

MIKKO SOUKKA

AREA LAYOUT DATA HANDLING SOLUTION FOR CONTAINER

TERMINALS

Master of Science thesis

Examiner: prof. Hannu Koivisto
Examiner and topic approved by the
Faculty of Engineering Sciences
Council Meeting on 16th December
2015

i

ABSTRACT

MIKKO SOUKKA: Area Layout Data Handling Solution for Container Terminals
Tampere University of technology
Master of Science Thesis, 54 pages, 8 Appendix pages
December 2015
Master’s Degree Programme in Automation Technology
Major: Information Systems in Automation
Examiner: Professor Hannu Koivisto

Keywords: map visualization, information system, layout modeling

This thesis studies on different solutions available on representing locational information

in container terminals. Focus is given to creation of this data by using available design

models of the container terminal. Main addressed issue was presented in Cargotec Finland

Oy, under Kalmar brand. In Kalmar, several different solutions have been used to create

this location data to represent the terminal. Different implementations of graphical user

interface have been made by separate branches of the company, and each implementation

utilizes differently structured data to represent the container terminal. Similarly, different

control solutions of the terminal equipment require locational information, which is also

separately defined on each use case. This thesis looks into current solutions and provides

a new method utilizing a more uniform solution and increasing the level of automation of

the process.

The thesis is structured as a division of three parts. Firstly, the problem and container

terminal are discussed in general level. This defines the background of the problem as

well as variables to be taken into account. Secondly, current solutions from both Kalmar

and other companies are described, and possible alternatives to these are also discussed.

Lastly, the selected solution is presented, results are analyzed, and future aspects are dis-

cussed.

ii

TIIVISTELMÄ

MIKKO SOUKKA: Konttiterminaalien aluesuunnitelmien datankäsittelyratkaisu
Tampereen teknillinen yliopisto
Diplomityö, 54 sivua, 8 liitesivua
Joulukuu 2015
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Automaation tietotekniikka
Tarkastaja: professori Hannu Koivisto

Avainsanat: Kartan visualisointi, informaatiojärjestelmä, karttainformaatio

Tämän työn tarkoitus on löytää automatisoidumpi, ja näin ollen tehokkaampi tapa luoda

esitys karttainformaatiosta konttiterminaaleissa. Työ tarkastelee erilaisia metodeja esittää

karttainformaatiota sekä tapoja luoda tällaista informaatiota käytettävissä olevia malleja

hyödyntäen. Alkuperäinen ongelman asettelu on tullut esiin Cargotec Finland Oy:n Kal-

mar-tuotemerkin sovelluksista, joissa karttainformaation esittäminen ja erityisesti sen

muodostaminen vaihtelee sovelluskohtaisesti. Informaation luominen on myös usein hy-

vin manuaalinen prosessi. Lisäksi, metodit ja tuloksena saatavat rakenteet ovat sovellus-

kohtaisia, eli eri sovelluksiin muodostettua informaatiorakennetta ei voida käyttää suo-

raan toisessa sovelluksessa. Tämän työn tarkoituksena on löytää ratkaisu, joka tehostaa

informaation luomisprosessia sekä yhtenäistää karttainformaation rakennetta.

Työssä käsitellään kolme suurempaa osa-aluetta. Ensimmäinen osa-alue on ongelman ja

konttiterminaalien toiminnan esittely. Tämän osion tarkoitus on pääasiallisesti esitellä itse

ratkaistava ongelma sekä auttaa lukijaa ymmärtämään konttiterminaalin toimintaa. Osi-

ossa käsitellään myös huomioon otettavat muuttujat tarvittavan informaation osalta. Seu-

raava osa-alue tarkastelee nykyisiä sovelluksia sekä Kalmarin että muiden yritysten

osalta. Näiden lisäksi esitellään muita mahdollisia vaihtoehtoja teoreettiselta pohjalta –

sekä pohditaan mahdollisia hyviä puolia, mitä kustakin ratkaisusta voitaisiin soveltaa.

Viimeisenä osa-alueena on itse lopullisen ratkaisun esittely ja tuloksena saadun datan

analysointi, sekä valitun metodin mahdollistamien tulevaisuuden näkymien pohdinta.

iii

PREFACE

This thesis was written for the Kalmar brand of Cargotec Finland Oy, where I have had

the pleasure of working in multiple occasions while going through my path of studies. I

want to express my gratitude for the R&D Engineering Manager of Kalmar, Petteri

Kylliäinen, who made all this possible from the company side. I also wish to thank all my

colleagues in Yard Automation team for the help, and especially for the most fruitful

conversations that kept the working environment light and joyful.

As for the other side of the page, I want to thank Hannu Koivisto, who supervised the

academic side of the writing process. Other than that, I wish to thank my friends to whom

I had a chance to relate to, my family for their support, and especially my girlfriend, for

believing in me all the way.

Tampere, 16 of December 2015

Mikko Soukka

iv

CONTENTS

1. INTRODUCTION .. 1

2. CONTAINER TERMINAL OVERVIEW .. 3

2.1 Harbor layout.. 3

2.1.1 Seaside ... 4

2.1.2 Storage yard ... 5

2.1.3 Landside ... 6

2.2 Equipment .. 7

2.2.1 Positioning and coordinates ... 7

2.2.2 Quay transfers .. 8

2.2.3 Horizontal transportation equipment ... 9

2.2.4 Gantry cranes ... 10

2.2.5 Summary .. 12

2.3 Information system ... 12

3. STRUCTURAL REQUIREMENTS ... 15

3.1 Implementation environment ... 15

3.1.1 Graphical user interface ... 17

3.1.2 Control systems .. 18

3.2 Information structure .. 18

3.2.1 Area limits and zones ... 19

3.2.2 Physical obstacles .. 20

3.2.3 Gates... 20

3.2.4 Blocks... 20

3.2.5 Rails and lanes ... 21

3.2.6 Container positions .. 21

3.2.7 Miscellaneous... 22

4. DATA FORMAT .. 23

4.1 Binary and ASCII ... 23

4.2 Images .. 23

4.3 File format comparison .. 24

4.3.1 XML ... 24

4.3.2 GIS ... 27

4.3.3 JSON .. 27

4.3.4 AutoCAD files ... 28

4.3.5 Summary .. 29

5. SOLUTIONS OF KALMAR .. 31

5.1 Kalmap ... 31

5.2 MTS .. 32

5.3 UniQ GUI, FV .. 33

5.4 HTCS Layout Editor .. 35

5.5 ASCCS Layout Editor .. 36

v

6. ALTERNATIVE SOLUTIONS .. 37

6.1 Other companies’ solutions .. 37

6.2 Other methods .. 38

7. SOLUTION ... 40

7.1 Selection ... 40

7.2 Conversion process .. 41

7.3 Testing and evaluation ... 43

7.3.1 Functionality .. 44

7.3.2 Accuracy .. 44

7.3.3 Performance ... 46

7.4 Pricing .. 46

7.5 Summary .. 46

8. CONCLUSION ... 47

WORKS CITED ... 48

APPENDIX 1: GML2 ELLIPSE EXAMPLE .. 55

APPENDIX 2: GEOJSON ELLIPSE EXAMPLE .. 57

APPENDIX 3: FME INSTRUCTIONS FOR AUTOCAD-TO-SVG TRANSLATION

FOR MAP DATA CREATION PROCESS .. 59

vi

LIST OF FIGURES

Figure 1: General overview of a container terminal (Wiese, Suhl, & Kliewer, 2011,

p. 220)... 4

Figure 2: Refrigerated container racks (MIP, 2013).. 6

Figure 3: STS lane usage example (Mäkelä, 2015) .. 9

Figure 4: Kalmar ASC Brisbane (Cargotec Corporation, 2015) 11

Figure 5: ASC control table .. 13

Figure 6: Container terminal information system structure ... 14

Figure 7: Upscaling of raster (left) and vector graphics .. 24

Figure 8: Kalmap block visualization ... 32

Figure 9: MTS SmartMap, zoomed view .. 33

Figure 10: Fleetview, “Fleet” view .. 34

Figure 11: Fleetview, “TLS” view .. 34

Figure 12: HTCS Layout Editor ... 35

Figure 13: ASCCS Layout Editor ... 36

Figure 14: Modification example, removable complex elements 42

Figure 15: Modification example, laser poles .. 42

vii

LIST OF ABBREVIATIONS

ASC Automatic Stacking Crane

AGNSS Assisted Global Navigation Satellite System

AGV Automatic Guided Vehicle

ALV Automated Lifting Vehicle

API Application Programming Interface

CAD Computer-Aided Design

CHE Container Handling Equipment

DGPS Differential Global Positioning System

FMS Fleet Management System / Flexible Manufacturing System

GPS Global Positioning System

GUI Graphical User Interface

MMS Magnetic Measurement System

RMG Rail Mounted Gantry

RS Reach Stacker

RTG Rubber Tyred Gantry

RTK Real-Time Kinematic

STS Ship-to-Shore Crane

SVG Scalable Vector Graphics

TBA A consultancy and software company specialized in container and

bulk terminals headquartered in The Netherlands. TBA is a part of

TEREX group of companies (TBA, 2015)

TEAMS Terminal Equipment Automated Management System

TOS Terminal Operating System

TT Terminal Tractor

USD United States Dollar

VB Visual Basic

WMN Wireless Mesh Network

XML Extensible Markup Language

1

1. INTRODUCTION

Harbor is a complex environment consisting of various static elements such as devices,

buildings, fences, laser poles and lanes. In addition to static elements, in an operational

terminal the amount of movement and changes is astonishing. Whether the terminal is

automated or not has little effect on this, although with automated system less personnel

is needed on the field, and container handling equipment units follow more strict paths.

Also, in automated environment, all container movements done in the field need to be

registered and saved. More collected data about the transfers leads to easier tracking of

missing containers and other problematic situations. Currently, several terminal operation

systems (TOS) are available in the market, allowing this sort of tracking and logging of

actions.

When actions are followed, terminal operator needs to have a clear vision on what is

happening inside the terminal area. This is most often achieved with a virtual representa-

tion of the container terminal – a map. To present this map to the operator, a great amount

of work is required to represent all static obstacles and virtual data in a structured format

that can be accessed and read by the software. In addition, unless statically routed, vehi-

cles in automated container terminals require all the same information of their surround-

ings to be able to avoid colliding with the obstacles.

The process of data collection and finally saving the data into a previously defined struc-

ture often requires high amounts of manual work. Also, due to the diversity of the required

data and project specific availability of models, automating this process can be very dif-

ficult. This thesis discusses the requirements that are set for this map data, methods that

can be used to save this information and most importantly, how to create the final struc-

ture as efficiently as possible, using automated solutions.

The rest of this document is divided into 6 parts. First, an overview of container terminals

is given, where software, geographical areas, and vehicles used on different areas are

presented. The point of view is given to the process of map creation, and the functionality

of the areas of interest that will be presented in the final solution. Chapter 3 focuses more

deeply into the requirements that are set for the end structure of map data. Different areas

in the map data are described and the components required are enlisted and verbally de-

scribed. Possible formats and data types used in the final structure of the map data are

analyzed and compared in Chapter 4.

In Chapter 5, focus is moved from data analysis to current solutions available. Chapter

looks into the methods used in Kalmar when creating map data for different software.

2

The functionality of the software is presented shortly, and the methods used to reach the

end structure of map data in each of them is analyzed. Later, in Chapter 6, the view is

widened outside Kalmar’s solutions. In this chapter different methods from other compa-

nies, as well as theoretical possibilities are discussed.

In Chapter 7, the selected solution for this thesis is presented. Instructions are given to

reach the presented format utilizing given model, and both end result and the performance

aspects of the used software are tested. Future development and the improvable aspects

of the solution are discussed in the final, 8th Chapter.

3

2. CONTAINER TERMINAL OVERVIEW

The first modern automated container terminal in the world was the ECT Delta Terminal

in Rotterdam. It was opened in 1993, being the first container terminal to handle the trans-

portation between the quay and container stacks with automated guided vehicles (AGV),

and utilizing automated stacking cranes in the handling of containers in storage yard.

(HPH, 2015) After ECT Delta Terminal several automated terminals have been commis-

sioned, but as they require higher capital costs, the decision of building an automated

terminal is often made only in high labor cost areas and when a new terminal is con-

structed (Steenken, Voß, & Stahlbock, 2015, p. 13).

Rather than using AGVs, also automated lifting vehicles (ALV) can be used for horizontal

transport. The name automated lifting vehicle comes from the vehicle’s ability to lift con-

tainers independently. This feature is the most notable difference between AGVs and

ALVs, as it eliminates the waiting times in both quay side and in the storage yard. By

eliminating the waiting times, the amount of required horizontal transport vehicles in con-

tainer terminal can be drastically reduced1.

Other than different container handling equipment (CHE) types, map data gathering pro-

cess naturally bases on the layout of the environment. There are often big differences on

how the container terminal layout is planned. The layout also depends on the equipment

used in the harbor. Small terminals often use flexible solutions, utilizing as cheap and

versatile machinery as possible, whereas larger harbors rely on more rigid and sizable,

but also more efficient solutions. Selected machinery and whether the terminal is auto-

mated or not, among other factors, define which kind of layout is best for the terminal.

This chapter aims to give a general overview of usual container terminal layouts, func-

tionality and machinery, emphasizing the requirements each solution brings to map data

gathering process. As many problems in map data gathering process are only valid in

automated container terminals, manual terminal solutions will only be introduced shortly

and emphasis will be on automated systems.

2.1 Harbor layout

As mentioned above, harbors can be very different from each other in the areas of ma-

chinery and design. However, as harbor can be thought as a middleware between land

area and a vessel, a basic structure of functionality can be defined. Harbor can be divided

in three different areas; seaside, storage yard and landside (see Figure 1 below) (Wiese,

1 According to the study by Iris F. A. Vis and Ismael Harika (Vis & Harika, 2005) 38% more AGVs must

be used than ALVs to achieve same unloading time of a vessel, mainly due to the inevitable waiting times

that come from using AGVs.

4

Suhl, & Kliewer, 2011, p. 220). Seaside area is also known as apron, meaning the area

between quay wall and container storage area. Storage area is the area where containers

are piled in stacks when they wait to be transported either to land vehicles or vessels.

Landside covers deliveries of containers to and from storage yard with trains or trucks.

However, terminal cannot contribute much to the functionality in landside area.

(Brinkmann, 2011, pp. 25-28; Rijsenbrij & Wieschemann, 2011)

Figure 1: General overview of a container terminal (Wiese, Suhl, & Kliewer, 2011, p.

220)

Following sections 2.1.1-2.1.3 will divide container terminal area into above mentioned

three sections (seaside, storage yard and landside) and give a closer look to each of them.

Machinery used in container terminals will be discussed later, in Section 2.2.

2.1.1 Seaside

Term horizontal transport is used for the transportation between quay wall and container

stack in storage yard (Wiese, Suhl, & Kliewer, 2011, p. 220). This can be handled either

by manual or automatic system. Manual horizontal transport is still much more common,

and on map data processing point of view doesn’t offer much challenges for implemented

software, as all vehicles are driven by drivers and obstacle handling is done mostly by the

driver himself. Whereas manual system is easily modifiable, automatic horizontal

transport makes the system relatively rigid, and hence any changes in the layout require

5

significant effort. One example of automatic horizontal transportation is to use automatic

shuttle or straddle carriers, which will be inspected in more detail later.

The transfers between the vessel and apron area are usually handled with Ship-to-Shore

cranes (STSs), which is the most efficient crane type for these transfers (Brinkmann,

2011, p. 30). STS works on a physical rail that follows the quay wall. Under STS, there

are lanes where vehicles can drive next to each other. When speaking of control software

of automated systems, this area needs special attention, as the software needs to recognize

the area to be able to allow vehicles’ movement in the area alternately.

In addition to the STS lane, other important information for map info gathering process

in apron area are locations and sizes of any physical obstacles, like those of fences or light

poles. Size information, in this case, means the height of the object, and external dimen-

sions in the x-y plane. Also borders of the area, including the sea line, need to be specified.

2.1.2 Storage yard

There are three main types of storage yards: block stack, linear stack and high-bay rack-

ing. First two of types are more common, whereas high-bay racking is only applied when

high throughput is needed, but available space is very limited. In this method containers

can be stacked up to 12 container tiers (horizontal container layer) high piles (Brinkmann,

2011). Due to the very rare usage of this method it will not be discussed more in this

document.

Block stacking is common on harbors where stacking area is limited, as it offers good

density of containers relative to ground area used. Stacks are built with gantry cranes, so

containers are brought to the end of the stack using horizontal transport. Block stack’s

height can be up to 8 container tiers. Linear Stacking refers to system where straddle

carriers are used not only for horizontal transport, but also for storing containers. Using

this method, stacks are not higher than four tiers, due to the physical limitations of SCs.

This reduces the cost of the machinery, as the same machine can work on horizontal

transport, but at the same time requires notably more space than block stacking.

(Brinkmann, 2011)

If the system is automated, and block stack is used, interchange areas in both ends of the

stack blocks include several details to be considered when creating a map representation

of the area. In the layout map, places of lanes and exact container positions are required,

alongside with the information of surrounding objects and light gate positions. Common

practice is to have an interchange area on both ends of the block. Seaside interchange area

is used to move containers to and from block stack to horizontal transportation vehicles.

This transaction is done fully automatically if automated horizontal transportation system

6

is used, by calculating vehicle routes to exchange location synchronously. On the land-

side, truck drivers drive their vehicle in the defined lane where container can then be

picked from or grounded to by the crane.

Also, maritime terminals have a growing need for refrigerated container (“reefer”) han-

dling solutions (Hughes, 2008). These containers have an integral refrigeration unit, but

they rely on external power, and thus require modifications on standard container stacks

(see Figure 2).

Figure 2: Refrigerated container racks (MIP, 2013)

The picture above represents racks between containers in block stacks. As can be seen

from the picture, racks are high structures, and if operation is automated, it is crucial for

software to know their height and location to be able to operate on top of them. Also, as

refrigerated containers need to be plugged in manually, system needs a signal from when-

ever a person is in the operational area, to be able to either stop operation or handle trans-

fers further away from the person.

2.1.3 Landside

Landside operations cover the transport between storage yard, empty container yard and

different handling areas like railway station or barge terminal. Main concern when plan-

ning landside area is to create a clear and smoothly flowing structure for traffic. Most

movements in this area are done manually, and the connection to road transport can easily

turn into a bottleneck of the whole operation. Structure of the area should be efficient and

preferably use automated methods in identifying trucks in both, in-gate and out-gate.

Also, good planning can prevent congestion on public roads caused by container terminal.

However, bad planning of infrastructure of public roads can also have a negative effect

on terminal area efficiency. For this thesis’ scope landside has little relevance, as the au-

tomated operation focuses in seaside and storage yard. However, a possibility for auto-

mated functionality exists for terminals where landside operations are structured between

block stack and railways, and transports are handled with e.g. ALVs rather than terminal

tractors.

7

2.2 Equipment

There are a few main groups of container handling equipment (CHE) in harbors. Equip-

ment can be roughly divided into ship-to-shore cranes, rail mounted and rubber tired gan-

try cranes, shuttle and straddle carriers, terminal tractors, reachstackers and both loaded

and unloaded container handlers (Kalmar, 2014; Konecranes, 2015). Rail mounted auto-

mated gantry cranes are better known as automatic stacking cranes (ASC). Also both

shuttle and straddle carriers are available automated (Kalmar, 2014), and in the future

automated rubber tired gantry (RTG) systems will be competing (Konecranes, 2014; Ylä-

Himanka, 2014) with ASC systems. Offering a choice for automated straddle carrier sys-

tems, for example ports in Rotterdam, Netherlands and in Hamburg, Germany utilize

AGVs efficiently as horizontal transportation devices (Terex, 2015).

The solutions described in this thesis are aimed to cover automatic devices, so the de-

mands of automated vehicles considering environmental factors are in essential position

when defining requirements for the system. From the layout point of view these equip-

ment pose a very different requirements from those of manual operation, but also from

each other. Following the logics of area division, equipment is divided into quay cranes,

horizontal transportation vehicles and gantry vehicles. Equipment used in the landside

area of terminal will not be taken into account as they do not require special focus on

applications using layout information.

2.2.1 Positioning and coordinates

In automated container terminal, the terminal area is described in local coordinates (also

known as yard coordinates), which allows the usage of coordinates relative to local origin

instead of for example raw GPS coordinates. This improves the readability of the infor-

mation drastically, and also reduces the risk of mistakes when modifying location data.

GPS has been used in container terminals since 1990s, and it is still very often found in

container terminals. Global positioning components are installed to most container trans-

porting vehicles, after which position of the vehicle can be read, translated into local co-

ordinates and sent to operating system. (Steenken, Voß, & Stahlbock, 2015). While GPS

not being the most accurate choice, current terminals rarely qualify GPS “as is”, but use

more advanced assisted global navigation satellite systems (AGNSS), such as differential

GPS (DGPS) – optimally with real-time computation using real-time kinematic (RTK).

Due to large amount of high metallic structures, container terminal is a challenging envi-

ronment for GPS measurements. There can be issues in the accuracy of received signals,

especially due to signal multipath effect, which practically means signals reflecting from

the surface of the Earth or nearby obstacles (Kuusniemi, 2005, pp. 45-48). In this case,

obstacles are practically container stacks and tall cranes, such as STS cranes. This said,

GPS measurements can be aided with other methods of localization and sensors that keep

8

track on vehicle’s location and heading. Vehicles can also be tracked using optical sys-

tems, especially laser scanners (Steenken, Voß, & Stahlbock, 2015), that also offer a good

method for preparing against unplanned environment changes.

As mentioned earlier, coordinate systems used are separate from GPS coordinates. Coor-

dinate systems are not tied to anything and can be selected freely, as long as same coor-

dinates are used consistently throughout the system. Most often origin is set in the corner

of the container terminal area, and all points in the area are positive, representing common

measurement units. These units are of course logically selected according the preferences

of the country – e.g. meters in central Europe, feet in America. This is an important detail

when working with data from different container terminals. If a transformation between

file types is done, it is important to make sure that coordinate systems do not change in

the process.

The same coordinate system should also be used when drawing vehicles on the virtual

presentation. Vehicle positioning is done on-board in the vehicle, and location then sent

to the information system. Similarly to GPS signals, communication problems on data

transfers may occur due to the large quantity of structures and obstacles in the area. These

communication issues may result in a difference between locations of the vehicle in real

world and on the virtual screen, or in so-called rubber band effect, where vehicle jumps

on the screen when it gets its position too late. Also monitoring the heading and moving

direction of the vehicle can be a difficult task. Pictured vehicle will easily be shown point-

ing to wrong direction especially on situations where vehicle is staying still or making

slight movements.

2.2.2 Quay transfers

The process of unloading and loading a ship was previously handled with on-board lifting

gear of the ship or conventional quay cranes (QC). This equipment is still in use, but only

in low container throughput terminals. Nowadays the most common and efficient crane

for ship-to-shore operation is Ship-to-Shore crane (STS). STS is a gantry crane specified

for the purpose of handling container transfers between the vessel and apron area. STS is

used for ship-to-shore operations in medium and large terminals (Brinkmann, 2011), and

thus it will be the only vehicle type of this category considered in this thesis. Although

STS is often referred to as quay crane, Brinkmann describes it as gantry crane, so for

clarification abbreviation STS will be used later in this document.

The beginning of container terminal planning is determining how many STS cranes the

terminal will need to fill the throughput requirements planned for it. This information is

formed by forecasting the amount of vessels arriving for example by executing simulation

studies. Due to the size of STS and its large capacity, layout of the seaside area has to be

planned to allow smooth horizontal transport. (Wiese;Suhl;& Kliewer, 2011) STS works

on a lane next to the quay wall, handling transfers of containers between the vessel and

9

apron area. The vehicle used for horizontal transport is driven under STS to handle the

container that STS unloads from the vessel as demonstrated in Figure 3 below. Depending

on the equipment used in the terminal, container is either placed on the ground or on top

of a horizontal transportation vehicle.

Figure 3: STS lane usage example (Mäkelä, 2015)

As vehicles are driving simultaneously in the same area, it is crucial to have positional

information of each vehicle, and to be able to recognize the working area of STS (the

physical lane) unambiguously. However, representing STS on a map is relatively easy

due to the simple nature of its movement. As long as the vehicle type is known, vehicle

can be represented with coordinates relative to rail beginning or to area origin, as it is

always known that the position is within the rail.

2.2.3 Horizontal transportation equipment

Most common manual systems utilized for horizontal transport are either a combination

of terminal tractors (TTs) and reachstackers or SCs (Brinkmann, 2011). If the system is

automatic, either automated guided vehicles (AGV) or automated lifting vehicles can be

utilized (Pirhonen, 2011; Duinkerken;Evers;& Ottjes, 2002). Out of the latter two, AGV

requires containers to be grounded on top of it, or conversely picked from it. This means

that cranes have to wait for AGV to drive under them in both ends of the horizontal

transport, before container can be grounded or picked. This causes involuntary waiting

times, as AGV is bound to stay still until containers are handled by someone else. Shuttle

and straddle carriers are more independent, and can pick and ground containers by itself,

thus allowing other vehicles move more freely.

When speaking of manual systems, TTUs can be compared to AGVs, as they also need

to be driven under the container, which is then picked or landed on the chassis of the

TTU. Manual operation can be achieved many ways. Large or medium size terminals

10

often implement SC system as they give high flexibility and accessibility while small and

medium sized terminals usually prefer a combination of terminal tractors and reachstack-

ers. This is because reachstackers can be used for many different operations, which is

desirable especially in small and multi-purpose terminals. (Brinkmann, 2011) When

speaking of manual terminals, a lot less information is required by fleet management sys-

tem (FMS) than in automated terminal. In manual terminal collision avoidance can be

aided by technology, but merging of the routes is handled by drivers, not control system.

Map information can however be used to manually decipher which job is given to which

driver, by comparing the visual distances between vehicles and the job location on the

map. Nevertheless, map information is needed more for representing the information in

the map, not for controlling the equipment.

Automated environment brings more requirements for software functionality, as the in-

formation is used to control vehicles alongside each other, avoiding collisions. All auto-

mated vehicles have certain routes they are allowed to move. These routes are dependent

on each vehicle’s turn radius, positions of lanes and obstacles in the area and allocated

container positions. However, these allowed turns belong to scope of control software, so

they will not be discussed further in this document.

Operating vehicles themselves are relatively easy to represent in layout map, as long as

there is an accurate method available for locating the devices. Hence, only information

needed for simple dotted representation, alongside with vehicle type and vehicle id, is

coordinate information. If representation is more sophisticated and vehicle is pictured

with more realistic virtual figure, also heading and moving direction information are

needed.

2.2.4 Gantry cranes

Gantry cranes can be either rail mounted or utilize tires. Most common types of these are

previously mentioned ASCs and RTGs. They both move on rails, ASC on physical and

RTG on virtual, where container positions are accurately specified. Especially when

speaking of automated systems, rails are most often surrounded by either fence or similar

methods, such as concrete stoppers. In this case they also need to be taken into account

when drawing the map. In addition, on ASC operation, both waterside and landside of the

rail have an interchange area. Depending on the automation level of the system, accessing

interchange area can be controlled with either physical gate, or virtual methods, like light

gates. Also, lanes can be separated from each other with a physical obstacle, usually a

fence (see Figure 4).

11

Figure 4: Kalmar ASC Brisbane (Cargotec Corporation, 2015)

In the situation of the above picture, different lanes are separated with fences and access-

ing them is controlled by light gates. Light gates are used to detect shuttle or terminal

tractor accessing the lane by recognizing an interruption in the sent light beam. As can be

seen from picture above, there are two sets of light gates. The reason for this is that gates

need to recognize that the element in between them is actually the expected vehicle, as it

is also possible that the light beam is interrupted by another obstacle, for example a bird

flying past them.

Operation with RTG is slightly more complex, as tires allow more freedom in movements.

Where ASC is strictly bound to its rail, RTG can be driven from block to another when

all jobs on first one are done in the first one. This not only makes automated control very

difficult, but also creates a problem for safety concept, as automated machine will move

in the area where people also have an access to.

When controlling vehicles that work above trains, functionality is slightly different from

normal interchange area work. Trains are usually filled and emptied with a rail mounted

gantry (RMG) that has a cantilever on either or both sides. Operation can also be auto-

matic, but rails are not necessarily straight under the RMG. Also, common practice is to

load containers on trains with doors facing each other. This means, that the RMG needs

to be notably more flexible than in regular block stack. These requirements are met by

using a rotating spreader, which allows changing the orientation of container before

grounding it on train, and also picking up containers that are not parallel to RMG rails.

12

2.2.5 Summary

Container terminal operation is a co-operation of many different CHEs, which on the

software level often requires very different data handling procedures. For example, when

comparing SC and a RTG, SC has a static position of spreader in relation to its center

position. This means, that shuttle’s spreader moves only vertically, so its position in x-y

plane can be tracked by its spreader position. In RTG’s case machine center point and

spreader center do not have a static offset, as spreader is moved orthogonally to RTG’s

movement direction, and thus an offset is needed. Also, in addition to container handling

equipment co-operating in the terminal area, the area layout consists of not only roads

and containers, but also various different components and obstacles significant to any

operation performed in area, and hence crucial to be taken into account when managing

map data. When considering the data to be taken into account when creating the map

representation of the area, big differences also come from the used automation level, as

less human interaction is needed when actions are automated, but clear visual represen-

tation of events from the site is emphasized.

As an example, on a manual system driver can see whether other vehicles are coming to

its way, and also be informed by the operator, but on automated system all routes are

handled by terminal operating system (TOS). The responsibility for the safe operation is

laid on software, and operator has to be able to see clear representation on what is hap-

pening in real time. In other words, the visualization of the terminal area should realisti-

cally represent the whole area limits, obstacles, routes and vehicles in it. The main focus

of this thesis is on the visualization of the data, although compatibility with control ap-

plications is considered. If applications follow same data structures and naming conven-

tions, data can be used across different applications.

2.3 Information system

The physical controlling and monitoring container terminal takes place in control room

within the terminal area. Even if actions in the terminal were automated, functionality is

administered and supervised by an operator, using either a control station or a computer

on site. The interface of the control station consists of either ordinary computer, or special

control station consisting of displays visualizing actions and several levers and buttons to

perform actions. The presented view shows a visualization of the container terminal, sta-

tus information of vehicles, possible alarms and allows operator to control the fleet if

interventions are needed. Also live views from cameras can be included – especially when

performing tasks demanding high accuracy.

13

Figure 5: ASC control table

The terminal operator’s main task is to monitor the operation in the terminal area and to

react to abnormal situations, such as receiving alarm messages from vehicles, or faults

occurring in the system. When interference is required, or specific move required in man-

ual terminal, operator can give tasks to vehicles. In automated terminals and large termi-

nals container handling cycle is handled by terminal operating system (TOS). TOS is

responsible for high level monitoring and management of container terminal operations.

The main task of TOS considering terminal operations is to calculate the best schedule

for container operations. Optimally configured TOS minimizes waiting times and trav-

elled distance, whilst being as efficient as possible in unloading and loading vessels. TOS

can also handle tasks such as data storing, automatic gate surveillance and messaging,

billing, reporting services and more, depending on the configuration on current site. Some

known TOS suppliers are Navis, Jade and CyberLogitec (Schuett, 2011).

When TOS is considered as one and only entity controlling the terminal, it uses two in-

terfaces for communicating with container terminal equipment: Order interface and

equipment control interface. The former is used to send orders to the equipment and the

latter to send and receive status information of the equipment. (Schütt, 2011) Different

way of looking into the process is that in between TOS and physical equipment there is

software that works as a translator between TOS and equipment. This middle software

will further on be referred to as fleet management system (FMS), although different

names, such as TBA’s Terminal Equipment Automated Management System (TEAMS)

(TBA, 2015) have been given case-by-case. In this thesis, a clear separation between TOS

and FMS functionality will be made further on. FMS is responsible for the actualization

of the tasks defined by TOS, optimizing the routes and handling both automated collision

and deadlock avoidance procedures. Also error and warning handling is done with FMS.

14

CHE

CHE

EQUIPMENT

FMSTOS
 - Container management
 - Planning and scheduling
 - Order dispatching

 - Collision and deadlock avoidance
 - Routing and optimization
 - Error and warning handling

Figure 6: Container terminal information system structure

Communication between different systems can be handled in various ways. Between TOS

and FMS the separation is simple, as they can in some cases even run on the same server.

Equipment to FMS communication is handled utilizing wireless network, most often

IEEE 802.11 specifications with specific protocol or protocols defined according to local

preferences. Also other protocols have been tested, such as node based Mesh networking

which allows each device in the network to work as an access point, and thus in theory

method would provide more reliable connection. However, large amount of challenges

remain with wireless mesh network (WMN) solutions, of which not least concerning the

shortages in security. Messages can hop relatively freely between clients, which makes

end-to-end security nearly impossible to guarantee (Mogre, Hollick, & Steinmetz, 2007;

Gungor;Natalizio;Pace;& Avallone, 2008).

15

3. STRUCTURAL REQUIREMENTS

Container terminal is an environment with an emphasis on efficient operation. Especially

when talking of automated and semi-automated container terminals, the responsibility of

actualizing the logistics concept of the terminal is laid heavily on terminal operating sys-

tem (TOS) (Saanen, 2011, p. 90). Logistics concept, in this case, refers basically to the

way terminal is operated and controlled. For smaller and manual terminals, it can be dif-

ficult to find a TOS, which would fit to their needs, and which they could afford (Esoware

B.V., 2011). TOS can still be worth considering because well configured TOS can bring

clear cost reductions by improving the way terminal is operated (Saanen, 2011, pp. 90-

94). This thesis focuses on implementations using TOS, and more accurately FMS.

The operator of the container terminal is given a graphical interface which consists of

visualization of the terminal alongside with functionality to control operations in the field.

The visual data represented for the operator and the data which is used by software itself

to control are similar in many ways, although visual data heavily lacks in precision and

informational capacity in comparison. Main requirements for visual data used in standard

2D representation are geometrical information in x-y plane and the type of the object,

whereas controlling the equipment requires identifiers, safety limits, allowed routes, lo-

cation information and heights of obstacles with high accuracy.

The aim of this chapter is to give reader a more specific view on what data is required

from the container terminal when planning a map representation. Analysis is made from

the software point of view, but also required container terminal elements are introduced

with a layer-based division. The two implementation environments – graphical usage and

control solutions – are more carefully inspected in the following sections, followed by

more accurate analysis of the data structure that will be formed for container terminal

elements.

3.1 Implementation environment

As described above, there are two different application types that require different levels

of accuracy from the map information; applications providing user interface and control

software. The actual controlling of CHEs is done with information which is collected with

accurate measurements from the site. Visualizing the data to user interface is also an ac-

curate process, but it doesn’t have as hard requirements of precision as for control system

data. Information used to visualize terminal is not used in controlling the vehicles, but

merely to visualize the terminal area for user and allow user to send commands to actual

control interface. However, all obstacles and vehicles must be taken into account, as op-

erator has to be able to see events occurring in terminal area.

16

Using different data layers for different types of obstacles allows drawing them realisti-

cally on the map. Main point for graphical user interface is to offer distinct information

from the site area for operator, preferably with as little distractions as possible, whereas

control software handles movements using the information – or in other words trusts the

data to offer accurate information of CHEs’ positions in relation to obstacles.

Also virtual technologies have taken big steps forward, and it is a tempting possibility to

utilize cloud based services either instead of or alongside local systems. Cloud based so-

lutions are recognized widely in areas such as truck transportation, public transport and

mining solutions (Fleetio, 2015; GISCloud, 2015; Takada, et al., 2014; Intel Corporation,

2015). Automated container terminal environment is, however, more complex in terms

of required accuracy and real-time needs. Above referred analysis from year 2014

(Takada, et al., 2014) indicated, that the latency of cloud based services in comparison to

local stand-alone system for real time control process is still considerably higher, but also

proved that current methods are reaching better and better results in reducing them. Nev-

ertheless, discussion about whether it is desirable to use cloud based services in the real

time control of container terminal equipment instead of local system, is evidently out of

this thesis’ scope, as solutions presented and compared are all based on local solutions.

However, even though fleet management relies on real-time information, several TOS-

level tasks, such as high-level fleet monitoring, can be handled with more delays. For

such operation, cloud services can be applied. Web-based implementations of map can

be achieved either by using local maps, or any of the several application programming

interfaces (API), from Open Source (Mapbox, 2015; Wiki, 2015) or proprietary (Here

Maps, 2015; Bing, 2015; Google, 2015; ArcGIS, 2015) sources. This would allow repre-

senting several terminals around the World in the same map, although with a cost of re-

duced accuracy of the map comparing to local map solutions2. Described web-based sys-

tem would, however, be dependent on the provider of the API, which can become a prob-

lem. Also, it is to be noted, that the information can be also otherwise changed by the

provider3, although often only towards higher precision.

Following sections will discuss graphical user interfaces and control systems separately,

looking deeper into their features and requirements from the locational data point of view.

2 According to a relatively wide study in 2008 (Potere, 2008), root mean square errors (RMSE) of Google

Earth satellite images in comparison to real locations were between 5.4 and 163.3 meters depending heavily

on the country of the location under measurement. Another study, with measurements done in 10 separate

countries between years 2009 and 2011 also compared different providers, reaching RMSEs of 8.2 meters

for Google, and 7.9 meters for Bing maps (Ubukawa, 2013). Third study, that took place in 2012 in Khar-

toum, Sudan, (Mohammed;Ghazi;& Mustafa, 2013) reached RMSE of 1.8 meters for horizontal coordinates

of Google Earth.
3 According to the study (Mohammed;Ghazi;& Mustafa, 2013), the average RMSE calculated from same

16 locations changed from 3.63 meters to 1.8 meters between September and October 2012.

17

First, different implementation options of graphical user interfaces are handled, and fur-

ther on in the latter chapter control systems are defined and their functionality is de-

scribed.

3.1.1 Graphical user interface

Graphical user interface (GUI) accuracy requirements for the map data are less strict than

that of control software’s. GUI is an interface for the user to communicate with the control

system, give commands to control the fleet and to monitor the status of CHEs on the field,

amongst other tasks within the scope of FMS system. The visual representation of the

area in the GUI can vary from a simple map with plain lines to beautiful 3D representation

with realistic pictures of containers and machinery.

When designing GUI view, technical properties are often emphasized, which can lead to

usability issues. The interface easily turns out to be too complicated and hard to use,

whereas the best usability of the GUI is achieved by simplicity and clarity.

(Luostarinen;Manner;Määttä;& Järvinen, 2010) As container terminals are often very

large entities, planning the GUI to be clear and easy to use can be a difficult process. A

realistic 3D representation can easily become very unclear, or aim user’s focus away from

important events in the area. On the other hand, even though simple line based 2D repre-

sentation keeps the focus in the entity better, it cannot offer similar perception of the

heights of obstacles, machines or container stacks.

Although it can be debated whether the visualization should be done in 3D or not, base

information about the area remains similar. However, depending on the accuracy in cus-

tomizing the visual elements used to represent real life ones, more identifiers might be

needed, for example to separate different colored containers from each other. Other than

that, locations of the elements remain the same, but 3D map also requires a lot more

information in form of 3D designs of the elements. Generating the locations of obstacles

in x-y plane from a ready design model of the container terminal would be beneficial, as

it would drastically reduce manual labor from the map creation process. Nevertheless,

depending on the nature of the conversion it can be difficult to preserve all crucial infor-

mation throughout the conversion process.

Further than visualizing the map to the operator, methods used must allow the presenting

of status information and attributes of vehicles, and when needed, alarms and diagnostic

information from the vehicles. Often a separate view is solely for this purpose, but for

clarity, some of these notifications can be implemented to be shown inside the map rep-

resentation with different colors or icons. This allows the user to visually connect the

information to the source, and can thus be much more informative than a verbal descrip-

tion.

18

3.1.2 Control systems

By definition control systems are “Interconnections of components forming system con-

figurations which will provide a desired system response as time progresses.” (Farlex,

2015) Following the definition, TOS is a control system that provides outputs in opera-

tional level. FMS continues to lower abstraction level, and outputs in more concrete ac-

tions over terminal tasks. These lower level functions and control can still be distributed

to one or more smaller entities. Distributing functionality offers a possibility to divide

calculation amongst more than one computer, and makes it easier to handle separate con-

trol entities. This kind of separation is also done by Kalmar utilizing so called UniQ-

platform4, where services executing separate features are implemented. These services

can for example monitor driver actions, offer positioning information or handle steering

and controlling of a CHE unit (Kylliäinen, 2010).

In this thesis, focus is given on entities that focus on controlling vehicles, and thus the

term control system will further on used to define a system that works on low abstraction

level providing methods for controlling vehicles. In other words, control systems refer to

software that utilizes the location information of the container terminal to determine

where the vehicle can be steered without danger of collisions. As an example, a control

system handling ASC movements in its block requires exact location information of eve-

rything physical that is in the area alongside with height information of each element, as

well as virtual information of allowed areas, moves and waiting positions in order to move

safely. Although safety distances are used to cover certain error limits, the positions must

be known very accurately.

The forming of map information for control systems is a very manual process. The infor-

mation received from the design of the container terminal is practically never accurate

enough to be used as is for control systems. To get more accurate information, measure-

ments need to be done physically on the terminal area. Also, there is no one and only

method for saving the measurement information. One option is to upgrade older models

according to new measurements, but this is rarely the case, unless specifically ordered.

Because of the inaccuracies of the models and inconsistent ways of handling newly gath-

ered data, the generation of the map information is very difficult. In the worst case it

creates more manual work in inspecting and testing the generated data, than manual draw-

ing with a fluently functioning layout drawing software would.

3.2 Information structure

In the final representation of the location information, there should be a clear difference

between many types of data. In the visualization used in GUI, a drawn line between co-

ordinates (x1, y1) and (x2, y2) can represent a wall of a physical building, an edge of a

4 Formerly Cubic platform

19

container, a cable over the area or just a position of a road centerline. All of these ele-

ments, along with many more are important information when creating the map but

should all be handled differently, if shown for the user at all. Some information is not

important for control software, for example a building outside driving area, but can be

important to be drawn in GUI as it gives a better view of the area to the end user. On the

other hand some information does not necessarily need to be drawn in the map, but is

important for control software, e.g. an allowed turn of a CHE.

These separated sets of information will further on in this document be referred as layers.

In the software level, a layer representation can be achieved relatively easily, for example

by using a markup language that gives a possibility to use named tags, or using software

that has inbuilt support for layers. However, as different programs handle layers with

alternate methods, it can be problematic to transfer data from one representation to an-

other. Hence, to create an entity, where separate systems don’t need customized data, it

is profitable to use one method for all data.

The separation of data into different layers can be done in practically indefinite amount

of ways, so no one best solution can be defined. Although details can be handled in dif-

ferent ways, automated container terminals have many requirements that have to be cov-

ered. Following chapters will go through different areas of a container terminal, defining

common components and factors to be taken into account when representing them in map

data.

3.2.1 Area limits and zones

For control software it is important to know the physical limits of the allowed driving

areas. For GUI, defined area can be a bit larger, or even the whole container terminal area,

depending on the selected solution. Area is often bordered by the sea on one end, and

buildings, fences, or other constructions on the other sides. Areas without a clear border

are a safety issue and should not exist. The apron area of large container terminals can

further on be divided into cells (a grid dividing the area into smaller entities), which al-

lows faster visual navigation within the area.

Other than cells, in apron area there can also be separate zones where one can be allowed

to drive normally, slowly, or not be allowed to drive at all. Defining these areas can hap-

pen either statically when the maps are created, or dynamically, while vehicles are oper-

ated on the field, for example in case of accidents. Areas can either be defined only in the

software, or there can be components in the field, that create the limits which software

follows, such as light gates, lasers or fences.

20

3.2.2 Physical obstacles

Some physical obstacles, such as fences, buildings, lane dividers and laser poles are situ-

ated within the driving area. These constructions are important information for both, GUI

and control software. Physical objects can be considered as a layer, where no-one is al-

lowed to drive, as vehicles are rarely allowed to drive over physical elements except for

other containers. A special obstacle can define other borders for obstacles, it’s size can

be changed, or it can have other functionality, depending on the nature of the obstacle. In

this case, object should be identified from the mass of obstacles. For a normal static ob-

stacle, it is enough to define the locations of its horizontal borders with added safety lim-

its, according to safety protocols of the system. In addition to static obstacles it is possible

to see obstacles that are not defined anywhere, such as misplaced containers or wildlife

that has passed through fence. These are important to be considered when planning the

safety systems for control logics, but do not affect map creation process.

3.2.3 Gates

Gates are all over container terminal. There are gates for both vehicles and personnel –

for example reefer racks can be accessed by personnel when areas are isolated from au-

tomated actions, and vehicles can be driven to a separate service area when maintenance

is required. Due to their changing status, gates cannot be considered as a normal obstacle.

There can also be differences in the way gates are opened; by sliding them, more tradi-

tionally with a certain opening radius, or completely in software level, in case of light

gates. In software level, when movement is allowed through (gate is opened), area can be

considered as a normal road, and respectively closed or closing gates should be consid-

ered as a solid obstacle.

When talking of light gates, functionality is different than with physical gates. Where

human access is controlled with for example traffic lights and physical gates, automated

systems can use light gates, which only recognize access, as software handles movements

to area already. Light gates also can be positioned in the terminal to define areas instead

of just accessibility. For example in completely automated terminal there is an automatic

transfer area in the waterside of block, which can be enclosed with light gates. However,

the functionality on how gates are handled in software level is not in this thesis’ scope,

but gate types that act differently comparing to each other are to be recognized in the

container terminal area data.

3.2.4 Blocks

Block defines an area which encompasses the functionality of one container block and

the vehicles working in that block. In other words, block is an outline for all functionality;

rails, container positions, vehicle positions, obstacles, allowed movements, truck kiosks

21

and other information that is tied within that certain block. Each block has own configu-

ration of information, some of them have reefer positions, some are longer than others

and so on. Due to their complexity, large amount of information is saved on each block,

and it is often required that blocks are handled separately when saving their information.

For GUI, however, a lot of mentioned information can be eliminated, as presenting all

information would result in very unclear set of overlapping lines. Most important pieces

of information are ASC lanes, vehicle position and clear obstacles in the area, such as

reefer racks. Adding even container positions can result in unclear representation.

3.2.5 Rails and lanes

Rails can be of two types, physical or virtual. Physical rails are used by ASCs, RMGs or

STS cranes. Virtual rail is, instead of a trail on the ground, a line between two coordinates

used by the control system of RTG to recognize if RTG is moving straight. Functionality

of physical and virtual rails is often same or similar – meaning that RTG is driven as if it

was on physical rails, with the exception of added perpendicular position error handling.

ASC and RTG rails are also a part of a container block.

Rail information can also be used to specify certain vehicle to its lane. This makes it

possible to use offsets between the static rail and spreader, to control spreader location in

respect to the container positions. Container positions themselves are discussed in their

own chapter below. Also, lanes exist not only in RTGs case, but also each automated

CHE that moves in apron area has to have allowed movement routes. Practically this

means selected amount of horizontal lanes and allowed turns between them.

3.2.6 Container positions

Container positions are a complex variable to take into account. There are many different

lengths of possible containers, as well as some variation in height. External dimensions

of containers are defined in ISO 668 standard, albeit some variations to these dimensions

exist in area specific customary systems (GDV, 2015). In 2012, most common container

sizes were 20’ (6.058 m) and 40’ (12.192 m) in length and either 8’6’’ (2.591 m) or 9’6’’

(2.896 m) in height (CST, 2012). Less common lengths of containers defined in ISO 668

are 10’, 30’ and 45’. In addition to these, in some areas sizes of 24’, 41’, 43’, 49’, 53’ and

57’ are allowed. (GDV, 2015)

Depending on the sizes of allowed containers, positioning of the containers should be

planned carefully, and all possible positions saved. However, when designing GUI, posi-

tions are not necessarily wanted to be shown, as they easily make the screen overly full

and unclear.

22

3.2.7 Miscellaneous

When talking of a map that is shown to user via GUI, showed information is rarely strictly

limited to the physical elements in the area. In addition to these elements and vehicles,

also data such as logos, labels, descriptions or raster images can be added in the represen-

tation. In the area there are also several sensors and devices that can for example indicate

maintenance positions or limits of movement areas. Depending on the functionality of the

pieces, they can be wanted to be included as separate component in the representation.

Moreover, status information of each automated device is crucial for safe operation, as

well as information on each occurring fault or error of the vehicle.

23

4. DATA FORMAT

There is no one correct solution for saving location data from container terminals – or

anywhere else. Data of this kind can be saved in practically any format as long as the

required tools are available for parsing and/or using the data. This chapter will discuss

and compare different solutions in respect of map visualizing solutions. Firstly, binary

and text based file saving used with layout editors are compared shortly. In Section 3.2.1.2

images are shortly introduced in general level, and their usability in the previously defined

software solutions is evaluated respectively. Finally, different file formats and their prop-

erties are compared.

4.1 Binary and ASCII

Files in general can be classified in two main categories, binary and ASCII files. ASCII

file is a binary file, which consists of ASCII characters, or in other words 7-bit encodings

stored in a byte. A binary file uses all 8 bits of a byte, thus allowing a full 256 bitstring

patterns (whereas 7 bits of ASCII files only allow 128). What this means, is that ASCII

file loses one bit on every byte, and generally spends more space when saving the infor-

mation to retain the readability of it, whereas binary format strives for minimal space

usage. (UMD, 2003) However, there are good methods for compressing ASCII files, and

in a study made by Isenburg and Snoeyink, the difference between binary and ASCII sizes

was reduced on average to 1.7% using gzip compression (Isenburg & Snoeyink, 2003).

Savings of disc space in this magnitude have little importance on the process, as maps are

mainly used locally.

The first version of the terminal area information should be gathered in the beginning of

the project, as all implemented solutions should be tested comprehensively before use.

However, slight modifications are made to the coordinates of the container terminal as

project develops and more and more accurate measurements are made. Hence, infor-

mation should be saved in a format that is readable and easy to process, and that is not

tied into certain environment. Subsequently, even though binary formats offer better ef-

ficiency than ASCII files in loading, instead of having to use an editor to make changes

to files without exception, being able to modify the files also with a simple text editor can

be argued to be more profitable for the map data storing solution.

4.2 Images

Images are a tool to represent large amount of information where text is not sufficient,

which is why they play an important role when planning a GUI. A simple two-dimen-

24

sional map itself is already one type of an image, although in nowadays container termi-

nals it is possible to see even 3D-representations of the terminal. Container terminal GUI

represents information from a large area, but also should be able to show smaller details

when needed. Hence, scalability is a major factor on image format selection. Other af-

fecting factors are, as described already in previous section, file size, data readability,

modifiability and compatibility between different components.

Images can be divided into raster and vector graphics. They have a color space to repre-

sent their coloring in numeric form, and a defined structure to describe contents. Raster

graphics consist of dots (pixels), which are saved in a matrix called bitmap, whereas vec-

tor graphics describe geometrical primitives, such as points, lines and polygons. (Ferilli,

2011, pp. 28-43) The difference of the mentioned methods is very well seen when picture

is up-scaled. Where raster graphics become pixelated, vector graphics retain their shape,

as seen in Figure 7 below.

Figure 7: Upscaling of raster (left) and vector graphics

Raster images are usually used with photographs, as they would be very difficult to be

shown in mathematical primitives. When talking of geometrical shapes and directions, as

in zone, lane or building modeling in container terminals, using vector data is a natural

choice. Raster data can, however, be used alongside of vector data, if more complex pho-

tos or pictures are wanted to be shown to user.

4.3 File format comparison

Based on above mentioned analysis, two advantageous qualities of the file format for

projects handling map data are its text based nature and capability of representing vector

data. This chapter focuses strongly on formats filling these two qualities. Example code

used on each section defines fictional values for a terminal, defining an identification

number, name, origin coordinates, two obstacles and one lane. The purpose of presented

examples is to demonstrate the properties of each format.

4.3.1 XML

Extensible Markup Language (XML) derives from Standard Generalized Markup Lan-

guage (SGML). It was developed by XML Working Group, organized by World Wide

25

Web Consortium (W3C) in 1996, to fill the following ten design goals defined in the

W3C Recommendation of XML 1.0:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance. (W3C, 2008)

In other words, XML was developed as a markup language that serves general purpose.

Hypertext Markup Language (HTML) has limitations concerning separation of content

and presentation, which was also a motivation for the development of XML. Opposite to

HTML, XML offers clear separation of data descriptions, data and their representation,

and allows the definition of user-defined data tags, data types and structures.

(Wilamowski & Irwin, 2011, pp. 56-6 - 56-10) XML can be validated with either XML

Schema Definition Language (XSD) file or Document Type Definition file (DTD).

There are few reasons why you should select DTD over XML Schema, such as the need

for overriding definitions easily, or if backwards compatibility is an issue (Gulbransen,

2002, pp. 50-53). However, DTD does not allow inheritance, scoping or datatyping, and

unlike XML Schema, DTD documents do not follow XML syntax. Due to these limita-

tions DTD documents are not discussed further in this document.

As mentioned previously, XML Schemas are themselves well-formed5 XML documents.

This is a considerable advantage, as same XML aware applications that are used for XML

documents can be used to parse and process XML Schemas. In addition to simplicity of

5 Well-formed XML-document is a document that follows correct XML syntax specified in (W3C, 2008).

Valid XML document is well-formed and conforms to a document type definition. (W3Schools, 2015)

26

document handling, datatyping allows XML Schemas to create constraints of elements in

the XML document to be in a specific data format. (Gulbransen, 2002, pp. 15-16)

XML syntax is defined by World Wide Web Consortium (W3C, 2008). XML bases on

named tags that allow attribute definitions. Tag names are encompassed between angle

brackets (‘<’ and ‘>’). Attributes are defined in starting tag, separated from the name and

each other by space character (one or more). Ending tag is defined with a slash character

before the tag name. An example of the syntax simulating a definition of a container

terminal with an origin and two separate zones is shown below:

Program 1: XML example

<?xml version="1.0" encoding="UTF-8"?>
<root>
 <name id=1>Container Terminal</name>
 <origin>
 <x>0.0</x>
 <y>0.0</y>
 </origin>
 <zones>
 <zone>
 <xMax>1.12</xMax>
 <xMin>1.11</xMin>
 <yMax>1.22</yMax>
 <yMin>1.21</yMin>
 </zone>
 <zone>
 <xMax>2.21</xMax>
 <xMin>2.11</xMin>
 <yMax>2.22</yMax>
 <yMin>2.12</yMin>
 </zone>
 </zones>
</root>

XML is also used as a base for further development of file types. The current standard for

vector graphics defined by W3C is Scalable Vector Graphics (SVG). SVG standard was

created in 1999 and it is currently widely supported by major web browsers, excluding

Internet Explorer. SVG defines basic mathematical shapes (rectangle, circle, ellipse, line,

polyline and polygon), text and graphical elements. SVG also supports animation defini-

tions and added metadata. (Ferilli, 2011, pp. 43-45) All SVG files are pure XML, meaning

that SVG file is also a well-formed XML-file. Subsequently, same XML parsers that are

used for self-defined XML files can be used to process SVG files.

Also other XML based data formats have been developed, for example geography markup

language (GML). GML is defined in the Open Geospatial Consortium (OGC) to express

geographical features. (OGC, 2015) Later on Google developed keyhole markup lan-

guage (KML), which derives elements from GML 2.1.2. KML was originally created to

represent geographical data in Google Earth, but is currently used more widely in geo-

graphical information system (GIS) applications. (OGC, 2015) Geographical information

27

systems, as well as data types and structures used in them are more accurately described

in following section.

4.3.2 GIS

ESRI (ESRI, 2015) describes geographical information systems as follows: “GIS soft-

ware is designed to capture, manage, analyze, and display all forms of geographically

referenced information. GIS allows us to view, understand, question, interpret, and visu-

alize our world in ways that reveal relationships, patterns, and trends in the form of maps,

globes, reports, and charts.” GIS is a very wide description of systems that encompass

information about locations on the earth and attribute data that relates to defined locations.

GIS data consists of both vector and raster data. Vector data is divided into three types:

polygons, lines/arcs and points. Points are most commonly used to represent discrete data,

points of interest. Linear features, such as roads, are represented with lines and arcs. Pol-

ygons are commonly used to represent areas and geographic features. Raster data (grid

data) can be used to represent surfaces. Raster data can represent for example temperature

and elevation measurements (Morais, 2000)

4.3.3 JSON

JSON, or JavaScript Object Notation is a data-interchange format basing on JavaScript

programming language, although not being dependent on it. JSON was developed by

Douglas Crockford and its structure is defined in the standard ECMA-404 (ECMA, 2013).

JSON was formed basing on the object literals of JavaScript programming language –

which is also known as ECMAScript. The definition of JSON and its core functions are

defined in ECMA-262 standard (ECMA, 2015, pp. 469-475). Most notable for basic us-

age of JSON are functions parse() and stringify(), that allow altering between ASCII-

form and JSON data format.

In the standard ECMA-404 JSON is defined as “a text format that facilitates structured

data interchange between all programming languages” (ECMA, 2013, p. ii). In the same

document it is also described that due to the simplicity of JSON notation, it is unlikely

that it will ever change, making JSON a very stable notation by nature. It is to be noted,

though, that JSON does not have a direct support for cyclic graphs and it is not intended

to be used with applications that require binary data. (ECMA, 2013)

JSON object consists of unordered name-value pairs encompassed between curly brack-

ets (‘{‘ and ‘}’). Name and value are separated from each other with colon (‘:’), and name-

value pairs from each other with comma (‘,’) (see program2 below). Name-field is a string

of text and value can be string, number, object, Boolean value, null or an array of previ-

ously mentioned values. (ECMA, 2013)

28

Program 2: JSON example

{
 "id": 1,
 "name": "Container Terminal",
 "origin":{
 "x": 0.0,
 "y": 0.0
 },
 "zones": [
 {
 "xMin": 1.11,
 "yMin": 1.21,
 "xMax": 1.12,
 "yMax": 1.22
 },
 {
 "xMin": 2.11,
 "yMin": 2.12,
 "xMax": 2.21,
 "yMax": 2.22
 }
]
}

JSON bases on universal data structures, and as mentioned before, is supported by all

major programming language. JSON is often compared to XML due to their similarities,

although when compared as is, JSON is more lightweight solution. Similarly to XML, it

is also possible to define a JSON Schema to create constraints to the structure of the JSON

document. Similarly to XML Schema, also JSON Schema follows the structure of JSON

data. (Internet Engineering Task Force, 2013)

Similarly to XML, JSON has been used to create geographical markup languages, such

as GeoJSON. GeoJSON is described to be a format for encoding a variety of geographic

data structures. Loyal to the GIS information structure, GeoJSON describes Point, Lin-

eString, Polygon, MultiPoint, MultiLineString, and MultiPolygon types, but allows addi-

tional properties be added into geometries using Feature-objects.

4.3.4 AutoCAD files

Computer-aided design (CAD) files are generally used in plan designing or drafting. Au-

todesk, Inc. has created a proprietary AutoCAD Drawing (DWG) format to represent ge-

ometric information for technical tasks, such as architecture, industrial production and

prototyping. Specification of DWG format was never made public, so Autodesk pub-

lished another format, AutoCAD Drawing Interchange File (DXF), which serves the same

purpose. The latter is often preferred, as there are many open-source programs that can

operate with DXF files, and thus purchasing a license for AutoCAD software is not nec-

essarily required. (Fernández Caramés, 2012)

29

When a container terminal is being planned and implemented, CAD files are a de facto

standard on the terminal area designs. These files can be used in one form or another to

aid in the forming of locational data for either GUI representation or control systems for

vehicle control. The structure of DWG-files, as mentioned above, is not public infor-

mation, so only DXF-files can be analyzed further. DXF-files following the newest stand-

ard of 2014 consist of following 6 sections:

1. HEADER

2. CLASSES

3. TABLES

4. BLOCKS

5. ENTITIES

6. OBJECTS (AutoDesk, n.d.)

HEADER section defines general information of the drawing, such as system variables.

CLASSES section saves application-defined classes that are used later in BLOCKS, EN-

TITIES and OBJECTS. TABLES section encompasses several different symbol tables

that are used to describe the information saved in the document. BLOCKS section con-

tains block definition and drawing entities, and ENTITIES section again refers to blocks,

itself containing graphical objects. OBJECTS section contains all nongraphical infor-

mation of the drawing. (AutoDesk, n.d.) Due to the complexity of the DXF file structure6,

it is not practical to present an example of this file type in this document. However, whilst

DXF files themselves are relatively unreadable as text, due to the popularity of them,

there are several tools to process and/or to convert them to other formats. This makes it

possible to use AutoCAD or similar program to create the plan of the terminal, and later

process the information into another format for further use.

4.3.5 Summary

Container terminals often rely heavily on AutoCAD files when they are planned, but Au-

toCAD files (DWG/DXF) themselves are very unclear representation of data. If Auto-

CAD files are to be used, any modifications to the files require an editor, unless file is

transformed into another, more readable format. However, efficient use of AutoCAD files

can reduce the iterativeness of the map creation process, as most of the required locational

data is often already available in these models.

GIS information in general is more suitable for more wide area map information handling

than describing a specific container terminal area. This is due to the fact that GIS data

does not support many basic geometric formats, such as circles, ellipses or rectangles.

6 Drawing of two zones as described in examples of both JSON and XML representation renders to over

10 000 lines of text when it is saved into DXF (2013) format.

30

When comparing a representation of circle translated into SVG or GIS formats, this dif-

ference is seen clearly. SVG allows to describe the form as a circle or as an ellipse, using

geometric information of its location and radiuses:

<ellipse stroke="rgb(0,127,0)" rx="1.15885" ry="1.15885" transform="trans-
late(1.15885,1.15885) rotate(0.00)"/>

On the contrary, GIS formats like GML or GeoJSON break the perimeter of the ellipse

into points, and represent it as a group of lines (see Appendix 1 and Appendix 2). The

transformations to each representation are made from the same exact model, using soft-

ware called FME by Safe Software Inc (Safe, 2015).

The most usable markup languages for saving locational information for described usage

are XML and JSON. If data structure is created by hand, the selection between XML and

JSON can be argued to favor either side. If structure is generated by another method, the

availability of tools suited for the application make the most difference in the proficiency

of development.

31

5. SOLUTIONS OF KALMAR

Kalmar both offers and uses several solutions utilizing data to represent locations in the

terminal area. Often this information is also used in applications visualizing the data for

user in some form of GUI. The GUI can be used to just edit data, especially when data is

created for control system, or as a part of a monitoring or control system. Currently these

solutions rely heavily on the use of XML. Format of the documents is defined according

to the needs of the application. In this chapter, some solutions of Kalmar are inspected as

an example of currently utilized solutions. An abstract level description of these solutions

will be given, and software usage and functionality are described in general level.

5.1 Kalmap

Kalmar offers a solution for steering Kalmar RTG’s, called SmartRail. SmartRail saves

the data of RTG block in XML form. The older software that handled RTG-related map

data creation, Kalmap, is now a legacy software. It was officially used in 2000-2013, but

is still used for many terminals, as the terminal architecture utilizes older components.

Kalmap saves data in ASCII-form, practically as lists of coordinates. Each coordinate is

separated from each other with a space-character, and each list represents either a single

block or a group of blocks. This means that the data is readable, although relatively diffi-

cult to fathom. Kalmap saves coordinates of container blocks in .map format. To create

the files, coordinates of the containers in two adjacent corners of each block and the spac-

ing between them are given to software, and the center point of each container in the block

and its rotation are calculated by the software. Rail positions are then added according to

measurements done in the terminal. (Kalmar, 2015)

However, data collected with this method was never used in system level user interface

implementations including visualization of the area, but only in the graphical user inter-

face of the planning software itself (see Figure 8). As seen from the picture, visualization

is done very simply by adding squares to represent containers.

32

Figure 8: Kalmap block visualization

Because the control computer used in these systems is no longer produced, an update for

these systems was required – and thus there is no longer a need for such implementation.

In the updated system a different computer is used and data is converted to XML form,

which makes it a lot more readable. However, even though data type has changed, control

logic has been left unchanged, and original data is mostly still produced with Kalmap

software.

5.2 MTS

MTS (Marine Telematics) is an application created to present real-time data from equip-

ment and other sources to deduce activity at a marine terminals. Application offers vari-

ous surveillance options for manual equipment. Software does not function as TOS or

FMS, but offers user a graphical user interface with tools for collecting data from various

operations on the field (see Figure 9 below). The application was created with C++, using

an environment called Embarcadero C++ Builder, by the team in San Jose.

33

Figure 9: MTS SmartMap, zoomed view

Software uses Cartesian coordinate system in feet, converting all external information

into internal format. Positions in the field are represented using a WMF (Windows meta-

file format), which is generated from an Autocad-model. However, this model is not used

for functional purposes, but merely as a background image. In the process of exporting

DXF-file from Autocad into WMF, some accuracy is reported to be lost. Any business

logic that requires locational information are defined as polygons and overlaid on the

map. These polygons and their attributes are defined using a proprietary tool. Vehicles

are shown with rather simple representations according to the vehicle type, as seen in the

picture above.

5.3 UniQ GUI, FV

Fleetview is a graphical user interface mainly intended for monitoring purposes. Software

is offered as a part of Kalmar’s SmartFleet package. Fleetview offers several views for

the operator, from machine specific views to real-time map representation of the container

terminal. When required, software can also be used to send commands to fleet, which can

be compared to FMS functionality. Software was created by Kalmar team in Tampere,

Finland, using a relatively old version of QT Framework as a development environment.

Development was done mainly with C++.

34

Figure 10: Fleetview, Fleet overview

Figure 11: Fleetview, Operations overview

The map that is shown in Fleet overview (see Figure 10) is built together in several phases.

An AutoCAD file of the terminal is used as a base, from where points of interests are

collected using a special AutoCAD plugin. This plugin saves a selected point in separate

Microsoft Excel file. When all of the required points are collected in Excel file, they are

35

transformed into XML file format, either by hand or using a separate, self-written script.

This file is later parsed into the image shown in Fleetview.

5.4 HTCS Layout Editor

HTCS Layout Editor is a program that works as a tool that allows user to form lanes and

allowed turns for shuttle and straddle carriers. Software itself was written in Java by ACT

(Advanced Cargo Shipment) branch of Kalmar in Netherlands. Software gives a tool to

plan the apron area of an automated container terminal. As told above, software is used

to plan allowed routes for shuttle or straddle carriers that handle movements in the apron

area. Correct locations of the lanes are physically measured in the container terminal,

after which the places are manually recorded to the software. Later, user has to define

possible curves that the vehicle can drive. Software is after that able to calculate fitting

curves between each of the lanes, and also flatten the curves, if necessary. Steepening

curves is not allowed, as it would make it possible to cross the physical limits of vehicle’s

turning radius. Software would also allow planning complete routes instead of curves and

straights, but in case of automated shuttle or straddle carriers, it is desirable to have free-

dom of movements.

Figure 12: HTCS Layout Editor

As all the measurements are taken from actual world, automating the drawing process is

not really possible. Software allows, though, using an AutoCAD model file (interchange

format, DXF) as a background while drawing. This gives a visual reference for the loca-

tions of the lanes. Once lanes and curves are configured, they can be exported into a file

called layout.export. The generated layout file is written in XML, and usable as is by

other software.

36

5.5 ASCCS Layout Editor

ASCCS stands for Automated Stacking Crane Control System. ASCCS is a control sys-

tem that handles all ASC functionality and information regarded to it. In other words,

control system implements a specific database for each block stack. This database holds

information about each possible container position of each container size, all obstacles in

the area, maintenance positions, waiting positions, other defined areas, reefer position and

allowed movements that belong to the scope of the concerned block stack. Information is

effectively used to handle ASC movements within the block.

ASCCS Layout Editor is software that is used to save all the information mentioned

above. The tool offers simple but relatively efficient interface for making modifications

to the block data, as seen in Figure 13 below. For example, program offers tools specified

for repetitive adding of container position with defined spacing, and possibility to create

gaps between them without breaking the layout, which is especially handy when adding

reefer positions in the block.

Figure 13: ASCCS Layout Editor

When block layout has been created, it is generated into several XML files, covering all

above-mentioned data. Data can then be utilized in ASCCS to perform automatic move-

ments of ASCs on site. Current data format consists of information about areas, cranes,

layout and predefined jobs, where cranes and areas files define the types of cranes used

on the stack, and the areas defined within the block. Layout file contains most of the

information of the block, including container positions and allowed movements between

positions.

37

6. ALTERNATIVE SOLUTIONS

Solutions regarding forming a map from an area of interest are not limited in harbors.

Different applications naturally have different requirements, and thus a solution from an-

other environment is rarely fully applicable to harbor environment. Nevertheless, simi-

larities in layout creation methods can be recognized in many areas. Some Flexible Man-

ufacturing Systems (FMS) in industrial environment, that use Automated Guided Vehi-

cles (AGV) to move pallets or materials, are for example very comparable to harbor en-

vironment by their functionality (Jawahar;Aravindan;Ponnambalam;& Suresh, 1998).

Freight terminal applications on airports or on rail stations are good examples of similar

processes as well (Günther & Kim, 2005, s. XI). Some differences occur in both, as harbor

systems spread out in large areas outdoors, while FMSs utilizing AGVs strictly work in-

doors. Also the used AGV type is very different, as harbors utilize flat vehicles designed

for container carrying, whereas AGVs used in FMS can have a multitude of different

designs. The most traditional industrial AGV has a close resemblance to forklifts.

AGV scheduling in FMS is similar to AGV system used in harbors. There is a positioning

system to create a network of allowed movements for AGVs. If an object needs to be

moved, closest free AGV will follow the route to reach for it, and handle required opera-

tions. In FMS systems, as in harbor systems, there is often an operator who supervises the

actions via a remote interface. This interface can show in real time where AGVs move,

where they are needed and so forth. The creation of this interface is a very similar process

to harbor’s corresponding system. In the following section, few selected different ap-

proaches from companies are presented. The latter section focuses on deliberation of other

solutions that can be derived from the ideas in and outside of Kalmar.

6.1 Other companies’ solutions

To create described user interface map, it is not often seen that the whole map would be

created from scratch without using separate models. However, as described earlier, when

creating more accurate models, as for the controlling of the vehicles, it is often required.

Also, TBA has developed an own, proprietary tool to create the map used in their fleet

management system TEAMS instead of using models. TBA is a known provider for har-

bor equipment and software. The software allows replaying situations on the field in 3D,

which is a very handy functionality in situations, where 2D representation is not sufficient

– but also makes the data structure requirements more complicated. Unfortunately, the

information structure, format and methods used in the process are not revealed by the

company, so solution cannot be efficiently compared to Kalmar solutions.

38

Several FMSs utilizing AGVs work using CAD models as a base. Examples of these are

a solution called Q-CAN from Savant and E'zmap by Egemin. Q-CAN AGV System so-

lution name comes from “Quick Configurable AutomatioN”. The solution bases on Sa-

vant’s software that allows user to import a CAD model of the environment, after which

allowed routes can be added directly into it. On hardware level the system utilizes Sa-

vant’s magnetic sticker based navigation for the AGVs. (Savant, 2012) Egemin E'zmap

functions on a basis of an “AutoCAD-based Guidepath Design” concept. What the con-

cept means, is that the virtual path given for AGVs can be altered and expanded using

AutoCAD. E’zmap provides the tools to verify the consistency of the Guidepath and vis-

ualize potential problem areas. It also allows user to modify their layout if needed. How-

ever, to fully modify the map file, AutoCAD software is required. (Verhoeven, 2015)

A very different approach has been taken by Tideworks. Tideworks offers solutions for

container terminals. Their user interface is designed to visualize the movements tracked

by any other third-party system such as fleet management system. Visualization is done

completely in 3D, using a separate graphics engine from gaming industry. Implementa-

tion of the map itself is made utilizing Adobe Flex framework, to allow cross-platform

functionality (Adobe, 2015). Tideworks offer their visibility tool, going by name Termi-

nalView 2.0, as a separate component that offers standard application programming in-

terface (API) for connectivity between applications. (WorldCargo, 2013)

6.2 Other methods

Some implementations of FMSs, as well as for example different mining solutions

(Carlson, 2014; Huber & Vandapel, 2003; Xing, Peihuang, Jun, Xiaoming, & Dunbing,

2013) apply so called simultaneous localization and mapping (SLAM) method, either

alone or in combination with other solutions. SLAM is a widely known Kalman filter

approach for localization. The method bases on attached scanners on the vehicle, which

scan the surrounding area, and while the vehicle moves, create a virtual representation of

the area. However, if the environment changes repeatedly, this method is prone to errors,

in addition to which, the process of mapping itself is relatively slow. Also, method poorly

recognizes different elements during mapping – and due to these reasons, SLAM method

is not applicable for data collection in container terminals. However, similar environment

surveillance is needed to recognize unexpected objects around the vehicle in real-time

while operating with the vehicles.

Model based solutions are more adequate in container terminal areas, as the basic struc-

ture of the area is static, and most often only containers are moved. As mentioned before,

AutoCAD files are very often used to create a model of the surroundings. These files can

further on be used in various ways. In some occasions, AutoCAD files are not available,

and then data collection method is prone to be more manual. However, when models of

the area are available, information can be collected in various ways. Kalmar solutions

already described a possibility of using the model as a background image for a layout

39

editor. This is highly visual method that helps user to keep track on where in the area the

changes happen. Other method described on Fleetview’s case is where points of interest

are selected and then transferred into the required structure. These both methods, though,

require a lot of iterative work with an already existing model.

Another possibility would be to parse information straight from AutoCAD file. This

method is not currently used by Kalmar and would require additional efforts in keeping

AutoCAD models of the areas updated. Also, the accuracy of the models would need to

be refined to match the requirements set for the end solution. AutoCAD offers instructions

for creating an own reader and writer for the interchange format files (DXF) (Autodesk,

n.d.). Another option is to use an already made, open source parser for parsing AutoCAD

files. If an open source parser is used, testing is required to make sure parser supports all

required functionality and does not distort the accuracy of the model. Using either self-

made or open source parser would allow reading the data and saving it into database – or

practically any other form. Saving data to another file type than DXF can be beneficial if

small changes are wanted to be done, as DXF file requires a specific program to edit files,

or alternatively parsing of the whole file back and forth to another form.

Instead of handling the parsing of an AutoCAD file in a separate program, this step can

be skipped by using a converter to save data into different form. Many programs exist

with wide variety of possible formats. Using an already written and tested program can

reduce the cost of the process, as developing is already done, as well as testing to some

extent, although suitability for the current problem is to be defined. When selecting the

end format, as described in Chapter 4, there are several formats to consider. Out of these,

this thesis focuses mostly on XML and JSON. Using a GIS models is also excluded, as it

would become difficult, if round figures are needed to be modeled, as summarized in

Section 4.3.5.

Autodesk has also published a developer’s guide for their .NET API (Autodesk, 2010).

The AutoCAD .NET API covers the usage of Microsoft Visual Studio 2008 as an envi-

ronment, and the languages Microsoft Visual Basic and Microsoft Visual C#. This allows

user to use .NET framework to extract, create or modify objects in drawing files. In other

words, mentioned languages can be used to automate process of collecting data from Au-

toCAD file to database.

40

7. SOLUTION

As divided previously, control systems and systems that are used in end solutions as

graphical user interfaces require different levels of accuracy. The structures required for

control system are stricter and usually encompass a smaller entity than the ones used for

monitoring purposes. This is seen in Kalmar’s solutions, where for example ASCCS lay-

out editor is used to handle ASC specific location data and HTCS layout editor creates

models for Shuttle or Straddle carriers. Control system information is also possibly only

shown on the editor software where data is modified, and thus serves a very different

purpose than that of GUIs of end products, which are shown to user while actual opera-

tion. When inspected, current control system solutions of Kalmar are well developed in

their fields of focus. Other than the improvement of the software themselves, a focus

could be set towards unifying solution that would serve as a middleware between the

different software. What comes to GUI creation process, current methods used by Kalmar

are hardly automated. AutoCAD is used to some extent, but the actual work in data model

creation is done by people.

The final solution presented in this thesis is to reduce data in AutoCAD model to represent

only the information needed in the GUI solution, divide it into accordingly named layers,

and transfer it into SVG format preserving the coordinate system that is used in the orig-

inal model. The selected software for this is called FME from Safe Inc. The reason FME

was selected is that it was the only software of the many tested that could process big

enough amount of data into SVG format with a reasonable amount of processing capacity

while still preserving the layer structure.

Several other programs were tested, which are all listed in following section. In the next

section, also the selection process and testing of the programs is described more closely.

Later on, Section 7.2 will describe the final selected method, and latter sections will give

a closer look into its testing, performance and price.

7.1 Selection

There are many programs that are capable of transforming data between DXF and SVG

formats. In this thesis, programs listed below were tested:

- FME from Safe Software Inc.

- Inkscape, free and open source software

- QCAD, open source software

- Illustrator CC from Adobe Systems

- Easy CAD to SVG Converter from Benzsoft Corporation

- DWG to SVG Converter MX from DWG TOOL studio

41

- Any DWG to SVG Converter from AnyDWG Software, Inc

- Command line tools named dxf2svg-inkscape from Matthew Squires

One additional software was tested, but it is excluded from this thesis without further

mentioning, as its installation process entailed advertising malware. Selection of the final

solution from all programs was done with ad hoc testing, originally with relatively de-

tailed AutoCAD file, to test both, the performance considerations of the software, and its

layer handling methods. Selection of the software was eventually very straightforward,

as most of the programs were not able to handle large files. Capability of handling large

files is required as container terminals can have tens of ASC blocks surrounded by details.

Second important area in the testing was layer handling. SVG offers an internal structure

for layers, with a tag “<g>”. The abbreviation comes from the word “group”, and like

layers, it means a group of elements. Unfortunately, only few of the listed software make

use of layers defined in AutoCAD, but destroy the structure and group objects according

to own strategy. However, instead of grouping, another possibility would be to use colors

as an identifier. Each drawn line has a HEX code to save the color, which is preserved

from the original picture. Using predefined HEX codes for layer elements, same structure

would apply. This method is, though, prone to errors and leads to more work adjusting

the AutoCAD model.

7.2 Conversion process

This chapter describes the process of converting AutoCAD model to SVG model using

FME by Safe Software Inc. The conversion process is described verbally and pictures are

added for clarity. Conversion process happens in two phases; modifying the original Au-

toCAD model of the container terminal, and later using FME software to complete the

transformation to SVG file format. Step-by-step actions required to be performed with

FME are separated in user manual provided as an appendix (Appendix 3).

The original AutoCAD model is expected to implement much more details than is re-

quired in the end result. Often also unnecessary components are included in the model.

Images below (Figure 14 and Figure 15) show examples of these two cases.

42

Figure 14: Modification example, removable complex elements

The two examples above represent objects that are not needed in the final presentation.

The picture on the left presents a stopper in the end of ASC lane. As the stopper is inside

a wider area of obstacle, it can be removed from the model. The main information from

stopper is the outline of the surrounding obstacle, and possibly its height. The picture on

the right is drawn as a figurative design of the vehicle. Components such as vehicles are

not static elements in the container terminal area, and are thus not required in the end

solution. If these unnecessary elements are desired to be kept in the original model for

clarity reasons, another option is to add them in a new layer, which is later excluded from

the transformation process in FME.

Similarly, as with the above examples, in Figure 15 below, an image of a laser pole is

presented. For the GUI, main information needed of the laser pole is its outline, and all

details inside it are irrelevant, and can thus be removed from the model. The original

picture is on the left, and modified on the right.

Figure 15: Modification example, laser poles

Depending on the model, a large amount of either unnecessarily accurate information or

information outside the limits of the area of interest can be deleted from the model. The

required area is also often smaller than the original model of the whole terminal. For

43

example the landside of the terminal is less used in terminal management solutions, as

described in 2.1.3.

After the data is reduced to cover only the required information, layer naming should be

done to separate different types of components from each other, as explained in 3.2. If

more information is later on required on some layer, in layer properties more variables

can be added. Also, FME software allows the naming of the layers in the conversion

phase, but it is possible to import the layer name of AutoCAD model, and thus either of

the methods can be used effectively.

Next, and the last step to do with modifying AutoCAD file, is to add the origin point (x=0,

y=0, z=0) to the model. It is assumed that the origin point is set so that all the locations

in the area are in the positive side of the coordinate axes. This step, although slightly

unusual, prevents software from scaling the coordinates down to only the image area, and

preserves the exact coordinates that are used in AutoCAD model. Point can be added in

extra layer and deleted from the model after the conversion is done with FME.

In FME software, to achieve wanted transformation, reader and writer must be selected

accordingly. Also, precision setting of writer will need to be defined separately, if the

container terminal is large, as more accurately described below in Section 7.3.2. Layers

for the end result can then be manually modified, or added straight from the AutoCAD

model. Layers between AutoCAD and SVG representations are then connected to each

other with lines in the main window of the software. These actions are instructed in detail

in appendix 3. After this, conversion can be done and SVG file will be created in the

location specified by the user.

7.3 Testing and evaluation

Testing of the transformation was divided into three sections; functionality, accuracy and

performance. Firstly, a layer was added into the used model, where lines were drawn

inside the container terminal area, to validate the consistency of original and resulting

coordinates. Secondly, when functional configuration was found, accuracy was tested by

selecting an actual object from the original model and comparing resulting coordinates

with different precision settings. Finally, transformation with previously defined settings

was done using a big model, to test if same method can be used for large terminals.

Used model is from a real, although relatively small container terminal. Functionality and

accuracy testing were done with a greatly reduced file, in which only few key areas were

left, all complex figures were deleted and layers reduced to very minimum. This was done

to allow fast transformation – and to assure the efficiency of the testing. For performance

testing, the main idea was to find out if software is capable of handling large amounts of

data. For this test, the original model was left as is. This means that the model has detailed

44

components and areas that would in real case be left out, but for simulating the load of

much larger, although simpler file, the model is adequate.

7.3.1 Functionality

Testing of the end results of the transformation was done firstly by adding separate control

figures in the original model in a layer called “CONTROL_POINT”, and comparing re-

sulting coordinates with the original. This method was used until a functional configura-

tion was found. Added control points were three lines, from point (50, 950) to (50, 970),

from (700, 1050) to (700, 1030) and from (600, 580) to (620, 580). Without adding the

origin point to the model, coordinates were distorted rather much, and these three com-

parison lines were transformed into following:

<g id="CONTROL_POINT" >
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M
688,485.496 l 0,-20 "/>
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M
588,15.4964 l 20,0 "/>
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M
38,385.496 l -7.10543e-015,20 "/>
</g>

When the origin point was added in the model, coordinates were not distorted, and all of

the lines were as they were originally positioned in the model.

<g id="CONTROL_POINT" >
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M 700,1050
l 0,-20 "/>
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M 600,580 l
20,0 "/>
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M 50,950 l
-7.10543e-015,20 "/>
<path fme:autocad_layer="CONTROL_POINT" stroke="rgb(255,127,0)" d="M 0,0 m -
0.47599,-0.47599 l 0,0.95198 0.95198,0 0,-0.95198 z "/>
</g>

Only noticeable detail in this result is the transformation of -7.10543e-015 of the third

line, where transformation should have been 0. This can be explained with imperfect set-

ting of the line in AutoCAD which lead to rounding error. However, as the transformation

in real life is some femtometers, the number is insignificant.

7.3.2 Accuracy

Accuracy was tested with a real rectangular object from the original model, chosen far

from control lines. The corner points of the building in AutoCAD model were following;

(644.5875, 868.9831), (644.5938, 791.3831), (634.5938, 791.3823), (634.5875,

868.9823). Same building in SVG format was modeled as follows:

45

<path fme:autocad_layer="BUILDING" stroke="rgb(255,255,0)" d="M
644.588,868.983 l 0.00627539,-77.6 M 634.588,868.982 l 10,0.000808684 M
634.594,791.382 l -0.00627539,77.6 M 644.594,791.383 l -10,-0.000808684 "/>

In the format, lines are modeled as line starting points marked with the letter “M” and

transformation from that point, marked with letter “l”. By default, FME applies 6 signif-

icant digit precision. If terminal area is very large, rounding errors in the scale of milli-

meters can occur. Above shown building measurements use default parameters, and the

building outline can be shown in four lines named as A, B, C and D below.

A = (644.588, 868.983), (644.59427539, 791.383)
B = (634.588, 868.982), (644.588, 868.982808684)
C = (634.594, 791.382), (634.58772461, 868.982)
D = (644.594, 791.383), (634.594, 791.281191316)

When these four lines are rounded in 6 digit precision, errors of one digit occur in third

decimal:

A to D = (644.588, 868.983), (644.594, 791.383)
B to A = (634.588, 868.982), (644.588, 868.983)
C to B = (634.594, 791.382), (634.588, 868.982)
D to C = (644.594, 791.383), (634.594, 791.281)

In this case, as coordinate unit is meters, errors of one millimeter occur. Bigger areas than

one kilometer can result errors in precision of centimeters. Ergo, if container area is very

large, default precision may not be sufficient, and it has to be altered. Safe precision to

use is 8, as it allows transformation with rounding errors of millimeter precision on ter-

minals less than 100 kilometers in length. With precision setting 8, results of the same

building are following.

<path fme:autocad_layer="BUILDING" stroke="rgb(255,255,0)" d="M
644.58753,868.98306 l 0.0062753884,-77.6 M 634.58753,868.98226 l
10,0.00080868369 M 634.5938,791.38226 l -0.0062753903,77.6 M
644.5938,791.38306 l -10,-0.00080868416 "/>

Rounded to 8 digits precision: Similarly, building can be defined in four lines, from A to

D.

A to D = (644.58753, 868.98306), (644.5938053884, 791.38306)
B to A = (634.58753, 868.98226), (644.58753, 868.98306868369)
C to B = (634.5938, 791.38226), (634.5875246097, 868.98226)
D to C = (644.5938, 791.38306), (634.5938, 791.38225131584)

And when results are rounded in 8 significant digits, it can be seen that errors may occur

in fifth decimal, which in this case means 0.01 millimeters.

A to D = (644.58753, 868.98306), (644.59381, 791.38306)
B to A = (634.58753, 868.98226), (644.58753, 868.98307)
C to B = (634.5938, 791.38226), (634.58752, 868.98226)
D to C = (644.5938, 791.38306), (634.5938, 791.38225)

46

7.3.3 Performance

Performance testing was done on a laptop computer with Intel® Core™ i7 processor i7-

2620M and 8 GB of memory in Windows 7 Professional (64-bit) environment. The con-

tainer terminal model was an original model which was used without reducing data from

it. In comparison, with the greatly reduced model, which was used in functional and ac-

curacy testing, FME created 19 987 features as an output, whereas with the original file

without modifications the same amount was 829 081. FME was able to transform the file,

and create an output in 8 minutes and 35.4 seconds without any issues. Maximum memory

usage was 4.03 GB out of the available 7.72 GB, which is well in reasonable limits. With

other tested solutions, memory usage proved to be an increasing problem when file size

increased.

7.4 Pricing

FME Desktop software is sold by Safe Software Inc. For the usage defined in this thesis,

the cheapest license called FME Professional is sufficient. After 30-day testing period,

the price of the software, as requested from the company, is either fixed upon each license,

or so called floating license, where cost is defined by the amount of concurrent users. One

fixed license costs 2 250 USD. Floating license costs 6 400 USD for the first user, and

2 100 USD for each additional user. Included in the price are software updates and

maintenance for the first year, after which they will cost an extra 20% of the standard list

prices.

7.5 Summary

In actual projects, a project engineer’s responsibility is to go through the original Auto-

CAD model of the container terminal, delete unneeded information, restructure the layers

to match the wanted result, add origin point and go through the transformation in FME

software. After these steps map data is available in SVG format and can be used in further

solutions. FME software itself is relatively expensive, but also offers good licensing op-

tions.

In short, the only adequate solution of the tested programs to transform AutoCAD file

into SVG format was FME. Transformation was proved to be functional and accurate.

Also, a very large file was transformed to test the performance. Even when talking of

large container terminals, realistic file size of the modified model will unlikely get as high

as the mentioned file. If the container terminal is indeed this massive, more efficient data

handling procedures are to be considered in general. Thus it can be concluded that the file

transformation will not become an issue in this project.

47

8. CONCLUSION

In this document, an analysis was made to find a method to make the process of map data

creation and handling more efficient. Solution was made considering the current and fu-

ture direction of actions in Kalmar, a brand of Cargotec. Found and tested solution suc-

cessfully utilizes a commercial software to transform an AutoCAD model into SVG for-

mat. The decision of the actual commissioning of this method will be made by company

representatives. If this decision is made, plans will be required for future development.

When talking of control system related design, current solutions of the company rely on

separate software handling separate areas of container terminal. In designer point of view

this is quite unwanted, as the container terminal in its entirety is not perceived well. On

the contrary, when making detailed designs, it is an advantage to focus on specific area

at the time. These thoughts would support the idea of creating a combined view where

specific areas can be selected and designed further on. This would allow user to have a

clear idea on where the design is taking place without any background work.

When talking about the solution presented in this thesis, a positive addition is achieved

from the fact that there is no middleware needed between AutoCAD model and end prod-

uct. The transformations in between are often made for only singular use, and are thus

less efficient methods than modifying an already existing model to match the need. Yet

hypothetically, if the AutoCAD file is made accurate enough, extending the usage to cre-

ating map data also for control purposes could be possible. This, however, also requires

adding data to the model, such as safety distances to obstacles, and also much more ac-

curate set of data on the areas which are now handled with separate software.

What comes to the selected file type, SVG itself is an excellent format for future devel-

opment, as the world is increasingly directed towards internet solutions. HTML5 intro-

duced a new element specifically for SVG file format. Of the common web browsers, all

newer versions7 support SVG format with no modifications, and data can be added di-

rectly inside an <svg>-tag. This makes it possible to use the map in web solutions without

the need of transforming the data again.

On the contrary to the positive effects, utilizing a proprietary software also brings some

negative effects. FME is relatively expensive software, which in this case would be used

relatively rarely, and only on single transformation. However, software license is paid

only once – and thus, in the scale of Cargotec’s turnover, the price of the software is

insignificant.

7 First versions to fully support <svg> tag are Chrome 4.0, Internet Explorer 9.0, Firefox 3.0, Safari 3.2 and

Opera 10.1 (W3Schools, 2015)

48

WORKS CITED

Adobe. (2015). Flex. Retrieved October 6, 2015, from Adobe Systems Software Ireland

Ltd. Web site: http://www.adobe.com/fi/products/flex.html

ArcGIS. (2015). ArcGIS API for JavaScript. Retrieved May 22, 2015, from ArcGIS for

Developers: https://developers.arcgis.com/javascript/

Autodesk. (2010). AutoCAD .NET Developer's Guide. Retrieved from Autodesk web

site:

http://docs.autodesk.com/ACD/2010/ENU/AutoCAD%20.NET%20Developer's

%20Guide/index.html?url=WS1a9193826455f5ff2566ffd511ff6f8c7ca-

4875.htm

AutoDesk. (n.d.). DXF File Structure. Retrieved September 1, 2015, from Autodesk

Web site:

http://www.autodesk.com/techpubs/autocad/acadr14/dxf/dxf_file_structure_al_u

05_b.htm

Autodesk. (n.d.). Writing a DXF Interface Program. Retrieved from Drawing

Interchange File Formats:

http://www.autodesk.com/techpubs/autocad/acad2000/dxf/writing_a_dxf_interfa

ce_program_dxf_aa.htm

Bing. (2015). Bing Maps API. Retrieved May 22, 2015, from Microsoft:

http://www.microsoft.com/maps/choose-your-bing-maps-API.aspx

Brinkmann, B. (2011). Operations Systems of Container Terminals: A Compendious

Overview. In J. W. Böse, Handbook of Terminal Planning (pp. 25-39).

Oklahoma, USA: Springer.

Cargotec Corporation. (2015, May 22). Kalmar to deliver two additional automatic

stacking cranes for DP World Brisbane. Retrieved June 2, 2015, from

Kalmarglobal:

http://www.kalmarglobal.co.uk/newsroom/press_releases/2015/kalmar-to-

deliver-two-additional-automatic-stacking-cranes-for-dp-world-brisbane-/

Carlson. (2014). Site Management & 3D Positioning Solutions for Mining, Landflls,

Dredging & Earth Moving. Retrieved October 6, 2015, from Carlson Software

Web site: http://www.carlsonsw.com/wordpress/wp-

content/uploads/2014/02/MC-Catalog-Feb2014-Final-web.pdf

49

CST. (2012). World Container Fleet Overview. Retrieved August 7, 2015, from

Container Services International Web site:

https://web.archive.org/web/20150718151432/http:/www.csiu.co/resources-and-

links/world-container-fleet

Duinkerken, M. B., Evers, J. J., & Ottjes, J. A. (2002). Improving Quay Transport on

Automated Container Terminals. IASTED International Conference Applied

Simulation and Modelling (ASM 2002). Delft, Netherlands: Delft University of

Technology.

ECMA. (2013). Standard ECMA-404, The JSON Interchange Format. Geneve: Ecma

International 2013.

ECMA. (2015). Standard ECMA-262, 6th Edition, ECMAScript® 2015 Language

Specification. Geneva, Switzerland: ECMA International 2015.

Esoware B.V. (2011). Flexible TOS Software for Any Budget and a Wide Range of

Applications. Port Technology International, 50th edition, p. 88. Retrieved June

17, 2015, from Port Technology website:

http://www.porttechnology.org/technical_papers/flexible_tos_software_for_any

_budget_and_a_wide_range_of_applications/

ESRI. (2015). What is GIS? Retrieved August 31, 2015, from Esri Web site:

http://www.esri.com/what-is-gis/howgisworks

Farlex. (2015). Control Systems. Retrieved July 16, 2015, from The Free Dictionary by

Farlex Inc: http://encyclopedia2.thefreedictionary.com/Control+systems

Ferilli, S. (2011). Automatic Digital Document Processing and Management -

Problems, Algorithms and Techniques. New York, USA: Springer.

Fernández Caramés, C. (2012). Técnicas de navegación para un robot móvil utilizando

sistemas de razonamiento espacial. Salamanca, Spain: Universidad de

Salamanca.

Fleetio. (2015). Retrieved July 24, 2015, from Fleetio Web site:

https://www.fleetio.com/

GDV. (2015, August 7). Container Handbook, Cargo loss prevention information from

German marine insurers. Berlin, Germany.

GISCloud. (2015). Fleet Management. Retrieved July 24, 2015, from GIS Cloud Web

site: http://www.giscloud.com/apps/fleet-management

50

Google. (2015). Google Maps API. Retrieved May 22, 2015, from Google:

https://developers.google.com/maps/

Gottwald. (n.d.). Automated Container Transport - Proven Technology from Gottwald.

Düsseldorf: Gottwald Port Technology GmbH.

Gulbransen, D. (2002). Special Edition Using XML Schema. USA: Que Publishing.

Gungor, V. C., Natalizio, E., Pace, P., & Avallone, S. (2008). Challences and Issues in

Designing Architectures and Protocols for Wireless Mesh Networks. Georgia,

USA: Springer.

Günther, H.-O., & Kim, K. H. (2005). Container Terminals and Automated Transport

Systems. New York, USA: Springer.

Here Maps. (2015). Consumer Mapping. Retrieved May 22, 2015, from HERE:

https://developer.here.com/web-experiences

HPH. (2015). History. Retrieved June 15, 2015, from ECT website:

http://www.ect.nl/nl/node/484

Huber, D. F., & Vandapel, N. (2003). Automatic 3D underground mine mapping. The

4th International Conference on Field and Service Robotics (pp. 14-16).

Pittsburgh, USA: The Robotics Institute, Carnegie Mellon University.

Hughes, A. (2008, August 13). Plugging in. Retrieved May 27, 2015, from Port

Strategy - insight for senior port executives:

http://www.portstrategy.com/news101/port-operations/port-

services/reefer_article

Intel Corporation. (2015). Intelligent Fleet Management. USA: Intel Corporation.

Internet Engineering Task Force. (2013, August 3). JSON Schema: core definitions and

terminology. Retrieved September 1, 2015, from JSON Schema Web site:

http://json-schema.org/latest/json-schema-core.html#anchor23

Isenburg, M., & Snoeyink, J. (2003). Binary Compression Rates for ASCII Formats.

North Carolina: University of North Carolina. Retrieved from

https://www.cs.unc.edu/~isenburg/papers/is-bcraf-03.pdf

Jawahar, N., Aravindan, P., Ponnambalam, S. G., & Suresh, R. K. (1998). AGV

Schedule Integrated with Production in Flexible Manufacturing Systems .

Advanced Manufacturing Technology, 428-440.

Kalmar. (2014). Equipment. Retrieved May 7, 2015, from Kalmar:

https://www.kalmarglobal.com/equipment/

51

Kalmar. (2015). Kalmar TLS. Retrieved June 18, 2015, from Kalmar website:

https://www.kalmarglobal.com/automation/TLS/

Kalmar. (2015). Legacy SmartRail upgrade guide. Tampere, Finland: Kalmar.

Retrieved May 27, 2015

Kalmar. (n.d.). Kalmar Automatic Horizontal Transportation System, brochure.

Tampere, Finland.

Konecranes. (2014). Konecranes wins historic order for automated RTG system from

Indonesian container terminal operator. Konecranes. Retrieved May 7, 2015,

from Konecranes:

http://www.konecranes.com/resources/media/releases/2014/konecranes-wins-

historic-order-for-automated-rtg-system-from-indonesian-container-terminal

Konecranes. (2015). Container Handling Cranes. Retrieved May 7, 2015, from

Konecranes Web site: http://www.konecranes.com/equipment/container-

handling-cranes

Kuusniemi, H. (2005). User-Level Reliability and Quality Monitoring in Satellite-Based

Personal Navigation. Tampere, Finland: Tampere University of Technology,

publication 544, doctoral thesis.

Kylliäinen, P. (2010). A Graphical User Interface Framework for Container Handling.

Tampere, Finland: Tampere University of Technology, thesis.

Luostarinen, R., Manner, J., Määttä, J., & Järvinen, R. (2010). User-centered design of

graphical user interfaces. The 2010 Military Communications Conference -

Unclassified Program - Cyber Security and Network Management (pp. 50-55).

Espoo, Finland: IEEE.

Mapbox. (2015). Mapbox for Developers. Retrieved May 22, 2015, from Mapbox:

https://www.mapbox.com/developers/

MIP. (2013). Container Services. Retrieved May 27, 2015, from Mersin International

Port: http://en.mersinport.com.tr/port-services/detail/PORT-

SERVICES/404/632/0

Mogre, P. S., Hollick, M., & Steinmetz, R. (2007). Qos in Wireless Mesh Networks:

Challenges, Pitfalls, and Roadmap to its Realization. Darmstadt, Germany:

Technische Universitaet Darmstadt.

Mohammed, N. Z., Ghazi, A., & Mustafa, H. E. (2013). Positional Accuracy Testing of

Google Earth. International Journal of Multidisciplinary Science and

Engineering, Vol. 4, No. 6, 6-9.

52

Morais, C. D. (2000, (original)). GIS Data Explored - Vector and Raster Data.

Retrieved August 31, 2015, from GIS Lounge:

http://www.gislounge.com/geodatabases-explored-vector-and-raster-data/

Mäkelä, J. (2015). Lane detection system specification. Tampere, Finland: Cargotec

Finland Oy.

OGC. (2015). Geography Markup Language. Retrieved September 8, 2015, from Open

Geospatial Consortium Web site:

http://www.opengeospatial.org/standards/gml#schemas

OGC. (2015). KML. Retrieved September 8, 2015, from Open Geospatial Consortium:

http://www.opengeospatial.org/standards/kml/

Pirhonen, J. (2011). Automated Shuttle Carrier Concept - Comparison to Conventional

RTG Crane and Yard Tractor Concept. In B. J. W., Handbook of Terminal

Planning (pp. 40-59). Tampere, Finland: Springer Science.

Potere, D. (2008). Horizontal Positional Accuracy of Google Earth’s High-Resolution

Imagery Archive. Sensors, 7973-7981.

Rijsenbrij, J. C., & Wieschemann, A. (2011). Sustainable Container Terminals: A

Design Approach. In J. W. Böse, Handbook of Terminal Planning (pp. 61-82).

New York, USA: Springer Science.

Saanen, Y. A. (2011). Modeling Techniques in Planning of Terminals: The Quantitative

Approach. In J. W. Böse, Handbook of Terminal Planning (pp. 83-102).

Hamburg, Germany: Springer Science.

Safe. (2015). Home page. Retrieved September 8, 2015, from Safe Software Inc Web

site: http://www.safe.com/

Savant. (2012). Q-CAN AGV Systems: Fast, Easy-to-Use System Design PC Program.

Retrieved October 6, 2015, from Savant Automation web site:

http://www.agvsystems.com/wp-content/uploads/2012/08/Q-

CAN_AGV_Savant5.pdf

Schuett, H. (2011). How to avoid checkmate. Port Technology International, 82-84.

Schütt, H. (2011). Simulation Technology in Planning, Implementation and Operation

of Container Terminals. In J. W. Böse, Handbook of Terminal Planning (pp.

103-116). Bremerhaven, Germany: Springer Science.

Steenken, D., Voß, S., & Stahlbock, R. (2015). Container terminal operation and

operations research – a classification and literature review. In H.-O. Günther, &

53

K. H. Kim, Container Terminals and Automated Transport Systems (pp. 3-49).

Hamburg, Germany: University of Hamburg.

Sun, Z., Ma, P., & Su, X. (2009). A Perspective on Trusted Hardware and Operating

System of Cloud Terminal. Harbin, China: IEEE.

Szpytko, J., & Hyla, P. (2011). Automated Guided Vehicles Navigating Problem In

Container Terminal. Logistics and Transport, article, pp. 107-116.

Takada, M., Yamada, M., Kakutani, Y., Sodeyama, K., Hane, S., Fujishiro, T., . . .

Watanabe, H. (2014). An Experimental Analysis on Latency Improvement of

Cloud-based Fleet Management System. ACM 7th International Conference on

Utility and Cloud Computing (pp. 505-506). London, GB: ACM.

TBA. (2015). TEAMS. Retrieved June 18, 2015, from TBA website:

https://www.tba.nl/en/software/teams

Terex. (2015). AGV Automated Guided Vehicles Automated Container Transport for

Performance-Orientated Terminals. Retrieved June 12, 2015, from Terex

website: http://www.terex.com/port-solutions/en/products/automated-guided-

vehicles/agv/index.htm

Terex. (2015). Fully-automated container terminals. Retrieved May 25, 2015, from

Terex web site: http://www.terex.com/port-solutions/en/solutions/solutions-for-

terminals/fully-automated-container-terminals/index.htm

Ubukawa, T. (2013). An Evaluation of the Horizontal Positional Accuracy of Google

and Bing Satellite Imagery and Three Roads Data Sets Based on High

Resolution Satellite Imagery. Columbia: Center for International Earth Science

Information Network (CIESIN).

UMD. (2003). Ascii vs. Binary Files. Retrieved from The Computer Science

Department of the University of Maryland:

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/asciiBin.html

W3C. (2008, November 26). Extensible Markup Language (XML) 1.0 (Fifth Edition).

Retrieved August 18, 2015, from The World Wide Web Consortium (W3C)

Web site: http://www.w3.org/TR/REC-xml/

W3Schools. (2015). HTML5 SVG. Retrieved November 27, 2015, from W3Schools

Web site: http://www.w3schools.com/html/html5_svg.asp

W3Schools. (2015). XML Document Types. Retrieved August 31, 2015, from

W3Schools Web site: http://www.w3schools.com/xml/xml_doctypes.asp

54

Verhoeven, W. (2015, September 30). Email interview.

Wiese, J., Suhl, L., & Kliewer, N. (2011). Planning Container Terminal Layouts

Considering Equipment Types and Storage Block Design. In J. W. Böse,

Handbook of Terminal Planning (pp. 219-245). Hamburg, Germany: Springer

Science.

Wiki. (2015). Openstreetmap API v0.6. Retrieved May 22, 2015, from Wiki Libraries,

Openstreetmap API: http://wiki.openstreetmap.org/wiki/API_v0.6

Wilamowski, B. M., & Irwin, J. D. (2011). Industrial Communication Systems. Auburn,

USA: CRC Press.

Vis, I. F., & Harika, I. (2005). Comparison of vehicle types at an automated container

terminal. In H.-O. (. Günther, & K. H. Kim, Container Terminals and

Automated Transport Systems Logistics Control Issuesand Quantitative

Decision Support (pp. 51-78). Berlin, Germany: Springer Science.

WorldCargo. (2013, November). Tideworks charts its path. WorldCargo News, pp. 30-

31.

Xing, W., Peihuang, L., Jun, Y., Xiaoming, Q., & Dunbing, T. (2013). Intersection

Recognition and Guide-path Selection for a Vision-based AGV in a

Bidirectional Flow Network. International Journal of Advanced Robotic

Systems.

Ylä-Himanka, V. (2014). Development of Positioning Concept for Automated Rubber

Tired Gantry Crane. Tampere, Finland: Tampere University of Technology,

thesis.

55

APPENDIX 1: GML2 ELLIPSE EXAMPLE

<gml:polygonProperty>
<gml:Polygon srsName="">

<gml:outerBoundaryIs><gml:LinearRing><gml:coordi-
nates>1.76455291044872,1.97306904106898,0
1.76014313067873,2.07406960304115,0
1.74694735245549,2.17430148975091,0
1.72506600361912,2.27300187601873,0
1.69466561444658,2.36941959230818,0
1.65597755025572,2.46282084157969,0
1.60929625057555,2.5524947839291,0
1.55497698828355,2.63775894650851,0
1.49343316576464,2.71796441755678,0
1.42513316866937,2.79250078500986,0
1.35059680121629,2.86080078210514,0
1.27039133016801,2.92234460462405,0
1.1851271675886,2.97666386691604,0
1.09545322523919,3.02334516659622,0
1.00205197596768,3.06203323078707,0
0.90563425967823,3.09243361995961,0
0.806933873410415,3.11431496879598,0
0.706701986700655,3.12751074701922,0
0.60570142472848,3.13192052678922,0
0.504700862756306,3.12751074701922,0
0.404468976046546,3.11431496879599,0
0.305768589778731,3.09243361995961,0
0.20935087348928,3.06203323078707,0
0.115949624217766,3.02334516659622,0
0.026275681868361,2.97666386691604,0 -0.05898848071105,2.92
234460462405,0 -0.139193951759327,2.86080078210514,0 -0.213
730319212406,2.79250078500986,0 -0.282030316307681,2.717964
41755679,0 -0.343574138826589,2.63775894650851,0 -0.3978934
01118587,2.5524947839291,0 -0.444574700798764,2.46282084157
969,0 -0.483262764989616,2.36941959230818,0 -0.513663154162
157,2.27300187601873,0 -0.535544502998528,2.17430148975091,
0 -0.548740281221765,2.07406960304115,0 -0.55315006099176,1
.97306904106898,0 -0.548740281221766,1.8720684790968,0 -0.5
35544502998529,1.77183659238704,0 -0.513663154162158,1.6731
3620611923,0 -0.483262764989618,1.57671848982978,0 -0.44457
4700798766,1.48331724055826,0 -0.39789340111859,1.393643298
20886,0 -0.343574138826592,1.30837913562945,0 -0.2820303163
07684,1.22817366458117,0 -0.21373031921241,1.15363729712809
,0 -0.139193951759331,1.08533730003282,0 -
0.058988480711054,1.02379347751391,0
0.026275681868357,0.96947421522191,0
0.115949624217762,0.922792915541733,0
0.209350873489275,0.884104851350881,0
0.305768589778726,0.85370446217834,0
0.404468976046541,0.831823113341968,0
0.504700862756301,0.818627335118731,0
0.60570142472848,0.814217555348736,0
0.70670198670065,0.81862733511873,0
0.80693387341041,0.831823113341966,0
0.905634259678225,0.853704462178337,0
1.00205197596768,0.884104851350878,0
1.09545322523919,0.922792915541729,0
1.1851271675886,0.969474215221906,0

56

1.27039133016801,1.0237934775139,0
1.35059680121628,1.08533730003281,0
1.42513316866936,1.15363729712808,0
1.49343316576464,1.22817366458116,0
1.55497698828355,1.30837913562944,0
1.60929625057554,1.39364329820885,0
1.65597755025572,1.48331724055826,0
1.69466561444657,1.57671848982977,0
1.72506600361912,1.67313620611922,0
1.74694735245549,1.77183659238704,0
1.76014313067872,1.8720684790968,0
1.76455291044872,1.97306904106898,0</gml:coordi-
nates></gml:LinearRing></gml:outerBoundaryIs>

</gml:Polygon>
</gml:polygonProperty>

57

APPENDIX 2: GEOJSON ELLIPSE EXAMPLE

{"type": "Feature", "geometry":
 {
 "type":"Polygon",
 "coordinates":
 [
 [
 [1.76455291044872,1.97306904106898,0],
 [1.76014313067872,2.07406960304115,0],
 [1.74694735245549,2.17430148975091,0],
 [1.72506600361911,2.27300187601872,0],
 [1.69466561444657,2.36941959230818,0],
 [1.65597755025572,2.46282084157969,0],
 [1.60929625057554,2.55249478392909,0],
 [1.55497698828355,2.6377589465085,0],
 [1.49343316576464,2.71796441755678,0],
 [1.42513316866936,2.79250078500986,0],
 [1.35059680121629,2.86080078210514,0],
 [1.27039133016801,2.92234460462404,0],
 [1.1851271675886,2.97666386691604,0],
 [1.09545322523919,3.02334516659622,0],
 [1.00205197596768,3.06203323078707,0],
 [0.905634259678229,3.09243361995961,0],
 [0.806933873410414,3.11431496879598,0],
 [0.706701986700655,3.12751074701922,0],
 [0.60570142472848,3.13192052678921,0],
 [0.504700862756306,3.12751074701922,0],
 [0.404468976046547,3.11431496879598,0],
 [0.305768589778732,3.09243361995961,0],
 [0.209350873489281,3.06203323078707,0],
 [0.115949624217767,3.02334516659622,0],
 [0.0262756818683624,2.97666386691604,0],
 [-0.0589884807110478,2.92234460462404,0],
 [-0.139193951759325,2.86080078210514,0],
 [-0.213730319212404,2.79250078500986,0],
 [-0.282030316307678,2.71796441755678,0],
 [-0.343574138826587,2.63775894650851,0],
 [-0.397893401118584,2.5524947839291,0],
 [-0.444574700798761,2.46282084157969,0],
 [-0.483262764989613,2.36941959230818,0],
 [-0.513663154162154,2.27300187601873,0],
 [-0.535544502998525,2.17430148975091,0],
 [-0.548740281221762,2.07406960304115,0],
 [-0.553150060991757,1.97306904106898,0],
 [-0.548740281221763,1.8720684790968,0],
 [-0.535544502998526,1.77183659238704,0],
 [-0.513663154162155,1.67313620611923,0],
 [-0.483262764989614,1.57671848982978,0],
 [-0.444574700798763,1.48331724055827,0],
 [-0.397893401118587,1.39364329820886,0],
 [-0.34357413882659,1.30837913562945,0],
 [-0.282030316307682,1.22817366458117,0],
 [-0.213730319212408,1.15363729712809,0],
 [-0.139193951759329,1.08533730003282,0],
 [-0.0589884807110519,1.02379347751391,0],
 [0.0262756818683582,0.969474215221913,0],
 [0.115949624217763,0.922792915541736,0],

58

 [0.209350873489277,0.884104851350884,0],
 [0.305768589778727,0.853704462178343,0],
 [0.404468976046542,0.831823113341971,0],
 [0.504700862756301,0.818627335118734,0],
 [0.60570142472848,0.814217555348739,0],
 [0.70670198670065,0.818627335118733,0],
 [0.806933873410409,0.83182311334197,0],
 [0.905634259678225,0.853704462178341,0],
 [1.00205197596767,0.884104851350881,0],
 [1.09545322523919,0.922792915541732,0],
 [1.18512716758859,0.969474215221908,0],
 [1.270391330168,1.02379347751391,0],
 [1.35059680121628,1.08533730003281,0],
 [1.42513316866936,1.15363729712809,0],
 [1.49343316576464,1.22817366458117,0],
 [1.55497698828354,1.30837913562944,0],
 [1.60929625057554,1.39364329820885,0],
 [1.65597755025572,1.48331724055826,0],
 [1.69466561444657,1.57671848982977,0],
 [1.72506600361911,1.67313620611922,0],
 [1.74694735245548,1.77183659238704,0],
 [1.76014313067872,1.8720684790968,0],
 [1.76455291044872,1.97306904106898,0]
]
]
 },
 "properties":null
}

59

APPENDIX 3: FME INSTRUCTIONS FOR AUTOCAD-TO-SVG

TRANSLATION FOR MAP DATA CREATION PROCESS

Following instructions are meant for transforming an AutoCAD model to SVG format

using FME Desktop program from Safe Software Inc. Required steps before transfor-

mation are following: creating workspace, selecting reader to process the AutoCAD

model, selecting writer to create resulting file type and creating links between these two.

Italic text is used to describe text you see in the program. Screenshots are added to clarify

the required actions.

1. Open FME and select “File” – “New…” and select “Blank workspace” to begin with

2. Select “Readers” – “Add Reader…”

3. Browse for the original AutoCAD-model to the section under “Reader” - “Dataset”,

and the format is automatically selected to “Autodesk AutoCAD DWG/DXF”:

4. Select all layers on the opening windows and press “OK”. Layers will be shown as

blocks in the main window.

5. Select “Writers” – “Add Writer…”

6. Open the drop-down menu in “Format” and press “More Formats…”:

60

7. Browse for “SVG (Scalable Vector Graphics)” and select it:

8. If the original precision (6 significant digits) is wanted to be changed, select “Param-

eters” and change the precision

9. In “Dataset” browse for a folder in which you want the data to be selected, and name

your result file. After this, select “OK”

10. In the opening layer list, select layer names which you will want to reutilize in the

resulting file:

After this, selected reader layers are listed on the left and writer layers are on the right. In

order to save layers from AutoCAD into the resulting SVG, they can be simply connected

with lines, as shown below.

61

Following parts 11-13 describe actions that can be done to modify the transferred data:

11. Features, such as the original AutoCAD layer name can be extracted from any of the

reader’s layers by double-clicking a layer, selecting “Format Attributes”, browsing

and selecting the wanted property:

12. Accepting these features in a layer in writer can be done by double-clicking a layer,

selecting “User Attributes” and defining “Attribute Definition” to “Automatic”:

13. In the same window, variables for this specific layer can be added to the main view

by selecting “Manual” attribute definition.

62

When all data is selected according to the instructions given in this manual, transfor-

mation can be started by pressing -button in the toolbar. When transformation is

finished, a message of a successful translation should be seen in the “Translation Log”

window:

