),

PUNCH'S ALMANACK FOR 1879, Terramedia, December 1878, [Online].

Available: http://www.terramedia.co.uk/Chronomedia/years/Edison_

Telephonoscope.htm

[10] A Missing Link in the History of the Videophone, VSee,

June 2011, [Online]. Available: https://vsee.com/blog/

a-missing-link-in-the-history-of-the-videophone/

[11] Television over the Telephone Sends Images of Speakers, Modern Mewchanix,

October 1938, [Online]. Available: http://blog.modernmechanix.com/

television-over-the-telephone-sends-images-of-speakers/

https://tools.ietf.org/html/rfc3550
https://tools.ietf.org/html/rfc3550
http://www.skype.com/
http://www.skype.com/
https://support.skype.com/en/faq/FA12395/how-can-i-record-my-skype-calls
https://support.skype.com/en/faq/FA12395/how-can-i-record-my-skype-calls
http://www.linphone.org/
http://l-smash.github.io/l-smash/
http://www.videolan.org/vlc/index.html
http://www.videolan.org/vlc/index.html
https://www.whatsapp.com/
https://www.whatsapp.com/
http://www.terramedia.co.uk/Chronomedia/years/Edison_Telephonoscope.htm
http://www.terramedia.co.uk/Chronomedia/years/Edison_Telephonoscope.htm
https://vsee.com/blog/a-missing-link-in-the-history-of-the-videophone/
https://vsee.com/blog/a-missing-link-in-the-history-of-the-videophone/
http://blog.modernmechanix.com/television-over-the-telephone-sends-images-of-speakers/
http://blog.modernmechanix.com/television-over-the-telephone-sends-images-of-speakers/

51

[12] S. Lingfen, I.-H. Mkwawa, E. Jammeh, and E. Ifeachor, Guide to Voice and

Video over IP: For Fixed and Mobile Networks, Springer, 2013.

[13] G. Camarillo, M. Handley, A. Johnston, J. Peterson, J. Rosenberg, H.

Schulzrinne, and R. Sparks, RFC 3261, SIP: Session Initiation Protocol, Net-

work Working Group, IETF, 269 p, [Online]. Available: http://tools.ietf.

org/html/rfc3261

[14] M. Handley, V. Jacobson, and C. Perkins, RFC 4566, SDP: Session Description

Protocol, Network Working Group, IETF, July 2002, 269 p, [Online]. Available:

https://tools.ietf.org/html/rfc4566

[15] L. Peterson and B. Davie, Computer Networks: A System Approach, 4th edi-

tion, Morgan Kaufman, 835 p, April 2007.

[16] Skype has over 300 million monthly active users, Microsoft announces at

Build 2016, Windows Report, [Online]. Available: http://windowsreport.

com/skype-number-of-users/

[17] Skype of Niklas Zennström and Janus Friis, History of Computers,

[Online]. Available: http://history-computer.com/Internet/Conquering/

Skype.html

[18] WebRTC, The WebRTC initiative, [Online]. Available: https://webrtc.org/

[19] Real-Time Communication in WEB-browsers (rtcweb), IETF, [Online]. Avail-

able: https://datatracker.ietf.org/wg/rtcweb/documents

[20] WebRTC 1.0: Real-time Communication Between Browsers, W3C, May 2016,

[Online]. Available: https://www.w3.org/TR/webrtc/

[21] Empathy, The GNOME project, [Online]. Available: https://wiki.gnome.

org/Apps/Empathy

[22] Ekiga, [Online]. Available: http://www.ekiga.org/

[23] Homer Conferencing, Integrated Communication Systems Group, Ilmenau Uni-

versity of Technology, [Online]. Available: http://www.homer-conferencing.

com

[24] Jitsi, Jitsi Team, [Online]. Available: https://jitsi.org/

http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc4566
http://windowsreport.com/skype-number-of-users/
http://windowsreport.com/skype-number-of-users/
http://history-computer.com/Internet/Conquering/Skype.html
http://history-computer.com/Internet/Conquering/Skype.html
https://webrtc.org/
https://datatracker.ietf.org/wg/rtcweb/documents
https://www.w3.org/TR/webrtc/
https://wiki.gnome.org/Apps/Empathy
https://wiki.gnome.org/Apps/Empathy
http://www.ekiga.org/
http://www.homer-conferencing.com
http://www.homer-conferencing.com
https://jitsi.org/

52

[25] Advanced video coding for generic audiovisual services, 02/2014, ITU-T, 2014,

766 p, [Online]. Available: http://www.itu.int/rec/T-REC-H.264-201402-S

[26] ISO/IEC 14496-10, Information technology - Coding of audio-visual objects -

Part 10: Advanced Video Coding, 2014.

[27] Digital cellular telecommunications system (Phase 2+)(GSM); Full rate

speech; Transcoding, ETSI, November 2000, 64 p, [Online]. Avail-

able: http://www.etsi.org/deliver/etsi_en/300900_300999/300961/08.

01.01_60/en_300961v080101p.pdf

[28] GSM 06.10 lossy speech compression, [Online]. Available: http://www.quut.

com/gsm/

[29] The GTK+ project, The GTK+ Team, [Online]. Available: http://www.gtk.

org/

[30] M. Baugher, E. Carrara, D. McGrew, M. Naslund, and K. Norrman, RFC 3711,

The Secure Real-time Transport Protocol (SRTP), Network Working Group,

IETF, march 2004, 56 p, [Online]. Available: https://tools.ietf.org/html/

rfc3711

[31] B. Burman, U. Chandra, S. Wenger, and M. Westerlund, RFC 5104, Codec

Control Messages in the RTP Audio-Visual Pro�le with Feedback (AVPF),

Network Working Group, IETF, February 2008, 64 p, [Online]. Available:

https://tools.ietf.org/html/rfc5104

[32] x264, VideoLAN, [Online]. Available: https://www.videolan.org/

developers/x264.html

[33] Data Encapsulation, Protocol Data Units (PDUs) and Service Data Units

(SDUs), The TCP/IP Guide, [Online]. Available: http://www.tcpipguide.

com/free/t_DataEncapsulationProtocolDataUnitsPDUsandServiceDa.htm

[34] R. Even, R. Jesup, T. Kristensen, and Y.-K. Wang, RFC 6184, RTP Payload

Format for H.264 Video, IETF, May 2011, 101 p, [Online]. Available: https:

//tools.ietf.org/html/rfc6184

[35] C. Burmeister, J. Ott, J. Rey, N. Sato, and S. Wenger, RFC 4585, Codec

Control Messages in the RTP Audio-Visual Pro�le with Feedback (AVPF),

Network Working Group, IETF, February July 2006, 51 p, [Online]. Available:

https://tools.ietf.org/html/rfc4585

http://www.itu.int/rec/T-REC-H.264-201402-S
http://www.etsi.org/deliver/etsi_en/300900_300999/300961/08.01.01_60/en_300961v080101p.pdf
http://www.etsi.org/deliver/etsi_en/300900_300999/300961/08.01.01_60/en_300961v080101p.pdf
http://www.quut.com/gsm/
http://www.quut.com/gsm/
http://www.gtk.org/
http://www.gtk.org/
https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc5104
https://www.videolan.org/developers/x264.html
https://www.videolan.org/developers/x264.html
http://www.tcpipguide.com/free/t_DataEncapsulationProtocolDataUnitsPDUsandServiceDa.htm
http://www.tcpipguide.com/free/t_DataEncapsulationProtocolDataUnitsPDUsandServiceDa.htm
https://tools.ietf.org/html/rfc6184
https://tools.ietf.org/html/rfc6184
https://tools.ietf.org/html/rfc4585

53

[36] S. Döhla, M. Hannuksela, and K. Murray, The DVB �le format, IEEE Signal

Processing Magazine, volume 29, no. 2, March 2012, pp. 148-153.

[37] A. Butter�eld and G. Ngondi, "multiplexing", A Dictionary of Com-

puter Science, Oxford University Press, 2016, [Online]. Available:

http://www.oxfordreference.com/view/10.1093/acref/9780199688975.

001.0001/acref-9780199688975-e-3394.

[38] Vimeo: Make life worth watching, IAC/InterActiveCorp, [Online]. Available:

https://vimeo.com/

[39] Media Player Classic - Home Cinema, [Online]. Available: https://mpc-hc.

org/

[40] MinGW: Minimalist GNU for Windows, MinGW Project, [Online]. Available:

http://www.mingw.org/

[41] T. Terriberry, JM. Valin, and K. Vos, RFC 6716, De�nition of the Opus Au-

dio Codec, IETF, September 2012, 326 p, [Online]. Available: http://tools.

ietf.org/html/rfc6716

http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-3394
http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-3394
https://vimeo.com/
https://mpc-hc.org/
https://mpc-hc.org/
http://www.mingw.org/
http://tools.ietf.org/html/rfc6716
http://tools.ietf.org/html/rfc6716

54

APPENDIX A. LINPHONE FILTER STATISTICS

AFTER 1 MINUTE VIDEO CALL

===

FILTER USAGE STATISTICS

Name Count Time/tick (ms) CPU Usage

MSX264Enc 2350 39,7414 81,8703

MSDrawDibDisplay 4425 2,20493 8,55137

MSH264Dec 13862 0,412104 5,00605

MSWinSndWrite 3476 0,684211 2,08461

MSRtpSend 27766 0,0341412 0,83069

MSRTPRec 9388 0,0719991 0,592349

MSGsmEnc 3476 0,112166 0,34174

MSVideoRec 2350 0,110166 0,22695

MSRtpRecv 27766 0,00504196 0,122676

MSAudioRec 2488 0,0470068 0,102522

MSPixConv 2350 0,0455125 0,0937593

MSSpeexEC 7804 0,0094811 0,0648429

MSAudioMixer 27808 0,000934949 0,0227826

MSGsmDec 6909 0,00274964 0,0166488

MSTee 10655 0,00168919 0,0157726

MSJpegWriter 4829 0,00351967 0,0148963

MSVolume 10386 0,00154039 0,0140201

MSWinSndRead 13904 0,000791082 0,00963881

MSDsCap 13862 0,00064921 0,0078863

MSDtmfGen 14185 0,000422952 0,00525753

MSFilePlayer 14185 0,000211476 0,00262877

MSSizeConv 2350 0,000425351 0,000876255

MSGenericPLC 13904 7,19166e-005 0,000876255

MSEqualizer 6910 0,000144697 0,000876255

MSResample 0 0 0

	Introduction
	Implementation aspects of a video call
	Video call
	Video encoding
	Audio encoding
	Linphone
	Filter graphs

	Media Streaming
	RTP stream
	RTP timestamp
	RTCP stream
	SIP
	SDP

	Media capture
	MP4 Hint Tracks
	RTP and RTCP Reception Hint Track
	Multiplexing an MP4 file

	Media playback
	VLC media player
	Demultiplexing an MP4 file

	Implementation of video call recording
	Media recording in Linphone
	Audio/Video filter graph modifications
	MP4 file creation
	Media recording filters
	RTP Recording filter
	RTCP Recording module

	Media multiplexing in L-SMASH

	Media playback in VLC
	MP4 demux module modifications
	Demultiplexing RTP packets
	Synchronization of RTP Reception Hint tracks

	The overall video call system
	System architecture
	Recording modifications
	Playback modifications

	Analysis
	Performance
	Discussion
	Process of implementing a video call recording
	Video call system evaluation
	RTP Reception Hint Track evaluation

	Conclusions
	Bibliography
	APPENDIX A. Linphone Filter statistics after 1 minute video call

