

ALEKSI SINISALO

WEB FRONTEND COMPONENT QUALITY MODEL

Master of Science thesis

Examiner: Prof. Hannu-Matti Järvinen
The examiner and topic of the thesis were
approved on 31st May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

ALEKSI SINISALO: Web Frontend Component Quality Model
Tampere University of Technology
Master of Science Thesis, 73 pages, 3 Appendix pages
September 2017
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: Professor Hannu-Matti Järvinen

Keywords: software quality, quality model, web frontend development, web
frontend components

Web frontend application developers utilize many components in their work that provide

functionality required by the application under development. The components are typi-

cally written in JavaScript and may have been developed by 3rd parties or inside the com-

pany. The quality of the selected components plays a major role in the overall quality of

the web frontend application that they are utilized in. Additionally, the component quality

affects the desirability of the component in the eyes of the web application developers

that might potentially utilize the component in their application. As an implication, the

developers of these components want to them to be high-quality and easy to use.

Thus, the problems that this thesis is seeking answers to are how to develop easy-to-use

high-quality components and how to measure web frontend component quality. This the-

sis presents the web frontend component quality model as an answer to these problems.

The model is based on web frontend development and component characteristics and re-

search on software component quality models. Both are discussed in the literature review

part of this thesis.

The web frontend component quality model divides the component quality hierarchically

to 4 levels that are quality characteristics, quality sub-characteristics, quality attributes

and quality measures. Quality characteristics are high-level abstractions of quality such

as functionality and usability that are further specified by the sub-characteristics and at-

tributes. The quality measures are concrete instructions on how to measure values for the

quality attributes. The web frontend component quality model consists of 6 quality char-

acteristics, 13 quality sub-characteristics, 30 quality attributes and measures for them.

The quality model was tested and evaluated by measuring the quality of the report editor

component that is developed by Wapice Ltd. The quality evaluation was able to measure

values for the quality attributes according to the model. Additionally, numerous sugges-

tions were provided on how to improve the quality of the report editor component imple-

mentation and documentation. Among the improvement suggestions were for example,

improving the configurability of the component through configurations object and events

interface, providing HTML-based documentation and loading type coverage improve-

ment by adding support to CommonJS and AMD module types.

ii

TIIVISTELMÄ

ALEKSI SINISALO: Web frontend komponenttien laatumalli
Tampereen teknillinen yliopisto
Diplomityö, 73 sivua, 3 liitesivua
Syyskuu 2017
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Ohjelmistotuotanto
Tarkastaja: professori Hannu-Matti Järvinen

Avainsanat: ohjelmistojen laatu, laatumalli, web frontend kehitys, web frontend
komponentit

Web frontend-sovellusten kehittäjät hyödyntävät työssään monia komponentteja, jotka

tarjoavat toiminnallisuuksia kehitettävänä olevaan sovellukseen. Nämä komponentit on

usein kirjoitettu JavaScript-ohjelmointikielellä ja ne ovat kolmannen osapuolen tai

yrityksen itsensä toteuttamia. Web-sovelluksessa käytettävien komponenttien laatu on

suuressa roolissa sovelluksen kokonaislaadun kannalta. Lisäksi komponentin laatu

vaikuttaa sen kiinnostavuuteen niiden web-kehittäjien näkökulmasta, jotka voisivat

mahdollisesti käyttää sitä omassa sovelluksessaan. Tästä seuraa, että komponenttien

kehittäjät haluavat komponenttiensa olevan korkealaatuisia ja helppokäyttöisiä.

Ongelmat, joihin tässä diplomityössä etsitään vastauksia ovat, kuinka kehittää

helppokäyttöisiä ja korkealaatuisia komponentteja ja kuinka mitata web frontend-

komponenttien laatua. Tämä diplomityö esittää vastauksena web frontend-komponenttien

laatumallin. Malli pohjautuu web frontend-kehityksen ja komponenttien erityispiirteisiin

sekä tutkimuksiin ohjelmistokomponenttien laatumalleista. Molempia aiheita käsitellään

tämän diplomityön kirjallisuuskatsaus-osiossa.

Web frontend-komponenttien laatumalli jakaa komponenttien laadun hierarkkisesti

neljään tasoon, jotka ovat laadun erityispiirteet, laadun alierityispiirteet,

laatuominaisuudet ja laatumittaukset. Laadun erityispiirteet ovat korkean tason

abstraktioita, kuten toiminnallisuus ja käytettävyys, joita tarkennetaan edelleen ali-

erityispiirteillä ja ominaisuuksilla. Laatumittaukset ovat konkreettisia ohjeita

laatuominaisuuksien mittaamiseen. Web frontend-komponenttien laatumalli koostuu 6

laadun erityispiirteestä, 13 laadun alierityispiirteestä, 30 laatuominaisuudesta ja niiden

mittauksista.

Laatumallia testattiin ja arvioitiin mittaamalla raporttieditorikomponentin laatua.

Raporttieditorikomponentti on Wapice Oy:n kehittämä. Laatuarviointi suoritettiin

mittaamalla arvot laatuominaisuuksille mallin ohjeiden mukaisesti. Lisäksi, mittausten

perusteella tuotettiin useita ehdotuksia siihen, kuinka parantaa raporttieditori-

komponentin totetuksen ja dokumentaation laatua. Kehitysehdotusten joukossa oli

esimerkiksi konfiguroitavuuden kehittäminen toteuttamalla konfiguraatio-objekti ja

tapahtumarajapinta komponentille, tarjoamalla HTML-pohjainen dokumentaatio ja

komponentin lataustyyppikattavuuden parantaminen tarjoamalla tuki CommonJS- ja

AMD-moduulityypeille.

iii

PREFACE

I would like to thank professor Hannu-Matti Järvinen for his comments and counseling

during the writing process of this thesis. Additionally, thank you my parents Hannele and

Seppo for your support to me during my studies. Thank you also my brother and sister

Markus and Susanna for your support in our studies together.

Tampere, 17.9.2017

Aleksi Sinisalo

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. WEB FRONTEND APPLICATIONS .. 3

2.1 Web application structure... 3

2.1.1 Traditional web application ... 4

2.1.2 Modern single-page application ... 5

2.2 Web frontend technologies... 6

2.2.1 HTML .. 6

2.2.2 DOM .. 8

2.2.3 JavaScript ... 8

2.2.4 CSS... 9

2.3 Web frontend frameworks .. 11

2.4 Web frontend development tools ... 11

2.5 Web frontend UI components .. 12

3. SOFTWARE COMPONENT QUALITY EVALUATION 15

3.1 General software quality evaluation ... 15

3.2 Overview of the CBSE and CBSD software component quality research ... 17

3.2.1 Model by Bertoa & Vallecillo .. 18

3.2.2 Model by Alvaro et al. ... 21

4. DERIVING A MODEL FOR WEB FRONTEND COMPONENT QUALITY

EVALUATION ... 25

4.1 Web frontend component characteristics ... 25

4.2 Web frontend component quality model .. 26

4.2.1 Functionality .. 27

4.2.2 Reliability ... 28

4.2.3 Usability ... 28

4.2.4 Efficiency ... 29

4.2.5 Maintainability ... 29

4.2.6 Portability ... 29

4.2.7 Summary of selected characteristics .. 30

4.3 Attributes and measures for the selected quality characteristics 31

4.3.1 Functionality .. 31

4.3.2 Reliability ... 34

4.3.3 Usability ... 35

4.3.4 Efficiency ... 37

4.3.5 Maintainability ... 38

4.3.6 Portability ... 39

4.3.7 Summary of attributes and measures ... 40

4.4 Summary of the web frontend component quality model 40

5. QUALITY EVALUATION WITH THE WEB FRONTEND COMPONENT

QUALITY MODEL .. 43

v

5.1 Overview of the IoT-Ticket platform ... 43

5.2 The report editor component .. 46

5.3 Report editor component quality evaluation .. 47

5.3.1 Functionality .. 47

5.3.2 Reliability ... 50

5.3.3 Usability ... 53

5.3.4 Efficiency ... 57

5.3.5 Maintainability ... 58

5.3.6 Portability ... 59

5.3.7 Summary of the quality evaluation .. 61

5.4 Quality evaluation implications and improvement suggestions 62

5.4.1 Functionality .. 62

5.4.2 Reliability ... 63

5.4.3 Usability ... 64

5.4.4 Efficiency ... 65

5.4.5 Maintainability ... 65

5.4.6 Portability ... 65

5.5 Web frontend component quality model evaluation and future work 66

6. CONCLUSIONS ... 69

REFERENCES .. 70

APPENDIX A: WEB FRONTEND COMPONENT QUALITY MODEL

vi

LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

AMD Asynchronous module definition

API Application programming interface

CBSD Component based software development

CBSE Component based software engineering

CORS Cross-origin resource sharing

COTS Commercial off the shelf

CSS Cascading style sheets

DOM Document object model

ES6 ECMAScript 6

HTML Hypertext markup language

HTTP Hypertext transfer protocol

IoT Internet of things

JSON JavaScript object notation

MVC Model view controller

NPM Node package manager

ORM Object-relational mapping

PHP Hypertext preprocessor

REST Representational state transfer

SPA Single-page application

SQL Structured query language

UI User interface

UMD Universal module definition

UML Unified modeling language

URL Uniform resource locator

XML Extensible markup language

1

1. INTRODUCTION

Web application developers are nowadays utilizing different kinds of commercial, open

source and company internally developed libraries and components. This applies to both

backend and frontend development. The libraries may range from providing mathemati-

cal functions or data handling to interactive user interface (UI) components. The aim for

utilizing these libraries and components is to lower the development time and costs by

reducing the amount of programming that needs to be done for each application.

The developers of these libraries and components naturally want their product to succeed

and be utilized in different applications. Thus, it is important for the component develop-

ers to produce a high-quality component that is easy-to-use and configurable to suit the

needs of various web applications.

JavaScript-based web frontend UI libraries or components are one branch of these librar-

ies. These libraries provide interactive widgets such as charts, dialogs and tabs that de-

velopers can configure and use in their own applications. This thesis focuses on providing

means to web frontend UI component developers to assess the quality of their component

and improve it in a way that would make it more appealing to web application developers.

Thus, the goal of this thesis is to develop a web frontend component quality model that

can be utilized to evaluate the quality of web frontend components. The aim of the quality

evaluation is to assess the overall quality of the component. Additionally, the aim of the

quality evaluation is to provide information to act as a base for suggestions on how to

improve the component quality. The web frontend component quality model is evaluated

by executing a quality evaluation of the report editor component that is extracted from a

web based internet of things product IoT-Ticket. The report editor component has been

extracted to be utilized in other applications that require its functionality. IoT-Ticket is

developed by a Finnish software and electronics company Wapice Ltd.

In order to develop a web frontend component quality model, the characteristics of web

applications, web application development and web frontend components need to be iden-

tified. Software quality and software component quality are also relevant subjects for this

thesis. Software component quality has seen some research on general software compo-

nents regarding component based software development (CBSD) and their results can

also be utilized when developing the quality model.

Thus, the contents of this thesis are first, introducing the context in Chapter 2 by providing

information of web frontend applications and their development. Chapter 3 describes the

2

software component quality evaluation by first discussing general software quality eval-

uation and second presenting results of software component quality evaluation research.

In Chapter 4, the web frontend component quality model is derived based on the software

component quality research results presented in Chapter 3 and web application character-

istics presented in Chapter 2. Chapter 5 introduces the IoT-Ticket product and the report

editor component in addition to executing the actual quality evaluation of the report editor

component utilizing the web frontend component quality model derived in Chapter 4.

Additionally, in Chapter 5, the web frontend component quality model is evaluated based

on how well it performed and produced results. Chapter 6 presents the conclusions of the

thesis.

3

2. WEB FRONTEND APPLICATIONS

With the emerge of popular JavaScript frameworks such as AngularJS and React.js the

web development industry is leaning towards transferring more application logic from

the backend to the frontend side. In addition to frameworks, the rising demands for the

frontend web development has also generated a myriad of open source and commercial

JavaScript libraries and components that developers can use in their own projects. Prac-

tically every modern web application utilizes these libraries and it has become increas-

ingly important to choose the right components from the ever-growing pool of available

solutions.

The transition in the industry has created a web application structure called single-page

application (SPA) which promotes a well-structured business logic oriented frontend

code. The separation to frontend and backend in web development is also becoming

clearer as the frontend applications are developed and deployed with their own tools in-

dependent of the backend applications.

Previously, the frontend logic was more strongly coupled with the backend logic as the

backend utilized server-side rendering to construct dynamic web pages presented to the

user. The frontend could then be perceived as a collection of JavaScript files that provided

enhancements to the pre-rendered web page rather than a standalone application. (Fink &

Flatow 2014a, para 2) Modern web frontend application however, developed usually with

the aid of a framework, can be identified as a distinct entity separated from the backend.

Thus, modern web frontend application is the part of a web application that the user di-

rectly interacts with. The part visible to the user of the frontend application is called a

user interface (UI). The frontend application is usually accessed by a web browser soft-

ware but it is also possible to develop and utilize a separate client software.

Usually web frontend application is communicating with web backend application that,

for example, offers access to user authentication service and data from persistent data

storage. Though, it is also possible to develop a frontend application with no backend

connection and run it on a browser, its uses are mainly limited to simple non-data related

tasks or UI demonstration purposes.

2.1 Web application structure

Together with a backend application, a web frontend application forms an entity called

web application. Web application is running on a web server software that receives and

processes requests from clients. Web applications can be roughly divided into two cate-

gories: the traditional web application and the single page application. Communication

4

between the clients and the web server is achieved by using the hypertext transfer protocol

(HTTP).

2.1.1 Traditional web application

The traditional web application has a server-centric approach. This implies that almost all

user interactions are sent as HTTP requests to the web server. One characteristic of tradi-

tional web applications is that the browser page is refreshed every time the server re-

sponds to a HTTP request of the client. The requests can be made to directly access static

resources on the server such as images or hypertext markup language (HTML) files. Ad-

ditionally, with the introduction of server-side scripting languages like hypertext prepro-

cessor (PHP) the server can also provide dynamic content by executing server side scripts

to generate HTML pages that are then sent as HTTP response to the client. (Fink & Flatow

2014a, para 7)

However, nowadays traditional web applications have usually implemented a router

which handles the requests which implies that the user does not have to access the server

files directly by their name. The use of a router usually implies the use of the Model-

View-Controller pattern (MVC) or similar that divides the web application logic to dis-

tinct parts. In the case of the MVC the router may be configured to map uniform resource

locator (URL) routes to controller action methods for example route /News/Create could

be mapped to NewsController's Create method. The called method has access to the

HTTP request and its parameters and may use them to form the response and return it to

the client. When router is routing the HTTP request it has access to the HTTP header

fields which allows the reuse of routes for different actions to the same resource. For

example, /News/Create with HTTP GET could be used to return a view for creating a

news item and HTTP POST could be used to create a news item (docs.microsoft.com

2017a). Web application that has implemented a router may still serve static files but the

router will map the reserved URL routes to the controller methods. (msdn.microsoft.com

2017)

Web application is accessed by the user through views on the browser. These views may

be constructed by the server using HTML syntax in combination with templating engine

language. When the controller loads a view to be sent as a response to the client's request

it passes view data parameters or view model object to the view which allows the tem-

plating engine to access the data it needs to show on the view. Typically, templating en-

gines provide support for more advanced templating other than printing the view model

values on the view. For example, support for iterating over arrays or logical operations

based on view model values. After the view is constructed the application may send a

HTTP response with the HTML content of the view to the client. (docs.microsoft.com

2017b; docs.microsoft.com 2017c)

5

Web application usually needs to provide persistent data storage to store business data.

This is usually achieved by using database software. Database software stores application

data to disk on the server it is running on. Most commonly used database type is relational

database which stores data in tables. Tables consist of rows and columns. Rows represent

business data in the application for example a news item. Columns in a row represent

properties of the rows for example title, author and text content of the news item. Rela-

tional database can be queried with Structured query language (SQL) to receive the data

needed by the application. For example, ”get news item with author A.S.” would translate

to SQL as SELECT * FROM NewsItems WHERE Author = 'A.S.'. (docs.or-

acle.com 2017)

Usually database is accessed on application level by utilizing object-relational mapping

(ORM) or similar technique that abstracts the database handling. Thus, the data can be

accessed using the same programming language as the application and the database rows

are mapped to objects called models in the MVC pattern. The ORM may utilize SQL in

its internal implementation but programmers may use language supported queries that

may be more intuitive. (entityframeworktutorial.net 2017)

2.1.2 Modern single-page application

The fundamental difference of SPA to traditional web application is that the client content

of the SPA consists of a single HTML page called entry point while traditional web ap-

plication constructs different HTML pages based on user's request. The SPA entry point

page dynamically alters its contents in response to user's actions. With dynamic content

alteration, the client doesn't need to send request to the server to change the ”web page”

and a full page reload is not required by the browser. The content alteration is achieved

by utilizing browser supported script language called JavaScript. Usually SPA structure

is achieved by programming with the aid of a frontend framework which supports the

division of the pages to modules like the views in traditional web application. (Fink &

Flatow 2014a, para 8)

Traditional web application provides the router to give human readable URLs to the view

pages. Additionally, requesting an individual page for each request also enables the

browser's history functionalities: back and forward. Similar effects are possible with SPA

even though its content consists of a single HTML page. The routing can be defined on

the frontend code to load a specific frontend module as the page content when a certain

URL is entered usually by utilizing a frontend framework or library that is using the

HTML5 history API. (Fink & Flatow 2014b, para 5)

SPA is usually connected to backend Representational State Transfer (REST) API. REST

architecture sets several restrictions, for example, to the structure and the HTTP method

usage of the API. The API is used, for example, to authenticate users and to access per-

sistent data storage to load data content to the frontend application. When certain module

6

is loaded on a SPA it usually sends an XML HTTP Request to the API using Asynchro-

nous JavaScript and XML (AJAX) technology. AJAX request is like a regular HTTP

request and its response is usually in extensible markup language (XML) or JavaScript

object notation (JSON) format. Frontend application can parse the response data and

show it on the page content utilizing JavaScript. (Fink & Flatow 2014a, para 8; Fink &

Flatow 2014b, para 8)

Additionally, when API is operating on a different web-server or web server port than the

frontend application cross-origin resource sharing (CORS) must be considered. CORS is

a mechanism that allows requests to be made to a different domain than from where the

request originated which is normally prevented by same origin policy. For example, re-

quest from localhost:80 (frontend application) to localhost:8080 (REST API). By default,

CORS is disabled and must be enabled for specific domains the API wants to allow access

from. (developer.mozilla.org 2017b)

2.2 Web frontend technologies

Web frontend development utilizes many technologies. The primary technologies that are

used in practically every web frontend application are HTML, document object model

(DOM), JavaScript and cascading style sheets (CSS).

2.2.1 HTML

Hypertext Markup Language (HTML) is a language used to construct web pages. HTML

documents are interpreted by the web browsers that form the visual representation of the

HTML document. While the HTML itself is standardized all the browsers are not inter-

preting it the same way. Therefore, there may be differences in the presentation of the

same HTML document across different browsers and cross browser testing is usually re-

quired to verify that the web application utilizing HTML is operating correctly on all

required browsers. (Brooks 2007, p. 1)

The HTML document consists of elements. Elements in turn consist of tags and content.

Majority of the elements have a starting tag and an ending tag but there are also elements

which consist only of a single tag. The starting and ending tags define the ”body” of the

element and the content related to the element is inserted between the tags. The browser

interprets the element and applies its effect to its content which can be observed on the

visual representation of the HTML document. (Freeman 2011, pp. 13-15)

The elements have relationships between themselves depending on their position in rela-

tion to each other in the HTML document. The HTML document supports a tree like

structure which allows elements to contain other elements. An element that contains other

elements is called a parent. An element that is defined inside another element is called a

child element. Two elements that are child elements to the same parent element are called

7

siblings. An element that is more than one level deep in the element tree is called a de-

scendant to the parent element that is more than one level up in the element tree. A parent

element that is more than one level up in the element tree is called an ancestor. In addition

to providing hierarchical structure to the HTML document the element relationships can

also be used to apply Cascading Style Sheets (CSS) styles to elements that are in similar

position in the element tree. (Freeman 2011, p. 23) CSS is introduced later in this chapter.

HTML elements may be configured by multiple optional attributes. Some attributes are

global that can be used with any element and some are element specific. Most attributes

are name-value pairs that provide extra information about the element or configure it in

some way. For example, an a-element which is used to create hyperlinks has a href at-

tribute which can be used to provide a reference to another location. (Freeman 2011, p.

19)

The most important global attributes are the class and id attributes. The class attribute is

used to classify or categorize elements (Freeman 2011, p. 26). Multiple elements may

have the same class attribute which usually implies that they have a similar purpose in

the application. Element may also have multiple values for class attribute separated by

space character (Freeman 2011, p. 26). The main use cases for class attribute are applying

CSS styles to elements with certain class attribute value or executing JavaScript code in

the context of those elements (Freeman 2011, pp. 27-28). The id attribute functions sim-

ilar to class attribute except that it provides a unique identifier to an element (Freeman

2011, p. 32). While the id attribute value should be unique in an HTML document

(W3.org 2017) it is still possible to assign multiple elements the same id. However, this

may cause unexpected results when executing scripts that rely on the id attribute.

While some HTML elements affect the visual representation of the web page their main

purpose is to provide structure for the content. For example, the H1 element describes a

level 1 heading and the p element describes a text paragraph. The use of these elements

should only provide information on what the content is, not how it should be presented.

Mainly for historical reasons originating from the early versions of HTML some elements

still affect the representation of the content. Now CSS has been widely accepted to pro-

vide the means to alter the presentation of the content separate from the structure. (Free-

man 2011, p. 16)

A minimum valid HTML document contains html, head, title and body elements (Brooks

2007, p. 1) and document type declaration at the start of the document. These elements

are required for HTML document to be valid but most browsers can interpret also invalid

HTML documents. The html element contains all other elements on the HTML document.

The head element contains metadata information of the document including the title ele-

ment. Head element may also be used to load CSS and script files. The body element

contains the displayable content of the HTLM document. (Freeman 2011, pp. 22-23)

8

2.2.2 DOM

Document Object Model (DOM) is an object model representing the structure of an

HTML document. DOM allows programmatical manipulation of the HTML document

by utilizing JavaScript scripting language. With DOM it is possible, for example, to dy-

namically create and remove elements and listen to events that elements send in response

to user actions. In DOM, each element in the HTML document is represented by a JavaS-

cript object that contains properties and methods that can be used to manipulate the ele-

ment. Most browsers provide native JavaScript support to access DOM but there are also

JavaScript libraries such as jQuery that can be used to access DOM. (Freeman 2011, pp.

633-635)

2.2.3 JavaScript

JavaScript is an interpreted object-oriented programming language that is executed on the

client side (Brooks 2007, p. 3). JavaScript does not need to be compiled and most web

browsers have an interpreter which executes the JavaScript code. JavaScript was devel-

oped to create interactive HTLM pages by utilizing the DOM without the need of loading

a new HTML page from the server. (Brooks 2007, pp. 3-4)

The simplest way of including JavaScript code into a HTML page is by using the script

tags. The JavaScript code is written inside the script tags as their content. Browser will

execute the JavaScript when the HTML document is loaded. (Brooks 2007, p. 9) An al-

ternative to writing the JavaScript code inside the script tags is to provide a path to a

JavaScript file using the script tag src attribute (Brooks 2007, p. 31). While it is possible

to write all JavaScript code in the HTML pages inside the script tags, using separate Ja-

vaScript source files is the advised way when writing web applications.

The most important concepts in JavaScript programming are variables, functions and ob-

jects. JavaScript is a loosely typed language which indicates that variable types are not

explicitly defined. The variable type will be determined by the value assigned to the var-

iable. A variable is also not locked into a certain type once a value has been assigned to

it. The type may change if a new value is assigned into the same variable. In addition to

primitive types (string, number, Boolean), it is also possible to assign functions or objects

into a variable. This aspect of the JavaScript language might be controversial to program-

mers that are used to strongly typed languages. Thus, JavaScript preprocessors such as

TypeScript (typescriptlang.org 2017) have been developed that provide strong typing and

other features such as interfaces to the JavaScript (Fink & Flatow 2014a, para. 6). (Free-

man 2011, p. 77)

In JavaScript, like in other programming languages, functions can be defined to accept

parameters and return a value. Function parameters and return values are also loosely

typed in JavaScript implying that the caller of the function may insert expressions of any

9

type into the parameters. Caller may also decide to omit any parameters when calling a

function. In that case, the missing parameters will be undefined which is a reserved word

in JavaScript for values that have not been defined. Caller may also present more param-

eters than required to the function. Then, the additional parameters are ignored. (Freeman

2011, pp. 75-77)

JavaScript objects, unlike in strongly typed languages, are not instances of any specific

class. They are dynamic in nature and can be manipulated at will before and after their

initialization. Objects have properties which can be any types allowed to regular variables

including primitive types, other objects and functions. Functions as object properties are

called methods. If methods want to access other properties of the object it can be done

through this keyword. (Freeman 2011, pp. 79-81)

Function declares a private scope in JavaScript. Variable that is declared inside a function

will only be visible inside the function and is called a local variable. Variables that are

declared outside functions are called global variables and they may be used also inside

any functions. Global variables can also be used by any other scripts that are loaded into

the same HTML page after the global variable declaration. (Freeman 2011, p. 77)

As stated before, JavaScript can be utilized in manipulating DOM. For example, a simple

event handler can be attached to a button element click to change the text inside an HTML

element with the JavaScript code shown on Figure 2.1.

2.2.4 CSS

Cascading Style Sheets (CSS) are used to modify the presentation of an HTML document.

Styles are key-value pairs where key is a CSS property name and value is a value for the

property. (Freeman 2011, pp. 39-40) There are three methods of applying CSS styles to

an HTML document. Inline styles, embedded styles and external styles. Inline styles are

Figure 2.1 JavaScript event handler

10

using the global style attribute on HTML elements. Style attribute accepts CSS style key-

value pairs as its value and formats the presentation of the element appropriately. Embed-

ded styles are defined inside style tags in the head section of an HTML page. External

styles utilize styles that are defined in a separate CSS file and loaded to the HTML page

in the head section using the link tag. External style sheets are the preferred way of uti-

lizing the CSS on web applications because that ensures the separation of presentation

and content. (Collison 2006, pp. 5-7)

Sometimes there may be situations when element styling needs to be changed in response

to user interaction. This is possible through JavaScript DOM manipulation. Element style

can be changed by assigning a certain class or id to an element or directly accessing the

style object of the element through DOM (W3Schools.com 2017).

Web applications are nowadays used by multiple different devices with different screen

sizes. CSS media queries can be utilized to provide responsive web applications that con-

form to different screen sizes. Media queries can be used for example, to identify user's

screen size and load a different style sheet accordingly. (developer.mozilla.org 2017a)

There are also existing frameworks such as Bootstrap that help styling frontend web ap-

plications (getbootstrap.com 2017). These frameworks provide themes that can be used

for example, by defining certain class attribute values to elements. Styling frameworks

can also provide functionality in addition to styling for example, styled dialogs that re-

spond to user interaction. Frameworks can also aid in developing a responsive web appli-

cation since they often have inbuilt responsiveness to different screen sizes.

How CSS can be utilized with style tags to for example, draw borders around a p-element

and change the element background color can be seen on Figure 2.2.

Figure 2.2 CSS styles on p element

11

2.3 Web frontend frameworks

When developing a modern single page application, it is often required to utilize a

frontend framework. Frontend frameworks introduce design patterns such as MVC to the

frontend development that have been used in traditional web application server side struc-

ture or desktop applications. One of the main reasons the frontend frameworks are used

is that they provide a defined structure and separate the frontend code into maintainable

and testable parts. In addition to providing code structure the web frontend frameworks

can also contain many built-in features required in a single page application such as client-

side routing, communication with the server and HTML templating. (Fink & Flatow

2014b, para. 4)

Many web frontend frameworks are opinionated in a way that they guide developers to a

certain application structure that the framework supports. This may limit the developer's

freedom on some cases but also offers specific building blocks for creating a well-struc-

tured application. Many popular frameworks also usually offer documentation and sup-

port through active developer community. (Osmani 2012)

2.4 Web frontend development tools

Traditionally, web frontend development has not required any special tools in addition to

a text editor for writing the code. Due to the static nature of HTML and CSS and the

interpretation of the JavaScript, the frontend development has quick feedback loops after

developer has made changes to the source code. However, the increasing amount of com-

plexity in the frontend code and growing amount of source files including the 3rd party

library dependencies has caused the need for frontend code ”compilation” such as mini-

fication and bundling of the source files to reduce the load on browsers when initializing

the application (docs.webplatform.org 2017). The utilization of JavaScript preprocessors

also requires the frontend application to be compiled to JavaScript before browsers can

run the application (Fink & Flatow 2014a, para. 6).

Some tools that have been developed to answer to these requirements are called JavaS-

cript task runners such as Grunt and Gulp. These tools allow the developers to automate

tasks for example, for compiling and deploying frontend applications and running auto-

mated tests by defining the tasks in JavaScript and running them from command line.

(Ambler & Cloud 2015a, para. 1)

A need for simple and effective module loading for frontend applications arises as the

amount of dependencies increase. It is possible to include all dependencies by utilizing

the HTML script tags but it becomes increasingly tedious as the web application size

grows (Bos 2015; Ambler & Cloud 2015b, para. 1). CommonJS used by Node.js and

implemented for frontend use by the JavaScript library Browserify and Asynchronous

Module Definition (AMD) implemented by the JavaScript library RequireJS provide a

12

way of loading dependencies by referencing them from other JavaScript files. The de-

pendencies form a tree that ensures that every dependency is loaded in correct order.

(Ambler & Cloud 2015b, para. 1)

Node package manager (NPM) has been used in Node.js backend environments for man-

aging dependencies to external libraries. However, it can also be utilized in web frontend

applications for dependency management and for running scripts similar to task runners.

Together with EcmaScript6 (ES6) modules, that are not yet supported by browsers but

available through transpiling to CommonJS or AMD, NPM packages provide a simple

way of handling web frontend application dependencies. As stated before, ES6 modules

are not yet supported by browsers but they can be seen as the future standard for handling

frontend JavaScript modules. (Bos 2015; Brown 2016)

In addition to Browserify and RequireJS, there is also a module bundler called Webpack

that supports loading of CommonJS, AMD and ES6 modules. (webpack.org 2017)

2.5 Web frontend UI components

There are different types of components and libraries used in frontend web development.

For example, they might offer helper functions for data manipulation, supply routing or

AJAX functionality or provide interactive widgets to use in web applications UI. In the

context of this thesis we are more interested in the UI related components. Frontend UI

components utilize HTML, JavaScript and CSS to provide functionality and styling.

One JavaScript library that provides multiple widgets that can be used in frontend web

development projects is called jQuery UI (jqueryui.com 2017). It is widely used and its

widgets provide simple configurations and methods to manipulate the widgets to be used

in an application. jQuery UI tabs widget will be used as an example for a web frontend

UI component. Image of the tabs widget can be seen on Figure 2.3.

Figure 2.3 jQuery UI tabs widget

UI components usually require a HTML element or elements to act as a “container” for

the widget. The tabs widget requires a div element and inside it an unordered list (ul)

HTML element with a list item (li) element for each tab to provide the tab navigation.

Additionally, the actual content of each tab is inserted into their respective div elements.

13

The tabs widget can be attached to the DOM by calling the tabs method, provided by the

jQuery UI library, to the container div DOM element. Calling the tabs method renders

the tabs widget on the provided markup and will make the widget visible to the user. The

tabs widget has a default CSS styling provided by the jQuery UI library. However, devel-

opers can also provide their own stylesheet to override the defaults as needed. (Wellman

2009, para. 2-3; jqueryui.com 2017)

The HTML markup and JavaScript required by the tabs widget can be seen on Figure 2.4.

Figure 2.4 jQuery UI tabs HTML markup and JavaScript

In addition to default functionality, the UI components can usually be provided with con-

figurations that affect the way the component behaves. In the case of the tabs component

the extra configurations can be provided as a JavaScript object to the jQuery UI tabs

method. For example, developer may provide active option with the id attribute value of

the tab content element to provide the default active tab or event option with name of the

mouse event as value used to activate a tab for example click or double click. The con-

figurations can be passed to the widget when initialized but also after initialization. (Well-

man 2009, para. 4; jqueryui.com 2017)

UI components may also provide methods that perform actions on the component. For

example, developer can disable all the tabs of the tabs widget by calling the disable

method on the widget. Some of the methods may provide an alternative to using the con-

figuration options, for example, tabs can also be disabled by the disabled option provided

14

with a value of an array of tab indexes that are to be disabled. (Wellman 2009, para. 6;

jqueryui.com 2017)

UI components can send events on specific situations in response to user interaction. De-

veloper can assign callback functions to these events to react to the situation that caused

the event. For example, the tabs widget provides an activate event which fires when a tab

is activated. The event object and other event related information may be given to the

provided callback method as parameters. (Wellman 2009, para. 5; jqueryui.com 2017)

As stated in Section 2.4, it is possible for modern web applications to include their de-

pendencies, including the UI components, as NPM packages. The NPM packages can

then be used in the JavaScript files by utilizing the CommonJS or AMD.

15

3. SOFTWARE COMPONENT QUALITY EVALUA-

TION

Software component quality and its evaluation has been researched in the context of com-

ponent-based software development (CBSD) and component-based software engineering

(CBSE). CBSD promotes software development by constructing the system by integrat-

ing existing software components in a well-defined architecture rather than implementing

everything from scratch (Kaur et al. 2009). CBSD utilizes software components available

in the market called commercial off the shelf (COTS) components which are often black

boxed implying that the component source code is not available to the developers (Al-

meida & Calistru 2011). Thus, the developers must rely on documentation and testing to

evaluate the component suitability to a project. Various quality models introduced by

research and listed by Almeida & Calistru (2011) can be utilized in the black box assess-

ment.

According to the work of Almeida & Calistru (2011) the research concerning the quality

evaluation of components has been derived from the traditional software quality evalua-

tion and is based mainly on ISO 9126 (now replaced by ISO 25010:2011), which is dis-

cussed later in this chapter. The research has been focusing mostly on the demands the

CBSD architecture sets on the components and the component selection process. Though,

the point of view on the research is more on the side of the component consumer the

results can also be utilized by the component developers to improve the component qual-

ity in the eyes of the component consumers.

There is a notable lack of research in the field of quality evaluation of web libraries and

components, especially on the frontend side. Thus, in the context of this thesis the CBSD

ideas are attempted to be applied to the web frontend development where often 3rd party

libraries are utilized.

3.1 General software quality evaluation

According to the definition by IEEE (1990) software quality is:

1. The degree to which a system, component, or process meets specified require-

ments.

2. The degree to which a system, component, or process meets customer or user

needs or expectations.

This definition leaves the essence of quality still quite abstract because the customer and

user needs and expectations vary depending on the software project. Thus, there is also a

16

need for a quality model that attempts to describe the characteristics that form the soft-

ware quality.

Firesmith (2005) presents software quality model as a hierarchical model that divides the

quality into four levels with following descriptions:

• Quality factors (characteristics): high-level characteristics or attributes of a sys-

tem that capture major aspects of its quality (e.g., performance or usability).

• Quality sub factors (sub-characteristics): major components of a quality factor or

another quality sub factor that capture a subordinate aspect of the quality of a

system (e.g., throughput or learnability).

• Quality criteria (attributes): specific descriptions of a system that provide evi-

dence either for or against the existence of a specific quality factor or sub factor.

• Quality measures (metrics): gauges that quantify a quality criterion and thus make

it measurable, objective, and unambiguous.

A quality evaluation framework ISO 9126 quality model introduces six quality factors or

characteristics that can be used to evaluate software quality. The characteristics are func-

tionality, reliability, usability, efficiency, maintainability and portability (O'Regan 2014).

ISO 9126 has been replaced by ISO/IEC 25010:2011 which introduces product quality

model with eight quality characteristics. These characteristics by ISO/IEC (2011) and

their definitions can be seen on Table 3.1.

Table 3.1 ISO/IEC 25010:2011 Quality characteristics

Characteristic Description

Functional

suitability

Degree to which a product or system provides functions that meet stated and

implied needs when used under specified conditions.

Performance

efficiency
Performance relative to the amount of resources used under stated condi-

tions.

Compatibility

Degree to which a product, system or component can exchange information

with other products, systems or components, and/or perform its required

functions, while sharing the same hardware or software environment.

Usability Degree to which a product or system can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a

specified context of use.

Reliability Degree to which a system, product or component performs specified func-

tions under specified conditions for a specified period of time.

Security

Degree to which a product or system protects information and data so that

persons or other products or systems have the degree of data access appro-

priate to their types and levels of authorization.

Maintainability

Degree of effectiveness and efficiency with which a product or system can

be modified by the intended maintainers.

Portability Degree of effectiveness and efficiency with which a system, product or com-

ponent can be transferred from one hardware, software or other operational

or usage environment to another.

17

The characteristics introduced in Table 3.1 are divided into sub-characteristics that further

describe the main characteristic. The characteristics are not measurable by themselves as

Firesmith's (2005) quality model definition suggests, and related attributes as well as the

measurements must be defined to measure the software quality. ISO/IEC (2011) defines

the attributes as inherent property or characteristic of an entity that can be distinguished

quantitatively or qualitatively by human or automated means” and measurement as ”set

of operations having the object of determining a value of a measure”.

An example of a quality measurement presented in quality model by Alvaro et al. (2006)

is shown in Table 3.2.

Table 3.2 Quality measurement example

Characteristic Sub-characteristic Attribute Measurement

Performance

efficiency

Time behaviour

Throughput

Amount of outputs pro-

duced with success / period

of time

3.2 Overview of the CBSE and CBSD software component qual-

ity research

As discussed earlier in this chapter, the component quality evaluation has been researched

in the context of CBSD and CBSE. Almeida & Calistru (2011) provide introduction to

the CBSE concept in their paper and present some benefits and problems that the CBSE

brings. According to their presentation the CBSE utilizes both the COTS components and

components that have been developed inside the company.

Almeida & Calistru (2011) present that CBSE offers benefits in reduced time to market

and reduced development costs. They also state that using components in different sys-

tems increases the component quality because they are tested continuously in different

conditions. Furthermore, they present that standard domain will be formed when compo-

nents are exposed to different environments within the domain. When the components

are utilized in this standard domain they will become well-defined and can be reused more

easily. Almeida & Calistru (2011) also present the similarity of CBSE to industrial prod-

uct manufacturing where standard components or parts can be used in multiple products.

Thus, standardized software components could also be used to produce multiple large

systems efficiently.

However, Almeida & Calistru (2011) also point out difficulties concerning the CBSE

approach. Component version compatibility can be difficult to manage because compo-

nent versions may change independently of the system they are used in. Components may

also be available in multiple different versions. Almeida & Calistru (2011) also present

18

that components need to be understood in order to utilize them in an application in con-

trast to a piece of software that the developers have programmed themselves. Component

selection is also not a trivial task if there are multiple components that can fulfill the

requirements. Developers have to weigh the components in accordance to the functional

and non-functional requirements of the developed system. Component verification and

validation is often difficult because the components are usually black-box and it has to be

done mainly by examining the component specification or API. Almeida & Calistru

(2011) also discuss that regression testing on component-based system may cause con-

cerns if component testing information is not available. Thus, developers have to use their

own judgement to determine the test cases that need to be run in order to complete a

successful regression test run. Component-based system maintenance may also need extra

attention if there are changes in component versions or availability.

Though, there are existing models to evaluate software quality such as ISO 9126, they are

very general and not easily applied into software component quality evaluation (Bertoa

et al. 2005). Almeida & Calistru (2011) list in their study various quality models devel-

oped to be used with CBSD. They present a comparison of the models in their paper and

conclude with pointing out that models by Bertoa & Vallecillo (2002) and Alvaro et al.

(2006) are the most cited and used ones. These two models are introduced later in this

chapter. An earlier comparison committed by Kalaimagal & Srinivasan (2008) presents

model by Alvaro et al. as the most consistent and suited for component quality evaluation.

However, Kalaimagal & Srinivasan (2008) also point out that the proposed quality mod-

els including Alvaro's present too many quality attributes to be measured which may lead

to confusion. Thus, it is suggested as future work that a comprehensive model with min-

imum amount of quality attributes would be presented to help standardizing the compo-

nent quality evaluation (Kalaimagal & Srinivasan 2008).

3.2.1 Model by Bertoa & Vallecillo

The motivation for Bertoa & Vallecillo (2002) to develop their component quality model

was that the existing quality models were too general to be applied to the specific aspects

of software components. They also felt that the software engineering community had only

focused on the functionalities of the components and ignored the quality aspects. Their

quality model attempts to describe relevant quality attributes and measures to the software

components using the ISO 9126 quality model as the base.

Model by Bertoa & Vallecillo (2002) divides the defined quality characteristics and at-

tributes into two categories based on if they can be evaluated run time or by observing

the component during its life cycle. Some of the characteristics presented in ISO 9126

were removed and some new ones were added. Additionally, Bertoa & Vallecillo also

changed the definition of some characteristics to be more suitable when evaluating soft-

ware component quality. The component quality characteristics are presented in Table

3.3.

19

Table 3.3 Component quality characteristics by Bertoa & Vallecillo

Characteristics Sub-characteristics

(Runtime)

Sub-characteristics (Life-

cycle)

Functionality Accuracy

Security

Suitability
Interoperability

Compliance

Compatibility

Reliability Recoverability Maturity

Usability Learnability
Understandability

Operability

Complexity

Efficiency Time behavior
Resource behavior

Maintainability Changeability
Testability

The major changes regarding ISO 9126 according to Bertoa & Vallecillo (2002) are:

• Sub-characteristic Compatibility has been added to Functionality to assess if

newer versions of the same component are compatible with older versions.

• Usability has been redefined to describe the component's ability to be utilized by

developers when developing software instead of being related to the actual soft-

ware end user usability.

• Sub-characteristic Complexity has been added to Usability to measure the diffi-

culty to use the component or integrate it into a system.

• Portability characteristic is removed because it is assumed to be intrinsic to com-

ponents.

• Fault tolerance, stability and analyzability sub-characteristics are removed be-

cause they are seen as not applicable to components.

Bertoa & Vallecillo (2002) define five measurement types that can be used to measure

component attributes:

• Integer: Integer value that describes the number of measurable units for an attrib-

ute.

• Presence: Boolean value that indicates if attribute is present and string value that

describes how the attribute is implemented.

• Time: Integer value that describes time with string value that describes units.

• Level: Integer value that describes effort or ability between 0-4 (Very low, Low,

Medium, High, Very high).

• Ratio: Describes percentages by integer value between 0-100.

20

Additionally, the model by Bertoa & Vallecillo (2002) utilizes indices which are derived

measures based on other existing metrics types. For example, the complexity ratio of a

component is calculated by dividing the number of configurable parameters by the num-

ber of interfaces.

As mentioned earlier, the quality attributes are divided into two categories. The quality

attributes that can be evaluated runtime are shown in Table 3.4.

Table 3.4 Component runtime quality attributes on Bertoa's & Vallecillo's model

Sub-characteristic Attribute Type

Accuracy 1. Precision

2. Computational Accuracy

Ratio

Ratio

Security 3. Data Encryption

4. Controllability

5. Auditability

Presence

Presence

Presence

Recoverability 6. Serializable

7. Persistent

8. Transactional

9. Error Handling

Presence

Presence

Presence

Presence

Time behavior 10. Response time

11. Throughput

12. Capacity

Time

Integer

Integer

Resource behavior 13. Memory utilization

14. Disk utilization

Integer

Integer

The quality attributes that can be evaluated during component life cycle are presented in

Table 3.5.

Table 3.5 Component life-cycle quality attributes on Bertoa's & Vallecillo's model

Sub-characteristic Attribute Type

Suitability 1. Coverage
2. Excess

3. Service Implementation Coverage

Ratio
Ratio

Ratio

Interoperability 4. Data Compatibility Presence

Compliance 5. Standardization
6. Certification

Presence
Presence

Compatibility 7. Backwards Compatibility Presence

Maturity 8. Volatility
9. Evolvability

10. Failure removal

Time
Integer

Integer

Learnability 11. Time to use
12. Time to configure

13. Time to admin

14. Time to expertise

Time
Time

Time

Time

Understandability 15. User Documentation
16. Help System

Level
Level

21

Sub-characteristic Attribute Type

17. Computer Documentation

18. Training

19. Demonstration Coverage

Presence

Presence

Ratio

Operability 20. Effort for operating
21. Tailorability

22. Administrability

Level
Level

Level

Complexity 23. Provided Interfaces
24. Required Interfaces

25. Complexity Ratio

Integer
Integer

Index

Changeability 26. Customizability
27. Customizability Ratio

28. Change Control Capability

Integer
Index

Level

Testability 29. Start-up self-test
30. Tests suite provided

Presence
Presence

Bertoa & Vallecillo (2002) present descriptions for the attribute measurement in their

paper and they are utilized in Section 4.3 where the measures for web frontend component

quality model are defined.

3.2.2 Model by Alvaro et al.

The motivation for Alvaro et al. (2006) to present their component quality model was to

attend to the problems that utilizing low-quality components can cause to the software

quality. The aim of the model is to improve the reliability of the components available in

the market and thus, support the emergence of a mature software component market.

Alvaro et al. (2006) also conducted a preliminary study on two separate component mar-

kets to assess the viability of the presented quality model. The study found out that the

model covered all the information that was available at the component markets they con-

ducted their study in. Additionally, the study reached a conclusion that there is still an

existing gap between the information provided by the component providers and the in-

formation required by the quality model.

Like Bertoa & Vallecillo (2002), Alvaro et al. (2006) present their model based on ISO

9126. Alvaro et al. also utilize the earlier work by Bertoa & Vallecillo (2002) as well as

other research. The researchers introduce all six main quality characteristics that can be

found in ISO 9126 but also include a new characteristic: marketability. The sub-charac-

teristics are also divided to runtime and life-cycle categories. Component quality charac-

teristics by Alvaro et al. (2006) are presented in Table 3.6.

22

Table 3.6 Component quality characteristics by Alvaro et al.

Characteristics Sub-characteristics

(Runtime)

Sub-characteristics (Life-

cycle)

Functionality Accuracy

Security

Suitability
Interoperability

Compliance

Self-contained

Reliability Fault tolerance

Recoverability

Maturity

Usability Configurability Understandability

Learnability
Operability

Efficiency Time behavior
Resource behavior

Scalability

Maintainability Stability Changeability
Testability

Portability Deployability Replaceability

Adaptability

Reusability

Marketability Development time

Cost

Time to market

Targeted market

Affordability

The most notable changes compared to ISO 9126 in model according to Alvaro et al.

(2006) are:

• Sub-characteristic self-contained has been added to functionality because the re-

searchers find it important that component performs its functionality within itself

without dependencies to other components.

• Sub-characteristic configurability has been added to usability because it is essen-

tial for developers to be able to determine how easy it is to configure the compo-

nent to be used in a certain context.

• Sub-characteristic scalability has been added to efficiency because it is important

for developers to know if the component can support the data volumes needed by

the application.

• Analyzability sub-characteristic has been removed from maintainability because

according to research the analyzability characteristics are not present in compo-

nents.

• Sub-characteristic reusability has been added to portability because reusability is

one of the main motivations for component based development.

23

• The inclusion of marketability characteristics motivated by providing information

to developers to assess the credibility of the component provider.

• Redefinition of usability characteristic as component's ability to be utilized by

developers similar to model by Bertoa & Vallecillo (2002).

• Sub-characteristic installability has been renamed to deployability in portability

to better reflect the component context.

In their model Alvaro et al. (2006) define three measure types to be used when measuring

quality attributes. They have same definitions as in model by Bertoa & Vallecillo (2002)

described in chapter 3.2.1. The measure types are presence, integer and ratio.

Alvaro et al. (2006) provide listings for their quality attributes and the measure types used

to determine values for the attributes. The attributes for runtime evaluation are shown in

Table 3.7.

Table 3.7 Component runtime quality attributes on Alvaro's model

Sub-characteristic Attribute Type

Accuracy 1. Correctness Ratio

Security 2. Data Encryption

3. Controllability

4. Auditability

Presence

Ratio

Presence

Recoverability 5. Error Handling Presence

Fault Tolerance 6. Mechanism available

7. Mechanism efficiency

Presence

Ratio

Configurability 8. Effort to configure Integer

Time behavior 9. Response time

10. Latency and processing capacity

Integer

Integer

Resource behavior 11. Memory usage

12. Disk usage

Integer

Integer

Scalability 13. Processing capacity Ratio

Stability 14. Modifiability Ratio

Deployability 15. Complexity level Integer

The quality attributes that need to be measured during component life cycle are presented

in Table 3.8.

24

Table 3.8 Component life-cycle quality attributes on Alvaro's model

Sub-characteristic Attribute Type

Suitability 1. Coverage

2. Completeness

3. Pre-conditioned and Post-conditioned

4. Proofs of pre-conditions and post-conditions

Ratio

Ratio

Presence

Presence

Interoperability 5. Data Compatibility Presence

Compliance 6. Standardization

7. Certification

Presence

Presence

Self-contained 8. Dependability Ratio

Maturity 9. Volatility

10. Failure removal

Integer

Integer

Understandability 11. Documentation available

12. Documentation quality

Presence

Ratio

Learnability 13. Time and effort to (use, configure, admin

and expertise) the component.

Integer

Operability 14. Complexity level

15. Provided Interfaces

16. Required Interfaces

17. Effort for operating

Ratio

Integer

Integer

Presence

Changeability 18. Extensibility

19. Customizability

Ratio

Presence

Testability 20. Test suite provided

21. Extensive component test cases

22. Component tests in a specific environment

23. Proofs the components

Presence

Presence

Presence

Presence

Alvaro et al. present some insight on how to measure the attributes on their model (2005,

2006) but these are used later on Section 4.3 when the web frontend component quality

model is presented.

25

4. DERIVING A MODEL FOR WEB FRONTEND

COMPONENT QUALITY EVALUATION

The previous chapter discussed general component quality and component quality models

as they have been researched in the context of CBSD and CBSE. The research has been

focusing on black box COTS components. The aim of this chapter is to derive a quality

model that can be used to evaluate web frontend component quality by utilizing the ideas

and results from CBSD quality research. Thus, the CBSD quality research and the quality

models it has produced, as well as the web development context information provided in

the earlier chapters of this thesis, are used as a base for the model.

The aim for the model is to be simple to use and provide relevant information in the

context of web frontend components. Therefore, some initial requirements are set for the

model:

1. Focus on quality attributes that are important for web components.

2. Model is to be kept simple by avoiding too many quality attributes.

3. Select quality attributes that can be measured with adequate precision.

4.1 Web frontend component characteristics

First, to be able to construct a quality model for web front end components, an identifi-

cation of frontend component specific characteristics is required. These characteristics

will be extracted from the earlier chapters of this thesis where web frontend development

is discussed.

The simple consumption of web frontend components is important. As stated in Section

2.4, there are multiple methods for utilizing JavaScript libraries: AMD, CommonJS, ES6

modules and through HTML script tags. It is important for web frontend components to

support these different kinds of utilization methods to allow wide range of developers to

access the component.

Simple installation and dependency management is a characteristic for modern web

frontend components. This is achieved by utilizing for example, NPM as introduced in

Section 2.4. Component distribution through a package manager will reduce the need for

developers to manually handle the component files. Package managers also store the in-

stalled components and their dependencies in a specific folder in the project which sepa-

rates project specific code from the code required by the components.

Web frontend components can be used in a wide variety of projects and therefore the

ability to customize their appearance is important. Web-based components may support

26

the modification of their appearance through CSS as described in Section 2.5 because

their presentation consists of HTML. Developers utilizing the component have to take

into account that the styling of complex components may also affect their functionality.

Section 2.3 provided a brief introduction to frontend frameworks. Usually when web

frontend components are used with a framework, developers wrap them inside framework

supported module implementations for example, React components or AngularJS direc-

tives. However, some web frontend components may provide different implementations

in specific framework formats that work out of the box, which eliminates some of the

work required by the developers to adopt the component in their project.

Web frontend UI components were discussed in Section 2.5. There it was pointed out that

many components support configurations, methods and events that can be utilized by the

developers to customize the component and interact with the component to suit the needs

of the project.

Developers have to pay attention to browser compatibilities of web frontend UI compo-

nents, too. Some components may utilize technologies not supported by certain browser

types and versions or may function unexpectedly in different browsers.

4.2 Web frontend component quality model

The high-level quality characteristics are selected as a first step for developing a frontend

component quality model. The following listing shows the union of the characteristics

provided by the models introduced in Section 3.2. The listing also shows the reasoning

for including or eliminating certain characteristic from the web frontend component qual-

ity model.

Functionality is included in the model because it contains many relevant sub-character-

istics for web frontend components concerning compatibility and features required by

web applications.

Reliability is included in the model since components are usually used as a part of a larger

system or interaction sequence where fault in a single component may interrupt or corrupt

the whole process.

Usability is included in the model because it can be considered as the most important

quality characteristic of a web frontend component. If a component cannot be understood

and utilized by the developers, it will not be used regardless of the functionalities it might

have.

Efficiency is included in the model because components may need to comply to heavy

data load on certain use cases and suboptimal efficiency solutions in components can

cause problems in the overall application level.

27

Maintainability is included in the model because it contains some relevant sub-charac-

teristics for web frontend components regarding component testing. Otherwise web

frontend components themselves do not usually require maintenance other than version

updates.

Portability is included in the model because it is important that web frontend components

can be deployed to different kinds of environments utilizing varying frontend frame-

works.

Marketability is eliminated from the model because it does not provide any characteris-

tics that would directly affect the web frontend component quality. The marketability

describes more the component development process and the component affordability ra-

ther than the actual component quality.

Next, the relevant sub-characteristics for each characteristic will be selected with the same

procedure as previously from the union of sub-characteristics provided for each charac-

teristic by the models introduced in Section 3.2.

4.2.1 Functionality

Accuracy is eliminated from the model because its measurement is a statistical analysis

that will require a great amount of effort and preparation. The measurement would be too

heavy process for a model that is intended to be simple. It can also be argued that opera-

tional accuracy is at least partly covered by the testability sub-characteristic that is in-

cluded in the model.

Security is eliminated from the model because security in web applications is handled in

the backend. Frontend security measures such as validations can always be ignored by

malicious users.

Suitability is included in the model because it tries to evaluate the suitability of the com-

ponent for specific requirements which is essential for developers when selecting a web

frontend component to a project.

Interoperability is eliminated from the model because it can be assumed that every

frontend component supports JSON format which is standard for modern web applica-

tions.

Compliance is eliminated from the model because even if component is complying to

certain standards or is certificated, they do not measure the component quality by them-

selves. It can be assumed that standards and certificates are the result of good component

quality which can be covered by other characteristics.

28

Self-contained is included in the model because it was specifically introduced by Alva-

ro's model as a sub-characteristic that applies to components. Self-contained can be seen

as important characteristic to web frontend components because it measures the compo-

nent dependency to other components and functionality which inevitably also affects the

complexity of use of the component.

Compatibility is included in the model because it measures the backwards compatibility

of the different versions of components. This is important characteristic considering web

applications because web applications usually consist of multiple components and their

interactions. Therefore, issues with compatibility may cause a requirement for extensive

changes to the application.

4.2.2 Reliability

Fault tolerance is included in the model because sometimes it is important that a com-

ponent can function even sub optimally if it receives invalid values.

Recoverability is included in the model because if a component has a state, it is important

that it can be serialized to be able to load the component with an existing state. Further-

more, error handling is important for web frontend components for example in the case

of providing invalid configurations or invalid method calls.

Maturity is eliminated from the model because it does not provide any direct quality

information about the current situation of the component. This sub-characteristic provides

more an indication of the possible quality and can be used when selecting components

but has little use when trying to improve component quality.

4.2.3 Usability

Configurability is included in the model because for web frontend components, it is im-

portant that they can be configured run time to cover different situations.

Understandability is included in the model because developers need to understand the

component to be able to use it effectively.

Learnability is eliminated from the model because it is difficult to measure component

learnability without conducting an extensive research. In order to keep the model simple,

this sub-characteristic is eliminated.

Operability is eliminated from the model because it partly overlaps with the self-con-

tained sub-characteristic from functionality. It also has difficult-to-measure attributes.

Complexity is eliminated from the model because it overlaps with the self-contained sub-

characteristic from functionality.

29

4.2.4 Efficiency

Time behavior is eliminated from the model because while it is important that compo-

nent operates efficiently regarding response time, its planning and measurement does not

fit well into the simplicity requirements of the model. Time behavior also partly overlaps

with the scalability attribute that is included in the model.

Resource behavior is included in the model because inefficient memory utilization of a

component may slow the web browser down and interfere with the whole system. Addi-

tionally, the disk space that the component requires affects the application loading times

because browser has to load the component files.

Scalability is included in the model because in web development, components may be

utilized in different kinds of projects with varying data intensity. Therefore, it is important

that a web component can operate at trivial and very high data volumes.

4.2.5 Maintainability

Stability is eliminated from the model because it only measures the ability of a compo-

nent to support modifications. This is not a relevant use case to web frontend components

because they are modified by configuring them run time to suit the needs of the project,

not by modifying their source code.

Changeability is eliminated from the model because of the web component characteris-

tics as mentioned in stability. Configurability sub-characteristic from usability is the sim-

ilar characteristic that will be used in the model to measure the component run time con-

figurability.

Testability is included in the model because it is important that the component provides

some proof that it can be tested and that it has been tested. It can also indicate that the

component can be safely utilized in production because its core functionality has been

proven to be working.

4.2.6 Portability

Deployability is included in the model because simple deployment is important for web

frontend components.

Replaceability is eliminated from the model because it fully overlaps with compatibility

sub-characteristic from functionality.

Adaptability is eliminated from the model because web frontend components are not

usually transferred from environments to another. It could be argued that transferring

30

component from frontend framework to another can be seen as transfer to another envi-

ronment but it is a rare occurrence and not directly related to the web frontend component

because the web frontend component is usually wrapped in framework specific compo-

nent code.

Reusability is included in the model because it contains relevant attributes to web

frontend components. For example, modularity, which affects the fact if the component

parts can be utilized individually or always as a whole entity and if the component allows

developers to only load the required parts of the whole component.

4.2.7 Summary of selected characteristics

The characteristics and their sub-characteristics that are selected to the web frontend com-

ponent quality model are shown in Table 4.1. The deployability sub-characteristic in port-

ability is renamed back to its original name installability because it is descriptive in web

frontend component context. In addition to changing name, installability is also trans-

ferred to life-cycle sub-characteristics because the component run-time deployment pro-

cedures are handled with the configurability sub-characteristic in usability.

Browser compatibility is added as a new runtime sub-characteristic to functionality be-

cause it is important for web application components to function properly with different

browsers. Good browser compatibility is essential for a web frontend component to be

usable in a wide range of applications.

The compatibility sub-characteristic in functionality is renamed to backwards compati-

bility to make a clear distinction from the browser compatibility. The backwards compat-

ibility is also transferred to runtime sub-characteristic because web frontend components

are JavaScript-based and due to its interpretative nature, the compatibility errors can only

be detected when running the application.

Table 4.1 Web frontend component quality model characteristics

Characteristics Sub-characteristics (Runtime) Sub-characteristics (Life-cycle)

Functionality Browser compatibility

Backwards compatibility

Suitability

Self-contained

Reliability Fault tolerance

Recoverability

Usability Configurability Understandability

Efficiency Resource behavior

Scalability

Maintainability Testability

Portability Installability

Reusability

31

It can be seen in Table 4.1 that in the web frontend quality model only usability and

functionality characteristics have sub-characteristics on both the runtime and life-cycle

categories while originally every characteristic, apart from efficiency, has sub-character-

istics in both categories. This is not necessarily a problem if the nature of each of these

characteristics is briefly contemplated:

Reliability: How a component reacts to error situations can be evaluated with precision

only when the application is running. Therefore, no life-cycle sub-characteristics are re-

quired.

Efficiency: Directly linked to the times when the application is running because that is

when the efficiency can be evaluated. Therefore, no life-cycle sub-characteristics are re-

quired.

Maintainability: Changes to the code of the application are generally done outside of the

running application. Therefore, no runtime sub-characteristics are required.

Portability: When application is installed on an environment it is not running. Therefore,

no runtime sub-characteristics are required.

4.3 Attributes and measures for the selected quality character-

istics

To proceed with the web frontend component quality model, it is necessary to select at-

tributes for the quality sub-characteristics in the model. The measures for evaluating the

attributes are also to be presented. The ideas introduced in the models in Section 3.2 are

utilized when developing the measures for the web frontend component quality model.

For example, the measure types similar to the presented models are utilized with the ex-

ception that ratio is presented as a decimal number between 0 and 1 instead of an integer

between 0 and 100. Additionally, the attribute definitions for the quality sub-characteris-

tics that are presented by Alvaro et al. (2005) and Bertoa & Vallecillo (2002) are utilized

when selecting relevant attributes and measures for the web frontend component quality

model sub-characteristics.

4.3.1 Functionality

Functionality consists of four sub-characteristics. This subsection presents their attributes

and the measurements for them.

Browser compatibility

For the needs of this model, browser compatibility is divided into two attributes: cross-

browser functionality and browser support. Cross-browser functionality tries to measure

32

the ability of the component to provide consistent functionality when used with different

browsers and their different versions. On the other hand, browser support measures the

ability of the component to be utilized on a sufficient level in an application that is run on

a certain browser version. The measures for browser compatibility attributes are presented

in Table 4.2.

Table 4.2 Browser compatibility measures

Attribute Type Measure

Cross-browser

functionality

Ratio First, to evaluate the cross-browser functionality of a component,

the evaluator selects the browsers and their specific versions to be

used in the evaluation. The component features to be evaluated are

also selected. One browser and its specific version is selected as a

reference point for correct functionality of the features of the com-

ponent. The features of the component in other browsers and their

versions are compared to the component features in the reference

point browser. The result is provided as a ratio of how many of the

component features in other browsers match the reference point.

Browser

support

Ratio This attribute provides two alternative methods of measurement: 1.

If component provides documentation or testing documentation

that states supported browser versions they may be utilized. 2.

Component is run manually as part of an application on different

browser versions and results are observed. The result is provided

as a ratio of how many required browser versions are supported.

It is notable that the attributes presented here for browser compatibility may be extremely

time consuming to measure for all features of the component if the component does not

provide relevant documentation. Therefore, the individual responsible for the measure-

ment has to use discretion when selecting the most important features of the component

that will be tested for browser compatibility.

Backwards compatibility

The sub-characteristic backwards compatibility is divided into two attributes: data com-

patibility and functional compatibility. Data compatibility is utilized with components

that can serialize their state for persistent storage. It is measuring the ability of the com-

ponent to support previous data formats if they have been stored to the backend by the

application. Functional compatibility is used to measure the compatibility of the compo-

nent provided methods and configurations in a way that existing implementations utiliz-

ing the component would not stop operating correctly after component version updates.

The measures for backwards compatibility attributes are presented in Table 4.3.

33

Table 4.3 Backwards compatibility measures

Attribute Type Measure

Data

compatibility

Presence This attribute is measured by verifying if the attribute is present

on the component. This may be achieved by finding such state-

ment from the component documentation or by manually verify-

ing the data compatibility when updating the component version.

Functional

compatibility

Presence This attribute is measured with the same procedure as the data

compatibility.

Ideally the statements needed by the backwards compatibility attributes are satisfied by

the component documentation. Otherwise, the individual responsible for the measure-

ment has to go through multiple versions of the component to get an indication if the

attributes are present on the component.

Suitability

In this model, component suitability is divided into three attributes: coverage, excess and

completeness (Bertoa & Vallecillo 2002; Alvaro et al. 2005). Coverage measures how

many of the required functionalities are implemented by the component. Excess measures

how many of the implemented functionalities of the component are not required by the

application. Completeness measures how many of the specified functionalities are imple-

mented by the component. The measures for suitability attributes are presented in Table

4.4.

Table 4.4 Suitability measures

Attribute Type Measure

Coverage Ratio Measured by dividing the number of modules in the component that

implement some of the functionality required by the application with

the number of modules required by the application.

Excess Ratio Measured by dividing the number of modules in the component not

utilized by the application with the number of modules provided by

the component.

Completeness Ratio Measured by dividing the number of modules provided by the com-

ponent with the number of modules specified by the component

documentation.

In the context of web frontend components, the term module used in the suitability

measures is referring to a relevant JavaScript object or function that provides services

from the component or library that the application can utilize. The individual responsible

for the measurement has to use her judgement to identify these modules usually with the

aid of component documentation. Nevertheless, as can be seen from the descriptions in

Table 4.4 the suitability measurements are relatively easy to execute if the requirements

for the application are clear and the relevant documentation is available.

34

Self-contained

Self-contained is measured by dependencies attribute originally named dependability (Al-

varo et al. 2005). It tries to evaluate if the component requires some external implemen-

tations to provide its own services. Originally in Alvaro's model the dependability is in-

tended to measure the ratio of functionalities provided by the component but implemented

by its dependency to the total functionalities provided by the component. For the needs

of this model, the dependencies attribute is interpreted as an attribute more similar to the

required interfaces in the operability sub-characteristic presented by Alvaro et al. (2006).

The measures for self-contained attributes are presented in Table 4.5.

Table 4.5 Self-contained measures

Attribute Type Measure

Dependencies Integer Measured by calculating the number of required modules by the

component.

The modules calculated in the measurement for dependencies are the parameters that are

implemented outside of the component that are required by the modules that the compo-

nent provides to operate correctly.

4.3.2 Reliability

Reliability consists of two sub-characteristics. This subsection presents their attributes

and the measurements for them.

Fault tolerance

Fault tolerance is divided into two attributes: mechanism available and mechanism effi-

ciency (Alvaro et al. 2005). Mechanism available evaluates if the modules provided by

the component have implemented fault tolerance mechanisms. Mechanism efficiency

tries to evaluate how effectively the mechanisms work in preventing the effects of errors.

The measures are modified from the suggestions by Alvaro et al. (2005). The measures

for fault tolerance attributes are presented in Table 4.6.

Table 4.6 Fault tolerance measures

Attribute Type Measure

Mechanism

available

Ratio Measured by dividing the number of modules provided by the com-

ponent that implement a fault tolerance mechanism with the total

number of modules provided by the component.

Mechanism

efficiency

Level Measured on a general level for the whole component with a value

between 0-4.

35

In JavaScript-based web frontend components, the fault tolerance mechanisms may for

example, handle missing or incorrect type parameters for object constructors or methods

by utilizing default values and informing the developer with a console message. Because

JavaScript is interpreted, most of the errors are noticed runtime, for example, at a point

when code tries to execute a missing callback function. For fault tolerance, it is important

that the component handles errors and exceptions that are not preventing it from operating

so that the whole application is not crashing.

Recoverability

Recoverability is divided into two attributes: serializable and transactional (Bertoa &

Vallecillo 2002). Bertoa's model originally also has error handling attribute but it is sim-

ilar to fault tolerance sub-characteristic, so it will not be included in this model. Addition-

ally, the persistent attribute is not used in this model, because it is not relevant to web

frontend components. This is caused by the fact that the web frontend does not support

storage other than cookies and local storage of the browser that are not persistent.

Serializable attribute evaluates if the component state is serializable in a way that it can

be initialized again directly in that state. Transactional attribute measures if the compo-

nent has a mechanism for transactions. The measures for recoverability attributes are pre-

sented in Table 4.7.

Table 4.7 Recoverability measures

Attribute Type Measure

Serializable Presence Measured by evaluating if the component has a mechanism for

serializing its state for example, to a JSON format that can be

loaded later on the component.

Transactional Presence Measured by evaluating if the component implements transac-

tions in a way that allows to monitor and modify the history of

actions done to the component.

4.3.3 Usability

Usability consists of two sub-characteristics. This sucsection presents their attributes and

the measurements for them.

Configurability

The configurability measures provided by the model by Alvaro et al. (2005) are not suf-

ficient and detailed enough and thus, will not be used in the web frontend component

quality model. The information provided about web frontend UI components introduced

in Section 2.5 will be utilized to present the attributes. Consequently, for the purposes of

this model configurability is divided into three attributes: functional configurability, event

36

configurability and appearance configurability. Functional configurability tries to evalu-

ate the level that the component allows developers to configure its functionality by mod-

ifying the component configurations on component initialization or after the component

is initialized. Event configurability measures the level of events that are available by the

component to allow the rest of the application to react to the component actions. Appear-

ance configurability attempts to measure the developers' possibilities to affect the appear-

ance of the component. The measures for configurability attributes are presented in Table

4.8.

Table 4.8 Configurability measures

Attribute Type Measure

Functional

configurability

Level Measured with a value between 0-4. The component modules are

analyzed to see if they allow initialization parameters or provide a

way to modify the configurations after the module is initialized.

Event

configurability

Level Measured with a value between 0-4. The component modules are

analyzed to see if they provide relevant events that the application

can apply callbacks to.

Appearance

configurability

Level Measured with a value between 0-4. The effort for modifying the

appearance of the component is evaluated. For example, are there

configurations for modifying the component appearance with

themes or do the developers need to implement component ap-

pearance modification with custom CSS. Additionally, is there doc-

umentation available that would help with modifying the component

appearance

For configurability, the component documentation is invaluable in providing the infor-

mation that is required by the individual responsible of the measurement.

Understandability

Understandability is divided into three attributes: documentation coverage, documenta-

tion quality and demonstration coverage. There are more attributes introduced by Bertoa

& Vallecillo (2002) such as help system, computer documentation and training but they

are discarded as these are not common with web frontend components. Documentation

coverage measures the coverage of functionalities that are presented in the documentation

available to the user. Documentation quality attempts to evaluate the usefulness and clar-

ity of the documentation and additionally, the aspects of the computer documentation in

a sense that is the documentation available for example, in HTML format. Demonstration

coverage tries to measure the coverage of functionalities that are shown in tutorials and

demonstrations of the component. The measures for understandability attributes are pre-

sented in Table 4.9.

37

Table 4.9 Understandability measures

Attribute Type Measure

Documentation

coverage

Ratio Measured by dividing the number of functionalities documented

with the total number of functionalities in the component. Function-

alities may include installation, configuration options, methods,

events and appearance configurations.

Documentation

quality

Level Measured with a value between 0-4. Measured qualities may in-

clude for example, documentation readability and code examples.

Demonstration

coverage

Ratio Measured by dividing the number of functionalities shown in

demonstrations with the total number of functionalities in the com-

ponent. The total number of functionalities may be extracted from

the documentation available. Functionalities may include installa-

tion, configuration options, methods, events and appearance con-

figurations.

Documentation coverage may be difficult to evaluate absolutely if the component is not

known to the individual responsible for the measurement. However, the general guide-

lines for functionalities presented in the measure can be used to identify the relevant doc-

umentation items.

4.3.4 Efficiency

Efficiency consists of two sub-characteristics. This subsection presents their attributes

and the measurements for them.

Resource behavior

Resource behavior is divided into two attributes: memory utilization and disk utilization

(Bertoa & Vallecillo 2002; Alvaro et al. 2005). Memory utilization measures the memory

needed by the component to operate. Disk utilization measures the space the component

files take from the disk. The measures for resource behavior attributes are presented in

Table 4.10.

Table 4.10 Resource behavior measures

Attribute Type Measure

Memory

utilization

Integer Measured by evaluating the memory utilization of the component

when used in a minimal application.

Disk utilization Integer Measured by calculating the total disk space required by the files

in the component.

38

Scalability

Scalability is measured by processing capacity attribute (Alvaro et al. 2005) that tries to

evaluate the ability of the component to handle large data volumes. In this model, the

processing capacity is interpreted similar to the latency attribute of time behavior sub-

characteristic in model by Alvaro et al. (2005). The measures for scalability attributes are

presented in Table 4.11.

Table 4.11 Scalability measures

Attribute Type Measure

Processing

capacity

Integer Measured by testing the component scalability when exposed to

different amounts of data by dividing the number of data units pro-

cessed with the time required to process the data. Exact measure-

ment needs to be specified component specifically.

Scalability measurement is affected greatly by the component implementation. For ex-

ample, if the component accepts static data in array format as its input the measurement

is easier to conduct than if the component data is fetched from API or if the data is gen-

erated by some other measures.

4.3.5 Maintainability

Maintainability consists of one sub-characteristic. This subsection presents its attributes

and the measurements for it.

Testability

Testability is divided into two attributes: test suite provided and tests in a specific envi-

ronment. Bertoa & Vallecillo (2002) and Alvaro et al. (2005) provide more attributes in

their models such as proofs of the component and start-up self-test but these are not spe-

cifically relevant for web frontend components. Test suite provided measures if the com-

ponent package contains tests that can be ran by the developers who are utilizing the

component. Tests in a specific environment evaluates if the component test documenta-

tion contains information about if the component has been tested in different environ-

ments for example, with different browsers or with different JavaScript frameworks. The

measures for testability attributes are presented in Table 4.12.

39

Table 4.12 Testability measures

Attribute Type Measure

Test suite

provided

Presence Measured by verifying if the component package includes a run-

nable test suite.

Tests in a spe-

cific environ-

ment

Presence Measured by verifying if the component testing documentation

contains information about component tests done on different

browsers or JavaScript frameworks.

4.3.6 Portability

Portability consists of two sub-characteristics. This subsection presents their attributes

and the measurements for them.

Installability

Installability is divided into four attributes: framework support, loading type coverage,

installation simplicity and application to DOM. Model by Alvaro et al. (2005) does not

provide any relevant information on how to evaluate installability and thus, these attrib-

utes are utilized based on web frontend information presented earlier in this thesis. Frame-

work support evaluates if the component is available as framework supported compo-

nents, for example, as React component or AngularJS directive. Loading type coverage

tries to evaluate if the component supports different types of module loading including

script tag, AMD and CommonJS. Installation simplicity attempts to measure the effort

required to install and update the component package. Application to DOM evaluates the

options and complexity the component presents for applying the component to DOM in

HTML containers. The measures for installability attributes are presented in Table 4.13.

Table 4.13 Installability measures

Attribute Type Measure

Framework

support

Ratio Measured by dividing the number of supported framework specific

versions of the component required by developers by the required

number of framework supports of the component.

Loading type

coverage

Ratio Measured as the ratio of module loading types supported by the

component to the number of required loading types.

Installation

simplicity

Level Measured with a value between 0-4. Measured by evaluating the

effort required to install and update the component package on the

project.

Application to

DOM

Level Measured with a value between 0-4. Measured by evaluating the

simplicity of the required HTML markup for the component to be

applied to DOM.

40

Component installation and update complexity depends heavily on the package installa-

tion design. For example, if it is NPM based it is possibly very simple. On the other hand,

if no package manager support is provided the files have to be moved manually.

Reusability

Reusability is divided into three attributes: modularity, coupling and architecture com-

patibility. Alvaro et al. (2006) also present other attributes for example, domain abstrac-

tion level and cohesion but they are discarded as they do not bring any additional value

to the model. Modularity tries to measure the ratio of modules to different functionalities

in the component. Coupling evaluates the dependencies between the different modules in

the component for example, can they be utilized separately. Architecture compatibility

evaluates if the component is dependent on specific architecture types or forces the de-

velopers to use certain architecture in the application when utilizing the component. The

measures for reusability attributes are presented in Table 4.14.

Table 4.14 Reusability measures

Attribute Type Measure

Modularity Ratio Measured as the ratio of modules provided by the component to

the functionalities provided by the component.

Coupling Ratio Measured as the ratio of how many modules provided by the com-

ponent require at least one another module provided by the com-

ponent to function properly.

Architecture

compatibility

Level Measured with a value between 0-4. Measured by analyzing how

the component usage affects the supporting code structure imple-

mented in the application because of the component.

4.3.7 Summary of attributes and measures

The attributes and measures presented in the subsections above provide the lowest level

of the web frontend component quality model. Total of 30 attributes were selected to the

model. When the model is utilized to measure web frontend component quality a value is

evaluated for each attribute through its respective measure.

It can be argued that the ratio, presence and integer type measures are objective because

they are based on numeric and logical evaluation. On the other hand, the level measure

type is more subjective because the evaluator evaluates the level based on her expertise.

Out of the 30 attributes 8 are of level type.

4.4 Summary of the web frontend component quality model

The quality measurement in accordance to the model presented in this chapter requires

quite comprehensive expertise of software development from the person responsible of

41

the evaluation. Many of the measures require the evaluator to identify certain structures

such as modules from the web frontend component which may not always be simple es-

pecially if the evaluator tries to evaluate the quality of a component she is not familiar

with.

However, the aim of the model in the context of this thesis is to evaluate components that

are familiar to the evaluator in order to find means to increase their quality in the eyes of

developers that could utilize them in their projects. The model may also have additional

uses as a reference when developing a new component in identifying important points

that need to be considered to make the component appealing.

Some of the attributes that the model presents depend on the requirements of the applica-

tion where the component will be used, for example, the cross-browser functionality and

suitability coverage. If the evaluator is trying to improve the quality of her own developed

component the perceived target project requirements have to be generated if no reference

project is available.

Many of the attributes in the model try to find data for their evaluation from the compo-

nent documentation. This implies that a high-quality component also provides its docu-

mentation in high quality. Of course, to contain information of, for example, browser

compatibility, it has to be actually verified before it can be written into the documentation.

It could be argued that according to the presented web frontend component quality model,

high quality documentation is a way of expressing the overall component quality to po-

tential developers.

Finally, the requirements set for the model at the start of this chapter are briefly evaluated.

The first requirement was to focus on quality attributes that are important for web com-

ponents. This requirement was attempted to be met by introducing attributes specific to

web applications such as browser compatibility and loading type coverage.

The second requirement was to keep the model simple by avoiding too many quality at-

tributes. This requirement was attempted to be met by reducing the amount of quality

attributes by eliminating irrelevant or redundant sub-characteristics presented by the

CBSD quality models. The current number of 30 attributes is still relatively high but also

lower than the 44 and 37 attributes that are introduced by models by Bertoa & Vallecillo

(2002) and Alvaro et al. (2006), respectively. The number of attributes was also increased

by the fact that the web frontend component quality model introduced several attributes

that are web component specific.

The third requirement was to select quality attributes that can be measured with adequate

precision. This is evaluated properly after the web frontend component model has been

utilized in Chapter 5.5. Now, it can be stated that the model tried to define all the attributes

in a way that contains a measure that can be used to evaluate the attribute with sufficient

precision.

42

The full web frontend component model derived in this chapter is in Appendix A.

43

5. QUALITY EVALUATION WITH THE WEB

FRONTEND COMPONENT QUALITY MODEL

In this chapter, the web frontend component quality model is utilized to evaluate the re-

port editor component extracted from the IoT-Ticket product developed by Wapice Ltd.

The report editor component package can be extracted for the needs of other projects

through a build script utilizing Grunt task runner. The report editor component has been

utilized in a single project so far and it is still quite primitive which offers a relevant

opportunity for testing the web frontend component quality model to provide quality im-

provement suggestions. Thus, the model is utilized to evaluate the quality of the report

editor component from the developers’ point of view.

As a component, the report editor is larger and more complex than most of the web

frontend components. It can be seen as almost its own frontend application. However, it

can still be utilized as a component in an application as an interactive designer of data

visualizing reports. Therefore, the model can be utilized to evaluate the quality of the

report editor.

5.1 Overview of the IoT-Ticket platform

IoT-Ticket (iot-ticket.com 2017) is a complete internet of things (IoT) platform which

covers data acquisition, dashboard, reporting and analytics features. Data acquisition can

be done by utilizing electronics that send data to IoT-Ticket big data server or by software

that connects to the IoT-Ticket API. Wapice also provides WRM247+ device that can be

used to acquire data for the IoT-Ticket.

Users can create interactive dashboards and reports based on the data that has been ac-

quired by the devices by using web based user interface of the IoT-Ticket. Dashboards

are designed with interface designer and dataflow editor. Reports are designed with report

editor and dataflow editor.

The interface designer is a graphical tool for designing dashboards and it offers numerous

widgets including charts, tables, gauges and many others that can be used to visualize the

data acquired by the devices connected to the IoT-Ticket. The widgets can be positioned

on the dashboard as desired by the user. Data collected by the devices is available in the

interface designer though data tags which can be dragged and dropped on the widgets to

connect their data to be visualized by the widget. Image of a dashboard that has been

designed with the interface designer can be seen in Figure 5.1.

44

Figure 5.1 IoT-Ticket dashboard

The dataflow editor is a graphical programming editor that allows users to design com-

plex logic and control and modify the data that has been acquired by the devices. The

dataflow editor contains for example, mathematical and logical operations and timers.

The dataflow editor also controls events that can be used to trigger certain operations for

example to reset a counter visualized by a gauge component after a certain time.

The dataflow is edited by connecting dataflow blocks to each other. Each dataflow block

has different kinds of inputs and outputs that can be connected to other blocks to affect

the functionality of individual blocks and also the whole dataflow. As mentioned earlier

the dataflow blocks can represent mathematical or logical operations but each widget that

is present in the interface designer is also used as part of the dataflow with their own

blocks. Therefore, the data displayed by the widgets is not limited to the raw data from

the data tags but the data can also be modified by the functionality provided by the data-

flow editor and its dataflow blocks.

The dataflow editor provides also an execution mode selection. The dashboards can be

executed in client mode or server mode. Client mode implies that the dashboard dataflow

is only evaluated when it is opened on a client. Server mode implies that the dashboard

dataflow is ran continuously on the server even when no clients have it opened. Server

mode enables that the events are triggered even when the dashboard is not open on a client

for example, sending a report email through a report dataflow block. Image of the data-

flow editor is available on Figure 5.2.

45

Figure 5.2 IoT-Ticket dataflow editor

The report editor works similarly to the interface designer but it also contains common

features from word processing software. It allows users to design a multi-page document

with headers and footers and such as in any word processing software but it also includes

the IoT-Ticket widgets and dataflow processing features.

The report editor consists of four views: report viewer, report editor, dataflow editor and

view for report pdf generation. Report viewer allows the user to view the report document

but not make any changes to it similar to a print preview view on a word processing

software. Report editor allows users to modify the report by dragging widgets to it and

writing text content. The dataflow editor provides the users the ability to modify the logic

that provides the data for the widgets. The view for pdf generation is not accessed by

regular users but the server is using that to generate pdf documents of the reports. The pdf

generation view is a simplified version of the report viewer that only renders the report

pages one after another in a way that a pdf document can be constructed. Image of the

report editor is presented in Figure 5.3.

The difference of reports to the dashboards is that the timers and some of the interactive

widgets are not available to reports because report is a static document that represents the

situation at the moment it was created. The reports can be triggered to be sent with email

from the dashboards utilizing the dataflow editor triggers and, of course a report can be

viewed by opening it manually from the IoT-Ticket user interface.

46

Figure 5.3 IoT-Ticket report editor

IoT-Ticket also offers web based analytics tool for analyzing the data stored by the de-

vices to the IoT-Ticket server. The analytics tool can be used to execute different kinds

of analysis for example, correlation and abnormal value detection on large amounts of

data over long time ranges. The results of the analysis can be visualized to the user with

graphs and matrices.

5.2 The report editor component

The report editor component package consists of several files and folders that contain the

JavaScript files and other resources required by the report editor. The main JavaScript file

of the component (report.min.js) provides separate Backbone.js views for report viewer

(ReportView), report editor (ReporterView), dataflow editor (ReflowView) and pdf view

(StandAloneReportView). The component package also contains view models for these

four views called ReportViewModel, ReporterViewModel, ReflowViewModel and

StandAloneReportViewModel.

The report is loaded to the report views by using a ReportModel that is also available in

the package. Report model is initialized by parsing a JSON string that can be stored in a

database. The report JSON has information of the dataflow and all the widgets that are

related to the report. Once the report has been loaded to the view, it can be rendered to a

HTML page.

Currently, the report editor component demands quite a lot from the developers utilizing

it. For example, the control logic that renders the views that together form the full report

editor has to be implemented by the developers utilizing the component. Additionally, the

view model dependencies to the application state have to be also implemented separately.

47

The interactivity with the editor has also to be implemented by the developers by imple-

menting functions for the component dependencies called state models or subscribing to

the events provided by the NavigationEvents module included in the report editor pack-

age.

5.3 Report editor component quality evaluation

Next, the report editor component will be evaluated by utilizing the web frontend com-

ponent quality model introduced in Chapter 4. Each of the characteristics will be evalu-

ated separately by sub-characteristic and by attribute using the respective measure for

each attribute. A result will be evaluated for each attribute. Later, in the next chapter

improvement suggestions will be provided about how to improve the current quality of

the report editor component based on these results.

The report editor component will be ran by utilizing a piece of test code that is included

in the report editor component package for the evaluation that needs to inspect the report

editor run time. The test code renders the report editor in an HTML page with an empty

report and provides routing between the views.

5.3.1 Functionality

Functionality consists of four sub-characteristics that are evaluated according to the web

frontend component quality model.

Browser compatibility

First sub-characteristic that is evaluated is browser compatibility. Browser compatibility

consists of 1. cross-browser functionality and 2. browser support.

1. Cross-browser functionality is evaluated for the Chrome 57.0.2987.133, Firefox 52.0.2,

Internet Explorer 11.839.10586.0 and Edge 25.10586.672.0 browsers. Chrome will be

used as reference and other browsers are compared to those results. Because this evalua-

tion is extremely time consuming only some of the most common features affecting the

UI are selected for the cross-browser functionality evaluation. The features that will be

tested are:

1. Inspecting the layout of the report viewer, report editor and report data flow editor

for a report that contains a horizontal guide positioned at 50 mm from the top of

the report page and a default height, full page width data table widget with top

position at the guide. Additionally, the data table widget has a number sequence

block with values 0-10 as its input.

48

2. Creating a new report page with data table widget as in feature 1 and an additional

empty report page. Then, changing the order of the report pages. Observing the

results in report viewer and report editor.

3. Opening the data table properties dialog and changing the font size to 16px and

setting the text align property to ”Center”. Observing the effects on data table

widget on report viewer and report editor.

The results for the features testing are presented in Table 5.1.

Table 5.1 Cross-browser functionality features testing observation results

Feature/

Browser

Chrome

(Reference)

Firefox Internet Explorer Edge

1 - Report viewer:

Some of the data ta-

ble 1px width borders

seem wider.

Report editor: Some

of the data table 1px

width borders seem

wider. Chrome is

showing the horizon-

tal ruler 210mm posi-

tion marker but FF is

not.

Data-flow editor: No

differences

Report viewer: The

report area borders

are missing shadows

that are present in

Chrome.

Report editor:

Chrome is showing

the horizontal ruler

210mm position

marker but IE is not.

Vertical ruler is hov-

ering over the report

area bottom.

Data-flow editor: No

differences

Report viewer:

The report area

borders are missing

shadows that are

present in Chrome.

Report editor:

Chrome is showing

the horizontal ruler

210mm position

marker but IE is not.

Data-flow editor:

No differences

2 - Report viewer: No

differences

Report editor: No

differences

Report viewer: No

differences

Report editor: No

differences

Report viewer: No

differences

Report editor: No

differences

3 - Report viewer: No

differences

Report editor: No

differences

Report viewer: No

differences

Report editor: No

differences

Report viewer: No

differences

Report editor: No

differences

2. Browser support information is not included in the report editor package documenta-

tion. Therefore, browser support result is evaluated at the same time as the cross-browser

functionality using the same features. The requirements for this evaluation are set to the

browser versions that are used on the cross-browser functionality evaluation implying the

Chrome, Firefox, Internet Explorer and Edge.

Browser compatibility results:

1. Cross-browser functionality: three features were tested with four browsers

where one browser was a reference point. Total of nine tests were done and three

49

of them resulted in finding noticeable differences in appearance or functionality.

Thus, the calculated ratio for browser compatibility based on this evaluation is 6/9

= 0.67

2. Browser support: All browsers tested provided the functionality required by the

tested features. Thus, the calculated ratio for browser support is 12/12 = 1

Backwards compatibility

This functionality sub-characteristic consists of two attributes: 1. data compatibility and

2. functional compatibility.

1. Data compatibility will be evaluated first. Documentation analysis confirms that the

data compatibility information is not found on the report editor documentation. However,

from the IoT-Ticket development process it is known that the data compatibility is an

important feature because version updates do not update the saved reports and dashboards

JSON data that are stored in a database. Thus, for the existing reports and dashboards to

continue to work after updates the data has to be compatible with newer versions of the

IoT-ticket than they were saved with.

Data compatibility is known to be present in the report editor for the most part. Some of

the updates are known to take effect only on newly added widgets but old ones are still

functioning as before. However, the information is not included in the documentation and

the result for the presence measure has to be false.

2. Functional compatibility is evaluated next. Functional compatibility information is not

present on the report editor documentation. Therefore, the result for the presence measure

is false.

Backwards compatibility results:

1. Data compatibility: Result is not found in documentation. Thus, presence evalu-

ates to false.

2. Functional compatibility: Result is not found in documentation. Thus, presence

evaluates to false.

Suitability

This functionality sub-characteristic consists of three attributes: 1. coverage, 2. excess

and 3. completeness. The suitability evaluation is done against the reference project that

has utilized the report editor package. This evaluation is not particularly relevant because

the report editor package evolved to suit the needs of this project. For the sake of com-

pleteness, the measurements are reported here.

50

1. Coverage is measured first. The application requires 13 modules implemented by the

report editor package. These modules implement all the functionality required by the ap-

plication and therefore the number of required modules is also 13.

2. Excess is measured next. Every module in the report editor package is utilized by the

application and therefore the number of modules not utilized by the application is 0. The

total number of modules in the package is 13.

3. Completeness is measured last. Every module that is specified in the component docu-

mentation is also present in the package.

Suitability results:

1. Coverage: Ratio evaluates to 13/13 = 1.

2. Excess: Ratio evaluates to 0/13 = 0.

3. Completeness: Ratio evaluates to 13/13 = 1.

Self-contained

Self-contained consists of a single attribute: 1. dependencies.

1. Dependencies is evaluated based on the component documentation. Documentation

specifies that the report editor package view components require four modules (Re-

portStateModel, ResouceStateModel, UtilityStateModel and router) to function properly.

Self-contained results:

1. Dependencies: Integer value result is 4.

5.3.2 Reliability

Reliability consists of two sub-characteristics that are evaluated according to the web

frontend component quality model.

Fault tolerance

Fault tolerance consists of two attributes: 1. Mechanism available and 2. mechanism ef-

ficiency.

1. Mechanism available is measured first. All the modules present in the report editor

package are evaluated based on if their constructor functions or utilized methods are im-

plementing a fault tolerance mechanism. The results are presented in Table 5.2.

51

Table 5.2 Mechanism available measurement results

Module Constructor Methods

ReportView Model given as parameter is

not verified to be defined.

Thus, mechanism is not im-

plemented.

loadGraph: if the report id provided is not

matching the id of the report returned by

the view model or the report id is not de-

fined the report is attempted to be fetched

from the default API. Thus, mechanism is

implemented.

ReporterView Result is identical to as

above.

loadGraph: Result is identical to as above.

ReflowView Result is identical to as

above.

loadGraph: Result is identical to as above.

StandAloneRe-

portView

Result is identical to as

above.

setReportData: the report data given as

parameter is not verified to be defined.

Thus, mechanism is not implemented.

cacheMeasurementPoints: No parame-

ters. No mechanism is required.

render: No parameters. No mechanism is

required.

ReportView-

Model

Models given as parameters

are not verified to be defined.

Thus, mechanism is not im-

plemented.

No methods to be called by the user.

ReporterView-

Model

Result is identical to as

above.

No methods to be called by the user.

ReflowView-

Model

Result is identical to as

above.

No methods to be called by the user.

StandAloneRe-

portViewModel

Result is identical to as

above.

No methods to be called by the user.

ReportModel Missing parameters are ini-

tialized with default values.

Thus, mechanism is imple-

mented.

parse: verifies if the parameter is defined.

Also verifies if the parameter object con-

tains properties before accessing them.

Thus, mechanism is implemented.

Report-

FlowModel

Missing parameters are ini-

tialized with default values.

Thus, mechanism is imple-

mented.

No methods to be called by the user.

Navigation-

Events

No constructor. No mecha-

nism is required.

trigger: Implemented by Backbone.js

events. No mechanism is required.

ResourcesCol-

lection

Constructor implemented by

Backbone.js collection. No

mechanism is required.

get: Implemented by Backbone.js collec-

tion. No mechanism is required.

fetch: Implemented by Backbone.js collec-

tion. No mechanism is required.

Uuid No constructor. No mecha-

nism is required.

generate: No parameters. No mechanism

is required.

52

2. Mechanism efficiency is evaluated next. This attribute will only be measured based on

implemented mechanisms and the missing mechanisms are ignored because they are no-

tified by the mechanism available attribute. The usage of default values and verification

that parameter object properties exist before accessing them is fault tolerance increasing

behavior. However, the report editor views are not verifying that the report id passed as

parameter is defined before trying to fetch the report from default API which could be

done to improve fault tolerance. Overall, the mechanisms utilized are adequate and the

level from 0-4 will be evaluated to value 3.

Fault tolerance results:

1. Mechanism available: Measurement divided the report editor modules to two

categories: constructor and methods. The total number of the modules evaluated

is therefore 26. The number of these modules that implemented a mechanism is

11. Thus, the result for the ratio is 11/26 = 0.42.

2. Mechanism efficiency: The attribute is measured on a scale from 0 to 4 to level

3.

Recoverability

Recoverability consists of two attributes: 1. serializable and 2. transactional.

1. Serializable is measured by evaluating if the component has a mechanism for serializ-

ing its state. The report editor stores its state runtime in the ReportModel object. The

report model provides a method for getting its contents in JSON format. The JSON object

of the report state can thus be stored persistently. The report model can be created again

with the JSON object when the saved report is wanted to be opened on the report editor

again. Based on the evaluation the presence is measured as true.

2. Transactional is evaluated next by measuring if the component implements transac-

tions that would allow the monitoring and modifying the history of actions done to the

component. The report editor provides an undo and redo feature for certain commands

that are executed on the report editor such as creating a report page or repositioning a

widget on a report page. The undo/redo feature is not fully transactional however, since

it does not store every action for example, the widget property modifications. It is also

not possible to monitor the list of the done actions or store the commands persistently.

The commands are also bound to the current instance of the report editor view implying

that if the user switches between report editor view and report flow editor view the com-

mand history is lost. Thus, the presence value is measured as false.

Recoverability results:

1. Serializable: Presence evaluates to true.

2. Transactional: Presence evaluates to false.

53

5.3.3 Usability

Usability consists of two sub-characteristics that are evaluated according to the web

frontend component quality model.

Configurability

Configurability consists of three attributes: 1. functional configurability, 2. event config-

urability and 3. appearance configurability.

1. Functional configurability is measured by evaluating the initialization parameters and

configurations of the component modules. Currently the report editor package modules

offer configuration through the state models which are the view model dependencies that

are implemented by the application specific code (ReportStateModel, ResouceState-

Model and UtilityStateModel). For example, the “save report” button handler must be

implemented by the ReportStateModel.

While the state models offer a way to configure some of the functionality of the report

editor this method is not optimal. As the state model name implies they are not originally

intended for functional configuration but implementing the state handling of the report

editor. At its current state, it might be confusing for the developers to identify the correct

methods for functional configuration from the state handling methods though the docu-

mentation describes their use through an example project description.

Additionally, the package modules are not offering too many configuration options. The

configurations only include saving of the report, closing of the report editor and setting

unsaved changes state functionality while many other features could be configurable as

well.

The component API interaction is also lacking configurability. The report editor compo-

nent is connecting to API when it is fetching some of the resources it needs to operate

correctly. This API interaction and the API URLs are not configurable by the developers

apart from the root part of the URL.

Overall, the report editor offers the minimum amount of required functional configura-

bility that allows the operation of the editor in an application. Thus, the configurability is

evaluated as level 1.

2. Event configurability is evaluated next by measuring the events provided by the com-

ponent modules. The modules that are valid for this evaluation are the ReportView, Re-

porterView, ReflowView and StandAloneReportView because they are the UI modules

of the report editor package.

54

Not any of the mentioned views offer events that the application code could react to with

callback functions. The events communication can be handled through the Navigation-

Events module available in the report editor package but the events it contains are not

documented apart from the navigation events between the report views. The Navigation-

Events module also contains all the internal events that are utilized by the report editor

which implies that there are many events that are not meaningful to the application.

Additionally, the event listening through the NavigationEvents is depending on the Back-

bone.js events functionality instead of plain JavaScript.

The event configurability of the report editor component can be implemented with an

unconventional way through the NavigationEvents object available in the package. Con-

sequently, the event configurability is evaluated as level 1 because like functional config-

urability it only offers the minimum required features.

3. Appearance configurability is measured by evaluating the effort required to modify the

visual appearance of the report editor views. Like the event configurability, the appear-

ance configurability is also valid only for the UI modules of the package.

The report editor package does not offer any other way of modifying its appearance than

providing a CSS file with custom styles. There is also no documentation of the customi-

zation available implying that the developers have to use their own expertise in applying

the styles to desired elements of the report editor views. The level measurement for ap-

pearance configurability is evaluated as 1 because the component does not support ap-

pearance configurability in any other way than the regular CSS modification.

Configurability results:

1. Functional configurability: The attribute is measured on a scale from 0 to 4 to

level 1.

2. Event configurability: The attribute is measured on a scale from 0 to 4 to level

1.

3. Appearance configurability: The attribute is measured on a scale from 0 to 4 to

level 1.

Understandability

Understandability consists of three attributes: 1. documentation coverage, 2. documenta-

tion quality and 3. demonstration coverage.

1. Documentation coverage is evaluated by inspecting the component documentation and

the actual implementation of the component. The functionalities that are expected to be

found from the documentation and their results are presented in Table 5.3.

55

Table 5.3 Documentation coverage measurement results

Functionality Documentation entry

Installation and

updating

The report editor package building is explained. The documentation also ex-

plains that the installation is done by copying the report editor package to the

target application project and including the relevant files from the package to

a HTML page. The updating of the package is also described in the docu-

mentation. Thus, installation and updating information is present in the doc-

umentation.

Configuration

options

The configurations that are available (saving report, closing the editor, setting

unsaved changes state) are described in the documentation. The editor ini-

tialization with a saved report is also explained on a general level implying

that the actual code required to initialize the editor is not described. The set-

ting of the authorization token for the API is also explained in the documen-

tation if it is required by the application. Thus, the configuration options are

present in the documentation.

Methods The rendering methods of the report editor views are explained. However,

the documentation is missing descriptions for each module available in the

component for their provided methods. Thus, the method descriptions are

not fully present in the documentation.

Events The navigation events needed by the router are explained in the documenta-

tion. Some other events can also be utilized that are not found on the docu-

mentation for example, the widget selection event that is used to set selected

widget ids to the state and reset scaling event that is used to reset the zoom-

ing when switching between report editor views. Thus, the events are not

fully present in the documentation.

Appearance

configuration

The report editor appearance configuration is not present in the documen-

tation.

Dependencies Navigation between report editor views is explained in the documentation.

Additionally, the state models and most of their methods are presented in the

documentation. However, some of the latest additions in methods are miss-

ing from the state models that need to be implemented. The API interactions

are also found from the documentation. Thus, the dependencies are not fully

present in the documentation.

2. Documentation quality is evaluated next. The report editor component consists of many

modules and it requires many dependencies to operate correctly. The relations of the

package modules and their dependencies are explained by images similar to UML de-

ployment diagrams. Additionally, an actual usage of the package in an application is de-

scribed in the documentation.

There are many code examples of the report editor package usage including the report

views construction and attaching event listeners to navigation events. On the other hand,

the documentation is lacking examples of initializing the report model which is critical

for the implementation of the loading of a saved report unless the default report API is

utilized.

56

The document structure is logical. It starts with introducing the package contents and the

modules it includes. Then it proceeds to present the utilization of the modules including

the dependencies they require. However, the documentation could make a clearer distinc-

tion between describing the dependencies and other usage of the report editor modules.

At the current state of the documentation there is not a clear list of what is required of the

application that is using the report editor component. The documentation also introduces

an example utilization case of the report editor in a project.

The documentation is only available as a word document and therefore it might be more

difficult to utilize as a developer than for example, a HTML-based documentation.

Overall, the documentation has a logical structure and presents most of the information

required by the developers utilizing the component. It also utilizes deployment diagrams

to describe the relations between the component modules and the application specific

code. Additionally, the documentation utilizes code examples. However, it is also lacking

some important examples and the documentation format could be more accessible for the

developers. Therefore, the documentation quality is evaluated as level 2.

3. Demonstration coverage is evaluated against the test code that is available in the report

editor package because it can be utilized by developers that want to use the report editor

package in an application. The results for this evaluation are presented in Table 5.4.

Table 5.4 Demonstration coverage measurement results

Functionality Demonstration description

Installation Demonstration shows the inclusion of the relevant report editor package files

in a HTML page that is used as a container for the report editor component.

Thus, installation is present in the demonstration.

Configuration

options

The configurations that are available (saving report, closing the editor, setting

unsaved changes state) are not shown on the demonstration. Loading a

saved report is not shown on demonstration. The demonstration does not

fetch any data to be shown on the report from the API. Thus, the configuration

options are not present in the demonstration.

Methods The rendering methods of the report editor views and the resources collection

methods are shown in the demonstration. However, all the report model, uuid

and StandAloneReportView methods are not shown. Thus, the methods are

not fully present in the demonstration.

Events The navigation events required to provide navigation between the report ed-

itor views are shown on the demonstration. Other events are not presented

on the demonstration for example, the widget selection event or reset scaling

event. Thus, events are not fully present in the demonstration.

Appearance

configuration

Appearance configurations are not present on the demonstration.

57

Functionality Demonstration description

Dependencies Navigation between report editor views is shown in the demonstration. Addi-

tionally, the state models and most of their methods are presented. Some of

the most recently added methods are missing from the state models in the

demonstration. Thus, the dependencies are not fully present in the demon-

stration.

Understandability results:

1. Documentation coverage: Two of the six main functionalities are present in the

documentation. The result for the ratio is 2/6 = 0.33.

2. Documentation quality: The attribute is measured on a scale from 0 to 4 to level

2.

3. Demonstration coverage: One of the six main functionalities are present in the

demonstration. The result for the ratio is 1/6 = 0.17.

5.3.4 Efficiency

Efficiency consists of two sub-characteristics that are evaluated according to the web

frontend component quality model.

Resource behavior

Resource behavior consists of two attributes: 1. memory utilization and 2. disk utilization.

1. Memory utilization is evaluated by utilizing memory-stats-js JavaScript library

(memory-stats-js 2017). When the report editor is loaded with minimum application that

is only containing the HTML page as container for the editor, the memory utilization is

evaluated to approximately 28 MB.

2. Disk utilization is evaluated by inspecting the disk space that the report editor package

is occupying. The disk space is evaluated to 41.3 MB.

Resource behavior results:

1. Memory utilization: Integer value is evaluated to 28 MB.

2. Disk utilization: Integer value is evaluated to 41.3 MB.

Scalability

Scalability consists of one attribute: 1. processing capacity.

1. Processing capacity is evaluated by measuring the report generation time for reports

with different data-flow loads. The report generation time is important for the report edi-

tor component because its main function is to calculate the report data-flow and generate

58

and present the report to the user. The measurement is done by creating reports that pro-

cess data generated by simulate data-flow blocks connected into input label widgets. The

time it takes for the editor to send the graph processed event that indicates that the flow

calculation and page rendering is completed is measured for each different number of

data-flow blocks by utilizing the StandAloneReportView that is used for the pdf file gen-

eration of reports. The console.time() method in JavaScript is utilized to measure the time

by starting the time right before calling the render method of StandAloneReportView and

registering a listener to the graph processed event which stops the time when the event is

received. The simulate blocks are using the default configuration that generates a value

between 0 and 100. The input label widgets are also using default configurations. All the

widgets are inserted into one report page. The results for this evaluation are presented on

Table 5.5.

Table 5.5 Processing capacity measurement results

Number of Simu-

late and Input La-

bel blocks

Measurement 1 Measurement 2 Measurement 3 Mean

0 + 0 3328.89ms 3344.07ms 3333.76ms 3335,57ms

10 + 10 3482.18ms 3472.30ms 3456.51ms 3470.33ms

50 + 50 4034.54ms 3976.38ms 4005.49ms 4005.47ms

100 + 100 4919.99ms 4966.61ms 4930.28ms 4938.96ms

200 + 200 6245.07ms 6955.32ms 6384.49ms 6528.29ms

Simple linear regression model for report generation time with number of dataflow blocks

as explanatory variable produces a result (graphpad.com 2017):

Report generation time (ms) = 8.067*number of dataflow blocks + 3293 (ms)

The result has R2 of 0.9983 which represents a very good fit. The model has a constant of

3293ms which represents the static time needed to generate a report regardless of the

number of dataflow blocks.

Scalability results:

1. Processing capacity: According to the linear model when ignoring the constant,

the processing capacity of report editor component is 1 dataflow block/8.067ms =

0.124 dataflow blocks/ms or 124 dataflow blocks/s.

5.3.5 Maintainability

Maintainability consists of one sub-characteristic that is evaluated according to the web

frontend component quality model.

59

Testability

Testability consists of two attributes: 1. test suite provided and 2. tests in a specific envi-

ronment.

1. Test suite provided is evaluated first. The report editor package does not include a

runnable test suite. There are unit tests, integration tests and end-to-end tests available for

the report editor but they are not included in the package. Therefore, the presence attribute

is evaluated to false.

2. Tests in a specific environment is measured by verifying if the documentation contains

relevant information about the tests that have been executed on the report editor compo-

nent. The documentation does not contain information of the tests and if they are done on

different browsers or if the component is tested in applications utilizing different JavaS-

cript frameworks. Thus, the presence attribute is evaluated to false.

Testability results:

1. Test suite provided: Presence evaluates to false.

2. Tests in a specific environment: Presence evaluates to false.

5.3.6 Portability

Portability consists of two sub-characteristics that are evaluated according to the web

frontend component quality model.

Installability

Installability consists of four attributes: 1. framework support, 2. loading type coverage,

3. installation simplicity and 4. application to DOM.

1. Framework support is measured by evaluating if the component provides a framework

supported version of itself that is known to be required by applications. Currently, the

report editor does not provide any such versions of itself. The application where the report

editor has been utilized is developed with React, so providing a React component of the

report editor would have made the development easier.

2. Loading type coverage is measured by evaluating which loading types are supported

by the report editor package. The tested types are script tag, AMD and CommonJS. The

report editor package is utilizing only the script tag as it assigns itself into the window

object. Thus, AMD and CommonJS are not supported.

3. Installation simplicity is measured by evaluating the effort required to install and up-

date the component. The installation itself is not difficult because the developers have to

only include the report editor package script file and CSS file to a HTML page and the

60

report editor is available in the application. The update is done utilizing the same method

where the report editor package files are overwritten with the updated files. However, the

installation and update is not automated for example, with NPM so the developers have

to do it manually as described before. Therefore, the installation simplicity is evaluated

as level 3 because of the lack of installation and update automation.

4. Application to DOM is measured by evaluating how simple HTML markup is required

by the component. The report editor component requires a lot compared to regular JavaS-

cript UI components because the application has to provide a separate HTML page to act

as a container for the report editor. This is because the report editor views append them-

selves directly to the body element of the HTML page they are on. To include the report

editor inside an application view, an iframe HTML element or similar approach has to be

utilized which makes the communication with the component quite complex. Thus, the

application to DOM is evaluated as level 1.

Installability results:

1. Framework support: No framework specific version of the component is sup-

ported though a React component could be utilized. Thus, the result of the ratio is

0/1 = 0.

2. Loading type coverage: One of three loading types are supported by the compo-

nent. Thus, the result of the ratio is 1/3 = 0.33.

3. Installation simplicity: The attribute is measured on a scale from 0 to 4 to level

3.

4. Application to DOM: The attribute is measured on a scale from 0 to 4 to level 1.

Reusablity

Reusability consists of three attributes: 1. modularity, 2. coupling and 3. architecture com-

patibility.

1. Modularity is measured by evaluating the ratio of modules found in the component to

the functionalities provided by the component. The functionalities provided by the report

editor component are roughly report previewing, report editing, report data flow editing,

report pdf view, navigation events and uuid generation, which makes a total of six func-

tionalities. The total number of modules provided by the report editor package is 13. Con-

sequently the result of the ratio is 13/6 = 2.2.

2. Coupling is measured by calculating how many modules provided by the component

require another module of the component to function properly. The number of those mod-

ules is four because all the report views require a view model implementation.

3. Architecture compatibility is measured by evaluating how great effect the usage of the

component has on the architecture of the whole application. The report editor has some

61

implications to the architecture because currently it is required to use iframe HTML ele-

ment to use the editor in an application. The communication between the application and

the iframe containing the report editor component has to be implemented by utilizing the

JavaScript’s window object. For example, the application has to set callback functions as

properties to the window object for the report editor to be able to access them inside the

iframe.

The report editor package does not support AMD or CommonJS which implies that the

report editor has to be included with script tags or by taking additional measures to get

the package to be compatible with AMD or CommonJS. The report editor views also

require to be appended to the body element of the HTML page they are on, implying that

they force the application to provide their own HTML page for the component.

Overall, the effects on the architecture are quite heavy and thus, the level is evaluated to

2.

Reusability results:

1. Modularity: The number of functionalities provided by the component is six and

the number of modules is 13. Thus, the result of the ratio is 13/6 = 2.2.

2. Coupling: The number of modules that require another module is four and the

number of modules is 13. Thus, the result of the ratio is 4/13 = 0.31.

3. Architecture compatibility: The attribute is measured on a scale from 0 to 4 to

level 2.

5.3.7 Summary of the quality evaluation

The results for the report editor component evaluation using the web frontend UI compo-

nent quality model are presented in Table 5.6.

Table 5.6 Report editor quality evaluation results

Characteristic Sub-characteristic Attribute Type Evaluation

result

Functionality Browser compatibil-

ity

Cross-browser function-

ality

Ratio 0.67

Browser support Ratio 1

Backwards compat-

ibility

Data compatibility Presence False

Functional compatibility Presence False

Suitability Coverage Ratio 1

Excess Ratio 0

Completeness Ratio 1

Self-contained Dependencies Integer 4

Reliability Fault tolerance Mechanism available Ratio 0.42

Mechanism efficiency Level 3

Recoverability Serializable Presence True

62

Characteristic Sub-characteristic Attribute Type Evaluation

result

Transactional Presence False

Usability Configurability Functional configurability Level 1

Event configurability Level 1

Appearance configura-

bility

Level 1

Understandability Documentation cover-

age

Ratio 0.33

Documentation quality Level 2

Demonstration coverage Ratio 0.17

Efficiency Resource behavior Memory utilization Integer 28 MB

Disk utilization Integer 41.3 MB

Scalability Processing capacity Integer 124 data-

flow

blocks/s

Maintainability Testability Test suite provided Presence False

Tests in a specific envi-

ronment

Presence False

Portability Installability Framework support Ratio 0

Loading type coverage Ratio 0.33

Installation simplicity Level 3

Application to DOM Level 1

Reusablity Modularity Ratio 2.2

Coupling Ratio 0.31

Architecture compatibil-

ity

Level 2

5.4 Quality evaluation implications and improvement sugges-

tions

Next, the results of the quality evaluation that was done in Section 5.3 are contemplated

and improvement suggestions are made. This section is based on the quality evaluation

results that are shown in Table 5.6 but the reasoning that led to these results presented in

Section 5.3 is utilized as well. Each sub-characteristic of the characteristics presented in

the model are discussed.

5.4.1 Functionality

The browser compatibility of the report editor is overall at adequate level with cross-

browser functionality at ratio 0.67 and browser support at ratio 1. Thus, the editor itself

is functioning with all tested browsers but there are minor cosmetic differences between

different browsers. The cross-browser functionality ratio 0.67 could be interpreted as

fairly low but as stated before the differences were cosmetic. However, based on this

63

evaluation it can be suggested that also more of the most important features would be

tested for cross-browser functionality.

Backwards compatibility was evaluated based on the information that is available in the

component documentation regardless of what is internally known about the component.

The information about data compatibility and functional compatibility was not found and

therefore they were both evaluated as false. Based on this evaluation it is suggested that

information about data compatibility and functional compatibility is added to the compo-

nent documentation.

Suitability evaluation passed with high scores because the application where the report

editor had already been utilized, was used as the reference application for the measure-

ment. Thus, the reference application directly affected the report editor package contents

during the package development. Therefore, the ratio results for coverage, excess and

completeness were 1, 0 and 1 respectively. This evaluation did not add any value to this

analysis but overall suitability may be useful for evaluating component suitability for an-

other application. Especially, if component has excess features and thus, excess docu-

mentation, its complexity may increase because developers might not find the features

they need.

Self-contained characteristic was evaluated using the dependencies attribute. The result

found was that the report editor overall depends on four external modules that need to be

provided by the application developers in order to properly utilize the report editor. Cur-

rently, these dependencies are mostly utilized for providing application specific function-

ality such as report saving handler that could be achieved by providing more options di-

rectly from the report editor component interface. The state handling that the dependen-

cies provide can be wrapped inside the report editor component to abstract them from the

application developers. Thus, it is suggested that the component dependencies are

dropped to reduce the dependencies and the complexity it implies to the component.

5.4.2 Reliability

Fault tolerance was found overall adequately efficient when it is utilized in the compo-

nent. The ratio for mechanism available was 0.42 which is fairly low. The mechanism

efficiency was evaluated at level 3 which is a good result. It is understandable that the

fault tolerance has not received major attention because the component has been utilized

by developers that have been participating in its development and are therefore familiar

with it and are not likely to call methods incorrectly. However, it is suggested that more

attention is paid to the fault tolerance coverage of the modules and methods that the com-

ponent provides.

Recoverability of the component was evaluated based on serializable and transactional

attributes. The component was found to be serializable but the transactionality is not fully

64

implemented. The transactionality could be improved by preserving the command history

between the switching of the report editor views and adding more actions such as property

changes to be commands. The commands could also be considered to be stored persis-

tently to provide command history across multiple sessions of editing a report.

5.4.3 Usability

The component configurability was evaluated utilizing the functional configurability,

event configurability and appearance configurability. All the attributes were evaluated to

level 1 which implies that the configurability could be improved. Thus, it is suggested

that the component would provide more configuration options and provide an alternative,

more simple method for supplying the configuration options than the current state model

implementation. For example, the report editor could accept a configuration object as a

parameter when the report editor is initialized and the configurations could be modified

later by a method call.

The component API interaction could be improved by allowing the developers to pass the

resources the report editor needs when initializing the component or to allow the devel-

opers to fully customize the API URLs the report editor is using. The API configurations

could also support modifying the HTTP header fields to make the user authentication

method configuration easier.

Currently, the event configurability is too complex because developers have to utilize the

NavigationEvents module and the state models to implement event handling. The situa-

tion could be improved by providing an event interface from the component which would

allow developers to attach callback functions to the events that are triggered from the

component such as report saving and closing of the editor.

The appearance configurability currently supports only external CSS styles. This could

be improved by providing themes and appearance configuration that could be modified

with configuration options.

Understandability was evaluated by considering the documentation coverage, documen-

tation quality and demonstration coverage. The evaluation found room for improvement

from all the three attributes. Documentation coverage ratio was evaluated as 0.33 when

main functionality descriptions such as installation and configuration options were

searched. Thus, the documentation could be revised by adding more of the relevant infor-

mation to the developers utilizing the component.

Documentation quality was found to be level 2 which could be improved. The improve-

ment suggestions are to provide HTML-based documentation that would make it easier

for developers to traverse between the documentation sections. Additionally, documen-

tation could show more examples of some of the most critical functionalities.

65

Demonstration coverage ratio was evaluated to 0.17 by examining the test code that is

present in the report editor package. This implies that the demonstration is not adequate

and needs to be improved to be useful. The current demonstration does not fully show

other main functionalities than installation. For example, report editor interactions such

as saving of the report and loading a saved report to the editor are not presented. Thus,

demonstration could include more complete use cases of the report editor component.

5.4.4 Efficiency

Resource behavior was evaluated by measuring the memory utilization and disk utiliza-

tion of the report editor package. The memory utilization was evaluated at 28 MB and

disk utilization at 41.3 MB. The resource behavior results are difficult to analyze because

they would be needed to be compared to components with similar functionality. However,

the disk utilization value appears to be relatively large and it could be verified that the

package does not contain any extra resources that are not required by the report editor.

Scalability was evaluated by measuring the processing capacity. The report generation

time seems to increase linearly as the number of dataflow blocks increases which gives

an indication that the component is scalable. However, the static time to generate a report

regardless of the amount of dataflow blocks is over 3 seconds which could possibly be

reduced by changing the graph processed event to be sent right away when report is pro-

cessed and rendered. At the moment, safety time is utilized to make sure that everything

is rendered.

5.4.5 Maintainability

Testability was evaluated based on test suite provided and tests in a specific environment

attributes. Both presence values evaluated to false. Thus, it is suggested that test suite

would be provided with the component or test results would be presented along with the

documentation. Documentation could also provide information about tests done utilizing

different browsers.

5.4.6 Portability

Installability was evaluated by inspecting framework support, loading type coverage, in-

stallation simplicity and application to DOM. Framework support ratio was evaluated to

0 because the report editor does not provide a React component implementation that could

have been used in a project that utilized the report editor component. Thus, it could be

considered to provide framework supported versions of the report editor component if

those are required by applications.

Loading type coverage ratio was evaluated as 0.33 implying that the component does not

support CommonJS and AMD. Adding support to also these loading types is suggested.

66

Support can be added by utilizing universal module definition (UMD) format to wrap the

report editor component (github.com/umdjs/umd, 2017).

Installation simplicity was evaluated as level 3 which indicates that the installation is

fairly simple. However, to further increase the simplicity of the installation it could be

automated by distributing the component as NPM package or similar.

Application to DOM was evaluated as level 1 so it has room for improvement. The com-

plexity of the report editor application to DOM could be reduced by finding alternative

to the iframe element or wrapping the iframe element inside the report editor component

so the communication with the iframe could be abstracted from the developers utilizing

the report editor package.

Reusability evaluation was done by measuring the modularity, coupling and architecture

compatibility of the component. The modularity evaluation produced interesting results

because the ratio evaluated to 2.2. This implies that the report editor package is too mod-

ularized compared to the functionalities it provides. This situation could be remedied by

reducing the number of modules in the package by providing a more abstract report editor

component that utilizes internally some of the modules that are now available in the pack-

age but do not provide any features to the developers.

Coupling ratio was measured as 0.31. Preferably, the result should be 0 which would

imply that the component modules are not depending on each other. Coupling could be

reduced to 0 by redesigning the package structure as suggested in the modularity improve-

ment suggestion.

Architecture compatibility was evaluated to level 2 which is the average result. The points

for improvement are similar to the ones in application to DOM. The communication with

the iframe and the implementation of the HTML page are influencing the supporting ar-

chitecture the report editor package requires. Additionally, the lack of CommonJS and

AMD loading affects the way the application has to load the package. Thus, there should

be efforts for abstracting the HTML and iframe handling inside the component and add

support for CommonJS and AMD loading.

5.5 Web frontend component quality model evaluation and fu-

ture work

The web frontend component quality model is now evaluated according to its perfor-

mance earlier in this chapter. First, it is stated that the evaluation produced a relatively

large number of improvement suggestions which was one of the goals of this thesis. Im-

provement suggestions were made to the actual component implementation as well as to

the component documentation which implies that the model is able to produce sugges-

tions to improve the overall quality of the component.

67

The results provided by the model were presented in Table 5.6 on page 61. However, the

actual improvement suggestions were not solely based on the measured results. The rea-

soning that led to those results seem to be of equal or even greater importance when de-

termining the improvement suggestions based on the evaluation. Of course, the results

table provides an overview of the quality status regarding each attribute, sub-characteris-

tic and characteristic and can be used to indicate which characteristics need the most at-

tention.

The initial requirements that were set for the web frontend component quality model in-

cluded selecting quality attributes that can be measured with adequate precision. After

the evaluation, it can be stated that it was possible to measure a value for each attribute

with the measures presented in the model. However, some of the measurements were

fairly shallow considering the overall component functionality. For example, measuring

the cross-browser functionality or memory utilization can be done more thoroughly if it

is seen important and the evaluator has sufficient time to execute the evaluation. Addi-

tionally, the report editor as a component is very large, implying that it should be signif-

icantly easier to conduct an evaluation for a smaller component.

As has been stated before, the model requires quite strong expertise from the evaluator.

The array of quality attributes that are measured is wide and the evaluator has to identify

specific structures from the component. For example, for modularity the total number of

functionalities provided by the component has to be identified. The expertise of the eval-

uator could thus, affect the outcome of the evaluation on some attributes if the evaluator

is not able to identify everything that is required by the measurement. This could poten-

tially lead to differing results between two different quality evaluations of the same com-

ponent and thus affect the objectivity of the evaluation.

Therefore, future work could include measuring the same component by different evalu-

ators and comparing the results to measure the objectivity of the model. Future work could

also include evaluating smaller components to see how well the model finds quality prob-

lems from them. It would also be interesting to find out if all the attributes seem relevant

for smaller components. The model could also be tested as how well it provides guidelines

for developing a completely new component.

It could also be considered to execute an evaluation on a simple 3rd party component to

see how well the model could be utilized when selecting a component for an application

like the original CBSD models have been utilized. Most of the attributes could possibly

be measured based on component documentation and a simple demo application.

The component subject discussed in this thesis could also be utilized to spark discussion

inside the company to develop a web frontend component repository to be utilized across

web application projects. The repository could then act as a way to spread expertise

through well-structured multi-purpose components and additionally reduce development

68

time and costs when components could be utilized instead of developing own components

for each application.

Naturally, future work also includes implementing the improvement suggestions provided

by the quality evaluation to the report editor package based on the demand of the report

editor package in future projects.

69

6. CONCLUSIONS

The aim of this thesis was to develop a web frontend component quality model. The

model was developed based on web application component characteristics and existing

research on software component quality models. The web frontend component quality

model divides the quality hierarchically to four levels that are quality characteristics, qual-

ity sub-characteristics, quality attributes and quality measures. The model utilizes four

types of quality measures that are presence, level, ratio and integer.

The relevant quality sub-characteristics and attributes were selected from the software

component quality models introduced by the research and some were also added based

on web frontend component characteristics. Thus, a quality model was formed that con-

sists of six quality characteristics, 13 quality sub-characteristics and 30 quality attributes

and measures to assess them.

The web frontend component quality model aims to evaluate the overall component qual-

ity implying that the evaluation focuses on both component implementation and docu-

mentation. The six quality characteristics presented in the model also cover all the ISO

9126 software quality evaluation standard characteristics which speaks for the overall

quality aspect of the model.

The web frontend component quality model was tested and evaluated by assessing the

quality of the report editor component that was extracted from the IoT-Ticket product

developed by Wapice Ltd. The result of the quality evaluation according to the model

provided an array of results that can be used as a view to the overall quality of the com-

ponent. The quality evaluation also inspired improvement suggestions to the report editor

component implementation and documentation.

Among the improvement suggestions to the report editor component were, for example,

to increase the component configurability by adding a support to a configuration object

and to implement events interface for the component. It was also suggested that the com-

ponent would support alternative loading types for example CommonJS and AMD. The

component documentation could also be improved by providing a HTML version of the

documentation and including more of the relevant general information, for example,

about the version compatibility and browser support.

All in all, the model was tested against a real component that has been utilized in the

software industry in production environment. Thus, the web frontend quality model is

able to measure the quality of web frontend components utilized by software companies.

70

REFERENCES

Almeida, F.L.F; Calistru, C.M. (2011). Assessing Quality Issues in Component Based

Software Development. International Journal of Advanced Research in Computer

Science. Volume 2, Issue 2, March 2011, pp. 212-218.

Alvaro, A.; Santana de Almeida, E.; Meira, S. L. (2005). Quality Attributes for a

Component Quality Model. In the 10th International Workshop on Component Oriented

Programming (WCOP) in conjunction with the 19th ACM European Conference on

Object Oriented Programming (ECCOP), Glasgow, Scotland, 2005.

Alvaro, A.; Santana de Almeida, E.; Meira, S. L. (2006). A Software Component

Quality Model: A Preliminary Evaluation. Conference on Software Engineering and

Advanced Applications, August 2006. SEAA '06. 32nd EUROMICRO.

Ambler, T.; Cloud, N. (2015a). Chapter 2 – Grunt, JavaScript Frameworks for Modern

Web Dev. Apress. 502p. Available

http://library.books24x7.com/toc.aspx?bookid=101452 Accessed on 5.2.2017.

Ambler, T.; Cloud, N. (2015b). Chapter 5 – RequireJS, JavaScript Frameworks for

Modern Web Dev. Apress. 502p. Available

http://library.books24x7.com/toc.aspx?bookid=101452 Accessed on 5.2.2017.

Bertoa, M. F.; Vallecillo, A. (2002). Quality Attributes for COTS Components. In the

Proceedings of the 6th International ECOOP Workshop on Quantitative Approaches in

Object Oriented Software Engineering (QAOOSE). Available

http://www.lcc.uma.es/~av/Publicaciones/02/bertoa-QAOOSE.pdf Accessed on

26.2.2017

Bertoa, M. F.; Troya, J. M., Vallecillo, A. (2005). Measuring the usability of software

components. Journal of Systems and Software, Volume 79, Issue 3, March 2006, pp.

427–439.

Bos, W. (2015). An Intro To Using npm and ES6 Modules for Front End Development

http://wesbos.com/javascript-modules/ Accessed on 5.2.2017.

Brooks, D.R. (2007) An Introduction to HTML and JavaScript for Scientists and

Engineers, Springer. 191p.

Brown, M. (2016). Understanding JavaScript Modules: Bundling & Transpiling.

https://www.sitepoint.com/javascript-modules-bundling-transpiling/ Accessed on

5.2.2017.

71

Collison, S. (2006). Beginning CSS Web Development, Apress. 413p.

developer.mozilla.org (2017a). CSS Media queries. https://developer.mozilla.org/en-

US/docs/Web/CSS/Media_Queries/Using_media_queries Accessed on 4.2.2017.

developer.mozilla.org (2017b). HTTP access control (CORS).

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS Accessed

on 26.5.2017.

docs.microsoft.com (2017a). Routing in ASP.NET Web API.

https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-

actions/routing-in-aspnet-web-api Accessed 26.5.2017.

docs.microsoft.com (2017b). ASP.NET MVC Views Overview.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/views/asp-net-

mvc-views-overview-cs Accessed 26.5.2017.

docs.microsoft.com (2017c). Introduction to ASP.NET Web Programming Using the

Razor Syntax. https://docs.microsoft.com/en-us/aspnet/web-pages/overview/getting-

started/introducing-razor-syntax-c Accessed 26.5.2017.

docs.webplatform.org (2017). Minification.

https://docs.webplatform.org/wiki/concepts/programming/javascript/minification

Accessed on 5.2.2017.

entityframeworktutorial.net (2017). What is Entity Framework?

http://www.entityframeworktutorial.net/what-is-entityframework.aspx Accessed on

2.6.2017.

Fink, G.; Flatow, I. (2014a). Chapter 1 - Introducing Single Page Applications, Pro

Single Page Application Development: Using Backbone.js and ASP.NET. Apress.

324p. Available http://library.books24x7.com/toc.aspx?bookid=64620 Accessed on

5.2.2017.

Fink, G.; Flatow, I. (2014b). Chapter 4 - SPA Concepts and Architecture, Pro Single

Page Application Development: Using Backbone.js and ASP.NET. Apress. 324p.

Available http://library.books24x7.com/toc.aspx?bookid=64620 Accessed on 5.2.2017.

Firesmith, D. (2005). Achieving Quality Requirements with Reused Software

Components: Challenges to Successful Reuse, Second International Workshop on

Models and Processes for the Evaluation of off-the-shelf components (MPEC’05), May

2005, pp. 16-29. Available:

http://resources.sei.cmu.edu/asset_files/Presentation/2005_017_001_22301.pdf

Accessed on 24.2.2017

72

Freeman, A. (2011). The Definitive Guide to HTML5, Apress. 1041p.

getbootstrap.com (2017). Bootstrap framework. http://getbootstrap.com/ Accessed on

4.2.2017

github.com/umdjs/umd (2017). Universal module definition.

https://github.com/umdjs/umd Accessed on 19.5.2017.

graphpad.com (2017). Online linear regression calculation.

http://www.graphpad.com/quickcalcs/linear1/ Accessed on 4.6.2017.

The Institute of Electrical and Electronics Engineers, Inc. (1990). IEEE Standard

Glossary of Software Engineering Terminology. Available:

http://ieeexplore.ieee.org/document/159342/ Accessed on 19.2.2017.

The International Organization for Standardization, The International Electrotechnical

Commission (ISO/IEC). (2011). ISO/IEC 25010:2011. Available:

https://www.iso.org/obp/ui/#iso:std:35733:en Accessed on 19.2.2017.

iot-ticket.com (2017). IoT-Ticket. https://www.iot-ticket.com/ Accessed on 31.3.2017.

jqueryui.com (2017). jQuery UI library. https://jqueryui.com/ Accessed on 10.2.2017.

Kalaimagal, S.; Srinivasan R. (2008). A Retrospective on Software Component Quality

Models. ACM SIGSOFT Software Engineering Notes, Volume. 33, no. 6, 2008, pp. 2-

8. Available http://dl.acm.org.libproxy.tut.fi/citation.cfm?id=1449611 Accessed on

26.2.2017

Kaur, I; Sandhu, P. S.; Singh, H.; Saini, V. (2009) Analytical Study of Component

Based Software Engineering. World Academy of Science, Engineering and Technology.

Volume. 50, 2009, pp. 437-442.

memory-stats.js (2017). JavaScript memory monitor.

https://github.com/paulirish/memory-stats.js/tree/master Accessed on 29.4.2017

msdn.microsoft.com (2017). ASP.NET Routing. https://msdn.microsoft.com/en-

us/library/cc668201.aspx Accessed on 26.5.2017.

docs.oracle.com (2017). A Relational Database Overview.

https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html Accessed on

26.5.2017.

O'Regan, G. (2014). Chapter 1 – Introduction, Introduction to Software Quality.

Springer. 369p. Available: http://library.books24x7.com/toc.aspx?bookid=77004

Accessed on 19.2.2017.

73

Osmani, A. (2012). Journey Through the JavaScript MVC Jungle.

https://www.smashingmagazine.com/2012/07/journey-through-the-javascript-mvc-

jungle/ Accessed on 5.2.2017.

typescriptlang.org (2017). TypeScript. https://www.typescriptlang.org Accessed on

4.2.2017

W3.org. (2017). HTML specification. https://www.w3.org/TR/2011/WD-html5-

20110525/ Accessed on 3.2.2017.

w3schools.com (2017). CSS manipulation with DOM.

http://www.w3schools.com/js/js_htmldom_css.asp Accessed on 4.2.2017.

webpack.org (2017). Webpack. https://webpack.js.org/ Accessed on 5.2.2017.

Wellman, D. (2009). Chapter 2 – Tabs, jQuery UI 1.6: The User Interface Library for

jQuery. Packt Publishing, 440p. http://library.books24x7.com/toc.aspx?bookid=30363

Accessed on 10.2.2017.

74

APPENDIX A: WEB FRONTEND COMPONENT QUALITY MODEL

Char-

acter-

istic

Sub-

charac-

teristic

Attribute Type Measure

Func-

tional-

ity

Browser

compati-

bility

Cross-

browser

function-

ality

Ratio First, to evaluate the cross-browser functionality of a

component, the evaluator selects the browsers and

their specific versions to be used in the evaluation.

The component features to be evaluated are also se-

lected. One browser and its specific version is se-

lected as a reference point for correct functionality of

the features of the component. The features of the

component in other browsers and their versions are

compared to the component features in the refer-

ence point browser. The result is provided as a ratio

of how many of the component features in other

browsers match the reference point.

Browser

support

Ratio This attribute provides two alternative methods of

measurement: 1. If component provides documenta-

tion or testing documentation that states supported

browser versions they may be utilized. 2. Compo-

nent is ran manually as part of an application on dif-

ferent browser versions and results are observed.

The result is provided as a ratio of how many re-

quired browser versions are supported.

Back-

wards

compati-

bility

Data com-

patibility

Pres-

ence

This attribute is measured by verifying if the attribute

is present on the component. This may be achieved

by finding such statement from the component doc-

umentation or by manually verifying the data com-

patibility when updating the component version.

Func-

tional

compati-

bility

Pres-

ence

This attribute is measured with the same procedure

as the data compatibility.

Suitabil-

ity

Coverage Ratio Measured by dividing the number of modules in the

component that implement some of the functionality

required by the application with the number of mod-

ules required by the application.

Excess Ratio Measured by dividing the number of modules in the

component not utilized by the application with the

number of modules provided by the component.

Com-

pleteness

Ratio Measured by dividing the number of modules pro-

vided by the component with the number of modules

specified by the component documentation.

Self-con-

tained

Depend-

encies

Inte-

ger

Measured by calculating the number of required

modules by the component.

75

Char-

acter-

istic

Sub-

charac-

teristic

Attribute Type Measure

Relia-

bility

Fault tol-

erance

Mecha-

nism

available

Ratio Measured by dividing the number of modules pro-

vided by the component that implement a fault toler-

ance mechanism with the total number of modules

provided by the component.

Mecha-

nism effi-

ciency

Level Measured on a general level for the whole compo-

nent with a value between 0-4.

Recover-

ability

Serializa-

ble

Pres-

ence

Measured by evaluating if the component has a

mechanism for serializing its state for example, to a

JSON format that can be loaded later on the compo-

nent.

Transac-

tional

Pres-

ence

Measured by evaluating if the component imple-

ments transactions in a way that allows to monitor

and modify the history of actions done to the compo-

nent.

Usa-

bility

Configu-

rability

Func-

tional con-

figurability

Level Measured with a value between 0-4. The component

modules are analyzed to see if they allow initializa-

tion parameters or provide a way to modify the con-

figurations after the module is initialized.

Event

configura-

bility

Level Measured with a value between 0-4. The component

modules are analyzed to see if they provide relevant

events that the application can apply callbacks to.

Appear-

ance con-

figurability

Level Measured with a value between 0-4. The effort for

modifying the appearance of the component is eval-

uated. For example, are there configurations for

modifying the component appearance with themes

or do the developers need to implement component

appearance modification with custom CSS. Addition-

ally, is there documentation available that would help

with modifying the component appearance

Under-

standa-

bility

Docu-

mentation

coverage

Ratio Measured by dividing the number of functionalities

documented with the total number of functionalities

in the component. Functionalities may include instal-

lation, configuration options, methods, events and

appearance configurations.

Docu-

mentation

quality

Level Measured with a value between 0-4. Measured qual-

ities may include for example, documentation read-

ability and code examples.

Demon-

stration

coverage

Ratio Measured by dividing the number of functionalities

shown in demonstrations with the total number of

functionalities in the component. The total number of

functionalities may be extracted from the documen-

tation available. Functionalities may include installa-

tion, configuration options, methods, events and ap-

pearance configurations.

Effi-

ciency

Memory

utilization

Inte-

ger

Measured by evaluating the memory utilization of the

component when used in a minimal application.

76

Char-

acter-

istic

Sub-

charac-

teristic

Attribute Type Measure

Re-

source

behavior

Disk utili-

zation

Inte-

ger

Measured by calculating the total disk space re-

quired by the files in the component.

Scalabil-

ity

Pro-

cessing

capacity

Inte-

ger

Measured by testing the component scalability when

exposed to different amounts of data by dividing the

number of data units processed with the time re-

quired to process the data. Exact measurement

needs to be specified component specifically.

Main-

taina-

bility

Testabil-

ity

Test suite

provided

Pres-

ence

Measured by verifying if the component package in-

cludes a runnable test suite.

Tests in a

specific

environ-

ment

Pres-

ence

Measured by verifying if the component testing doc-

umentation contains information about component

tests done on different browsers or JavaScript

frameworks.

Porta-

bility

Installa-

bility

Frame-

work sup-

port

Ratio Measured by dividing the number of supported

framework specific versions of the component re-

quired by developers by the required number of

framework supports of the component.

Loading

type cov-

erage

Ratio Measured as the ratio of module loading types sup-

ported by the component to the number of required

loading types.

Installa-

tion sim-

plicity

Level Measured with a value between 0-4. Measured by

evaluating the effort required to install and update

the component package on the project.

Applica-

tion to

DOM

Level Measured with a value between 0-4. Measured by

evaluating the simplicity of the required HTML

markup for the component to be applied to DOM.

Reusa-

blity

Modular-

ity

Ratio Measured as the ratio of modules provided by the

component to the functionalities provided by the

component

Coupling Ratio Measured as the ratio of how many modules pro-

vided by the component require at least one another

module provided by the component to function

properly.

Architec-

ture com-

patibility

Level Measured with a value between 0-4. Measured by

analyzing how the component usage affects the sup-

porting code structure implemented in the applica-

tion because of the component.

