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ABSTRACT 

ANNILA, TEPPO: Detection of fluorescently labeled particles in Escherichia coli  
Tampere University of Technology 
Master of Science Thesis, 49 pages + 3 Appendix pages 
November 2015 
Master’s Degree Programme in Information Technology 
Major: Signal Processing 
Examiner: Assoc. Prof. Andre Ribeiro 
Keywords: Image analysis, spot detection, scale-space, local thresholding, fluo-
rescence microscopy, Escherichia coli 

Escherichia coli are one of the most commonly used bacteria to study important biolog-

ical processes such as transcription and translation. This is due to its simple structure 

and gene expression system, as well as the easiness to maintain live cultures in a labora-

tory environment. Due to recent developments in fluorescence microscopy and fluores-

cence labeling, it is now possible to study such biological processes in live cells at sin-

gle cell and single molecule level. When analyzing such biological processes, the detec-

tion of fluorescent objects and subcellular particles is usually one of the first tasks 

providing important information for subsequent data analysis.  

 

Although many algorithms have been proposed for the task, it still remains a challenge 

due to the limitations of image acquisition when imaging live cells. For example, the 

intensity of the illumination light and the exposure time is usually minimized to prevent 

damage to the cells, resulting in images with low signal-to-noise ratio. Due to this and 

the large amount of data typically used for these studies, automated, high quality parti-

cle detection algorithms are needed. 

 

In this thesis, we present a novel method for detecting fluorescently labeled subcellular 

particles in Escherichia coli. The proposed method is tested in both synthetic and em-

pirical images and is compared to previous, commonly used methods using standard 

performance evaluation metrics. The results indicate that the proposed algorithm has a 

good performance with all image types tested and that it outperforms the previous 

methods. It is also able to achieve good results with other types of cells than E. coli. 

Moreover, it allows a robust detection of particles from low signal-to-noise ratio images 

with good accuracy, thus providing accurate and unbiased results for subsequent analy-

sis. 
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TIIVISTELMÄ 

ANNILA, TEPPO: Fluoresoivien partikkeleiden havaitseminen kolibakteereissa 
Tampereen teknillinen yliopisto 
Diplomityö, 49 sivua + 3 liitesivua 
Marraskuu 2015 
Tietotekniikan koulutusohjelma 
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Tarkastaja: Assoc. Prof. Andre Ribeiro 
Avainsanat: Kuvankäsittely, partikkeleiden havaitseminen, skaala-avaruus, pai-
kallinen kynnystys, fluoresenssimikroskopia, kolibakteeri 

Kolibakteeri on yksi käytetyimmistä bakteereista biologisten prosessien, kuten tran-

skription ja translaation tutkimisessa muun muassa sen yksinkertaisen rakenteen ja gee-

ni-ilmentymisjärjestelmän johdosta. Viimeaikainen kehitys niin fluoresenssimikrosko-

pian kuin fluoresoivien proteiinien saralla on tehnyt mahdolliseksi kyseisten prosessien 

tutkimisen yksittäisten solujen ja molekyylien tasolla. Näissä tutkimuksissa yksi en-

simmäisistä tehtävistä on fluoresoivien kappaleiden ja solunsisäisten partikkelien ha-

vaitseminen tarjoten tärkeää tietoa datan analysoimiseksi pidemmälle.  

Vaikka monia algoritmeja onkin ehdotettu kyseiseen tehtävään, se on yhä haasteellista 

johtuen elävien solujen kuvantamiseen liittyvistä rajoituksista. Jotta soluja ei mittausten 

aikana vahingoitettaisi, esimerkiksi herätevalon intensiteetti ja valotusaika pyritään 

usein minimoimaan, mikä johtaa kohinaisiin kuviin. Kun tämä yhdistetään suureen ku-

vien määrään, on selvää, että automaattisia ja korkealaatuisia partikkelin havaitsemisal-

goritmeja tarvitaan. 

Tässä työssä esittelemme uuden tavan solunsisäisten fluoresoivien partikkelien havait-

semiseksi kolibakteereissa. Menetelmä on testattu sekä synteettisillä että oikeilla fluore-

senssikuvilla ja vertailtu muiden usein käytettyjen menetelmien kesken käyttäen tavalli-

simpia suorituskyvyn mittareita. Tulokset osoittavat, että ehdotettu menetelmä toimii 

hyvin kaikilla testatuilla kuvilla ja se suoriutuu tehtävästä paremmin kuin yksikään muu 

testattu algoritmi. Kolibakteereiden lisäksi se saavutti hyviä tuloksia myös erityyppisten 

solujen kanssa. Menetelmän avulla on mahdollisuus saavuttaa tarkkoja ja puolueettomia 

tuloksia sen hyvän tarkkuuden ja vakaan suorituskyvyn vuoksi, eritoten kohinaisten 

kuvien yhteydessä. 
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1. INTRODUCTION 

Recent developments in fluorescence microscopy and fluorescent labeling techniques 

have made possible the visualization of subcellular components inside living cells with 

single-molecule precision and over time. Escherichia coli is one model organism where 

these observations are being conducted at the single-cell level to study, e.g., gene ex-

pression and other processes essential for life [1]–[4]. In these studies, the ‘objects’ of 

interest are fluorescently labeled so as to emit a detectable signal above the background 

in the resulting images. To extract information from such data, image analysis is need-

ed, and particle detection is usually one of the first stages of this analysis. Relevantly, 

the success of most such studies depends on how accurately the subcellular particles are 

detected.  

 

The developments in data acquisition and microscopy techniques have also increased 

the amount of data that can be collected. This allows obtaining more solid scientific 

results but it makes the use of manual detection techniques no longer feasible. Further, 

the use of automated methods allows more reliable comparison of results between inde-

pendent measurements and between different studies of the same process. Moreover, 

since these studies are nowadays conducted mostly using living cells, the amount of 

light used in the microscopy has to be limited, to minimize damage to the cells. As a 

consequence, images usually tend to have a low signal-to-noise ratio, thus requiring 

high quality particle detection algorithms to cope with noisy, heterogeneous back-

grounds.  

 

The detection of subcellular objects is important in many applications, varying from 

particle tracking to basic object detection. In all these applications, the performance of 

the used method is crucial. For example, the detection accuracy is especially crucial in 

object tracking algorithms consisting of separate detection and linking stages [5], [6]. 

Poor detection results might lead to nonsensible tracks if true objects are linked with the 

false positives or the tracks are terminated due to objects that are not detected. The de-

tection also affects the following data analysis: if the detection rate of the algorithm is 

poor, the results are biased towards objects that are clearly distinguishable. On the other 

hand, if the algorithm has a good detection rate but it includes large number of false 

positives, the results are again biased, due to the presence of false objects. 

 

There are already multiple algorithms proposed for detecting fluorescently labeled par-

ticles in living cells, e.g. see [7]–[12]. As reported in [7], all those algorithms are able to 

perform well with high signal-to-noise ratio images. However, when the quality of the 
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images decreases the performance of the algorithms rapidly decreases as well, hindering 

the data analysis. Also, it was shown that all the algorithms were sensitive to data, i.e. 

none of the proposed detectors worked well with all data. 

 

In this thesis, we propose a novel spot detection method which outperforms several pre-

vious methods as described in [8], [13], [10]. Moreover, the method’s good perfor-

mance with low signal-to-noise ratio systems, such as Tsr-Venus, makes it useful for 

studying the dynamics of gene expression from time-lapse images where the detection 

accuracy is crucial in order to not bias the results. To evaluate the performance of the 

various algorithms, we first use simulated images where the background and noise pa-

rameters are known and can be controlled. To evaluate the performance in realistic situ-

ations, we use empirical image data acquired by fluorescent microscopy. Namely, we 

have imaged two different fluorescently labeled particles in live cells. These have dif-

ferent characteristics in that one consists of an RNA molecule bound by multiple MS2 

coat proteins, each fused with a green fluorescent protein (GFP), while the other con-

sists of aggregates of a yellow fluorescent protein (YFP) variant, Venus, each fused 

with a Tsr membrane protein.  

The results presented in this thesis are partly from a project done in collaboration with 

fellow research group members of the Laboratory of Biosystem Dynamics of the De-

partment of Signal Processing. We have now submitted part of the results, concerning 

the new methods used, in the 7
th

 International Conference on Bioinformatics Models, 

Methods and Algorithms (BIOSTEC 2016). In addition, we are submitting another part 

of the results, concerning the biological findings, in 10
th

 International Conference on 

Practical Application of Computational Biology & Bioinformatics (PACBB 2016). Fi-

nally, we are currently finishing a work, to be submitted in top scientific journal in the 

field of Single Cell Biology, which we expect to be accepted for publication by March 

2016. 

 

We begin by explaining the biological background and framework of the thesis. In the 

third chapter, the traditional framework for detecting fluorescently labeled particles with 

basic image analysis operations is presented. The framework is further illustrated with 

examples of previous methods. Also, various techniques for validation of the detectors 

are covered. In the fourth chapter, the generation of simulated images and the necessary 

protocol for acquiring the empirical images are explained together with the proposed 

algorithm for subcellular spot detection. In chapter 5, the performance of the proposed 

algorithm is then analyzed and compared to several other spot detection algorithms by 

using both synthetic and empirical images. Finally, the conclusions and final discussion 

are presented in chapter 6. 
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2. BIOLOGICAL BACKGROUND 

In this chapter, we describe the biological background of the work. First, the organism 

used in the study, Escherichia coli, is described. Then, the basic principles of the pro-

cess of gene expression in bacteria are explained. Finally, the basics of fluorescence 

microscopy are explained together with fluorescent labeling, which are then combined 

so as to form a visualization technique of intracellular components in E. coli. 

2.1 Escherichia coli 

Escherichia coli is a rod-shaped bacterium with a typical length of 2µm, commonly 

found in the environment and in the intestine of humans, animals and other warm-

blooded organisms. It is a prokaryote and, thus, has no membrane enclosed compart-

ment to house DNA (Deoxyribonucleic acid), as opposite to eukaryotes. It is protected 

by a tough outer cell wall followed by a periplasmic space and a plasma membrane that 

encapsulates all the material (DNA, RNA (Ribonucleic acid), proteins, ribosomes and 

other molecules) in a single compartment consisting mainly of cytoplasm. The genetic 

material is localized in a specific structure within the cytoplasm called nucleoid. Simi-

larly to having a simpler inner structure than eukaryotes, their gene expression system, 

which “converts” the genetic information in the DNA into functional proteins, is also 

simpler when compared to the complex process occurring in eukaryotes. [14] The abil-

ity of these cells to reproduce repeatedly, while under microscope observation, by elon-

gating, forming a wall at midcell along the major cell axis, and then dividing in two 

symmetrical daughter cells allows studying subsequent generations in a short-time peri-

od. For the above reasons, E. coli is considered as a model organism to study cellular 

processes, and has been widely used in several studies, including of synthetic genetic 

circuits, aging and gene expression [1], [15]–[17]. 

 

Figure 1: The structure of Escherichia coli. 
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2.2 Gene expression 

Advances in fluorescence microscopy, fluorescent labeling techniques and image analy-

sis have enabled studying the dynamics of gene expression in live E. coli cells with sin-

gle molecule precision. Gene expression can be described as a process where the genetic 

information encoded by the DNA is first transcribed into RNA and then translated into 

functional proteins. It consists of two main steps, transcription and translation, which 

together form the Central Dogma of Molecular Biology (Figure 2). The detection of 

fluorescent particles inside cells was an important step for studying these processes 

since, for example, it allows the estimation of the number of RNAs or proteins from the 

spots intensities [2], [18], which gives us information on transcription and translation. 

 

Figure 2: The Central Dogma of Molecular Biology: the genetic information in DNA is 

transcribed into RNA which is then translated into proteins. 

The genetic information in DNA is encoded in the sequence of nucleotides consisting of 

four different bases, namely adenine (A), thymine (T), guanine (G) and cytosine (C). 

The bases always pair together according to base pairing rules (A with T and G with C) 

to form a double stranded DNA where the order of the bases specifies the effect of a 

gene (particular sequence in DNA). [14] This information is then used when creating 

proteins through the processes of transcription and translation. 

 

In the first step of the gene expression, DNA is transcribed into RNA. Transcription 

consists of three main steps: initiation, elongation and termination. In transcription initi-

ation, an RNA polymerase binds to a particular region in a gene called the promoter 

region, which indicates the starting site of the transcription for a specific gene. During 

the elongation phase, the RNA polymerase unwinds a part of DNA and copies the nu-

cleotides from a strand of DNA to complementary RNA molecule using the base pairing 

rules with exception that RNA uses ribonucleotides instead of nucleotides and the base 

thymine (T) is replaced with uracil (U). The resulting one stranded molecule is called a 

Messenger RNA (mRNA). In the final termination stage, synthesis is stopped and the 

transcribed mRNA is released together with the RNA polymerase. [14]  
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The second step of gene expression is translation where the information in the tran-

scribed mRNA is translated into functional proteins by ribosomes. Similarly to tran-

scription, the process of translation also has three main steps (initiation, elongation and 

termination). In the initiation step, a ribosome binds to a particular starting region of the 

mRNA, called the ribosome binding site (RBS), starting the synthesis of polypeptides. 

The synthesis can be started as soon as the RBS is transcribed, and thus, in bacteria, 

transcription and translation are coupled. Then, in the elongation step, the nucleotides of 

mRNA are read in sequences of three, called codons, each specifying a particular amino 

acid that is added to the growing polypeptide chain. This process is repeated until the 

ribosome finds a specific stop-codon which informs that the translation needs to be ter-

minated. The new polypeptide is then released and folded to a functional protein where 

it is able to carry its functions. The ribosome is also released and it is ready to start the 

translation process again. [14] 

2.3 Fluorescent labeling 

Intracellular objects can be tracked within living cells by fluorescently labeling the ob-

jects to be detected. Fluorescent labeling is based on fluorescent tagging or staining. 

More specifically, it is based on an attachment of a fluorescent molecule, fluorophore, 

to a target molecule. For example, the attachment can be done by genetically encoding a 

molecule of interest and a fluorophore as a gene fusion in DNA and enabling cells to 

produce these molecules by themselves. Another example of fluorescent tagging could 

be chemical labeling which, on the other hand, relies on interaction between a fluoro-

phore and a specific target sequence of the target molecule. [19]  

 

One of the most commonly used fluorescent molecules, the green fluorescent protein 

(GFP), obtained from a bioluminescent jellyfish Aequorea Victoria, can be used for 

such purposes [20]. It is a protein that exhibits green fluorescence when irradiated by 

light in the ultraviolet to blue range. Apart from that, it is also possible to use different 

derivatives of GFP (such as yellow fluorescent protein, YFP) having different emission 

and excitation wavelengths. This makes it possible to study different structures in a sin-

gle cell, at the same time, by using multicolor imaging. [21] 

 

In live cell imaging, there is a tradeoff between the quality of images and the healthiness 

of the cells. For example, a strong excitation light needed to generate a sufficient emis-

sion signal might cause photodamage to the cells. Moreover, light itself can cause pho-

todamage, e.g. ultraviolet light is known to cause mutations in DNA [22]. Another prob-

lem is so called photobleaching in which the fluorophores become non-functional upon 

the illumination. This also generates chemically reactive free radicals which might dam-

age the cell. [21] Photobleaching is also problematic in time-lapse fluorescence micros-

copy since the fluorescent intensity of the cells decreases over time. This might affect 
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the image analysis making it more difficult or even impossible since the cells become 

less visible and the signal-to-noise ratio decreases. 

 

To minimize the amount of damage taken by the cells and to achieve reliable results 

when imaging living cells, it is vital to consider both the environment of the cells as 

well as the microscopy aspect. For example, the cellular environment should be kept as 

constant as possible by controlling i.e. temperature, humidity and CO2 levels. Further-

more, damage taken by the cells should be limited as much as possible by minimizing 

light intensity and the exposure while doing the microscopy measurements. The sensi-

tivity of used camera is also crucial; with highly sensitive detector the illumination in-

tensity can be lowered. [21]  

2.4 Fluorescence microscopy 

By using a fluorescent labeling technique together with fluorescence microscopy, intra-

cellular organisms and their dynamics can be studied in live cells. It is based on a phe-

nomenon in which the irradiation of a fluorescently labeled specimen with a specific 

excitation wavelength of light causes the specimen to emit light at the longer emission 

wavelength which can then be detected in the microscope. [21] 

 

In Figure 3a, we have illustrated the main components of the fluorescence microscope. 

Typically, a system consists of a light source, excitation filters, a dichroic mirror, an 

objective lens, emission filters and a detector. The sample to be observed or specimen is 

illuminated by a light source having specific wavelengths capable to excite the sample. 

The excitation filter is designed so that only the specific wavelengths of light are al-

lowed to go through while all other wavelengths are filtered. Then, the dichroic mirror 

reflects the illumination beam to the specimen through the objective lens. In the speci-

men, fluorophores are excited and they emit light at the specific emission wavelengths. 

The dichroic mirror, which only reflects the light of certain wavelengths, passes the 

emitted signal which is then detected by a detector. Before the detector, signal is filtered 

again so that only the emission wavelengths are captured. 

2.4.1 Total internal reflection fluorescence microscopy 

In total internal reflection fluorescence (TIRF) microscopy, the idea is to illuminate and 

excite fluorophores immediately adjacent to the surface glass using evanescent waves 

[21], [23]. The evanescent waves are generated when light is totally internally reflected 

at the glass-water surface as shown in Figure 3. The energy of the evanescent waves 

decays exponentially with distance so only fluorophores approximately at depth of 

~100nm or closer to the surface glass are excited (the range of the evanescent waves are 

shown in yellow) [23]. This is a major advantage of TIRF microscopy; the fluorophores 
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from other than focus area are not excited reducing the amount of background fluores-

cence. 

 

Figure 3: (a) Main components of a fluorescence microscope. The excitation light 

(blue) passes through the excitation filters and is reflected to the specimen by the di-

chroic mirror. Emitted light passes the dichroic and is filtered before the detector. (a) 

TIRF microscopy. The excitation light is totally internally reflected at glass-water sur-

face when the angle α is big enough. This creates evanescent waves at the boundary 

(yellow) exciting the fluorophores of the specimen. (c) HILO microscopy. In comparison 

to TIRF microscopy, different angle α is used. As a result, the illumination beam is 

highly inclined and laminated as a thin optical sheet at the specimen side exciting the 

fluorophores in its path. 

2.4.2 Highly inclined and laminated optical sheet microscopy 

The main limitation of TIRF microscopy is that it illuminates only the surface of the 

specimen [23]. Since the average diameter of E. coli is approximately 0.5-1.0µm [24], it 

(b) 

(c) (a) 
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is not enough to illuminate the subcellular components properly. Highly inclined and 

laminated optical sheet (HILO) microscopy overcomes this limitation by highly inclin-

ing the illumination beam causing the beam to be laminated as a thin optical sheet at the 

specimen side [25]. By changing the inclination of the illumination beam and minimiz-

ing the illumination area, the background fluorescence can be minimized increasing the 

signal-to-background ratio. As a result, the intensity of the illumination beam can be 

decreased while still resulting in high quality images. [25] This is important when imag-

ing the living cells since we want to minimize the amount of damage taken by the cells. 

 

In this thesis, we have used HILO microscopy to achieve a good signal-to-noise ratio 

(SNR) allowing us to decrease the intensity of light and minimizing the damage caused 

to cells. It is also faster than the traditional confocal microscopy since HILO is able to 

capture the whole field at once while the traditional confocal microscope requires scan-

ning of the whole area since each pixel is illuminated separately. 
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3. IMAGE ANALYSIS BACKGROUND 

In this chapter, the fundamental concepts related to detection of intracellular particles 

from microscopy images are presented. In the first section, the basic framework behind 

the detection algorithms is presented together with basic image analysis operations 

needed in these steps. Within this framework, some of the commonly used methods [7], 

[8] for the spot detection are presented. These methods are then compared with the pro-

posed method later in this thesis. The second section describes the Laplacian of Gaussi-

an blob detection method which the proposed algorithm is also based on. Finally, the 

third section presents the performance evaluation metrics used to compare the algo-

rithms. 

3.1 General framework for detecting subcellular objects 

Detection framework usually consists of three main stages (Figure 4), namely, noise 

reduction, signal enhancement and signal thresholding [7]. All detectors usually include 

these steps in one form or another with signal enhancement being the most distinguish-

able part. In the first step, noise is reduced via some denoising algorithm producing a 

denoised image J(x,y). Techniques can vary from basic filtering techniques to more so-

phisticated algorithms such as patch based denoising, e.g. [26]. In the second step, the 

denoised image is further enhanced so that the objects of interest are highlighted and 

background and other objects are suppressed. The output is often called grayscale clas-

sification map C(x,y) since it might not represent the original data in the same way an-

ymore but instead it represents, for example, the likelihood of the subcellular objects. In 

the final step, a threshold is applied to the classification map in order to separate the 

objects of interests from the background and other structures. This step produces a bina-

ry image B(x,y) where the objects above the threshold have been marked with one 

(spots) and everything below the threshold is marked with zero (background). [7] From 

the binary image, several measurements can then be computed, for example, we can 

determine the area and shape of the objects and we can also extract intensities from the 

fluorescent image using the mask. 

 

Before any of these steps, images have to be captured with microscope. Although image 

acquisition is not included in the pipeline, this step is important since the chosen mi-

croscopy technique and chosen parameters affect the image analysis step. For example, 

the limitations when imaging living cells must be taken into account. Badly done imag-

ing can damage cells producing irrelevant data for the study or it can degrade the quality 

of images making the following image analysis hard or even impossible. As such, it can 
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be though as part of the framework. In order to select the best parameters, close inter-

communication between the image analyzer and the biologist taking the images is usu-

ally recommended. 

 

Figure 4: Framework for detecting subcellular objects. 

3.1.1 Noise reduction 

In image acquisition, the photons are detected by the imaging system and converted to 

intensity values based on the number of detected photons. Due to the quantum nature of 

light and uncertainty of measurements of such stochastic events, there is variation, or 

noise, in the measured intensity values. This noise is signal-dependent photon shot 

noise, also called Poisson noise, and can be modelled as 

 
𝑔(𝑥, 𝑦) = 𝜂(𝑓(𝑥, 𝑦)), (1) 

where g(x,y) is the corrupted image, f(x,y) is the noiseless image to be measured and 

𝜂(x,y) is the noise model. The signal-dependent noise follows a Poisson distribution and 

can be thus modeled as  

 
𝜂(𝑓(𝑥, 𝑦))~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑓(𝑥, 𝑦)), (2) 

where each pixel of the image at the coordinates (x,y) is Poisson-distributed random 

variable with mean f(x,y), i.e. the intensity of the pixel at the point (x,y). [27]  
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In fluorescence microscopy, the measured signal contains also additive noise compo-

nents which might come from a variety of sources. For example, by reading the signal 

from the CCD sensor, additive Gaussian distributed noise signal is included. Moreover, 

when we present the measured intensities with finite number of discrete values, another 

additive noise component, quantization noise, is introduced. [27] Also, the natural emis-

sion of light by the biological specimen, autofluorescence, is one important additive 

noise source [28]. The additive noise component 𝜂𝑎 can be modelled as 

 
𝐼(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) + 𝜂𝑎(𝑥, 𝑦), (3) 

where I(x,y) is the acquired noisy image and g(x,y) is the photon-shot noise corrupted 

image. 

 

In the noise reduction stage, we try to minimize the noise signal of the system. This can 

be done, for example, by correlating the image with smoothing filter where the value of 

each pixel is replaced by a weighted sum of its neighboring pixels. Note that, in the case 

of the symmetric filter, this equals to convolution. More specifically, let us assume a 

smoothing kernel W of size M x N, where M and N are odd nonnegative integers and the 

center of kernel is indexed as w0,0. By making this assumption we do not actually lose 

anything since every filter can be padded with zeros to have an odd size. Then the filter-

ing operation at position (x,y) can be defined as 

 

𝐽(𝑥, 𝑦) = ∑ ∑ 𝑊(𝑖, 𝑗)𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)

⌊𝑁/2⌋

𝑖=−⌊𝑁/2⌋

⌊𝑀/2⌋

𝑗=−⌊𝑀/2⌋

, (4) 

where I is the noisy image, J(x,y) is the resulting denoised image and ⌊𝑥⌋ is the flooring 

operation returning the largest integer smaller or equal to x. The filter W is also called 

linear filter if it preserves the linearity, i.e. if we have two images, A and B, then filter-

ing them with kernel W preserves the relationship 𝐹𝑤(𝐴 + 𝜆𝐵) = 𝐹𝑤(𝐴) + 𝜆𝐹𝑤(𝐵), 

where 𝜆 is a scalar. [29] Filtering operation with kernel of size 5 x 5 is further illustrated 

in Figure 5. 

The blue area illustrates the pixels underneath the kernel and the coefficients of the ker-

nel are marked relatively to the point which we are filtering, i.e. the center of the mask 

(marked in red). In the special case, if 𝜔𝑖,𝑗 =
1

𝑀𝑁
 for all i and j, we have a uniform ker-

nel, also called mean or average filter. If the coefficients are defined in such a way that 

they follow a 2-dimensional Gaussian function, we obtain a Gaussian filter. These fil-

ters are also called low-pass filters since they blur the image in the process by attenuat-

ing high frequencies while passing the low frequencies. [29] 
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Figure 5: 5x5 filter kernel with coefficients. The kernel is shown in blue and the pixel 

that is being operated is shown in red. 

The blurring effect can be also a disadvantage. If some fine details, for example edges, 

need to be preserved, nonlinear filtering techniques can be used instead. One such 

method is a median filter where a target pixel is replaced with the median of neighbor-

ing pixels. It preserves the details and edges better than linear filters while still remov-

ing noise. [29] Average filtering and median filtering are illustrated in Figure 6. The 

blurring effect caused by the average filter can be clearly seen as well as the preserva-

tion of edges in case of the median filter where the edges are sharper. 

 

However, median filters also have disadvantages. For example, they cannot distinguish 

between fine detail and noise since anything relatively small compared to the size of the 

filter will have minimal effect on the median value and will be thus removed. Thus, 

more complex techniques have been developed, e.g. introducing more accurate models 

for the noise in the image. For example, a filtering technique based on block matching 

and 3D filtering (BM3D) has been reported to outperform the previous state-of-the-art 

methods [26]. However, the denoising technique depends always on the application and 

what is the goal of the filtering and, thus, should be chosen accordingly. 
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Figure 6: Comparison of noise reduction methods. (a) Original image, (b) original im-

age filtered with a 5x5 average filter. Notice the blurring effect, especially on the edges.  

(c) Original image filtered with a 5x5 median filter which preserves the edges better. 

3.1.2 Signal enhancement 

After the noise reduction step, the signal is enhanced. The goal is to highlight the ob-

jects of interest while suppressing the background signal. [7] Usually the signal en-

hancement part is the most characteristic feature of the spot detection algorithm. Here, 

we present examples of such techniques that are also used in this thesis in comparison to 

the proposed method. These methods were chosen because they have been shown to 

work well with fluorescent images [8]. 

 

The method based on kernel density estimation (KDE) [8], filters the image with a ker-

nel function K as follows 

 

𝐶(𝑖, 𝑗) =
1

𝑐𝑎𝑟𝑑(𝑁)
∑ 𝐾(

𝐼(𝑖, 𝑗) − 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

𝛼
𝑚,𝑛∈𝑁

), (5) 

(a) 

(b) (c) 
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where N is the set of neighboring pixels inside the kernel, card is the cardinality (num-

ber of elements) of the set, 𝛼 is the smoothing parameter, also known as bandwidth, and 

I(i,j) is the intensity value of the image at coordinates (i,j). As seen from Equation (5), 

the output depends only on the image intensities. For example, in case of the Gaussian 

kernel, uniform-like areas (difference I(i,j)-I(i+m,j+n) is close to zero) result in high 

value in the grayscale map C(i,j). On the other hand, spots that usually have an abrupt 

change on the boundary and consist of distinct intensity values above the background, 

result in low value in the grayscale classification map and can be then thresholded ac-

cordingly. Typical kernel choice for spot detection is e.g. circular Gaussian kernel as in 

[4], [30]. 

 

Another method, h-dome detector (HD) [7] uses a morphological h-maxima transform 

[31] as a signal enhancement technique. Figure 7 shows example of h-maxima trans-

formation in case of 1D-signal. All the local maxima that are below the user-defined 

threshold h will be suppressed and the others structures are cut by height h from the top 

of the local maxima. The image on the left shows the blue signal with several different 

peaks above the background intensity which was set to 50. The image on the right 

shows the result of the h-transformed signal when the parameter h was set to 20. All the 

spots that are above background more than that are retained, while the others are sup-

pressed. Note that, at this stage, objects are not detected and it is still up to the observer 

to decide what parts of the enhanced signal represent spots. 

 

Figure 7: Example of signal enhancement via h-maxima transform. The original signal 

has peaks with intensities 10,15,25,30 and 50 above the background. H-transformation 

suppresses all local maxima that are below the threshold h (in this case, h = 20). 

Grayscale morphological operations [29] have also been introduced for spot detection. 

One technique is based on a grayscale morphological top-hat-filtering (THE) [29], [32] 

which suppress the background and enhances spot like structures at the same time. The 

algorithm performs a grayscale opening [29] with a disk-shaped structuring element and 

subtracts the output from the original image resulting in an enhanced image where ob-

jects corresponding roughly to a size of structuring element are enhanced while the oth-
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er structures are suppressed. The resulting image is then thresholded in the next stage of 

the spot detection framework. 

 

Local enhancement filters (LEF) [8] rely on matched filters for the signal enhancement 

step. It utilizes the concept that the known signal (filter, or template) can be detected 

from an unknown signal when the two signals are correlated. The filter is defined in two 

parts, as illustrated in Figure 8.  

 

Figure 8: Local enhancement filter of size 7x7. Kernel is divided into two parts: circu-

lar support area A (shown in yellow) and outside part B (shown in blue). The pixel to be 

filtered is shown in red. 

First, the circular inner part (defined as set A, shown in red) of the filter enhances the 

local intensity peaks while the outside part of the kernel (defined as set B, shown in 

blue) is used to suppress the background by division. The filtering operation can be thus 

defined as 

 

𝐶(𝑖, 𝑗) =
∑ 𝐼(𝑖, 𝑗)𝑖,𝑗∈𝐴

∑ 𝐼(𝑘, 𝑙)𝑘,𝑙∈𝐵
, (6) 

where the (i,j) are the coordinates in set A, and (k,l) are the coordinates in set B. Output 

is a grayscale classification map representing a spot likelihood that is then thresholded 

in the next step of the framework. [8] 

 

Another detection method for subcellular objects is the local comparison and selection 

(LC) method, described in detail in [8]. It uses directional filters and compares the out-

puts of the filters locally to make decision if object is present or not. Circular filter (sim-

ilar to the support area A in Figure 8) works as a base template for the directional filters: 

it is separated into four quarters hNE, hSE, hSW and hNW where the three other quarters are 

set to zero (Figure 9). The original image is then filtered with these four filters and the 

original pixel is replaced with the maximum pixel value representing the likelihood of 
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the spot. In the signal thresholding step, local thresholding technique is then applied 

producing a binary image with the detected spots. 

 

 

Figure 9: Directional filters of the Local Comparison and Selection (LC) method. The 

red shows the pixel to be filtered and the kernel is shown in blue. The name of the filters 

from left to right and from top to bottom: hNE, hSE, hSW and hNW. 

Wavelets have been also proposed for the detection of subcellular objects in [9] where a 

method based on the multiscale product of wavelet coefficients (MW) was introduced. 

The method is based on wavelet decomposition where the image A0(x,y) is convolved 

with a [1/16, 1/4, 3/8, 1/4, 1/16] kernel row by row and column by column resulting in a 

smoothed image A1(x,y). To obtain the smoothed image at scale i, kernel is modified by 

inserting 2
i-1

-1 zeroes resulting in Ai(x,y). The so called wavelet plane W at level i is 

then computed by subtracting the smoothed image at level i from the smoothed image 

of previous level i-1, Wi(x,y)=Ai-1(x,y)-Ai(x,y), 0 < i ≤ J. As the name of the method 

suggests, grayscale classification map C(x,y) is obtained by multiscale product of the J 

layers: 

 

𝐶(𝑥, 𝑦) = ∏ 𝑊𝑖(𝑥, 𝑦)

𝐽

𝑖=1

. (7) 

Intuitively, spots will be present in the final product since they are correlated across the 

different levels whereas response from the noise will be significantly lower. 

 

Source extractor (SE), originally presented in [33], was recently presented for subcellu-

lar spot detection [8]. It is a local method as it estimates and removes the background in 

small blocks and applies a threshold based on the local blocks. The blockwise back-

ground estimates are calculated based on histogram clipping where the histogram is 

clipped at both ends iteratively until convergence at three standard deviations around its 

median. If the standard deviation of the clipped histogram is changed less than 20% 

during the process, the mean is taken as background intensity, otherwise it is estimated 
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to be BG = 2.5 x Median - 1.5 x Mean. Finally, by interpolating the blockwise back-

ground estimates, the estimates for each pixel are obtained. The resulting background 

corrected image contains the enhanced signal which is then thresholded based on the 

local background to get the initial spot candidates. 

3.1.3 Signal thresholding 

In image analysis, segmentation is a process where the image is subdivided into regions 

or objects having a certain characteristics [29].  In the spot detection framework, the 

goal of the segmentation is to separate the objects of interests (spots) from other struc-

tures and the background. This is often done with thresholding, which is a procedure 

where the segmentation is done by comparing the intensity values of the image to a cer-

tain threshold value. 

 

More specifically, a threshold value is applied to an enhanced grayscale image C(x,y) 

producing a binary image B(x,y) of the same size, where the objects of interest are 

marked. In global thresholding, a single gray-level value T is selected and used as a 

threshold for the whole image. A thresholded binary image B is then defined as 

 

𝐵(𝑥, 𝑦) = {
0, 𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝑇

1, 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇
 (8) 

where the I(x,y) is the pixel value of the input image at coordinates (x,y). Thus, all the 

pixels above the selected threshold T (corresponding to objects of interests) are labeled 

with 1 whereas other pixels (corresponding to background) are labeled as 0. [29] 

 

One of the most commonly used automatic global thresholding procedures is Otsu´s 

method [34]. It assumes that the histogram of the image is bimodal, i.e. pixels can be 

divided into two separate classes (foreground and background) based on their intensi-

ties. Then, the idea is to find a threshold that best separates these classes, i.e. a threshold 

value that maximize the inter-class variance 𝜎𝑏
2(𝑡) = 𝜔1(𝑡)𝜔2(𝑡)[µ1(𝑡) − µ2(𝑡)]2, 

where 𝜔1(𝑡) and 𝜔2(𝑡) are the probabilities of the two classes and µ1(𝑡) and µ2(𝑡) are 

the class means. If the intensity values of image with N pixels are represented with val-

ues [1,2,…,L] with corresponding number of pixels [n1,n2,…,nL] both the class proba-

bilities and the means can then be calculated from the normalized gray-level histogram 

p for a given threshold t with 
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𝜔1(𝑡) = ∑ 𝑝(𝑖)

𝑡

𝑖=1

µ1(𝑡) = ∑
𝑖𝑝(𝑖)

𝜔1

𝑡

𝑖=1

𝜔2(𝑡) = ∑ 𝑝(𝑖)

𝐿

𝑖=𝑡+1

µ2(𝑡) = ∑
𝑖𝑝(𝑖)

𝜔2

𝐿

𝑖=𝑡+1

. (9) 

where p(i)=ni/N. Finding of the threshold is exemplified in Figure 10 where the selected 

threshold is shown with green and the separated classes are marked with different col-

ors. 

 

Figure 10: Otsu´s thresholding. The threshold (green line) separates the intensity his-

togram into two classes so that the inter-class variance is maximized. 

If the threshold depends on both image intensities and local image characteristics, it is 

called local thresholding [29]. It takes the local image variations into account by choos-

ing a threshold based on the local neighborhood - for instance, the average intensity of 

m x n neighborhood can be used as a threshold. An obvious advantage is that the local 

thresholding methods are able to cope with changing background much better than the 

global threshold. Illustration of global and local image thresholding in case of nonuni-

form background is shown in Figure 11.  
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Figure 11: (a) Simulated image (256x256) of cells with non-uniform noisy background. 

(b) The segmentation result with a global threshold. (b) The segmentation result with a 

local thresholding procedure. 

A global threshold was computed using Otsu´s method as described above using Equa-

tion (9), whereas for the local thresholding, Otsu´s method was used in local 64x64 

neighborhoods. It is clear that the local thresholding method is able to deal with the 

changing background much more effectively. For example, the global threshold fails to 

segment the cells due to the nonuniform background. However, in local neighborhoods, 

the assumption of bimodal distribution of pixel intensities holds true. The block size has 

to be chosen so that both classes (background and foreground objects) are present in the 

window, but are small enough so that the background does not vary too much.  

 

In fluorescence microscopy, the assumption of bimodal intensity distribution does not 

necessarily hold true. Instead, one can make use of the fact that the pixel intensity dis-

tribution follows e.g. a Gaussian distribution. If so, it might be beneficial to choose a 

threshold based on the assumed statistical model in order to get better estimate of the 

object. One such method is MDE [35], which uses the local cell intensities to get a good 

estimate for the threshold. It assumes that background pixels follow a Gaussian distribu-

tion with the same median 𝑞0.5  and upper quartile 𝑞0.75  as the pixels inside the cell. 

The threshold T is then defined as 

 
𝑇 = 𝑞0.5 + 𝑘(𝑞0.75 − 𝑞0.5), (10) 

where the threshold multiplier k can be chosen so that the probability of mislabeling a 

pixel from the assumed distribution is less than some user defined probability p. 

3.2 Spot detection by Laplacian of Gaussian 

One method to detect the subcellular particles from fluorescence microscopy images is 

based on the Laplacian of Gaussian (LoG) filter.  The filter has strong responses for 

blobs, that is, bright, connected regions having intensity above the background making 

(a) (b) (c) 
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it suitable for detecting fluorescent particles. Since the response of the filter with a cer-

tain size depends on the scale of the blob we can construct a so called scale-space rep-

resentation where image structures are represented at different scales. This is simply 

obtained by filtering the image with kernels of different sizes. Together with automatic 

scale-selection procedure, where the appropriate scale for each blob is detected individ-

ually, we can automatically detect blobs with varying sizes. [11], [12]  

 

We first present the LoG filter. A Gaussian smoothing kernel is defined as  

 

𝐺(𝑥, 𝑦, 𝜎) =
1

𝜎√2𝜋
𝑒

−
(𝑥2+𝑦2)

2𝜎2 , (11) 

where the x and y are the coordinates and 𝜎 is the standard deviation of the filter. The 

Laplacian of Gaussian (LoG) operator is then defined as 

 
𝐿(𝑥, 𝑦, 𝜎) = ∇2(𝐺𝜎(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)), (12) 

where an input image I(x,y) is first convolved with the Gaussian smoothing kernel G 

and then the Laplacian operator ∇2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 is applied. [29] The Laplacian and 

Gaussian operators can be further combined to a single Laplacian of Gaussian filter 

(Figure 12) defined as 

 

𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) = −
1

𝜋𝜎4
[1 −

𝑥2 + 𝑦2

2𝜎2
] 𝑒

−
(𝑥2+𝑦2)

2𝜎2 , (13) 

resulting in a simpler form 

 
𝐿(𝑥, 𝑦, 𝜎) = 𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦), (14) 

where we have only convolution between the LoG filter and the input image. 

 

Figure 12: Laplacian of Gaussian kernel with standard deviation 2 and kernel size 9x9. 
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As seen from Figure 12, LoG filter is a circularly symmetric operator making it suitable 

for blob detection. As defined in Equation (11), it is controlled by the standard deviation 

σ and the size of the filter (x, y) coordinates). Usually, odd kernel size is used to prevent 

artifacts caused by the non-symmetric filtering. Moreover, the size of the kernel can be 

related to the standard deviation, e.g. we can set the kernel size to be 𝑠 = 4 ∗ 𝜎 + 1 

which is motivated by the fact that over 99% of the energy of the Gaussian bell is con-

centrated within four standard deviations of its mean. 

 

One specific property of the Laplacian of Gaussian filter is that the magnitude of the 

response is maximized if the standard deviation of the Gaussian is matched with the 

scale of the blob. More specifically, for a binary circle of radius r, the Laplacian 

achieves a maximum at the center of the blob at scale [11], [12] 

 

𝜎 =
𝑟

√2
. (15) 

However, the magnitude of the Laplacian response depends on a scale 𝜎 as it can be 

seen from Equation (13), i.e. the response decreases with increasing scale. To make the 

LoG operator invariant to scales, LoG filter has to multiplied with 𝜎2
 [12]. 

 

To further illustrate the behavior of the filter, we have plotted a one dimensional signal 

containing a blob (bright structure above the background) and the response of the LoG 

filter to that signal (Figure 13). As seen from the image, the filter with σ = 2 does not 

match very well with the radius of the blob and the response of the filter is small. On the 

other hand, the response of the filter with σ = 3.5 fits to the scale of the blob well, re-

sulting in a high response. Since with real images the scales of the blobs are unknown, a 

single scale level is not enough for stable extraction of blob-like structures. For exam-

ple, closely located blobs might be detected as one unit if the scale is too large or they 

might not be detected at all. Two closely located blobs are separated only if the fine 

scale of the blobs is found. Thus, it is important to construct a so called scale-space rep-

resentation, where the input image is convolved with the LoG filters of different scales 

and the output contains the responses at each scale. 
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       (a) 

 
          (b)         (c) 

Figure 13: (a) 1-D signal of 50 pixels containing a blob with radius 5. (b) Response of 

the normalized LoG-filter to the blob with 𝜎 = 2 and filter size 9. (c) Response of the 

normalized LoG-filter to the step edge with 𝜎 = 3.5 and filter size 15. 

After obtaining the scale space, the idea is to search the optimal scale for each pixel 

which corresponds to the maximum response of the filter. This is done by searching a 

local extremum for each pixel in a 3D-space (3x3x3 neighborhood). If the value of the 

pixel at certain scale 𝜎 is greater than the neighboring pixels, it is chosen as candidate 

blob. [11], [12] Scale-space representation and the search of local extrema are depicted 

in Figure 14. Scale-space representation was obtained by filtering the image with differ-

ent LoG filters, namely with 𝜎=1, 𝜎=3 and 𝜎=5, where the size of the kernel was cho-

sen as explained above. Then, the maximum for each pixel is search in 3x3x3 neighbor-

hood. In this case, the search was done at scale i. 

 



23 

 

Figure 14: Illustration of scale-space representation and the local extrema searching. 

Local extreme is searched in 3x3x3 space across the different scales. If the value of the 

pixel is above the neighborhood, it is chosen as a candidate. 

As a result of LoG filtering and the local extrema searching, we obtain a gray-scale 

classification map with set of candidates and their responses. Also, corresponding scales 

for each candidate are saved for object reconstruction. Then, as in the final step of the 

spot detection framework, a threshold is applied in order to extract the location of de-

tected objects. For this, a global threshold, as described in Equation (8), can be applied 

to filter out the weak responses. Finally, the objects of right size can be constructed by 

using the scale information of the remaining candidates and the relationship between the 

scale 𝜎 and the blob radius r as described in Equation (15). 

3.3 Performance evaluation metrics for classification 

In order to do an objective analysis of the detectors, we use standard classification 

performance evaluation metrics, namely, precision, recall and f-score. We also use 

another common measure used for comparisons of spot detection algorithms [7], the 

true positive rate when the false positive rate is 0.01, which shows the performance 

when only low number of false positives is allowed. Moreover, we explain briefly the 

principles behind the free-response receiver operating characteristic curve which is used 

to show the effect of varying threshold parameters. 

3.3.1 Precision, recall and F-score 

We start by defining the ‘ground truth image’ as an image containing the true labels of 

objects. The classification map obtained after the signal thresholding is then compared 

to the ground truth. Object is a true positive (TP) if it is correctly matched to the ground 

truth and it is a false positive (FP) if there is no match in the ground truth image. If there 

is a missing object in the detection result, it is called a false negative (FN). True nega-

tive (TN) is defined as an accurate rejection of an object. In our case, the number of true 

negatives is undefined since the negative labels are not available. We denote the number 

of true positives as NTP, the number of false positives as NFP and the number of false 

positives as NFN. The total number of objects in the ground truth is defined as N. 
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Since the false positive rate is defined as FPR=NFP/(NFP+NTN) and NTN is not known, 

we use a modified version of FPR [7], given by 

 

𝐹𝑃𝑅∗ =
𝑁𝐹𝑃

𝑁
 (16) 

As in [36], we define the true positive rate, also noted as recall r, as 

 

𝑇𝑃𝑅 = 𝑟 =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁
=

𝑁𝑇𝑃

𝑁
, (17) 

and the precision p as 

 

𝑝 =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃
. (18) 

Intuitively, recall emphasizes the number of true objects found, in other words, the fail-

ure to detect the true objects is penalized. Precision emphasizes the ratio of NTP over all 

the detections; the measure is thus penalized by falsely detected objects. 

 

Furthermore, the F-score is then defined as a harmonic mean of the precision and recall 

[36] as 

 

𝑓 =
2𝑝 ∗ 𝑟

𝑝 + 𝑟
. (19) 

The main advantage of the F-score is that it gives a single measure of the detection ac-

curacy by combining and equally weighting precision and recall. In this work, we use a 

best reachable F-score denoted as f*. 

3.3.2 Free-response receiver operating characteristic curve 

The receiver operating characteristic (ROC) curve is widely used method to evaluate 

binary classifiers. In this, TPR is plotted as a function of FPR as the parameters of the 

detection method are varied. However, since TN is not known, the maximum possible 

number of FPs is not bounded since there can be any number of false detections per 

image. As a result, the standard ROC curves cannot be used and the modified version of 

ROC curve, free-response operating characteristic curve (FROC), is used instead where 

FPR is replaced with FPR* [37], [38]. FROC-curves are especially useful when study-

ing the sensitivity of the algorithm to parameters. The FROC space with five different 

discrete classifiers is demonstrated in Figure 15.  
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Figure 15: The performance of five different discrete classifiers in FROC-space. 

Note that FPR* is not necessarily bounded to 1, even though the x-axis was set between 

(0,1). The point (0,0) represents a point where no classification is done, i.e. no true posi-

tives are found but neither any false detections are made. On the contrary, the point 

(1,1) represents a strategy where all the objects are detected but with cost of same num-

ber of false positives. Classifier A at point (1,0) is an example of perfect classifier with 

maximum TPR and minimum FPR*. The diagonal line between (0,0) and (1,1) repre-

sents the strategy of randomly guessing a class. All the classifiers above that diagonal 

line are working better than a random classifier. For example, classifiers B and C per-

form worse than A, but their results are still better than random selection. More general-

ly, the classifier performs better than the other classifier if the point in the FROC space 

is located to the northwest of the other.  

 

In addition, as defined in [36], the classifiers with low FPR are thought as “conserva-

tive” classifiers. The classification is done only when there is strong evidence that the 

object is true, resulting in low FPR*. However, this is shown usually in low TPR as 

well. On the other hand, classifiers on the north-east side are thought as “liberal” classi-

fiers. They make classifications also with weaker evidence, which lead to high TPR but 

also to higher FPR*. In Figure 15, classifier B represents the conservative classifier 

whereas classifier C represents a more liberal classifier. Classifier D, on the other hand, 

represents a random classifier since it lies on the diagonal line at point (0.5, 0.5), i.e. 

half of the true objects are found but also the same number of false objects is detected. 

Classifier E is the worst classifier, as FPR* exceeds the TPR, indicating that even ran-

domly selecting a class could yield better results. 

 

Figure 15 shows only five discrete classifiers but usually it is useful to produce a 

FROC-curve for each classifier. Each parameter set of the algorithm produces one point 

in FROC-space so by varying the parameters we can construct a FROC-curve which 

demonstrates the sensitivity of the algorithm to parameter changes. 
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4. DETECTION OF FLUORESCENT PARTICLES 

IN ESCHERICHIA COLI 

We present a novel framework for detecting the fluorescently labeled subcellular ob-

jects in Escherichia coli. The pipeline consists of two major stages, a global processing 

block and a local processing block. In this chapter, we present image analysis steps in 

these blocks which are required for detecting the fluorescently labeled objects inside the 

cells. In addition, the performance evaluation metrics are presented for validating the 

methods. The methods were implemented in MATLAB version 8.3.0.532 (R2014a). 

4.1 Fluorescent labeling of MS2 and Tsr proteins 

One of the current single-molecule detection techniques to study RNA production in 

living E. coli cells is based on MS2-GFP tagging of RNA. The system is based on the 

coat protein of bacteriophage MS2, which is able to recognize and bind to specific se-

quences of RNA. This protein has been fused with the GFP, thus allowing detection and 

tracking of individual mRNA molecules containing the specific sequences. The infor-

mation used to produce these MS2-GFP molecules is usually encoded into a multi-copy 

plasmid that is inserted into the cells, allowing production of these molecules when in-

duced. The target RNA molecules are engineered so as to have an array of MS2 binding 

sites and their transcription is controlled by the promoter of interest. [16] When binding 

to the RNA, the concentration of these molecules increases which allows seeing the 

tagged RNAs as bright spots with fluorescence microscope. Together with time-lapse 

imaging this can be used to, for example, study the dynamics of transcription [1], [4], 

[16].  

 

Similarly, we can detect the production of single proteins and consequently, study the 

dynamics of translation. One construct for such task is Tsr-Venus which is based on the 

fusion of the membrane protein Tsr and the yellow fluorescent protein (YFP) variant, 

Venus. This membrane protein has been chosen since its slow diffusion rate makes the 

detection of individual molecules possible, contrary to the fast diffusing molecules 

where the diffused signal is overwhelmed by the cellular autofluorescence, making the 

detection impossible. [2] This construct enables the study of single proteins giving in-

sights to gene expression and other fundamental biological processes such as thermo-

sensing [39] and aerotaxis [40] in which Tsr proteins are known to be involved as 

chemoreceptors of E. coli.  
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4.2 Cell culturing and image acquisition 

For Tsr-Venus, we used E. coli K-12 strain SX4, harboring the Tsr-Venus gene con-

struct under the control of the lac promoter (Plac) [2]. Liquid cultures were grown in M9 

glucose (0.4%) media overnight, supplemented with amino acids at 37° C with shaking 

(250 RPM). Then, cells were inoculated into a fresh media and grown until a final opti-

cal density of OD600 of 0.3 was reached. The induction of Tsr-Venus was then per-

formed by adding 200 µM IPTG to the culture and then cells were incubated at 37 °C 

for 5 min before imaging.  

 

For MS2-GFP, we used E. coli strain DH5α-PRO, provided by I. Golding (Baylor Col-

lege of Medicine, Houston, TX). From overnight cultures, precultures were diluted in 

fresh LB media supplemented with appropriate antibiotics to an OD600 of 0.05.  Then, 

they were kept at 37 °C in a shaker (250 RPM) for approximately 1.5 hours until OD600 

of 0.3 was reached. Cells were then induced with 100ng/ml of aTc for 45 min until the 

final OD600 of 0.5 was reached. To complete the induction of the target RNA produc-

tion, 1mM of IPTG was added and cells were incubated for 5 min before imaging. 

 

In both cases, images of the cells were acquired by fluorescence microscopy, using a 

Nikon Eclipse (Ti-E, Nikon, Japan) inverted microscope with a C2 confocal laser scan-

ning system using a 100x apochromat TIRF (1.49 NA, oil) objective. The GFP fluores-

cence was measured using a 488nm argon ion laser (Melles-Griot) and a 515/30 nm 

detection filter. Phase-contrast images were acquired using a CCD camera (DS-Fi2, 

Nikon). 

4.3 Generation of simulated images 

In the case of the empirical images, the ground truth is not usually available and the 

labeling must be done through a subjective and error-prone manual annotation by an 

expert biologist. Moreover, the labeling process is very time-consuming making it diffi-

cult to evaluate large amount of data. Simulated images have great advantages com-

pared to them: the ground truth is known exactly allowing objective evaluation of the 

algorithms and the labels are generated automatically during the simulation process al-

lowing easy and fast way to evaluate large amount of data [41]. 

 

We used a modified version of SIMCEP cell image simulation framework [41], [42] to 

generate synthetic images for validation of the algorithms. The original program which 

can be downloaded at http://www.cs.tut.fi/sgn/csb/simcep/tool.html, is able to generate 

synthetic cells consisting of different components, such as cytoplasm, nuclei and subcel-

lular components. The original SIMCEP framework consists of two main stages. In the 

first step, ideal images are generated based on the cell and population characteristics. 
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Then, the ideal image is degraded progressively by simulating the imaging system and 

image acquisition. 

 

The simulated microscopy images consist of simulated single cells that together form 

the cell population. As in fluorescent labeling, different objects in the cell can be simu-

lated using a multichannel representation of the cell allowing simulation of e.g. nucleus 

and subcellular components. In SIMCEP, cells and their shapes are simulated using a 

parametric model where the randomness and size of the shape can be controlled allow-

ing creation of varying shapes. The texture of the simulated cells are then generated by 

using a procedural texture model [43], where the texture can be controlled with a variety 

of parameters allowing creation of different textures. At the population level, it is then 

important to simulate the locations of the cells realistically. SIMCEP organizes the sim-

ulated cells randomly throughout the image, since the locations of cells rarely follow 

uniform distributions in real life as well. The program is also capable of clustering the 

cells with some probability p in order to simulate cell populations realistically. Further-

more, the overlap between the cells can be controlled in order to simulate spatially tight-

ly packed cells. [41] 

 

In the second step, ideal images are degraded progressively to simulate the effects of 

real microscopy system. For this, several sources degrading the quality are introduced, 

including nonuniform illumination, autofluorescence, detector noise and optical aberra-

tions such as blurring. [41] Briefly, nonuniform illumination is modelled by adding a 

second degree polynomial surface in the image where the energy and the center of the 

illumination source can be controlled. Autofluorescence is simulated by using the tex-

ture model [43] and blurring of the image is modeled by a linear space-variant blur 

model using a Gaussian kernel [44]. Finally, the detector noise is modeled by adding a 

zero-mean Gaussian noise with variance 𝜎2. [41] The background parameters used for 

our test set are shown in Table 1. 

 

To modify the program to our needs, an additional model of rod-like shaped bacteria as 

described in [45], e.g. E. coli, was added to the program. Rod-like bacteria was generat-

ed by first inserting a center point of the cells at random locations in the image. Then, 

morphological dilation [29] with line-shaped structuring element of length l and angle α 

was performed to get the lines. The length of the E. coli was set to 25 for our test set 

and the angles were drawn from the uniform distribution on the interval (0,180). Final 

shape was then obtained by dilating the binary line with another structuring element, a 

disk with radius r. The radius was set to 5 for our test set. 

 

Also, additional texture model for spots was added. Instead of using the default model 

[43] for the spots, we generated Gaussian spots of radius r and sigma 𝜎. For the E. coli 

test set, we used r = 3. Standard deviation σ was then automatically computed from the 

radius so that over 99% of the Gaussian was included as described in Equation (15).  
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Table 1: Parameters of the synthetic image generator 

Parameters Values 

Number of cells 200 

Number of objects per cell 1 

Background energy 0,25 

Autofluorescence energy 0,25 

CCD-noise 0,005 

4.4 Proposed spot detection method 

4.4.1 Cell segmentation 

Although the cell segmentation is out of the scope of this work, it is usually an im-

portant step since one usually wants to relate the fluorescent spots to the cells that pro-

duced them. The cell segmentation was performed with a custom-made software that 

integrates MAMLE [46] for cell segmentation and CellAging [47] for alignment of the 

fluorescence and phase contrast images and for lineage construction. 

 

The cell segmentation method, MAMLE (Multi-Resolution Analysis and Maximum 

Likelihood Estimation) [46], have also the three main stages as described in Section 3.1, 

i.e., noise reduction, signal enhancement and signal thresholding. For noise reduction, it 

uses efficient image denoising technique called Block-Matching and 3D filtering 

(BM3D) [26] which divides the image in 8x8 blocks grouping similar 2D blocks togeth-

er forming a 3D array. Special collaborative filtering is then applied for this group and 

finally the filtered blocks are returned to their original positions. In the second stage, the 

signal is enhanced by applying multi-resolution edge detection to the image. Initial 

segmentation is then acquired by threshold decomposition which utilizes several thresh-

olds in order to get the initial estimate. Then, morphological features of the cells are 

acquired from this initial estimate and used as a prior in the next step in which the seg-

mentation result is corrected by using a maximum likelihood strategy for splitting and 

merging the cells. The output of the algorithm is a classification map where the area 

occupied by each cell is marked with a different label. [46] 

 

Alignment of the images and the construction of lineages of the cells are then done via 

CellAging [47]. The alignment is needed since the fluorescence and the phase contrast 

images are acquired with different cameras with different resolution. The alignment 

procedure consists of a global and a local alignment stage. First, the global alignment is 

done using scaling and translation operations. The best combination of these is chosen 

by maximizing the total fluorescence under the masks of segmented cells. Then, the 

local alignment is performed since the phase contrast and fluorescence images may not 

be acquired exactly at the same time and the cells might have moved. Local alignment is 
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done by computing a local translation separately for each cluster of cells using cross-

correlation. [47] 

 

For time-series, lineages are constructed by establishing the relationship between the 

cells of consecutive frames. For this, the amount of overlap between the cells is used to 

associate the cells between frames. At this point, cell divisions are taken into account, 

namely, if one cell was associated with multiple cells in the next frame, a division is 

expected to have occurred [47]. This step, while performed automatically, is then veri-

fied by a human, to determine whether manual corrections are needed. 

As a result of cell segmentation and alignment, the aligned labels for the cells are ob-

tained as illustrated in Figure 16. With time-series, also lineage information is extracted, 

which allows us to track individual cells and their descendants over time. 

 

 

Figure 16: (a) Cropped phase-contrast image of the cells. (b) Aligned fluorescence im-

age with boundaries of the cells. 

4.4.2 Spot detection procedure 

The proposed algorithm can be divided into two main stages as depicted in Figure 17. 

First, candidate spots are searched globally using the Laplacian of Gaussian blob detec-

tor described in Section 3.2 and in [11], [12]. 

 

(a) (b) 
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Figure 17: Overview of the image analysis pipeline. 

Second, true spots are selected among the candidates using a locally adaptive threshold 

selection where the threshold is chosen based on the intensities of each individual cell. 

This allows us to utilize the local image characteristics but at the same time, candidates 

will have blob-like properties detected by the Laplacian of Gaussian detector. 

 

The global procedure starts with the construction of the scale-space. Prior to this opera-

tion and as a preprocessing step, the image is normalized to the interval [0,1]. Then, the 

image is filtered with the Laplacian of Gaussian filter with different standard deviations 

and sizes to obtain the different scales. We used 20 scales spaced between the minimum 

and the maximum scale. Minimum scale was set to 𝜎 = 2, corresponding roughly to a 

spot with radius three. The maximum scale of the spots was inferred from the cell seg-

mentation results: the mean minor axis length of cells divided by the factor 2 was used 

as the maximum radius of the blob and the appropriate scale was then calculated as in 

Equation (15). After filtering, only negative responses are taken since we are only inter-

ested in bright spots in dark background. The maximum negative response at the opti-

mal scale is achieved at the center of blob as depicted in Figure 13. 

After the construction of the scale-space, the local extrema is searched in 3x3x3 neigh-

borhood. This can be done efficiently utilizing mathematical morphology since with 

grayscale images the dilation operation corresponds to maximum filter [29]. The filtered 

image in each scale is dilated with 3x3 structuring element and then the maximum value 

for each pixel is searched between neighboring scales. If the value of a pixel at a certain 

scale is greater than all its neighbors the pixel is picked out and the location and the 

scale are stored. Finally, a low global threshold is applied to all detected pixels to get 

the initial candidates for the local thresholding procedure. Initial candidates after global 

thresholding are shown in Figure 18 in red color.  
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Figure 18: (a) Simulated fluorescence image with spot candidates (marked as red) after 

global thresholding. (b) Detected spots (green) after removal of false candidates via 

adaptive local threshold. 

It is worth to note that, usually, it is not necessary to tune the global threshold but it is 

enough to set it low enough to filter some of the candidates out. For example, for all our 

different datasets, this initial threshold was set to 0.002. 

 

After getting the initial candidates, cell segmentation result is used to filter out any fake 

candidates outside of the cells, i.e. all detections outside the masks of the segmented 

cells are removed. Moreover, since the location of the detected blob might not be exact-

ly the same than the location of the true center, there can be multiple responses to the 

same blob. If two candidate blobs with center coordinates and radii (𝑥1, 𝑦1, 𝑟1) and 

(𝑥2, 𝑦2, 𝑟2) are too close to each other as defined in 

 

√(𝑥2 − 𝑥1) + (𝑦2 − 𝑦1) < max(𝑟1, 𝑟2), (20) 

the smaller blob is removed as a fake candidate since we want to be sure that the whole 

spot is captured. 

 

Last, a local thresholding is applied to determine if the candidate blob is an actual ob-

ject. This threshold is adaptively calculated for each cell using the following procedure. 

The local threshold is determined from the cell intensities by assuming that the pixel 

intensities of the cell follow approximately a normal distribution. Before fitting the 

normal distribution, noise is reduced by filtering the cell intensities with Gaussian low-

pass filter with standard deviation 0.5. Then, the parameters of the normal distribution, 

(a) (b) 
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the mean µ̂ and the variance �̂�2, are estimated using the maximum likelihood estimation 

[48]. Briefly, the estimates can be expressed as: 

 

µ̂ =
1

𝑛
∑ 𝑥𝑗

𝑛

𝑗=1

�̂�2 =
1

𝑛
∑(𝑥𝑗 − µ̂)2

𝑛

𝑗=1

 (21) 

where xj is the jth pixel inside cell with total number of n pixels. 

 

After obtaining the maximum likelihood estimates, a threshold p is chosen based on the 

fitted distribution. The threshold is defined as a probability of mislabeling the candidate 

given the null hypothesis that it is a background pixel following the estimated Gaussian 

distribution. Figure 19 illustrates the fitting and the searching of the local threshold. Red 

line shows the fitted normal distribution and the green line shows the chosen threshold 

when p was set to 0.01. If the candidate blob intensity is above the intensity determined 

by the chosen threshold, it is accepted as a true spot. 

 

Figure 19: Probability density of the intensities inside the cell. Red solid line is the fit-

ted Gaussian distribution and the green line is the selected local threshold with p=0.01. 

Finally, the final binary classification output is constructed by setting the pixels at the 

locations of the accepted candidates to 1 and then utilizing morphological dilation with 

disk structure element. The radius of the disk is determined by the scale in which the 

blob was detected. 
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5. RESULTS & DISCUSSION 

The performance of the proposed algorithm was evaluated on both synthetic (for whom 

ground truth is known) and real image data. The results were compared with 9 unsuper-

vised techniques, described briefly in Sections 3.1 and 3.2 and in detail in [7], [8], [12], 

[35], and 1 supervised spot detection technique [13]. The implementations of unsuper-

vised techniques presented in [8] are available at http://www.cs.tut.fi/sgn/csb/subcell/. 

We also included one recent technique, ATLAS, proposed in [10] and publicly available 

for use at their website: http://serpico.rennes.inria.fr/doku.php?id=software:atlas:atlas.   

 

The best parameters in terms of evaluation metrics (f*, TPR at FPR*=0.01) were 

searched by a grid-search for each algorithm and for each dataset, similarly to [8]. The 

found parameters for the different datasets are listed in Appendix 1. Detailed explana-

tion about the parameters can be found in [8]. We note that for objective comparison, 

the cell segmentation results were also used for these algorithms to filter out all false 

positives outside the cells similarly to the proposed method.  

5.1 Evaluation on Synthetic Image Data 

Synthetic images provide an objective approach for validation since the procedure is 

easily repeatable and does not rely on the expert biologist manually annotating the im-

ages. Also, the parameters are easily tunable allowing experiments with, e.g., specific 

noise levels and background models. To evaluate the detectors objectively, we used two 

different sets of simulated images. First, simulated E. coli images with non-uniform 

background were generated where the CCD noise was set to 0.005 to simulate the low 

signal-to-noise ratio peculiar to real-life images (Figure 20). Second, we demonstrated 

applicability of our algorithm to other types of cells as well. For that, we used an inde-

pendent dataset provided in [45]. 
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5.1.1 Results for simulated Escherichia coli images 

The first data set consisted of 5 images with 200 cells in each. The number of subcellu-

lar objects inside a cell was set to 1, so the total number of spots to be detected in the 

whole set was 1000. Performance of the detectors was evaluated by the best reachable 

F-score (f*) and TPR at FPR*=0.01. Also, the precision and recall of the detectors in 

which the f* was achieved are shown (Table 2). 

Table 2: Performance of the detectors. 

Method p r f* TPR at FPR* = 0.01 

Proposed method 0,977 0,976 0,976 0,962 

MED 0,945 0,965 0,955 0,860 

HD 0,939 0,877 0,907 0,684 

KDE 0,895 0,952 0,922 0,806 

LC 0,866 0,861 0,864 0,579 

LEF 0,809 0,731 0,768 0,479 

LoG 0,865 0,849 0,857 0,702 

MW 0,929 0,800 0,860 0,735 

SE 0,929 0,887 0,907 0,730 

THE 0,863 0,938 0,899 0,773 

ATLAS - - - - 

 

The proposed method shows superior performance in terms of f* and TPR at 

FPR*=0.01. Next, MED and KDE methods were the most satisfactory, reaching high f* 

over 0.9 and TPR>0.8 with FPR*=0.01. While almost all algorithms achieve reasonable 

Figure 20: Example image of the simulated Escherichia coli dataset (a) and a close-up 

image (b). 

(a) (b) 
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f* over 0.85 (except LEF), ATLAS failed to detect the subcellular components. This 

might be due to the fact that it automatically tries to select one optimal scale for the 

spots, instead of finding a scale for each pixel individually. Due to the noisy spots and 

small size of the bacteria, the scale chosen was the level of cells which prohibited the 

detection of subcellular components. 

 

Although the top three detectors were able to achieve similar F-score, there is lot more 

variation when low FPR* is required. Only the proposed method, MED and KDE were 

able to achieve TPR over 0.8. Moreover, the proposed method was the only method to 

achieve TPR over 0.9 with FPR* = 0.01, with increase of over 11% compared to second 

best result. This illustrates the main advantage of the method; it is able to achieve high 

TPR with a small number of false positives. Note that the improvement from the tradi-

tional LoG detector (without the local detection step) is approximately 13% in terms of 

f* and 37% in terms of TPR at FPR*=0.01, which shows the problems that global 

thresholding can cause when studying varying and/or noisy environments. 

 

To further demonstrate the sensitivity of the three best performing methods to parameter 

changes, we varied the parameters of the detectors and studied their influence on TPR 

and FPR*. We also included traditional LoG detector to show the power of the addi-

tional local detection procedure. The resulting FROC-curves are shown in Figure 21. 

 

Figure 21: FROC-curves of the three best performing methods and traditional LoG 

detector with simulated E. coli dataset. False positive rate of 0.01 is marked with the 

vertical black dashed line. 



37 

Figure 21 shows that the proposed method is the best performing detector overall. It 

also appears to be very robust to parameter changes since the TPR only decreased 4% 

when FPR* decreased from 0.25 to 0.01. Meanwhile, MED, KDE and LoG seem to be 

more sensitive to parameter changes (TPR decreased approximately 14%, 16% and 29% 

within the same range, respectively). MED method, which uses the cell intensities and 

local thresholding as described in Section 3.1.2, is able to achieve decent performance 

while KDE and especially the traditional LoG detector seem to have more problems 

with their global thresholding. Notably, the proposed method is the only method able to 

achieve TPR over 0.9 within the whole FPR* range. 

5.1.2 Results for ‘Subcell’ dataset 

Recently, it was reported that the supervised method LR-MRF [13] outperformed all the 

11 unsupervised methods described in [8] (and mostly used in this thesis as well) on the 

dataset named Subcell [45]. This dataset consists of 20 low quality synthetic images 

containing cells with nuclei and subcellular objects. One example image of the dataset, 

which is available at http:\\www.cs.tut.fi\sgn\csb\simcep\benchmark\subcell_low.zip, is 

shown in Figure 22. The dataset utilizes multichannel representation, i.e. cytoplasms are 

labeled with red, nuclei are labeled with blue and, subcellular objects are labeled with 

green. Several sources of errors are present, such as nonuniform illumination, blurring, 

detector noise and intensity variations in cell texture. Detailed parameters are presented 

in [45]. Before the analysis, the standard conversion of 0.2989 * R + 0.5870 * G + 

0.1140 * B was used to convert the images to grayscale. 

 

Figure 22: Example image of the low quality Subcell dataset. Spots are shown in yel-

low, cytoplasm of the cell is shown in red and nuclei are shown in purple. 
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Since the cell segmentation procedure described in the Section 4.4.1 is currently only 

for rod-like bacteria, the labels for the cells were obtained with following procedure. 

First, background was removed using a median filter of size 50x50. Then, the Otsu´s 

method was applied to find the optimal threshold automatically and the threshold was 

applied as described in Section 3.1.3. Finally, small objects with less than 10 pixels 

were removed and the morphological closing operation [29] was used to fill any holes 

in the detected cells. With this amount of overlapping, automated separation of the cells 

is almost impossible so we used simply the whole detected segment as a local neighbor-

hood. With more accurate cell segmentation, we hypothesize that the result would be 

even higher. As in [8], [13], the best reachable F-score was searched in order to com-

pare between the methods. Note that TPR at FPR*=0.01 was not calculated since it was 

not reported in the original article [13] where the LR-MRF was presented. The results of 

these three algorithms are shown in Table 3.  

Table 3: Comparison with LR-MRF and ATLAS on the low quality Subcell dataset. 

Method p r f* 

Proposed method 0,957 0,858 0,905 

LR-MRF 0,876 0,858 0,867 

ATLAS 0,881 0,635 0,734 

The results demonstrate that our method achieves the best f*, outperforming ATLAS 

[10], the supervised method LR-MRF [13] and therefore all the 11 unsupervised meth-

ods presented in [8]. The increase in f* compared to LR-MRF is 4.4%. As seen from the 

recall and precision values, the precision of the proposed method is well above the oth-

ers indicating that the algorithm rarely does a wrong decision in classification. Notably, 

this result demonstrates, although the proposed method was designed for E. coli, that it 

is easily applicable to other cell types as well.  

5.2 Evaluation on Empirical Image Data 

Next, we tested the algorithms with empirical image data in order to validate the per-

formance in real environments. We acquired two different datasets using the procedure 

described in Section 4.2. Both sets consist of images of E. coli but with different pro-

teins. The first set uses MS2-GFP protein which can be used to measure e.g. RNA pro-

duction in bacteria [1]. The second set uses a fast maturating YFP variant, Venus, fused 

with membrane protein Tsr [2], which can be used e.g. to study translation in single 

cells. These sets have very different image characteristics, for example, MS2-GFP im-

ages have high dynamic range, i.e. the difference between the smallest and highest value 

is large and the intensity of spots to be detected can vary widely even with a single cell. 

On the other hand, low signal-to-noise ratio is peculiar to Tsr-Venus images, requiring a 

good performance from algorithms also when there is a high amount of noise present.  
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With real images, the ground truth is not available, unlike synthetic images. Therefore, 

the spots of interest have been manually marked by an expert and these labels then 

served as ground truth in the validation. 

5.2.1 MS2-GFP dataset 

The first set consists of 8 images of E. coli cells with MS2-GFP proteins tagged to RNA 

molecules (identified by the marked labels), and is illustrated in Figure 23. The total 

number of cells in the set was 180 and the total number of spots to be detected was 76. 

 

Figure 23: Example image of the MS2-GFP dataset. Spots are labeled with green cir-

cles. 

The best reachable F-score and TPR at FPR*=0.01 for each algorithm were searched 

and the results are reported in Table 4 together with the precision and recall values. 

From the data, we can observe that several algorithms including the proposed method, 

KDE, LC, LEF and SE behave decently regarding their F-score (over 0.85). According 

to the precision and recall values, some of the algorithms were able to achieve very sim-

ilar (LC, LEF) or even higher (THE) recall value but at the cost of weaker precision. 

Notably, if the algorithms are allowed to have only small numbers of false positives, the 

performance of the algorithms decreases quickly. Only two detectors are able to achieve 

a TPR over 0.80 and the proposed method is the only one achieving a TPR over 0.85. 

The increase from the second best algorithm, LC with value 0.816, is over 6%. The tra-

ditional LoG detector works decently in terms of f* but its TPR is quickly decreased 

when FPR*=0.01. This is most likely due to the global thresholding of the algorithm; it 

fails to detect spots from images which have high dynamic range. 
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Table 4: Performance of the detectors with MS2-GFP data 

Method p r f* TPR at FPR* = 0.01 

Proposed method 0,910 0,934 0,922 0,868 

MDE 0,838 0,810 0,827 0,513 

HD 0,812 0,737 0,772 0,434 

KDE 0,887 0,829 0,857 0,539 

LC 0,897 0,921 0,909 0,816 

LEF 0,816 0,934 0,871 0,658 

LoG 0,833 0,789 0,811 0,500 

MW 0,865 0,842 0,853 0,684 

SE 0,889 0,842 0,865 0,645 

THE 0,605 0,987 0,750 0,237 

ATLAS - - - - 

 

All in all, the proposed algorithm outperformed all the other methods with both evalua-

tion metrics. Note that ATLAS did not manage to segment any of the spots due the 

problems with automatic scale selection, similarly to what occurred when applied to the 

simulated E. coli data. 

 

We also plotted the FROC-curves for the three best performing methods in order to 

evaluate the effect of parameter changes on TPR and FPR*. The curves are shown in 

Figure 24. As observed from the figure, proposed method together with LC performed 

reasonably well. The best overall performance was achieved by the proposed method 

showing that it is robust to parameter changes (TPR decreased only 9% when FPR* 

decreased from 0.25 to 0.01, whereas the decrease was approximately 12%, 31% and 

40% in case of LC, LEF and LoG, respectively. Especially, LEF and LoG performed 

notably worse with low FPR*. 
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Figure 24: FROC-curves of the three best performing methods and the traditional LoG 

detector with MS2-GFP dataset. False positive rate of 0.01 is marked with the black 

dashed line. 

5.2.2 Tsr-Venus dataset 

Next, we used the Tsr-Venus protein dataset, whose images are often characterized by 

noisy background and low signal-to-noise ratio. The set consists of 13 images contain-

ing a total of 177 cells and 145 spots. One example image of this dataset is shown in 

Figure 25, together with labels of the spots.  

 

Figure 25: Example image of Tsr-Venus dataset. Spots are labeled with green circles. 
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Note that the labeling of the spots was done from the time-series and the visual compar-

ison between neighboring frames was used as a means to decide if the object was pre-

sent.  

 

Similarly to previous analysis, the maximum F-score* and TPR at FPR*=0.01 were 

measured together with the precision and recall values. The results are shown in Table 

5. 

Table 5: Performance of the detectors with Tsr-Venus data 

Method p r f* TPR at FPR* = 0.01 

Proposed method 0,950 0,924 0,937 0,835 

MDE 0,710 0,862 0,779 0,466 

HD 0,567 0,931 0,705 0,386 

KDE 0,729 0,855 0,787 0,138 

LC 0,949 0,897 0,922 0,522 

LEF 0,920 0,559 0,695 0,269 

LoG 0,886 0,910 0,898 0,745 

MW 0,709 0,807 0,755 0,366 

SE 0,914 0,662 0,768 0,331 

THE 0,842 0,959 0,897 0,655 

ATLAS - - - - 

 

Again, the proposed method outperformed all the other methods in terms of best 

achievable F-score* and TPR at FPR*=0.01. Some of the methods, namely, LC, SE, 

LoG and THE have a reasonable f* but the performance decreased quite rapidly when 

low false positive rate was required. This is most likely due to the characteristic noisy 

background of Tsr-Venus images, which usually hampers the detection of spots with 

high precision. The proposed detector was the only method having both precision and 

recall over 0.9 showing again superior performance. Some of the methods had better 

recall value but at the cost of decreased precision. Only the proposed algorithm was able 

to achieve TPR > 0.8 being over 12% better than the second best performing algorithm 

which is interestingly the traditional LoG detector in this case. This shows the ad-

vantage of LoG-detector, it was able to reduce the noise efficiently while still preserving 

the spots. Also, the global thresholding was now more satisfactory since the images did 

not have as large contrast variations than in MS2-GFP case. 

 

The FROC curves were calculated for the three best performing algorithms and for the 

traditional LoG detector as in above. The curves are shown in Figure 26. We can ob-

serve that when FPR* is over 0.1, all detectors work reasonably well achieving TPR 

over 0.9.  However, the performance of algorithms with FPR < 0.1 is more important 

since the false positives can bias the results by including false spots to data. When con-
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sidering the FPR in range 0-0.1, the proposed method outperforms the other methods. It 

is also the only method able to achieve TPR over 0.8 at FPR*=0.01 level. Also, the de-

crease in TPR is only ~14% within FPR* range 0.01-0.25 when the corresponding val-

ues for LC, THE and LoG are roughly 43%, 34% and 22% showing that the proposed 

method is the most robust method to parameter changes.  

 

Figure 26: FROC-curves of the three best performing methods and the traditional LoG-

detector with Tsr-Venus dataset. False positive rate of 0.01 is marked with the black 

dashed line. 

All in all, the evaluation on the empirical image data demonstrates the power of the pro-

posed method. It was able to achieve good performance with both MS2-GFP and Tsr-

Venus data, especially when low FPR* was required. It showed superior performance 

and lowest sensitivity to all image data (simulated E. coli, Subcell dataset, MS2-GFP 

and Tsr-Venus). Among the best performing methods, it also showed the lowest sensi-

tivity to parameter changes. Apart from the proposed detector, not a single method was 

able to reach good performance with all datasets. In fact, LC is the only method which 

is in the top three with both MS2-GFP and Tsr-Venus datasets together with proposed 

algorithm. However, it seems that the performance of the LC detector is still very sensi-

tive to image data, as shown with simulated E. coli and Subcell [8] datasets. Notably, 

the MED detector which uses cell intensities as a prior for finding the local threshold 

was not able to achieve good results with the empirical image data when the low num-

ber of false positives was required. This further demonstrates the power of the proposed 

detector; the global blob detection procedure ensures that the candidates have blob-like 

features, while the local threshold is then able to cope with varying backgrounds and 

textures. 



44 

6. CONCLUSION 

Escherichia coli has an important role as a model organism in molecular biology since 

it is well studied bacterium with a great number of potential applications, varying from 

studies of gene expression to synthetic genetic circuits. In these, the detection of subcel-

lular particles has recently become one of the first ‘standard’ steps during the analysis 

and, therefore, the performance of image analysis algorithms in detection of objects is 

crucial, since it determines the success of following steps. Since the studies are often 

conducted with live cells, illumination intensity and exposure time is usually minimized 

to prevent photobleaching and photodamage to the cells resulting in low SNR images. 

The goal of this thesis was to develop a novel spot detection able to perform well with 

such low SNR images. 

 

There are multiple algorithms proposed for detecting the subcellular objects in fluores-

cent images [7], [8]. As shown in [7], the difference in performance of the algorithms 

becomes negligible when SNR is sufficiently high. However, when SNR is low, the 

performance of the algorithms quickly decreases and the sensitivity to different types of 

data increases. Therefore, the subsequent analysis might be biased by too many false 

particles or by not detecting enough particles biasing the analysis towards more clearly 

distinguishable objects. 

 

To overcome this, we have proposed a novel spot detection method for fluorescently 

labeled particles in E. coli which achieves a good performance with the low SNR imag-

es. It combines a Laplacian of Gaussian blob detector together with an adaptive local 

thresholding in order to get a better estimate for the threshold. In the first stage, a scale-

space is constructed by filtering the image with the Laplacian of Gaussian kernel at dif-

ferent scales and a right scale for each particle is found via an automatic scale-selection 

procedure as in [11], [12]. Then, a low global threshold is applied to acquire the spot 

candidates. In the second stage, a local thresholding procedure is applied to the spot 

candidates based on the local cell characteristics allowing more accurate selection of the 

threshold. This is the major advantage of the method: the local thresholding procedure 

is only applied on the blob-like candidates detected by the LoG-detector. 

 

We evaluated the proposed method by using both synthetic and empirical images. The 

algorithm was compared to previous methods [8], [13], [10] in order to validate the per-

formance objectively. The results indicate that the proposed detector outperforms previ-

ous methods with both synthetic and empirical images, showing the robustness of the 

algorithm to different types of data. Furthermore, we have shown that the method is also 
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robust to parameter changes; the level of TPR remains high even when only low num-

ber of false positives is allowed. Thus, the method is very suitable for situations where 

low FPR is required. In addition, we also tested the algorithm with the low quality Sub-

cell dataset [41], [42], which consists of round cells with cytoplasm, nuclei and subcel-

lular objects. Again, the propose method outperformed the others, indicating its ap-

plicability to cells with a morphology that differs widely from that of E. coli. 

 

In the future, the scope of applicability of the proposed method could be further ex-

panded by generalizing the concept of local neighborhood, which would allow spot de-

tection in situations where cell segmentation information is not available. However, we 

note that this is not a typical scenario in single-cell studies. Also, depending on applica-

tion, the background model could be modified based on the prior information on the 

cells’ properties. This would allow more accurate models, thus improving the detection 

accuracy even further. With time-series data, the method could be also further improved 

by utilizing information from adjacent frames. 
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APPENDIX 1: PARAMETER LISTS 

Table A1: Parameter list for simulated E. coli dataset. Detailed explanation for the 

parameters of the previous methods can be found in [8]. 

Method Parameter 
Parameter value 

(for f*) 

Parameter value 

(for TPR at 

FPR*=0.01) 

Proposed method 
th_local 

th_global 

0.07 

0.002 (fixed) 

0.06 

0.002 (fixed) 

LoG th 0.006 0.0085 

MED th 0.02 0.005 

HD 

s 

h 

nb_size 

radius 

win_size 

σM 

5 

0.3 

7 

3 

15 

5 

5 

0.4 

7 

3 

15 

5 

KDE 
R 

h 

14 

0.06 

13 

0.1 

LC 
R 

α 

7 

0.87 

5 

0.88 

LEF ths 2.5 

 
3.29 

MW 
J 

ld 

3 

650 

3 

380 

SE 

block_size 

thBG 

thdetect 

25 

0.2 

1.8 

25 

0.26 

1.85 

THE 

r 

σ (Gaussian 

filter) 

5 

1.4 

5 

0.8 

ATLAS - - - 
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Table A2: Parameter list for MS2-GFP dataset. Detailed explanation for the parame-

ters of the previous methods can be found in [8]. 

Method Parameter 
Parameter value 

(for f*) 

Parameter value 

(for TPR at 

FPR*=0.01) 

Proposed method 
th_local 

th_global 

0.002 

0.002 (fixed) 

0.001 

0.002 (fixed) 

LoG th 0.01 0.02 

MED th 

 

0.005 

 

0.001 

 

HD 

s 

h 

nb_size 

radius 

win_size 

σM 

7 

0.35 

7 

3 

8 

5 

7 

0.5 

12 

3 

10 

5 

KDE 
R 

h 

10 

0.08 

10 

0.14 

LC 
R 

α 

8 

0.8 

5 

0.76 

LEF ths 1.7 

 
2.5 

MW 
J 

ld 

3 

430 

3 

1900 

SE 

block_size 

thBG 

thdetect 

32 

0.5 

1.5 

32 

0.6 

1.5 

THE 

r 

σ (Gaussian 

filter) 

3 

1.25 

2 

0.5 

ATLAS - - - 
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Table A3: Parameter list for Tsr-Venus dataset. Detailed explanation for the parame-

ters of the previous methods can be found in [8]. 

Method Parameter 
Parameter value 

(for f*) 

Parameter value 

(for TPR at 

FPR*=0.01) 

Proposed method 
th_local 

th_global 

0.02 

0.002 (fixed) 

0.008 

0.002 (fixed) 

LoG th 0.004 0.008 

MED th 0.01 0.0001 

HD 

s 

h 

nb_size 

radius 

win_size 

σM 

7 

0.2 

7 

3 

8 

5 

7 

0.5 

9 

3 

10 

5 

KDE 
R 

h 

8 

0.04 

4 

0.15 

LC 
R 

α 

8 

0.9 

5 

0.9 

LEF ths 2.1 3.1 

MW 
J 

ld 

3 

350 

3 

2060 

SE 

block_size 

thBG 

thdetect 

25 

0.3 

0.8 

32 

0.6 

0.3 

THE 

r 

σ (Gaussian 

filter) 

4 

1.4 

4 

0.6 

ATLAS - - - 

 

Table A4: Parameter list for low quality Subcell dataset. Parameter descriptions for 

ATLAS can be found in [10]. 

Method Parameter 
Parameter 

value (for f*) 

Proposed method 
th_local 

th_global 

0.12 

0.002 (fixed) 

ATLAS 
th 

win_size 

0.006 

15 

 


