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Image quality assessment has been done previously manually by human jury assessment as 

reference. Due to lack of rationality in human jury voting and its high costs it is desirable to 

replace it with instrumental measurements that can predict jury assessment reliably. But high 

uncertainty in jury assessments and sensitivity of image context make it cumbersome for the 

instrumental measurements. Previous research has shown that modeling with a Bayesian network  

can resolve some of the problems.  

 

A Bayesian network is a belief network of causal model representation of multivariate 

probabilistic distributions that describes the relationships between the interacting nodes in the 

form of conditional independency. By conditioning and marginalization operations we can 

estimate the conditional probabilities of unmeasured elements and their uncertainty in Bayes 

network. In this thesis we have considered a four-layer pre-existing Bayes network consisting of 

both qualitative and quantitative component and we have tried to assess probabilities of quality 

elements assessed by jurors based on instrumental measurement values. To analyze and to 

quantify the relationship between perceptual quality elements and instrumental measurements, 

we have calculated mutual information from our provided data set. Based on mutual information 

calculation and Kullback-Leibler distance measure we have investigated the sensitivity of the 

network, and we have tried to validate a feasible network model where network parameters have 

been selected such a way that it minimizes the uncertainties of our chosen Bayes network.   
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1. Introduction 

1.1. Background 

                                                                                                                                        

Digital images are a powerful and efficient means for communicating information. The quality   

of images is affected by attributes such as noise, color, resolution and sharpness. That is why, it 

is important to develop effective image quality assessment models, which will enable us to 

monitor the quality of images. 

Assessment of image quality conceptually is a subjective matter. It is rooted in both the objective 

properties of an image and the psychological processes of perception. Perception is the 

construction of an internal representation of the image using primarily low-level knowledge of 

the visual world. It largely depends on the state of mind of evaluator, age, cultural background 

etc. It also depends on how intensely the person’s eyes perceive the colors of the image. Due to 

the multidimensional quantity of image quality the evaluator faces difficulty in choosing the 

quality attributes that need to be considered while assessing the image quality.  

Human visual system responds to a limited range of spatiotemporal frequencies of colors. 

Another fact is, there is no perfect human vision model until now proposed by scientists, which 

can be used in constructing image quality model. 

 

Hence, measuring image quality is a laborious task in general. Researchers have been working 

continuously to evaluate the printed image quality for the imaging industries. Until recently 

assessment of image quality has been based on human jury assessment, which is done by a group 

of evaluators. This group is called a jury. Since jury assessment is costly, cumbersome and 

finally time consuming, replacing the jury assessment with a set of instrumental measurements 

that can produce some numerical values of image quality might be worthy. Furthermore, those 

numerical values can be used by machine for evaluating the quality of images or visual print 

quality automatically and faster than human jury. 

 

Due to the complex form of dependency between the instrumental measurement and the jury 

assessment, previous research has suggested modeling both measurement and jury assessment 
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with a Bayesian network. Bayesian networks is nowadays a widely used method for analyzing 

knowledge with uncertainty and efficient reasoning. The grading of instrumental measurements 

is directly connected with the grading of perceptual quality elements. In other words, it implies 

the objective instrumental measurements can be used to predict image quality performance by 

the evaluators. 

This research is the continuation of Mr. Johannes Pulla’s Master of Science thesis work about 

Jury assessment as Reference for Instrumental Measurements of Image Quality [1]. 

 

1.2 Goals of this Research 

The main objectives of this thesis are expressed by the following: 

• Estimation of unmeasured elements and their uncertainty in the form of probabilities in 

Bayes network. 

• Identifying the parameters or the conditional probability estimates in the network submodels. 

• Selecting the network structure or, from which submodels the network model is composed 

of. 

 

To fulfill those objectives we have chosen an existing Bayes network structure with certain 

parameters and have tried to find mutual information (MI) between instrumental measurements 

and each of the quality elements separately. We have also tried to find alternative Bayes network 

structure using that mutual information. We have synthesized our existing network to understand 

statistical dependency based on the Mutual Information (MI) measurement between instrumental 

measurements and perceptual quality elements. 

After that we have simulated the Bayes network to generate network input elements (in this case 

perceptual quality elements in the network) of image quality assessment and instrumental 

measurements so that we can understand how those elements are affecting the network. The 

ultimate goal of this research is to develop a robust model, which can predict the overall quality 

from the perception of the individual attributes in the multivariate environment. 
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An image quality estimator can be constructed by means of instrumental measurements, low 

level attributes and high level attributes of an image. In the estimator the Jury assessment test 

case data is collected from the low level or perceptual quality elements and high level attributes 

of the image. Based on this model we can identify essential parameters, which correspond to 

image quality assessment. Later a Bayesian model can be constructed according to the mutual 

information results computed from the test case data. The following figure 1.1 shows a simple 

estimator for visual image quality index.  

  

 

                         

                     Figure 1.1: The estimator of visual quality index. 

 

1.3   Structure of this Thesis                  

This thesis is organized as follows. Chapter 2 gives some details about various methods for 

image quality assessment. Chapter 3 discusses the modeling of image quality estimator, where 

Bayes Networks, Mutual information and Sensitivity of Networks have been discussed. In 

chapter 4, case study has been considered with the manipulation of network model and few 

experiments were carried out on it. Chapter 5 examines the method and analyzes the mutual 

information obtained during the experiment with proposed Bayes network. Chapter 6 concludes 

the thesis with some discussion about the results and future works can be done on it.                                                        
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2. Methods for Image Quality Assessment 
 

2.1 Subjective Image Quality Measurements        

Human beings are the end users of all images. The quality of images is assessed by people 

looking at images, not by electronic measurements or other machine determined parameters. For 

this reason, humans are the effective means for assessing the quality of images. Paired 

comparison, categorical judgment, anchored scaling are some of subjective evaluation methods 

often used in assessing image quality. Pair comparison is the evaluation of determining small 

quality differences between pairs of sample images. Categorical judgment is most suitable for the 

large sample sets of images. 

Rank ordering is the method of assessing image quality where evaluator arranges the test 

samples into a certain order according to the ordering criteria. Mean opinion score (MOS) gives 

a numerical indication of image quality where human observers are required to evaluate the 

subjective image quality. The group of evaluators is called jury. The jury can consist of a 

homogeneous group of people to minimize the variation in answers while assessing the image 

quality.  

In spite of choosing homogenous group of people as jury, this method has several shortcomings, 

like lack of rationality in jury voting and being not cost-effective in real-world applications. 

 

2.1.1  Just Noticeable Differences                  

The concept of just noticeable difference (JND) is very useful in image quality characterization 

and prediction. It is a measure of the perceptual continuum and can be presented as a probability 

distribution. Since paired comparison is performed between the test image and its analogous 

reference image, it is crucial to understand the significance of quality difference between them. 

Just noticeable differences are small units of change that can be used to construct calibrated 

numerical scales that quantify wide ranges of quality of images. JNDs are natural which provides 

a natural unit for quality scale calibration and making multivariate quality predictions. [2] 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  

	  

5	  

2.1.2   Low-level Attributes                             

Low-level attributes of an image are those attributes that are perceived by a human evaluator 

from the image at first sight. They are concrete subjective attributes that relate to simpler 

physical properties of an image. For example, sharpness is a low-level attribute of an image, 

which enables viewers to render fine details from it.  Clarity, graininess, brightness, colorfulness 

are other low-level attributes which are considered in the model we have experimented here. 

These low-level attributes we have used to manipulate our images. The low-level attributes are 

subjective and cannot be measured instrumentally with only one measurement. [3] 

 

2.1.3   High-level Attributes                           

The quality of an image is determined by the degree to which the image is both useful and 

natural from the observation point of view. High-level quality consists of the attributes 

naturalness and usefulness. They both are abstract aspects of the image and together compose the 

overall quality.  

The usefulness of an image refers to the precision of the internal representation of the image and 

naturalness refers to the degree of apparent similarity between the internal references and the 

reproduced image color, environment and their perception without any distortions. Naturalness 

can be assessed by the mental recollection of the colors of familiar objects in color reproduction. 

These higher-level subjective attributes are considered as the abstract level characteristics of an 

image. They are the psychological attributes that largely depend on the lower level attributes and 

very subjective in nature. High-level attributes are used to reason meaning of the low level 

attributes for the quality rating, their frequencies, description and image quality concepts that 

resemble those attributes. [4]  
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2.1.4   Visual Quality Index                   

There are many attributes that influence the overall quality of images in the network. Finding 

significant dependency among the attributes is crucial, because it will help us to construct a 

feasible network model that combines all necessary image quality attributes. To meet this goal, it 

might be easy to understand the interrelation between each pair of attributes. But in the case of 

many attribute variables, it becomes burdensome to realize how all those attributes interact with 

each other and how they contribute to overall image quality. In the network the higher-level 

attributes usefulness and naturalness have formed the overall image quality, which is regarded as 

visual quality index (VQI). It is simply an ordering index. Visual quality index is derived from 

the instrumentally measured image quality value and the context of the image. It utilizes the 

knowledge of the human visual system (HVS) to a lesser or higher extent in order to increase the 

correlation with human judgment. Visual quality index (VQI) is the ultimate evaluation of an 

image, which can be used for quality control systems. [5] 

 

 2.1.5   Jury Rationality                                                                                      

Empirical evidence shows that the conception of human rationality is somewhat inaccurate. 

Human made decision is heavily influenced by emotions such as attention, elation, grief, lust, 

sympathy, anxiety etc. Emotion is largely cognitive in origin and it affects a goal of the human 

agent. So decisions caused by emotional states can be irrational.   

Human jury rationality is seen as the consistency of the assessment made by a jury. The reason in 

using jury as a reference is rationality, although the ambiguity of different image quality 

attributes, subjectivity of perceived quality and lack of consistency are inherent in the image 

quality assessments made by a jury. Jury rationality can be measured by the fraction of rational 

partial juries, which is normalized sum of rational partial juries (NSRPJ). For a jury of N 

evaluators and the partial jury size 𝑛!    evaluators (  𝑛! ≤ 𝑁) the number of partial jury 

combinations is 
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                                         𝑆! =
!
!!

=    !!
!!! !!!! !

                                                     

 

With the increase of number of evaluators, the computational complexity increases too. 

The result of instrumental measurements can be predicted based on jury assessment results. Jury 

assessment data can be interpreted in terms of discrete probability distributions and from there 

we can find how much of predicted jury assessment changes when we make small change in 

instrumental data. [6] 

 

2.1.6   Overall Quality prediction from Image Quality Attributes 

The term image quality describes the overall visual impression of an image that is derived from 

multiple components of human eye’s perception, for example sharpness, brightness, noisiness, 

contrast, colorfulness etc. Overall image quality can be defined by various quality related 

perceptions, and each quality related perception is referred to as an image quality attribute. Since 

image quality model falls within a perceptual framework, while developing a method for 

predicting the overall image quality, it is essential to take into account all those important 

perceptual quality attributes. Prediction of multivariate image quality from associated quality 

attributes is quite cumbersome and requires understanding well the nature of interactions 

between attributes.  

The overall quality of an image is affected by a set of attributes. Moreover, the presence of one 

attribute influences the perception of another attribute. It is difficult to develop an underlying 

theory explaining all interactions, since interactions between attributes may be expected to be 

specific to each pair of attributes or in some cases even to higher-order interactions. Although as 

a result of interactions between attributes there may be changes in the appearance of images, 

often such changes do not affect image quality. In reality, the interaction of perceptual attributes 

is less pervasive and a model can be constructed based on experiments involving combinations 

of attributes when an interaction is significant. Another fact is, especially among the artifactual 

attributes significant interactions between carefully defined attributes are quite uncommon. The 
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results of interaction among the image quality attributes from the different investigations may be 

integrated into a unified model for predicting overall image quality with a reasonable 

expectation. [7] 

 

2.1.7   Rank Correlation                              

Rank correlation is a means to measure the relationship between rankings of different ordinal 

variables where a ranking is assigned as “first”, “second”, “third” etc. to different observations of 

a particular variable. A rank correlation coefficient measures the degree of similarity between 

two rankings, and tells us how significant their relation is.  

Spearman's rank correlation coefficient or Spearman's rho, named after Charles Spearman and 

often denoted by the Greek letter ρ (rho), is a nonparametric measure of statistical dependence 

between two variables 

 

                                         

where d is the difference between ranks and n is the sample size.  

It assesses how well the relationship between two variables can be described using a monotonic 

function. A monotonic function is a function which is always either entirely non-increasing or 

non-decreasing. If there are no repeated data values, a perfect Spearman correlation of +1 or −1 

occurs when each of the variables is a perfect monotone function of the other. 

Spearman's coefficient is appropriate for both continuous and discrete variables, including 

ordinal variables. The difference between the Pearson correlation and the Spearman correlation 

is that the Pearson is most appropriate for measurements taken from an interval scale, it measures 

the strength of a linear relationship between paired data, on the other hand, the Spearman is more 

appropriate for measurements taken from ordinal scales. [8] 	  
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2.2 Objective Image Quality Measurements             

The goal of the objective image quality measurement is to measure the errors or signal difference 

between the distorted and reference images. Objective measure provides an analytical result by 

identifying the sources of artifacts in the images. Designing a computational model that can 

predict perceived image quality accurately is not an easy task. There exists no proper psycho- 

visual model that can model numerically the visual error sensitivity features of human visual 

system.  One easily computable measure of images is mean squared error (MSE) or peak signal 

to noise ratio (PSNR). If x is an original image and y is a distorted image, then the MSE and 

PSNR are respectively:          

      

                                                  MSE =    !
!

(𝑥! − 𝑦!)!!
!!!           

                                                   PSNR = 10   log!"
!!

!"#
	   	   	   	   	   	   	   

  

Here L is the dynamic range of image pixel intensities. In many cases, PSNR is a poor indicator 

of subjective image quality and does not correlate well with perceived quality measurement. 

MSE  and PSNR are two common methods used to assess the quality of the distorted image. [9] 

 

2.2.1 Full-Reference, No-Reference and Reduced-Reference Image Quality Measures  

Three types of knowledge can be used for the design of image quality measure: knowledge based 

on the original image, knowledge from the distortion process of the image, and knowledge about 

the Human Visual System (HVS). Those classifications are called full-reference, no-reference 

and reduced-reference.  

Measures that require both the original image and the distorted image are called full-reference 

methods. The availability of an original image is considered to be distortion-free or perfect 

quality and it can be used as a reference in evaluating a distorted image. Due to compression, 

acquisition process, transmission through noisy channels image can suffer distortion. Digital 

images can also undergo quality improvement processes, like enhancement, restoration 
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techniques. In each step it is necessary to quantify the quality of the resulting image. One easy 

way to do it is by using a full-reference image to carry out this task. In most of the proposed 

objective quality measures we assume that the undistorted original reference image exists and is 

fully available. [10]  

Measures that do not require the original image are called no-reference methods. Sometimes it is 

necessary to develop objective quality assessment that correlates well with human perception 

without the reference image or no-reference. In many practical applications an image quality 

assessment system does not have access to the reference images. So in no-reference objective 

image quality assessment we try to construct a computational model that can predict the human-

perceived quality of distorted images accurately and automatically without any prior knowledge 

of reference images. In some cases no-reference image quality assessment can be difficult. [11] 

Measures that require both the distorted image and the partial information about the original 

image are called reduced-reference methods. Reduced-reference image quality assessment can be 

considered a solution between full-reference methods and no-reference methods. In reduced-

reference methods the reference image is not fully available. Instead, the system includes certain 

features at the sender side that are extracted from the reference image and a feature extraction, 

comparison process and quality analysis process at the receiver side to evaluate the quality of the 

distorted image. The extracted features describing the reference image are transmitted to the 

receiver as side information through an ancillary channel. At the receiver side we compare 

distorted image and extracted features by using reduced-reference quality analysis method. 

Available bandwidth for transmitting the side information is an important parameter in a 

reduced-reference system. The reduced-reference system must select the most effective and 

efficient features to optimize image quality prediction accuracy under the constraint of the 

available bandwidth. The following figure shows the framework used for reduced reference 

image quality assessment metric. [12] 
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	  	  	  	  	  	  	  	  	  	  Figure 2.1: Diagram of a reduced-reference image quality assessment system  

 

2.2.2 RGB and CMYK Color Spaces               

RGB stands for red, green and blue colors. Merging these three primary colors can produce all 

other human-perceivable colors of the visible spectrum. CMYK stand for Cyan, Magenta, 

Yellow and Black colors.  RGB and CMYK are two different color spaces. 

Most scanners, digital cameras, and video camera save files as RGB and the conversion of RGB 

files to CMYK can be done in many ways. 

Printed colors are produced from cyan, magenta and yellow printing inks by subtracting varying 

degrees of red, green and blue from white light to produce a selective gamut of spectral colors. 

RGB gamut is larger than the CMYK gamut. Conversion between RGB and CMY is performed 

by the following equation: 

R = 255 × (1-C) × (1-K) 

G = 255 × (1-M) × (1-K) 

B = 255 × (1-Y) × (1-K)       

Printing inks are not perfect reflectors of RGB colors. So as a result, this subtractive system can't 

duplicate all colors displayed on a computer screen. In other words, printers can't print pure red, 

green and blue using the CMYK system. [13] 
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                Figure 2.2:  RGB and CMYK Color Models. 

 

2.2.3 HSI and CIELAB Color Spaces                          

RGB and CMY are not well suited for describing colors that are practical for human 

interpretation. Hue, saturation, and brightness or intensity (HSI) are aspects of color in the red, 

green, and blue scheme. All possible colors can be specified according to hue, saturation, and 

brightness. Hue is a color attribute that described a pure color. Saturation gives a measure of the 

degree to which a pure color is diluted by white light. It is an expression for the relative 

bandwidth of the visible output from a light source.  

Brightness is a relative expression of the intensity of the energy output of a visible light source. It 

can be expressed as a total energy value where the intensity is greatest. It is a key factor in 

describing color sensation. 

CIELAB is a color space that scientifically describes how the average human eye sees color.  It 

is proposed by the CIE (Commission Internationale de I'Éclairage L*a*b*). It is a three-

dimensional uniform color space, which describes all the colors visible to the human eye. 
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In the CIELAB color space depicted below the L* axis runs from top to bottom. The maximum  

for  L*  is  100,  which  represents  a  perfect  reflecting  diffuser. The minimum for  L* is zero, 

which represents black. The  a* and  b* axes have no specific numerical limits.  Positive  a* is 

red, negative  a* is green, positive  b* is yellow and negative  b* is blue. [14]  

                                          

                      Figure 2.3: A diagram representing the CIELAB color space.  

 

2.2.4   Instrumental Measurement Quantities                                      

The visual appearance of an image is aesthetic characteristic, which is judged by humans based 

on its gloss, color, brightness, smoothness and some other characteristics. The appearance of an 

image is usually a property of the surface i.e. smoothness, reflectivity, noisiness, color etc. which 

can be measured instrumentally. Instrument measurements of appearance are objective and have 

several advantages. It produces a quantifiable measure of performance or same numeric values 

every time, which can be used for designing statistical model.  

Dot quality, line quality, mottling and color quality are some of the elements of instrumental 

measurement quantities. 
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Quantification of dot quality refers to its shape, size, position etc. Quantifying line quality refers 

to its average width, width variation, raggedness, sharpness etc. Mottling and color quality refer 

to the measurement of luminance variations and CIE L* a* b* measurements respectively.  

In the experimental model, we have considered low-pass filtering, noise and HSV saturation as 

instrumental measurement quantities.  
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3. Modeling of Image Quality Estimator 

The ultimate goal of modeling an image estimator is to make prediction of final image quality. 

The goal is achieved in terms of components and subsystem properties described in the system. 

Since subjective and objective measures of images are the only principle components used 

constructing such estimator, both measures should be chosen correctly, so the overall system is 

viable. A practical mathematical method need to be applied that can quantify accurately the 

propagation of quality from component and subsystem properties through the network. We 

investigate the robustness of Bayesian networks against parameter changes. In Bayesian 

experimental analysis our results are continually revised in light of new evidence on the basis of 

Bayes theorem.  

 

3.1 Bayes Networks                        

A Bayesian network or belief network is a causal probabilistic graphical model that represents a 

set of random variables and their conditional independencies via a directed acyclic graph. The 

network consists of two distinct parts: a directed acyclic graph (DAG) and a set of parameters for 

the DAG. The DAG in a Bayesian network can be used to represent causal relationships among a 

set of random variables. Its nodes represent random variables and arcs represent direct 

probabilistic dependencies on its predecessors. Nodes with no predecessors are described by 

prior probability distributions. 

A directed acyclic graph offers a simple and unique rule for expanding the joint probability in 

terms of simple conditional probabilities. Graphical models can represent conditional 

independence relationships efficiently among the variables that are directly related with each 

other. These parameter variables relationships can be estimated in the form of joint probability 

distribution easily later on. Because of causal structure, it gives a useful, modular insight into the 

interactions among variables and allows for prediction of the effects of external manipulation. 

Already there are many learning algorithms for automatically building Bayesian networks from a 

data set and some of them are based on testing conditional independences. [15]  
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Under the condition of uncertainty Bayesian network tool can be quite useful. This network can 

be used efficiently for modeling image quality estimator and so far the result seems promising.  

Figure 3.1 presents the graphical scheme of Bayes network for assessing the visual quality of 

images we have been using in the experiment. 

 

                                  

 
                         Figure 3.1: The scheme of graphical Bayes network model. 
	  
 

   

3.2 The Likelihood Function and Probability Density Function  

The Likelihood function is the joint probability density function of observable random variables, 

which are regarded as the function of the parameters given the realized random variables.   

Let F(x) be the distribution function for a continuous random variable X. The probability density 

function (PDF) for X is given by 

  

                                             	  	  

	  	  	  	  	  	  	  	  	  	  	  

	  wherever the derivative of F(x) exists. 

F(x) is a non-decreasing function of x. That means its derivative is f(x) is always nonnegative. 
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The probability density function is discrete, whereas the likelihood function is continuous. 

Probability density function is a function of the data where the value of the parameter is fixed; on 

the other hand the likelihood function is a function of the parameter where the data is fixed. [16] 

 

3.3 The Maximum Likelihood Estimation 

The maximum likelihood estimate is the procedure of finding values of the parameter that 

maximize the sample likelihood or makes the observed data most likely. It provides a consistent 

approach to parameter estimation problems and can be developed for a large variety of 

estimation situations. Maximum likelihood methods have reasonable intuitive statistical and 

optimality properties. They become minimum variance unbiased estimators as the sample size of 

data increases. Once we have derived maximum-likelihood estimator, the general theory of 

maximum-likelihood estimation provides standard errors, statistical tests, and other results useful 

for statistical inference.  This method is very widely applicable and is simple to apply. [17] 

 
 
 
3.4 The Prior Probability and Posterior Probability 

In Bayesian statistical inference a prior probability distribution is an initial probability value 

originally obtained before any additional information is obtained or some evidence is taken into 

account. The prior distribution is the probability distribution that the person has before 

observing.  

A posterior probability is a probability value that has been revised by using additional 

information that is later obtained. Prior probabilities are the original probabilities of an outcome, 

which we can update with new information to create posterior probabilities.	   

We calculate posterior probability by updating the prior probability using Bayes theorem. In 

Bayes theorem, the posterior probability is the probability of event A occurring given that event 

B has occurred. The formula is as follows: 
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where: 

P(A) is the prior probability or marginal probability of A. It is "prior" in the sense that it does not 

take into account any information about B. 

P(A|B) is the conditional probability of A, given B. It is also called the posterior probability 

because it is derived from or depends upon the specified value of B. 

P(B|A) is the conditional probability of B given A. It is also called the likelihood. 

P(B) is the prior or marginal probability of B, and acts as a normalizing constant. [18] 

 
 

3.5 Mutual Information                                    

The value of information analysis in Bayesian network is based on the concept of mutual 

information, entropy and information gains. Mutual information is a quantity that measures the 

mutual dependency of two variables. It is a dimensionless quantity, which reduces the 

uncertainty about one random variable given knowledge of another. High mutual information 

means a large reduction in uncertainty, low mutual information indicates a small reduction and 

zero mutual information between two random variables means the variables are independent. 

The mathematical representation for mutual information of the random variables X and Y are as 

follows: 

               𝐼 𝑋;𝑌 = 𝑝(𝑥,𝑦) log( !(!,!)
!! ! !!(!)

)!"#!"#                       

Where,  p(x,y) is the joint probability distribution function of X and Y respectively.  𝑝! 𝑥  is the 

marginal probability distribution function of X and  𝑝!(𝑦) is the marginal probability distribution 

function of Y. Mutual information and Pearson correlation are used for choosing edges between 

nodes in a Bayesian model. [19] 
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3.6  Kullback-Leibler divergence 

Kullback-Leibler divergence is a natural measure of the distance between two probability 

distributions. This is a discriminant function, which is intimately related to mutual information. 

For any two distributions 𝑃(𝑧) and 𝑄(𝑧), it is defined as follows: 

 

                                  𝐷!" 𝑃 𝑧 𝑄(𝑧) ≡ 𝑃(𝑧) log !(!)
!(!)!                                               

   

Kullback-Leibler divergence has two essential properties: 

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐷!" 𝑃,𝑄 ≥ 0      for all distributions of P and Q               

	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐷!" 𝑃,𝑄 = 0      if and only if P = Q 

 

 We measure the closeness of the two distributions with Kullback-Leibler (KL) divergence.  

Kullback-Leibler can be used to determine how far away a probability distribution P is from 

another distribution Q. That means Kullback-Leibler divergence can be used as a measure of the 

information gain in moving from a prior distribution to a posterior distribution in modeling 

Bayesian estimator. The goal in modeling Bayesian estimator is to maximize the expected 

Kullback-Leibler divergence between the prior and the posterior. 

But this divergence is not a real distance measure, because it is not symmetric. Another property 

of Kullback-Leibler divergence is it is always non-negative and it does not satisfy the triangle 

inequality. [20] 
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3.7 Sensitivity of Networks  

One goal of our present study of the Bayesian network is to quantify experimentally how much 

can be learned from the least amount of data available to construct a feasible network. The 

Bayesian model we have experimented here, instrumental measurement nodes have three states 

and all other nodes have five states. Sensitivity analysis refers to identifying the most important 

parameters, which have maximum impact in the Bayes network so that unimportant parameters 

can be discarded in the network. Sensitivity analysis in Bayesian networks is broadly concerned 

with understanding the relationship between local network parameters and global conclusions 

drawn based on the network. 

One way of performing sensitivity analysis of Bayesian networks is to compute the conditional 

probabilities of a target node in the network when some evidence values of nodes are available 

and to observe how sensitive these conditional probabilities are to small changes in the 

parameters or evidence values. Of course not all parameters are equally sensitive since they all 

have different effects on the network’s performance. In some cases a network can be very 

sensitive to small parameter changes.  

In a one-way sensitivity analysis, the values of a single parameter are changed one at a time to 

compute the conditional probabilities of a target node, keeping the values of all other parameters 

fixed. Single parameter changes are easy to compute and visualize the effects in the network. 

[21] 

In a two-way sensitivity analysis of a probabilistic network, two parameters are varied 

simultaneously to see the joint effect of their variation on a probability of interest. It is also 

possible to change more than two parameters at the same time, though it is hard to interpret such 

manipulation in sensitivity analysis. Multiple parameter changes can be more meaningful, and 

may disturb the probability distribution less significantly than single parameter changes. [22] 

In a Bayesian network identifying most important parameters from the huge number of 

probability parameters is cumbersome and may require quite large data sets in order to learn 

accurate parameter estimates. An exponential number of conditional independence tests are 

required in most dependency-analysis based Bayesian network algorithms. In data-mining 

applications it is very common to have hundreds of variables in the data sets. A mathematical 
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function, namely, sensitivity function, can be used to express the sensitive change in posterior 

probability of the target query due to the variation of a Bayesian network’s probability 

parameters. [23] 

 

3.8  An Example of Bayes Network  

The directed edges of a Bayesian network describe the probabilistic relations between the nodes. 

For doing the experiment of sensitivity analysis, here we have considered a probability 

distribution of several variables. The table below is a conditional probability of X1, given the 

prior of X2.  

 

  
                 

 
 
 

        Table 3.1:  The conditional probability of X1, given the prior of X2. 
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        Table 3.2:  The conditional probability of X3, given X2. 

 

 

 

 

 

 

 

 

 

 

 

 

        Table 3.3:  The conditional probability of X4, given X3. 
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We have considered four nodes X1, X2, X3 and X4 where X1, X3 and X4 are conditioned on X2 

for a given prior of X2. The joint probability of all four variables is: 

 

                  P(X1,X2,X3,X4) = P(X1|X2)P(X2)P(X3|X2)P(X4|X3) 
 
 
 
                        
 
 
 
   Figure 3.2: The four nodes conditional probability distribution model. 

 

We have calculated conditional probability distribution of X1 and X2, given the probability of 

X2 and conditional probability distribution of X4, given the probability of X3. After that we 

have calculated all pair-wise mutual information. The calculated results are tabled below. 

 

 
                   X1 and X2         X1 and X3            X1 and X4 

Mutual  
Information 

0.8935 (nats) 
 

    0.3912 (nats) 
 

0.2838  (nats) 
 

 
Table 3.4: Mutual information values for Sensitivity Analysis Example 
 
 
From the table we can see that the mutual information between X1 and X3 or X1 and X4 is 

smaller than the mutual information between X1 and X2. It is natural because of the structure of 

the network. It also shows causal conditional probabilities are easier to estimate. 
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4. Experiments and Case Study 

To construct a probabilistic belief system, it is necessary to define a set of random variables, 

which will represent nodes in our Bayes network. For this we have collected some jury 

assessment data from a case study carried out. The idea behind the case study is to take a digital 

image and modify it in different ways by digital image processing. The digital image was 

modified in such a way that it can cover the subjective and objective quality factors as much as 

possible. The visual assessment test of those modified images was carried out using a monitor 

display. The nodes of the Bayesian networks are presented as probability distributions of image 

quality elements and instrumental measurements. Based on prior knowledge, a Bayes network 

proposed is shown in figure 4.1 

 

4.1  Setup: manipulation  

A digital image was modified by three different methods in Matlab by using image processing 

toolbox: low-pass filtering, noise addition and HSV saturation. These three versions of 

modifications have been simulated as instrumental measurements in our Bayesian model. There 

were three distinct degrees of modification for each method: no modification, mild, and 

moderate level. The combination of all modified images was used in the subjective assessment 

test as jury assessment data collected in trial sessions. The total number of images was twenty-

seven and each image was assessed with respect to eight attributes (which have been embedded 

in our Bayesian model as PQE, low level and high level) on a scale from 1 to 5. The evaluators 

assessed one attribute at a time. That means each subject was asked to label the twenty-seven 

images with the grades 1-5 eight times. The evaluation data and original images are presented in 

Appendix A and in Appendix B.  
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Figure 4.1. The Bayesian model based on prior knowledge. 

 

4.2 Experiment 

4.2.1 Case study I                                                                                                                       

With one image content of different modified variations the visual assessment test was 

conducted by six human evaluators. They were asked to give grades 1 to 5 of all those modified 

twenty-seven images in terms of eight attributes.  So we got six sets of evaluations data from six 

different people for the purpose to utilize those data in our Bayesian networks as probability 

distributions. After that we have tried to find the causal relationship between those six sets of 

evaluations data and three versions of modified instrumental measurements.  

For this purpose, we have computed all pair-wise mutual information between the three 

instrumental measurements and all the quality elements. The computed Pearson correlation 

values and mutual information between the attributes related in the model are listed below in the 

tables.  
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Overall 
Quality 

Usefulness Naturalness Sharpness Brightness Colorfulness Graininess Clarity Lp 
filtering 

Noise HSV 
Saturation 

1.0000 0.5899 0.4252 0.5288 0.0309 0.2029 0.4330 0.5799 0.0751 -0.4160 -0.5374 

0.5899 1.0000 0.5691 0.7660 0.1911 0.2069 0.3081 0.7374 0.0238 -0.7256 -0.3925 

0.4252 0.5691 1.0000 0.4973 0.2648 0.4776 0.3027 0.5943 -0.0409 -0.4035 -0.3742 

0.5288 0.7660 0.4973 1.0000 0.2297 0.2379 0.2251 0.6412 0.0284 -0.8392 -0.2438 

0.0309 0.1911 0.2648 0.2297 1.0000 0.0665 -0.0180 0.2632 0.0172 -0.1547 -0.1203 

0.2029 0.2069 0.4776 0.2379 0.0665 1.0000 0.1820 0.2365 -0.2256 -0.1722 -0.0891 

0.4330 0.3081 0.3027 0.2251 -0.0180 0.1820 1.0000 0.4126 0.0208 -0.0728 -0.6085 

0.5799 0.7374 0.5943 0.6412 0.2632 0.2365 0.4126 1.0000 -0.0407 -0.5349 -0.4942 

0.0751 0.0238 -0.0409 0.0284 0.0172 -0.2256 0.0208 -0.0407 1.0000 0 0.0000 

-0.4160 -0.7256 -0.4035 -0.8392 -0.1547 -0.1722 -0.0728 -0.5349 0 1.0000 0 

-0.5374 -0.3925 -0.3742 -0.2438 -0.1203 -0.0891 -0.6085 -0.4942 0.0000 0 1.0000 

	  	  	  	  	  	  	  	  	   	   	   	   	   	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  
Table 4.1: Pearson correlation values for Bayesian network 

	  

	   Low-pass filtering 
(MI in nat) 

Noise 
(MI in nat) 

HSV Saturation 
(MI in nat) 

Sharpness 0.0027 0.5633 0.0949 

Clarity 0.0150 0.2101 0.1989 

Graininess 0.0304 0.0319 0.3343 

Brightness 0.0755 0.0441 0.0377 

Colorfulness 0.1825 0.0404 0.0144 

Usefulness 0.0290 0.3918 0.1157 

Naturalness 0.1234 0.0999 0.1219 

Overall quality 0.0156 0.1807 0.2167 

 

Table 4.2: Mutual information values between Instrumental measurements and quality elements 
in Bayesian network 
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In the table 4.1 of Pearson correlation values we can see strong correlation (> 0.5) among 

Usefulness, Overall Quality, Naturalness, Sharpness and Clarity. This means that changes in one 

variable are strongly correlated with changes in the second variable. If one of the variables 

increases in value, the second variable also increases in value. Perceptual quality element 

Colorfulness has moderately strong correlation (> 0.2) with Overall Quality, Usefulness, 

Naturalness and Sharpness. In the table we can also see negative correlation values in some 

variables that implies if one variable increases in value, another variable decreases in value.  

From the table 4.2 we can see instrumental measurement Low-pass filtering has higher mutual 

information (> 0.1) with Colorfulness and Naturalness. That means Colorfulness is affected by 

Low-pass filtering significantly. Noise has higher mutual information (> 0.2) with the Sharpness, 

Usefulness and Clarity. Instrumental measurement HSV saturation has higher mutual 

information with Graininess and Clarity. Based on the results of Pearson correlation and mutual 

information values we have initially proposed a Bayesian model, which is shown in figure 4.2. 

Compared to initial model, figure 4.1, brightness appears statistically independent from the other 

variables and is left out. 

 

 

            
             Figure 4.2. The Bayesian model constructed according to the mutual information results   

computed from the test case data. 
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However, we have not succeeded in constructing the probability models due to insufficient data 

and three conditioning variables of usefulness. Lack of insufficient data and more than two 

conditioning variables create no-model cases by means of zero probability which increases the 

uncertainty of our Bayesian model. No-model case means that the data does not contains all 

possible combinations of values of conditioning variables.   

 

So we have decided to simplify the model in such a way where number of no-model cases is 

limited. For this we have decided to omit the quality variable Clarity as it’s impacts are mostly 

covered by Sharpness and Graininess and the initial experimental results look promising. 

The constructed two Bayes network models are shown in figure 4.3 and figure 4.4.  

 

 

 

            

            Figure 4.3. First simplified Bayesian model  
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Figure 4.4. Second simplified Bayesian model 

                

4.2.2 Case study II  

After constructing two simplified Bayesian models, on these cases of models no-models cases 

are limited to the last one, Usefulness, Naturalness ⇒ Overall quality; the missing cases occur 

when either Usefulness is high but Naturalness is low and vice versa. For the missing models in 

both Bayesian networks we have decided to replace following probability values in the following 

positions ( Prob_model_1_Overall(i,j,k) means probability of overall quality being i, given 

naturalness is j and usefulness is k) 

 

Prob_model_1_Overall(:,1,5) = [0.6 0.4 0 0 0] 

Prob_model_1_Overall(:,2,5) = [0 0.25 0.5 0.25 0] 

Prob_model_1_Overall(:,5,1) = [0 0.25 0.5 0.25 0] 

 

Prob_model_2_Overall(:,1,5) = [0.6 0.4 0 0 0] 

Prob_model_2_Overall(:,2,5) = [0 0.25 0.5 0.25 0] 

Prob_model_2_Overall(:,5,1) = [0 0.25 0.5 0.25 0] 

 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  

	  

30	  

 

After we have constructed simulator based on two simplified models, we have trained the model 

with the real subjective data, we have randomly generated perceptual quality elements data based 

on the models, then we have trained the model again with the generated data and we have 

validated the simulated models by means of mutual information and Pearson correlation value 

comparisons.  

 

We have provided randomly generated perceptual quality elements data (Sharpness, Graininess, 

Brightness, Colorfulness for the first model and Colorfulness, Sharpness, Graininess for the 2nd 

model), where simulators generate with probability models a data vector as [Lpf Noise HSV 

usefulness naturalness Overall]. This two simulators provide artificial “evaluation vectors” and 

tries to mimic a human evaluation. 

 

How good are those models? To identify it we have generated a large number (1000 to10000) of 

synthetic evaluation data sets with the simulators to mimic as if a large number of evaluation 

data set is generated by human evaluators. Later we have computed mutual information and 

correlation so that we can compare those results with the results produced earlier by original data 

set. By generating similar size as original data (162 samples) we have simulated our models 

multiple times (20 times), and then we have calculated average Pearson correlation, mutual 

information and standard deviation values. Our human evaluation data are in many places 

illogical, which are mainly due to that there are so few data vectors. 

The acquired results from synthetic evaluation data allow us to compare them with original data 

we collected from human evaluators. The calculated values from the both models are listed in 

tables 4.3 - 4.10. 
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Overall 
Quality 

Usefulness Naturalness Sharpness Brightness Colorfulness Graininess Clarity Lp 
filtering 

Noise HSV 
Saturation 

1.0000 0.5179 0.2681 0.4145 0.0969 0.1258 0.0620  -0.0010 -0.3664 -0.0422 

0.5179 1.0000 0.5179 0.8114 0.0437   -0.0179 0.1347   0.0163 -0.6969 -0.0166 

0.2681 -0.0017 1.0000 0.0090 0.2917 0.5009 0.0121  -0.0165 -0.0204 -0.1785 

0.4145 0.8114 0.0090 1.0000 0.0324   -0.0031 0.0137   0.0254 -0.8660 -0.0099 

0.0969 0.0437 0.2917 0.0324 1.0000 0.0969 0.0052    -0.0212 -0.0406 -0.1967 

0.1258 -0.0179 0.5009  -0.0031 -0.0008 1.0000 0.1258  -0.0163  0.0037 -0.1023 

0.0620 0.1347 0.0121 0.0137 0.0052 0.0200 1.0000  -0.0065  0.0825 -0.0252 

           

 -0.0010    0.0163   -0.0165    0.0254   -0.0212   -0.0163   -0.0065     1.0000    -0.0071   -0.0004 

 -0.3664   -0.6969   -0.0204   -0.8660   -0.0406    0.0037    0.0825    -0.0071    1.0000    0.0190 

 -0.0422   -0.0166   -0.1785   -0.0099   -0.1967   -0.1023   -0.0252    -0.0004    0.0190    1.0000 

	  

Table 4.3: Pearson correlation mean values from 20 simulations for first model 
 

 

Overall 
Quality 

Usefulness Naturalness Sharpness Brightness Colorfulness Graininess Clarity Lp 
filtering 

Noise HSV 
Saturation 

0 0.0584 0.0579 0.0724 0.0848 0.0643 0.0826  0.0596 0.0779 0.0534 

0.0584  0 0.0641 0.0218 0.0626 0.0748 0.0894  0.0744 0.0263 0.0843 

0.0579 0.0641 0 0.0754 0.0791 0.0497 0.0696  0.0691 0.0720 0.0897 

0.0724 0.0218 0.0754 0 0.0765 0.0783 0.0740  0.0679 0.0152 0.0969 

0.0848 0.0626 0.0791 0.0765 0 0.0643 0.0899  0.0859 0.0653 0.0686 

0.0643 0.0748 0.0497 0.0783 0.0643 0 0.0774  0.0622 0.0869 0.0764 

0.0826 0.0894 0.0696 0.0740 0.0899 0.0774 0  0.0727 0.0637 0.0897 

           

   0.0596    0.0744   0.0691   0.0679    0.0859   0.0622   0.0727    0    0.0763   0.1117 

   0.0779    0.0263   0.0720   0.0152    0.0653   0.0869   0.0637    0.0763    0   0.0925 

   0.0534    0.0843   0.0897   0.0969    0.0686   0.0764   0.0897    0.1117    0.0925   0 

	  

Table 4.4: Standard Deviation of Pearson correlation for first model 
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	   Low-pass filtering 
(MI in nat) 

Noise 
(MI in nat) 

HSV Saturation 
(MI in nat) 

Sharpness 0.0248 0.6279 0.0256 

Clarity    

Graininess 0.0836 0.0422 0.0268 

Brightness 0.0278 0.0256 0.0700 

Colorfulness 0.0245 0.0310 0.0512 

Usefulness 0.0261 0.3568 0.0219 

Naturalness 5.1500e-04 0.0244 0.0508 

Overall quality 0.0276 0.1067 0.0237 

 

Table 4.5: Mean mutual information values between Instrumental measurement and quality 
elements for first model 
	  

	  

	   Low-pass filtering Noise HSV Saturation 

Sharpness 0.0124 0.0372 0.0100 

Clarity    

Graininess 0.0277 0.0239 0.0196 

Brightness 0.0122 0.0144 0.0202 

Colorfulness 0.0111 0.0174 0.0191 

Usefulness 0.0142 0.0332 0.0094 

Naturalness 0.0144 0.0099 0.0239 

Overall quality 0.0137 0.0342 0.0081 

 

Table 4.6: Standard Deviation of mean mutual information values between Instrumental 
measurement and quality elements for first model 
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Overall 
Quality 

Usefulness Naturalness Sharpness Brightness Colorfulness Graininess Clarity Lp 
filtering 

Noise HSV 
Saturation 

1.0000 0.2387 0.6069 0.2137  0.3043 0.0520  -0.0774 -0.1816 -0.1139 

0.2387 1.0000 -0.0212 0.8253  0.0317 0.0785  -0.0279 -0.7113 -0.3879 

0.6069 -0.0212 1.0000  -0.0092  0.5196 0.0048  -0.1052  0.0000  0.0166 

0.2137 0.8253 0.5196 1.0000  0.0350 -0.0297  -0.0210 -0.8708 -0.3076 

           

0.3043 0.0317 0.5196 0.0350  1.0000 0.0037  -0.2078 -0.0269 -0.0059 

0.0520 0.0785 0.0048  -0.0297  0.0037 1.0000  -0.0216  0.1339 -0.4611 

           

  -0.0774   -0.0279   -0.1052   -0.0210    -0.2078   -0.0216    1.0000    0.0040    0.0104 

  -0.1816   -0.7113    0.0000   -0.8708    -0.0269    0.1339    0.0040    1.0000    0.1416 

  -0.1139   -0.3879    0.0166   -0.3076    -0.0059   -0.4611    0.0104    0.1416    1.0000 

	  

  Table 4.7: Pearson correlation mean values from 20 simulations for 2nd model 
 

 

 

Overall 
Quality 

Usefulness Naturalness Sharpness Brightness Colorfulness Graininess Clarity Lp 
filtering 

Noise HSV 
Saturation 

0 0.0791 0.0605 0.0726  0.0878 0.0729  0.0987 0.0648 0.0669 

0.0791  0 0.0780 0.0274  0.0711 0.0933  0.0720 0.0429 0.0782 

0.0605 0.0780 0 0.0670  0.0619 0.0626  0.0857 0.0679 0.0726 

0.0726 0.0274 0.0670 0  0.0679 0.0585  0.0754 0.0190 0.0628 

           

0.0878 0.0711 0.0619 0.0679  0 0.0910  0.0657 0.0668 0.0840 

0.0729 0.0933 0.0626 0.0585  0.0910 0  0.0838 0.0599 0.0906 

           

  0.0987   0.0720   0.0857   0.0754    0.0657   0.0838     0    0.0733    0.0908 

  0.0648   0.0429   0.0679   0.0190    0.0668   0.0599    0.0733    0    0.0632 

  0.0669   0.0782   0.0726   0.0628    0.0840   0.0906    0.0908    0.0632    0 

	  

     Table 4.8: Standard Deviation of Pearson correlation for 2nd model 
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	   Low-pass filtering 
(MI in nat) 

Noise 
(MI in nat) 

HSV Saturation 
(MI in nat) 

Sharpness 0.0206 0.6422 0.1358 

Clarity    

Graininess 0.0228 0.0469 0.2901 

Brightness    

Colorfulness 0.2091 0.0283 0.0220 

Usefulness 0.0226 0.3790 0.1356 

Naturalness 0.0646 0.0247 0.0233 

Overall quality 0.0435 0.0510 0.0349 

 

Table 4.9: Mean mutual information values between Instrumental measurement and quality    
elements for 2nd model 
 

	   Low-pass filtering Noise HSV Saturation 

Sharpness 0.0091 0.0440 0.0321 

Clarity    

Graininess 0.0156 0.0145 0.0650 

Brightness    

Colorfulness 0.0340 0.0102 0.0088 

Usefulness 0.0100 0.0558 0.0403 

Naturalness 0.0209 0.0101 0.0119 

Overall quality 0.0166 0.0163 0.0199 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Table 4.10: Standard Deviation of mean mutual information values between Instrumental 
measurement and quality elements for 2nd model 
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Our next task is to examine and compare those Pearson correlation and mutual information 

values obtained from the two models so that we can validate and possibly propose a Bayesian 

model for the future.  
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5. Analysis method 

5.1 Bayesian Model Identification 

A Bayesian network (BN) is a graphical representation of a causal probabilistic relationship and 

it consists of two components: a directed acyclic graph and a set of conditional probability 

distributions. The conditional probability distribution of a random variable node is defined for 

every possible outcome of the preceding causal node. Edges between pairs of nodes are 

representing the causal relationship of these nodes, and a conditional probability distribution in 

each of the nodes. If there exists a causal probabilistic dependence between two random 

variables in the graph, the corresponding two nodes are connected by a directed edge. As the 

number of edges increase, the model becomes more complex. The complexity of the joint 

distribution of a node and its parent nodes grows exponentially in proportion to the number of 

parent nodes. Greater complexity means that a larger jury data is needed for the model 

identification. [24] 

 

Our reference Bayesian network has eleven nodes initially, 3 instrumental, 5 low-level attributes, 

2 high-level attributes, and the overall image quality. The instrumental measurement nodes have 

three possible discrete states and the rest of the nodes have five discrete states. Every node has 

maximum three parents. From the state probabilities in the reference Bayesian model we have 

simulated evaluation data for each attribute and new model parameters were estimated from the 

simulated data. In our first modified Bayesian model we decided to remove one perceptual 

quality attribute, which is brightness, based on the mutual information and Pearson correlation 

values calculation. We also exchanged the positions of high-level attributes usefulness and 

naturalness, where colorfulness is the parent node of naturalness, and sharpness, clarity and 

graininess are the parent nodes of usefulness. Due to three conditioning variables in perceptual 

quality elements the number of no-model cases increase significantly which prohibit us to 

validate our first model.  
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So further simplification of the model persuades us to construct two Bayesian models where 

sharpness and graininess become the parent nodes for usefulness and brightness and colorfulness 

become the parent nodes for naturalness in the first model. In the second simplified model we 

decided to keep only three perceptual quality elements colorfulness, sharpness and graininess 

where colorfulness is the parent node for naturalness and sharpness, graininess are the parent 

nodes for usefulness. In our both models the number of no-model cases were limited that 

facilitate us to reduce the uncertainty of the networks.   

 

Simulations were performed on both models by using original jury assessments data and 

synthetically generated data to assess the overall reliability of the networks. The two models 

were simulated simultaneously multiple times with different data set to take account of the 

variation between the sampled data sets. Then the original and simulated models were compared 

through evaluating the Mutual information values, Pearson correlation values and Standard 

deviation values.  

 

 

5.2 MI Analysis                             

If we want to construct a Bayesian network, we need to have prior expert knowledge of our 

model. To facilitate this, we need to understand the interaction between the nodes in instrumental 

measurement and nodes in image quality elements. Calculating the mutual information between 

them helps us to understand this conditional probability of nodes and tell us the overall reliability 

of the network’s output. In Bayesian networks, if two nodes are dependent, knowing the value of 

one node will give us some information about the value of the other node. Hence, the mutual 

information between two nodes can tell us if the two nodes are dependent and if so, how close 

their relationship is. In our Bayesian network each node takes a finite set of discrete values. 

Mutual information calculation from those discrete values probability distribution gives us a clue 

how nodes in instrumental measurement and nodes in perceptual quality elements are 

interconnected. [25] 
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In our experiment the four-layer Bayes network comprises both qualitative and quantitative part. 

We have analyzed our chosen network by performing the statistical dependency test based on the 

Mutual Information (MI) measurement between instrumental measurements and perceptual 

quality elements. After calculating mutual information for different grading of quality elements 

we are able to investigate how sensitive our Bayesian network is.  When the mutual information 

is higher with a perceptual quality element, we assume it has higher correlation with the nodes in 

instrumental measurement data.  If the mutual information is low with a perceptual quality 

element, we assume it has lower correlation with the nodes in instrumental measurement data. 

Those perceptual quality element nodes have lower or insignificant mutual information values 

we discard them from the network and try to minimize the uncertainty.  

In this way, we make parameter tuning in our Bayesian network and we construct a network 

model that is convenient from a practical point of view. 

 

5.3 Bayes Network From Case Study 

Sensitivity analysis refers to identifying the most important parameters so that unimportant 

parameters may be discarded from the model. If small changes are made in the parameters of the 

input evidence values, sensitivity analysis of the identified model reveals how much the output 

probability distribution changes.   

 

Our objective was to calculate the posterior conditional probability distribution of each of the 

possible unobserved causes, in our network, which are Instrumental measurements, given the set 

of observed evidence, which are perceptual image quality elements. The Bayesian model 

structure and parameters should be chosen such that the uncertainties due to them are minimized. 

For this purpose, we have performed conditional independency tests in order to measure the 

degree of interaction between unmeasured nodes Instrumental measurements and evidence nodes 

perceptual quality elements. In order to do that, we have calculated mutual information between 

Instrumental measurements and each of the quality elements separately. Calculating Mutual 

information is a measure of knowing the dependence between two random variables. Also these 

information measures are easy to compute using probabilistic inference. Moreover we have 
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observed how different grading (from 1 to 5) in perceptual quality elements correlate with the 

grading of instrumental measurements (Low-pass filtering, Noise and HSV saturation).    

 

Based on our corresponding obtained results and quality of the correlation we have initially 

proposed an alternative Bayes network. In our initially proposed Bayes network we have decided 

to cut away Brightness from the perceptual quality elements layer. Since we had not succeeded 

with the model, we decided to simplify the model further by constructing two models. In the first 

model Clarity has been replaced by Brightness and in our 2nd proposed Bayes network we have 

kept only three perceptual quality elements Colorfulness, Sharpness and Graininess. 

Since removing the quality elements Clarity and Brightness from the network models doesn’t 

affect the overall posterior probabilities significantly and the remaining quality parameters are 

sufficient to minimize the uncertainties of our network, the selection of our proposed networks 

can be considered as feasible models in our case study.  

 

Finally for comparison purpose we have intuitively assumed if the Pearson correlation value 

between two quality elements is more than 0.4, we have calculated the differences with the 

Pearson correlation values of our initial Bayesian model. In the same way we have performed 

such test for Mutual information values for both models where mutual information value is more 

than 0.1 between two quality elements. Based on the results we have tried to propose which 

simplified Bayesian model is best for the assessment of image quality.   
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 Pearson 

Correlation 
data 

Case1 Case2 STD 1 STD 2 Values for Case1 & 
Case2 

Remarks 

  Overall &   
  Usefulness 

0.5899 0.5179 0.2387 0.0584 0.0791 1.2329 < 2 
4.4399 > 3 
 
 

Good 
Poor 

Overall & 
Naturalness 

0.4252 
 

0.2681 0.6069 0.0579   0.0605 2.7133 > 2 
3.0033 > 3 

Perhaps 
Poor 

Overall & 
Sharpness 

0.5288 
 

0.4145 0.2137 0.0724 0.0726 1.5787 < 2 
4.3402 > 3 

Good 
Poor 

Overall & 
Graininess 

0.4330 
 

0.0620 0.0520 0.0826   0.0729 4.4915  > 3 
5.2263 > 3 

Poor 
Poor 

Usefulness & 
Naturalness 

0.5691 
 

-0.0017 -0.0212 0.0641 0.0780   8.9048  > 3 

  7.5679 > 3 

   

Poor 
Poor 

Usefulness & 
Sharpness 

0.7660 0.8114   0.8253 0.0218 0.0274 2.0826 > 2 
2.1642 > 2 

Perhaps 
Perhaps 

Naturalness & 
Sharpness 

0.4973 
 

0.0090 0.5196 0.0754 0.0670    6.4761 > 3 

0.3328 < 2 

Poor 
Good 

  Naturalness &  
  Colorfulness 

0.4776 
 

0.5009 0.5196 0.0497 0.0619 0.4688 < 2  
0.6785 < 2 

Good 
Good 

	  

Table 5.1: Pearson Correlation comparison for Bayesian models identification  
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 Mutual 
Information 
Data 

Case1 Case2 STD 1 STD 2 Values for Case1 & 
Case2 

Remarks 

  Lp filtering &   
  Colorfulness 

0.1825 0.0245 0.2091 0.0111 0.0340 14.2342 > 3 
0.7824  < 2 
 
 

Poor 
Good 

  Lp filtering &   
Naturalness 

0.1234  0.0005 0.0646 0.0144   0.0209 8.5347 > 3 
2.8134 > 2 

Poor 
Perhaps 

Noise & 
Sharpness 

0.5633  0.6279 0.6422 0.0372 0.0440 1.7366 < 2 
1.7932 < 2 

Good 
Good 

Noise & 
Usefulness 

0.3918 
 

0.3568 0.3790 0.0332   0.0558 1.0542  < 2 
0.2294  < 2 

Good 
Good 

Noise & Overall 
Quality 

0.1807  0.1067 0.0510 0.0342 0.0163   2.1637 > 2 

  7.9571 > 3 

   

Perhaps 
Poor 

HSV &  
Graininess 

0.3343 0.0268   0.2901 0.0196 0.0650 15.6888 > 3 
0.6800 < 2 

Poor 
Good 

HSV & 
Usefulness 

0.1157  0.0219 0.1356 0.0094 0.0403    9.9787 > 3 

0.4938 < 2 

Poor 
Good 

  HSV &            
  Naturalness 

0.1219 0.0508 0.0233 0.0239 0.0119 2.9749 > 2 
8.2857 > 3 

Perhaps 
Poor 

 HSV & Overall    
  Quality  

0.2167 0.0237 0.0349 0.0081 0.0199 23.8272 > 3 
9.1357 > 3 

Poor 
Poor 

	  

Table 5.2: Mutual information comparison for Bayesian models identification 

 

 

In Pearson correlation values from the table 5.1 we can see our first model tends to perform well 

over the 2nd model in terms of correlation values performances. For the case of mutual 

information performance we see the different scenario. From the table 5.2 we notice our 2nd 

model clearly outperforms over our first simplified Bayesian model. 
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So at the end we can say, when we have simulated the both Bayes networks considering specific 

grades (generated by both human evaluator and synthetically) of perceptual quality elements, 

comparing the table 5.1 and table 5.2 we come to a conclusion that our 2nd modified alternative 

model can be our chosen Bayesian model where the uncertainties are significantly minimized.  
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6. Conclusion 

In Bayesian approach the principle goal is to construct the posterior probability distribution for 

the unknown entities from the given data sample in a model. To identify important parameters 

we have used mutual information and marginal distribution of a given data sample set which 

gives a feasible end model of the network. In reality, we have tried to find some relation between 

posterior probabilities and prior probabilities. One limitation of this approach is to take into 

account all required parameters of prior probabilities.  

 

The overall value of image quality is often measured by summing up all the measurable 

perceptual image quality attribute values. When we are talking about perceptual quality 

elements, it may not be sufficient enough to comprise only such attribute variables as sharpness, 

clarity, graininess, brightness and colorfulness.  In this case, it demands explicit definition of all 

required attributes of perceptual quality elements. On the other hand, if the more sophisticated 

image quality attributes are included, fruitful evaluation becomes extremely difficult for human 

evaluators and it will produce huge number of conditional probabilities.  

 

Image quality is a visual or aesthetic characteristic such as color, smoothness, reflectivity, light 

scatter etc. that contradicts with the quantifiable instrumental values, although it will produce the 

same numeric values every time. We should keep in mind that an objective measure should have 

a consistent result with the subjective measure or the perceived quality of an image. It is 

necessary to understand how well the synthetically generated evaluation data correspond to the 

real world data, and how well the simulated model predicts the real subjective data.  

 

Another limitation of it is the difficulty to acquire the plenty of data samples, which can validate 

the final model of the network in a pragmatic way. Many Bayesian network-learning algorithms 

require additional information, which is not always available. The uncertainty effects due to 

finite size of jury assessment data are common in validating a Bayesian model. In our effort a 

Bayesian networks is developed based on mutual Information calculation, conditional 

independence among the variables. But a feasible Bayesian network model can’t be achieved 

unless correct and reliable data are provided to us. Also it might be cumbersome and a 
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challenging task collecting the sufficient amount of data for identifying a robust network model. 

When sufficient amount of data are available, a Bayesian network may be built automatically 

straight from the databases using algorithms reliable estimates of conditional probability 

distributions. It is important that we develop more analytic tools to understand and explain the 

sensitivity of certain parameter changes for state-of-the-art in image quality assessment. 
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Appendix A 
Jury Simulation Data 
 

This jury assessment data was obtained in a trail session where six people were asked to give 

grade in terms of eight attributes of image quality on a scale from 1 to 5.  

 

 Column 1: Overall quality 

 Column 2: Usefulness 

 Column 3: Naturalness 

 Column 4: Sharpness 

 Column 5: Brightness 

 Column 6: Colorfulness 

 Column 7: Graininess 

 Column 8: Clarity 
 

 
Evaluator 1 
 
 
     5     5     5     5     2     5     5     5 
     4     4     5     4     4     5     2     4 
     2     2     2     4     2     4     1     2 
     3     3     5     3     2     5     5     3 
     3     3     5     3     3     5     2     4 
     2     1     3     2     3     4     1     1 
     1     2     3     2     2     5     4     2 
     2     2     2     1     3     2     3     1 
     1     1     1     1     2     2     1     1 
     4     5     4     5     5     3     5     5 
     2     4     2     4     4     2     3     4 
     2     2     1     4     5     1     1     2 
     3     4     4     3     4     3     4     4 
     2     3     2     3     5     3     2     2 
     1     1     1     2     4     2     2     2 
     1     2     2     1     4     2     4     1 
     1     1     2     1     4     2     2     1 
     1     1     1     1     5     1     2     1 
     5     5     4     5     1     3     5     5 
     4     5     4     5     1     4     3     4 
     1     2     1     4     1     1     1     2 
     4     4     1     3     1     1     5     4 
     3     3     3     3     1     3     3     3 
     2     1     1     2     2     3     1     1 
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     2     1     2     1     1     1     4     2 
     2     2     1     1     1     1     3     1 
     1     1     1     1     2     2     1     1 
 
 
 
 
 
Evaluator 2 
 
 
     5     5     4     5     2     4     4     4 
     3     5     4     5     4     4     3     4 
     3     4     2     4     3     2     2     3 
     3     3     3     3     4     5     5     2 
     3     2     3     2     3     3     2     3 
     4     2     2     3     3     3     2     3 
     1     1     4     1     3     4     5     2 
     2     2     2     1     2     3     2     2 
     1     1     3     2     2     4     1     1 
     5     5     3     5     1     1     4     4 
     3     4     2     4     2     1     3     2 
     3     4     1     4     2     2     2     2 
     5     4     2     2     2     1     4     4 
     4     3     1     3     1     1     2     1 
     3     2     2     3     1     2     2     3 
     1     1     2     2     1     2     5     1 
     1     2     1     1     2     2     2     2 
     1     1     2     1     2     1     1     1 
     5     5     5     4     5     5     5     5 
     5     4     5     4     4     4     3     2 
     2     3     4     3     4     2     1     2 
     4     3     3     4     3     3     4     5 
     4     3     4     3     3     3     2     2 
     2     3     3     2     4     2     1     3 
     2     1     1     1     5     2     4     2 
     2     2     3     2     4     3     2     1 
     1     1     3     2     4     3     1     1 
 
 
Evaluator 3 
 
     5     5     4     5     2     5     5     5 
     2     5     5     4     3     2     4     4 
     2     4     3     3     4     4     1     1 
     4     4     4     2     3     2     4     4 
     3     2     4     1     2     2     3     3 
     2     3     1     1     4     3     1     4 
     2     2     4     1     2     4     5     2 
     2     2     4     2     4     4     2     2 
     1     2     3     2     3     3     1     1 
     4     4     3     5     5     3     5     5 
     2     5     2     4     5     3     4     4 
     2     2     1     3     5     1     1     3 
     3     3     2     5     5     2     5     3 
     3     4     3     4     4     2     2     3 
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     2     3     2     2     4     2     1     2 
     3     2     3     1     5     2     3     3 
     1     3     2     2     4     1     2     2 
     2     3     1     2     5     2     1     1 
     5     3     5     5     4     5     5     5 
     4     5     5     5     4     5     3     5 
     2     4     3     2     4     3     1     3 
     5     4     4     4     1     5     5     3 
     3     3     5     3     3     5     2     3 
     2     2     2     4     2     4     1     1 
     3     2     3     2     4     4     5     2 
     3     3     3     1     1     3     3     2 
     1     1     2     2     2     4     1     1 
 
 
Evaluator 4 
 
     5     5     5     5     5     4     5     5 
     4     4     3     3     4     4     3     4 
     2     4     4     3     4     4     1     3 
     4     4     5     3     2     4     4     4 
     3     3     2     2     1     2     3     3 
     2     2     2     2     3     3     1     5 
     2     3     4     1     1     4     4     4 
     2     2     3     1     1     3     2     2 
     1     1     3     1     4     3     1     1 
     4     5     4     5     2     2     5     5 
     4     4     3     4     4     2     3     3 
     2     4     2     3     2     2     1     2 
     4     4     1     2     1     3     2     3 
     3     4     2     2     3     1     1     3 
     2     2     2     2     1     2     4     1 
     1     2     1     1     5     2     2     2 
     2     1     1     2     4     2     1     2 
     1     2     2     1     2     5     5     1 
     5     5     5     5     2     5     3     5 
     4     5     5     4     3     4     1     4 
     3     3     3     3     2     5     5     4 
     4     4     4     3     3     5     3     3 
     3     4     4     2     1     4     2     3 
     2     3     2     2     3     5     4     3 
     2     3     2     1     4     4     3     2 
     2     3     3     1     2     4     1     1 
     1     1     2     1     3     2     2     2 
 
Evaluator 5 
 
     5     4     4     5     5     5     3     5 
     3     4     3     4     3     4     3     3 
     1     3     3     4     4     4     1     3 
     5     4     4     4     3     4     5     5 
     4     4     4     3     4     5     3     4 
     2     3     4     2     3     4     1     3 
     3     3     4     2     4     4     5     5 
     2     3     2     2     4     4     3     4 
     2     2     4     2     3     4     2     3 
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     5     5     4     4     2     2     4     4 
     2     3     3     4     2     2     3     4 
     1     3     3     3     1     3     2     3 
     4     4     2     3     2     2     4     5 
     4     3     2     3     2     2     3     4 
     2     2     3     4     4     5     1     3 
     3     4     2     3     3     2     5     4 
     2     2     2     2     2     4     3     4 
     1     3     2     2     1     1     2     3 
     5     5     5     5     5     3     3     4 
     4     4     4     4     5     3     3     4 
     1     3     4     3     4     3     1     3 
     5     4     5     3     5     2     5     5 
     3     3     5     2     5     3     3     4 
     1     3     3     3     4     3     2     3 
     3     3     5     2     5     3     5     5 
     3     4     3     2     4     3     3     4 
     1     3     3     2     4     2     2     3 
 
Evaluator 6 
 
     1     5     5     5     5     2     2     5 
     1     5     5     5     5     5     5     4 
     1     4     3     4     2     5     2     3 
     2     4     4     3     3     4     3     4 
     5     3     4     3     4     3     5     3 
     1     2     3     2     2     4     4     2 
     2     2     2     2     3     3     1     3 
     3     2     2     1     3     3     1     2 
     2     1     1     1     1     2     1     1 
     4     5     4     5     4     2     2     4 
     5     5     5     5     4     4     3     5 
     1     4     1     3     1     3     1     2 
     4     4     2     4     5     5     2     4 
     3     3     4     2     2     2     2     3 
     4     2     1     2     1     5     4     1 
     2     2     1     1     2     2     4     2 
     2     1     1     1     2     3     5     2 
     2     1     1     1     1     1     1     1 
     1     5     5     5     5     1     1     5 
     3     5     5     5     5     1     5     5 
     2     4     2     4     3     3     3     3 
     4     4     3     3     4     1     5     3 
     3     3     4     3     3     2     1     3 
     1     3     3     2     2     2     5     2 
     5     2     2     2     3     1     1     2 
     1     1     2     1     2     1     2     2 
     3     1     1     1     2     1     5     1 
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Appendix B  

Experimental Data 
There were three distinct degrees of modification for each instrumental measurement method: no 

modification, mild, and moderate level. 

 
 Column 1:  Lp filtering 

 Column 2:  Noise 

 Column 3:  HSV Saturation 

  
1 1 1 
1 1 2 
1 1 3 
1 2 1 
1 2 2 
1 2 3 
1 3 1 
1 3 2 
1 3 3 
2 1 1 
2 1 2 
2 1 3 
2 2 1 
2 2 2 
2 2 3 
2 3 1 
2 3 2 
2 3 3 
3 1 1 
3 1 2 
3 1 3 
3 2 1 
3 2 2 
3 2 3 
3 3 1 
3 3 2 
3 3 3 
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                               Figure B.1. Studio image used in the Bayesian network identification test. 

 
 
 
 
 

 


