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All genuine knowledge originates in direct experience, especially for engineering
courses. To help the students grasp hands-on experience of solving practical prob-
lems, a Machine Learning competition named TUGraz-TUT Face Verification Chal-
lenge was jointly organized by Graz University of Technology and Tampere Uni-
versity of Technology. The objective of the competition was to identify whether
two facial images represent the same person. During the two-month period, the
competition received 137 entries submitted by 28 players in 20 teams. This thesis
summarizes the outcome of the competition.

To scrutinize the face verification system systematically, the processing workflow
was divided into several parts. In the procedure of face alignment, Unsupervised
Joint Alignment and Ensemble of Regression Trees were compared. Subsequently,
the OpenFace and VGG Face features were retrieved from the aligned images. In
the classification system, the performance of neural network and support vector
classification were evaluated. Moreover, the influence of the ensemble strategies and
the result of different error metrics were investigated. Based on the cutting-edge
deep neural networks proposed by the research community, the winning solutions
attained excellent results as the Weighted AUC scores exceeded 0.9990.

In addition to the preceding accomplishments, the findings suggested that there
were still opportunities for further enhancements of the face verification systems.
The limitations of current work and a handful of conceivable directions for future
research had been deduced.
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PREFACE

In late 2014, a online Machine Learning competition was organized as a compulsory
assignment of one course offered by Tampere University of Technology. The winning
solutions from that competition clearly surpassed the state of the art methods.
Meanwhile, the feedback from the students was quite positive as they delighted in
learning by doing. So as to solidify such good practice, we endeavor to integrate
more competitions with the conventional classroom teaching.

This thesis subjects to another competition which was carried out in late 2015. To
expand the scope of the participants, we cooperated with Graz University of Tech-
nology. It is plain fact that the Deep Learning techniques emerge as the optimum
methods in many research areas of Computer Vision in recent years. We chose Face
Verification as the content of the competition since the Deep Learning techniques
has enabled the Machine Learning systems to approach human-level performance in
recognizing faces.
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1. INTRODUCTION

In 1959, Arthur Samuel developed a program which plays the game of checkers and
it is regarded as the first-ever self-learning program. The Samuel Checkers-playing
Program defeated the champion in the State of Connecticut two years later. [57,58]
In 2016, a program named AlphaGo sealed 4-1 victory over the Go Master Lee Sedol.
Go is a board game which depends heavily on intuition and the number of possible
legal positions far exceeds the total amount of atoms in the observable universe.
[31,60,64] Machine Learning (ML) makes these two programs possible. It is also the
enabling technique of speech recognition, off-road autonomous driving and targeted
display advertising [21, 52, 67]. As a result of the exponential growth of computing
power and the flood of enormous data, Machine Learning is booming throughout
the years. However, imparting the learning aptitude to computers remains to be the
most challenging objective in Artificial Intelligence (AI) [44].

Many Massive Open Online Course (MOOC) platforms emerge as a popular alterna-
tive to the traditional education since 2012, such as edX, Udacity and Coursera. [49]
These service providers often collaborate with the prestigious universities and lead-
ing companies all over the world. They offers a precious opportunity for prospective
students to obtain new skills and knowledge which were unreachable to them in the
past. As the importance of web-based learning could not be overemphasized, a Ma-
chine Learning competition was jointly organized by Graz University of Technology
and Tampere University of Technology. The students from both universities were
induced to take part actively.

Faces have irrefutably huge influence on people’s opinions about the first impres-
sions of a stranger. [74] Since faces are important in social interactions, it has been
a popular topic in the Machine Learning community. Typical research areas in-
cludes face detection, face alignment, face verification and recognizing facial expres-
sions. [4, 9, 15, 75] Among these research areas, face verification is one of the most
challenging problems and the objective is to verify whether two images represent the
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same person. The humans have astonishing abilities to identify familiar faces in-
stantly even after years of separation. However, the same task introduces a bunch of
tricky problems to the computers since there could be different viewing conditions,
expressions and distractions. The machine learning algorithm need to be capable
of ignoring nuisance variables and concentrating on pertinent features. [35, 72] In
the competition, approximately 2700 human facial images were retrieved from the
Internet. Each image belongs to a specific person and each person has roughly 5

images on average. The image data set was evenly divided to two groups, namely,
the training data set and the testing data set. While the matching relation between
the image and the person in the training data set was revealed, the contestants were
required to predict whether each possible pair of the images in the testing data set
were collected from the same person.

The remainder of the thesis is structured as follows. Section 2 presents the theoreti-
cal background. Section 3 formalizes the content of the competition and introduces
the solutions from two top performing teams along with other available approaches.
The performance of the learning system is analyzed comprehensively. Finally, the
conclusions and possible future work are discussed in Section 4.
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2. THEORETICAL BACKGROUND

2.1 Machine learning

Various definitions could be found for the discipline of machine learning. In 1959,
Arthur Samuel originated the notion: "field of study that gives computers the ability
to learn without being explicitly programmed". [65] In 1997, Tom Mitchell described
it as "A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E". [45] The subject of machine learning
seeks out the answer for how to construct an intelligent computer system which
could improve with experience spontaneously and what are the ground rules that
pertain to all learning processes. [46] Depending on the intrinsic property of the
provided data set, the learning systems could be distinguished into the following
three board categories.

Firstly, supervised learning refers to those scenarios where the desired output is
available. The training data set contains a certain amount of examples and each
example consists of the feature vector along with the corresponding desired output
value. A supervised learning algorithm explores the causality between the feature
vector and the desired output value. Supervised learning problems could be further
divided into two types. On the one hand, the output might represents different
classes, and therefore the value should be discrete. Such problems are regarded as
classification problems. For example, forecasting whether it will rain falls under
this category. On the other hand, the output value could be continuous rather
than discrete. These cases are considered to be regression problems. For instance,
predicting the outdoor temperature belongs to this group. [56]

Secondly, unsupervised learning refers to those scenarios where the desired output is
absent. As a consequence, the conventional evaluation methods are not applicable
and an unsupervised learning algorithm is expected to find out the hidden structures
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inside the unlabelled data set. [56] An e-commerce service provider could collect the
data set which characterize the customers and apply unsupervised learning tech-
niques to map each customer to several clusters. An interest-based recommendation
system could be implemented based on the outcome of the unsupervised learning
algorithm.

Thirdly, reinforcement learning focuses on maximizing the cumulative reward by
learning what actions to take. Instead of explicitly feeding the correct input and
output pairs, the learning system need to figure out which actions could bring in the
most reward by trying them. Reinforcement learning differs from supervised learn-
ing as a reinforcement learning system learns from interaction while a supervised
learning system learns from examples supplied by external knowledgeable supervi-
sors. Consider a robot vacuum cleaner, it needs to make a choice between cleaning
another room or returning to the charging station. The optimal decision could
be made by reviewing how readily it has been able to find the charging station
in the past. Such interaction with the surroundings is indispensable for adapting
behaviours. [68]

2.2 Face verification

Most conventional face verification systems only work when the input image is frontal
and those systems fail catastrophically if the facial image is captured from non-
frontal viewpoints. [7] Although manipulating the non-frontal facial images remains
difficult, this thesis focuses on the state of the art solutions which utilized Deep
Learning techniques to perform face verification.

Figure 2.1 demonstrates the general workflow of a modern face verification system
named OpenFace. Firstly, the system detects the faces in the given input image.
Secondly, the system transforms the original facial image and generates an aligned
facial image. This face alignment process is considered to be necessary as it helps to
improve the overall performance [66]. Thirdly, the aligned facial image is passed to
a deep neural network which is designed to extract an informative feature vector of
the face. In the ideal case, a smaller distance between two feature vectors signifies
that the faces in these two images are more likely to be the same person. Last but
not least, one may exploit clustering, similarity detection and classification methods
to accomplish a fully functional face verification system. [2]
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Figure 2.1 General workflow of a modern face verification system named OpenFace [2].

2.3 Face alignment

Performing face alignment on the images in the unrestrained conditions is still a
problematic task. As a human face is a 3D object, it naturally has different poses.
In addition, there are various kinds of facial expressions, such as happy, surprised,
angry and so on. Many complicated methods have been purposed to resolve these
limitations. Typical face alignment algorithms fall into the following three broad
categories. Some schemes fit a 3D model based on the facial image. Some schemes
find similar fiducial-points configurations from an external dataset. Some schemes
apply unsupervised methods which search for a similarity transformation based on
the pixel values. [70] In this section, two face alignment algorithms which have been
applied in the competition are explained.

2.3.1 Unsupervised joint alignment

Gary Huang et al proposed an alignment mechanism which employs poorly aligned
examples of faces with no additional labels. The congealing process has been applied
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to the images in the training date set. Initially, the empirical distribution field of
these images is calculated. After that, the algorithm finds a suitable transformation
which maximizes the likelihood of each image according to the distribution field.
Subsequently, the distribution field is updated according to the transformed images.
The aforesaid steps are repeated until convergence. In order to align additional
images, the distribution fields from each iteration step are recorded. With the
intention of adapting the basic congealing algorithm to work on complex images, the
SIFT descriptors [41] each pixel are processed by using k-means clustering algorithm.
Therefore, the distribution fields consist of distributions over the possible clusters of
each pixel. Moreover each pixel is treated as a mixture of the underlying clusters and
it helps to suppress the local minima problems. This novel method could increase
the performance of a face recognizer as the original faces are transformed into a
canonical pose. [25]

2.3.2 Ensemble of regression trees

Vahid Kazemi et al devised an algorithm which is capable of detecting the facial
landmarks from a single image in one millisecond. In order to estimate the coordi-
nates of the facial landmarks, an ensemble of thousands of shallow regression trees
was trained with 2000 facial images. Each image was warped with 20 different initial
guesses for the face’s shape, thus the training data set was extended by a factor of
20. The squared error loss function was minimized by using the gradient boosting
algorithm in each regressor. As the gradient boosting algorithm might suffer from
the overfitting problem, different regularization strategies had been analysed. The
result showed that the averaging regularization and the shrinkage method could
effectively reduce the variance by learning multiple overlapping models. In term
of accuracy, this algorithm reaches or exceeds the state of the art methods on the
standard data sets. [29] Based on the detected landmarks, one could apply an affine
transformation to make the eyes and bottom lip appear in the same location on each
image [2].

2.4 Neural networks

Motivated by the mechanism of the human brain, Artificial Neural Network (ANN)
could perform useful computations through a learning process [22]. In 1943, Warren
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McCulloch et al presented a logical calculus which involves in nervous activities [42].
In 1958, Oliver Selfridge proposed a process named Pandemonium which could adap-
tively improve itself to solve certain tasks [62]. In the same year, Frank Rosenblatt
demonstrated the capabilities of the perceptron [43]. In 1980, Kunihiko Fukushima
created a multilayered structure which is capable of unsupervised learning [19]. In
1986, David Rumelhart et al revealed the significance of the backpropagation al-
gorithm as it worked much faster than earlier methods in neural networks [78]. In
1998, Yann LeCun et al designed a Convolutional Neural Network (CNN) which
could recognize handwritten and machine-printed characters [37]. In 2012, Alex
Krizhevsky et al applied a CNN to solve the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) and the result was significantly better than the previous
approaches [16,34].

At the early days, neural network techniques were constrained by low computing
power and tiny data sets. The size of the neural network was relatively small because
the computers were unable to perform a lot of computations. As a consequence,
other algorithms such as Support Vector Machine (SVM) outperformed neural net-
works in many Machine Learning applications. [59, 76] In the last few years, neural
networks regained popularity in the research community since it made great break-
through in speech recognition, computer vision and machine translation [13,21,34].
The potential of neural networks was unleashed by large amount of data and ultra-
fast Graphics Processing Units (GPUs) [54]. To differentiate the neural networks,
Deep Learning (DL) is a buzz word which refers to neural networks with lots of
nonlinear layers. Nowadays, extremely deep neural networks are reachable. The re-
searchers from Microsoft implemented neural networks which consisted of 152 layers
and they secured first place in ILSVRC 2015 [23]. Among the deep neural networks,
the convolutional neural network is the dominant approach to many computer vision
problems [34]. In the following subsections, the essential theorems of convolutional
neural networks and the face descriptors in OpenFace and VGG Face are explained.

2.4.1 Neurons in regular neural networks

A neural network is a graph of connected neurons. The mathematical model of
a neuron is shown in Figure 2.2. The input signals x = x0, x1, ..., xn propagate
along the axons and interact multiplicatively with the dendrites w = w0, w1, ..., wn

of another neuron in an element-wise manner. The values of w refer to the strengths
of the connection between two neurons. In the cell body, the intermediate output
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is denoted by v =
∑

iwixi + b and it is further passed to an activation function f
which generates the output signal. The activation function f is applied to model the
firing rate of the neuron. Several activation functions are analyzed in the following
paragraphs. [1, 73]

Figure 2.2 Mathematical model of a neuron [73].

Each activation function performs a mathematical operation on the input value. The
definitions and visualizations of four activation functions are shown in Table 2.1
and Figure 2.3. Firstly, the sigmoid function maps the input value to the interval
between 0 and 1. To be more specific, large negative numbers get 0 while Large
positive numbers get 1. For the reason that sigmoid saturates gradients and the
average of the outputs is not zero, the sigmoid function is rarely used in practice.
Secondly, the tanh function is a scaled variant of the sigmoid function. Because
the output of tanh is zero-centered, the tanh function is always more desirable
than the sigmoid function. Thirdly, Rectified Linear Unit (ReLU) differentiates the
inputs at 0. On the one hand, the negative inputs get 0. On the other hand, the
outputs are the same as the inputs if the inputs are positive. The ReLU function
could not only boost the convergence speed but also decrease the computational
burden. However, some neurons might be never activated for the entire training
data set on the condition that the learning rate is too high. This defect could
be suppressed by selecting a proper learning rate. Finally, Parametric Rectified
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Linear Unit (PReLU) is introduced to improve the learning capability of the neural
networks. An additional parameter is added to the regular ReLU activation function
and the parameter a controls the slope of the negative inputs. One study showed
that PReLU could achieve better performance than ReLU. [24,73]

Table 2.1 Definitions of activation functions [24,73].

Activation function Definition

Sigmoid f(x) =
1

1 + e−x
(2.1)

Tanh f(x) =
2

1 + e−2x
− 1 (2.2)

ReLU f(x) = max(0, x) (2.3)

PReLU
f(x) =

{
x if x > 0

ax if x ≤ 0
(2.4)

Figure 2.3 Visualizations of activation functions [24,73].
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2.4.2 Neurons in convolutional neural networks

A regular neural network takes a feature vector as the input and manipulates it
through a sequence of layers. Figure 2.4 illustrates the structure of a regular 3-layer
neural network. The neurons in the hidden layers are fully connected to all neurons
in the previous layer. Meanwhile, the neurons in the same layer are independent
from each other. However, this fully-connected configuration is inappropriate for
images. Suppose the input color image has 200 rows and 200 columns, the size
of input is 200 × 200 × 3. A single neuron in the first hidden layer would have
200×200×3 = 120000 weights. Consequently, the regular neural network is wasteful
of the limited computing power. [73]

Convolutional neural networks make use of the fact that the inputs are images. The
neurons are organized in 3 dimensions: width, height and depth (see Figure 2.5).
The neurons in one layer will only be connected to the neurons in a small region of
the previous layer. The hyperparameter receptive field constrains the spatial extent
of connectivity. The hyperparameters depth, stride and zero-padding control the
size of the output volume. Moreover, the parameter sharing scheme is utilized to
sharply reduce the total amount of parameters in the convolutional neural networks.
The neurons in each depth is processed by using the same weights and bias. [73]

2.4.3 Layers in convolutional neural networks

Convolutional layers, pooling layers and fully-connected layers are common and
popular in convolutional neural networks. Figure 2.6 presents an example where
these layers are stacked on top of each other. The convolutional layers calculate the
output of a neuron in one layer by using the output of the neurons in a small region of
the previous layer. Afterwards, the pooling layers downsample the width and height
dimensions while the depth dimension remains unchanged. The convolutional and
pooling layers might be repeated for several times. Finally, the fully-connected
layers are appended at the end. The neurons in the fully-connected layers take the
output of all the neurons in the previous layer as the input signals. In general, the
convolutional neural networks provide an end-to-end solution which maps the input
images to corresponding labels. Instead of feeding the low-level handcrafted features,
the convolutional neural networks could learn the high-level features autonomously.
[63,73]
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Figure 2.4 The structure of a regular neural network [73].

Figure 2.5 Neurons in convolutional neural networks [73].

Figure 2.6 The structure of a convolutional neural network [63].
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2.4.4 Optimization of neural networks

In the training phase of a neural network, the parameters inside the network need to
be optimized interactively. Based on the differences between the desired and actual
outputs, backpropagation combined with suitable optimization methods could be
applied to update the coefficients. Many optimization algorithms have been devised,
such as AdaGrad, Adadelta, Adam and RMSprop [17,30,71,83]. In this subsection,
the basic ideas behind gradient-based methods are explained.

In a supervised learning problem, each observation z could be denoted by a pair
(x, y) where x is an arbitrary input and y is a scalar output. A loss function L (y, ŷ)

evaluates the discrepancy between the ground truth value y and the predicted value
ŷ. Given a set of parameters w, the predicted value is determined by ŷ = fw(x).
Thus, one need to minimize the loss Q(z, w) = L (y, fw(x)). For n observations
indicated by z1, z2, ..., zn, the empirical risk is: [8]

En(fw) =
1

n

n∑
i=1

L (yi, fw(xi)) (2.5)

In the method of Gradient Descent (GD), the parameters w is updated based on
the gradient of En(fw) as shown below: [8]

wt+1 = wt − γ
1

n

n∑
i=1

5wQ(zi, wt) (2.6)

where γ is a suitable gain.

By contrast, the Stochastic Gradient Descent (SGD) is a simplified variant of Gradi-
ent Descent. Instead of getting an accurate En(fw), the gradient is estimated based
on single randomly chosen observation zt: [8]

wt+1 = wt − γt5w Q(zt, wt) (2.7)

SGD is more appropriate than GD for several reasons. Firstly, SGD is usually much
faster than GD particularly on the data sets which contain large amount of redun-
dant records. Secondly, SGD could achieve better solutions in most cases. Since
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the estimated gradient is computed by using only one observation, the parameters
w might not be updated accurately along the actual gradient. The noisy estimated
gradient contributes to avoiding local minimums. Thirdly, SGD works better in an
online learning problem. As the new data set comes in, the changes in the data
stays unnoticed with the GD algorithm. This would lead to large residuals in the
predictions. [38]

2.4.5 Face descriptor in OpenFace

OpenFace is an open-source replication of FaceNet which was originated by the
researchers from Google. While FaceNet was trained with proprietary data set
which had 200 million facial images from 8 million different identities, OpenFace
was trained with 0.5 million facial images from 10 thousands different identities by
coalescing the CASIA-WebFace [82] and FaceScrub [47] data sets. [2, 61]

The customary face verification systems applied a classification layer to identify
the each individual in the data set and the feature vectors were retrieved from an
intermediate layer. However, this intermediate layer could be a bottleneck as the
representation might not generalize well to the unseen faces and the dimensional-
ity of the feature vectors was typically quite high. To address this challenge, the
convolutional network was directly trained to optimize the triplet loss. Figure 2.7
visualizes the learning procedure of triplet loss. A triplet consists of three elements.
The Positive and Anchor elements belong to the same person while the Negative ele-
ment represents another person. The learning procedure strives to make the Positive
element closer to the Anchor element than the Negative element. [61]

Figure 2.7 Learning procedure of triplet loss [61].

OpenFace borrowed the network configuration defined in FaceNet (see Table 2.2).
Since the available data set was much smaller, OpenFace reduced the size of the
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neural network in order to improve the computational efficiency. The inception layers
increased the depth and width of the neural network without requiring additional
computing resources [69]. The CNN was trained by using SGD with backpropagation
[36, 55] and Adagrad [17]. The learning rate was decreased at the final stage of the
training phase. [2, 61]

Table 2.2 Network configuration in FaceNet [61].

2.4.6 Face descriptor in VGG Face

In the work of VGG Face, Omkar Parkhi et al presented a convolutional neural
network which achieved analogous state of the art results on the Labeled Faces in
the Wild (LFW) [26] and YouTube Faces (YTF) [79] benchmark data sets. A multi-
stage strategy was applied in the data collection process and over 2.6 million images
were gathered from 2622 identities with limited amount of manual annotation. This
data set contained the largest amount of facial images among the publicly available
data sets. [50]

To begin with, the problem was regarded as a classification task whose objective
was to discriminate N = 2622 unique individuals. The final fully-connected layer
in the CNN contained N linear predictors. Each linear predictor corresponds to an
identity in the training data set. Given an input image, the output scores of these
linear predictors were compared to the ground truth identity by using the empirical
softmax log-loss. After minimizing this loss function during the training phase, the
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input of the final fully-connected layer was a concise representation of the facial
image. The retrieved feature vectors and the triplet loss training scheme could be
exploited in the face verification systems. This bootstrapping scheme relieved the
complexity of the training phase considerably. [50]

Table 2.3 shows a network configuration in VGG Face. The neural network was
considered to be very deep since it contained a long sequence of convolutional layers.
The weights of the filters in the CNN were initialized by random sampling from a
Gaussian distribution while the Biases were initialized to zero. The optimization was
achieved by using SGD with momentum. The overfitting problem was suppressed
by applying dropout and weight decay. After the accuracy of the model on the
validation data set stopped increasing, the learning rate was decreased by factor of
10. [50]

Table 2.3 Network configuration in VGG Face [50].

2.5 Error metrics

In a machine learning task, one needs to evaluate the performance of a specific
solution. An error metric is applied to distinguish a good solution from the bad
solutions. Different error metrics may lead to different ranks of several possible
methods. Unfortunately, there is no single error metric which is suitable to any
machine learning task. As a consequence, one need to select an error metric that is
appropriate for current task. Ideally, the error metric should be reliable so that a
method which achieves a better score should be a better solution in practical sense.
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2.5.1 Confusion matrix

In a binary classification problem, the algorithm detects whether an event takes
place or not. The prediction for a sample is either true or false. A confusion matrix
visualizes the performance of a binary classifier. Each row refers to the samples in
an actual class, while each column refers to the samples in a predicted class (or vice-
versa) [53]. As shown in Table 2.4, the predictions are divided into four categories,
namely, True Positive (TP), False Negative (FN), False Positive (FP) and True
Negative (TN). The term positive/negative refers to the predicted class while the
term true/false refers to whether the predicted class is the same as the actual class. It
is apparent that one should try to increase the occurrences of true positive/negative
and decrease the occurrences of false positive/negative. In the ideal case, the number
of occurrences of false positive/negative could be 0 which means that no sample is
misclassified. Suppose one need to discern the category of animals and the testing
data set contains images from dogs and cats, a classifier detects 50 dogs among 60
dogs and 20 cats among 40 cats. Assume that the prediction value true denotes a
dog while the prediction value false denotes a cat, the number of occurrences of TP,
FN, FP and TN are 50, 10, 20 and 20, respectively.

Table 2.4 Confusion matrix for a binary classification problem [40,77].

Predicted Class
+ -

Actual + True Positive (TP), Hit False Negative (FN), Miss
Class - False Positive (FP), False Alarm True Negative (TN), Correct Rejection

2.5.2 Common error metrics derived from confusion matrix

Based on the confusion matrix, one can retrieve four numbers which correspond
to the occurrences of four categories. However, it is unintuitive to compare the
performance of two solutions by using these four numbers directly. With the in-
tention of describing the performance of a solution with only one number, several
error metrics have been derived from confusion matrix (see Table 2.5). Each error
metric focuses on an aspect of model assessment. True Positive Rate (TPR) refers
to the proportion of predicted positive items among actual positive items. It mea-
sures how good the method is in detecting positive items. Conversely, False Positive
Rate (FPR) is defined as the ratio of predicted positive items among actual negative
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items. It gauges how bad the method is in detecting negative items. Furthermore,
Positive Predictive Value (PPV) denotes the percentage of actual positive items
among predicted positive items. It appraises the reliability of the positive predic-
tions. Contrariwise, Negative Predictive Value (NPV) corresponds to the fraction
of actual negative items among predicted negative items. It evaluates the trustwor-
thiness of the negative predictions. Last but not least, F Measure is a combination
of precision and recall while Accuracy (ACC) calculates the percentage of correct
predictions. [53]

Table 2.5 Common error metrics derived from confusion matrix [18,53].

Error Metric Definition

True Positive Rate (TPR), Sensitivity, Recall TPR =
TP

TP + FN
(2.8)

False Positive Rate (FPR), Fall-out FPR =
FP

FP + TN
(2.9)

Positive Predictive Value (PPV), Precision PPV =
TP

TP + FP
(2.10)

Negative Predictive Value (NPV) NPV =
TN

TN + FN
(2.11)

F Measure Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
(2.12)

Accuracy (ACC) ACC =
TP + TN

TP + FP + TN + FN
(2.13)

TPR, PPV and F Measure put emphasis only on the positive cases. None of them
captures any information about how well the solution tackles the negative cases. [53]
In an unbalanced data set, the vast majority of the samples are labelled as one class,
while far less samples are labelled as another class. Such unbalanced data sets could
be found in many real-world domains, such as detection of fraudulent telephone
calls and learning word pronunciations. [33] Due to the dominating effect of the
majority class, the conventional way of maximizing overall accuracy often fail to
learn anything meaningful about the minority class [77].

2.5.3 Matthews correlation coefficient

Matthews correlation coefficient (MCC) is another error metric derived from confu-
sion matrix and it is generally considered to be an appropriate evaluation method
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even if the data set is heavily unbalanced. MCC takes all four categories (TP, TN,
FP, FN) into account and it can be written as: [53]

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.14)

Essentially, the MCC is a correlation coefficient between the ground truth and pre-
diction. The value of MCC varies from −1 to +1. −1 indicates total disagreement
and +1 represents total agreement. A completely random prediction will yield a
coefficient of 0. [3]

2.5.4 Receiver operating characteristic

Receiver operating characteristic (ROC) curve is a popular evaluation method in the
research area of Data Science. As the discrimination threshold changes, the curve
is obtained by plotting the true positive rate against the false positive rate. With
a lower discrimination threshold, a machine learning model tends to retrieve more
positive samples, but also misclassify more negative samples as positive samples. [77]
Both TPR and FPR increase in this case. Correspondingly, the ROC curve is a
monotonically increasing function. Suppose the discrimination threshold is positive
infinity, all samples are classified as false. TP and FP are 0. Hence TPR and FPR
are 0. On the contrary, TPR and FPR are 1 if the discrimination threshold is
negative infinity.

In general, a ROC curve is considered to be superior if it is closer to the upper-left
corner. Area under the curve (AUC) is a common statistic could be applied to
recapitulate a model’s performance into a single scalar value. [77] Since the ROC
curve of a random prediction is a diagonal line connecting (0, 0) and (1, 1), the AUC
score is 0.5. Any reasonable solution should achieve an AUC score higher than
0.5. [18]

Figure 2.8 consists of two ROC curves. Suppose each point in the Curve A is
denoted by (x, y), then the Curve B is generated by plotting (1 − y, 1 − x). One
could plainly see that the conventional AUC of Curve A and Curve B is exactly
the same. In applications such as blocking scam websites, the search engines should
only blacklist the websites under the condition that those websites are highly likely
to be dangerous. Blocking a normal website by mistake may even lead to serious
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lawsuits. In other words, a false alarm is much more costly than a miss. One should
strive to maximize the TPR when the FPR is still low. Curve B is more suitable
than Curve A. In other applications such as detecting cancer, the patients do not
want to loss the opportunity to treat the disease in advance. A miss is much more
detrimental than a false alarm. One should endeavour to minimize the FPR when
the TPR is high enough. Curve A is more appropriate than Curve B.

Figure 2.8 Comparison between ROC curves when conventional AUC is the same [77].

Due to the nature of the unbalanced data set, the misclassification cost of false
alarm and miss could be quite different from each other. However, the conventional
AUC does not take the uneven misclassification cost into account. The method of
Weighted AUC is proposed to overcome such limitation. The square is divided into
several rectangles along the TPR axis. The weight distribution of each rectangle
is skewed based on the application. Figure 2.9 illustrates two possible weight
distributions. If a miss is more damaging than a false alarm, more weight should
be allocated to the rectangles with higher TPR. The weight distribution shown
in Figure 2.9(a) is more appropriate. [77] If a false alarm is more damaging than a
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(a) ROC curve with specific weight distribution which emphasizes the role of
high TPR.

(b) ROC curve with specific weight distribution which emphasizes the role of low
TPR.

Figure 2.9 Comparison between weight distributions.
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miss, more weight should be allocated to the rectangles with lower TPR. The weight
distribution shown in Figure 2.9(b) is more suitable. In addition to Weighted AUC,
one may compare the value of TPR at a low FPR, such as 0.01. This criterion
only involves one specific point in the ROC curve. If a learning system obtains
higher TPR at the same FPR, this learning system could detect more True Positive
examples and it is considered to be superior than other learning systems.

2.6 Cross-validation

A learning algorithm usually contains some hyperparameters which could not be au-
tomatically optimized and one need to define them before the actual training phase.
The procedure of finding the ideal hyperparameters which achieve the best result
for a specific problem is called hyperparameter optimization. In practice, one could
define the space of hyperparameters and generate different combinations of those
hyperparameters by using randomized search or grid search. Cross-validation (CV)
plays an essential role in hyperparameter optimization and it could be employed to
assess the performance of each hyperparameter set solely with the original training
data set. [5, 6, 51] With appropriate cross-validation strategy, one should be able to
recognize the most suitable model for the current task. A model which achieves sat-
isfactory results on the validation data set is deemed to obtain comparable outcome
on the testing data set.

2.6.1 k-fold cross-validation

k -fold cross-validation is a conventional strategy among the cross-validation meth-
ods. While k refers to the number of folds, Figure 2.10 demonstrates one iteration
of a 5-fold cross-validation. The original training data set consists of 30 observa-
tions which are symbolized by colour balls. The green and red balls denote True and
False cases respectively. The original training data set is randomly partitioned to
5 mutually exclusive folds with approximately equal number of observations. Each
fold could be retained as the validation data set while the remaining 4 folds works
as the training data set. The learning algorithm is fed by the training data set and
evaluated by the validation data set. The aforementioned training and evaluation
phases are repeated 5 times and all the folders have been used as the validation data
set exactly once. [32]
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Figure 2.10 One iteration of a 5-fold cross-validation [48].

2.6.2 Variations of k-fold cross-validation

In addition to k -fold cross-validation, several variations have been devised. On the
one hand, it is possible that the minority classes only exists in the validation data
set in a heavily unbalanced data set. In other words, the learning algorithm might
has never seen these minority classes at all in the training phase. Stratified k -fold
cross-validation is an effective approach to address this limitation. The difference is
that the original training data set is split in a stratified fashion. Accordingly, the
resulting training and validation data set contain roughly the same proportions of
labels as the original training data set. On the other hand, the data set may contain
observations with respect to the year of collection and one might be interested at
splitting the data set against the time information. In Leave-p-Label-Out cross-
validation, the validation data set is built with all the observations which have one
of the selected p different labels. [51]
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3. RESULTS AND DISCUSSION

3.1 Overview of TUGraz-TUT Face Verification Challenge

Many organizations do not possess the state of the art Machine Learning techniques
to solve their problems. In the meantime, the data scientists are in great need
of the real-world data set to deepen their skills. Kaggle provides a platform to
link the organizations which have both the data set and the problems to the data
scientists who know about the possible solutions. To make the competitions more
appealing and interesting, the organizations usually provide a certain amount of
cash or job positions as reward. The participants with different backgrounds and
specializations apply various kinds of methods to address the same challenge. Such
competitive structure heartens the participants to triumph over each other and the
winning teams are likely to outperform the existing best approach. Additionally,
Kaggle offers self-service competitions for the academic institutions without charge.
The university students have been granted a precious opportunity to grasp hands-on
experience as part of their studies. [28]

The TUGraz-TUT Face Verification Challenge was organized from 14 October 2015
to 11 December 2015 on Kaggle. A group of students from Graz University of
Technology and another group of students from Tampere University of Technology
were encouraged to participate in this competition. Unlike many other competitions,
those Kaggle users who were not students from the organizing universities were
also allowed to participant. The top performing teams were awarded T-shirts as
prize. [27]

In this competition, the training data set contained 1393 images while the testing
data set contained 1343 images. Each image consisted of the face of a person. In
the training data set, the images from the same person were placed in the same
sub-folder. On the contrary, all the images in the testing data set were saved in
single directory. Those images were originally collected by the colleagues from Graz
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University of Technology. A Python script was implemented to crawl images of the
celebrities from the Internet automatically. A manual sanity test was appended in
order to avoid preposterous mistakes. Figure 3.1 illustrates an image pair selected
from the training data set. It is apparent that these two images were taken from real
life scenarios. There are huge differences in term of background, lighting condition
and facial expression.

(a) Original image (train_00000180.jpg). (b) Original image (train_00000183.jpg).

Figure 3.1 An image pair selected from the training data set.

Several additional properties of each image had been calculated beforehand and
provided to the participants [27]. Firstly, The coordinates which define the bounding
box around the face were computed by using a multi-view detection approach [81].
Secondly, the landmark positions of the face were estimated directly from a sparse
subset of pixel intensities by using an ensemble of regression trees [29]. Thirdly,
the deep features were extracted from the last hidden layer of AlexNet [34]. With
the purpose of helping the participants to get started, a sample solution was given
both in Matlab and Python. The difference between two images were described
by using the Euclidean distance between two AlexNet feature vectors. Under the
assumption that the smaller the distance the more likely the two pictures contain
the same person, the Euclidean distance is converted to the final prediction value
by inverting and normalizing. [27]

The participants were excepted to predict whether each possible image pairs in the
testing data set contain the same person or not. As a result, more than 99.7% pairs
do not contain the same person. The categorization accuracy measures the percent-
age of correct predictions. If one naively predict that all the pairs do not represent
the same person, the categorization accuracy is already higher than 99.7%. The
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categorization accuracy is not reliable and informative for such highly unbalanced
data set. Hence, the submissions were evaluated by using Weighted AUC with the
weight distribution shown in Figure 2.9(b). The AUC is only sensitive to the order
of the predictions. Instead of predicting true or false, it is more reasonable to submit
the probabilities of the true case which is expected to achieve higher score. [27]

The leaderboard on Kaggle contains ranking information of all the participants. Be-
fore the competition fully ends, the participants could only check the Public Leader-
board which reveals the performance of the submission on approximately 40% of
the testing data set. On the contrary, the Private Leaderboard which discloses the
final standings is available after the deadline of the competition. It is based on the
remaining 60% of the testing data set. A submission which achieves a high score on
the Public Leaderboard does not necessarily mean that it could also reach similar
score on the Private Leaderboard. This mechanism could discourage the participants
from overfitting their models to the Public Leaderboard. [27]

3.2 Submissions from the participants

The TUGraz-TUT Face Verification Challenge was opened for submissions for roughly
two months. There were 137 entries submitted by 28 players in 20 teams. The
Weighted AUC scores and rankings of the submissions from the participants are
shown in Table 3.1. Several benchmark submissions were also included for purposes
of comparison. For privacy reasons, the file names had been anonymised except for
top 3 performing teams. The Weighted AUC scores in the table were calculated
based on the whole testing data set while the corresponding scores on Kaggle solely
depended on either the public or private testing data set. Consequently, there was
tiny discrepancy in the scores. However, the situation was different if the submis-
sion which only consists of single value, e.g., one or zero. In order to calculate the
Weighted AUC score, one need to plot the ROC curve by varying the discrimination
threshold from negative infinity to positive infinity. If the discrimination threshold
is less than the single value, all samples are classified as True. Both TPR and FPR
are 1. If the discrimination threshold is more than the single value, all samples
are classified as False. Both TPR and FPR are 0. In summary, the ROC curve is
composed of only two points, namely, (0, 0) and (1, 1). Suppose linear interpolation
is applied to fill in the missing values, the interpolated ROC curve is a diagonal line
connecting (0, 0) and (1, 1). With the weight distribution shown in Figure 2.9(b), the
Weighted AUC score is 0.7. Due to the different implementations of the Weighted
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AUC algorithm, the score calculated by Kaggle is 0.5. Apart from such special cases,
the inconsistency in the scores could be ignored.

It is apparent that the scores of the top 3 performing teams greatly exceed the
benchmark solutions which utilizes the Euclidean distance between two AlexNet
feature vectors. Team nobody and newbie is from Graz University of Technology
and Tampere University of Technology respectively. Team chenriwei is an external
participant who does not belong to the host universities. Figure 3.2 shows the
highest private score of each winning team with respect to the elapsed days of the
competition. Team newbie is one of the earliest teams who submitted a submission.
Although the first submission did not attain a satisfactory result, they improved
their score progressively. Team nobody joined in at the middle of this competition
and his first submission surpassed the threshold of 0.98. Later on, team chenriwei
pushed the highest score above 0.99 via his initial submission. Several days before
the deadline, team nobody achieved great improvement and became the champion.
In the following subsections, only the methods proposed by team nobody and newbie
will be discussed as the solution devised by team chenriwei is concealed.

3.2.1 Solution from team nobody

By using the ensemble of regression trees which is discussed in Section 2.3.2, team
nobody constructed a landmark detector on top of the Multi-Task Facial Landmark
(MTFL) data set [84]. The landmark detector was competent to estimate the coor-
dinates of five facial landmarks which were annotated in the MTFL data set. In the
face alignment process, a suitable similarity transform was appraised. It mapped
the actual landmark coordinates to the corresponding average coordinates without
obliterating the original shape. Each original image was bended into a normalized
shape and the VGG Face features were extracted from those aligned images. Team
nobody reached the score 0.99952 with cosine similarity which measures the distance
between two feature vectors. In the internal validation data set, the TPR was about
0.77 when the FPR was 0.01. [27]

So as to further improve the results, team nobody constructed a 1024-dimensional
Large Margin Nearest Neighbors (LMNN) embedding on top of the deep features
which had been normalized by Euclidean length. This novel solution improved the
score to 0.99969. In the internal validation data set, the TPR was about 0.81 when
the FPR was 0.01. [27]
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Table 3.1 The Weighted AUC scores and rankings of the submissions from the partici-
pants.

Team Name Weighted AUC Rank Team Name Weighted AUC Rank
nobody 0.9990 01 Anonymous_13 0.8954 13
chenriwei 0.9956 02 Anonymous_12 0.8932 14
newbie 0.9636 03 Anonymous_17 0.8911 15

Anonymous_10 0.9447 04 Anonymous_11 0.8911 16
Anonymous_16 0.9428 05 Benchmark_AlexNet 0.8911 17
Anonymous_05 0.9327 06 Anonymous_15 0.8911 18
Anonymous_04 0.9208 07 Anonymous_01 0.8825 19
Anonymous_08 0.9131 08 Anonymous_07 0.7487 20
Anonymous_14 0.9098 09 Benchmark_all_ones 0.7000 21
Anonymous_06 0.9066 10 Benchmark_all_zeros 0.7000 22
Anonymous_02 0.9002 11 Anonymous_09 0.6962 23
Anonymous_03 0.8970 12 Benchmark_random 0.6883 24

Figure 3.2 The highest private score of each winning team with respect to the elapsed
days.
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3.2.2 Solution from team newbie

Team newbie exploited the AlexNet features. So as to accelerate computation speed,
Principal Component Analysis (PCA) was applied to reduce the dimensionality of
features from 4096 to 1015 while 99% of the original information was still preserved.
[27]

Team newbie did not use whether two images represent the same person as the label
information. Instead, they treated the parent folder information in the training
data set as the labels. A set of binary Support Vector Machine (SVM) classifiers
were constructed with one-versus-all strategy. Since the training data set contains
images from 271 persons, those SVM classifiers yielded a 271-dimensional vector
which represented the probability that the input image belongs to the corresponding
person in the training data set. By using the dot product of two 271-dimensional
vectors as the final prediction value, team newbie achieved the score 0.94480. [27]

Later on, team newbie replaced SVM classifiers with Multilayer Perceptron (MLP)
which is a feed-forward artificial neural network. The defined MLP contained only
one hidden layer. After the coefficients had been adapted to the training data set, a
271-dimensional vector was extracted from the last layer without an activation func-
tion. Team newbie transformed the Euclidean distance between two 271-dimensional
vectors in the same way as the sample solution. After fine-tuning the parameters of
the MLP, team newbie finally obtained the score 0.96431. [27]

3.3 General analysis

3.3.1 Procedure overview

A typical procedure for this Face Verification task is shown in Figure 3.3. In the
cross-validation process, the original training image data set could be split into the
training image data set and validation image data set. The training image data set
is used to train the machine learning models while the validation image data set is
used to evaluate the performance of the models. By selecting two different images
from the same data set, one can generate all possible image pairs. Observe that the
classification categories are heavily imbalanced, preprocessing is needed before pass-
ing the features and labels to the models. The number of False cases will be much
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higher than the number of True cases. A straight forward approach is performing
random sampling on the majority cases. In the ideal case, the number of occurrences
of different classes should be identical. It is noteworthy that such sampling tech-
niques should only be applied to the training data set since the performance of the
solution will be evaluated based on all pairs from the testing image data set. Mean-
while, the error metric used in the cross-validation process should comply with the
settings of the competition. Otherwise, there could be huge discrepancy between
the score calculated by the participants and the score on the leaderboard. After
the sampling procedure, the model is trained by using the balanced training data
set. Based on the score of the models on the validation data set, one can further
fine-tune the parameters of the models and choose the optimal one to generate final
predictions for the testing data set.

3.3.2 Generation of features and labels

Figure 3.4 illustrates the process of generation of features. Regardless of what
kind of methods the participant intend to use, a sequence of numbers need to be
extracted from each image. Such feature vector is a compact representation of the
image data. For an image pair chosen from the image data set, two feature vectors
are obtained. In the process of difference measure, one may use single difference
vector to describe the differences between two images by integrating two feature
vectors. Two strategies are appropriate for this purpose. On the one hand, one can
simply use the subtraction between two feature vectors in an element-wise manner.
It stands to reason that the difference between image 1 and image 2 should be
equal to the difference between image 2 and image 1. Therefore, taking the absolute
value of the subtraction is more reasonable. On the other hand, there are dozens of
predefined distance metrics available, such as Cosine distance, Manhattan distance
and Euclidean distance (see Table 3.2). For any distance metric, it may take two
vectors as the inputs and returns a scalar value as the output. Each distance metric
concentrates on one facet of difference measure and one need to implement feature
selection with the intention of getting rid of uninformative distance metrics. The
difference vector is treated as the final feature which will be passed to the machine
learning models.

Figure 3.5 demonstrates how the labels are created. In the training data set, the
images in the same sub-folder belonged to the same person. By comparing the
directories of the two images, the label information could be obtained.
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Figure 3.3 Overview of the procedure.

Figure 3.4 Generation of features.

Figure 3.5 Generation of labels.



3.3. General analysis 31

Table 3.2 A handful of predefined distance metrics [51].

Name Definition
Bray-Curtis sum(|x− y|)/(sum(|x|) + sum(|y|))
Canberra sum(|x− y|/(|x|+|y|))
Chebyshev sum(max(|x− y|))
Correlation cov(x, y)/(std(x)× std(y))

Cosine sum(x× y)/(sqrt(sum(x2))× sqrt(sum(y2)))

L1(Manhattan) sum(|x− y|)
L2(Euclidean) sqrt(sum((x− y)2))
Minkowski (sum(|x− y|p))1/p

Squared Euclidean sum((x− y)2)

3.3.3 Appropriate cross-validation strategy

As mentioned in Section 3.1, the images from the same person were placed in the
same sub-folder. Figure 3.6 illustrates the histogram of number of images from the
same person. It is noticeable that the vast majority of the number of images from
the same person is less than 8. Since the number of images from the same person
could be regarded as the arbitrary domain specific stratifications of the images, there
are mainly two strategies to split the original training data to CV folds. On the one
hand, one may choose k -fold cross-validation. Assume there are 5 images for a person
in total, 3 of them might be assigned to the training data set while the remaining 2

are put in the validation data set. On the other hand, one may select Leave-p-Label-
Out cross-validation. The images from the same person will be treated as a whole
and all of them will be allocated to either the training data set or the validation
data set. In general, Leave-p-Label-Out cross-validation is more appropriate than
k -fold cross-validation in this competition and these two approaches is compared in
more detail in the following paragraphs.

As a regular rule, the performance of the machine learning model should be evaluated
by using the unseen data set. Accordingly, the observations in the training data set
must be excluded both from the validation and testing data set. It is possible that
the machine learning model may only be capable of distinguishing persons which it
has been trained on. In k -fold cross-validation, the images from the same person may
exist both in the training and validation data set. As a result, the error metric may
give over-optimistic score on the validation data set. Furthermore, the misleading
score yielded by the error metric ultimately results in suboptimal solutions and the
selected hyperparameters will perform badly on the testing data set. By contrast,
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Figure 3.6 Histogram of number of images from the same person.

(a) True cases for k -fold cross-validation. (b) False cases for k -fold cross-validation.

(c) True cases for Leave-p-Label-Out cross-
validation.

(d) False cases for Leave-p-Label-Out cross-
validation.

Figure 3.7 Comparison between two cross-validation strategies.
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this issue does not exist in Leave-p-Label-Out cross-validation since all the images
from the same person will be treated as a whole rather than individually.

In addition, the number of occurrences of True and False cases are quite different
in these two approaches. Although the minimum, maximum and mean value of
the number of occurrences of the True or False cases could be retrieved by using
mathematical derivation from the histogram shown in Figure 3.6, it is much more
straightforward to apply computer simulation which imitates the random splitting
process for adequately many times. Considering a 5-fold cross-validation process,
80% images (k -fold cross-validation) or folders (Leave-p-Label-Out cross-validation)
will be selected to the training data set while the remaining 20% images or folders
will work as the validation data set. Figure 3.7 exemplifies the simulation results
of these two cross-validation approaches. The repeated times denotes the number of
simulations that has been carried out. For the minimum and maximum value, there
is no significant change after the repeated times reaches 50. The mean value is also
stabilized as the repeated times increases. Besides, the labels of the vast majority of
the pairs are False as the number of occurrences of the True cases is much smaller
than that of the False cases. However, the minimum value of the True cases in the
latter approach is even higher than the maximum value of the True cases in the
former approach. It is an undoubted fact that the mean value of the True cases in
the latter approach is noticeably higher than that in the former approach. Even
though the disparity in the minimum and maximum value of the False cases in the
latter approach are drastically larger, the mean value of the False cases in these
two methods are comparatively close to each other. Since the True cases are more
valuable in this competition, Leave-p-Label-Out cross-validation is more applicable.

3.4 Analysis of face alignment

3.4.1 Unsupervised joint alignment

Unsupervised Joint Alignment performs rectification of a set of objects and the
aligned objects have the same canonical pose. The algorithm is not constrained
to faces and it could also work on other objects classes, such as cars. [25] Since
the registration process reduces the variability of the objects, it is worthwhile to
integrate Unsupervised Joint Alignment to solve the face verification challenge.

Figure 3.8 shows three positive examples of Unsupervised Joint Alignment. There is



3.4. Analysis of face alignment 34

(a) Facial image
(train_00000265.jpg).

(b) Aligned image
(train_00000265.jpg).

(c) Facial image
(train_00000262.jpg).

(d) Aligned image
(train_00000262.jpg).

(e) Facial image
(train_00000249.jpg).

(f) Aligned image
(train_00000249.jpg).

Figure 3.8 Positive examples of Unsupervised Joint Alignment.
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(a) Facial image (train_00000341.jpg). (b) Aligned image
(train_00000341.jpg).

(c) Facial image (train_00000326.jpg). (d) Aligned image
(train_00000326.jpg).

(e) Facial image (train_00000147.jpg). (f) Aligned image
(train_00000147.jpg).

Figure 3.9 Negative examples of Unsupervised Joint Alignment.
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a certain level of tilt in the original facial images. The tilt is correctly compensated
by rotating the facial image to the opposite direction. Due to the limitation of the
implementation of the algorithm, unexpected black areas appear at the edges of the
aligned image. Currently, there is no quick fix to suppress this side effect.

Figure 3.9 shows three negative examples of Unsupervised Joint Alignment. In
Figure 3.9(a), the roll angle of the head is not perceptible. However, the algorithm
rotates the facial image counterclockwise by approximately 30 degrees which only
makes the aligned image worse than the original one. In Figure 3.9(c), the original
facial image leans a little to the right. The algorithm rotates the facial image
clockwise which is apparently a mistake. In Figure 3.9(e), the original facial image
should be rotated from left to right. The angle of rotation is so small that the facial
image is not aligned good enough.

3.4.2 Ensemble of regression trees

Ensemble of Regression Trees is utilized to estimate the coordinates of facial land-
marks. In addition, each face is manipulated to make the critical landmarks, i.e.,
eyes and bottom lip, appear in the similar position. Such manipulation is accom-
plished by applying an appropriate affine transformation which involves a remapping
routine. [2, 29]

Figure 3.10 shows three positive examples of Ensemble of Regression Trees. Al-
though the frontal face is visible, the roll angle of the head could not be ignored. In
the aligned images processed by the algorithm, the defect of the roll angle has been
eliminated. The coordinates of the two eyes have been transformed to the same
horizontal level. Such aligned images are ideal for the following processes.

Figure 3.11 shows three negative examples of Ensemble of Regression Trees. In
addition to the roll angle of the head, the yaw and pitch angle of the head are also
noticeable. In spite of the two eyes have been placed on the fixed coordinates, the
original facial image has been twisted too much, with the result that the aligned
images look to be unnatural for a human. This could result in extra challenges for
the following processes.

Figure 3.12 shows five unsuccessful examples of Ensemble of Regression Trees. The
training data set contains 1393 images in total and the algorithm could not generate
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(a) Facial image
(train_00000405.jpg).

(b) Aligned image
(train_00000405.jpg).

(c) Facial image
(train_00000163.jpg).

(d) Aligned image
(train_00000163.jpg).

(e) Facial image
(train_00000093.jpg).

(f) Aligned image
(train_00000093.jpg).

Figure 3.10 Positive examples of Ensemble of Regression Trees.
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(a) Facial image
(train_00000289.jpg).

(b) Aligned image
(train_00000289.jpg).

(c) Facial image
(train_00000649.jpg).

(d) Aligned image
(train_00000649.jpg).

(e) Facial image
(train_00001027.jpg).

(f) Aligned image
(train_00001027.jpg).

Figure 3.11 Negative examples of Ensemble of Regression Trees.
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(a) Original image (train_00000421.jpg).

(b) Original image
(train_00001042.jpg).

(c) Original image
(train_00001107.jpg).

(d) Original image
(train_00000677.jpg).

(e) Original image
(train_00001160.jpg).

Figure 3.12 Unsuccessful examples of Ensemble of Regression Trees.
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Figure 3.13 Mean of the
original facial images.

Figure 3.14 Mean of the
aligned images processed by
Unsupervised Joint Align-
ment.

Figure 3.15 Mean of
the aligned images pro-
cessed by Ensemble of Re-
gression Trees.

the aligned image for 86 images among them. In those five examples, only one side
of the face is visible while the other half is totally missing. Without estimating the
other half of the face, the affine transformation algorithm does not work in such
extreme cases.

3.4.3 Perceptual comparison of face alignment algorithms

Figure 3.13 illustrates the mean of the original facial images and it is quite blurry.
Figure 3.14 and Figure 3.15 demonstrate the mean of the aligned images processed
by Unsupervised Joint Alignment and Ensemble of Regression Trees, respectively.
In Figure 3.14, the black areas could be found around the borders. In Figure 3.15,
the eyes and nose are much more clear than the other two images. Moreover, the
forehead is omitted during the face alignment process.

Ensemble of Regression Trees can suppress not only the roll angle but also the
yaw and pitch angles while Unsupervised Joint Alignment works merely on fixing
the deviation of the roll angle. Moreover, the black areas generated by Unsupervised
Joint Alignment are also undesirable. In general, one may have an initial assumption
that Ensemble of Regression Trees works better than Unsupervised Joint Alignment.

3.5 Analysis of difference measure

scikit-learn natively supports a variety of distance metrics (see Table 3.3) [51].
Instead of taking the absolute value of the subtraction between two feature vectors,
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the top 10 important distance metrics are selected and concatenated as the final
feature vector which describes the difference between two faces. This could reduce
the dimensionality of the final features greatly and also decrease the computational
complexity of the final classifier. With the purpose of assessing the importance of
each distance metric, a random forest classifier is trained by feeding the distance
values. The importance of each distance metric could be retrieved from such classifier
and a dependable result could be further obtained by repeating this process multiple
times and taking the average value.

Table 3.3 Distance metrics natively supported by scikit-learn [51].

braycurtis canberra chebyshev correlation cosine
dice euclidean hamming jaccard kulsinski
l1 l2 matching minkowski rogerstanimoto

russellrao sokalmichener sokalsneath sqeuclidean

3.5.1 Feature selection

Figure 3.16 compares the result of the feature selection of the OpenFace and VGG
Face features. The item others refers to the cumulative feature importance of the
remaining distance metrics which are not the top 10 important distance metrics. Fig-
ure 3.16(a) gives information on the importance of distance metrics for the OpenFace
features which are retrieved on top of the aligned images processed by Ensemble of
Regression Trees. The correlation and l1 are the top 2 distance metrics. Figure
3.16(b) presents information about the importance of distance metrics for the VGG
Face features which are calculated on top of the original facial images. The co-
sine and sokalsneath are the top 2 distance metrics. For the OpenFace features,
the others could be omitted since the cumulative sum is very close to 0. However,
the importance of the others still takes up approximately 0.10 for the VGG Face
features. Since only the top 10 distance metrics are chosen, the overall performance
of the VGG Face features might decline a little bit due to the information loss.

3.5.2 Visualization of top 2 distance metrics

Figure 3.17 visualizes the top 2 distance metrics of the OpenFace and VGG Face
features, respectively. Sampling has been used to balance the occurrence of True
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(a) Feature selection of OpenFace features with the aligned images processed by Ensemble of Re-
gression Trees.

(b) Feature selection of VGG Face features with the original facial images.

Figure 3.16 Feature selection.



3.5. Analysis of difference measure 43

(a) Top 2 distance metrics of OpenFace features with the aligned images pro-
cessed by Ensemble of Regression Trees.

(b) Top 2 distance metrics of VGG Face features with the original facial images.

Figure 3.17 Visualization of top 2 distance metrics.
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and False cases. In Figure 3.17(a), the True and False cases overlap with each
other especially when the value of distance metric is high. In Figure 3.17(b), the
intersection of the True and False cases is relatively smaller. The cases which the
cosine is smaller than 0.5 are highly likely to be True cases. For both the OpenFace
and VGG Face features, the illustrated curve could be treated as a monotonically
increasing function generally. If a observation has higher value on one distance
metric, it also tends to attain higher value on another distance metric. One should
bear in mind that such visualization is not strongly related to final performance
of the features. Suppose there is no overlap between the True and False cases at
all, one could expect that such feature is a perfect representation. However, the
contrary does not hold true. In addition to these top 2 distance metrics, there are
other 8 distance metrics which contain extra information. Besides, the feature itself
could encompass hidden patterns that are invisible in such two-dimensional figures.

3.6 Analysis of classifiers

In this section, the principle mechanism of two classifiers are enlightened. Cross-
validation is integrated in order to obtain the optimal model. After the cross-
validation process, one may retrain a new classifier with the optimal hyperparame-
ters on the whole training data set. However, suitable ensemble strategies deem to
improve the result slightly. It is possible to use those classifiers which have already
been trained during the cross-validation process to generate the predictions for the
testing data set. Since the error metric is Weighted AUC, one should use the prob-
abilities rather than the classes. Therefore, using the mean or median value of all
the predictions as the final prediction is a wise choice.

3.6.1 Neural network

Figure 3.18 depicts the structure of the Neural Network. The configuration is
inspired by an example code shipped along with Keras [14]. The NN is relatively
small since the dimensionality of the features is only 10. A smaller NN could also
help to fight against overfitting as larger NN has higher learning capability which
might mislead itself to the noises. The basic element is a fully connected Dense layer,
a PReLU Activation layer, a BatchNormalization layer followed by a Dropout layer.
Such basic element is repeated for three times. At the end of the NN, additional
Dense and Activation layer are appended.
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keras.layers.advanced_activations.PReLU
Input: (None, 32)

Output: (None, 32)

keras.layers.normalization.BatchNormalization
Input: (None, 32)

Output: (None, 32)

Input: (None, 32)

Output: (None, 32)
keras.layers.core.Dense

Input: (None, 10)

Output: (None, 32)
keras.layers.core.Dense

keras.layers.advanced_activations.PReLU
Input: (None, 32)

Output: (None, 32)

keras.layers.normalization.BatchNormalization
Input: (None, 32)

Output: (None, 32)

keras.layers.core.Dropout
Input: (None, 32)

Output: (None, 32)

keras.layers.advanced_activations.PReLU
Input: (None, 32)

Output: (None, 32)

keras.layers.normalization.BatchNormalization
Input: (None, 32)

Output: (None, 32)

keras.layers.core.Dropout
Input: (None, 32)

Output: (None, 32)

keras.layers.core.Dense
Input: (None, 32)

Output: (None, 2)

Input: (None, 2)

Output: (None, 2)
keras.layers.core.Activation

keras.layers.core.Dropout
Input: (None, 32)

Output: (None, 32)

Input: (None, 32)

Output: (None, 32)
keras.layers.core.Dense

Figure 3.18 Structure of the Neural Network.

With the purpose of improving the generalization of the NN, cross-validation is
utilized. As discussed in Section 3.3.3, the original training images need to be
divided by employing the Leave-p-Label-Out cross-validation strategy. The score
on the validation data set has been monitored during the whole training phase.
Normally, the validation score improves at the initial phase of training. After the
NN has already fit quite well to the training data set, the validation score does not
further improve as the training phase still continues. One need to decide when the
training phase should be terminated based on the validation score since overfitting
is likely to decrease the performance on the unseen data set. Early Stopping is one
possible strategy to address this issue. The training will be stopped if there is no
improvement in the validation score after a certain number of epochs which could be



3.7. Comprehensive analysis of the learning system as a whole 46

named as patience. However, it is fiddly to set the value of patience. If the patience
is too small, one might miss the actual optimal epoch. If the patience is too high,
the NN might have already been polluted by overfitting. A better practise could be
setting a high value of the total number of epochs and saving the model after every
epoch. The model file will be updated only under the condition that the new model
gains a higher validation score. By taking the latter approach, one is guaranteed to
obtain the possible optimal model at the expense of running unnecessary epochs.

3.6.2 Support vector classification

Support vector machines (SVMs) are a set of supervised machine learning algo-
rithms. In a basic SVM model, the data set could be treated as points in the high
dimensional space. The algorithm searches for a set of hyperplanes which could
separate the data set assigned to different categories as much as possible. Among
SVMs, support vector classification (SVC) is devised to solve twoclass and multiclass
classification problems. [10,20] Table 3.4 lists three important hyperparameters for
a SVC classifier, namely, C, kernel and gamma. By exhaustively generating all
possible combinations of parameter values shown in the table, one can have 12 SVC
classifier with different parameter settings. In order to find the optimal parameter
setting which could fit the given data set best, the performance of each classifier
need to be evaluated during the cross-validation process.

Table 3.4 Important hyperparameters for a SVC classifier [51].

Penalty parameter C Kernel type Kernel coefficient gamma
[1, 10, 100, 1000] "linear" "auto"
[1, 10, 100, 1000] "rbf" [0.001, 0.0001]

3.7 Comprehensive analysis of the learning system as a whole

Table 3.5 itemizes the possible options within each phase of the learning system.
By selecting one option for each phase, there are 72 different combinations in total.
In this section, the influence of each option is scrutinized while the other options
are kept constant. By default, the remaining tables in this section will be sorted by
the score in descending order.
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Table 3.5 Possible options within each phase of the learning system.

Phase Option

Face alignment
Without alignment

Unsupervised Joint Alignment [25]
Ensemble of Regression Trees [29]

Feature extraction OpenFace [2]
VGG Face [50]

Classifier Neural network
Support vector classification

Ensemble strategy Without ensemble
Mean or median value

Error metric
Weighted AUC

TPR at a low FPR
Matthews correlation coefficient

3.7.1 Effects of face alignment and feature extraction

The effects of face alignment and feature extraction are analyzed with classifier,
ensemble strategy and error metric set to neural network, mean value and Weighted
AUC, respectively. Table 3.6 shows the detailed result of 6 submissions. As the
lowest score achieved with the VGG Face features is still higher than the highest
score achieved with the OpenFace features, the VGG Face features work better than
the OpenFace features in general. Additionally, the face alignment algorithm does
not make a huge difference with the VGG Face features. However, the OpenFace
features need to be extracted from the aligned images processed by Ensemble of
Regression Trees. Otherwise, the performance will degrade sharply. The reason is
that the deep neural network in OpenFace was explicitly trained with the aligned
images processed by Ensemble of Regression Trees. As discussed in Section 3.4.3,
the aligned images processed by different algorithms differ from each other greatly.
Consequently, the deep neural network in OpenFace generated unproductive feature
vectors for the original facial images and the aligned images processed by Unsuper-
vised Joint Alignment.

3.7.2 Effects of classifier and ensemble strategy

The effects of classifier and ensemble strategy are analyzed with face alignment, fea-
ture extraction and error metric set to Ensemble of Regression Trees, OpenFace and
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Table 3.6 Effects of face alignment and feature extraction.

Face alignment Feature extraction Weighted AUC
Without alignment VGG Face [50] 0.9983

Unsupervised Joint Alignment [25] VGG Face [50] 0.9979
Ensemble of Regression Trees [29] VGG Face [50] 0.9930
Ensemble of Regression Trees [29] OpenFace [2] 0.9857

Without alignment OpenFace [2] 0.8999
Unsupervised Joint Alignment [25] OpenFace [2] 0.8083

Weighted AUC, respectively. Table 3.7 shows the detailed result of 14 submissions.
As discussed in Section 3.3.3, the images in 20% folders work as the validation data
set each time and 5 models will trained in one iteration. The score of single model
varies from 0.9837 to 0.9857. Although the variance between two single models is
quite small, the neural network works better than the SVC classifier as the worst
neural network achieves 0.9856 while the best SVC classifier achieves 0.9846. It is
also noticeable that taking mean or median value of the predictions generated by
neural networks or SVC classifiers could not improve the Weighted AUC score in this
competition. Cosine distances between the predictions generated by single models
of neural networks or SVC classifiers are calculated separately (see Table 3.8 and
Table 3.9). The average value of the non-zero elements in the preceding tables are
0.00191 and 0.00280, respectively. One could not benefit from the ensemble strate-
gies since the discrepancies within the predictions generated by single models could
be neglected.

3.7.3 Effects of error metric

In this subsection, the effects of error metric will be analyzed. Moreover, the sub-
missions from the top 3 performing teams in the competition are also included for
comparison. In order to simplify the evaluation process, only the optimal sub-
missions with either OpenFace or VGG Face features are taken into consideration.
Table 3.10 shows the rankings of the solutions with different error metrics. Gener-
ally speaking, the rankings are consistent with each other. The only exception is the
rank of team chenriwei with the error metric MCC. On the one hand, the Weighted
AUC score of team nobody, VGG Face and team chenriwei are above 0.995. The
difference in the Weighted AUC scores of any two submissions is quite small. On
the other hand, the scores vary a lot with the other two error metrics. In summary,
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Table 3.7 Effects of classifier and ensemble strategy.

Classifier Ensemble strategy Weighted AUC
Neural network Without ensemble (Model 2 ) 0.9857
Neural network Without ensemble (Model 5 ) 0.9857
Neural network Without ensemble (Model 1 ) 0.9857
Neural network Mean value 0.9857
Neural network Median value 0.9857
Neural network Without ensemble (Model 4 ) 0.9857
Neural network Without ensemble (Model 3 ) 0.9856

Support vector classification Without ensemble (Model 1 ) 0.9846
Support vector classification Without ensemble (Model 3 ) 0.9844
Support vector classification Mean value 0.9843
Support vector classification Median value 0.9843
Support vector classification Without ensemble (Model 4 ) 0.9841
Support vector classification Without ensemble (Model 2 ) 0.9837
Support vector classification Without ensemble (Model 5 ) 0.9837

Table 3.8 Cosine distances between the predictions generated by neural networks.

Model 1 Model 2 Model 3 Model 4 Model 5
Model 1 0 0.00220 0.00034 0.00061 0.00158
Model 2 0.00220 0 0.00283 0.00202 0.00378
Model 3 0.00034 0.00283 0 0.00047 0.00216
Model 4 0.00061 0.00202 0.00047 0 0.00304
Model 5 0.00158 0.00378 0.00216 0.00304 0

Table 3.9 Cosine distances between the predictions generated by SVC classifiers.

Model 1 Model 2 Model 3 Model 4 Model 5
Model 1 0 0.00290 0.00426 0.00018 0.00074
Model 2 0.00290 0 0.00108 0.00325 0.00481
Model 3 0.00426 0.00108 0 0.00450 0.00584
Model 4 0.00018 0.00325 0.00450 0 0.00047
Model 5 0.00074 0.00481 0.00584 0.00047 0
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TPR at a low FPR and MCC are more informative than Weighted AUC in this
competition.

Table 3.10 The rankings of the solutions.

Solution Weighted AUC Rank TPR at a low FPR (0.01) Rank MCC Rank
nobody 0.9990 1 0.8607 1 0.6417 1

VGG Face 0.9990 2 0.7609 2 0.5449 3
chenriwei 0.9956 3 0.6740 3 0.5474 2
OpenFace 0.9857 4 0.3363 4 0.1852 4
newbie 0.9636 5 0.2301 5 0.1331 5

3.7.4 Comparison of the computational speed

In pursuance of comparing the computational speed, the program was executed by
using a laptop with the configuration shown in Table 3.11. GPU acceleration was
activated whenever possible. The execution time was mainly constrained by CPU
and GPU since the test scenarios could not saturate the hard disk and memory. By
repeating a specific operation for a large number of times, one could get a dependable
result.

Table 3.12 compares the computational speed of the algorithms. In the process
of face alignment, it takes much less time for the Ensemble of Regression Trees
algorithm to align one image. Since the aligned images processed by Unsupervised
Joint Alignment could not improve the score of the learning system, this algorithm
is obsolete. In the process of feature extraction, OpenFace is approximately 16 times
faster than VGG Face as the size of the deep neural network in OpenFace is much
smaller than that in VGG Face. In the process of training and testing phase of
the classifier, it is apparent that training one model could be accomplished within
minutes. Meanwhile, generating a prediction for one image pair takes less than
0.002 second. Although the classifiers work faster with the OpenFace features in the
testing phase, the advantage is negligible.
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Table 3.11 Computer configuration.

CPU Intel Core i5-3230M @ 2.60GHz
GPU NVIDIA GeForce GT 740M 2GB DDR3

Hard Disk Samsung SSD 850 EVO 1 TB
Memory 12 GB 1600 MHz DDR3 SODIMM
Operating Arch Linux x86_64 with the bleeding-edge
System packages until February 2016

Table 3.12 Comparison of the computational speed.

Face alignment
Measurement Unsupervised Joint Alignment [25] Ensemble of Regression Trees [29]

Process one image 1.1112 second 0.8250 second
Feature extraction

Measurement OpenFace [2] VGG Face [50]
Process one image 0.0146 second 0.2434 second

Classifier with the OpenFace features [2]
Measurement Neural network Support vector classification

Train one model 68.0 second 23.5 second
Predict one pair 0.0014 second 0.0013 second

Classifier with the VGG Face features [50]
Measurement Neural network Support vector classification

Train one model 84.4 second 12.4 second
Predict one pair 0.0019 second 0.0018 second
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4. CONCLUSIONS

In this thesis, the solutions proposed by the top performing teams in TUGraz-TUT
Face Verification Challenge along with other possible methods were summarized.
By leaning on the OpenFace and VGG Face features, those exceptional approaches
obtained good results in face verification. The Chinese Realist Confucian philoso-
pher Xunzi states that "Not having heard something is not as good as having heard
it; having heard it is not as good as having seen it; having seen it is not as good
as knowing it; knowing it is not as good as putting it into practice." [80]. Based
on the feedback received from students, this competition helped them to apply the
knowledge learned from lectures to solve the real-world problems [27].

To further refine the face verification system, several possible areas of further work
have been outlined as follows. Firstly, one could collect more facial images which
are freely available to the academia. As stated by many researchers, the deep neural
network could benefit from larger image data set [2,39,61,70]. The giant companies
such as Google and Facebook have inherent advantages in term of the amount of
images. However, those companies might be unable to share their proprietary data
set due to the constraints of law. Secondly, current face alignment techniques are not
perfect since they do not work if only half face is shown. Smearing the available facial
image to a 3D model might be one possible approach to address this tricky problem.
The missing part of the face could be reconstructed afterwards. Thirdly, one could
investigate the reliability of the error metrics in detail. The Weighted AUC could
not differentiate the proposed solutions very well. Fourthly, one could implement
a real-time face verification system with the OpenFace features. Computational
optimization is still required especially for the face alignment algorithm. Finally,
one could replace the classifier with the eXtreme Gradient Boosting [11]. This
algorithm gains a lot of popularity among the Machine Learning enthusiasts since
it has been applied to win ten Kaggle competitions so far [12].
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