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ABSTRACT 

ALEKSI SINISALO: Web Frontend Component Quality Model 
Tampere University of Technology 
Master of Science Thesis, 73 pages, 3 Appendix pages 
September 2017 
Master’s Degree Programme in Information Technology 
Major: Software Engineering 
Examiner: Professor Hannu-Matti Järvinen 
 
Keywords: software quality, quality model, web frontend development, web 
frontend components 

Web frontend application developers utilize many components in their work that provide 

functionality required by the application under development. The components are typi-

cally written in JavaScript and may have been developed by 3rd parties or inside the com-

pany. The quality of the selected components plays a major role in the overall quality of 

the web frontend application that they are utilized in. Additionally, the component quality 

affects the desirability of the component in the eyes of the web application developers 

that might potentially utilize the component in their application. As an implication, the 

developers of these components want to them to be high-quality and easy to use.  

Thus, the problems that this thesis is seeking answers to are how to develop easy-to-use 

high-quality components and how to measure web frontend component quality. This the-

sis presents the web frontend component quality model as an answer to these problems. 

The model is based on web frontend development and component characteristics and re-

search on software component quality models. Both are discussed in the literature review 

part of this thesis. 

The web frontend component quality model divides the component quality hierarchically 

to 4 levels that are quality characteristics, quality sub-characteristics, quality attributes 

and quality measures. Quality characteristics are high-level abstractions of quality such 

as functionality and usability that are further specified by the sub-characteristics and at-

tributes. The quality measures are concrete instructions on how to measure values for the 

quality attributes. The web frontend component quality model consists of 6 quality char-

acteristics, 13 quality sub-characteristics, 30 quality attributes and measures for them. 

The quality model was tested and evaluated by measuring the quality of the report editor 

component that is developed by Wapice Ltd. The quality evaluation was able to measure 

values for the quality attributes according to the model. Additionally, numerous sugges-

tions were provided on how to improve the quality of the report editor component imple-

mentation and documentation. Among the improvement suggestions were for example, 

improving the configurability of the component through configurations object and events 

interface, providing HTML-based documentation and loading type coverage improve-

ment by adding support to CommonJS and AMD module types. 
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TIIVISTELMÄ 

ALEKSI SINISALO: Web frontend komponenttien laatumalli 
Tampereen teknillinen yliopisto 
Diplomityö, 73 sivua, 3 liitesivua 
Syyskuu 2017 
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma 
Pääaine: Ohjelmistotuotanto 
Tarkastaja: professori Hannu-Matti Järvinen 
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komponentit 

Web frontend-sovellusten kehittäjät hyödyntävät työssään monia komponentteja, jotka 

tarjoavat toiminnallisuuksia kehitettävänä olevaan sovellukseen. Nämä komponentit on 

usein kirjoitettu JavaScript-ohjelmointikielellä ja ne ovat kolmannen osapuolen tai 

yrityksen itsensä toteuttamia. Web-sovelluksessa käytettävien komponenttien laatu on 

suuressa roolissa sovelluksen kokonaislaadun kannalta. Lisäksi komponentin laatu 

vaikuttaa sen kiinnostavuuteen niiden web-kehittäjien näkökulmasta, jotka voisivat 

mahdollisesti käyttää sitä omassa sovelluksessaan. Tästä seuraa, että komponenttien 

kehittäjät haluavat komponenttiensa olevan korkealaatuisia ja helppokäyttöisiä. 

Ongelmat, joihin tässä diplomityössä etsitään vastauksia ovat, kuinka kehittää 

helppokäyttöisiä ja korkealaatuisia komponentteja ja kuinka mitata web frontend-

komponenttien laatua. Tämä diplomityö esittää vastauksena web frontend-komponenttien 

laatumallin. Malli pohjautuu web frontend-kehityksen ja komponenttien erityispiirteisiin 

sekä tutkimuksiin ohjelmistokomponenttien laatumalleista. Molempia aiheita käsitellään 

tämän diplomityön kirjallisuuskatsaus-osiossa. 

Web frontend-komponenttien laatumalli jakaa komponenttien laadun hierarkkisesti 

neljään tasoon, jotka ovat laadun erityispiirteet, laadun alierityispiirteet, 

laatuominaisuudet ja laatumittaukset. Laadun erityispiirteet ovat korkean tason 

abstraktioita, kuten toiminnallisuus ja käytettävyys, joita tarkennetaan edelleen ali-

erityispiirteillä ja ominaisuuksilla. Laatumittaukset ovat konkreettisia ohjeita 

laatuominaisuuksien mittaamiseen. Web frontend-komponenttien laatumalli koostuu 6 

laadun erityispiirteestä, 13 laadun alierityispiirteestä, 30 laatuominaisuudesta ja niiden 

mittauksista. 

Laatumallia testattiin ja arvioitiin mittaamalla raporttieditorikomponentin laatua. 

Raporttieditorikomponentti on Wapice Oy:n kehittämä. Laatuarviointi suoritettiin 

mittaamalla arvot laatuominaisuuksille mallin ohjeiden mukaisesti. Lisäksi, mittausten 

perusteella tuotettiin useita ehdotuksia siihen, kuinka parantaa raporttieditori-

komponentin totetuksen ja dokumentaation laatua. Kehitysehdotusten joukossa oli 

esimerkiksi konfiguroitavuuden kehittäminen toteuttamalla konfiguraatio-objekti ja 

tapahtumarajapinta komponentille, tarjoamalla HTML-pohjainen dokumentaatio ja 

komponentin lataustyyppikattavuuden parantaminen tarjoamalla tuki CommonJS- ja 

AMD-moduulityypeille. 
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1. INTRODUCTION 

Web application developers are nowadays utilizing different kinds of commercial, open 

source and company internally developed libraries and components. This applies to both 

backend and frontend development. The libraries may range from providing mathemati-

cal functions or data handling to interactive user interface (UI) components. The aim for 

utilizing these libraries and components is to lower the development time and costs by 

reducing the amount of programming that needs to be done for each application. 

The developers of these libraries and components naturally want their product to succeed 

and be utilized in different applications. Thus, it is important for the component develop-

ers to produce a high-quality component that is easy-to-use and configurable to suit the 

needs of various web applications. 

JavaScript-based web frontend UI libraries or components are one branch of these librar-

ies. These libraries provide interactive widgets such as charts, dialogs and tabs that de-

velopers can configure and use in their own applications. This thesis focuses on providing 

means to web frontend UI component developers to assess the quality of their component 

and improve it in a way that would make it more appealing to web application developers. 

Thus, the goal of this thesis is to develop a web frontend component quality model that 

can be utilized to evaluate the quality of web frontend components. The aim of the quality 

evaluation is to assess the overall quality of the component. Additionally, the aim of the 

quality evaluation is to provide information to act as a base for suggestions on how to 

improve the component quality. The web frontend component quality model is evaluated 

by executing a quality evaluation of the report editor component that is extracted from a 

web based internet of things product IoT-Ticket. The report editor component has been 

extracted to be utilized in other applications that require its functionality. IoT-Ticket is 

developed by a Finnish software and electronics company Wapice Ltd. 

In order to develop a web frontend component quality model, the characteristics of web 

applications, web application development and web frontend components need to be iden-

tified. Software quality and software component quality are also relevant subjects for this 

thesis. Software component quality has seen some research on general software compo-

nents regarding component based software development (CBSD) and their results can 

also be utilized when developing the quality model. 

Thus, the contents of this thesis are first, introducing the context in Chapter 2 by providing 

information of web frontend applications and their development. Chapter 3 describes the 
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software component quality evaluation by first discussing general software quality eval-

uation and second presenting results of software component quality evaluation research. 

In Chapter 4, the web frontend component quality model is derived based on the software 

component quality research results presented in Chapter 3 and web application character-

istics presented in Chapter 2. Chapter 5 introduces the IoT-Ticket product and the report 

editor component in addition to executing the actual quality evaluation of the report editor 

component utilizing the web frontend component quality model derived in Chapter 4. 

Additionally, in Chapter 5, the web frontend component quality model is evaluated based 

on how well it performed and produced results. Chapter 6 presents the conclusions of the 

thesis. 
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2. WEB FRONTEND APPLICATIONS 

With the emerge of popular JavaScript frameworks such as AngularJS and React.js the 

web development industry is leaning towards transferring more application logic from 

the backend to the frontend side. In addition to frameworks, the rising demands for the 

frontend web development has also generated a myriad of open source and commercial 

JavaScript libraries and components that developers can use in their own projects. Prac-

tically every modern web application utilizes these libraries and it has become increas-

ingly important to choose the right components from the ever-growing pool of available 

solutions. 

The transition in the industry has created a web application structure called single-page 

application (SPA) which promotes a well-structured business logic oriented frontend 

code. The separation to frontend and backend in web development is also becoming 

clearer as the frontend applications are developed and deployed with their own tools in-

dependent of the backend applications.  

Previously, the frontend logic was more strongly coupled with the backend logic as the 

backend utilized server-side rendering to construct dynamic web pages presented to the 

user. The frontend could then be perceived as a collection of JavaScript files that provided 

enhancements to the pre-rendered web page rather than a standalone application. (Fink & 

Flatow 2014a, para 2) Modern web frontend application however, developed usually with 

the aid of a framework, can be identified as a distinct entity separated from the backend. 

Thus, modern web frontend application is the part of a web application that the user di-

rectly interacts with. The part visible to the user of the frontend application is called a 

user interface (UI). The frontend application is usually accessed by a web browser soft-

ware but it is also possible to develop and utilize a separate client software.  

Usually web frontend application is communicating with web backend application that, 

for example, offers access to user authentication service and data from persistent data 

storage. Though, it is also possible to develop a frontend application with no backend 

connection and run it on a browser, its uses are mainly limited to simple non-data related 

tasks or UI demonstration purposes. 

2.1 Web application structure 

Together with a backend application, a web frontend application forms an entity called 

web application. Web application is running on a web server software that receives and 

processes requests from clients. Web applications can be roughly divided into two cate-

gories: the traditional web application and the single page application. Communication 
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between the clients and the web server is achieved by using the hypertext transfer protocol 

(HTTP). 

2.1.1 Traditional web application 

The traditional web application has a server-centric approach. This implies that almost all 

user interactions are sent as HTTP requests to the web server. One characteristic of tradi-

tional web applications is that the browser page is refreshed every time the server re-

sponds to a HTTP request of the client. The requests can be made to directly access static 

resources on the server such as images or hypertext markup language (HTML) files. Ad-

ditionally, with the introduction of server-side scripting languages like hypertext prepro-

cessor (PHP) the server can also provide dynamic content by executing server side scripts 

to generate HTML pages that are then sent as HTTP response to the client. (Fink & Flatow 

2014a, para 7) 

However, nowadays traditional web applications have usually implemented a router 

which handles the requests which implies that the user does not have to access the server 

files directly by their name. The use of a router usually implies the use of the Model-

View-Controller pattern (MVC) or similar that divides the web application logic to dis-

tinct parts. In the case of the MVC the router may be configured to map uniform resource 

locator (URL) routes to controller action methods for example route /News/Create could 

be mapped to NewsController's Create method. The called method has access to the 

HTTP request and its parameters and may use them to form the response and return it to 

the client. When router is routing the HTTP request it has access to the HTTP header 

fields which allows the reuse of routes for different actions to the same resource. For 

example, /News/Create with HTTP GET could be used to return a view for creating a 

news item and HTTP POST could be used to create a news item (docs.microsoft.com 

2017a). Web application that has implemented a router may still serve static files but the 

router will map the reserved URL routes to the controller methods. (msdn.microsoft.com 

2017) 

Web application is accessed by the user through views on the browser. These views may 

be constructed by the server using HTML syntax in combination with templating engine 

language. When the controller loads a view to be sent as a response to the client's request 

it passes view data parameters or view model object to the view which allows the tem-

plating engine to access the data it needs to show on the view. Typically, templating en-

gines provide support for more advanced templating other than printing the view model 

values on the view. For example, support for iterating over arrays or logical operations 

based on view model values. After the view is constructed the application may send a 

HTTP response with the HTML content of the view to the client. (docs.microsoft.com 

2017b; docs.microsoft.com 2017c) 
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Web application usually needs to provide persistent data storage to store business data. 

This is usually achieved by using database software. Database software stores application 

data to disk on the server it is running on. Most commonly used database type is relational 

database which stores data in tables. Tables consist of rows and columns. Rows represent 

business data in the application for example a news item. Columns in a row represent 

properties of the rows for example title, author and text content of the news item. Rela-

tional database can be queried with Structured query language (SQL) to receive the data 

needed by the application. For example, ”get news item with  author A.S.” would translate 

to SQL as SELECT * FROM NewsItems WHERE Author = 'A.S.'. (docs.or-

acle.com 2017) 

Usually database is accessed on application level by utilizing object-relational mapping 

(ORM) or similar technique that abstracts the database handling. Thus, the data can be 

accessed using the same programming language as the application and the database rows 

are mapped to objects called models in the MVC pattern. The ORM may utilize SQL in 

its internal implementation but programmers may use language supported queries that 

may be more intuitive. (entityframeworktutorial.net 2017) 

2.1.2 Modern single-page application 

The fundamental difference of SPA to traditional web application is that the client content 

of the SPA consists of a single HTML page called entry point while traditional web ap-

plication constructs different HTML pages based on user's request. The SPA entry point 

page dynamically alters its contents in response to user's actions. With dynamic content 

alteration, the client doesn't need to send request to the server to change the ”web page” 

and a full page reload is not required by the browser. The content alteration is achieved 

by utilizing browser supported script language called JavaScript. Usually SPA structure 

is achieved by programming with the aid of a frontend framework which supports the 

division of the pages to modules like the views in traditional web application. (Fink & 

Flatow 2014a, para 8) 

Traditional web application provides the router to give human readable URLs to the view 

pages. Additionally, requesting an individual page for each request also enables the 

browser's history functionalities: back and forward. Similar effects are possible with SPA 

even though its content consists of a single HTML page. The routing can be defined on 

the frontend code to load a specific frontend module as the page content when a certain 

URL is entered usually by utilizing a frontend framework or library that is using the 

HTML5 history API. (Fink & Flatow 2014b, para 5) 

SPA is usually connected to backend Representational State Transfer (REST) API. REST 

architecture sets several restrictions, for example, to the structure and the HTTP method 

usage of the API. The API is used, for example, to authenticate users and to access per-

sistent data storage to load data content to the frontend application. When certain module 
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is loaded on a SPA it usually sends an XML HTTP Request to the API using Asynchro-

nous JavaScript and XML (AJAX) technology. AJAX request is like a regular HTTP 

request and its response is usually in extensible markup language (XML) or JavaScript 

object notation (JSON) format. Frontend application can parse the response data and 

show it on the page content utilizing JavaScript. (Fink & Flatow 2014a, para 8; Fink & 

Flatow 2014b, para 8) 

Additionally, when API is operating on a different web-server or web server port than the 

frontend application cross-origin resource sharing (CORS) must be considered. CORS is 

a mechanism that allows requests to be made to a different domain than from where the 

request originated which is normally prevented by same origin policy. For example, re-

quest from localhost:80 (frontend application) to localhost:8080 (REST API). By default, 

CORS is disabled and must be enabled for specific domains the API wants to allow access 

from. (developer.mozilla.org 2017b) 

2.2 Web frontend technologies 

Web frontend development utilizes many technologies. The primary technologies that are 

used in practically every web frontend application are HTML, document object model 

(DOM), JavaScript and cascading style sheets (CSS). 

2.2.1 HTML 

Hypertext Markup Language (HTML) is a language used to construct web pages. HTML 

documents are interpreted by the web browsers that form the visual representation of the 

HTML document. While the HTML itself is standardized all the browsers are not inter-

preting it the same way. Therefore, there may be differences in the presentation of the 

same HTML document across different browsers and cross browser testing is usually re-

quired to verify that the web application utilizing HTML is operating correctly on all 

required browsers. (Brooks 2007, p. 1) 

The HTML document consists of elements. Elements in turn consist of tags and content. 

Majority of the elements have a starting tag and an ending tag but there are also elements 

which consist only of a single tag. The starting and ending tags define the ”body” of the 

element and the content related to the element is inserted between the tags. The browser 

interprets the element and applies its effect to its content which can be observed on the 

visual representation of the HTML document. (Freeman 2011, pp. 13-15) 

The elements have relationships between themselves depending on their position in rela-

tion to each other in the HTML document. The HTML document supports a tree like 

structure which allows elements to contain other elements. An element that contains other 

elements is called a parent. An element that is defined inside another element is called a 

child element. Two elements that are child elements to the same parent element are called 
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siblings. An element that is more than one level deep in the element tree is called a de-

scendant to the parent element that is more than one level up in the element tree. A parent 

element that is more than one level up in the element tree is called an ancestor. In addition 

to providing hierarchical structure to the HTML document the element relationships can 

also be used to apply Cascading Style Sheets (CSS) styles to elements that are in similar 

position in the element tree. (Freeman 2011, p. 23) CSS is introduced later in this chapter. 

HTML elements may be configured by multiple optional attributes. Some attributes are 

global that can be used with any element and some are element specific. Most attributes 

are name-value pairs that provide extra information about the element or configure it in 

some way. For example, an a-element which is used to create hyperlinks has a href at-

tribute which can be used to provide a reference to another location. (Freeman 2011, p. 

19) 

The most important global attributes are the class and id attributes. The class attribute is 

used to classify or categorize elements (Freeman 2011, p. 26). Multiple elements may 

have the same class attribute which usually implies that they have a similar purpose in 

the application. Element may also have multiple values for class attribute separated by 

space character (Freeman 2011, p. 26). The main use cases for class attribute are applying 

CSS styles to elements with certain class attribute value or executing JavaScript code in 

the context of those elements (Freeman 2011, pp. 27-28). The id attribute functions sim-

ilar to class attribute except that it provides a unique identifier to an element (Freeman 

2011, p. 32). While the id attribute value should be unique in an HTML document 

(W3.org 2017) it is still possible to assign multiple elements the same id. However, this 

may cause unexpected results when executing scripts that rely on the id attribute. 

While some HTML elements affect the visual representation of the web page their main 

purpose is to provide structure for the content. For example, the H1 element describes a 

level 1 heading and the p element describes a text paragraph. The use of these elements 

should only provide information on what the content is, not how it should be presented. 

Mainly for historical reasons originating from the early versions of HTML some elements 

still affect the representation of the content. Now CSS has been widely accepted to pro-

vide the means to alter the presentation of the content separate from the structure. (Free-

man 2011, p. 16) 

A minimum valid HTML document contains html, head, title and body elements (Brooks 

2007, p. 1) and document type declaration at the start of the document. These elements 

are required for HTML document to be valid but most browsers can interpret also invalid 

HTML documents. The html element contains all other elements on the HTML document. 

The head element contains metadata information of the document including the title ele-

ment. Head element may also be used to load CSS and script files. The body element 

contains the displayable content of the HTLM document. (Freeman 2011, pp. 22-23) 
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2.2.2 DOM 

Document Object Model (DOM) is an object model representing the structure of an 

HTML document. DOM allows programmatical manipulation of the HTML document 

by utilizing JavaScript scripting language. With DOM it is possible, for example, to dy-

namically create and remove elements and listen to events that elements send in response 

to user actions. In DOM, each element in the HTML document is represented by a JavaS-

cript object that contains properties and methods that can be used to manipulate the ele-

ment. Most browsers provide native JavaScript support to access DOM but there are also 

JavaScript libraries such as jQuery that can be used to access DOM. (Freeman 2011, pp. 

633-635) 

2.2.3 JavaScript 

JavaScript is an interpreted object-oriented programming language that is executed on the 

client side (Brooks 2007, p. 3). JavaScript does not need to be compiled and most web 

browsers have an interpreter which executes the JavaScript code. JavaScript was devel-

oped to create interactive HTLM pages by utilizing the DOM without the need of loading 

a new HTML page from the server. (Brooks 2007, pp. 3-4) 

The simplest way of including JavaScript code into a HTML page is by using the script 

tags. The JavaScript code is written inside the script tags as their content. Browser will 

execute the JavaScript when the HTML document is loaded. (Brooks 2007, p. 9) An al-

ternative to writing the JavaScript code inside the script tags is to provide a path to a 

JavaScript file using the script tag src attribute (Brooks 2007, p. 31). While it is possible 

to write all JavaScript code in the HTML pages inside the script tags, using separate Ja-

vaScript source files is the advised way when writing web applications. 

The most important concepts in JavaScript programming are variables, functions and ob-

jects. JavaScript is a loosely typed language which indicates that variable types are not 

explicitly defined. The variable type will be determined by the value assigned to the var-

iable. A variable is also not locked into a certain type once a value has been assigned to 

it. The type may change if a new value is assigned into the same variable. In addition to 

primitive types (string, number, Boolean), it is also possible to assign functions or objects 

into a variable. This aspect of the JavaScript language might be controversial to program-

mers that are used to strongly typed languages. Thus, JavaScript preprocessors such as 

TypeScript (typescriptlang.org 2017) have been developed that provide strong typing and 

other features such as interfaces to the JavaScript (Fink & Flatow 2014a, para. 6). (Free-

man 2011, p. 77) 

In JavaScript, like in other programming languages, functions can be defined to accept 

parameters and return a value. Function parameters and return values are also loosely 

typed in JavaScript implying that the caller of the function may insert expressions of any 
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type into the parameters. Caller may also decide to omit any parameters when calling a 

function. In that case, the missing parameters will be undefined which is a reserved word 

in JavaScript for values that have not been defined. Caller may also present more param-

eters than required to the function. Then, the additional parameters are ignored. (Freeman 

2011, pp. 75-77) 

JavaScript objects, unlike in strongly typed languages, are not instances of any specific 

class. They are dynamic in nature and can be manipulated at will before and after their 

initialization. Objects have properties which can be any types allowed to regular variables 

including primitive types, other objects and functions. Functions as object properties are 

called methods. If methods want to access other properties of the object it can be done 

through this keyword. (Freeman 2011, pp. 79-81) 

Function declares a private scope in JavaScript. Variable that is declared inside a function 

will only be visible inside the function and is called a local variable. Variables that are 

declared outside functions are called global variables and they may be used also inside 

any functions. Global variables can also be used by any other scripts that are loaded into 

the same HTML page after the global variable declaration. (Freeman 2011, p. 77) 

As stated before, JavaScript can be utilized in manipulating DOM. For example, a simple 

event handler can be attached to a button element click to change the text inside an HTML 

element with the JavaScript code shown on Figure 2.1. 

2.2.4  CSS 

Cascading Style Sheets (CSS) are used to modify the presentation of an HTML document. 

Styles are key-value pairs where key is a CSS property name and value is a value for the 

property. (Freeman 2011, pp. 39-40) There are three methods of applying CSS styles to 

an HTML document. Inline styles, embedded styles and external styles. Inline styles are 

Figure 2.1 JavaScript event handler 
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using the global style attribute on HTML elements. Style attribute accepts CSS style key-

value pairs as its value and formats the presentation of the element appropriately. Embed-

ded styles are defined inside style tags in the head section of an HTML page. External 

styles utilize styles that are defined in a separate CSS file and loaded to the HTML page 

in the head section using the link tag. External style sheets are the preferred way of uti-

lizing the CSS on web applications because that ensures the separation of presentation 

and content. (Collison 2006, pp. 5-7) 

Sometimes there may be situations when element styling needs to be changed in response 

to user interaction. This is possible through JavaScript DOM manipulation. Element style 

can be changed by assigning a certain class or id to an element or directly accessing the 

style object of the element through DOM (W3Schools.com 2017). 

Web applications are nowadays used by multiple different devices with different screen 

sizes. CSS media queries can be utilized to provide responsive web applications that con-

form to different screen sizes. Media queries can be used for example, to identify user's 

screen size and load a different style sheet accordingly. (developer.mozilla.org 2017a) 

There are also existing frameworks such as Bootstrap that help styling frontend web ap-

plications (getbootstrap.com 2017). These frameworks provide themes that can be used 

for example, by defining certain class attribute values to elements. Styling frameworks 

can also provide functionality in addition to styling for example, styled dialogs that re-

spond to user interaction. Frameworks can also aid in developing a responsive web appli-

cation since they often have inbuilt responsiveness to different screen sizes. 

How CSS can be utilized with style tags to for example, draw borders around a p-element 

and change the element background color can be seen on Figure 2.2. 

 

Figure 2.2 CSS styles on p element 
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2.3 Web frontend frameworks 

When developing a modern single page application, it is often required to utilize a 

frontend framework. Frontend frameworks introduce design patterns such as MVC to the 

frontend development that have been used in traditional web application server side struc-

ture or desktop applications. One of the main reasons the frontend frameworks are used 

is that they provide a defined structure and separate the frontend code into maintainable 

and testable parts. In addition to providing code structure the web frontend frameworks 

can also contain many built-in features required in a single page application such as client-

side routing, communication with the server and HTML templating. (Fink & Flatow 

2014b, para. 4) 

Many web frontend frameworks are opinionated in a way that they guide developers to a 

certain application structure that the framework supports. This may limit the developer's 

freedom on some cases but also offers specific building blocks for creating a well-struc-

tured application. Many popular frameworks also usually offer documentation and sup-

port through active developer community. (Osmani 2012) 

2.4 Web frontend development tools 

Traditionally, web frontend development has not required any special tools in addition to 

a text editor for writing the code. Due to the static nature of HTML and CSS and the 

interpretation of the JavaScript, the frontend development has quick feedback loops after 

developer has made changes to the source code. However, the increasing amount of com-

plexity in the frontend code and growing amount of source files including the 3rd party 

library dependencies has caused the need for frontend code ”compilation” such as mini-

fication and bundling of the source files to reduce the load on browsers when initializing 

the application (docs.webplatform.org 2017). The utilization of JavaScript preprocessors 

also requires the frontend application to be compiled to JavaScript before browsers can 

run the application (Fink & Flatow 2014a, para. 6). 

Some tools that have been developed to answer to these requirements are called JavaS-

cript task runners such as Grunt and Gulp. These tools allow the developers to automate 

tasks for example, for compiling and deploying frontend applications and running auto-

mated tests by defining the tasks in JavaScript and running them from command line. 

(Ambler & Cloud 2015a, para. 1) 

A need for simple and effective module loading for frontend applications arises as the 

amount of dependencies increase. It is possible to include all dependencies by utilizing 

the HTML script tags but it becomes increasingly tedious as the web application size 

grows (Bos 2015; Ambler & Cloud 2015b, para. 1). CommonJS used by Node.js and 

implemented for frontend use by the JavaScript library Browserify and Asynchronous 

Module Definition (AMD) implemented by the JavaScript library RequireJS provide a 
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way of loading dependencies by referencing them from other JavaScript files. The de-

pendencies form a tree that ensures that every dependency is loaded in correct order. 

(Ambler & Cloud 2015b, para. 1) 

Node package manager (NPM) has been used in Node.js backend environments for man-

aging dependencies to external libraries. However, it can also be utilized in web frontend 

applications for dependency management and for running scripts similar to task runners. 

Together with EcmaScript6 (ES6) modules, that are not yet supported by browsers but 

available through transpiling to CommonJS or AMD, NPM packages provide a simple 

way of handling web frontend application dependencies. As stated before, ES6 modules 

are not yet supported by browsers but they can be seen as the future standard for handling 

frontend JavaScript modules. (Bos 2015; Brown 2016) 

In addition to Browserify and RequireJS, there is also a module bundler called Webpack 

that supports loading of CommonJS, AMD and ES6 modules. (webpack.org 2017) 

2.5 Web frontend UI components 

There are different types of components and libraries used in frontend web development. 

For example, they might offer helper functions for data manipulation, supply routing or 

AJAX functionality or provide interactive widgets to use in web applications UI. In the 

context of this thesis we are more interested in the UI related components. Frontend UI 

components utilize HTML, JavaScript and CSS to provide functionality and styling. 

One JavaScript library that provides multiple widgets that can be used in frontend web 

development projects is called jQuery UI (jqueryui.com 2017). It is widely used and its 

widgets provide simple configurations and methods to manipulate the widgets to be used 

in an application. jQuery UI tabs widget will be used as an example for a web frontend 

UI component. Image of the tabs widget can be seen on Figure 2.3. 

 

Figure 2.3 jQuery UI tabs widget 

UI components usually require a HTML element or elements to act as a “container” for 

the widget. The tabs widget requires a div element and inside it an unordered list (ul) 

HTML element with a list item (li) element for each tab to provide the tab navigation. 

Additionally, the actual content of each tab is inserted into their respective div elements. 
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The tabs widget can be attached to the DOM by calling the tabs method, provided by the 

jQuery UI library, to the container div DOM element. Calling the tabs method renders 

the tabs widget on the provided markup and will make the widget visible to the user. The 

tabs widget has a default CSS styling provided by the jQuery UI library. However, devel-

opers can also provide their own stylesheet to override the defaults as needed. (Wellman 

2009, para. 2-3; jqueryui.com 2017) 

The HTML markup and JavaScript required by the tabs widget can be seen on Figure 2.4. 

 

Figure 2.4 jQuery UI tabs HTML markup and JavaScript 

In addition to default functionality, the UI components can usually be provided with con-

figurations that affect the way the component behaves. In the case of the tabs component 

the extra configurations can be provided as a JavaScript object to the jQuery UI tabs 

method. For example, developer may provide active option with the id attribute value of 

the tab content element to provide the default active tab or event option with name of the 

mouse event as value used to activate a tab for example click or double click. The con-

figurations can be passed to the widget when initialized but also after initialization. (Well-

man 2009, para. 4; jqueryui.com 2017) 

UI components may also provide methods that perform actions on the component. For 

example, developer can disable all the tabs of the tabs widget by calling the disable 

method on the widget. Some of the methods may provide an alternative to using the con-

figuration options, for example, tabs can also be disabled by the disabled option provided 
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with a value of an array of tab indexes that are to be disabled. (Wellman 2009, para. 6; 

jqueryui.com 2017) 

UI components can send events on specific situations in response to user interaction. De-

veloper can assign callback functions to these events to react to the situation that caused 

the event. For example, the tabs widget provides an activate event which fires when a tab 

is activated. The event object and other event related information may be given to the 

provided callback method as parameters. (Wellman 2009, para. 5; jqueryui.com 2017) 

As stated in Section 2.4, it is possible for modern web applications to include their de-

pendencies, including the UI components, as NPM packages. The NPM packages can 

then be used in the JavaScript files by utilizing the CommonJS or AMD. 
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3. SOFTWARE COMPONENT QUALITY EVALUA-

TION 

Software component quality and its evaluation has been researched in the context of com-

ponent-based software development (CBSD) and component-based software engineering 

(CBSE). CBSD promotes software development by constructing the system by integrat-

ing existing software components in a well-defined architecture rather than implementing 

everything from scratch (Kaur et al. 2009). CBSD utilizes software components available 

in the market called commercial off the shelf (COTS) components which are often black 

boxed implying that the component source code is not available to the developers (Al-

meida & Calistru 2011). Thus, the developers must rely on documentation and testing to 

evaluate the component suitability to a project. Various quality models introduced by 

research and listed by Almeida & Calistru (2011) can be utilized in the black box assess-

ment. 

According to the work of Almeida & Calistru (2011) the research concerning the quality 

evaluation of components has been derived from the traditional software quality evalua-

tion and is based mainly on ISO 9126 (now replaced by ISO 25010:2011), which is dis-

cussed later in this chapter. The research has been focusing mostly on the demands the 

CBSD architecture sets on the components and the component selection process. Though, 

the point of view on the research is more on the side of the component consumer the 

results can also be utilized by the component developers to improve the component qual-

ity in the eyes of the component consumers. 

There is a notable lack of research in the field of quality evaluation of web libraries and 

components, especially on the frontend side. Thus, in the context of this thesis the CBSD 

ideas are attempted to be applied to the web frontend development where often 3rd party 

libraries are utilized.  

3.1 General software quality evaluation 

According to the definition by IEEE (1990) software quality is: 

1. The degree to which a system, component, or process meets specified require-

ments. 

2. The degree to which a system, component, or process meets customer or user 

needs or expectations. 

This definition leaves the essence of quality still quite abstract because the customer and 

user needs and expectations vary depending on the software project. Thus, there is also a 
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need for a quality model that attempts to describe the characteristics that form the soft-

ware quality.  

Firesmith (2005) presents software quality model as a hierarchical model that divides the 

quality into four levels with following descriptions: 

• Quality factors (characteristics): high-level characteristics or attributes of a sys-

tem that capture major aspects of its quality (e.g., performance or usability). 

• Quality sub factors (sub-characteristics): major components of a quality factor or 

another quality sub factor that capture a subordinate aspect of the quality of a 

system (e.g., throughput or learnability). 

• Quality criteria (attributes): specific descriptions of a system that provide evi-

dence either for or against the existence of a specific quality factor or sub factor. 

• Quality measures (metrics): gauges that quantify a quality criterion and thus make 

it measurable, objective, and unambiguous. 

A quality evaluation framework ISO 9126 quality model introduces six quality factors or 

characteristics that can be used to evaluate software quality. The characteristics are func-

tionality, reliability, usability, efficiency, maintainability and portability (O'Regan 2014). 

ISO 9126 has been replaced by ISO/IEC 25010:2011 which introduces product quality 

model with eight quality characteristics. These characteristics by ISO/IEC (2011) and 

their definitions can be seen on Table 3.1. 

Table 3.1 ISO/IEC 25010:2011 Quality characteristics 

Characteristic Description 

Functional 

suitability 

Degree to which a product or system provides functions that meet stated and 

implied needs when used under specified conditions. 

Performance 

efficiency 
Performance relative to the amount of resources used under stated condi-

tions. 

Compatibility 
 

Degree to which a product, system or component can exchange information 

with other products, systems or components, and/or perform its required 

functions, while sharing the same hardware or software environment. 

Usability Degree to which a product or system can be used by specified users to 

achieve specified goals with effectiveness, efficiency and satisfaction in a 

specified context of use. 

Reliability Degree to which a system, product or component performs specified func-

tions under specified conditions for a specified period of time. 

Security 
 

Degree to which a product or system protects information and data so that 

persons or other products or systems have the degree of data access appro-

priate to their types and levels of authorization. 

Maintainability 
 

Degree of effectiveness and efficiency with which a product or system can 

be modified by the intended maintainers. 

Portability Degree of effectiveness and efficiency with which a system, product or com-

ponent can be transferred from one hardware, software or other operational 

or usage environment to another. 
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The characteristics introduced in Table 3.1 are divided into sub-characteristics that further 

describe the main characteristic. The characteristics are not measurable by themselves as 

Firesmith's (2005) quality model definition suggests, and related attributes as well as the 

measurements must be defined to measure the software quality. ISO/IEC (2011) defines 

the attributes as inherent property or characteristic of an entity that can be distinguished 

quantitatively or qualitatively by human or automated means” and measurement as ”set 

of operations having the object of determining a value of a measure”. 

An example of a quality measurement presented in quality model by Alvaro et al. (2006) 

is shown in Table 3.2. 

Table 3.2 Quality measurement example 

Characteristic Sub-characteristic Attribute Measurement 

Performance 

efficiency  
 

Time behaviour 
 

Throughput 
 

Amount of outputs pro-

duced with success / period 

of time 
 

 

3.2 Overview of the CBSE and CBSD software component qual-

ity research 

As discussed earlier in this chapter, the component quality evaluation has been researched 

in the context of CBSD and CBSE. Almeida & Calistru (2011) provide introduction to 

the CBSE concept in their paper and present some benefits and problems that the CBSE 

brings. According to their presentation the CBSE utilizes both the COTS components and 

components that have been developed inside the company. 

Almeida & Calistru (2011) present that CBSE offers benefits in reduced time to market 

and reduced development costs. They also state that using components in different sys-

tems increases the component quality because they are tested continuously in different 

conditions. Furthermore, they present that standard domain will be formed when compo-

nents are exposed to different environments within the domain. When the components 

are utilized in this standard domain they will become well-defined and can be reused more 

easily. Almeida & Calistru (2011) also present the similarity of CBSE to industrial prod-

uct manufacturing where standard components or parts can be used in multiple products. 

Thus, standardized software components could also be used to produce multiple large 

systems efficiently. 

However, Almeida & Calistru (2011) also point out difficulties concerning the CBSE 

approach. Component version compatibility can be difficult to manage because compo-

nent versions may change independently of the system they are used in. Components may 

also be available in multiple different versions. Almeida & Calistru (2011) also present 
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that components need to be understood in order to utilize them in an application in con-

trast to a piece of software that the developers have programmed themselves. Component 

selection is also not a trivial task if there are multiple components that can fulfill the 

requirements. Developers have to weigh the components in accordance to the functional 

and non-functional requirements of the developed system. Component verification and 

validation is often difficult because the components are usually black-box and it has to be 

done mainly by examining the component specification or API. Almeida & Calistru 

(2011) also discuss that regression testing on component-based system may cause con-

cerns if component testing information is not available. Thus, developers have to use their 

own judgement to determine the test cases that need to be run in order to complete a 

successful regression test run. Component-based system maintenance may also need extra 

attention if there are changes in component versions or availability. 

Though, there are existing models to evaluate software quality such as ISO 9126, they are 

very general and not easily applied into software component quality evaluation (Bertoa 

et al. 2005). Almeida & Calistru (2011) list in their study various quality models devel-

oped to be used with CBSD. They present a comparison of the models in their paper and 

conclude with pointing out that models by Bertoa & Vallecillo (2002) and Alvaro et al. 

(2006) are the most cited and used ones. These two models are introduced later in this 

chapter. An earlier comparison committed by Kalaimagal & Srinivasan (2008) presents 

model by Alvaro et al. as the most consistent and suited for component quality evaluation. 

However, Kalaimagal & Srinivasan (2008) also point out that the proposed quality mod-

els including Alvaro's present too many quality attributes to be measured which may lead 

to confusion. Thus, it is suggested as future work that a comprehensive model with min-

imum amount of quality attributes would be presented to help standardizing the compo-

nent quality evaluation (Kalaimagal & Srinivasan 2008). 

3.2.1 Model by Bertoa & Vallecillo 

The motivation for Bertoa & Vallecillo (2002) to develop their component quality model 

was that the existing quality models were too general to be applied to the specific aspects 

of software components. They also felt that the software engineering community had only 

focused on the functionalities of the components and ignored the quality aspects. Their 

quality model attempts to describe relevant quality attributes and measures to the software 

components using the ISO 9126 quality model as the base. 

Model by Bertoa & Vallecillo (2002) divides the defined quality characteristics and at-

tributes into two categories based on if they can be evaluated run time or by observing 

the component during its life cycle. Some of the characteristics presented in ISO 9126 

were removed and some new ones were added. Additionally, Bertoa & Vallecillo also 

changed the definition of some characteristics to be more suitable when evaluating soft-

ware component quality. The component quality characteristics are presented in Table 

3.3. 
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Table 3.3 Component quality characteristics by Bertoa & Vallecillo 

Characteristics Sub-characteristics 

(Runtime) 

Sub-characteristics (Life-

cycle) 

Functionality Accuracy 

Security 

Suitability 
Interoperability 

Compliance 

Compatibility 

Reliability Recoverability Maturity 

Usability  Learnability 
Understandability 

Operability 

Complexity 

Efficiency Time behavior 
Resource behavior 

 

Maintainability  Changeability 
Testability 

 

The major changes regarding ISO 9126 according to Bertoa & Vallecillo (2002) are: 

• Sub-characteristic Compatibility has been added to Functionality to assess if 

newer versions of the same component are compatible with older versions. 

• Usability has been redefined to describe the component's ability to be utilized by 

developers when developing software instead of being related to the actual soft-

ware end user usability. 

• Sub-characteristic Complexity has been added to Usability to measure the diffi-

culty to use the component or integrate it into a system. 

• Portability characteristic is removed because it is assumed to be intrinsic to com-

ponents. 

• Fault tolerance, stability and analyzability sub-characteristics are removed be-

cause they are seen as not applicable to components. 

Bertoa & Vallecillo (2002) define five measurement types that can be used to measure 

component attributes: 

• Integer: Integer value that describes the number of measurable units for an attrib-

ute. 

• Presence: Boolean value that indicates if attribute is present and string value that 

describes how the attribute is implemented. 

• Time: Integer value that describes time with string value that describes units. 

• Level: Integer value that describes effort or ability between 0-4 (Very low, Low, 

Medium, High, Very high). 

• Ratio: Describes percentages by integer value between 0-100. 
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Additionally, the model by Bertoa & Vallecillo (2002) utilizes indices which are derived 

measures based on other existing metrics types. For example, the complexity ratio of a 

component is calculated by dividing the number of configurable parameters by the num-

ber of interfaces. 

As mentioned earlier, the quality attributes are divided into two categories. The quality 

attributes that can be evaluated runtime are shown in Table 3.4. 

Table 3.4 Component runtime quality attributes on Bertoa's & Vallecillo's model 

Sub-characteristic Attribute Type 

Accuracy 1. Precision 

2. Computational Accuracy 

Ratio 

Ratio 

Security 3. Data Encryption 

4. Controllability 

5. Auditability 

Presence 

Presence 

Presence 

Recoverability 6. Serializable 

7. Persistent 

8. Transactional 

9. Error Handling 

Presence 

Presence 

Presence 

Presence 

Time behavior 10. Response time 

11. Throughput 

12. Capacity 

Time 

Integer 

Integer 

Resource behavior 13. Memory utilization 

14. Disk utilization 

Integer 

Integer 

 

The quality attributes that can be evaluated during component life cycle are presented in 

Table 3.5. 

Table 3.5 Component life-cycle quality attributes on Bertoa's & Vallecillo's model 

Sub-characteristic Attribute Type 

Suitability 1. Coverage 
2. Excess 

3. Service Implementation Coverage 

Ratio 
Ratio 

Ratio 

Interoperability 4. Data Compatibility Presence 

Compliance 5. Standardization 
6. Certification 

Presence 
Presence 

Compatibility 7. Backwards Compatibility Presence 

Maturity 8. Volatility 
9. Evolvability 

10. Failure removal 

Time 
Integer 

Integer 

Learnability 11. Time to use 
12. Time to configure 

13. Time to admin 

14. Time to expertise 

Time 
Time 

Time 

Time 

Understandability 15. User Documentation 
16. Help System 

Level 
Level 
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Sub-characteristic Attribute Type 

17. Computer Documentation 

18. Training 

19. Demonstration Coverage 

Presence 

Presence 

Ratio 

Operability 20. Effort for operating 
21. Tailorability 

22. Administrability 

Level 
Level 

Level 

Complexity 23. Provided Interfaces 
24. Required Interfaces 

25. Complexity Ratio 

Integer 
Integer 

Index 

Changeability 26. Customizability 
27. Customizability Ratio 

28. Change Control Capability 

Integer 
Index 

Level 

Testability 29. Start-up self-test 
30. Tests suite provided 

Presence 
Presence 

 

Bertoa & Vallecillo (2002) present descriptions for the attribute measurement in their 

paper and they are utilized in Section 4.3 where the measures for web frontend component 

quality model are defined. 

3.2.2 Model by Alvaro et al. 

The motivation for Alvaro et al. (2006) to present their component quality model was to 

attend to the problems that utilizing low-quality components can cause to the software 

quality. The aim of the model is to improve the reliability of the components available in 

the market and thus, support the emergence of a mature software component market. 

Alvaro et al. (2006) also conducted a preliminary study on two separate component mar-

kets to assess the viability of the presented quality model. The study found out that the 

model covered all the information that was available at the component markets they con-

ducted their study in. Additionally, the study reached a conclusion that there is still an 

existing gap between the information provided by the component providers and the in-

formation required by the quality model. 

Like Bertoa & Vallecillo (2002), Alvaro et al. (2006) present their model based on ISO 

9126. Alvaro et al. also utilize the earlier work by Bertoa & Vallecillo (2002) as well as 

other research. The researchers introduce all six main quality characteristics that can be 

found in ISO 9126 but also include a new characteristic: marketability. The sub-charac-

teristics are also divided to runtime and life-cycle categories. Component quality charac-

teristics by Alvaro et al. (2006) are presented in Table 3.6. 
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Table 3.6 Component quality characteristics by Alvaro et al. 

Characteristics Sub-characteristics 

(Runtime) 

Sub-characteristics (Life-

cycle) 

Functionality Accuracy 

Security 

Suitability 
Interoperability 

Compliance 

Self-contained 

Reliability Fault tolerance 

Recoverability 

Maturity 

Usability Configurability Understandability 

Learnability 
Operability 

Efficiency Time behavior 
Resource behavior 

Scalability 

 

Maintainability Stability Changeability 
Testability 

Portability Deployability Replaceability 

Adaptability 

Reusability 

Marketability Development time 

Cost 

Time to market 

Targeted market 

Affordability 

 

The most notable changes compared to ISO 9126 in model according to Alvaro et al. 

(2006) are: 

• Sub-characteristic self-contained has been added to functionality because the re-

searchers find it important that component performs its functionality within itself 

without dependencies to other components. 

• Sub-characteristic configurability has been added to usability because it is essen-

tial for developers to be able to determine how easy it is to configure the compo-

nent to be used in a certain context. 

• Sub-characteristic scalability has been added to efficiency because it is important 

for developers to know if the component can support the data volumes needed by 

the application. 

• Analyzability sub-characteristic has been removed from maintainability because 

according to research the analyzability characteristics are not present in compo-

nents. 

• Sub-characteristic reusability has been added to portability because reusability is 

one of the main motivations for component based development. 
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• The inclusion of marketability characteristics motivated by providing information 

to developers to assess the credibility of the component provider. 

• Redefinition of usability characteristic as component's ability to be utilized by 

developers similar to model by Bertoa & Vallecillo (2002). 

• Sub-characteristic installability has been renamed to deployability in portability 

to better reflect the component context. 

In their model Alvaro et al. (2006) define three measure types to be used when measuring 

quality attributes. They have same definitions as in model by Bertoa & Vallecillo (2002) 

described in chapter 3.2.1. The measure types are presence, integer and ratio. 

Alvaro et al. (2006) provide listings for their quality attributes and the measure types used 

to determine values for the attributes. The attributes for runtime evaluation are shown in 

Table 3.7. 

Table 3.7 Component runtime quality attributes on Alvaro's model 

Sub-characteristic Attribute Type 

Accuracy 1. Correctness Ratio 

Security 2. Data Encryption 

3. Controllability 

4. Auditability 

Presence 

Ratio 

Presence 

Recoverability 5. Error Handling Presence 

Fault Tolerance 6. Mechanism available 

7. Mechanism efficiency 

Presence 

Ratio 

Configurability 8. Effort to configure Integer 

Time behavior 9. Response time 

10. Latency and processing capacity 

Integer 

Integer 

Resource behavior 11. Memory usage 

12. Disk usage 

Integer 

Integer 

Scalability 13. Processing capacity Ratio 

Stability 14. Modifiability Ratio 

Deployability 15. Complexity level Integer 

 

The quality attributes that need to be measured during component life cycle are presented 

in Table 3.8. 
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Table 3.8 Component life-cycle quality attributes on Alvaro's model 

Sub-characteristic Attribute Type 

Suitability 1. Coverage 

2. Completeness 

3. Pre-conditioned and Post-conditioned 

4. Proofs of pre-conditions and post-conditions 

Ratio 

Ratio 

Presence 

Presence 

Interoperability 5. Data Compatibility Presence 

Compliance 6. Standardization 

7. Certification 

Presence 

Presence 

Self-contained 8. Dependability Ratio 

Maturity 9. Volatility 

10. Failure removal 

Integer 

Integer 

Understandability 11. Documentation available 

12. Documentation quality 

Presence 

Ratio 

Learnability 13. Time and effort to (use, configure, admin 

and expertise) the component. 

Integer 

Operability 14. Complexity level 

15. Provided Interfaces 

16. Required Interfaces 

17. Effort for operating 

Ratio 

Integer 

Integer 

Presence 

Changeability 18. Extensibility 

19. Customizability 

Ratio 

Presence 

Testability 20. Test suite provided 

21. Extensive component test cases 

22. Component tests in a specific environment 

23. Proofs the components 

Presence 

Presence 

Presence 

Presence 

 

Alvaro et al. present some insight on how to measure the attributes on their model (2005, 

2006) but these are used later on Section 4.3 when the web frontend component quality 

model is presented. 
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4. DERIVING A MODEL FOR WEB FRONTEND 

COMPONENT QUALITY EVALUATION 

The previous chapter discussed general component quality and component quality models 

as they have been researched in the context of CBSD and CBSE. The research has been 

focusing on black box COTS components. The aim of this chapter is to derive a quality 

model that can be used to evaluate web frontend component quality by utilizing the ideas 

and results from CBSD quality research. Thus, the CBSD quality research and the quality 

models it has produced, as well as the web development context information provided in 

the earlier chapters of this thesis, are used as a base for the model. 

The aim for the model is to be simple to use and provide relevant information in the 

context of web frontend components. Therefore, some initial requirements are set for the 

model: 

1. Focus on quality attributes that are important for web components. 

2. Model is to be kept simple by avoiding too many quality attributes. 

3. Select quality attributes that can be measured with adequate precision. 

4.1 Web frontend component characteristics 

First, to be able to construct a quality model for web front end components, an identifi-

cation of frontend component specific characteristics is required. These characteristics 

will be extracted from the earlier chapters of this thesis where web frontend development 

is discussed. 

The simple consumption of web frontend components is important. As stated in Section 

2.4, there are multiple methods for utilizing JavaScript libraries: AMD, CommonJS, ES6 

modules and through HTML script tags. It is important for web frontend components to 

support these different kinds of utilization methods to allow wide range of developers to 

access the component. 

Simple installation and dependency management is a characteristic for modern web 

frontend components. This is achieved by utilizing for example, NPM as introduced in 

Section 2.4. Component distribution through a package manager will reduce the need for 

developers to manually handle the component files. Package managers also store the in-

stalled components and their dependencies in a specific folder in the project which sepa-

rates project specific code from the code required by the components. 

Web frontend components can be used in a wide variety of projects and therefore the 

ability to customize their appearance is important. Web-based components may support 
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the modification of their appearance through CSS as described in Section 2.5 because 

their presentation consists of HTML. Developers utilizing the component have to take 

into account that the styling of complex components may also affect their functionality. 

Section 2.3 provided a brief introduction to frontend frameworks. Usually when web 

frontend components are used with a framework, developers wrap them inside framework 

supported module implementations for example, React components or AngularJS direc-

tives. However, some web frontend components may provide different implementations 

in specific framework formats that work out of the box, which eliminates some of the 

work required by the developers to adopt the component in their project. 

Web frontend UI components were discussed in Section 2.5. There it was pointed out that 

many components support configurations, methods and events that can be utilized by the 

developers to customize the component and interact with the component to suit the needs 

of the project. 

Developers have to pay attention to browser compatibilities of web frontend UI compo-

nents, too. Some components may utilize technologies not supported by certain browser 

types and versions or may function unexpectedly in different browsers. 

4.2 Web frontend component quality model 

The high-level quality characteristics are selected as a first step for developing a frontend 

component quality model. The following listing shows the union of the characteristics 

provided by the models introduced in Section 3.2. The listing also shows the reasoning 

for including or eliminating certain characteristic from the web frontend component qual-

ity model. 

Functionality is included in the model because it contains many relevant sub-character-

istics for web frontend components concerning compatibility and features required by 

web applications. 

Reliability is included in the model since components are usually used as a part of a larger 

system or interaction sequence where fault in a single component may interrupt or corrupt 

the whole process. 

Usability is included in the model because it can be considered as the most important 

quality characteristic of a web frontend component. If a component cannot be understood 

and utilized by the developers, it will not be used regardless of the functionalities it might 

have. 

Efficiency is included in the model because components may need to comply to heavy 

data load on certain use cases and suboptimal efficiency solutions in components can 

cause problems in the overall application level. 
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Maintainability is included in the model because it contains some relevant sub-charac-

teristics for web frontend components regarding component testing. Otherwise web 

frontend components themselves do not usually require maintenance other than version 

updates. 

Portability is included in the model because it is important that web frontend components 

can be deployed to different kinds of environments utilizing varying frontend frame-

works. 

Marketability is eliminated from the model because it does not provide any characteris-

tics that would directly affect the web frontend component quality. The marketability 

describes more the component development process and the component affordability ra-

ther than the actual component quality. 

Next, the relevant sub-characteristics for each characteristic will be selected with the same 

procedure as previously from the union of sub-characteristics provided for each charac-

teristic by the models introduced in Section 3.2. 

4.2.1 Functionality 

Accuracy is eliminated from the model because its measurement is a statistical analysis 

that will require a great amount of effort and preparation. The measurement would be too 

heavy process for a model that is intended to be simple. It can also be argued that opera-

tional accuracy is at least partly covered by the testability sub-characteristic that is in-

cluded in the model. 

Security is eliminated from the model because security in web applications is handled in 

the backend. Frontend security measures such as validations can always be ignored by 

malicious users. 

Suitability is included in the model because it tries to evaluate the suitability of the com-

ponent for specific requirements which is essential for developers when selecting a web 

frontend component to a project. 

Interoperability is eliminated from the model because it can be assumed that every 

frontend component supports JSON format which is standard for modern web applica-

tions. 

Compliance is eliminated from the model because even if component is complying to 

certain standards or is certificated, they do not measure the component quality by them-

selves. It can be assumed that standards and certificates are the result of good component 

quality which can be covered by other characteristics. 
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Self-contained is included in the model because it was specifically introduced by Alva-

ro's model as a sub-characteristic that applies to components. Self-contained can be seen 

as important characteristic to web frontend components because it measures the compo-

nent dependency to other components and functionality which inevitably also affects the 

complexity of use of the component. 

Compatibility is included in the model because it measures the backwards compatibility 

of the different versions of components. This is important characteristic considering web 

applications because web applications usually consist of multiple components and their 

interactions. Therefore, issues with compatibility may cause a requirement for extensive 

changes to the application. 

4.2.2 Reliability 

Fault tolerance is included in the model because sometimes it is important that a com-

ponent can function even sub optimally if it receives invalid values. 

Recoverability is included in the model because if a component has a state, it is important 

that it can be serialized to be able to load the component with an existing state. Further-

more, error handling is important for web frontend components for example in the case 

of providing invalid configurations or invalid method calls. 

Maturity is eliminated from the model because it does not provide any direct quality 

information about the current situation of the component. This sub-characteristic provides 

more an indication of the possible quality and can be used when selecting components 

but has little use when trying to improve component quality. 

4.2.3 Usability 

Configurability is included in the model because for web frontend components, it is im-

portant that they can be configured run time to cover different situations. 

Understandability is included in the model because developers need to understand the 

component to be able to use it effectively. 

Learnability is eliminated from the model because it is difficult to measure component 

learnability without conducting an extensive research. In order to keep the model simple, 

this sub-characteristic is eliminated. 

Operability is eliminated from the model because it partly overlaps with the self-con-

tained sub-characteristic from functionality. It also has difficult-to-measure attributes. 

Complexity is eliminated from the model because it overlaps with the self-contained sub-

characteristic from functionality. 
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4.2.4 Efficiency 

Time behavior is eliminated from the model because while it is important that compo-

nent operates efficiently regarding response time, its planning and measurement does not 

fit well into the simplicity requirements of the model. Time behavior also partly overlaps 

with the scalability attribute that is included in the model. 

Resource behavior is included in the model because inefficient memory utilization of a 

component may slow the web browser down and interfere with the whole system. Addi-

tionally, the disk space that the component requires affects the application loading times 

because browser has to load the component files. 

Scalability is included in the model because in web development, components may be 

utilized in different kinds of projects with varying data intensity. Therefore, it is important 

that a web component can operate at trivial and very high data volumes. 

4.2.5 Maintainability 

Stability is eliminated from the model because it only measures the ability of a compo-

nent to support modifications. This is not a relevant use case to web frontend components 

because they are modified by configuring them run time to suit the needs of the project, 

not by modifying their source code. 

Changeability is eliminated from the model because of the web component characteris-

tics as mentioned in stability. Configurability sub-characteristic from usability is the sim-

ilar characteristic that will be used in the model to measure the component run time con-

figurability. 

Testability is included in the model because it is important that the component provides 

some proof that it can be tested and that it has been tested. It can also indicate that the 

component can be safely utilized in production because its core functionality has been 

proven to be working. 

4.2.6 Portability 

Deployability is included in the model because simple deployment is important for web 

frontend components. 

Replaceability is eliminated from the model because it fully overlaps with compatibility 

sub-characteristic from functionality. 

Adaptability is eliminated from the model because web frontend components are not 

usually transferred from environments to another. It could be argued that transferring 
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component from frontend framework to another can be seen as transfer to another envi-

ronment but it is a rare occurrence and not directly related to the web frontend component 

because the web frontend component is usually wrapped in framework specific compo-

nent code. 

Reusability is included in the model because it contains relevant attributes to web 

frontend components. For example, modularity, which affects the fact if the component 

parts can be utilized individually or always as a whole entity and if the component allows 

developers to only load the required parts of the whole component. 

4.2.7 Summary of selected characteristics 

The characteristics and their sub-characteristics that are selected to the web frontend com-

ponent quality model are shown in Table 4.1. The deployability sub-characteristic in port-

ability is renamed back to its original name installability because it is descriptive in web 

frontend component context. In addition to changing name, installability is also trans-

ferred to life-cycle sub-characteristics because the component run-time deployment pro-

cedures are handled with the configurability sub-characteristic in usability. 

Browser compatibility is added as a new runtime sub-characteristic to functionality be-

cause it is important for web application components to function properly with different 

browsers. Good browser compatibility is essential for a web frontend component to be 

usable in a wide range of applications. 

The compatibility sub-characteristic in functionality is renamed to backwards compati-

bility to make a clear distinction from the browser compatibility. The backwards compat-

ibility is also transferred to runtime sub-characteristic because web frontend components 

are JavaScript-based and due to its interpretative nature, the compatibility errors can only 

be detected when running the application. 

Table 4.1 Web frontend component quality model characteristics 

Characteristics Sub-characteristics (Runtime) Sub-characteristics (Life-cycle) 

Functionality Browser compatibility 

Backwards compatibility 

Suitability 

Self-contained 

Reliability Fault tolerance 

Recoverability 

 

Usability Configurability Understandability 

Efficiency Resource behavior 

Scalability 

 

Maintainability  Testability 

Portability  Installability 

Reusability 
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It can be seen in Table 4.1 that in the web frontend quality model only usability and 

functionality characteristics have sub-characteristics on both the runtime and life-cycle 

categories while originally every characteristic, apart from efficiency, has sub-character-

istics in both categories. This is not necessarily a problem if the nature of each of these 

characteristics is briefly contemplated: 

Reliability: How a component reacts to error situations can be evaluated with precision 

only when the application is running. Therefore, no life-cycle sub-characteristics are re-

quired. 

Efficiency: Directly linked to the times when the application is running because that is 

when the efficiency can be evaluated. Therefore, no life-cycle sub-characteristics are re-

quired. 

Maintainability: Changes to the code of the application are generally done outside of the 

running application. Therefore, no runtime sub-characteristics are required. 

Portability: When application is installed on an environment it is not running. Therefore, 

no runtime sub-characteristics are required. 

4.3 Attributes and measures for the selected quality character-

istics 

To proceed with the web frontend component quality model, it is necessary to select at-

tributes for the quality sub-characteristics in the model. The measures for evaluating the 

attributes are also to be presented. The ideas introduced in the models in Section 3.2 are 

utilized when developing the measures for the web frontend component quality model. 

For example, the measure types similar to the presented models are utilized with the ex-

ception that ratio is presented as a decimal number between 0 and 1 instead of an integer 

between 0 and 100. Additionally, the attribute definitions for the quality sub-characteris-

tics that are presented by Alvaro et al. (2005) and Bertoa & Vallecillo (2002) are utilized 

when selecting relevant attributes and measures for the web frontend component quality 

model sub-characteristics. 

4.3.1 Functionality 

Functionality consists of four sub-characteristics. This subsection presents their attributes 

and the measurements for them. 

Browser compatibility 

For the needs of this model, browser compatibility is divided into two attributes: cross-

browser functionality and browser support. Cross-browser functionality tries to measure 
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the ability of the component to provide consistent functionality when used with different 

browsers and their different versions. On the other hand, browser support measures the 

ability of the component to be utilized on a sufficient level in an application that is run on 

a certain browser version. The measures for browser compatibility attributes are presented 

in Table 4.2. 

Table 4.2 Browser compatibility measures 

Attribute Type Measure 

Cross-browser 

functionality 

Ratio First, to evaluate the cross-browser functionality of a component, 

the evaluator selects the browsers and their specific versions to be 

used in the evaluation. The component features to be evaluated are 

also selected. One browser and its specific version is selected as a 

reference point for correct functionality of the features of the com-

ponent. The features of the component in other browsers and their 

versions are compared to the component features in the reference 

point browser. The result is provided as a ratio of how many of the 

component features in other browsers match the reference point. 

Browser 

support 

Ratio This attribute provides two alternative methods of measurement: 1. 

If component provides documentation or testing documentation 

that states supported browser versions they may be utilized. 2. 

Component is run manually as part of an application on different 

browser versions and results are observed. The result is provided 

as a ratio of how many required browser versions are supported. 

 

It is notable that the attributes presented here for browser compatibility may be extremely 

time consuming to measure for all features of the component if the component does not 

provide relevant documentation. Therefore, the individual responsible for the measure-

ment has to use discretion when selecting the most important features of the component 

that will be tested for browser compatibility. 

Backwards compatibility 

The sub-characteristic backwards compatibility is divided into two attributes: data com-

patibility and functional compatibility. Data compatibility is utilized with components 

that can serialize their state for persistent storage. It is measuring the ability of the com-

ponent to support previous data formats if they have been stored to the backend by the 

application. Functional compatibility is used to measure the compatibility of the compo-

nent provided methods and configurations in a way that existing implementations utiliz-

ing the component would not stop operating correctly after component version updates.  

The measures for backwards compatibility attributes are presented in Table 4.3. 
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Table 4.3 Backwards compatibility measures 

Attribute Type Measure 

Data 

compatibility 

Presence This attribute is measured by verifying if the attribute is present 

on the component. This may be achieved by finding such state-

ment from the component documentation or by manually verify-

ing the data compatibility when updating the component version. 

Functional 

compatibility 

Presence This attribute is measured with the same procedure as the data 

compatibility. 

 

Ideally the statements needed by the backwards compatibility attributes are satisfied by 

the component documentation. Otherwise, the individual responsible for the measure-

ment has to go through multiple versions of the component to get an indication if the 

attributes are present on the component. 

Suitability 

In this model, component suitability is divided into three attributes: coverage, excess and 

completeness (Bertoa & Vallecillo 2002; Alvaro et al. 2005). Coverage measures how 

many of the required functionalities are implemented by the component. Excess measures 

how many of the implemented functionalities of the component are not required by the 

application. Completeness measures how many of the specified functionalities are imple-

mented by the component.  The measures for suitability attributes are presented in Table 

4.4. 

Table 4.4 Suitability measures 

Attribute Type Measure 

Coverage Ratio Measured by dividing the number of modules in the component that 

implement some of the functionality required by the application with 

the number of modules required by the application. 

Excess Ratio Measured by dividing the number of modules in the component not 

utilized by the application with the number of modules provided by 

the component. 

Completeness Ratio Measured by dividing the number of modules provided by the com-

ponent with the number of modules specified by the component 

documentation. 

 

In the context of web frontend components, the term module used in the suitability 

measures is referring to a relevant JavaScript object or function that provides services 

from the component or library that the application can utilize. The individual responsible 

for the measurement has to use her judgement to identify these modules usually with the 

aid of component documentation. Nevertheless, as can be seen from the descriptions in 

Table 4.4 the suitability measurements are relatively easy to execute if the requirements 

for the application are clear and the relevant documentation is available. 
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Self-contained 

Self-contained is measured by dependencies attribute originally named dependability (Al-

varo et al. 2005). It tries to evaluate if the component requires some external implemen-

tations to provide its own services. Originally in Alvaro's model the dependability is in-

tended to measure the ratio of functionalities provided by the component but implemented 

by its dependency to the total functionalities provided by the component. For the needs 

of this model, the dependencies attribute is interpreted as an attribute more similar to the 

required interfaces in the operability sub-characteristic presented by Alvaro et al. (2006). 

The measures for self-contained attributes are presented in Table 4.5. 

Table 4.5 Self-contained measures 

Attribute Type Measure 

Dependencies Integer Measured by calculating the number of required modules by the 

component. 

 

The modules calculated in the measurement for dependencies are the parameters that are 

implemented outside of the component that are required by the modules that the compo-

nent provides to operate correctly. 

4.3.2 Reliability 

Reliability consists of two sub-characteristics. This subsection presents their attributes 

and the measurements for them. 

Fault tolerance 

Fault tolerance is divided into two attributes: mechanism available and mechanism effi-

ciency (Alvaro et al. 2005). Mechanism available evaluates if the modules provided by 

the component have implemented fault tolerance mechanisms. Mechanism efficiency 

tries to evaluate how effectively the mechanisms work in preventing the effects of errors.  

The measures are modified from the suggestions by Alvaro et al. (2005). The measures 

for fault tolerance attributes are presented in Table 4.6. 

Table 4.6 Fault tolerance measures 

Attribute Type Measure 

Mechanism 

available 

Ratio Measured by dividing the number of modules provided by the com-

ponent that implement a fault tolerance mechanism with the total 

number of modules provided by the component. 

Mechanism 

efficiency 

Level Measured on a general level for the whole component with a value 

between 0-4. 
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In JavaScript-based web frontend components, the fault tolerance mechanisms may for 

example, handle missing or incorrect type parameters for object constructors or methods 

by utilizing default values and informing the developer with a console message. Because 

JavaScript is interpreted, most of the errors are noticed runtime, for example, at a point 

when code tries to execute a missing callback function. For fault tolerance, it is important 

that the component handles errors and exceptions that are not preventing it from operating 

so that the whole application is not crashing. 

Recoverability 

Recoverability is divided into two attributes: serializable and transactional (Bertoa & 

Vallecillo 2002). Bertoa's model originally also has error handling attribute but it is sim-

ilar to fault tolerance sub-characteristic, so it will not be included in this model. Addition-

ally, the persistent attribute is not used in this model, because it is not relevant to web 

frontend components. This is caused by the fact that the web frontend does not support 

storage other than cookies and local storage of the browser that are not persistent.  

Serializable attribute evaluates if the component state is serializable in a way that it can 

be initialized again directly in that state. Transactional attribute measures if the compo-

nent has a mechanism for transactions. The measures for recoverability attributes are pre-

sented in Table 4.7. 

Table 4.7 Recoverability measures 

Attribute Type Measure 

Serializable Presence Measured by evaluating if the component has a mechanism for 

serializing its state for example, to a JSON format that can be 

loaded later on the component.  

Transactional Presence Measured by evaluating if the component implements transac-

tions in a way that allows to monitor and modify the history of 

actions done to the component. 

 

4.3.3 Usability 

Usability consists of two sub-characteristics. This sucsection presents their attributes and 

the measurements for them. 

Configurability 

The configurability measures provided by the model by Alvaro et al. (2005) are not suf-

ficient and detailed enough and thus, will not be used in the web frontend component 

quality model. The information provided about web frontend UI components introduced 

in Section 2.5 will be utilized to present the attributes. Consequently, for the purposes of 

this model configurability is divided into three attributes: functional configurability, event 
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configurability and appearance configurability. Functional configurability tries to evalu-

ate the level that the component allows developers to configure its functionality by mod-

ifying the component configurations on component initialization or after the component 

is initialized. Event configurability measures the level of events that are available by the 

component to allow the rest of the application to react to the component actions. Appear-

ance configurability attempts to measure the developers' possibilities to affect the appear-

ance of the component.  The measures for configurability attributes are presented in Table 

4.8. 

Table 4.8 Configurability measures 

Attribute Type Measure 

Functional 

configurability 

Level Measured with a value between 0-4. The component modules are 

analyzed to see if they allow initialization parameters or provide a 

way to modify the configurations after the module is initialized. 

Event 

configurability 

Level Measured with a value between 0-4. The component modules are 

analyzed to see if they provide relevant events that the application 

can apply callbacks to. 

Appearance 

configurability 

Level Measured with a value between 0-4. The effort for modifying the 

appearance of the component is evaluated. For example, are there 

configurations for modifying the component appearance with 

themes or do the developers need to implement component ap-

pearance modification with custom CSS. Additionally, is there doc-

umentation available that would help with modifying the component 

appearance 

 

For configurability, the component documentation is invaluable in providing the infor-

mation that is required by the individual responsible of the measurement. 

Understandability 

Understandability is divided into three attributes: documentation coverage, documenta-

tion quality and demonstration coverage. There are more attributes introduced by Bertoa 

& Vallecillo (2002) such as help system, computer documentation and training but they 

are discarded as these are not common with web frontend components. Documentation 

coverage measures the coverage of functionalities that are presented in the documentation 

available to the user. Documentation quality attempts to evaluate the usefulness and clar-

ity of the documentation and additionally, the aspects of the computer documentation in 

a sense that is the documentation available for example, in HTML format. Demonstration 

coverage tries to measure the coverage of functionalities that are shown in tutorials and 

demonstrations of the component.  The measures for understandability attributes are pre-

sented in Table 4.9. 
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Table 4.9 Understandability measures 

Attribute Type Measure 

Documentation 

coverage 

Ratio Measured by dividing the number of functionalities documented 

with the total number of functionalities in the component. Function-

alities may include installation, configuration options, methods, 

events and appearance configurations. 

Documentation 

quality 

Level Measured with a value between 0-4. Measured qualities may in-

clude for example, documentation readability and code examples. 

Demonstration 

coverage 

Ratio Measured by dividing the number of functionalities shown in 

demonstrations with the total number of functionalities in the com-

ponent. The total number of functionalities may be extracted from 

the documentation available. Functionalities may include installa-

tion, configuration options, methods, events and appearance con-

figurations. 

 

Documentation coverage may be difficult to evaluate absolutely if the component is not 

known to the individual responsible for the measurement. However, the general guide-

lines for functionalities presented in the measure can be used to identify the relevant doc-

umentation items. 

4.3.4 Efficiency 

Efficiency consists of two sub-characteristics. This subsection presents their attributes 

and the measurements for them. 

Resource behavior 

Resource behavior is divided into two attributes: memory utilization and disk utilization 

(Bertoa & Vallecillo 2002; Alvaro et al. 2005). Memory utilization measures the memory 

needed by the component to operate. Disk utilization measures the space the component 

files take from the disk.  The measures for resource behavior attributes are presented in 

Table 4.10. 

Table 4.10 Resource behavior measures 

Attribute Type Measure 

Memory 

utilization 

Integer Measured by evaluating the memory utilization of the component 

when used in a minimal application. 

Disk utilization Integer Measured by calculating the total disk space required by the files 

in the component. 
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Scalability 

Scalability is measured by processing capacity attribute (Alvaro et al. 2005) that tries to 

evaluate the ability of the component to handle large data volumes. In this model, the 

processing capacity is interpreted similar to the latency attribute of time behavior sub-

characteristic in model by Alvaro et al. (2005). The measures for scalability attributes are 

presented in Table 4.11. 

Table 4.11 Scalability measures 

Attribute Type Measure 

Processing 

capacity 

Integer Measured by testing the component scalability when exposed to 

different amounts of data by dividing the number of data units pro-

cessed with the time required to process the data. Exact measure-

ment needs to be specified component specifically. 

 

Scalability measurement is affected greatly by the component implementation. For ex-

ample, if the component accepts static data in array format as its input the measurement 

is easier to conduct than if the component data is fetched from API or if the data is gen-

erated by some other measures. 

4.3.5 Maintainability 

Maintainability consists of one sub-characteristic. This subsection presents its attributes 

and the measurements for it. 

Testability 

Testability is divided into two attributes: test suite provided and tests in a specific envi-

ronment. Bertoa & Vallecillo (2002) and Alvaro et al. (2005) provide more attributes in 

their models such as proofs of the component and start-up self-test but these are not spe-

cifically relevant for web frontend components. Test suite provided measures if the com-

ponent package contains tests that can be ran by the developers who are utilizing the 

component. Tests in a specific environment evaluates if the component test documenta-

tion contains information about if the component has been tested in different environ-

ments for example, with different browsers or with different JavaScript frameworks.  The 

measures for testability attributes are presented in Table 4.12. 
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Table 4.12 Testability measures 

Attribute Type Measure 

Test suite 

provided 

Presence Measured by verifying if the component package includes a run-

nable test suite. 

Tests in a spe-

cific environ-

ment 

Presence Measured by verifying if the component testing documentation 

contains information about component tests done on different 

browsers or JavaScript frameworks. 

 

4.3.6 Portability 

Portability consists of two sub-characteristics. This subsection presents their attributes 

and the measurements for them. 

Installability 

Installability is divided into four attributes: framework support, loading type coverage, 

installation simplicity and application to DOM. Model by Alvaro et al. (2005) does not 

provide any relevant information on how to evaluate installability and thus, these attrib-

utes are utilized based on web frontend information presented earlier in this thesis. Frame-

work support evaluates if the component is available as framework supported compo-

nents, for example, as React component or AngularJS directive. Loading type coverage 

tries to evaluate if the component supports different types of module loading including 

script tag, AMD and CommonJS. Installation simplicity attempts to measure the effort 

required to install and update the component package. Application to DOM evaluates the 

options and complexity the component presents for applying the component to DOM in 

HTML containers.  The measures for installability attributes are presented in Table 4.13. 

Table 4.13 Installability measures 

Attribute Type Measure 

Framework 

support 

Ratio Measured by dividing the number of supported framework specific 

versions of the component required by developers by the required 

number of framework supports of the component. 

Loading type 

coverage 

Ratio Measured as the ratio of module loading types supported by the 

component to the number of required loading types. 

Installation 

simplicity 

Level Measured with a value between 0-4. Measured by evaluating the 

effort required to install and update the component package on the 

project. 

Application to 

DOM 

Level Measured with a value between 0-4. Measured by evaluating the 

simplicity of the required HTML markup for the component to be 

applied to DOM. 
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Component installation and update complexity depends heavily on the package installa-

tion design. For example, if it is NPM based it is possibly very simple. On the other hand, 

if no package manager support is provided the files have to be moved manually. 

Reusability 

Reusability is divided into three attributes: modularity, coupling and architecture com-

patibility. Alvaro et al. (2006) also present other attributes for example, domain abstrac-

tion level and cohesion but they are discarded as they do not bring any additional value 

to the model. Modularity tries to measure the ratio of modules to different functionalities 

in the component. Coupling evaluates the dependencies between the different modules in 

the component for example, can they be utilized separately. Architecture compatibility 

evaluates if the component is dependent on specific architecture types or forces the de-

velopers to use certain architecture in the application when utilizing the component. The 

measures for reusability attributes are presented in Table 4.14. 

Table 4.14 Reusability measures 

Attribute Type Measure 

Modularity Ratio Measured as the ratio of modules provided by the component to 

the functionalities provided by the component. 

Coupling Ratio Measured as the ratio of how many modules provided by the com-

ponent require at least one another module provided by the com-

ponent to function properly. 

Architecture 

compatibility 

Level Measured with a value between 0-4. Measured by analyzing how 

the component usage affects the supporting code structure imple-

mented in the application because of the component. 

 

4.3.7 Summary of attributes and measures 

The attributes and measures presented in the subsections above provide the lowest level 

of the web frontend component quality model. Total of 30 attributes were selected to the 

model. When the model is utilized to measure web frontend component quality a value is 

evaluated for each attribute through its respective measure.  

It can be argued that the ratio, presence and integer type measures are objective because 

they are based on numeric and logical evaluation. On the other hand, the level measure 

type is more subjective because the evaluator evaluates the level based on her expertise. 

Out of the 30 attributes 8 are of level type. 

4.4 Summary of the web frontend component quality model 

The quality measurement in accordance to the model presented in this chapter requires 

quite comprehensive expertise of software development from the person responsible of 
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the evaluation. Many of the measures require the evaluator to identify certain structures 

such as modules from the web frontend component which may not always be simple es-

pecially if the evaluator tries to evaluate the quality of a component she is not familiar 

with.  

However, the aim of the model in the context of this thesis is to evaluate components that 

are familiar to the evaluator in order to find means to increase their quality in the eyes of 

developers that could utilize them in their projects. The model may also have additional 

uses as a reference when developing a new component in identifying important points 

that need to be considered to make the component appealing. 

Some of the attributes that the model presents depend on the requirements of the applica-

tion where the component will be used, for example, the cross-browser functionality and 

suitability coverage. If the evaluator is trying to improve the quality of her own developed 

component the perceived target project requirements have to be generated if no reference 

project is available. 

Many of the attributes in the model try to find data for their evaluation from the compo-

nent documentation. This implies that a high-quality component also provides its docu-

mentation in high quality. Of course, to contain information of, for example, browser 

compatibility, it has to be actually verified before it can be written into the documentation. 

It could be argued that according to the presented web frontend component quality model, 

high quality documentation is a way of expressing the overall component quality to po-

tential developers. 

Finally, the requirements set for the model at the start of this chapter are briefly evaluated. 

The first requirement was to focus on quality attributes that are important for web com-

ponents. This requirement was attempted to be met by introducing attributes specific to 

web applications such as browser compatibility and loading type coverage.  

The second requirement was to keep the model simple by avoiding too many quality at-

tributes. This requirement was attempted to be met by reducing the amount of quality 

attributes by eliminating irrelevant or redundant sub-characteristics presented by the 

CBSD quality models. The current number of 30 attributes is still relatively high but also 

lower than the 44 and 37 attributes that are introduced by models by Bertoa & Vallecillo 

(2002) and Alvaro et al. (2006), respectively. The number of attributes was also increased 

by the fact that the web frontend component quality model introduced several attributes 

that are web component specific. 

The third requirement was to select quality attributes that can be measured with adequate 

precision. This is evaluated properly after the web frontend component model has been 

utilized in Chapter 5.5. Now, it can be stated that the model tried to define all the attributes 

in a way that contains a measure that can be used to evaluate the attribute with sufficient 

precision.  
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The full web frontend component model derived in this chapter is in Appendix A. 
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5. QUALITY EVALUATION WITH THE WEB 

FRONTEND COMPONENT QUALITY MODEL 

In this chapter, the web frontend component quality model is utilized to evaluate the re-

port editor component extracted from the IoT-Ticket product developed by Wapice Ltd. 

The report editor component package can be extracted for the needs of other projects 

through a build script utilizing Grunt task runner. The report editor component has been 

utilized in a single project so far and it is still quite primitive which offers a relevant 

opportunity for testing the web frontend component quality model to provide quality im-

provement suggestions. Thus, the model is utilized to evaluate the quality of the report 

editor component from the developers’ point of view. 

As a component, the report editor is larger and more complex than most of the web 

frontend components. It can be seen as almost its own frontend application. However, it 

can still be utilized as a component in an application as an interactive designer of data 

visualizing reports. Therefore, the model can be utilized to evaluate the quality of the 

report editor. 

5.1 Overview of the IoT-Ticket platform 

IoT-Ticket (iot-ticket.com 2017) is a complete internet of things (IoT) platform which 

covers data acquisition, dashboard, reporting and analytics features. Data acquisition can 

be done by utilizing electronics that send data to IoT-Ticket big data server or by software 

that connects to the IoT-Ticket API. Wapice also provides WRM247+ device that can be 

used to acquire data for the IoT-Ticket. 

Users can create interactive dashboards and reports based on the data that has been ac-

quired by the devices by using web based user interface of the IoT-Ticket. Dashboards 

are designed with interface designer and dataflow editor. Reports are designed with report 

editor and dataflow editor. 

The interface designer is a graphical tool for designing dashboards and it offers numerous 

widgets including charts, tables, gauges and many others that can be used to visualize the 

data acquired by the devices connected to the IoT-Ticket. The widgets can be positioned 

on the dashboard as desired by the user. Data collected by the devices is available in the 

interface designer though data tags which can be dragged and dropped on the widgets to 

connect their data to be visualized by the widget. Image of a dashboard that has been 

designed with the interface designer can be seen in Figure 5.1. 
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Figure 5.1 IoT-Ticket dashboard 

The dataflow editor is a graphical programming editor that allows users to design com-

plex logic and control and modify the data that has been acquired by the devices. The 

dataflow editor contains for example, mathematical and logical operations and timers. 

The dataflow editor also controls events that can be used to trigger certain operations for 

example to reset a counter visualized by a gauge component after a certain time.  

The dataflow is edited by connecting dataflow blocks to each other. Each dataflow block 

has different kinds of inputs and outputs that can be connected to other blocks to affect 

the functionality of individual blocks and also the whole dataflow. As mentioned earlier 

the dataflow blocks can represent mathematical or logical operations but each widget that 

is present in the interface designer is also used as part of the dataflow with their own 

blocks. Therefore, the data displayed by the widgets is not limited to the raw data from 

the data tags but the data can also be modified by the functionality provided by the data-

flow editor and its dataflow blocks. 

The dataflow editor provides also an execution mode selection. The dashboards can be 

executed in client mode or server mode. Client mode implies that the dashboard dataflow 

is only evaluated when it is opened on a client. Server mode implies that the dashboard 

dataflow is ran continuously on the server even when no clients have it opened. Server 

mode enables that the events are triggered even when the dashboard is not open on a client 

for example, sending a report email through a report dataflow block. Image of the data-

flow editor is available on Figure 5.2. 
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Figure 5.2 IoT-Ticket dataflow editor 

The report editor works similarly to the interface designer but it also contains common 

features from word processing software. It allows users to design a multi-page document 

with headers and footers and such as in any word processing software but it also includes 

the IoT-Ticket widgets and dataflow processing features.  

The report editor consists of four views: report viewer, report editor, dataflow editor and 

view for report pdf generation. Report viewer allows the user to view the report document 

but not make any changes to it similar to a print preview view on a word processing 

software. Report editor allows users to modify the report by dragging widgets to it and 

writing text content. The dataflow editor provides the users the ability to modify the logic 

that provides the data for the widgets. The view for pdf generation is not accessed by 

regular users but the server is using that to generate pdf documents of the reports. The pdf 

generation view is a simplified version of the report viewer that only renders the report 

pages one after another in a way that a pdf document can be constructed. Image of the 

report editor is presented in Figure 5.3. 

The difference of reports to the dashboards is that the timers and some of the interactive 

widgets are not available to reports because report is a static document that represents the 

situation at the moment it was created. The reports can be triggered to be sent with email 

from the dashboards utilizing the dataflow editor triggers and, of course a report can be 

viewed by opening it manually from the IoT-Ticket user interface. 
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Figure 5.3 IoT-Ticket report editor 

IoT-Ticket also offers web based analytics tool for analyzing the data stored by the de-

vices to the IoT-Ticket server. The analytics tool can be used to execute different kinds 

of analysis for example, correlation and abnormal value detection on large amounts of 

data over long time ranges. The results of the analysis can be visualized to the user with 

graphs and matrices. 

5.2 The report editor component 

The report editor component package consists of several files and folders that contain the 

JavaScript files and other resources required by the report editor. The main JavaScript file 

of the component (report.min.js) provides separate Backbone.js views for report viewer 

(ReportView), report editor (ReporterView), dataflow editor (ReflowView) and pdf view 

(StandAloneReportView). The component package also contains view models for these 

four views called ReportViewModel, ReporterViewModel, ReflowViewModel and 

StandAloneReportViewModel.  

The report is loaded to the report views by using a ReportModel that is also available in 

the package. Report model is initialized by parsing a JSON string that can be stored in a 

database. The report JSON has information of the dataflow and all the widgets that are 

related to the report. Once the report has been loaded to the view, it can be rendered to a 

HTML page.  

Currently, the report editor component demands quite a lot from the developers utilizing 

it. For example, the control logic that renders the views that together form the full report 

editor has to be implemented by the developers utilizing the component. Additionally, the 

view model dependencies to the application state have to be also implemented separately. 
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The interactivity with the editor has also to be implemented by the developers by imple-

menting functions for the component dependencies called state models or subscribing to 

the events provided by the NavigationEvents module included in the report editor pack-

age. 

5.3 Report editor component quality evaluation 

Next, the report editor component will be evaluated by utilizing the web frontend com-

ponent quality model introduced in Chapter 4. Each of the characteristics will be evalu-

ated separately by sub-characteristic and by attribute using the respective measure for 

each attribute. A result will be evaluated for each attribute. Later, in the next chapter 

improvement suggestions will be provided about how to improve the current quality of 

the report editor component based on these results. 

The report editor component will be ran by utilizing a piece of test code that is included 

in the report editor component package for the evaluation that needs to inspect the report 

editor run time. The test code renders the report editor in an HTML page with an empty 

report and provides routing between the views. 

5.3.1 Functionality 

Functionality consists of four sub-characteristics that are evaluated according to the web 

frontend component quality model. 

Browser compatibility 

First sub-characteristic that is evaluated is browser compatibility. Browser compatibility 

consists of 1. cross-browser functionality and 2. browser support. 

1. Cross-browser functionality is evaluated for the Chrome 57.0.2987.133, Firefox 52.0.2, 

Internet Explorer 11.839.10586.0 and Edge 25.10586.672.0 browsers. Chrome will be 

used as reference and other browsers are compared to those results. Because this evalua-

tion is extremely time consuming only some of the most common features affecting the 

UI are selected for the cross-browser functionality evaluation. The features that will be 

tested are: 

1. Inspecting the layout of the report viewer, report editor and report data flow editor 

for a report that contains a horizontal guide positioned at 50 mm from the top of 

the report page and a default height, full page width data table widget with top 

position at the guide. Additionally, the data table widget has a number sequence 

block with values 0-10 as its input. 
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2. Creating a new report page with data table widget as in feature 1 and an additional 

empty report page. Then, changing the order of the report pages. Observing the 

results in report viewer and report editor. 

3. Opening the data table properties dialog and changing the font size to 16px and 

setting the text align property to ”Center”. Observing the effects on data table 

widget on report viewer and report editor. 

The results for the features testing are presented in Table 5.1. 

Table 5.1 Cross-browser functionality features testing observation results 

Feature/ 

Browser 

Chrome 

(Reference) 

Firefox Internet Explorer Edge 

1 - Report viewer: 

Some of the data ta-

ble 1px width borders 

seem wider. 

Report editor: Some 

of the data table 1px 

width borders seem 

wider. Chrome is 

showing the horizon-

tal ruler 210mm posi-

tion marker but FF is 

not. 

Data-flow editor: No 

differences 

Report viewer: The 

report area borders 

are missing shadows 

that are present in 

Chrome. 

Report editor: 

Chrome is showing 

the horizontal ruler 

210mm position 

marker but IE is not. 

Vertical ruler is hov-

ering over the report 

area bottom. 

Data-flow editor: No 

differences 

Report viewer: 

The report area 

borders are missing 

shadows that are 

present in Chrome. 

Report editor: 

Chrome is showing 

the horizontal ruler 

210mm position 

marker but IE is not. 

Data-flow editor: 

No differences 

2 - Report viewer: No 

differences 

Report editor: No 

differences 

Report viewer: No 

differences 

Report editor: No 

differences 

Report viewer: No 

differences 

Report editor: No 

differences 

3 - Report viewer: No 

differences 

Report editor: No 

differences 

Report viewer: No 

differences 

Report editor: No 

differences 

Report viewer: No 

differences 

Report editor: No 

differences 

 

2. Browser support information is not included in the report editor package documenta-

tion. Therefore, browser support result is evaluated at the same time as the cross-browser 

functionality using the same features. The requirements for this evaluation are set to the 

browser versions that are used on the cross-browser functionality evaluation implying the 

Chrome, Firefox, Internet Explorer and Edge. 

Browser compatibility results: 

1. Cross-browser functionality: three features were tested with four browsers 

where one browser was a reference point. Total of nine tests were done and three 
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of them resulted in finding noticeable differences in appearance or functionality. 

Thus, the calculated ratio for browser compatibility based on this evaluation is 6/9 

= 0.67 

2. Browser support: All browsers tested provided the functionality required by the 

tested features. Thus, the calculated ratio for browser support is 12/12 = 1 

Backwards compatibility 

This functionality sub-characteristic consists of two attributes: 1. data compatibility and 

2. functional compatibility. 

1. Data compatibility will be evaluated first. Documentation analysis confirms that the 

data compatibility information is not found on the report editor documentation. However, 

from the IoT-Ticket development process it is known that the data compatibility is an 

important feature because version updates do not update the saved reports and dashboards 

JSON data that are stored in a database. Thus, for the existing reports and dashboards to 

continue to work after updates the data has to be compatible with newer versions of the 

IoT-ticket than they were saved with. 

Data compatibility is known to be present in the report editor for the most part. Some of 

the updates are known to take effect only on newly added widgets but old ones are still 

functioning as before. However, the information is not included in the documentation and 

the result for the presence measure has to be false. 

2. Functional compatibility is evaluated next. Functional compatibility information is not 

present on the report editor documentation. Therefore, the result for the presence measure 

is false. 

Backwards compatibility results: 

1. Data compatibility: Result is not found in documentation. Thus, presence evalu-

ates to false. 

2. Functional compatibility: Result is not found in documentation. Thus, presence 

evaluates to false. 

Suitability 

This functionality sub-characteristic consists of three attributes: 1. coverage, 2. excess 

and 3. completeness. The suitability evaluation is done against the reference project that 

has utilized the report editor package. This evaluation is not particularly relevant because 

the report editor package evolved to suit the needs of this project. For the sake of com-

pleteness, the measurements are reported here. 
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1. Coverage is measured first. The application requires 13 modules implemented by the 

report editor package. These modules implement all the functionality required by the ap-

plication and therefore the number of required modules is also 13. 

2. Excess is measured next. Every module in the report editor package is utilized by the 

application and therefore the number of modules not utilized by the application is 0. The 

total number of modules in the package is 13. 

3. Completeness is measured last. Every module that is specified in the component docu-

mentation is also present in the package. 

Suitability results: 

1. Coverage: Ratio evaluates to 13/13 = 1. 

2. Excess: Ratio evaluates to 0/13 = 0. 

3. Completeness: Ratio evaluates to 13/13 = 1. 

Self-contained 

Self-contained consists of a single attribute: 1. dependencies. 

1. Dependencies is evaluated based on the component documentation. Documentation 

specifies that the report editor package view components require four modules (Re-

portStateModel, ResouceStateModel, UtilityStateModel and router) to function properly.  

Self-contained results: 

1. Dependencies: Integer value result is 4. 

5.3.2 Reliability 

Reliability consists of two sub-characteristics that are evaluated according to the web 

frontend component quality model. 

Fault tolerance 

Fault tolerance consists of two attributes: 1. Mechanism available and 2. mechanism ef-

ficiency. 

1. Mechanism available is measured first. All the modules present in the report editor 

package are evaluated based on if their constructor functions or utilized methods are im-

plementing a fault tolerance mechanism. The results are presented in Table 5.2. 
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Table 5.2 Mechanism available measurement results 

Module Constructor Methods 

ReportView Model given as parameter is 

not verified to be defined. 

Thus, mechanism is not im-

plemented. 

loadGraph: if the report id provided is not 

matching the id of the report returned by 

the view model or the report id is not de-

fined the report is attempted to be fetched 

from the default API. Thus, mechanism is 

implemented. 

ReporterView Result is identical to as 

above. 

loadGraph: Result is identical to as above. 

ReflowView Result is identical to as 

above. 

loadGraph: Result is identical to as above. 

StandAloneRe-

portView 

Result is identical to as 

above. 

setReportData: the report data given as 

parameter is not verified to be defined. 

Thus, mechanism is not implemented. 

cacheMeasurementPoints: No parame-

ters. No mechanism is required. 

render: No parameters. No mechanism is 

required. 

ReportView-

Model 

Models given as parameters 

are not verified to be defined. 

Thus, mechanism is not im-

plemented. 

No methods to be called by the user. 

ReporterView-

Model 

Result is identical to as 

above. 

No methods to be called by the user. 

ReflowView-

Model 

Result is identical to as 

above. 

No methods to be called by the user. 

StandAloneRe-

portViewModel 

Result is identical to as 

above. 

No methods to be called by the user. 

ReportModel Missing parameters are ini-

tialized with default values. 

Thus, mechanism is imple-

mented. 

parse: verifies if the parameter is defined. 

Also verifies if the parameter object con-

tains properties before accessing them. 

Thus, mechanism is implemented. 

Report-

FlowModel 

Missing parameters are ini-

tialized with default values. 

Thus, mechanism is imple-

mented. 

No methods to be called by the user. 

Navigation-

Events 

No constructor. No mecha-

nism is required. 

trigger: Implemented by Backbone.js 

events. No mechanism is required. 

ResourcesCol-

lection 

Constructor implemented by 

Backbone.js collection. No 

mechanism is required. 

get: Implemented by Backbone.js collec-

tion. No mechanism is required. 

fetch: Implemented by Backbone.js collec-

tion. No mechanism is required. 

Uuid No constructor. No mecha-

nism is required. 

generate: No parameters. No mechanism 

is required. 
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2. Mechanism efficiency is evaluated next. This attribute will only be measured based on 

implemented mechanisms and the missing mechanisms are ignored because they are no-

tified by the mechanism available attribute. The usage of default values and verification 

that parameter object properties exist before accessing them is fault tolerance increasing 

behavior. However, the report editor views are not verifying that the report id passed as 

parameter is defined before trying to fetch the report from default API which could be 

done to improve fault tolerance. Overall, the mechanisms utilized are adequate and the 

level from 0-4 will be evaluated to value 3. 

Fault tolerance results: 

1. Mechanism available: Measurement divided the report editor modules to two 

categories: constructor and methods. The total number of the modules evaluated 

is therefore 26. The number of these modules that implemented a mechanism is 

11. Thus, the result for the ratio is 11/26 = 0.42. 

2. Mechanism efficiency: The attribute is measured on a scale from 0 to 4 to level 

3. 

Recoverability 

Recoverability consists of two attributes: 1. serializable and 2. transactional. 

1. Serializable is measured by evaluating if the component has a mechanism for serializ-

ing its state. The report editor stores its state runtime in the ReportModel object. The 

report model provides a method for getting its contents in JSON format. The JSON object 

of the report state can thus be stored persistently. The report model can be created again 

with the JSON object when the saved report is wanted to be opened on the report editor 

again. Based on the evaluation the presence is measured as true. 

2. Transactional is evaluated next by measuring if the component implements transac-

tions that would allow the monitoring and modifying the history of actions done to the 

component. The report editor provides an undo and redo feature for certain commands 

that are executed on the report editor such as creating a report page or repositioning a 

widget on a report page. The undo/redo feature is not fully transactional however, since 

it does not store every action for example, the widget property modifications. It is also 

not possible to monitor the list of the done actions or store the commands persistently. 

The commands are also bound to the current instance of the report editor view implying 

that if the user switches between report editor view and report flow editor view the com-

mand history is lost. Thus, the presence value is measured as false. 

Recoverability results: 

1. Serializable: Presence evaluates to true. 

2. Transactional: Presence evaluates to false. 
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5.3.3 Usability 

Usability consists of two sub-characteristics that are evaluated according to the web 

frontend component quality model. 

Configurability 

Configurability consists of three attributes: 1. functional configurability, 2. event config-

urability and 3. appearance configurability. 

1. Functional configurability is measured by evaluating the initialization parameters and 

configurations of the component modules. Currently the report editor package modules 

offer configuration through the state models which are the view model dependencies that 

are implemented by the application specific code (ReportStateModel, ResouceState-

Model and UtilityStateModel). For example, the “save report” button handler must be 

implemented by the ReportStateModel. 

While the state models offer a way to configure some of the functionality of the report 

editor this method is not optimal. As the state model name implies they are not originally 

intended for functional configuration but implementing the state handling of the report 

editor. At its current state, it might be confusing for the developers to identify the correct 

methods for functional configuration from the state handling methods though the docu-

mentation describes their use through an example project description. 

Additionally, the package modules are not offering too many configuration options. The 

configurations only include saving of the report, closing of the report editor and setting 

unsaved changes state functionality while many other features could be configurable as 

well. 

The component API interaction is also lacking configurability. The report editor compo-

nent is connecting to API when it is fetching some of the resources it needs to operate 

correctly. This API interaction and the API URLs are not configurable by the developers 

apart from the root part of the URL. 

Overall, the report editor offers the minimum amount of required functional configura-

bility that allows the operation of the editor in an application. Thus, the configurability is 

evaluated as level 1. 

2. Event configurability is evaluated next by measuring the events provided by the com-

ponent modules. The modules that are valid for this evaluation are the ReportView, Re-

porterView, ReflowView and StandAloneReportView because they are the UI modules 

of the report editor package.  
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Not any of the mentioned views offer events that the application code could react to with 

callback functions. The events communication can be handled through the Navigation-

Events module available in the report editor package but the events it contains are not 

documented apart from the navigation events between the report views. The Navigation-

Events module also contains all the internal events that are utilized by the report editor 

which implies that there are many events that are not meaningful to the application. 

Additionally, the event listening through the NavigationEvents is depending on the Back-

bone.js events functionality instead of plain JavaScript. 

The event configurability of the report editor component can be implemented with an 

unconventional way through the NavigationEvents object available in the package. Con-

sequently, the event configurability is evaluated as level 1 because like functional config-

urability it only offers the minimum required features.  

3. Appearance configurability is measured by evaluating the effort required to modify the 

visual appearance of the report editor views. Like the event configurability, the appear-

ance configurability is also valid only for the UI modules of the package. 

The report editor package does not offer any other way of modifying its appearance than 

providing a CSS file with custom styles. There is also no documentation of the customi-

zation available implying that the developers have to use their own expertise in applying 

the styles to desired elements of the report editor views. The level measurement for ap-

pearance configurability is evaluated as 1 because the component does not support ap-

pearance configurability in any other way than the regular CSS modification. 

Configurability results: 

1. Functional configurability: The attribute is measured on a scale from 0 to 4 to 

level 1. 

2. Event configurability: The attribute is measured on a scale from 0 to 4 to level 

1. 

3. Appearance configurability: The attribute is measured on a scale from 0 to 4 to 

level 1. 

Understandability 

Understandability consists of three attributes: 1. documentation coverage, 2. documenta-

tion quality and 3. demonstration coverage. 

1. Documentation coverage is evaluated by inspecting the component documentation and 

the actual implementation of the component. The functionalities that are expected to be 

found from the documentation and their results are presented in Table 5.3. 
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Table 5.3 Documentation coverage measurement results 

Functionality Documentation entry 

Installation and 

updating 

The report editor package building is explained. The documentation also ex-

plains that the installation is done by copying the report editor package to the 

target application project and including the relevant files from the package to 

a HTML page. The updating of the package is also described in the docu-

mentation. Thus, installation and updating information is present in the doc-

umentation. 

Configuration 

options 

The configurations that are available (saving report, closing the editor, setting 

unsaved changes state) are described in the documentation. The editor ini-

tialization with a saved report is also explained on a general level implying 

that the actual code required to initialize the editor is not described. The set-

ting of the authorization token for the API is also explained in the documen-

tation if it is required by the application. Thus, the configuration options are 

present in the documentation.  

Methods The rendering methods of the report editor views are explained. However, 

the documentation is missing descriptions for each module available in the 

component for their provided methods. Thus, the method descriptions are 

not fully present in the documentation. 

Events The navigation events needed by the router are explained in the documenta-

tion. Some other events can also be utilized that are not found on the docu-

mentation for example, the widget selection event that is used to set selected 

widget ids to the state and reset scaling event that is used to reset the zoom-

ing when switching between report editor views. Thus, the events are not 

fully present in the documentation. 

Appearance 

configuration 

The report editor appearance configuration is not present in the documen-

tation. 

Dependencies Navigation between report editor views is explained in the documentation. 

Additionally, the state models and most of their methods are presented in the 

documentation. However, some of the latest additions in methods are miss-

ing from the state models that need to be implemented. The API interactions 

are also found from the documentation. Thus, the dependencies are not fully 

present in the documentation. 

  

2. Documentation quality is evaluated next. The report editor component consists of many 

modules and it requires many dependencies to operate correctly. The relations of the 

package modules and their dependencies are explained by images similar to UML de-

ployment diagrams. Additionally, an actual usage of the package in an application is de-

scribed in the documentation.  

There are many code examples of the report editor package usage including the report 

views construction and attaching event listeners to navigation events. On the other hand, 

the documentation is lacking examples of initializing the report model which is critical 

for the implementation of the loading of a saved report unless the default report API is 

utilized. 
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The document structure is logical. It starts with introducing the package contents and the 

modules it includes. Then it proceeds to present the utilization of the modules including 

the dependencies they require. However, the documentation could make a clearer distinc-

tion between describing the dependencies and other usage of the report editor modules. 

At the current state of the documentation there is not a clear list of what is required of the 

application that is using the report editor component. The documentation also introduces 

an example utilization case of the report editor in a project. 

The documentation is only available as a word document and therefore it might be more 

difficult to utilize as a developer than for example, a HTML-based documentation. 

Overall, the documentation has a logical structure and presents most of the information 

required by the developers utilizing the component. It also utilizes deployment diagrams 

to describe the relations between the component modules and the application specific 

code. Additionally, the documentation utilizes code examples. However, it is also lacking 

some important examples and the documentation format could be more accessible for the 

developers. Therefore, the documentation quality is evaluated as level 2. 

3. Demonstration coverage is evaluated against the test code that is available in the report 

editor package because it can be utilized by developers that want to use the report editor 

package in an application. The results for this evaluation are presented in Table 5.4. 

Table 5.4 Demonstration coverage measurement results 

Functionality Demonstration description 

Installation Demonstration shows the inclusion of the relevant report editor package files 

in a HTML page that is used as a container for the report editor component. 

Thus, installation is present in the demonstration. 

Configuration 

options 

The configurations that are available (saving report, closing the editor, setting 

unsaved changes state) are not shown on the demonstration. Loading a 

saved report is not shown on demonstration. The demonstration does not 

fetch any data to be shown on the report from the API. Thus, the configuration 

options are not present in the demonstration. 

Methods The rendering methods of the report editor views and the resources collection 

methods are shown in the demonstration. However, all the report model, uuid 

and StandAloneReportView methods are not shown. Thus, the methods are 

not fully present in the demonstration. 

Events The navigation events required to provide navigation between the report ed-

itor views are shown on the demonstration. Other events are not presented 

on the demonstration for example, the widget selection event or reset scaling 

event. Thus, events are not fully present in the demonstration. 

Appearance 

configuration 

Appearance configurations are not present on the demonstration. 
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Functionality Demonstration description 

Dependencies Navigation between report editor views is shown in the demonstration. Addi-

tionally, the state models and most of their methods are presented. Some of 

the most recently added methods are missing from the state models in the 

demonstration. Thus, the dependencies are not fully present in the demon-

stration. 

 

Understandability results: 

1. Documentation coverage: Two of the six main functionalities are present in the 

documentation. The result for the ratio is 2/6 = 0.33. 

2. Documentation quality: The attribute is measured on a scale from 0 to 4 to level 

2. 

3. Demonstration coverage: One of the six main functionalities are present in the 

demonstration. The result for the ratio is 1/6 = 0.17. 

5.3.4 Efficiency 

Efficiency consists of two sub-characteristics that are evaluated according to the web 

frontend component quality model. 

Resource behavior 

Resource behavior consists of two attributes: 1. memory utilization and 2. disk utilization. 

1. Memory utilization is evaluated by utilizing memory-stats-js JavaScript library 

(memory-stats-js 2017). When the report editor is loaded with minimum application that 

is only containing the HTML page as container for the editor, the memory utilization is 

evaluated to approximately 28 MB. 

2. Disk utilization is evaluated by inspecting the disk space that the report editor package 

is occupying. The disk space is evaluated to 41.3 MB. 

Resource behavior results: 

1. Memory utilization: Integer value is evaluated to 28 MB. 

2. Disk utilization: Integer value is evaluated to 41.3 MB. 

Scalability 

Scalability consists of one attribute: 1. processing capacity. 

1. Processing capacity is evaluated by measuring the report generation time for reports 

with different data-flow loads. The report generation time is important for the report edi-

tor component because its main function is to calculate the report data-flow and generate 
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and present the report to the user. The measurement is done by creating reports that pro-

cess data generated by simulate data-flow blocks connected into input label widgets. The 

time it takes for the editor to send the graph processed event that indicates that the flow 

calculation and page rendering is completed is measured for each different number of 

data-flow blocks by utilizing the StandAloneReportView that is used for the pdf file gen-

eration of reports. The console.time() method in JavaScript is utilized to measure the time 

by starting the time right before calling the render method of StandAloneReportView and 

registering a listener to the graph processed event which stops the time when the event is 

received. The simulate blocks are using the default configuration that generates a value 

between 0 and 100. The input label widgets are also using default configurations. All the 

widgets are inserted into one report page. The results for this evaluation are presented on 

Table 5.5. 

Table 5.5 Processing capacity measurement results 

Number of Simu-

late and Input La-

bel blocks 

Measurement 1 Measurement 2 Measurement 3 Mean 

0 + 0 3328.89ms 3344.07ms 3333.76ms 3335,57ms 

10 + 10 3482.18ms 3472.30ms 3456.51ms 3470.33ms 

50 + 50 4034.54ms 3976.38ms 4005.49ms 4005.47ms 

100 + 100 4919.99ms 4966.61ms 4930.28ms 4938.96ms 

200 + 200 6245.07ms 6955.32ms 6384.49ms 6528.29ms 

 

Simple linear regression model for report generation time with number of dataflow blocks 

as explanatory variable produces a result (graphpad.com 2017): 

Report generation time (ms) = 8.067*number of dataflow blocks + 3293 (ms) 

The result has R2 of 0.9983 which represents a very good fit. The model has a constant of 

3293ms which represents the static time needed to generate a report regardless of the 

number of dataflow blocks.  

Scalability results: 

1. Processing capacity: According to the linear model when ignoring the constant, 

the processing capacity of report editor component is 1 dataflow block/8.067ms = 

0.124 dataflow blocks/ms or 124 dataflow blocks/s. 

5.3.5 Maintainability 

Maintainability consists of one sub-characteristic that is evaluated according to the web 

frontend component quality model. 
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Testability 

Testability consists of two attributes: 1. test suite provided and 2. tests in a specific envi-

ronment. 

1. Test suite provided is evaluated first. The report editor package does not include a 

runnable test suite. There are unit tests, integration tests and end-to-end tests available for 

the report editor but they are not included in the package. Therefore, the presence attribute 

is evaluated to false. 

2. Tests in a specific environment is measured by verifying if the documentation contains 

relevant information about the tests that have been executed on the report editor compo-

nent. The documentation does not contain information of the tests and if they are done on 

different browsers or if the component is tested in applications utilizing different JavaS-

cript frameworks. Thus, the presence attribute is evaluated to false. 

Testability results: 

1. Test suite provided: Presence evaluates to false. 

2. Tests in a specific environment: Presence evaluates to false. 

5.3.6 Portability 

Portability consists of two sub-characteristics that are evaluated according to the web 

frontend component quality model. 

Installability 

Installability consists of four attributes: 1. framework support, 2. loading type coverage, 

3. installation simplicity and 4. application to DOM. 

1. Framework support is measured by evaluating if the component provides a framework 

supported version of itself that is known to be required by applications. Currently, the 

report editor does not provide any such versions of itself. The application where the report 

editor has been utilized is developed with React, so providing a React component of the 

report editor would have made the development easier. 

2. Loading type coverage is measured by evaluating which loading types are supported 

by the report editor package. The tested types are script tag, AMD and CommonJS. The 

report editor package is utilizing only the script tag as it assigns itself into the window 

object. Thus, AMD and CommonJS are not supported. 

3. Installation simplicity is measured by evaluating the effort required to install and up-

date the component. The installation itself is not difficult because the developers have to 

only include the report editor package script file and CSS file to a HTML page and the 
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report editor is available in the application. The update is done utilizing the same method 

where the report editor package files are overwritten with the updated files. However, the 

installation and update is not automated for example, with NPM so the developers have 

to do it manually as described before. Therefore, the installation simplicity is evaluated 

as level 3 because of the lack of installation and update automation. 

4. Application to DOM is measured by evaluating how simple HTML markup is required 

by the component. The report editor component requires a lot compared to regular JavaS-

cript UI components because the application has to provide a separate HTML page to act 

as a container for the report editor. This is because the report editor views append them-

selves directly to the body element of the HTML page they are on. To include the report 

editor inside an application view, an iframe HTML element or similar approach has to be 

utilized which makes the communication with the component quite complex. Thus, the 

application to DOM is evaluated as level 1. 

Installability results: 

1. Framework support: No framework specific version of the component is sup-

ported though a React component could be utilized. Thus, the result of the ratio is 

0/1 = 0. 

2. Loading type coverage: One of three loading types are supported by the compo-

nent. Thus, the result of the ratio is 1/3 = 0.33. 

3. Installation simplicity: The attribute is measured on a scale from 0 to 4 to level 

3. 

4. Application to DOM: The attribute is measured on a scale from 0 to 4 to level 1. 

Reusablity  

Reusability consists of three attributes: 1. modularity, 2. coupling and 3. architecture com-

patibility. 

1. Modularity is measured by evaluating the ratio of modules found in the component to 

the functionalities provided by the component. The functionalities provided by the report 

editor component are roughly report previewing, report editing, report data flow editing, 

report pdf view, navigation events and uuid generation, which makes a total of six func-

tionalities. The total number of modules provided by the report editor package is 13. Con-

sequently the result of the ratio is 13/6 = 2.2. 

2. Coupling is measured by calculating how many modules provided by the component 

require another module of the component to function properly. The number of those mod-

ules is four because all the report views require a view model implementation. 

3. Architecture compatibility is measured by evaluating how great effect the usage of the 

component has on the architecture of the whole application. The report editor has some 
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implications to the architecture because currently it is required to use iframe HTML ele-

ment to use the editor in an application. The communication between the application and 

the iframe containing the report editor component has to be implemented by utilizing the 

JavaScript’s window object. For example, the application has to set callback functions as 

properties to the window object for the report editor to be able to access them inside the 

iframe. 

The report editor package does not support AMD or CommonJS which implies that the 

report editor has to be included with script tags or by taking additional measures to get 

the package to be compatible with AMD or CommonJS. The report editor views also 

require to be appended to the body element of the HTML page they are on, implying that 

they force the application to provide their own HTML page for the component. 

Overall, the effects on the architecture are quite heavy and thus, the level is evaluated to 

2. 

Reusability results: 

1. Modularity: The number of functionalities provided by the component is six and 

the number of modules is 13. Thus, the result of the ratio is 13/6 = 2.2. 

2. Coupling: The number of modules that require another module is four and the 

number of modules is 13. Thus, the result of the ratio is 4/13 = 0.31. 

3. Architecture compatibility: The attribute is measured on a scale from 0 to 4 to 

level 2. 

5.3.7 Summary of the quality evaluation 

The results for the report editor component evaluation using the web frontend UI compo-

nent quality model are presented in Table 5.6. 

Table 5.6 Report editor quality evaluation results 

Characteristic Sub-characteristic Attribute Type Evaluation 

result 

Functionality Browser compatibil-

ity 

Cross-browser function-

ality 

Ratio 0.67 

Browser support Ratio 1 

Backwards compat-

ibility 

Data compatibility Presence False 

Functional compatibility Presence False 

Suitability Coverage Ratio 1 

Excess Ratio 0 

Completeness Ratio 1 

Self-contained Dependencies Integer 4 

Reliability Fault tolerance Mechanism available Ratio 0.42 

Mechanism efficiency Level 3 

Recoverability Serializable Presence True 
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Characteristic Sub-characteristic Attribute Type Evaluation 

result 

Transactional Presence False 

Usability Configurability Functional configurability Level 1 

Event configurability Level 1 

Appearance configura-

bility 

Level 1 

Understandability Documentation cover-

age 

Ratio 0.33 

Documentation quality Level 2 

Demonstration coverage Ratio 0.17 

Efficiency Resource behavior Memory utilization Integer 28 MB 

Disk utilization Integer 41.3 MB 

Scalability Processing capacity Integer 124 data-

flow 

blocks/s 

Maintainability Testability Test suite provided Presence False 

Tests in a specific envi-

ronment 

Presence False 

Portability Installability Framework support Ratio 0 

Loading type coverage Ratio 0.33 

Installation simplicity Level 3 

Application to DOM Level 1 

Reusablity Modularity Ratio 2.2 

Coupling Ratio 0.31 

Architecture compatibil-

ity 

Level 2 

 

5.4 Quality evaluation implications and improvement sugges-

tions 

Next, the results of the quality evaluation that was done in Section 5.3 are contemplated 

and improvement suggestions are made. This section is based on the quality evaluation 

results that are shown in Table 5.6 but the reasoning that led to these results presented in 

Section 5.3 is utilized as well. Each sub-characteristic of the characteristics presented in 

the model are discussed. 

5.4.1 Functionality 

The browser compatibility of the report editor is overall at adequate level with cross-

browser functionality at ratio 0.67 and browser support at ratio 1. Thus, the editor itself 

is functioning with all tested browsers but there are minor cosmetic differences between 

different browsers. The cross-browser functionality ratio 0.67 could be interpreted as 

fairly low but as stated before the differences were cosmetic. However, based on this 
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evaluation it can be suggested that also more of the most important features would be 

tested for cross-browser functionality.  

Backwards compatibility was evaluated based on the information that is available in the 

component documentation regardless of what is internally known about the component. 

The information about data compatibility and functional compatibility was not found and 

therefore they were both evaluated as false. Based on this evaluation it is suggested that 

information about data compatibility and functional compatibility is added to the compo-

nent documentation. 

Suitability evaluation passed with high scores because the application where the report 

editor had already been utilized, was used as the reference application for the measure-

ment. Thus, the reference application directly affected the report editor package contents 

during the package development. Therefore, the ratio results for coverage, excess and 

completeness were 1, 0 and 1 respectively. This evaluation did not add any value to this 

analysis but overall suitability may be useful for evaluating component suitability for an-

other application. Especially, if component has excess features and thus, excess docu-

mentation, its complexity may increase because developers might not find the features 

they need. 

Self-contained characteristic was evaluated using the dependencies attribute. The result 

found was that the report editor overall depends on four external modules that need to be 

provided by the application developers in order to properly utilize the report editor. Cur-

rently, these dependencies are mostly utilized for providing application specific function-

ality such as report saving handler that could be achieved by providing more options di-

rectly from the report editor component interface. The state handling that the dependen-

cies provide can be wrapped inside the report editor component to abstract them from the 

application developers. Thus, it is suggested that the component dependencies are 

dropped to reduce the dependencies and the complexity it implies to the component. 

5.4.2 Reliability 

Fault tolerance was found overall adequately efficient when it is utilized in the compo-

nent. The ratio for mechanism available was 0.42 which is fairly low. The mechanism 

efficiency was evaluated at level 3 which is a good result. It is understandable that the 

fault tolerance has not received major attention because the component has been utilized 

by developers that have been participating in its development and are therefore familiar 

with it and are not likely to call methods incorrectly. However, it is suggested that more 

attention is paid to the fault tolerance coverage of the modules and methods that the com-

ponent provides.  

Recoverability of the component was evaluated based on serializable and transactional 

attributes. The component was found to be serializable but the transactionality is not fully 
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implemented. The transactionality could be improved by preserving the command history 

between the switching of the report editor views and adding more actions such as property 

changes to be commands. The commands could also be considered to be stored persis-

tently to provide command history across multiple sessions of editing a report. 

5.4.3 Usability 

The component configurability was evaluated utilizing the functional configurability, 

event configurability and appearance configurability. All the attributes were evaluated to 

level 1 which implies that the configurability could be improved. Thus, it is suggested 

that the component would provide more configuration options and provide an alternative, 

more simple method for supplying the configuration options than the current state model 

implementation. For example, the report editor could accept a configuration object as a 

parameter when the report editor is initialized and the configurations could be modified 

later by a method call. 

The component API interaction could be improved by allowing the developers to pass the 

resources the report editor needs when initializing the component or to allow the devel-

opers to fully customize the API URLs the report editor is using. The API configurations 

could also support modifying the HTTP header fields to make the user authentication 

method configuration easier. 

Currently, the event configurability is too complex because developers have to utilize the 

NavigationEvents module and the state models to implement event handling. The situa-

tion could be improved by providing an event interface from the component which would 

allow developers to attach callback functions to the events that are triggered from the 

component such as report saving and closing of the editor. 

The appearance configurability currently supports only external CSS styles. This could 

be improved by providing themes and appearance configuration that could be modified 

with configuration options. 

Understandability was evaluated by considering the documentation coverage, documen-

tation quality and demonstration coverage. The evaluation found room for improvement 

from all the three attributes. Documentation coverage ratio was evaluated as 0.33 when 

main functionality descriptions such as installation and configuration options were 

searched. Thus, the documentation could be revised by adding more of the relevant infor-

mation to the developers utilizing the component. 

Documentation quality was found to be level 2 which could be improved. The improve-

ment suggestions are to provide HTML-based documentation that would make it easier 

for developers to traverse between the documentation sections. Additionally, documen-

tation could show more examples of some of the most critical functionalities. 
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Demonstration coverage ratio was evaluated to 0.17 by examining the test code that is 

present in the report editor package. This implies that the demonstration is not adequate 

and needs to be improved to be useful. The current demonstration does not fully show 

other main functionalities than installation. For example, report editor interactions such 

as saving of the report and loading a saved report to the editor are not presented. Thus, 

demonstration could include more complete use cases of the report editor component. 

5.4.4 Efficiency 

Resource behavior was evaluated by measuring the memory utilization and disk utiliza-

tion of the report editor package. The memory utilization was evaluated at 28 MB and 

disk utilization at 41.3 MB. The resource behavior results are difficult to analyze because 

they would be needed to be compared to components with similar functionality. However, 

the disk utilization value appears to be relatively large and it could be verified that the 

package does not contain any extra resources that are not required by the report editor. 

Scalability was evaluated by measuring the processing capacity. The report generation 

time seems to increase linearly as the number of dataflow blocks increases which gives 

an indication that the component is scalable. However, the static time to generate a report 

regardless of the amount of dataflow blocks is over 3 seconds which could possibly be 

reduced by changing the graph processed event to be sent right away when report is pro-

cessed and rendered. At the moment, safety time is utilized to make sure that everything 

is rendered. 

5.4.5 Maintainability 

Testability was evaluated based on test suite provided and tests in a specific environment 

attributes. Both presence values evaluated to false. Thus, it is suggested that test suite 

would be provided with the component or test results would be presented along with the 

documentation. Documentation could also provide information about tests done utilizing 

different browsers. 

5.4.6 Portability 

Installability was evaluated by inspecting framework support, loading type coverage, in-

stallation simplicity and application to DOM. Framework support ratio was evaluated to 

0 because the report editor does not provide a React component implementation that could 

have been used in a project that utilized the report editor component. Thus, it could be 

considered to provide framework supported versions of the report editor component if 

those are required by applications. 

Loading type coverage ratio was evaluated as 0.33 implying that the component does not 

support CommonJS and AMD. Adding support to also these loading types is suggested. 



66 

Support can be added by utilizing universal module definition (UMD) format to wrap the 

report editor component (github.com/umdjs/umd, 2017).  

Installation simplicity was evaluated as level 3 which indicates that the installation is 

fairly simple. However, to further increase the simplicity of the installation it could be 

automated by distributing the component as NPM package or similar. 

Application to DOM was evaluated as level 1 so it has room for improvement. The com-

plexity of the report editor application to DOM could be reduced by finding alternative 

to the iframe element or wrapping the iframe element inside the report editor component 

so the communication with the iframe could be abstracted from the developers utilizing 

the report editor package. 

Reusability evaluation was done by measuring the modularity, coupling and architecture 

compatibility of the component. The modularity evaluation produced interesting results 

because the ratio evaluated to 2.2. This implies that the report editor package is too mod-

ularized compared to the functionalities it provides. This situation could be remedied by 

reducing the number of modules in the package by providing a more abstract report editor 

component that utilizes internally some of the modules that are now available in the pack-

age but do not provide any features to the developers. 

Coupling ratio was measured as 0.31. Preferably, the result should be 0 which would 

imply that the component modules are not depending on each other. Coupling could be 

reduced to 0 by redesigning the package structure as suggested in the modularity improve-

ment suggestion. 

Architecture compatibility was evaluated to level 2 which is the average result. The points 

for improvement are similar to the ones in application to DOM. The communication with 

the iframe and the implementation of the HTML page are influencing the supporting ar-

chitecture the report editor package requires. Additionally, the lack of CommonJS and 

AMD loading affects the way the application has to load the package. Thus, there should 

be efforts for abstracting the HTML and iframe handling inside the component and add 

support for CommonJS and AMD loading. 

5.5 Web frontend component quality model evaluation and fu-

ture work 

The web frontend component quality model is now evaluated according to its perfor-

mance earlier in this chapter. First, it is stated that the evaluation produced a relatively 

large number of improvement suggestions which was one of the goals of this thesis. Im-

provement suggestions were made to the actual component implementation as well as to 

the component documentation which implies that the model is able to produce sugges-

tions to improve the overall quality of the component. 
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The results provided by the model were presented in Table 5.6 on page 61. However, the 

actual improvement suggestions were not solely based on the measured results. The rea-

soning that led to those results seem to be of equal or even greater importance when de-

termining the improvement suggestions based on the evaluation. Of course, the results 

table provides an overview of the quality status regarding each attribute, sub-characteris-

tic and characteristic and can be used to indicate which characteristics need the most at-

tention. 

The initial requirements that were set for the web frontend component quality model in-

cluded selecting quality attributes that can be measured with adequate precision. After 

the evaluation, it can be stated that it was possible to measure a value for each attribute 

with the measures presented in the model. However, some of the measurements were 

fairly shallow considering the overall component functionality. For example, measuring 

the cross-browser functionality or memory utilization can be done more thoroughly if it 

is seen important and the evaluator has sufficient time to execute the evaluation. Addi-

tionally, the report editor as a component is very large, implying that it should be signif-

icantly easier to conduct an evaluation for a smaller component. 

As has been stated before, the model requires quite strong expertise from the evaluator. 

The array of quality attributes that are measured is wide and the evaluator has to identify 

specific structures from the component. For example, for modularity the total number of 

functionalities provided by the component has to be identified. The expertise of the eval-

uator could thus, affect the outcome of the evaluation on some attributes if the evaluator 

is not able to identify everything that is required by the measurement. This could poten-

tially lead to differing results between two different quality evaluations of the same com-

ponent and thus affect the objectivity of the evaluation. 

Therefore, future work could include measuring the same component by different evalu-

ators and comparing the results to measure the objectivity of the model. Future work could 

also include evaluating smaller components to see how well the model finds quality prob-

lems from them. It would also be interesting to find out if all the attributes seem relevant 

for smaller components. The model could also be tested as how well it provides guidelines 

for developing a completely new component. 

It could also be considered to execute an evaluation on a simple 3rd party component to 

see how well the model could be utilized when selecting a component for an application 

like the original CBSD models have been utilized. Most of the attributes could possibly 

be measured based on component documentation and a simple demo application.  

The component subject discussed in this thesis could also be utilized to spark discussion 

inside the company to develop a web frontend component repository to be utilized across 

web application projects. The repository could then act as a way to spread expertise 

through well-structured multi-purpose components and additionally reduce development 
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time and costs when components could be utilized instead of developing own components 

for each application. 

Naturally, future work also includes implementing the improvement suggestions provided 

by the quality evaluation to the report editor package based on the demand of the report 

editor package in future projects. 
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6. CONCLUSIONS 

The aim of this thesis was to develop a web frontend component quality model. The 

model was developed based on web application component characteristics and existing 

research on software component quality models. The web frontend component quality 

model divides the quality hierarchically to four levels that are quality characteristics, qual-

ity sub-characteristics, quality attributes and quality measures. The model utilizes four 

types of quality measures that are presence, level, ratio and integer. 

The relevant quality sub-characteristics and attributes were selected from the software 

component quality models introduced by the research and some were also added based 

on web frontend component characteristics. Thus, a quality model was formed that con-

sists of six quality characteristics, 13 quality sub-characteristics and 30 quality attributes 

and measures to assess them. 

The web frontend component quality model aims to evaluate the overall component qual-

ity implying that the evaluation focuses on both component implementation and docu-

mentation. The six quality characteristics presented in the model also cover all the ISO 

9126 software quality evaluation standard characteristics which speaks for the overall 

quality aspect of the model. 

The web frontend component quality model was tested and evaluated by assessing the 

quality of the report editor component that was extracted from the IoT-Ticket product 

developed by Wapice Ltd. The result of the quality evaluation according to the model 

provided an array of results that can be used as a view to the overall quality of the com-

ponent. The quality evaluation also inspired improvement suggestions to the report editor 

component implementation and documentation. 

Among the improvement suggestions to the report editor component were, for example, 

to increase the component configurability by adding a support to a configuration object 

and to implement events interface for the component. It was also suggested that the com-

ponent would support alternative loading types for example CommonJS and AMD. The 

component documentation could also be improved by providing a HTML version of the 

documentation and including more of the relevant general information, for example, 

about the version compatibility and browser support. 

All in all, the model was tested against a real component that has been utilized in the 

software industry in production environment. Thus, the web frontend quality model is 

able to measure the quality of web frontend components utilized by software companies. 
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APPENDIX A: WEB FRONTEND COMPONENT QUALITY MODEL 

Char-

acter-

istic 

Sub-

charac-

teristic 

Attribute Type Measure 

Func-

tional-

ity 

Browser 

compati-

bility 

Cross-

browser 

function-

ality 

Ratio First, to evaluate the cross-browser functionality of a 

component, the evaluator selects the browsers and 

their specific versions to be used in the evaluation. 

The component features to be evaluated are also se-

lected. One browser and its specific version is se-

lected as a reference point for correct functionality of 

the features of the component. The features of the 

component in other browsers and their versions are 

compared to the component features in the refer-

ence point browser. The result is provided as a ratio 

of how many of the component features in other 

browsers match the reference point. 

Browser 

support 

Ratio This attribute provides two alternative methods of 

measurement: 1. If component provides documenta-

tion or testing documentation that states supported 

browser versions they may be utilized. 2. Compo-

nent is ran manually as part of an application on dif-

ferent browser versions and results are observed. 

The result is provided as a ratio of how many re-

quired browser versions are supported. 

Back-

wards 

compati-

bility 

Data com-

patibility 

Pres-

ence 

This attribute is measured by verifying if the attribute 

is present on the component. This may be achieved 

by finding such statement from the component doc-

umentation or by manually verifying the data com-

patibility when updating the component version. 

Func-

tional 

compati-

bility 

Pres-

ence 

This attribute is measured with the same procedure 

as the data compatibility. 

Suitabil-

ity 

Coverage Ratio Measured by dividing the number of modules in the 

component that implement some of the functionality 

required by the application with the number of mod-

ules required by the application. 

Excess Ratio Measured by dividing the number of modules in the 

component not utilized by the application with the 

number of modules provided by the component. 

Com-

pleteness 

Ratio Measured by dividing the number of modules pro-

vided by the component with the number of modules 

specified by the component documentation. 

Self-con-

tained 

Depend-

encies 

Inte-

ger 

Measured by calculating the number of required 

modules by the component. 
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Char-

acter-

istic 

Sub-

charac-

teristic 

Attribute Type Measure 

Relia-

bility 

Fault tol-

erance 

Mecha-

nism 

available 

Ratio Measured by dividing the number of modules pro-

vided by the component that implement a fault toler-

ance mechanism with the total number of modules 

provided by the component. 

Mecha-

nism effi-

ciency 

Level Measured on a general level for the whole compo-

nent with a value between 0-4. 

Recover-

ability 

Serializa-

ble 

Pres-

ence 

Measured by evaluating if the component has a 

mechanism for serializing its state for example, to a 

JSON format that can be loaded later on the compo-

nent. 

Transac-

tional 

Pres-

ence 

Measured by evaluating if the component imple-

ments transactions in a way that allows to monitor 

and modify the history of actions done to the compo-

nent. 

Usa-

bility 

Configu-

rability 

Func-

tional con-

figurability 

Level Measured with a value between 0-4. The component 

modules are analyzed to see if they allow initializa-

tion parameters or provide a way to modify the con-

figurations after the module is initialized. 

Event 

configura-

bility 

Level Measured with a value between 0-4. The component 

modules are analyzed to see if they provide relevant 

events that the application can apply callbacks to. 

Appear-

ance con-

figurability 

Level Measured with a value between 0-4. The effort for 

modifying the appearance of the component is eval-

uated. For example, are there configurations for 

modifying the component appearance with themes 

or do the developers need to implement component 

appearance modification with custom CSS. Addition-

ally, is there documentation available that would help 

with modifying the component appearance 

Under-

standa-

bility 

Docu-

mentation 

coverage 

Ratio Measured by dividing the number of functionalities 

documented with the total number of functionalities 

in the component. Functionalities may include instal-

lation, configuration options, methods, events and 

appearance configurations. 

Docu-

mentation 

quality 

Level Measured with a value between 0-4. Measured qual-

ities may include for example, documentation read-

ability and code examples. 

Demon-

stration 

coverage 

Ratio Measured by dividing the number of functionalities 

shown in demonstrations with the total number of 

functionalities in the component. The total number of 

functionalities may be extracted from the documen-

tation available. Functionalities may include installa-

tion, configuration options, methods, events and ap-

pearance configurations. 

Effi-

ciency 

Memory 

utilization 

Inte-

ger 

Measured by evaluating the memory utilization of the 

component when used in a minimal application. 
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Char-

acter-

istic 

Sub-

charac-

teristic 

Attribute Type Measure 

Re-

source 

behavior 

Disk utili-

zation 

Inte-

ger 

Measured by calculating the total disk space re-

quired by the files in the component. 

Scalabil-

ity 

Pro-

cessing 

capacity 

Inte-

ger 

Measured by testing the component scalability when 

exposed to different amounts of data by dividing the 

number of data units processed with the time re-

quired to process the data. Exact measurement 

needs to be specified component specifically. 

Main-

taina-

bility 

Testabil-

ity 

Test suite 

provided 

Pres-

ence 

Measured by verifying if the component package in-

cludes a runnable test suite. 

Tests in a 

specific 

environ-

ment 

Pres-

ence 

Measured by verifying if the component testing doc-

umentation contains information about component 

tests done on different browsers or JavaScript 

frameworks. 

Porta-

bility 

Installa-

bility 

Frame-

work sup-

port 

Ratio Measured by dividing the number of supported 

framework specific versions of the component re-

quired by developers by the required number of 

framework supports of the component. 

Loading 

type cov-

erage 

Ratio Measured as the ratio of module loading types sup-

ported by the component to the number of required 

loading types. 

Installa-

tion sim-

plicity 

Level Measured with a value between 0-4. Measured by 

evaluating the effort required to install and update 

the component package on the project. 

Applica-

tion to 

DOM 

Level Measured with a value between 0-4. Measured by 

evaluating the simplicity of the required HTML 

markup for the component to be applied to DOM. 

Reusa-

blity 

Modular-

ity 

Ratio Measured as the ratio of modules provided by the 

component to the functionalities provided by the 

component 

Coupling Ratio Measured as the ratio of how many modules pro-

vided by the component require at least one another 

module provided by the component to function 

properly. 

Architec-

ture com-

patibility 

Level Measured with a value between 0-4. Measured by 

analyzing how the component usage affects the sup-

porting code structure implemented in the applica-

tion because of the component. 

 


