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ABSTRACT 

SANTIAGO CORTES REINA: DEPTH ASSISTED COMPOSITION OF      
SYNTHETIC AND REAL 3D SCENES 
Tampere University of technology 
Master of Science Thesis, 66 pages 
October 2015 
Master’s Degree Programme in Information Technology 
Major: Signal processing 
Examiner: Atanas Gotchev 
 
Keywords: Mixed reality, capture and display, motion capture, previsualization. 

In media production, previsualization is an important step. It allows the director and the 

production crew to see an estimate of the final product during the filmmaking process. 

This work focuses on a previsualization system for composite shots which involve real 

and virtual content. It shows the camera operator a correct perspective view of how the 

real objects in front of him look placed in a virtual space. The aim is to simplify the 

workflow, reduce production time and allow more direct control of the end result.  

The real scene is shot with a 3D scene capture device, which combines an RGB color 

camera with time-of-flight depth camera. The device’s pose is tracked using a motion 

capture system. Depth-based segmentation is applied to remove the background and 

content outside the desired volume, the captured geometry is aligned with a stream from 

the RGB color camera and a dynamic point cloud of the remaining real scene contents is 

created. The virtual objects are then also transformed into the coordinate space of the 

tracked camera, and the resulting composite view is rendered accordingly. The proto-

type camera system is implemented as a self-contained unit with local processing. 

A prototype system was constructed from a Microsoft Kinect v2, providing depth and 

color information of the real scene and a Microsoft Surface Pro 3 as a processing and 

display device. Both instruments were attached to a camera shoulder mount, with opti-

cal markers fixed to the body of the camera. The pose of the camera in 3D space is 

tracked with a Natural Point OptiTrack motion capture system, which streams the loca-

tion information to the Surface device over a wireless 802.11n channel. 

At its current state, the system is running at 15 frames per second with a resolution of 

1024x768. Subjectively, the frame rate is already smooth enough for the operator to feel 

as if using a regular camera. Further improvements are targeted in the processing speed 

and the image quality provided by the system. The image suffers from some depth cap-

ture related artefacts which influence the depth segmentation, and therefore adaptive 

filtering methods based on edge-aware bilateral filtering have been investigated. The 

tested filtering has improved the quality significantly, while more effort has to be put in 

implementing the filtering in an efficient way. 
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1. INTRODUCTION 

The system proposed in this work is a blend of two relatively recent concepts and the 

technology that has been developed from them. These concepts are mixed reality (MR) 

and the virtual camera. 

Mixed reality systems are a relatively recent advancement in technology. The term MR 

encompasses any and all systems that merge virtual and real worlds to produce envi-

ronments and visualizations where physical and virtual objects coexist and interact. The 

first general term for such a system, augmented reality (AR), was coined in 1990, AR 

defines system where computer-generated sensory information (sound, video, etc.) is 

used to enhance, augment or supplement a real world environment.  

The full description and formalization of the MR systems was published in 1994 by 

Paul Milgram [36]. It was not until 1999 and the release of the ARToolkit [37] by the 

Nara Institute of Technology that the bulk of the computing community had access to 

real time blend of real and virtual data. Most of the AR applications running on web 

browsers produced during the early 2000s were developed based on the ARToolkit. MR 

has evolved with the technology used to produce it, and the uses for it have multiplied. 

Nowadays, in the embedded system era, a single device can have most, if not all, the 

sensors and computing power to run a good MR application. This has led to a plethora 

of uses, from training and military simulation to simple videogames.  

Any system that mixes data from a virtual and real environment to produce a joint world 

can be classified in the spectrum proposed by Milgram [36]. Most systems can be divid-

ed into a capture component and display components. The capture component is usually 

some kind of image capture device, a single camera [38], a stereo pair [39], or one or 

more depth sensors [40]. The display component show the user the resulting environ-

ment, these can be screens, projectors, head mounted displays (HMD), etc. 

The success of the Oculus Rift has revitalized the development of mixed reality systems 

using HMD. Relevant examples are the MR systems developed by University of Cali-

fornia aimed at tele meeting [41]. The aim of these systems is to create a full 3D model 

of a person and place them in a shared environment with other people. Microsoft has 

announced the HoloLens [42]. This system is a view-through mixed reality display that 

places virtual objects on top of the real world using a semitransparent screen. Many of 

the recent MR developments use head mounted displays; these are a natural interface 

for systems that try to achieve presence, (the feeling of ownership towards a body), but 

this is not always the best option. The system developed uses a more familiar interface 

for a camera operator. The display and the capture systems are attached to a commercial 

shoulder mount. 
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The virtual camera concept was proposed in the context of computer graphics and pre-

sented at the ACM Siggraph conference [43]. It was described as a “cyclops” device 

which renders a virtual scene according to a set of sensors attached to a camera tripod. 

The concept has evolved through the years and has been applied to videogames [44] and 

movies [45]. This evolution has been linked to the advancement in technology: better 

rendering capabilities, better sensing techniques, more powerful computers, etc. The 

most common use of the device is to visualize camera motions through a virtual envi-

ronment in media productions. For example, the movie Avatar used a virtual camera to 

visualize and plan virtual camera movements [46]. 

The virtual camera captures the position and orientation of the camera inside a space 

and returns a render of the image from a point of view relative to it. Many systems have 

been used to estimate the pose of the camera. For example, accelerometers and gyro-

scopes in smartphones or motion capture in movie studios. 

In the University of Kiel, a mixed reality camera [35] was developed in 2008. This 

camera is also based on Time of Flight technology. The system scans the scene and cre-

ates a model of the background prior to the operation. Once in operation, the camera is 

fixed and the mixed space is created. 

Previsualization (previs) is the name given by the movie industry to any system that 

allows the director and the staff to view an approximation of the end result before actu-

ally shooting the scene. It helps save time by minimizing the errors and the iterations 

necessary to materialize the view of the director.  

In order to improve on current previs virtual cameras, the system developed for this 

work takes into account the position of the objects in the space. The real objects in the 

space are then mixed with the virtual objects, and a complete 3D joint space is pro-

duced. Real objects can occlude virtual objects and vice versa. The end result is a mixed 

reality rendered in place for the virtual camera system. This allows a movie director to 

explore how the real characters will blend in with a virtual background. This can help 

reduce errors and corrections done in postproduction. Thus reducing the cost and mak-

ing the production cycle faster. 

The thesis is structured as follows: First, the theoretical background is presented. This 

contains both the mathematical description of the spaces and the algorithms that use this 

information to provide the end result. Second, the system is described. An algorithm 

block diagram and a computational block diagram are drawn and explained. Third, the 

results and performance metrics are presented. Finally the conclusions and future work 

are discussed.  
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2. BACKGROUND 

This chapter covers the theoretical foundation of the work documented in this thesis. 

Some sections use commercial devices and proprietary software whose inner workings 

are not public. To provide theoretical context in these cases, example implementations 

are shown and explained. 

2.1 Geometric descriptions 

In order to describe the system, a vocabulary has to be established to describe the geom-

etry of the scene and the image capture process. The main tools to accomplish this are 

Euclidean and projective geometry. These are very rich fields, and the interested reader 

can find a more complete description in [1]. In this section, the necessary geometric 

primitives to describe the system as well as the terms used in the rest of the text are pre-

sented. 

2.1.1 Points 

A point in 2D space can be represented by a vector in the form 

 �⃗� = (𝑢, 𝑣)𝑇  ∈ ℝ2, (1) 

where 𝑢 and 𝑣 are the coordinates of the point and ℝ2is the 2D Euclidean space. Anoth-

er representation is the so called homogeneous coordinates where the point is represent-

ed in the form 

 �⃑� = 𝑤(𝑢, 𝑣, 1)𝑇 ∈ 𝒫2, (2) 

where 𝑤 is a scalar value and 𝒫2is the 2D projective space. In 𝒫2 all points related by a 

scale factor are considered equivalent, furthermore the point (0,0,0) ∉𝑇 𝒫2. 

To transform from Euclidean to projective space, an additional dimension is introduced 

by adjoining a 1 at the end of the vector. To transform back, the projective vector 

(𝑎, 𝑏, 𝑐)𝑇 must be divided by the third coordinate to achieve the form (𝑢, 𝑣, 1)𝑇 and then 

drop the third coordinate to get the point in ℝ2. Finally homogenous points of the form 

(𝑢, 𝑣, 0)𝑇are called points at infinity; these do not have a representation inℝ2. 

In 3D, points are represented by their Euclidean coordinates 
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 �⃗� = (𝑥, 𝑦, 𝑧)𝑇 ∈ ℝ3. (3) 

 

It is useful to use homogeneous coordinates with the last coordinate initialized by 1. 

This simplifies the conversion from homogenous to Euclidean coordinates, for the pre-

vious point it would be  

 �⃑� = (𝑥, 𝑦, 𝑧, 1)𝑇 ∈ 𝒫3. (4) 

2.1.2 Transformations 

A transformation is a mapping between two vector spaces that preserves addition and 

scalar multiplication; in geometry, it is a map between frames of reference. Table 1 

shows an example of some simple 2D transformations, these are explained below. They 

are ordered from lower to higher hierarchy. In other words, all transforms contain the 

previous ones and all transforms preserve the same geometric properties as the latter 

ones. 

Table 1. Transformations and summary of characteristics 

 

 

Transformation 

Matrix (for augmented vector) 

Preserves 

Example 

 
2D 3D 

Translation [
𝐼2𝑥2  𝑡2𝑥1

02𝑥1
𝑇 1

]
3𝑥3

 [
𝐼3𝑥3  𝑡3𝑥1

03𝑥1
𝑇 1

]
4𝑥4

 Orientation 
 

Rigid motion [
𝑅2𝑥2  𝑡2𝑥1

02𝑥1
𝑇 1

]
3𝑥3

 [
𝑅3𝑥3  𝑡3𝑥1

03𝑥1
𝑇 1

]
4𝑥4

 Lengths 
 

Similarity [
𝑠𝑅2𝑥2  𝑡2𝑥1

02𝑥1
𝑇 1

]
3𝑥3

 [
𝑠𝑅3𝑥3  𝑡3𝑥1

03𝑥1
𝑇 1

]
4𝑥4

 Angles 
 

Affine [𝐴]2𝑥3 [𝐴]3𝑥4 Parallelism 
 

Projective [𝐻]3𝑥3 [𝐻]4𝑥4 Straight lines 
 



5 

 

Translation 

A translation is written as �⃗�′ = �⃗� + 𝑡  or in matrix form:  

 𝑝′ = [𝐼2𝑥2 𝑡2𝑥1]2𝑥3�⃗�, (5) 

using Euclidean coordinates or 

 
�⃑�′ = [

𝐼2𝑥2  𝑡2𝑥1

02𝑥1
𝑇 1

]
3𝑥3

𝑝,⃑⃑⃑ ⃑ 
(6) 

using homogenous coordinates, 𝑰 is the 2x2 identity matrix and 𝟎 is the 2x1 zero vector. 

The 3x3 matrix allows translations to be presented as matrix multiplications and allows 

integrating operations into a single algebraic notation. 

In 3D, translations are represented by a 3x1 vector in the same manner as in 2D, and 

they can be presented as a matrix operation: 

 
�⃑�′ = [

𝐼3𝑥3  𝑡3𝑥1

03𝑥1
𝑇 1

]
4𝑥4

�⃑�. 
(7) 

A translation preserves the orientation of straight lines. 

Rigid motions 

A rigid motion is a translation and a rotation, in 2D it is written as �⃗�′ = 𝑅�⃗� + 𝑡, or in 

matrix form 

 �⃗�′ = [𝑅𝟐𝒙𝟐 𝑡2𝑥1]2𝑥3𝑝,⃑⃑⃑ ⃗ (8) 

where 𝑅𝟐𝒙𝟐is an orthonormal rotation matrix, 𝑅𝑅𝑇 = 𝐼 and |𝑅| = 1.  

For an angle 𝜃 clockwise, 

 𝑅 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]. (9) 

This can be written in homogenous notation as  

 
�⃑�′ = [

𝑅𝟐𝒙𝟐  𝑡2𝑥1

02𝑥1
𝑇 1

]
3𝑥3

�⃑�. 
(10) 

In 3D, a rigid body motion is written as �⃗�′ = 𝑅�⃗� + 𝑡, or  

 �⃗�′ = [𝑅𝟑𝒙𝟑 𝑡3𝑥1]3𝑥4�⃗�, (11) 
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where 𝑅𝟑𝒙𝟑 has the same properties as the 2D rotation matrix. The matrix R is not trivial 

to parameterize. There are several possibilities, listed below. 

Elemental rotations [2] 

An elemental rotation is a rotation around one of the axes of the coordinate system in 

ℝ3.In matrix form they are: 

Rotation of 𝜑 degrees around the x axis:  

 

𝑅𝑥(𝜑) = [
1 0 0
0 cos𝜑 −sin 𝜑
0 sin𝜑 cos𝜑

]. 
(12) 

Rotation of 𝜃 degrees around the y axis: 

 
𝑅𝑦(𝜃) = [

cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
]. 

(13) 

Rotation of 𝜓 degrees around the z axis:  

 
𝑅𝑧(𝜓) = [

cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

]. 
(14) 

Euler angles [3]  

 

Figure 1. Sequence of XYZ Euler angles (45°, 30°, 75°) 

 

Euler introduced a representation for the orientation of rigid bodies in 3D Euclidean 

space as a sequence of three elemental rotations, see Figure 1. There are 12 sequences 

of rotations that can be called an Euler angle, and the order influences the result. Also it 

is not always possible to move smoothly in the parameter space. In particular, Euler 
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angles are susceptible to a loss in freedom of smooth motion called gimbal lock. Gimbal 

lock is a configuration in Euler angles where the first local axis aligns with the last 

global axis, see Figure 2, this removes one degree of freedom form the operator. In 

practice it creates a point where the camera has to go “around” a point instead of a 

smooth motion. This problem is avoided by choosing the axes in such a way that the 

gimbal lock position is rarely or never achieved, for example, a camera will almost nev-

er point straight up or straight down, hence an Euler description with the X axis in the 

middle is preferred. 

 

Figure 2. Gimbal lock. XYZ Euler rotation (0°, 90°, 0°), Note how the local X axis is 

aligned with the global Z axis. This removes one degree of freedom. 

 

Axis angle [3] 

 

Figure 3. Axis (0.576,-0.046, g0.816) in black; Left, angle (0°); right, angle (99°), 

same rotation as achieved in Figure 1. 

 

Any 3D rotation can be represented by a rotation of an angle 𝜃 around a particular 

is �⃑⃗�, see Figure 3. This representation is minimal, and it does not need any constrains on 

the parameters. The matrix is derived using the Rodriguez formula [4] 
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 𝑅 = 𝐼 + 𝐧𝒄𝒓 sin 𝜃 + 𝐧𝒄𝒓
𝟐 (1 − cos 𝜃), (15) 

where 𝐧𝒄𝒓 is the matrix version of the cross product operator of the vector �⃑⃗�, 

 

𝐧𝒄𝒓 = [

0 −𝑛𝑧 𝑛𝑦

𝑛𝑧 0 −𝑛𝑥

−𝑛𝑦 𝑛𝑥 0
]. 

(16) 

Unit quaternions [5] 

The unit quaternion is derived from the axis-angle representation [3]. It is a vector of 

length 4 that has norm 1 and is written �⃗� = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤), �⃗� = ‖1‖. Quaternions have 

the advantage that small changes in the rotation will yield small changes in the quater-

nion, which overcomes some of the problems presented by Euler angles. The represen-

tation is unique with the exception that  �⃗� and −�⃗� represent the same rotation.  

The rotation matrix can be obtained from  

 

𝑅 = [

1 − 2(𝑞𝑦
2 + 𝑞𝑧

2) 2(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤)

2(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1 − 2(𝑞𝑥
2 + 𝑞𝑧

2) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤)

2(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1 − 2(𝑞𝑥
2 + 𝑞𝑦

2)

]. 

(17) 

The rigid body transforms preserve the lengths of line segments. 

Similarity transform 

The similarity transform adds a scale factor to the local coordinates before the rigid mo-

tion and is written as �⃗�′ = 𝑠𝑅�⃗� + 𝑡 or in matrix form  

 �⃗�′ = [𝑠𝑅𝟐𝒙𝟐 𝑡2𝑥1]2𝑥3�⃗�, (18) 

where 𝑠 is a scalar value. 

In 3D, a similar representation is used. Similarity transforms preserve angles between 

lines. 

Affine transform 

The affine transform is written as 

 �⃑�′ = �̃��⃑�, (19) 

 where �̃� is the augmented matrix 
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�̃� = [

𝐴2𝑥3

𝟎1𝑥2 1
], 

(20) 

and 𝐴2𝑥3 is an arbitrary 2x3 matrix. 

The 3D representation is similar, using an arbitrary 3x4 matrix. 

Perspective transform 

Also known as projective transform or homography, it is written as 

 �⃑�′ = 𝐻�⃑�. (21) 

H is homogeneous, hence two matrices related by a scale factor are considered equiva-

lent. 

3D to 2D projections 

Now that both 2D and 3D operations are properly defined, it is important to formalize 

the projection of a 3D scene into a 2D image plane. The most common way to do so is 

with a linear projection matrix. This matrix can be calculated in several ways, a compar-

ison is listed in [3]. The two matrices used in this work are discussed below. In this sec-

tion, �⃑� = (𝑢′, 𝑣′, 1)𝑇 or �⃗� = (𝑢, 𝑣)𝑇  refers to the 2D coordinate and �⃑� = (𝑥′, 𝑦′, 𝑧′, 1)𝑇 

or �⃗� = (𝑥, 𝑦, 𝑧)𝑇 refers to the 3D coordinate. 

Orthography 

An orthographic projection just drops the z component of the �⃗� vector to produce the 2D 

vector, in matrix form 

 �⃗� = [𝑰2𝑥2|𝟎1𝑥2]�⃗�, (22) 

Or 

 
𝑝 = [

𝑰2𝑥2 𝟎2𝑥2

𝟎2𝑥1 1
] �⃑�. 

(23) 

Orthography is used to simplify computations when the camera is far away from the 

object. In particular it greatly simplifies pose estimation using singular value decompo-

sition [6]. 

Perspective 

The most well-known projection in computer graphics and computer vision is the 3D 

perspective. It simply divides the 3D coordinates by the z component and takes the first 

two, or in matrix form 
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 �⃑� = [ 𝑰3𝑥3 𝟎3𝑥1]�⃑�. (24) 

Normalizing �⃑� to get the Euclidean coordinates yields the perspective transform.  

2.2 Pinhole camera model 

Since both sensing technologies are, in essence, cameras, it is important to establish a 

model for this kind of technology. The Pinhole camera model [1] is a simple model that 

describes the geometric relation between a 3D scene and a 2D image in a camera, this 

model is presented below. 

 

 

Figure 4. 2D representation of the pinhole camera model 

A camera can be represented by the transformation that maps points in the surface of 3D 

objects to the image plane. Figure 4 shows the pinhole geometry model in 2D, and the 

equation is 

 (𝑢, 𝑣) = (𝑓𝑥
𝑥

𝑧
, 𝑓𝑦

𝑦

𝑧
). (25) 

A simple transformation can place the objects in the correct reference frame. This is 

where the optical center of the camera is the origin, the z component is perpendicular to 

the image plane and the y component is parallel to the v component of the image plane, 

see Figure 5. This transformation is called the extrinsic matrix. 

 

Figure 5. Left to right; Color convention, Camera with associated axis 
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The 4x4 matrix is  

 
𝐸 = [

𝑅3𝑥3 𝑡1𝑥3

𝟎3𝑥1 1
], 

(26) 

𝑅3𝑥3 and 𝑡1𝑥3 describe the necessary rotation and translation to put the points in the 

camera space. It can be easily calculated by using the pose data, as 

 
𝐸 = [

𝑅𝑐3𝑥3
𝑡𝑐1𝑥3

𝟎3𝑥1 1
]
−1

, 
(27) 

 

𝑅𝑐3𝑥3
 and 𝑡𝑐1𝑥3

 describe the pose of the camera in the global space. 

Next, the points have to be projected to the actual image plane, see Figure 5. This is 

done with the calibration or intrinsic matrix. The calibration matrix describes the inter-

nal parameters of the camera, for example focal length, optical center, etc. in matrix 

form  

 
𝐾 = [

𝑓𝑢 𝑠 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

], 
(28) 

𝑓𝑢 and 𝑓𝑣 are the focal lengths for the horizontal and vertical axis, these values are ideal-

ly the same, but, if the pixels are not perfect squares, the difference compensates for that 

distortion factor.(𝑐𝑢, 𝑐𝑣) are the coordinates of the origin of the image plane. 𝑠 encodes 

the possible skew if the sensor is not perpendicular to the optical axis. 

Assuming 𝑓𝑢 = 𝑓𝑣 = 𝑓 and 𝑠 = 0 

 
𝐾 = [

𝑓 0 𝑐𝑢

0 𝑓 𝑐𝑣

0 0 1

]. 
(29) 

This intrinsic matrix is an implementation of the pinhole model, shown in Equation 4. 

Putting them together, the camera matrix is  

 
𝑃 = [

𝐾 𝟎1𝑥3

𝟎3𝑥1 1
]𝐸. 

(30) 

And the complete model is 

 �⃑� = 𝑃�⃑�. (31) 
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2.3 Depth capture and processing 

The system capture is divided into sensing, alignment and filtering. These three stages 

are first put into the context of the project and then briefly described below. 

2.3.1 Sensor 

The system uses two kinds of sensing technologies to capture the information from the 

scene, namely a color (RGB) camera and a depth camera. The technology for a color 

camera is assumed to be well understood and thus, not explained in this document. The 

depth camera, on the other hand, is a relatively new technology in which the sensing 

paradigm has evolved continuously in the last few years. Some of these sensing para-

digms including the one used in the current prototype are presented below. 

Depth cameras measure the distance from the sensor to each point that projects onto it. 

This provides a so called 2.5D representation of the scene [8]. Several technologies pro-

vide this representation; a comparison is presented in [9]. Below is a list of depth imag-

ing techniques. Since this project uses a Time of Flight camera, this system will be de-

scribed in detail. 

Stereo triangulation [8] 

Given two images of the same scene from different points of view, it is possible to esti-

mate the distance and produce a 2.5D image. In order to do this, it is necessary to find 

the point correspondences between the images. The relative difference between the pix-

els, called disparity, encodes the distance of the pixel. Specifically the disparity is in-

versely proportional to the point depth.  

Structured light [10] 

Structured light is a variation of the stereo triangulation. It uses one or more projectors 

and one or more cameras. A structured image is projected onto the scene and captured 

by the cameras. The relative positions of the structure between the projected and the 

captured images can be treated as the disparity in a stereo system. 

LIDAR [11] 

By illuminating a pulsed laser to the target and analyzing the reflection (time, phase 

shift), the distance to the target can be estimated. LIDAR systems use a mechanical 

scanner to sweep the laser and obtain an image.  
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Time of flight (ToF) [11] 

ToF is similar to LIDAR in the sense that is analyses the reflection and measures the 

time the signal took to go to the target and return. However, ToF cameras do not need a 

scanning system; the distances of all the pixels are measured at the same time. 

The system built in this project uses the Kinect v2 [12] sensor. This sensor uses indirect 

ToF technology. In the Kinect, every pixel has two sensors, both turning on (taking pho-

tons) and off (rejecting photons) at a high rate (>10GHz).There is a 180 degrees phase 

shift between the two sensors. This means that when one is on, the other one is off. An 

IR LED source is flashing in phase with one of the sensors. The light travels to the ob-

jects in front and returns to the sensor after a short time (about 7 nanoseconds for an 

object 1 meter away). This received pulse is read by both sensors as it can be seen in 

Figure 6. The ratio of intensity of the two sensors is proportional to the distance. 

At some point, the distance may be so long that the pulse returns after the second sensor 

is on and arrives on the first sensor’s window, as seen in the last row of Figure 6. This 

produces an ambiguity. To solve this, the period of the sensors and laser is increased. 

However, this reduces accuracy due to thermal noise in the sensor. In the real system, 

the Kinect takes a big period measurement with no ambiguities and then a high preci-

sion measurement, using the first to solve the ambiguities of the second. 

 

 

Figure 6. Timing graph of ToF camera functionality, gray bars indicate the first 

sensor being on. The distance is proportional to ratio of exposure. P1 is the pulse 

from an object close and P2 to P4 are increasingly farther away. P4 produces ambi-

guity as the ratio is very similar to P2 but times are clearly different. 
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Regardless of the capture technology, the result is some form of a distance map. This 

image encodes the Euclidean distance from the sensor to the point. The first step is to 

transform the distance map (distance to a point) into the depth map (distance to a plane) 

as seen in Figure 7.  

 

Figure 7. Sample Depth image, Depth encoded into color 

First both coordinate axes are placed in the same unit, i.e. the correction factor 𝑓𝑦 is ap-

plied to the coordinates themselves to make both dimensions use the same unit. Hence, 

both dimensions are projected by the same focal length 𝑓𝑥 

 
𝑣′ = (𝑣 − 𝑐𝑦)

𝑓𝑥
𝑓𝑦

, 
(32) 

where 
𝑓𝑥

𝑓𝑦
 is the ratio of the focal lengths calculated in the calibration, 𝑣′ it’s the new ver-

tical coordinate which has the same units as the horizontal coordinates. 

The distance in the focal plane is  

 
𝑟 = √𝑣′2 + (𝑢 − 𝑐𝑥)2. (33) 

Now the triangle similarity shown in Figure 8 produces 

 
𝑍 = 𝐷

𝑓𝑥

√𝑓𝑥2 + 𝑟2
, (34) 

Z is the depth value. If this is done for every pixel, the Depth image is created. 
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Figure 8. Similar triangles in pinhole camera model 

 

2.3.2 Multimodal alignment 

Once the color and depth images are obtained they have to be mapped to one another in 

order to unify the information and make proper use of it. This problem is generally re-

ferred to as multimodal alignment. The goal is to combine the information from dispar-

ate sources in order to produce a model that is more complete than the sources used sep-

arately. The specific stereo-color alignment procedure is presented below. 

The depth and color images are two different samples of the same scene from two 

slightly different perspectives. In order to correctly manipulate the data, it is important 

to relate the pixels between the images and obtain a unified reconstruction. The images 

have different points of view, different size and different optical properties. The match-

ing process creates a new depth image where there is a one to one mapping between the 

color and the depth. It has the following steps: 

3D coordinates estimation [1] 

Given an image D where each pixel contains the depth information, the calibration ma-

trix K can be inverted and used to estimate the point in 3D space relative to the camera. 

From Section 2.2, the calibration matrix K fulfils 

 (𝑢′, 𝑣′, 𝑤)𝑇 = 𝐾(𝑥, 𝑦, 𝑧)𝑇 , (35) 

 
(𝑢, 𝑣) =

1

𝑤
(𝑢′, 𝑣′)𝑇 , (36) 

with the range image,  

 𝐷(𝑢, 𝑣) = 𝑧 = 𝑤, (37) 

so 

 �⃗� = (𝑥, 𝑦, 𝑧)𝑇 = 𝐷(𝑢, 𝑣)𝐾−1(𝑢, 𝑣, 1)𝑇 . (38) 
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Projection to camera plane 

The set of points are relative to the optical center and orientation of the depth camera. In 

order to project them to the color camera, they must be transformed into its own refer-

ence frame. The transformation between two cameras is a 3D rigid transformation de-

fined by the relative position and orientation of the cameras. 

Multi-sensor systems need to know the relative position and orientation of their individ-

ual components. These measurements can be done by hand or built in with specified 

parameters (such is the case of the Kinect). However, there are several calibration 

methods [3] [19] to achieve this and to account for errors that develop over time. 

Let 𝐶 be the inter-camera calibration matrix, and 𝐾2 the intrinsic matrix of the color 

camera, then the depth image projected onto the image plane of the color image is 

 (�̈�, �̈�, �̇�)𝑇 = 𝐾2𝐶(𝑥, 𝑦, 𝑧, 1)𝑇 , (39) 

 
�⃗� = (�̇�, �̇�)𝑇 =

1

�̇�
(�̈�, �̈�)𝑇 , (40) 

where �⃗� is the position of the given depth point in the image plane of the color camera. 

This stage produces a list of points in the form (�̇�, 𝑣, 𝑧̇ )𝑇  

Re-sampling of projected data 

The depth image is on the same image plane as the color image, but it’s not aligned with 

the pixel grid. Furthermore, the two cameras rarely have the same resolution. In the Ki-

nect v2 for example, the depth sensor has 512x424 pixels while the color camera has 

1920x1080 pixels. Each point in the destination grid has to be estimated from the non-

uniformly located points in the depth image. This process is referred to as resampling 

[3] [14].  

Some pixels visible in the color image are not visible in the depth image. These points 

are called occlusions [1] [13]. There are several ways to handle occlusions. The simplest 

treatment is to ignore them, if some assumptions are made about the relation between 

nearby pixels more sophisticated processing can be done. The next section discusses 

these operations. 
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2.3.3 Filtering 

Once the new depth image is created, some distortions are present. Some are inherent to 

the depth capture itself (missing pixels) and others are created by the multimodal align-

ment (occlusions). Apart from those errors there is sensor noise in both images. In order 

to make the resulting image visually appealing, something has to be done about these 

errors. This kind of problem is solved by selecting the correct information and filling 

the wrong information with the best guess. This process is called a filter and it is de-

scribed below. 

In signal processing, a filter is a process that removes an unwanted component [15] 

from the signal of interest. In this case, the depth signal has noise coming from the sen-

sor [16] and is missing information due to occlusions. The filter’s task is to reduce the 

noise and deal with the occlusions. Below some image processing filtering schemes are 

described. 

For the following descriptions: I is the intensity of the RGB color matrix (one color 

channel of the luminance channel in luminance-chrominance color space representa-

tion), D is the input depth matrix, and C is the output depth matrix. All matrices have 

the same size. The operator∗ is the 2D convolution.  

Linear filter [15] 

The assumption is that each pixel is assumed to have a value similar to its neighbors in 

space. The filter is implemented with a 2D convolution as 

 𝐶 = 𝐷 ∗ 𝑊, (41) 

where W is the weight matrix. W is a Gaussian matrix, the size and variance of the ma-

trix are parameters that define the effect of the filter. One example of weight matrix is 

𝑊 =
1

273

[
 
 
 
 
1
4
7

4
16
26

7    4   1
26 16 4
41 26 7

4 16 26 16 4
1 4 7     4  1]

 
 
 
 

, 

 

which is a Gaussian window with variance 1. Note that W sums to one, and the pixels 

closer to the center add more information. The Gaussian filter is a linear separable filter; 

this means that it can be done as a 1D linear filter in one dimension and then repeat in 

the other dimension. The filter has a blurring effect on the image as seen in Figure 9. 
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Figure 9. Left, original image. Right, Gaussian filtered image. 

 

Median filter [15] 

The median filter assumes that the signal is corrupted with outliers rather that with addi-

tive noise. It performs the nonlinear median operation over a window. The window size 

is the design parameter of the filter. The Filter removes outliers and preserves edges; the 

effect can be seen in Figure 10. 

 

Figure 10. Left, Image corrupted with salt and pepper noise. Right, Corrupted image 

after median filter. 

Bilateral filter [17] 

The bilateral filter is a nonlinear, edge preserving smoothing filter for images. It is a 

weighted average filter, similar to the Gaussian explained above. However, the weight 

is not only based on spatial distance, but also in intensity distance. It can be written as 
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𝐶(𝑝) =

1

𝑇
∑ 𝐷(𝑝𝑖) 𝑓(‖𝐷(𝑝𝑖) − 𝐷(𝑝)‖) 

𝑝𝑖∈𝑅

𝑔(‖𝑝𝑖 − 𝑝‖), (42) 

R is the window of the filter; f and g are the kernels of the intensity difference and dis-

tance metric respectively. These kernels are arbitrarily selected, a common choice is to 

use Gaussian functions. T is the normalization term 

 𝑇 = ∑ 𝑓(‖𝐷(𝑝𝑖) − 𝐷(𝑝)‖)

𝑝𝑖∈𝑅

 𝑔(‖𝑝𝑖 − 𝑝‖), (43) 

which ensures that the filter preserves image energy. 

 

Joint bilateral filter [18] 

The depth image usually suffers from noise and errors close to the edges of the color 

image. Furthermore there is not enough information to perfectly align them in the depth 

image. Information from the color image is put into the filter to properly correct those 

errors and reduce the noise. This information is introduced as 

 
𝐶(𝑝) =

1

𝑇
∑ 𝐷(𝑝𝑖) 𝑓(‖𝐷(𝑝𝑖) − 𝐷(𝑝)‖)

𝑝𝑖∈𝑅

 𝑔(‖𝐼(𝑝𝑖) − 𝐼(𝑝)‖), (44) 

with 

 𝑇 = ∑ 𝑓(‖𝐷(𝑝𝑖) − 𝐷(𝑝)‖) 

𝑝𝑖∈𝑅

𝑔(‖𝐼(𝑝𝑖) − 𝐼(𝑝)‖). (45) 

Note the similarity with the bilateral filter. The intensity distance is done relative to the 

difference in color rather than in depth. This aligns the edges of the depth image to the 

color. The smoothing effect and edge aligning are shown in Figure 11. 
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Figure 11. Joint Bilateral filter, Top, Color image. Bottom, left, original depth image. 

Right, bilaterally filtered image, note the accuracy of the edges. 
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2.4 Optical motion capture 

Optical tracking as used in this project consists on identifying the 6 DOF of a rigid body 

by capturing a constellation of markers through several cameras. The used solution, 

Natural Point OptiTrack system [26], is a proprietary program so the exact algorithm 

used is not public. However, published solutions to most problems do exist and a set of 

those is presented below. 

2.4.1 Blob detection 

In most optical tracking systems, the markers are either passive IR reflectors or active 

IR emitters. These are captured via a camera with an IR-pass filter, the end result being 

an image similar to Figure 12. 

 

Figure 12.  Image captured by the IR camera, the markers are not brighter than the 

rest of the scene due to overpower of IR LEDs, this was done to make the image 

clearer. 

The first step is to eliminate anything that is not a marker. In order to do this, we can 

assume that the markers are brighter than anything else in the scene. This assumption 

holds if the space and equipment are properly calibrated and setup. Given this, a thresh-

olding of the image should separate the markers and other IR bright objects from the 

rest of the scene. The thresholding value is dependent on the lighting conditions and can 

be adjusted manually to fit the situation. An example of the segmentation is shown in 

Figure 13. 
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Figure 13. Image segmented, bright spot on top is another camera, and the constella-

tion is in the middle. 

After segmentation, the image is either binary (full thresholding) or grayscale (keep 

gray values of markers). The markers appear as bright ellipsoids in contrast with a dark 

background. These are referred to as blobs.  The task is to extract the coordinates of the 

centers of the blobs. 

For this there are many solutions, a detailed comparison is given in [28]. Some of the 

main ideas and their downsides are presented in Table 2 

Table 2. Blob detection algorithms and their known issues 

Algorithm Known problems 

Matched filter/template Only pixel precise results. 

Watershed detection Noise sensitive. 

Structure tensor analysis Only circular structures and 

computationally expensive. 

Scale space analysis Computationally expensive. 

Sample edges and use shape de-

scriptors 
Computationally expensive. 

 

Since the user typically can control the lighting conditions, the power of the noise can 

be controlled. Hence, a simple solution can be used. 
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A simple solution proposed in [32] is to use a matched filter to initially estimate the 

center, and then if a blob is found, calculate the center of mass of brightness within the 

small window. This can be done very fast and can be integrated with the aforemen-

tioned segmentation. However, issues with this solution arise as the blobs get closer to 

each other, but given enough cameras, this problem can be ignored.  

2.4.2 3D reconstruction 

The input for 3D reconstruction is the list of blob locations for each camera. Assuming 

passive markers, correspondences between them are still unknown. This is a classic 

multiple view geometry problem and is referred to as triangulation [29]. The projection 

matrices for each camera are known, i.e. that the system is calibrated. 

As it was described in Section 2.3, each point on an image plane corresponds to a line 

that passes through the optical center and the point in 3D space(see Figure 14); hence, 

one would expect all lines coming from different cameras corresponding to the same 

point to intersect in the 3D location of the marker. However, due to noise and calibra-

tion errors, these rays do not always intersect.  

 

 

Figure 14. Points in 3D space and the projected rays into each camera. 

The error is calculated as the distance between the points in the image plane and the 

projections of the estimated solution on the same image plane. This is called the re-

projection error. If this error is minimized, the estimator will be the maximum likeli-

hood estimator (MLE)  
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The setup for the Iterative least squares (LS) solution is stated below. 

Let  

 �⃗� = (𝑥, 𝑦, 𝑧, 1)𝑇 , (46) 

be the position of the center of the marker in homogeneous space. And let  

 �⃗⃑� = (𝑢, 𝑣, 1)𝑇 , (47) 

be the coordinates of the projection into a camera plane. The camera matrix P describes 

the mapping from the 3D space to the image plane as in 

 
�⃗⃑� = 𝑃�⃗� = (𝑢′, 𝑣′, 𝑤)𝑇 =

1

𝑤
(𝑢, 𝑣, 1)𝑇 . 

(48) 

Let  𝑃𝑖
⃑⃑⃗ be the ith row of the matrix P, P can be written as: 

 

𝑃 = [

𝑃1
⃑⃑ ⃑⃗

𝑃2
⃑⃑⃑⃑⃗

𝑃3
⃑⃑⃑⃑⃗

] . 

(49) 

Equation (49) can be divided into 3 equations as follows: 

 𝑢

𝑤
= 𝑃1

⃑⃑ ⃑⃗ �⃗�, (50) 

 𝑣

𝑤
= 𝑃2

⃑⃑⃑⃑⃗�⃗�, (51) 

 1

𝑤
= 𝑃3

⃑⃑⃑⃑⃗�⃗�, 
(52) 

Substituting w from the third equation into the first two the following system is left: 

 
{
𝑃3
⃑⃑⃑⃑⃗. �⃗� ∗ 𝑢 = 𝑃1

⃑⃑ ⃑⃗ �⃗�,

𝑃3
⃑⃑⃑⃑⃗. �⃗� ∗ 𝑣 = 𝑃2

⃑⃑⃑⃑⃗�⃗�.
 

(53) 

This system has 3 unknowns (𝑥, 𝑦, 𝑧) but only two equations, so one camera is not 

enough. By using N cameras, a system of 2N equations and two unknowns is built. 

Hence, an overdetermined system is built and any LS solution (SVD, Euler) can pro-

duce a solution. However, that solution minimizes the following cost (squared) for each 

coordinate in the image plane 

 𝐶𝑜𝑠𝑡1 = (𝑃3
⃑⃑⃑⃑⃗. �⃗� ∗ 𝑢 − 𝑃1

⃑⃑ ⃑⃗ . �⃗�)
2
+ (𝑃3

⃑⃑⃑⃑⃗. �⃗� ∗ 𝑣 − 𝑃2
⃑⃑⃑⃑⃗. �⃗�)

2
. (54) 
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This has no geometric meaning and is different from the MLE cost. The MLE cost is the 

squared distance (D) of the point �⃗⃑� and the projection of �⃗�, or in equation form 

 𝐷 = �⃗⃑� − 𝑃 ∗ �⃗�. (55) 

The MLE cost can be written as: 

 

𝐶𝑜𝑠𝑡2 = (𝑢 − 
𝑃1
⃑⃑ ⃑⃗ . �⃗�

𝑤
)

2

+ (𝑣 − 
𝑃2
⃑⃑⃑⃑⃗. �⃗�

𝑤
)

2

. 
(56) 

 By substituting Equation 53 in Equation 56: 

 

𝐶𝑜𝑠𝑡2 = (
𝑃3
⃑⃑⃑⃑⃗. �⃗� ∗ 𝑢 − 𝑃1

⃑⃑ ⃑⃗ . �⃗�

𝑤
)

2

+ (
𝑃3
⃑⃑⃑⃑⃗. �⃗� ∗ 𝑣 − 𝑃2

⃑⃑⃑⃑⃗. �⃗�

𝑤
)

2

. 
(57) 

Minimizing this cost attains the MLE of the system. Moreover, unlike cost1, cost2 is 

projection invariant. However, w is not known, and since it’s inversely related to the 

distance between the image plane and the center of the marker, finding the right w is the 

same as locating the point in 3D space. 

An iterative solution was proposed by [20] where w is initialized as 1 for every camera 

and then the LS estimation is performed. Then the result is used to find w for every 

camera and the LS estimation is performed again. The result converges to the MLE in 

most of the configurations. Some caveats are particular to 2 camera systems where 

points close to the epipolar line cause the system to not converge. 

In systems where more than one marker is seen at the same time by all cameras, match-

ing (labeling the dots in every camera) is performed by minimizing the average cost for 

all points.  

2.4.3 Model fitting and pose estimation 

After the 3D position of the markers is found, the next step is to estimate the actual po-

sition and orientation of the objects that have the markers attached to them. This process 

has two different steps: model fitting and pose estimation. In model fitting, a set of 

points is divided into clusters and each cluster is matched with a corresponding struc-

ture. In pose estimation, the position and orientation of a structure with respect to a 

fixed axis is estimated. 

Model fitting is a common problem in computer vision. Its goal is to map an unknown 

model to a template. There are many available solutions that are proven to work [21]. 

Since in this context there is always only one model present, the solution is not relevant 

and thus, not presented. The second half, pose estimation, is also a common computer 
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vision problem. It is generally considered to be solved, but there is no single solution 

that fits all requirements. For large clouds, iterative closest point [22] is commonly 

used; for small clouds, like the ones present in this system, analytical methods [3] [23] 

are a feasible solution. 

The following derivation uses Euclidean geometry (see Section 2.1), so points in 3D 

space are represented by their (𝑥, 𝑦, 𝑧) coordinates. Rotations are represented by a 3x3 

matrix R such that 

 𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝑅−1𝑅 = 𝐼, (58) 

 det(𝑅) = 1, (59) 

 

with 𝐼  being the identity matrix and det ( ) being the determinant of a matrix. A transla-

tion is represented by a vector t with the corresponding translations for each coordinate. 

Finally a scale is represented by a scalar s. 

Let A and B be two sets of points in two reference frames that are related by a transla-

tion t and a rotation. Since both reference frames have the same scale, 

 𝑏𝑖 = 𝑅𝑎𝑖 + 𝑡,        𝑏𝑖𝜖𝐵, 𝑎𝑖𝜖𝐴. (60) 

By using least squares, the function to minimize is 

 1

𝑛
∑(𝑅𝑎𝑖 + 𝑡 − 𝑏𝑖)

2

𝑛

𝑖=1

, 
(61) 

where 

 𝑛 = |𝐴| = |𝐵|. (62) 

In order to calculate t, we calculate the mean vectors. 

 
�̅� =

1

𝑛
∑𝑎𝑖

𝑛

𝑖=1

 , 
(63) 

 
�̅� =

1

𝑛
∑𝑏𝑖

𝑛

𝑖=1

 . 
(64) 

Then it can be determined as 

 𝑡 = �̅� − 𝑅�̅�. (65) 
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Substituting Equation (65) into Equation (61) yields 

 1

𝑛
∑(𝑅𝑎𝑖 + �̅� − 𝑅�̅� − 𝑏𝑖)

2
𝑛

𝑖=1

. 
(66) 

Now both reference frames are translated to have their origin in the mean of their re-

spective point set, in equation form,   

 𝑎𝑖
′ = 𝑎𝑖 − �̅�, 

𝑏𝑖
′ = 𝑏𝑖 − �̅�. 

(67) 

Substituting Equation (67) into Equation (66) produces 

 
1

𝑛
∑(𝑏𝑖

′ − 𝑅𝑎𝑖
′)2

𝑛

𝑖=1

=
1

𝑛
∑(𝑏𝑖

′ − 𝑅𝑎𝑖
′)𝑇(𝑏𝑖

′ − 𝑅𝑎𝑖
′)

𝑛

𝑖=1

, (68) 

 
1

𝑛
∑(𝑏𝑖

′ − 𝑅𝑎𝑖
′)𝑇(𝑏𝑖

′ − 𝑅𝑎𝑖
′)

𝑛

𝑖=1

=
1

𝑛
∑(𝑏𝑖

′𝑇𝑏𝑖
′ − 𝑏𝑖

′𝑇𝑅𝑎𝑖
′ − (𝑅𝑎𝑖

′)𝑇𝑏𝑖
′ + (𝑅𝑎𝑖

′)𝑇𝑅𝑎𝑖
′)

𝑛

𝑖=1

. (69) 

 

Given the following equivalences, from Equation (58) , 

 (𝑅𝑎𝑖
′)𝑇𝑅𝑎𝑖

′ = 𝑎𝑖
′𝑇𝑅𝑇𝑅𝑎𝑖

′ = 𝑎𝑖
′𝑇𝑎𝑖

′ , (70) 

 (𝑅𝑎𝑖
′)𝑇𝑏𝑖

′ = 𝑏𝑖
′𝑇𝑅𝑎𝑖

′ , (71) 

Equation 69 can be written as  

 1

𝑛
∑(𝑏𝑖

′𝑇𝑏𝑖
′ + 𝑎𝑖

′𝑇𝑎𝑖
′ − 2 ∗ 𝑏𝑖

′𝑇𝑅𝑎𝑖
′)

𝑛

𝑖=1

. 
(72) 

Since 𝑏𝑖
′𝑇𝑏𝑖

′ and 𝑎𝑖
′𝑇𝑎𝑖

′ are constants, minimizing Equation (71) is the same as maximiz-

ing  

 1

𝑛
∑(𝑏𝑖

′𝑇𝑅𝑎𝑖
′)

𝑛

𝑖=1

. 
(73) 

Expanding and summing gives the following function 
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 1

𝑛
∑(𝑏𝑖

′𝑇𝑅𝑎𝑖
′)

𝑛

𝑖=1

= 𝑡𝑟 {𝑅𝑇
1

𝑛
∑𝑏𝑖

′ 𝑎𝑖
′𝑇

𝑛

𝑖=1

} = 𝑡𝑟{𝑅𝑇𝐶}, 
(74) 

where tr{} refers to the trace of a given matrix and C is the cross-dispersion or correla-

tion matrix, defined as 

 
𝐶 =

1

𝑛
∑𝑏𝑖

′ 𝑎𝑖
′𝑇

𝑛

𝑖=1

. 
(75) 

Now the singular value decomposition [24] is calculated as 

 𝐶 = 𝑈𝑊𝑉𝑇 , (76) 

where U and V are orthogonal matrices and W is diagonal matrix containing the singular 

values of W. substituting these into the function to maximize 

 𝑡𝑟{𝑅𝑇𝑈𝑊𝑉𝑇} = 𝑡𝑟{𝑉𝑇𝑅𝑇𝑈𝑊}. (77) 

Grouping into a new matrix 𝑄 = 𝑉𝑇𝑅𝑇𝑈, 

 𝑡𝑟{𝑉𝑇𝑅𝑇𝑈𝑊} = 𝑡𝑟{𝑄𝑊}. (78) 

 

 𝑄 must be orthogonal as it is a product of orthogonal matrices. As such, its diagonals 

must be all less than or equal to one. Since W is a diagonal matrix and Q is orthogonal, 

the value of the trace reaches a maximum when Q is an Identity matrix, hence 

 𝐼 = 𝑉𝑇𝑅𝑇𝑈. (79) 

Since all matrices are orthogonal, Equation (78) rearranges to 

 𝑉𝐼𝑈𝑇 = 𝑉𝑉𝑇𝑅𝑇𝑈𝑈𝑇 , (80) 

 𝑉𝑈𝑇 = 𝑅𝑇 , (81) 

 𝑅 = 𝑈𝑉𝑇 . (82) 

R is the LS estimate of the rotation matrix that matches the model constellation with the 

sensed one. 
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2.5 Multilateration 

The system integrates the internal calibration of the cameras with the external character-

istics of the marker constellation; this requires a relation between position data from the 

motion capture and distance data from the ToF camera. This problem can be formulated 

as multilateration, explained below. 

The multilateration problem is common in big scale positioning systems [25]. The prob-

lem is the estimation of a point given its distance to a set of known points. The problem 

can be seen as finding the intersection of a set of spheres in 3D space, see Figure 15. In 

practice, since every sensor has an error attached to it, such a point may not exist.LS 

estimation is performed to calculate the point. 

 

Figure 15. Multilateration in 2D, red point is estimate of intersection between three 

circles. 

Let the point �⃗� = (𝑥, 𝑦, 𝑧)𝑇 be an unknown point and the set of n known points �⃗�𝑖  , 𝑖 <

𝑛, assume the distance  

 𝑑𝑖 = ‖�⃗� − �⃗�𝑖‖, (83) 

is also known. 

Stacking Equation (82) for all points yields 

 

[

𝑑1

𝑑2

⋮
𝑑𝑛

] =

[
 
 
 
 √(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2

√(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2

⋮

√(𝑥 − 𝑥𝑛)2 + (𝑦 − 𝑦𝑛)2 + (𝑧 − 𝑧𝑛)2]
 
 
 
 

. 

(84) 

Squaring both sides and expanding the equations 
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[
 
 
 
𝑑1

2

𝑑2
2

⋮
𝑑𝑛

2]
 
 
 
=

[
 
 
 
𝑥2 − 2𝑥𝑥1 + 𝑥1

2 + 𝑦2 − 2𝑦𝑦1 + 𝑦1
2 + 𝑧2 − 2𝑧𝑧1 + 𝑧1

2

𝑥2 − 2𝑥𝑥2 + 𝑥2
2 + 𝑦2 − 2𝑦𝑦2 + 𝑦2

2 + 𝑧2 − 2𝑧𝑧2 + 𝑧2
2

⋮
𝑥2 − 2𝑥𝑥𝑛 + 𝑥𝑛

2 + 𝑦2 − 2𝑦𝑦𝑛 + 𝑦𝑛
2 + 𝑧2 − 2𝑧𝑧𝑛 + 𝑧𝑛

2]
 
 
 
. 

(85) 

Subtracting the last equation from all the rest eliminates the squared unknowns; the last 

equation is then removed from the system, 

 

[
 
 
 

𝑑1
2 − 𝑑𝑛

2

𝑑2
2 − 𝑑𝑛

2

⋮
𝑑𝑛−1

2 − 𝑑𝑛
2]
 
 
 
=

[
 
 
 

2𝑥𝑥𝑛 − 2𝑥𝑥1 + 𝑥1
2 − 𝑥𝑛

2 + 2𝑦𝑦𝑛 − 2𝑦𝑦1 + 𝑦1
2 − 𝑦𝑛

2 + 2𝑧𝑧𝑛 − 2𝑧𝑧1 + 𝑧1
2 − 𝑧𝑛

2

2𝑥𝑥𝑛 − 2𝑥𝑥2 + 𝑥2
2 − 𝑥𝑛

2 + 2𝑦𝑦𝑛 − 2𝑦𝑦2 + 𝑦2
2 − 𝑦𝑛

2 + 2𝑧𝑧𝑛 − 2𝑧𝑧2 + 𝑧2
2 − 𝑧𝑛

2

⋮
2𝑥𝑥𝑛 − 2𝑥𝑥𝑛−1 + 𝑥𝑛−1

2 − 𝑥𝑛
2 + 2𝑦𝑦𝑛 − 2𝑦𝑦𝑛−1 + 𝑦𝑛−1

2 − 𝑦𝑛
2 + 2𝑧𝑧𝑛 − 2𝑧𝑧𝑛−1 + 𝑧𝑛−1

2 − 𝑧𝑛
2]
 
 
 
. 

(86) 

Moving the known values to the left side of the equation produces the system 

 

[
 
 
 

𝑑1
2 − 𝑑𝑛

2 − 𝑥1
2 + 𝑥𝑛

2 − 𝑦1
2 + 𝑦𝑛

2 − 𝑧1
2 + 𝑧𝑛

2

𝑑2
2 − 𝑑𝑛

2 − 𝑥2
2 + 𝑥𝑛

2 − 𝑦2
2 + 𝑦𝑛

2 − 𝑧2
2 + 𝑧𝑛

2

⋮
𝑑𝑛−1

2 − 𝑑𝑛
2 − 𝑥𝑛−1

2 + 𝑥𝑛
2 − 𝑦𝑛−1

2 + 𝑦𝑛
2 − 𝑧𝑛−1

2 + 𝑧𝑛
2]
 
 
 
= [

2𝑥𝑥𝑛 − 2𝑥𝑥1 + 2𝑦𝑦𝑛 − 2𝑦𝑦1 + 2𝑧𝑧𝑛 − 2𝑧𝑧1

2𝑥𝑥𝑛 − 2𝑥𝑥2 + 2𝑦𝑦𝑛 − 2𝑦𝑦2 + 2𝑧𝑧𝑛 − 2𝑧𝑧2

⋮
2𝑥𝑥𝑛 − 2𝑥𝑥𝑛−1 + 2𝑦𝑦𝑛 − 2𝑦𝑦𝑛−1 + 2𝑧𝑧𝑛 − 2𝑧𝑧𝑛−1

]. 
(87) 

which can be rewritten as 

 

[
 
 
 

𝑑1
2 − 𝑑𝑛

2 − 𝑥1
2 + 𝑥𝑛

2 − 𝑦1
2 + 𝑦𝑛

2 − 𝑧1
2 + 𝑧𝑛

2

𝑑2
2 − 𝑑𝑛

2 − 𝑥2
2 + 𝑥𝑛

2 − 𝑦2
2 + 𝑦𝑛

2 − 𝑧2
2 + 𝑧𝑛

2

⋮
𝑑𝑛−1

2 − 𝑑𝑛
2 − 𝑥𝑛−1

2 + 𝑥𝑛
2 − 𝑦𝑛−1

2 + 𝑦𝑛
2 − 𝑧𝑛−1

2 + 𝑧𝑛
2]
 
 
 

= 2 [

𝑥𝑛 − 𝑥1 𝑦𝑛 − 𝑦1 𝑧𝑛 − 𝑧1

𝑥𝑛 − 𝑥2 𝑦𝑛 − 𝑦2 𝑧𝑛 − 𝑧2

⋮
𝑥𝑛 − 𝑥𝑛−1 𝑦𝑛 − 𝑦𝑛−1 𝑧𝑛 − 𝑧3

] [
𝑥
𝑦
𝑧
]. 

(88) 

The matrix system has the classic form  

 2𝐴�⃗� = 𝑟 (89) 

Since there are 𝑛 − 1 equations, at least 4 points are necessary to estimate the correct 

position; by using the SVD and the Pseudoinverse, any number of points larger than 3 

can be used. 
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2.6 Computer Graphics and OpenGL 

2.6.1 Overview 

Computer graphics is a broad term that encompasses a large variety of tools methods 

and approaches. In this document, the focus is on the description and display of 3D ob-

jects.  

The model describes the 3D geometry in a way that the computer can understand. There 

are many different ways of representing models, but in this work the focus is on poly-

gon meshes and point clouds. 

A polygon mesh is a set of polygons that approximate the surface to be modeled, see 

Figure 16. Triangles are often used for their generality and simplicity; however, many 

different primitive polygons exist. A triangle is described by the position of is vertices. 

This representation is the most used to described virtually generated objects.  

 

Figure 16. Polygon mesh with rectangles as primitive polygons. Left, low polygon 

count. Right, high polygon count. 

Point clouds are sets of points that sample the surface geometry, see Figure 17. Each 

point is rendered as a disc in the camera. This representation is the natural description of 

most 3D sensing technologies, including the Microsoft Kinect. 

Both descriptions start as a set of points, these are called vertices. Apart from the geom-

etry, each vertex can have more properties. These include texture coordinates, normals, 

bump map data, etc. 
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Figure 17. Point cloud of a sphere 

Triangle meshes model smooth surfaces as sets of plane sections. Point clouds model 

them as a dense set of points. The more triangles, the more refined is the mesh and the 

less blocky it appears. There are smoothing [31] and interpolation [30] algorithms that 

improve the approximation to some extent. 

These concepts are very general and there are many implementations of a basic comput-

er graphics pipeline. Next, the OpenGL implementation of these concepts is presented. 

2.6.2 OpenGL primitives 

OpenGL is an API designed to render 2D and 3D vector graphics, it is used to interact 

with a GPU and achieve hardware accelerated rendering.  

The OpenGL environment contains many methods and classes, a complete description 

can be found at [33]. In this document, the modern approach to basic mesh rendering 

described in [34] is presented 

Before defining the primitives, the concept of Vertex Stream is introduced. A Vertex 

stream is an ordered list of vertices; these can be created by the user in a vertex specifi-

cation of created by a geometry shader. 

The vertex specification allows the user to create a set of vertices and add attributes 

defined by the user. These attributes define what information the vertex needs to proper-

ly render.  

Primitives 

The primitive used tells OpenGL how to interpret the vertex stream and what to draw. 

This interpretation can be points, triangles or lines. Even these can be interpreted in 

many ways; for example the triangles can be disconnected or connected. OpenGL con-
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tains plenty of primitives. However, for the scope of this document, the three more basic 

are briefly described. 

Each primitive is defined, its interpretation of the vertex stream introduced and the ras-

terization procedure stated. Rasterization is the division of a primitive into fragments. 

Each fragment is usually pixel sized and inherits properties from its parent primitive. 

The point primitive interprets each vertex as a point, and attach to it a point sprite. Each 

point is rasterized as a square of a user defined size. The size describes the side of the 

square in pixels and the position is the center of such square.  

The line primitive interprets vertices as ends of line segments; they can be defined to be 

separate, a chain, or a loop. Lines are rasterized as rectangles, whose width in pixels is 

defined by the user. The properties of the fragments are interpolated from the properties 

of the vertices. 

A triangle is a primitive formed by three vertices; they can be interpreted in several 

ways, separate, stripped or fanned. The order of listing the three vertices defines the 

direction of the face. Usually only the front of triangles are rendered, however this can 

be changed by the user. The front face is rasterized as the pixels inside the area of the 

triangle. The properties of the vertexes are interpolated to become the properties of the 

fragments. 

A texture is an openGL object that contains one or more images; an image is an array of 

pixels. Textures are mapped into primitives via the texture coordinate attached to the 

vertices. The fragments inherit the texture coordinates of their parent primitive trough 

an interpolation of the texture coordinates. 

2.6.3 GLSL shaders 

A shader is a program that runs on a parallel computing device, a GPU in this case. 

There are many kinds but for the scope of this document, only two will be presented, 

the vertex and fragment shaders. 

The vertex shader is a program that runs on every vertex in a given vertex stream. This 

modification is usually connected to attributes or textures. This shader usually moves 

the objects and places them in the camera plane as a 2D vertex stream.  The output 

stream is converted to the primitive and rasterized to produce a fragment set. This frag-

ment set is the input of a fragment shader. 

The fragment shader is a program that operates on every fragment. It usually contains 

the texturing and coloring algorithms. The user can choose to dump that texture into the 

screen and see the result and depending on the use it may be correct. In order to keep 



34 

 

the occlusions correct, several solutions may work. The most basic is called the painters 

algorithm, this simply draws the farther objects first and then the closer ones on top. 

This works but is not easy to integrate with rapidly changing environments. The other 

popular algorithm is called Z-buffering. Z-buffering consists in saving the depth value 

(distance from the point to the camera plane). Then on a given pixel, only the fragment 

that is closer to it is rendered. 
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3. IMPLEMENTATION 

The system was implemented in the CIVIT motion capture studio. This section de-

scribes the system from three perspectives: Hardware, software and Algorithm. The 

descriptions are summarized into block diagrams with a reasonable level of abstraction. 

More literal descriptions are present in the documentation of the code. 

The hardware composition is shown in Figure 18. In order to describe the internal sys-

tem, the algorithm is presented separate from the software used. The algorithm descrip-

tion is grouped in information processing units, these are not necessary implemented in 

the same system or covered in the same block in the computational description. 

 

Figure 18. Hardware diagram, only information links are shown, power connections 

are ignored. 

3.1 Algorithm description 

In order to keep track of the processing, three different coordinate spaces will be de-

fined. 

The camera coordinate space (CCS) is fixed to the moving camera. Its origin is in the 

optical center, the z coordinate is perpendicular to the image plane and the y coordinate 

is in the vertical direction of the image plane.  
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The real coordinate space (RCS) is defined by the motion capture calibration and is stat-

ic. The positions and orientations given by the motion capture system are all in the RCS. 

The virtual coordinate space (VCS) is defined by the modelling tool used to create the 

virtual objects. All the virtual objects are in the VCS. 

Figure 19 shows the algorithmic block diagram which shows the flow of information 

from the sensor to the display.  

 

Figure 19. Algorithm block diagram. 

Real  

The Real space is the volume inside the capture studio. It contains all objects inside the 

volume, the marker constellations and the RCS definition. Section Error! Reference 

source not found. contains images of the studio used in this case for capture. 

The motion capture software is calibrated to have all camera poses relevant to an arbi-

trary reference frame selected by the user; this becomes the origin of the RCS. 

Kinect 

The Kinect V2 device is used to sample the real scene. A 1920x1080 color camera im-

age and a 512x424 ToF depth camera image are produced. The Kinect delivers the Col-

or image and the aligned and resampled depth image. The calibration of the system has 

three different phases presented below. 

Pose Tracking 

OptiTrack camera system is used to estimate the pose of the camera. The camera is as-

sumed to be a rigid body, its 6 DoF pose is tracked using optical motion capture (see 

Section 2.4).  The marker constellation used in this case is shown in Section Error! 

Reference source not found.. 
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The calibration of the pose tracking is done according to the OptiTrack system instruc-

tions. The position of the cameras is estimated according to a user defined point in the 

space.  

A final calibration is done to estimate the position of the camera sensor relative to the 

marker constellation. This document refers to this process as the external calibration. 

This calibration is designed for this system and uses the multilateration estimation (see 

Section 2.5). A brief description is presented below. 

External Calibration 

Different from extrinsic calibration, the goal of the external calibration is to find the 

position of the camera sensor. The position is in reference to the marker constellation 

that is fixed to the body of the system. Since the final image is reprojected from the col-

or camera point of view, the output is an estimation of the color camera sensor relative 

to the marker constellation.  

To setup the calibration, the camera is fixed to a stable mount. A second constellation of 

markers is placed in the visible space in front of the camera; the configuration used is 

shown in Section Error! Reference source not found.. 

Table 3 shows the data necessary to perform the calibration and how to obtain it. 

Table 3. Data to perform external calibration 

data Format description Source 

Kinect capture 
𝐾 = (𝑢, 𝑣, 𝑧) 

 

(𝑢, 𝑣) are the coordinates of the 

visible markers in the depth 

image. 

Z is the depth measurement. 

Kinect depth image 

Camera constellation 

N markers 

𝐶𝑖 = (𝑥, 𝑦, 𝑧) 

𝑖 < 𝑁 

The list of positions of the cam-

era markers 

OptiTrack camera 

system 

Calibration constella-

tion 

M markers 

𝑆𝑖 = (𝑥, 𝑦, 𝑧) 

𝑖 < 𝑀 

The list of positions of the sec-

ond markers 

OptiTrack camera 

system 

Intrinsic and Stereo 

calibration data 

List of parameters 

[𝑐𝑥  , 𝑐𝑦] is the 

principal point. 

𝑓𝑥 , 𝑓𝑦 are the focal 

lengths. 

The result of the previous cali-

bration steps 

Camera and stereo 

calibration 
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First, the points in the Kinect capture have to be transformed back into distances to the 

sensor (see Section 2.3). Using triangle similarity in Figure 20, the distance can be cal-

culated as 

 
𝐷(u, v, Z) = ‖(𝑍

𝑢 − 𝑐𝑥

𝑓𝑥
, 𝑍

𝑣 − 𝑐𝑦

𝑓𝑦
, 𝑍)‖, 

(90) 

where the calibration data is from the depth camera. 

 

Figure 20. 2DPinhole camera model 

The set of points of the calibration constellation S and their corresponding distances can 

be treated as a set of spheres. The center of the sensor should intercept all of them. To 

find the MLE of the intersection of the spheres, we use the multilateration LS algorithm 

(see Section 2.5) 

 𝐷
S

→ [𝑀𝑙𝑎𝑡] → 𝑑, (91) 

where [𝑀𝑙𝑎𝑡] is the LS algorithm for the multilateration problem, and 𝑑 is the MLE 

estimate of the position of the sensor. 

Using the translation parameter of the stereo calibration𝑡, the position of the color sen-

sor �⃗� can be estimated as 

 �⃗� = 𝑑 + 𝑡. (92) 

The translation parameter has to be given in the correct direction (from depth to color). 

If it’s not, inverting the extrinsic calibration matrix will yield the correct translation vec-

tor. 

Finally, the camera marker constellation is redefined with the found camera sensor as 

the origin. Since the orientation remains the same, it is done by subtracting the sensor 

position from the marker position, 
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 Ċ𝑖 = 𝐶𝑖 − �⃗�   ,    𝑖 < 𝑁, (93) 

where Ċ is the corrected camera constellation. 

The set of corrected camera marker positions can be put into the tracking software. This 

redefines the rigid body with the estimated camera sensor as the origin. 

 

Real Point Cloud 

The point cloud is built by calculating the 3D coordinates [𝑥, 𝑦, 𝑧]𝑇 of the points in the 

depth image (see Section 2.2) 

 

 �⃗� = [𝑥, 𝑦, 𝑧]𝑇 = [𝑍
𝑢 − 𝑐𝑥

𝑓𝑥
, 𝑍

𝑣 − 𝑐𝑦

𝑓𝑦
, 𝑍]

𝑇

, (94) 

where (u, v) are the coordinates of the pixel, Z is the depth measurement and the rest are 

the parameters extracted from the calibration matrix. 

The depth image is already aligned to the color image in the earlier processing. Hence, 

the texture mapping is the same as the grid of the image. The output is the point cloud in 

the CCS. 

Inverse camera transform 

Some points in the real point cloud will be outside of the capture volume. These points 

are of no interest, and should not be rendered. To find out which points are to be ig-

nored all the points are transformed from the CCS to the RCS using  

 
�⃗�′ = 𝑃�⃗�           𝑃 = [𝑅 𝑡

𝟎 1
]. (95) 

Cropping 

Points whose corresponding positions in the RCS are outside of the capture volume are 

discarded from the render. The rest are rendered normally.  

Virtual 

The virtual space is a set of 3D objects, described in mesh format (see Section 2.6). 

Each object has a texture and a rigid body position associated to it. The set of objects 

forms the virtual scene and is defined in the VCS.  
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Local transformation 

Virtual objects are transformed from the VCS to the RCS using their own associated 

rigid body matrix. 

 �⃗�′ = 𝑇�⃗�, (96) 

where �⃗� is the vector of coordinates of a vertex in the mesh description and �⃗�′ in the 

vector of coordinates in the RCS. This builds the virtual room. 

Camera transformation 

The camera transformation puts the virtual objects in the CCS 

 �⃗̇� = 𝑃−1�⃗�′, (97) 

where P is defined in Equation 95. 

Viewpoint transformation 

The viewpoint transformation puts the objects in the image plane of the virtual camera. 

Since both the real and the virtual objects are in the CCS, only the intrinsic matrix is 

necessary. 

Render 

The pixels are painted with the corresponding texture from the object. Z buffering lets 

the renderer know which object is closer to the camera and which ones are occluded. 

This blends the virtual meshes and the point cloud in the same 3D space with correct 

occlusion order. 

3.2 Software implementation 

The implementation of the algorithm presented in the previous chapter has several dis-

tinct parts. Figure 21 shows the block diagram that describes the system. Commercial 

SDKs and software are considered black boxes and are only described in terms of inputs 

and outputs. 
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Figure 21. Computational Block Diagram 

Kinect SDK 

The Kinect SDK [48] allows the user to interface the Kinect v2 hardware. It drives the 

capture and returns the pointer to whichever image the user requires. This can be color, 

depth or infrared. The API also performs the mapping from the depth camera to the col-

or camera. In Figure 22, the flowchart of the processing done in the SDK is shown. 

 

 

Figure 22. Kinect process diagram 

NatNet SDK 

Natural point provides an SDK that interfaces their software (Motive) and the user’s 

application. The SDK sends the data packets through a previously setup wireless con-

nection and the synchronization of the data transfer. The data is sent at a constant fram-

erate set in motive (12fps, 30fps, and 60fps).  The box diagram is shown in Figure 23. 
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Figure 23. Motion capture process diagram 

CPU Preprocessing 

The preprocessing encompasses early processing of both the real scene and the virtual 

scene. Some of this is done once (setup); some of it is done every frame (draw).  

Setup 

The point cloud structure is built before starting the capture process. It is never modified 

in the CPU once it has been built. The virtual scene is preprocessed by applying any 

changes to the transforms (placing the objects in their initial position). The real scene is 

created as an empty template; a point cloud is built where all points have the same depth 

and are distributed in a rectangle. This is done to diagnose the System startup. If the 

Kinect is not connected or not delivering the images, the user will see a gray rectangle 

in front of him. 

GPU input initialization and update 

The flowchart in Figure 24 shows the steps to prepare the scene before rendering, this 

are all performed in CPU every frame. This process calls upon the Kinect SDK to deliv-

er the color and depth and the motion capture to deliver the pose of the camera. If either 

of them has not produced a new frame of information, the previous one is used. The 

depth and color textures are loaded into the point cloud and the transformation is loaded 

into the virtual world. 
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Figure 24. Flowchart of preprocessing 

 

GPU processing 

The processing in the GPU is programed in shaders (see Section 2.6). There are two sets 

of shaders, one for the real point cloud and one for the virtual objects. The point primi-

tive is used to render the real point cloud. The triangle primitive is used to render the 

virtual objects, Figures 25 and 26 show the processing done by the GPU divided into 

the shaders.  

It is important to note that the inner workings of the rasterizer are not included in the 

block diagrams, and that the blue dashed arrows mean transfer of information. This in-

formation is interpolated and sampled by the rasterizer. 
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Figure 25. Shader block diagram for virtual objects. The blue lines indicate infor-

mation transfer while the rasterizer interpolates and samples the corresponding val-

ues for each fragment. 

 

 

 

 

 

Figure 26. Shader block diagram for real point cloud. The blue lines indicate infor-

mation transfer while the rasterizer interpolates and samples the corresponding val-

ues for each fragment. 
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4. RESULTS 

 

Figure 27. Virtual camera 

The main result of the work is the actual camera seen in Figure 27. The prototype is 

available at CIVIT Motion Capture Studio. The components are a Kinect v2 for capture, 

a Microsoft Surface Pro3 for display and processing, four IR markers and a shoulder 

camera mount that holds the system together and allows the operator a natural operation 

of such a device. 

The system is evaluated based on the following parameters: refresh rate, delay, and vis-

ual quality. First, the external calibration was designed specifically for this system; 

hence, the results of the calibration for the current prototype are shown in this chapter. 

Second, the offline experiments designed to measure the performance of the system are 

presented. These include the current system and the bilateral filter which is not currently 

in the real time system. Finally the real time performance is presented, this includes 

time parameters and example photos to evaluate the visual quality. 
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4.1 External Calibration 

The external calibration was developed specifically for this particular system and the 

detailed results are discussed below. Figure 28 contains the setup used for calibration. 

Figure 29 shows the markers as seen by the mocap. The two sets are easily differentiat-

ed since the camera has four markers and the calibration constellation has six. 

 

 

Figure 28. Setup for joint calibration. 

 

 

Figure 29. Markers for joint calibration as seen by the mocap system. 

 

With this data, the external calibration is performed (see Section 3.1). The data is shown 

in Table 4 and the resulting model is shown in Figure 30. The origin of the constellation 

is now a good estimate of the optical center of the camera. 
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Figure 30. Left, set of markers that define the position of the virtual camera. Right, 

set of markers with virtual origin. Ideally this origin corresponds to the optical center 

of the color camera. 

 

Table 4. Joint calibration data, data is presented as a column of row vectors of either 

length three or length one. 

 Coordinates (mm) 

 x          y           z  

Calibration Constellation 

(Motion capture) 

-562.1    884.5    136.1 

-276.6    879.5   -199.9 

-123.5    876.3   -104.8 

-426.2    829.3   -543.5 

-795.5    940.7   -438.8 

-785.6    857.6   -315.5 

Camera Constellation 

(Motion capture) 

666.1    1441.2  -131.1 

645.7    1389.4  -024.9 

646.7    1243.7  -355.6 

549.8   1228.9   -191.6 

Optical center of depth camera 

(Calibration result) 
624.7  1434.2   -197.0 

New camera constellation 

(Result) 

41.3          6.9      65.9 

21.0       -44.8    172.1 

22.0     -190.5   -158.5 

-74.9     -205.3       5.4 

 Distance (mm) 

Calibration constellation  

distances to camera 

(ToF sensor) 

1.2854 

1.0100 

0.8657 

1.1902 

1.4735 

1.4833 
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4.2 Offline experiments 

Due to performance constrains, some of the experiments were performed offline. Each 

experiment below is performed offline, the data acquisition and the processing per-

formed are describes in this section. 

Joint Bilateral filter 

The online system has no joint bilateral filtering, and the distortions are included in the 

result. This causes some stray pixels appearing and disappearing near the edges of the 

objects. The joint bilateral filter deals with these distortions without introducing frame 

delays and aligns the edges to the color stream.  

A test program is written in the Kinect SDK that simultaneously captures the depth and 

color and exports them into images as well as the transformation matrix provided by the 

mocap system. The depth is encoded into a bmp file as shown in Table 5. 

Table 5. RGB encoding 16 bit depth from Kinect 

R G B 

Non valid pixel flag Least significant 8 bits Most significant 8 bits 

 

The data is imported into MatLab, where the bilateral filter proposed in [49] is imple-

mented. The filter is performed for several kernel sizes. For each size, the time and re-

sulting depth are saved. These values are used to create several renderings of the same 

joint reality scene. Evaluating the performance is not straight forward, since most met-

rics do not translate into subjective “goodness”.  

Since the main issue with the camera is the pixels outside of an object that appear in the 

same plane, the percentage of wrong pixels reduced from the original depth image is 

taken as the performance metric. A pixel is wrong if it is farther than 10 cm from its 

actual location. Figure 31 shows several joint spaces in which the input was filtered 

with different kernel sizes while Figure 32 shows the goodness metric computed. 
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Kernel size 1      Kernel size 6  Kernel size 10 

 
Kernel size 20 

Figure 31. Detail of result of bilateral filter. See how the edge starts to match the 

color edge. 

 
Figure 32. Bilateral filter performance in the real scene. 

 

Since the test is performed in a desktop computer with more resources than the tab-

let, the time displayed in Figure 33 is shown in terms of factor of the first filter (ker-

nel size 1). This shows how the time increases as the kernel size increases. 

 

Figure 33. Computing time vs kernel size for bilateral filter 
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It has to be noted that the noise is rapidly changing and quite localized to the edges. 

This makes it distracting and damages the visual appearance. The filtered image is much 

smoother and subjectively more naturally looking.  

Delay calculation. 

Since the system is a union of different systems, calculating the entire delay is not 

straight forward. The experiment designed to measure the delay requires a separate 

camera. The camera used is a Basler acA1920 running at SD resolution at 60 fps. The 

camera is capable of higher resolution and faster capture. But, given the refresh rate of 

the display and the computing time necessary to perform the tracking over the entire 

video, it was configured to the aforementioned settings. 

The camera is framed so it captures both the space and the render in the screen of the 

camera. A periodic motion is created in front of the camera with a highly contrasted 

round object. A white circle was hung from the ceiling and its pendulum oscillation 

against a black background was recorded in the high-speed camera. Figure 34 contains a 

frame of the video. 

 

Figure 34. Frame of delay calculating vide, sub-images are shown as red rectangles. 

The area of movement from both circles is estimated by inspection and for each frame; 

they are extracted and analyzed separately. The first step is to binarize both sub-images, 

the threshold is calculated according to Otsu’s method [4]. Then, since there are no oth-

er white objects in the background of the sub-images, simple gravity center of the inten-

sity values is used to estimate the center of each circle (see Section 2.4). 

Since both cameras are aligned to be parallel to the ground, the horizontal coordinates 

of each circle are strongly correlated. The vertical coordinates have a much smaller 

range and double the frequency (see Figure 35) so they are not used for the delay esti-

mation. 



51 

 

 

Figure 35. Motion of the center of the pendulum 

The pixel position is irrelevant, what is important is the relative position in the pendu-

lum path. For this, the horizontal position is scaled and translated so its highest value is 

one and its center is zero. This is done for both circles, see Figure 36. 

 

Figure 36. Relative horizontal motion. Left, 40 seconds of motion. Right, closer look. 

The motion of the center in the camera capture has a staircase shape, this is due to the 

refresh rate of the camera system (15 fps) being smaller than the capture rate (60 fps). 

The staircase shape seen in the camera capture in Figure 36 is due to the sampling rate 

of the external camera (60 fps) being larger than the refresh rate of the system (15 fps). 

This is similar to a typical digital to analog converter where quantization error at the 

outputs is removed using a low pass filter. However, due to the nature of the problem, 

this is not done. Filtering the signal would average the delay along the time axis and 

reduce the delay variance. Since the autocorrelation estimates the delay along the whole 

signal, it estimates the mean delay. In this case this mean is invariant to a time domain 

filter. Filtering the input will have no change and may introduce unwanted artifacts.. 

Given the two signals, the delay is estimated by using the cross-correlation signal, 

shown in Figure 37 
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Figure 37. Cross-correlation of the signals 

The highest peak of the cross correlation is at a delay of 250 ms, this is the estimated 

delay of the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

4.3 Performance 

The basic performance metrics are shown in Table 6. 

Table 6. System performance metrics.  
Refresh rate 15 fps 

Delay 250 ms 

Point cloud size 960x540 

Texture resolution (internal) 1920x1080* 

* Internal resolution of the color texture, output resolution depends on display and is 

very susceptible to noise. 

The markers accuracy is given by the motion capture system. The LS algorithm returns 

the accuracy of the center estimate. For the orientation error, all possible orientations 

contained in the markers with the given variance are calculated and the worst case sce-

nario is used as the error. These values are shown in Table 7. 

Figure 38 shows the capture space, the IR cameras are attached to rafters in the ceiling 

and along the walls. The markers are placed in the camera in such a way that only one 

solution to the model fitting problem exists. 

Table 7. accuracy of motion capture 

Marker error ±0.9 mm 

Position error ±0.5mm 

Orientation error ±0.4° 

 

 

Figure 38. Left, Motion capture studio, the blue rings are the IR cameras. Right, IR 

markers highlighted in virtual camera. 

Figure 39 shows the marker constellation as seen by the mocap software. For four 

markers, a proper constellation is not coplanar and does not contain isosceles triangles.  
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Figure 39. Marker disposition in camera (shown by MOCAP). 

Figure 40 shows two angles of the same scene to show how the system is coherent in its 

mix of real and virtual space. The relative positions of objects are not lost when moving 

the camera around. Of course, this movement is continuous and the camera responds in 

an interactive feeling. 

  

  

Figure 40. Sample of position and orientation consistency. 
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5. CONCLUSIONS AND FUTURE WORK 

In this thesis, a complete system for previsualization of mixed real and synthetic content 

has been presented and documented. The system is a functioning prototype, a laboratory 

proof of concept that showcases the potential of data fusion and multimodal sensing in a 

movie production context.  

The OptiTrack camera system and the Motive software are used to perform optical mo-

tion tracking. A total of 16 cameras are installed in the studio, and a four marker con-

stellation is attached to the camera. The resulting matrix is transmitted via Wi-Fi to the 

camera. Every 33 milliseconds this matrix is updated. 

In order to add the real data, a Kinect V2 camera is used. The depth and color feeds are 

aligned by the Kinect API and are provided to the system every 66 milliseconds. The 

system sends the frames as textures into the GPU and lets it do the rest of work. 

In the GPU, the worlds are mixed and projected to the corrected position of the camera. 

The processing is done in such a way that minimizes the time spent between capture and 

display. The result is a mixed reality render of virtual and real worlds which updates 

fast enough to provide an “interactive” experience. 

This system is still in an early development state. It can be labelled as a laboratory 

working prototype, but needs further work. In order to accomplish the desired state, 

some key milestones need to be achieved. These are listed in order from high to low 

importance in order to advance the project. 

Depth edge filtering. The depth edge has errors. These errors cause an aesthetic issue 

where noise is present at the edge of a person in the mix. The challenge is to implement 

an edge aware filter that aligns the depth edges with the color edges. In this work, a 

joint bilateral filter was implemented. However, this implementation proved to be slow 

and was unsuitable for the system with its current processing power. Having the pro-

cessing done in a local machine reduces the delay and helps the immersion. Having the 

processing done in a separate unit with more processing power enables more complex 

algorithms. However, the communication between the machines increases the delay. 

Selective focus. Another tool that filmmakers use all the time is a selective focus. Since 

the world is already stored in 3D, the refocusing should be straight forward. It is im-

portant to find a fast implementation and integrate it with the rest of the processing. 
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Creative tool interface. In order to allow the prospective end users to use the system, it 

has to be interfaced with a tool that they are familiar with. To this end, there are two 

main kinds of systems: a game engine that allows game level modelers the freedom to 

implement any virtual scene and make complex interactions, or movie compositing 

software that enables filmmakers to blend the real capture data with their premade vir-

tual world. The potential of utilizing Unreal engine as the visualization engine was ex-

plored in the early stages of the project, however it was found very demanding and the 

additional programming effort required to integrate all of the necessary components into 

it were ultimately deemed to be outside the scope of a thesis on signal processing. 

Camera interface controls. In order to create the correct interface that gives the camera 

operator the full experience, controls are necessary. The basic controls are a focus bar-

rel, a zoom controller and some lighting controls. Similar controls do exist in the Natu-

ral Points virtual camera, albeit the lack of 3D scene capture, and have been used in 

several movies. 
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