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Datan yhdistäminen useasta lähteestä, jotka eivat ole täysin luotettuja tuo haasteita

datan automaattiseen prosessointiin. Tiedon esittäminen luonnollisella kielellä han-

kaloittaa entisestään laskentaa. Semanttisessa webissä monet henkilökohtaiset agen-

tit joutuvat selviämään monenlaisesta tiedon epävarmuudesta. Kirjallisuudessa on

kaksi päälähestymistapaa tiedon epävarmuuden mallintamiseen - sumeat ja proba-

bilistiset. Nämä lähestymistavat mallintavat semanttisesti erityyppisiä epävarmuu-

den lajeja. Tämä diplomityö keskittyy lähestymistapoihin, jotka yhdistävät sekä

sumeaa että probabilistista päättelyä yksissä puitteissa, jotta automaattiset agentit

voisivat selviytyä molemmista epävarmuuden lajeista.
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Combining data from many di�erent sources or from sources that are not entirely

trusted brings challenges to the automated processing of such data. Knowledge

presented in natural language is another challenge for computing. In the semantic

web, many applications such as personal agents need to be able to manage multiple

kinds of uncertainty. There are two main approaches to modeling uncertainty in the

literature - fuzzy and probabilistic. These approaches model semantically di�erent

types of uncertainty. This paper focuses on approaches that combine both fuzzy and

probabilistic reasoning in one framework to provide automated agents the capability

to deal with both types of uncertainty.
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1. INTRODUCTION

The World Wide Web has had an enormous impact on the way people communicate

and how businesses operate. It is the driving force behind the transformation into

information society. The Web, and especially the recent explosion of handheld

devices capable of browsing the Web, has changed the way we perceive computing.

Prior to the widespread use of the Web, computing was mainly numerical processing,

database systems, text processing etc. Now computing is becoming a gateway to

information highways.

The Semantic Web is a natural evolution of the Web. The vision is that most if

not all of the functions Web users do manually could and should be automated. If

one wants to �nd information on a speci�c topic, the usual process involves typing

in keywords into a keyword-based search engine and manually sorting through the

pages retrieved. People have become so accustomed to keyword searches and the

engines are very good at �nding relevant documents that this is a very e�ective way

of �nding information, to the point that it might be faster to search the web than

walk across the room to read the same information from a book.

But imagine if the user could simply ask an automated personal agent the query

in a natural language. The agent would then �nd and select relevant pieces of

information, intelligently combine them and perform necessary reasoning to answer

the question, and answer in a natural language. This need not be limited to queries.

An agent could, for example, book a hotel room by querying the user for preferences,

then negotiate with multiple service provider agents for the best deal, and make a

reservation after con�rming the result with the user. All in a matter of seconds.

This is the part of the Semantic Web vision most visible to consumers.

But that is not all, it is in fact businesses that stand as much to gain from the Se-

mantic Web. Building supply chains is a demanding process which requires a lot of

cooperation and integration. It is therefore expensive. In a world of Semantic Web,

businesses could negotiate trade deals, partnership contracts, deliveries etc. auto-

matically or semi-automatically without any prior contact. This drastically reduces

overhead of large supply chains and enables them to react to changes rapidly. If

one supplier fails to deliver for whatever reason, an automated agent could instantly

negotiate a replacement supply.

The nature of the Web is open - anyone can access and provide most information.
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This raises questions about the trustworthiness of information. As an example,

Wikipedia the free encyclopedia, due to its openness, has regular "edit wars" over

controversial topics. Typically politically or religiously motivated editors edit facts

to better suit their viewpoint and counterarguers roll back the edits. Uncertainty

regarding information need not be intentional either. There are many situations

where terminology in one �eld is confusing to someone from another �eld.

Semantic agents would need to be able to resolve or manage any uncertainty

about the data they encounter in order to be fully automated. Current Semantic

Web standard technologies o�er little for managing uncertainty. As a result, several

groups have developed di�erent approaches to dealing with uncertainty in the Se-

mantic Web. The most prominent ones are probabilistic, typically Bayesian network

based, and fuzzy logic and set theory based approaches. They each have developed

tools and reasoners for describing uncertainty in a speci�c way. Other approaches

such as those based on Dempster-Shafer belief theory or Rough Sets exist, but are

outside the scope of this thesis.

In a real world situation, an agent might encounter several sources of semanti-

cally di�erent uncertainty. A query in a natural language could be vague. If relevant

information is expressed in natural language, as most information on the Web cur-

rently is, it could also be vague. If, for example, the natural language system is

a speech recognition interface, all kinds of noise or di�cult accent could result in

uncertainty. The data retrieved might be incomplete or false.

The purpose of this work is to look at methods found in the literature for dealing

with multiple kinds of uncertainty. More speci�cally, to look at two of the most

common methodologies for representing uncertainty - fuzzy logic and probabilistic

methods - and present ways they have been combined in the literature for dealing

with uncertainty.

Chapter 2 discusses the semantic web, how semantic technologies could bene-

�t users and businesses and some relevant languages and technologies. Chapter 3

discusses di�erent types of uncertainty. In chapter 4, some common approaches

to dealing with speci�c kinds of uncertainty are presented. Chapter 5 discusses

methods that combine multiple di�erent kinds of uncertainty in an application, and

presents a hotel booking agent example.
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2. THE SEMANTIC WEB

The original World Wide Web was visioned as a global repository of documents,

with easy access from anywhere. The documents were intended to be written by

humans, for humans. In a world where new information is produced at an ever

increasing rate, automated processing of data becomes necessary. The Semantic

Web is visioned as an extension to the World Wide Web that enables machines

to not only retrieve and process the documents, but to capture the semantics of

the information contained in the documents. [1] This allows machines to perform

much more advanced processing tasks like logical reasoning and answering complex

queries like "What is the distance between the capitals of Finland and Sweden?".

Simple keyword based search engines might return pages related to Helsinki and

Stockholm, but do not understand the actual question. A semantic query system

could, in principle, infer the capital cities to mean Helsinki and Stockholm, take

their related geolocation data, calculate the distance and answer in kilometers. [2]

Most information found on the Web is in a form that is di�erent to non-web doc-

uments like company reports [2]. The text on the web is typically shorter, possibly

comprising of single words or short phrases. Moreover, the positioning of the text

is usually important, so an automatic parser would need to take HTML layout into

consideration to fully understand the semantics. Because of this, most traditional

natural language (NL) methods are poorly suited for the Web. The solution o�ered

by the Semantic Web is to explicitly store the semantics in machine processable

form. [2; 3]

Another way of looking at the Semantic Web is as a database. With linked data

and the idea of sharing data and it's semantics, one might view the Semantic Web

as a large distributed database run by many independent parties. Software agents

can query this database for information they need and interact with other agents,

thus contributing data to the system themselves. This has always been one of the

primary goals of the Semantic Web vision, enabling the wealth of information stored

in the web to be machine processable [1]. There are challenges to this task similar

to those faced by researches of databases. When and where should reasoning be

handled, for example? When an agent needs information, it has to perform queries,

some of which might be expensive. In order for the system to scale properly for the

web, the implementation needs to be e�cient. [2; 3]



2. The Semantic Web 4

The Semantic Web vision presented in [1] describes a web where software agents

perform most tasks humans need to do manually in the classical web. They do

tasks such as searching for prices, reviews and availability of products, or supplying

a keyword based search engine with relevant terms and sorting through the given

documents to �nd a piece of information. All such tasks could be automated if

the semantics of information was available for machine processing. Software agents

can be seen as the most important application of semantic web from the users

perspective. [1; 2; 3]

Still, most present day semantic technologies are driven by business to busi-

ness data exchange needs [3]. Traditionally, Electronic Data Interchange (EDI) ap-

proaches are used to exchange information. They need experts to program and main-

tain each individual connection and are thus costly. The Semantic Web promises

fast, automated exchange negotiation of common terminology and thus lowering the

overhead and manual labor associated with business to business commerce. Negoti-

ations, partnership contracts etc. can be carried out automatically or semiautomat-

ically as the need arises. [3]

2.1 Ontology

To accomplish the task of representing semantics of information in machine pro-

cessable form, the Semantic Web relies on ontologies. The term originates from

philosophy, used in metaphysics concerned with identifying things that exist and

describing them. The ontologies in the Semantic Web are documents that describe

a domain. Typically they are �nite lists of terms that describe concepts in the

domain and the relationships between the concepts.

Ontologies can serve as mere vocabularies describing concepts and their relation-

ships in a domain. They may be used to map concepts from di�erent sources to

give them a formal semantics. For example, a bookstore might get data from one

publisher in a form where the author of a book is "author" and "creator" from

another publisher. An ontology could describe the relationship of these concepts as

equivalent.

Ontologies can also contain information about individuals - data in general terms.

For example 'person' might be a concept in an ontology, and 'father(A,B)' might

be a property relating individual persons A and B as father and child. Concepts in

ontologies typically form concept hierarchies, e.g. 'penguin' might be a subclass of

'bird', which in turn could be subclass of 'vertebrate'. [2] This subclass relationship

borrows terminology from object oriented programming. In logics terminology it is

a subsumption or a subset relationship [4].

Other forms of information in ontologies may include properties (father(A,B),

value restrictions (only a person may be a father), disjointness statements (father
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and mother are disjoint) or logical relationships between concepts (a father must

have at least one child). [3]

2.2 Layered stack of technologies

The development of the Semantic Web proceeds in steps, each building a layer on

top of the previous one. The aim is to establish a layered stack of technologies

akin to an OSI type model. The rationale behind this approach is that it is easier

to form de facto standards, such as the hypertext markup language HTML is for

the classical web, in small steps. Overview of the stack is presented in �gure 2.1.

Uniform resource identi�er (URI) layer is the only part of the stack that is universally

used in the classical web in the form of uniform resource locators URLs. Unicode

and XML (XHTML, for example) are supported nearly universally in the web, but

are not the only technologies. The Semantic Web would use these in a similar way

to the current web, URIs to identify resources, Unicode as character encoding and

XML to give structure to markup. [2; 3; 4]

Figure 2.1: Semantic Web layers [2].

2.2.1 RDF

On the RDF layer the semantic web parts from the current web. Resource de-

scription framework RDF is a basic data model with XML-based syntax [3]. RDF
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consists of resources, properties and statements. Resources are objects the state-

ment is describing, and they each have a unique URI. Properties are a special kind of

resource that describes relations between resources. As properties are also resources,

they too have URIs. Statements store the information on properties of resources.

They consist of a resource, property and a value, which can be either a resource or

a literal (e.g. integer, string). [3] Here is an example of a simple RDF document

with just one statement:

<? xmlvers ion=" 1 .0 " encoding="UTF−8"?>
<rdf:RDF

xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns:example=" ht tp : //www. example . org /ex−rdf−ns">

<rd f :D e s c r i p t i o n rd f : abou t=" ht tp : // tut . f i ">

<example:owned−by r d f : r e s o u r c e="#TUT" />

</ rd f :D e s c r i p t i o n>

<rdf:RDF>

In the example, URL is used to point to the domain tut.�, it has the property

owned-by and the object is a URI #TUT. One interesting property of RDF is rei�-

cation, that is, it allows statements about statements [3]. This allows for statements

such as "the Finnish Communications Regulatory Authority FICORA authorizes

TUT to own tut.� domain".

2.2.2 RDFS

RDF does not make any assumptions about any application domain nor does it de-

�ne any semantics. For this, there is RDF schema (RDFS) [3]. To de�ne semantics,

RDFS separates classes, individuals and properties. A class is a collection of ele-

ments. Individual objects which belong to a class are instances of the class. RDFS

enables construction of class and property hierarchies by de�ning rdfs:subClassOf

and rdfs:subPropertyOf properties. It also introduces rdfs:domain and rdfs:range to

restrict the subject and object of a property to speci�c resources.

<? xmlvers ion=" 1 .0 " encoding="UTF−8"?>
<rdf:RDF

xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#">

<rd f s : C l a s s rd f : ID=" organ i z a t i on "/>
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<r d f s : C l a s s rd f : ID=" un i v e r s i t y ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#organ i z a t i on "/>

</ r d f s : C l a s s>

<rd f :C l a s s rd f : ID=" student "/>

<rd f :P rope r ty rd f : ID=" stud ie sAt ">

<rdfs :domain r d f : r e s o u r c e="#student "/>

<rd f s : r a n g e r d f : r e s o u r c e="#un i v e r s i t y "/>

</ rd f s :P r ope r t y>

<rdf:RDF>

2.2.3 SPARQL

RDF triplestores are an e�ective way to store data. A database needs a query

language and as RDF is at a higher level of abstraction than XML, using XML based

query methods like XPath leads to problems. SPARQL is the query language for

RDF. It uses a structure similar to the Structured Query Language SQL: SELECT

speci�es the projection, what data to retrieve; optional FROM speci�es the source;

WHERE imposes constraints on the query. [3] A simple example of a SPARQL

query could be:

SELECT ?x ?y

WHERE

{

?x stud ie sAt ?y

}

2.2.4 OWL

The expressivity of RDF and RDFS is still fairly limited. RDF is roughly limited

to binary ground predicates and RDFS is limited to class and property hierarchies

and domain and range constraints. This led to research into more expressive ontol-

ogy languages. The most important feature required by the semantic web but not

provided by RDFS is support for reasoning. The Web Ontology Language OWL

was designed to allow for reasoning tasks such as consistency checking, equivalence

checking and classi�cation. [3]

Reasoning brings new challenges to the design of ontology languages, however.

Certain RDFS features such as rdfs:Class, the class of all classes, and rdf:Property,
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the class of all properties allow very expressive statements that would lead to un-

controllable complexity [3]. Rei�cation is another feature that poses problems for

e�cient implementation [2]. For this reason, the decidable dialects of OWL are not

compatible with all RDF and RDFS statements like they should in a well behaved

layer model. This breaks the layering - an agent using a decidable variant of OWL

cannot use all lower layer information. This seems to be a fundamental problem

with trying to layer decidable logic on top of RDF in OSI model style [2].

The �rst version of OWL has three sublanguages, OWL Full, OWL DL and OWL

Lite. OWL Full does not pose any restrictions on the use of OWL primitives, in-

cluding changing the meaning of OWL or RDF language primitives. This means

OWL Full is fully compatible with RDF and RDFS, but this also means it is unde-

cidable - no complete or e�cient reasoning is possible. OWL DL was designed as a

sublanguage of OWL Full that is as expressive as possible but decidable. It imposes

restrictions on OWL and RDF constructors, essentially disallowing application of

language constructors on each other. OWL Lite is an even more restricted subset of

OWL Full and DL. The reasoning behind OWL Lite is that many powerful features

in OWL are actually unnecessary in practice [3]. It should be noted that every

OWL Lite ontology is a legal OWL DL ontology, and every OWL DL ontology is a

legal OWL Full ontology. [2; 3; 4] The following OWL DL example highlights some

features added by OWL compared to RDFS. Disjointness of assistant and professor,

inverse property (teaches vs isTaughtBy) and property restriction (a course must

have at least one isTaughtBy property):

<? xmlvers ion=" 1 .0 " encoding="UTF−8"?>
<rdf:RDF

xmlns:owl=" ht tp : //www.w3 . org /2002/07/ owl#"

xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#"

xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema#">

<owl:Ontology rd f : abou t="">

<owl :C la s s rd f : ID=" course "/>

<owl :C la s s rd f : ID="staffMember"/>

<owl :C la s s rd f : ID=" p r o f e s s o r ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#person "/>

</ owl :C la s s>
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<owl :C la s s rd f : ID=" a s s i s t a n t ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#person "/>

<owl :d i s j o i n tWi th r d f : r e s o u r c e="#p r o f e s s o r "/>

</ owl :C la s s>

<owl :ObjectProperty rd f : ID=" isTaughtBy">

<rd f s : r a n g e r d f : r e s o u r c e="#cour s e r "/>

<rdfs :domain r d f : r e s o u r c e="#staffMember "/>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : ID=" teaches ">

<rd f s : r a n g e r d f : r e s o u r c e="#staffMember "/>

<rdfs :domain r d f : r e s o u r c e="#course "/>

<owl : i nve r s eO f r d f : r e s o u r c e="#isTaughtBy"/>

</ owl :ObjectProperty>

<owl :C la s s rd f : abou t="#course ">

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty r d f : r e s o u r c e="#isTaughtBy"/>

<owl :minCard ina l i ty

rd f : da t a type="&xsd ; nonNegat iveInteger ">1

</ owl :minCard ina l i ty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

</ owl :C la s s>

</owl:Ontology>

<rdf:RDF>

OWL 2 is an update to OWL, which includes new features like increased ex-

pressive power for properties, extended support for datatypes, meta modelling ca-

pabilities, extended annotation capabilities and database style keys [4]. Similar to

the previous version, OWL 2 also de�nes additional pro�les as subsets of OWL 2

Full: OWL 2 EL, OWL 2 QL and OWL 2 RL. OWL 2 EL is aimed at applications

that need to process very large numbers of classes and properties. It is a subset of

OWL 2 for which e�cient, highly scalable polynomial time algorithms exist. OWL

2 QL is for applications with large volumes of instance data where e�cient query

answering is the most pressing need. Conjunctive queries can be implemented e�-
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AL Syntax FOL translation explanation
A A(x) atomic concept
> >(x) universal concept
⊥ ⊥(x) bottom concept
¬A ¬A(x) atomic negation
C uD C(x) ∧D(x) concept conjunction
∀R.C ∀y.R(x, y)→ C(y) universal restriction
∃R.> ∃y.R(x, y) unquali�ed existential restriction

Table 2.1: Basic DL AL and its FOL translation.

ciently by translating them into standard relational query language like SQL. This

results in OWL 2 QL having quite limited expressivity. Finally, OWL 2 RL has

e�cient reasoning algorithms: consistency checking, satis�ability, subsumption, in-

stance checking and conjunctive query answering can be solved in polynomial time.

OWL 2 RL reasoning systems can be implemented using logic programming, as

mapping to Datalog exists. [4]

2.3 Description Logic

The Web Ontology Language (OWL) variants are based on description logics (DL)

that provide a theoretical base for algorithms and computation for OWL. OWL

languages can be mapped to their corresponding DL and computational complexity

and algorithms found for the DLs can be applied to OWL. DL's are identi�ed by a

string of calligraphic letters that denote the extensions the DL adds to the basic DL

AL. To limit complexity, DLs use a small number of constructors to build complex

concepts. The basic building blocks of DLs are concepts (unary predicates), roles

(binary predicates) and individuals (constants). [4]

The syntax of the basic DL, AL (Attributive Language), along with an informal

translation into corresponding �rst order logic (FOL) statement is presented in table

2.1. In AL, the so called TBox (terminological box) consists of a �nite set of general
concept inclusion (GCI) axioms. A GCI is of the form C v D intuitively means a

subclass relation, e.g. every instance of C is also an instance of D. These can be

used to order concepts into hierarchies. An ABox (assertional box) is a �nite set of

concept and role assertion axioms a : C and (a, b) : R, where a and b are individuals.

A knowledge base KB consists of a TBox T and an ABox A, K = (T,A). [4]

Other DLs are formed by extending AL with additional constructs. Of spe-

cial interest here is the DL SROIQ(D), which is the DL behind OWL 2 Full.

SROIQ(D) adds concept negation and transitive roles (S), complex role inclusion

(R), nominals (O), inverse role (I) and quali�ed number restriction (Q) to the

base language [4]. The (D) denotes concrete domains, which means OWL 2 can use



2. The Semantic Web 11

basic datatypes such as strings and integers, allowing concepts such as "Person u
∃age.(xsd:integer:≥ 20)", denoting persons equal to or over 20. For an example of

a knowledge base, see section 5.2, axioms 5.3 - 5.6. As SROIQ(D) allows much

more complex role axioms, a role box (RBox) is added to TBox and ABox to form

a SROIQ(D) knowledge base. [4]

Reasoning in the DL family of languages typically reduces to KB satis�ability

problem. For example, GCI or otherwise known as subsumption reduces to KB |=
C v D i� KB ∪ {a : C u ¬D} is not satis�able, where a is a new individual. For

this, several variations of tableau algorithm have been developed for various DLs

[6]. The tableau algorithms construct a forest of completion trees. The idea is to

generate a �nite interpretation by applying a set of transformation rules that branch

out to create trees. The algorithm terminates when no rules apply. If the trees are

free of contradictions, the KB is satis�able. [4; 6]

2.4 Description Logic Programs

Description logic is a subset of �rst-order logic for which e�cient proof systems exist.

Another subset is Horn logic, or so called rule systems [5]. They are orthogonal in

the sense that neither is a subset of the other. In Horn logic it is possible, for

example, to express statemets such as "A is the uncle of B if A is the brother of B's

father C". Such statements are impossible in OWL. Horn logic, on the other hand,

can't express negation/complement, disjointness or existential quanti�cation. [3; 4]

Figure 2.2: Relation of DLP to other logics [3].
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Typically rule systems have statements of the form B ← A1, ..., An, where Ai and

B are atomic formulas. The previous uncle example could be:

uncle(A,B)← brother(A,C), childOf(B,C) (2.1)

There are two ways to interpret rules, deductive and reactive. In deductive interpre-

tation, if A1, ..., An are known to be true, then B is true. Reactive interpretation,

on the other hand, states if the conditions A1, ..., An are met, then do B. Both have

important applications. [3]

Description Logic Programs are the intersection of Horn logic and description

logic, see �gure 2.2. In other words, DLP are the OWL-de�nable part of Horn logic,

or vice versa. As a consequence, either OWL or rule system tools and reasoners can

be used. Experience says existing ontologies rarely use OWL constructs that are

outside the DLP subset [3].
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3. UNCERTAINTY

The World Wide Web and by extension the semantic web are di�cult environments

for automated systems, due to the unregulated sharing of data. Essentially anyone

can say anything about anything (AAA). In this context, automated systems need

to be able to cope with data of various quality.

Uncertainty, in the context of Semantic Web data, is a broad concept used here

and in the literature to describe information that is partially unknown, unknowable,

untrustworthy or missing. The World Wide Web Consortium (W3C) held an incu-

bator group on uncertainty reasoning in the Semantic Web in 2008. The aim of this

group was to identify and describe cases where reasoning with uncertain information

would yield better results than conventional methods. [7]

The W3C Uncertainty Reasoning for the World Wide Web Incubator Group

(URW3-XG) identi�ed di�erent forms of uncertainty, how and why they appear in

the data and some ways to model them. The group released an ontology describing

these properties, available at [8]. The ontology di�erentiates how the uncertainty

is derived, what kind of uncertainty it is and what is it's nature. The derivation

is either objective, that is, a formal process causes the uncertainty, or subjective

- a guess or judgement. The nature is either aleatory - uncertainty is a property

of the world - or epistemic, where the uncertainty comes from the agent's limited

knowledge. The types of uncertainty are ambiguity, empirical, randomness, vague-

ness, inconsistency and incompleteness, which are discussed in more detail in the

following sections. [7]

It should be noted that the aforementioned grouping can be viewed as special

cases of two sources of uncertainty: incomplete information in which the information

is well de�ned but parts of it are missing, and vague information where it is not

precisely de�ned. These correspond roughly to probabilistic models which deal with

incomplete information and fuzzy models that deal with vague information. There

is overlap and it is not clear which family of reasoning would be better in practice.

Especially in the context of the Semantic Web a large source of uncertainty comes

from the requirement of semantic web agents to be able to process natural language

information.



3. Uncertainty 14

3.1 Ambiguity

The �rst type of uncertainty mentioned in [7] is ambiguity. Ambiguity refers to a

situation where there are two or more distinct interpretations for a concept, and

it is not clear which is applicable. Natural language is full of situations where one

word or phrase may have multiple meanings. It is usually clear, for a human, which

meaning is the correct one in each situation. However, such cases present problems

for automated processing of data.

In the context of the Semantic Web the problem mainly occurs in ontology align-

ment. Two distinct ontologies may have same labels for completely di�erent con-

cepts. A great example is given in [9] where the group aligned two large thesauri,

the UN's Food and Agriculture Organization's AGROVOC and US's National Agri-

cultural Library's NALT thesauri. One source of error in the alignment process was

the mapping of "Game" into a single concept. In one thesaurus Game refers to a

sports activity, and a wild animal in the other.

The problem of semantic ambiguity is solved in many cases by using multiple

similarity measures, usually syntactic and semantic similarity [10]. Such systems

will not only consider the syntactic similarity, but also the semantic graph similarity.

That is, they also consider if the concepts have similar ancestors and children, etc.

By examining the graph it becomes clear that these two concepts use the same

label but are very di�erent conceptually. Note that this example of ambiguity has

objective derivation but epistemic nature - an agent would always arrive at this

problem given it doesn't have enough knowledge to resolve the ambiguity.

3.2 Empirical

Empirical uncertainty refers to the situation where a sentence has a truth value but

it is not known until more information is obtained. Consider the statement "The

grass is wet when it rains", or wet grass is a logical consequence of rain. Without any

knowledge of rain it is uncertain whether the grass is wet or not. If more evidence

is obtained, namely rain is true, then the uncertainty vanishes (note that if rain is

false we still do not know the state of the grass). This can be seen as a special case

of incompleteness. Probabilistic methods have a long tradition for dealing with this

kind of uncertainty.

3.3 Randomness

Uncertainty related to randomness occurs when a statistical law determines the

truth value of a sentence. For example a sentence concerning a fair coin �ip could

state "the coin lands heads". The truth value concerning the class of coin toss would

only realize when instantiated as an actual toss, which has a 0.5 probability to be
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true in our case. This might be viewed as a special case of empirical uncertainty; if

we knew the exact state of the coin tossing system, it would cease to be random. If

the exact state of both the momentum and location of a particle cannot be known

under Heisenberg uncertainty principle, the best we can do is state probabilities.

That serves to highlight the fact that our information about the real world is and

likely always will be incomplete.

3.4 Vagueness

Vague information is lacking in precise de�nition, typically resulting from borderline

cases. Species in biology are an example of vaguely de�ned concepts, where it is

often impossible to determine when a separated group has evolved to a new species.

Traditional computing or analytical methods inherently cannot model or reason with

vague information, but it is commonplace and sometimes even bene�cial in natural

language. In order to model vague information a theoretical framework to model

vague concepts in precise terms is needed. Fuzzy logic is one such framework and can

be adapted for use in Semantic Web applications. Note that probabilistic methods

are not easily applicable in the case of vague information.

As an example, consider the natural language terms tall and short. We can say

a 1.9 meter person is tall and 1.5 meter is short, but how about 1.7 meters in

height? We could say 1.7 meter is average, but then there would be the problem

of 1.6 meters, is she short or average? Framing this problem in probabilistic terms

makes little semantic sense, a 1.6 meter person is not short with probability 0.5

and average with probability 0.5, but rather both to some degree. There are ways

around vagueness, for example binning below below 1.6 as short, 1.6-1.8 as average

and above 1.8 as tall, but such techniques might not always be possible or bene�cial.

Fuzzy methods can directly capture vague expressions prevalent in natural language

and reason with them.

3.5 Inconsistency

Maintaining consistency can be a problem in large knowledge bases or especially

when combining two or more knowledge bases. Inconsistent knowledge can't be rea-

soned with and any inconsistencies must be resolved before the knowledge becomes

useful. Checking for consistency is a basic operation in all reasoning systems. A

knowledge base (KB) is consistent i� there are no contradictions. A contradiction

refers to the situation where both proposition P and its negation are provable from

the axioms of KB. Another de�nition for consistency is that KB is consistent i�

there exists an interpretation I where all axioms of KB are true.

An example of an inconsistent KB might be one that states 1) birds can �y 2)
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penguins are birds 3) penguins can't �y. A penguin can both be proven to �y

and not �y using these axioms. It is possible to model this kind of contradicting

information in some types of description logics using local consistency where a more

speci�c piece of knowledge takes precedence. In this example, penguin is a subclass

of bird and thus more speci�c. A statement concerning penguins is more speci�c

than the one concerning all birds, and the KB would e�ectively state birds can �y,

except if it's a penguin, then it can't �y. [11]

3.6 Incompleteness

A situation where some information is missing. Most systems cannot function with-

out vital information, but it is a common situation in the real world. It is a hot

topic in arti�cial intelligence [2; 4] where systems might not have the luxury of sim-

ply waiting for information and a decision needs to be made in real time. Both

empirical uncertainty and randomness can be seen as special cases of incomplete

knowledge. Probabilistic reasoning at its core deals with incomplete information.
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4. UNCERTAINTY MODELS

The main approaches in the literature [7; 11] for handling uncertain data are fuzzy

logic based and probabilisticl models. Although all models examined here use a value

in the range [0, 1] to model the uncertainty related to a statement, care must be taken

to distinguish how they should be interpreted. There have been some misconceptions

in the literature, and a clari�cation is provided by [12]. A fuzzy logic model might

interpret truth value of 0.5 associated with rain to mean moderate rainfall. A

probabilistic model might use a probability value of 0.5 associated with rain to

denote a �fty per cent probability of rain. Probabilistic di�ers from possibilistic

in that probability is the sum of all probabilities in worlds that satisfy an event,

whereas possibility is the maximum probability among worlds that satisfy an event

[11].

4.1 Fuzzy

Fuzzy logic dealing with fuzzy sets is a truly many-valued logic that can be used to

model partial truth. It is a precise logic reasoning on imprecise knowledge. The main

advantage of fuzzy models which applies to many �elds is that they are intuitive and

easy to interpret. This is mainly achieved by using linguistic variables and if-then

rulebases. For example the variable temperature might have values cold, warm and

hot. The rulebase becomes intuitive to de�ne, e.g. IF temperature IS hot THEN

turn on cooling. This is the most widely used aspect of fuzzy logic.[4; 13]

According to L.A. Zadeh [13] fuzzy logic has many more powerful features. It is

a more general theory than bivalent (two-valued) logic and any bivalent logic can

be generalized by adding fuzzy methods to it. This includes most known, possibly

all probabilistic methods [13]. Another powerful feature is that Fuzzy methods

are applicable to natural language (NL) information. Natural language describes

perceptions (e.g. "it is quite warm") where the exact temperature is unknown, but

an agent has described his perception of temperature. Fuzzy logic o�ers methods

that can directly be used for reasoning with such vague information, given the

de�nitions of quite and warm are calibrated for the agent doing the reasoning. They

do not need to be exactly aligned with the de�nitions of the agent describing the

perception. This is the powerful feature of NL of tolerating imprecision and slightly

misaligned de�nitions, but still conveying essential information.
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t-norm a⊗ b s-norm a⊕ b negation 	a
Lukasiewicz max(0, a+ b− 1) min(1, a+ b) 1− a
Gödel min(a, b) max(a, b) 1 if a = 0, 0 otherwise.
product a · b a+ b− ab 1 if a = 0, 0 otherwise.

Table 4.1: Common fuzzy set and logic operations.

4.1.1 Fuzzy Logic and Set Theory Basics

Fuzzy sets are a generalization of classical set theory to many-valued sets. An

element is not either part of a set or not, but rather is a member to a degree.

Usually this is denoted by a membership function µA : X → [0, 1]. The function

maps X's membership to fuzzy set A to the interval [0, 1]. Typical membership

functions are triangle, trapezoid, left-shoulder and right-shoulder, depicted in �gure

4.1. Standard set operations can also be generalized to many-valued sets. There are,

however, several variations of set operations, each of which ful�ll the de�ning axioms

for the operation but give slightly di�erent results. Conjunction is generalized as

triangular norm or t-norm denoted ⊗, disjunction is t-conorm or s-norm ⊕ and

negation is fuzzy negation 	. Common operations are presented in table 4.1. [4]

The types of membership functions, their number and parameters as well as types

of fuzzy operations all need to be selected for each application. Certain combinations

work better in certain situations and it is not trivial to �nd the best suited ones for

each application. This is why there are several variations of each. [14]

Figure 4.1: Fuzzy membership functions: (a) Trapezoidal function trz(a, b, c, d), Triangular
function tri(a, b, c), Left-shoudler function ls(a, b), Right-shoulder function rs(a, b) [4].

Fuzzy logic maps truth values to [0, 1] instead of {0, 1}. The same conjunction,
disjunction and negation operations can be used as with fuzzy sets. On top of

that, fuzzy implication is also de�ned. Lukasiewicz, Gödel and product logic are

again major players, and an implication is de�ned for each of them: a ⇒l b =

min(1 − a + b, 1) for Lukasiewicz, a ⇒g b = 1 if a ≤ b, b otherwise for Gödel and

a⇒p b = min(1, b/a) for product logic. [4] For more information the reader should

consult a fuzzy logic textbook, for example [14] or [4].
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4.1.2 Reasoning with Fuzzy DLs

Like the most expressive OWL variants, some fuzzy DLs have a problem with decid-

ability. More speci�cially when description logic is extended with fuzzy logic with

in�nitely many truth values (in�nite model, e.g. [0,1]), it can be shown to be un-

decidable if general concept inclusions (GCI) are also allowed. GCI's are DL term

for OWL subclass relation. [15] This has led to using �nite fuzzy models, which are

decidable with GCI's. That is, models with truth space of �nite granularity, e.g. {0,

0.25, 0.5, 0.75, 1.0}. An additional bene�t for this is that these �nite fuzzy models

are reducible to crisp KBs. This implies that only a fuzzy middleware translating

a fuzzy KB into the corresponding crisp KB is needed and standard crisp reasoners

can be used on the resulting KB.

Several fuzzy reasoners have been implemented for various fuzzy DLs. The most

notable are FuzzyDL, FiRE and DeLorean. [4] FuzzyDL is a fuzzy SHIF(D) rea-

soner written in java. It extends the DL SHIF with fuzzy set operations, o�ering

Gödel, Lukasiewicz and Zadeh fuzzy set operations, and concrete data types such as

integers, reals, strings and fuzzy membership functions. Truth values are restricted

to a �nite model. Reasoning combines a fuzzy version of the standard tableaux algo-

rithm with multi integer linear programming (MILP) optimization, allowing certain

linear inequation constraints. The reasoner is operated via a simple query interface

using FuzzyDL's own syntax, e.g. greatest lower bound query: (max-sat? C [a]).

[16]

DeLorean is a fuzzy SROIQ(D) reasoner that translates a �nite truth valued

fuzzy KB into a crisp KB. It then uses standard crisp reasoner to perform the rea-

soning. [17] FiRE, on the other hand, is a fuzzy-SHIN (D) reasoner that serializes

a �nite truth valued fuzzy ontology into crisp RDF. FiRE works by materializing

all implicit knowledge and storing it explicitly in RDF, then supplying SPARQL

queries to it. This means it does not perform complete f-SHIN (D) reasoning, but

is complete for ground conjunctive queries, which the authors note is a common

practice for proposed practical applications. [18]

4.1.3 Fuzzy OWL 2

All the reasoners mentioned in the previous section use their own syntax to represent

fuzzy ontologies. This means in order to use existing knowledge it needs to be typed

in manually using the reasoner syntax or using automated translation, which might

not exist for a given ontology language. [19] proposes a standard way to model

fuzziness in OWL 2 using annotation properties. This means standard ontology tools

such as Protégé can be used. Manually annotating the fuzziness can be tedious and

error prone, and for that a Protégé plug-in Fuzzy OWL 2 is freely available on the
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Web [20]. It supports fuzzy datatypes, fuzzy modi�ed concepts, weighted concepts,

weighted sum concepts, fuzzy nominals, fuzzy modi�ers, fuzzy modi�ed roles, fuzzy

axioms, fuzzy modi�ed datatypes, as well as provides parsers that translate Fuzzy

OWL 2 into languages supported by some fuzzy reasoners. [4] Here is an example

in Fuzzy OWL 2, which says Alice is a person who is tall to a degree of at least 0.7:

<Dec la ra t i on>

<Class IRI="#Person"/>

</Dec la ra t i on>

<Dec la ra t i on>

<Class IRI="#Tal l "/>

</Dec la ra t i on>

<Dec la ra t i on>

<NamedIndividual IRI="#Al i c e "/>

</Dec la ra t i on>

<Cla s sAs s e r t i on>

<Class IRI="#Person"/>

<NamedIndividual IRI = "#Al i c e "/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Annotation>

<AnnotationProperty IRI="#fuzzyLabe l "/>

<L i t e r a l datatypeIRI="&rd f ; P l a i nL i t e r a l ">

<fuzzyOwl2 fuzzyType="axiom">

<Degree va lue=" 0 .7 " />

</fuzzyOwl2>

</ L i t e r a l>

</Annotation>

<Class IRI="#Tal l "/>

<NamedIndividual IRI="#Al i c e "/>

</Cla s sAs s e r t i on>

Noteworthy here is that everything is done using OWL 2 syntax, without the

need for even an upper ontology. The <fuzzyOwl2> statement is inside <Literal>

and carries no semantic information for normal OWL 2 reasoners. A Fuzzy OWL 2

aware reasoner can, however, use this information.

4.2 Probabilisitc

Probability theory has a long tradition in dealing with incomplete information. In-

deed, probability is taught at almost all levels of education and the reader should
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be familiar with the terminology. Many methods concerning the semantic web use

Bayesian probability theory [21; 22; 23], although some use di�erent approaches [24],

[25]. Bayesian networks are a probabilsitic directed acyclic graphical model (DAG),

where nodes represent random variables and edges represent conditional dependen-

cies. Each node is associated with a probability function that takes the node's parent

variables and outputs the node's probability distribution. See for example [26] for

complete explanation.

As it has been with fuzzy, representing uncertain information in an ontology has

been an active research topic with probabilistic methods. Some older approaches

extend older ontology langauges such as [24] for DARPA Agent Markup Language

and Ontology Inference Layer (DAML+OIL), but these ontology languages are su-

perseded by OWL and OWL 2. Slightly newer approaches [22; 23] extend OWL

with additional classes that allow them to convert the ontology into Bayesian net-

works and do probabilistic reasoning. The most notable probabilistic approach is

PR-OWL [21], as it is the most complete and expressive. PR-OWL is covered in

more detail in the next section.

4.2.1 PR-OWL

Usual solution for representing uncertainty in languages that do not support it na-

tively is using custom tags to annotate statements with probability information.

This solution is simplistic and is unsuitable for all but the simplest real world ap-

plications [21; 27]. Shafer stressed that probability is more about structure than

numbers [28].

PR-OWL is a probabilistic extension to classical deterministic logic of OWL,

providing full �rst order probabilistic logic. It is a Bayesian approach, using multi-

entity Bayesian networks (MEBN). Bayesian probability theory is a well established

framework for reasoning under uncertainty. MEBN combines Bayesian probability

theory with classical �rst order logic (FOL). PR-OWL is an upper ontology, and as

such is not a direct extension of OWL language, but de�ned as an ontology that

can be used to create probabilistic ontologies. An ontology using PR-OWL may

have a probabilstic part using PR-OWL deginitions, forming an MEBN theory, and

a normal OWL part - there is no need for every statement to have probabilstic

de�nitions.[21]

In a MEBN, knowledge is expressed as MEBN fragments (MFrags), which are

organized into MEBN theories (MTheory). The MTheory is a collection of MFrags

that satisfy consistency and have a unique joint probability distribution. An MFrag

contains hypotheses related to a concept the MFrag is modeling and forms a con-

ditional probability distribution of its resident random variables (RV). It can be

instantiated as many times as necessary. An example could be "Genetic Disease"
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MFrag, containing RVs about risk factors. It could be instantiated for each patient,

giving information about risks based on the probabilities de�ned in the MFrag. Dif-

ferent hypotheses, or RVs, in an MFrag can be context (assertion that must be

satis�ed for the de�nitions in the MFrag to apply), input (probabilities de�ned in

another MFrag) or resident (de�ned in the MFrag in question). [21]

In MEBN inference, a query is posed to compute the degree of belief in a random

variable (RV), given a set of evidence RVs. In our previous genetic disease example,

the evidence might be known risk genes that have been determined on the patient.

A situation speci�c Bayesian network (SSBN) is created to address each query,

which is a Bayesian network that begins with the MFrag associated with queried

RVs. It then recursively instantiates the necessary MFrags required to calculate any

distributions or values another MFrag needs. [21] In order to add these features to

OWL, PR-OWL adds several new concepts, shown in �gure 4.2.

Figure 4.2: Overview of concepts added by PR-OWL [21].

A PR-OWL ontology must have at least one MTheory consisting of MFrags that

form a valid MEBN theory. The link between MTheory and its MFrags in PR-OWL

syntax is done via the object properties hasMFrag and its inverse, isMFragIn. MFrag

instances are a collection of Nodes representing RVs, which are MEBN hypotheses

that can be context, input or resident discussed earlier. Each Node is a random

variable with a set of states that is mutually exclusive and exhaustive (add up to

probability 1), depicted as hasPossibleValues. They also have a probability distri-

bution, denoted by hasProbDist linking it to an instance of Probability Distribution

class.[21]

PR-OWL can express a probability distribution on any interpretations of �rst-

order logic. As a result of PR-OWLs expressiveness, the authors note that there

are no guarantees for e�ciency or decidability. This is a design choice in line with

W3Cs OWL, where the main language is very expressive and several sublanguages

are de�ned to limit the expressivity to achieve e�cient algorithms and decidability.
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The authors of PR-OWL propose a sublanguage PR-OWL Lite could be developed

to limit the language to expressions that have known e�cient algorithms. [21]

The authors of PR-OWL [21] admit that building coherent MTheory is a dif-

�cult, error prone manual process requiring deep knowledge of Bayesian logic and

PR-OWL. Tools such as UnBBayes make building probabilstic ontologies easier [27].

UnBBayes tries to combine familiar features from standard industry modeling ap-

proaches such as UML into probabilistic ontology creation process.

Figure 4.3: PR-OWL 2 - OWL mapping [29].

One major shortcoming identi�ed in PR-OWL was the inability to map the base

OWL properties into PR-OWL random variables. One might want to take knowledge

from an existing OWL ontology and reason probabilistically with it using additional

information from a PR-OWL ontology. There is no way to do this with PR-OWL,

and thus PR-OWL 2 was developed to allow mappings of PR-OWL random variables

and OWL properties. [29] Even the simplest of raw PR-OWL 2 documents get

di�cult to read without dedicated tools such as UnBBayes. Figure 4.3 shows the

mapping of a single OWL property to PR-OWL 2. Here are some snippets from an

ontology stating Alice has a child, Bob:



4. Uncertainty Models 24

<Cla s sAs s e r t i on>

<Class IRI="#Person"/>

<NamedIndividual IRI="#Al i c e "/>

</Cla s sAs s e r t i on>

<Dec la ra t i on>

<ObjectProperty IRI="#hasChi ld "/>

</Dec la ra t i on>

<Dec la ra t i on>

<NamedIndividual IRI="#Al i c e "/>

</Dec la ra t i on>

<Dec la ra t i on>

<NamedIndividual IRI="#Bob"/>

</Dec la ra t i on>

. . .

<Cla s sAs s e r t i on>

<Class IRI="#Person"/>

<NamedIndividual IRI="#Al i c e "/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI="#Person"/>

<NamedIndividual IRI="#Bob"/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#DomainMFrag"/>

<NamedIndividual IRI="#Domain_MFrag . hasChild_MF"/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#DomainResidentNode"/>

<NamedIndividual IRI="#Domain_Res . hasChi ld "/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#SimpleMExpression"/>

<NamedIndividual IRI="#MEXPRESSION_hasChild"/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#RandomVariable"/>

<NamedIndividual IRI="#RV_hasChild"/>
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</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#MappingArgument"/>

<NamedIndividual IRI="#RV_hasChild_1"/>

</Cla s sAs s e r t i on>

<Cla s sAs s e r t i on>

<Class IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#MappingArgument"/>

<NamedIndividual IRI="#RV_hasChild_2"/>

</Cla s sAs s e r t i on>

. . .

<ObjectPropertyAsser t ion>

<ObjectProperty IRI=

" ht tp : //www. pr−owl . org /pr−owl2 . owl#isMFragOf"/>

<NamedIndividual IRI="#Domain_MFrag . tall_MF"/>

<NamedIndividual IRI="#Tallness_MT"/>

</ObjectPropertyAsser t ion>

. . .

<DataPropertyAssert ion>

<DataProperty IRI=

" ht tp : //www. pr−owl . org /pr−owl2 . owl#hasDec la ra t i on "/>

<NamedIndividual IRI=

" ht tp : //www. pr−owl . org /pr−owl2 . owl#hasChild_Table"/>

<L i t e r a l datatypeIRI="&xsd ; s t r i n g ">

[

t rue = 0 . 5 ,

f a l s e = 0 .5

]

</ L i t e r a l>

</DataPropertyAssert ion>

<DataPropertyAssert ion>

<DataProperty IRI=

" ht tp : //www. pr−owl . org /pr−owl2 . owl#de f ine sUncer ta in tyOf "/>

<NamedIndividual IRI="#RV_hasChild"/>

<L i t e r a l datatypeIRI="&xsd ; anyURI">

ht tp : //www. example . org /example−onto logy#i s</ L i t e r a l>
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</DataPropertyAssert ion>

. . .

<ObjectPropertyAsser t ion>

<ObjectProperty IRI=" ht tp : //www. pr−owl . org /pr−owl2 . owl#isMFragOf"/>

<NamedIndividual IRI="#Domain_MFrag . hasChild_MF"/>

<NamedIndividual IRI="#hasChild_MT"/>

</ObjectPropertyAsser t ion>

The entire listing is several pages longer. Noteworthy here are the complexity

added by PR-OWL 2, requiring various mappings of OWL properties to MEBN

RVs (RV_hasChild_1 and RV_hasChild_2 for example). Even the simplest pos-

sible example, containing no real information, is lengthy and complicated, and

serves to highlight the vital importance of tools such as UnBBayes. Figure 4.4

shows the UnBBayes view of the example. On the left you can see the evidence

that hasChild(Alice,Bob)=true. Otherwise the probability is de�ned as true =

0.5, false = 0.5, thus e�ectively stating that Bob has a child called Alice with prob-

ability 0.5. The purpose of this example was to take the simplest possible MEBN

and demonstrate the PR-OWL 2 syntax. For a functional example, see [21; 29].

Figure 4.4: UnBBayes View of the example in section 4.2.1.
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5. HYBRID APPROACHES

A major task in the Semantic Web is, given a query, access and retrieve relevant

information from various di�erent resources e�ectively. Once methods of modeling

uncertainty mature and are used in real world applications, a common situation

might be that some information is de�ned as probabilistic, e.g. in PR-OWL, and

some is vague, e.g. Fuzzy OWL 2. How can agents deal with situations involving

both uncertain and vague data?

Some methods are backwards compatible to their parent language OWL, so an

agent not aware of probabilistic or fuzzy parts of the de�nition can still use the parts

written in OWL [19; 21]. This way an agent utilizing probabilistic reasoning could

still use fuzzy ontologies by discarding the fuzzy de�nitions unknown to it. This will

lead to a loss of information on some level. It is also not clear how useful crisp vague

de�nitions would be to a system that can not handle such vagueness. An example

could be that a fuzzy ontology de�nes person A is tall to a degree of 0.7 and person

B is tall to a degree of 0.2. A probabilistic reasoner that only reads the OWL parts

and discards the fuzzy membership statements would conclude they both have the

property tall, although person B is clearly quite short. This is also a problem in

fuzzy control systems that need to convert the fuzziness into a crisp control signal

[14].

5.1 Booking agent example

A classical example in the Semantic Web is that of a shopping agent [1; 2]. A

shopping agent is a client side program that is given a query, and the task is to

retrieve information about products that are relevant to the query and present the

best results to the user. To illustrate some di�culties in combining information from

various sources and using it to answer a vague query containing users preferences, a

simple example of a hotel booking agent is presented. Let's say the user is interested

in booking a high quality room with a balcony for no more than around 150ea night.

For the sake of simplicity let's ignore aspects of availability and date of booking and

assume the rooms the agent retrieves happen to be available on the date the user

wants to make the booking.

There are two sources of semantically di�erent uncertainty in this scenario. First,

di�erent hotels might use di�erent ontologies to describe their available rooms. This
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leads to a problem of ontology alignment, with inherent uncertainties. Addressing

this process of alignment is outside the scope of this thesis, but let's assume the

alignment produces probabilistic results about the similarity of concepts. One hotel

might have in it's ontology a property hasBalcony associated with it's rooms. An-

other hotel might have hasFrenchBalcony. Are they equivalent concepts when the

agent combines the information form the two hotel ontologies? The agent might

conclude they are the same concept with a probability of 0.4 for example.

Second form of uncertainty comes from vagueness in the query. High quality room

could for example mean the hotel has a rating of 4 or 5 stars and high reviews. These

could be expressed as fuzzy membership functions. If the agent gathers user review

data from a 3rd party site that grades hotels on a 1-10 scale, the whole high quality

concept could be de�ned as HighQuality(x) = HighStars(x) u HighReviews(x),
where HighStars(x) assigns membership of 0.7 for 4 and 1.0 for 5 stars, 0 otherwise,

and HighReviews(x) is a right-shoulder membership function starting from 0 at 7.5

and reaching full 1.0 at 8.5. Now, a hotel with 4 stars and average review score of 8.1

has HighQuality membership degree (using min t-conorm) of min(0.7, 0.6) = 0.6.

Another fuzziness comes from the pricing, which was de�ned as no more than

around 150ea night. This could be expressed as a left-shoulder membership func-

tion, which decreases the rooms desirability rapidly as the price goes above 150e:

ls(150, 175). The following sections discuss some methods found in the literature

for dealing with these two semantically di�erent types of uncertainty, and show how

they can be used to address the hotel booking agent example.

5.2 Probabilistic Fuzzy Description Logic Programs

Probabilistic fuzzy DL programs as proposed by [25] take a strati�ed approach to

combining probabilistic uncertainty and fuzzy vagueness in a uniform framework.

Both fuzzy and probabilistic reasoning have separate well de�ned areas where they

are applied in this query system. As probabilistic uncertainty and fuzzy vagueness

are semantically very di�erent, it is not sensible to use them interchangeably, but

rather in their speci�c areas. The authors of [25] present an overview of a query

system with a shopping agent example and give algorithms for processing the queries

as well as proof of their polynomial time complexity under certain assumptions. [25]

The query system assumes the query agent and all relevant distributed resources

each have their own ontologies, ontology languages and query languages. Major

tasks are to 1) select relevant resources 2) reformulate queries from agent's query

language to the target resources query language and 3) merge the results. While

these problems have been studied in the literature, see [30] for resource selection and

[31] for ontology alignment, this approach combines the use of probabilistic and fuzzy

methods in a novel way. More speci�cally it uses probabilistic reasoning for resource
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selection and ontology alignment, and fuzzy logic for vague query matching.[25]

At the core of reasoning, the query system uses normal fuzzy programs, a �nite

collection of normal fuzzy rules combined with description logic knowledge base.

The normal fuzzy rules are similar to crisp normal rules like

NiceSportsCar(x)← madeIn(x, y), Italy(y), DL[SportsCar](x) (5.1)

with the exception that they have a lower bound for their truth value and use fuzzy

conjunction rather than crisp ones. The DL[SportsCar](x) is a query to description

logic, asking if x can be proven to be a sports car from the knowledge base. A fuzzy

version of the above rule could be:

NiceSportsCar(x)←0.8
⊗ madeIn(x, y)⊗ Italy(y)⊗DL[SportsCar](x) (5.2)

which informally means the head of the rule NiceSportsCar(x) is at least the evalu-

ated degree of the body. The degree of the body is the conjunction of it's components

together with 0.8. A fuzzy dl-programKB = (L, P ) consists of fuzzy DL knowledge

base L and a �nite set of fuzzy dl-rules P . [25]

Probabilistic fuzzy dl-programs are a combination of strati�ed fuzzy dl-programs

with Poole's independent choice logic [25, see 22]. Strati�ed fuzzy dl-programs are

hierarchical construction of positive fuzzy dl-programs linked with default-negation.

Positive fuzzy dl-programs are fuzzy dl-programs without any negation operations,

which are always satis�able and have a unique least model. The probabilistic fuzzy

dl-programs de�ne a probability distribution on a set of fuzzy interpretations. A

probabilistic fuzzy dl-program is de�ned as KB = (L, P, C, ν), where (L, P ) is

the fuzzy dl-program, C is the set of random variables and ν is the probability

distribution of C. [25]

Returning to the booking agent example, suppose an automatic ontology align-

ment between the user agent and hotel ontology produces the following alignments

and associated probabilities: hasBalcony and hasFrenchBalcony are the same con-

cept with probability 0.4, hasPrice and pricePerNight are the same with probabil-

ity 0.95. This gives a total choice space C with two alternatives, C1 = {BALpos, BALneg},
C2 = {PRCpos, PRCneg}, along with probability distributions ν(BALpos) = 0.4,

ν(BALneg) = 0.6 and ν(PRCpos) = 0.95, ν(PRCneg) = 0.05. These combine to

make four possible choices total, de�ned as ν(B) =
∏

b∈B ν(b), shown in table 5.1

A description logic knowledge base L encoding the knowledge retrieved by the

agent in the example may contain the following axioms, expressed in SROIQ(D)
[4]:
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B Total choice ν(B)
B1 BALpos, PRCpos 0.38
B2 BALpos, PRCneg 0.02
B3 BALneg, PRCpos 0.57
B4 BALneg, PRCneg 0.03

Table 5.1: Total choice space and their probabilities for one alignment.

HotelRoom v Lodging, (5.3)

Lodging ≡ ∃hasPrice.(xsd : integer) u ∃hasStars.(xsd : integer)

u∃hasReviews.(xsd : float)u ≥ 0 ∃hasBalcony.>, (5.4)

HolidayInn : HotelRoom u ∃pricePerNight.”155” u ∃hasStars.”4”
u∃hasReviews.”8.3” u ∃hasFrenchBalcony, (5.5)

Scandic : HotelRoom u ∃hasPrice.”160” u ∃hasStars.”4”
u∃hasReviews.”8.5” u ∃hasBalcony. (5.6)

Here the notation of literals is abbreviated property."a" for brevity. The full

XML-based syntax would be property."a"��xsd:integer. "The query "High quality

room with balcony for no more than about 150e" is encoded by the following fuzzy

dl-rules P :

query(x)←1
⊗ HotelRoom(x)⊗HighQuality(x)⊗

hasBalcony(x)⊗ hasPrice(x, y)⊗DL[AtMostAbout150](y), (5.7)

HighQuality(x)←0.5
⊗ hasStars(x, y1)⊗ hasReviews(x, y2)

⊗DL[AtLeast4](y1)⊗DL[AtLeastAbout8](y2), (5.8)
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hasBalcony(x)←0.8
⊗ DL[hasFrenchBalcony](x)⊗BALpos, (5.9)

hasPrice(x, y)←0.8
⊗ DL[pricePerNight](x, y)⊗ PRCpos. (5.10)

Here, DL[AtMostAbout150](y) denotes the fuzzy membership of y to a fuzzy

membership function ls(150.175). Similarly, AtLeastAbout8 denotes rs(7.5, 8.5) and

AtLeast4 assigns 0.7 if y = 4 and 1.0 if y = 5, 0 otherwise. Note that the example

assumes the star ratings and review scores come from a trusted source and have a

probability of 1.0 of being correct. Our example, as well as the example in [25] uses

min conjunction x ⊗ y = min(x, y). 5.7 is the user query, 5.8 encodes the concept

of high quality and 5.9-5.10 are automatically generated mapping rules that encode

the probabilities of correct mapping.

A fuzzy interpretation I maps a ground formula φ to [0, 1]. Each fuzzy interpre-

tation has a probability Pr(I) to be the correct one. A probability constraint φ ◦ r
will be

Pr(φ ◦ r) =
∑

I∈I,I(φ) ◦ r

Pr(I)

where I is the set of all fuzzy interpretations, ◦ is an operator, e.g. ≥ and r is a

truth value r ∈ [0, 1]. Intuitively, sum up all probabilities of fuzzy interpretations I

that satisfy the constraint ◦ r. Now as I(φ) has a degree of truth and a probability

Pr(I), the expected truth value of φ is∑
I∈I

Pr(I) · I(φ)

and as a consequence, a probabilistic query of the form (φ ≥ 0.8)[0.4, 0.6] will be

satis�ed if Pr(φ ≥ 0.8) is in [0.4, 0.6] and a query of the form (E[φ])[0.4, 0.6] is

satis�ed if the expected truth value of φ lies in [0.4, 0.6]. [25]

Pr is the canonical model of a probabilistic fuzzy dl-program KB = (L, P, C, µ) i�

every world I ∈ I with Pr(I) > 0 is the canonical model of (L, P ∪ {p← |p ∈ B})
for some total choice B of C such that Pr(I) = µ(B). Every KB has a unique

canonical model Pr. [25]

Returning to the example, let I = {I1, ..., I4} and Pr(Ii) = µ(Bi). The fuzzy

formulas a1 = HighQuality(HolidayInn), a2 = hasPrice(HolidayInn, 160),a3 =

DL[AtMostAbout150](155) , a4 = hasBalcony(HolidayInn) and a5 = query(HolidayInn)

are represented in table 5.2 for each canonical model Ii. Note that since 5.9 and

5.10 require the mapping of balcony and price can be inferred from the KB, in the
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Canonical model Pr(I) a1 a2 a3 a4 a5
I1 0.38 0.56 0.8 0.67 0.4 0.4
I2 0.02 0.56 0 0.67 0.4 0
I3 0.57 0.56 0.8 0.67 0 0
I4 0.03 0.56 0 0.67 0 0

Table 5.2: Degrees of truth for fuzzy formulas a1, ..., a5 in the canonical model Ii.

negative case their membership degree is 0.

The expected truth value of EPr[query(HolidayInn)] =
∑

I∈I Pr(I)·I(query(HolidayInn)) =
Pr(I1) · I1(query(HolidayInn)) = 0.38 · 0.4 = 0.152. For Scandic the calculations

would produce expected truth value of 0.312, thus ranking it higher.

5.3 Generalized Theory of Uncertainty

L.A. Zadeh proposes a much more general theory for dealing with uncertainty than

either fuzzy or probabilistic approaches [32; 33]. Fundamental thesis of generalized

theory of uncertainty (GTU) is that information is expressed as generalized con-

straints. Another important aspect is that classical bivalent logic is replaced by

more general fuzzy logic. Under this framework, fuzzy logic is built in throughout

the system and probabilistic information can be represented as an important special

case of a generalized constraint. Another important aspect of GTU in relation to the

Semantic Web is the ability to process information expressed in natural language

(NL). Inability to handle NL is a major shortcoming in purely probability based

systems. [33]

Much of the information expressed in natural language is based on perception

rather than measurement. Take the previous sentence as an example. A measure-

ment could be "over 75% of information expressed in natural language is perception

based", which is more speci�c and usually unnecessary in natural language. An-

other example is "it is very cold" versus "it is -30 degrees celsius". Fuzzy logic and

more speci�cally linguistic variables are perfectly suited to processing this vague

perception based information. [13]

Computation in GTU is done by precisiating natural language (PNL), performed

by the precisiation module of a natural language processing system, as proposed

by [33] (see �gure 5.1). The inputs to the system are p, a system of propositions

expressed in NL (INL) and q, a query also expressed in NL (QNL). The task is to

compute the answer to the query ans(q|p). Precisiation module precisiates the NL

terms, resulting in p∗ and q∗. These precisiated forms are given to the protoform

module, which constructs abstracted summaries called protoforms p∗∗ and q∗∗. The

computation/deduction module is a knowledge base of deduction rules that govern
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Figure 5.1: Structure of NL computation system [33].

generalized constraint propagation. [32; 33]

5.3.1 Generalized Constraint

In GTU information is expressed as generalized constraints. The meaning of propo-

sition p, M(p), carries information that places a constraint on value of X: M(p) =

GC(X(p)). An example proposition "it is cold in Tampere" could be expressed as a

constraint on the value of outside temperature, for example "Temp(Tampere) is <

5". Primary generalized constraints are possibilistic, probabilistic and veristic.

Other constraints can be constructed using the primary constraints. A possibilistic

constraint is of the form "X is R", meaning R is the possible set of values for X.

A probabilistic constraint "X isp R" means R is the probability distribution of X.

A veristic constraint is of the form "X isv R", where R is the truth distribution of

X. For example a mule is half horse, half donkey, or "Species(Mule) isv 0.5|Horse

+ 0.5|Donkey". [33]

GTU outlines a generalized constraint language (GCL), which allows semantic

rules to be constructed from generalized constraints. An example of a semantic rule

relating to our booking agent example is (stars is high) ∧ (reviews is excellent) to
express the concept of high quality. According to [33] this would be computed as

Poss(X is high) ∧ Poss(Y is excellent) = µhigh(u)⊗µexcellent(v), where ⊗ is a fuzzy

conjunction. GTU does not, at present, give a complete formalism for the GCL -
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merely outlines the idea of it.

With GCL it is possible to construct composite generalized constraints from the

primary ones. For example a random-set constraint can be viewed as a conjunction

of probabilistic constraint and either possibilistic or veristic constraint [33]. Of

special interest to our question of combining fuzzy and probabilistic methods is the

group of composite constraints known as bimodal distributions. The basic bimodal

distribution constraint is denoted by X isbm R, where R is a bimodal distribution

of the form

R :
∑
i

Pi\Ai, i = 1, ..., n. (5.11)

Here Prob(X is Ai) is Pi, or Pi is the granular value of Prob(X is Ai). The concept

of granularity is explained in subsection 5.3.2.

Essentially bimodal distribution is uncertainty about uncertainty. In practice

we rarely know probabilities exactly. In information retrieval, the relevance of in-

formation is typically not known, but can be expressed as "likely to be high", for

example. The basic bimodal distribution is probability on probability, see �gure

5.3. Two important bimodal distributions related to the research topic are so called

type 1 (possibility/probability) and type 2 (probability/possibility) bimodal distri-

butions, see �gure 5.2. The basic probability/probability bimodal distribution is a

special case of type 1. [33]

Type 1 and 2 bimodal distributions have a common framework shown in equation

5.11, but di�er in details of what the symbols are. In type 1, X is a random variable

taking values in universe of discourse U , A1, ..., An are fuzzy events (fuzzy sets),

pi =Prob(X is Ai), i = 1, ..., n,
∑

i pi is unconstrained and Pi is the granular value

of pi. The type 1 models the granular probability P of A, which is fuzzy-set-valued.

[33]

Type 2 is otherwise similar, but X is a fuzzy-set-valued random variable and the

sum is constrained:
∑

i pi = 1. Type 2 is denoted X isrs R, where R is the same as

in equation 5.11, but with the sum constrained to one. In type 2 P is not de�nable,

but a) the expected value of the conditional possibility of A and b) the expected

value of conditional necessity of A are [33].

An example of a type 1 bimodal distribution, take the constraint "(X is small)

isp likely", which means the probability of the fuzzy event "(X is small)" is likely.

More formally, if X takes values in the interval [a, b] and g is the probability density

function of X (see �gure 5.2), then

Prob(X is small) =

∫ b

a

µsmall(u)g(u)du

where u is a generic value of X and µsmall is the membership function of small. The
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Figure 5.2: Type 1 and 2 bimodal distributions [33].

possibilistic proposition "X is small" is de�ned by

Poss{X = u} = µsmall(u)

5.3.2 Precisiation

The process of precisiation is turning vaguely de�ned information into precisely de-

�ned. For example, proposition "X is approximately a", where a is a real number

could be precisiated as "a − 2 < X < a + 2", which is a crisp-granular (cg) pre-

cisiation. Singleton precisiation, or s-precisiation, is commonly used in probability

theory [32]. Granular precisiations assigns a granular value to the precisiand, de-

�ned by a generalized constraint. Forms of precisiation are singleton, crisp-granular,

probability distribution, possibility distribution, fuzzy graph and bimodal distribu-

tion, depicted in �gure 5.4. The aim of precisiation is to preserve the meaning of the

proposition. Precisiation can be likened to a mathematical model describing a real

physical system where the mathematical model is an approximation but su�ciently

accurate. [33] Each precisiation of a proposition is context sensitive, and is close to

the problem of �nding fuzzy membership functions.
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Figure 5.3: Probability/probability bimodal distribution [33].

The concept of granular value needs some explanation. Let X be a variable and

a a singular value, both are in an universe of discourse U . If X is known to be a

then a is the singular value of X. If there is uncertainty about the value of X then

GTU expresses it in terms of a general restriction on X, X isr R, where isr is some

generalized constraint. As an example, the granular value of a singular "probability

is 0.9" could be "probability is high". Here 0.9 is a singular value a of X and "high"

is the granular value A of X. [33]

5.3.3 Protoform

The protoform module takes the precisiated forms p∗ and q∗ and abstracts the

variable names. For example "Alice is young" could be precisiated as "Age(Alice)

is young". The protoform module replaces speci�c names with symbols, e.g. "A(B)

is C". This prototypical form is then used in the computation/deduction module

to �nd a correct deduction rule associated with the protoform. Note that an object

may have many protoforms and many objects may have the same protoform, just

as there are many possible levels of abstraction. [32; 33]

Figure 5.6 depicts the translation from object space to protoform space. Here,

S(p) stands for summary, or precisiated form of p, and PF (p) is the abstracted

summary, or protoform of p. In the example p = "Alice is young", the precisiated

form becomes p∗ = "Age(Alice) is young". "Age" is abstracted to a symbol A,

"Alice" as B and "young" as C, thus PF (p) = A(B) is C. [33]
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Figure 5.4: Precisiation of ∗a [33].

5.3.4 Computation/Deduction

The computation/deduction (C/D) module takes in the abstracted prototypical

forms from the protoform module and applies a set of deduction rules to them.

The C/D module is a database of deduction rules that govern constraint propaga-

tion. They are grouped into modules, depicted in �gure 5.7, where each module

comprises of rules for corresponding class of generalized constraints. The world

knowledge module is a part of the system that incorporates domain knowledge,

similar to what ontologies do in the traditional semantic web.

The rules have two parts, a symbolic protoformal part which is used to match

protoformal propositions. The second part of a rule is the computational part, which

speci�es how the associated protoform should be processed. An example of a rule

is the probability rule [33]:

Symbolic

Prob(X is A) is B

Prob(X is C) is D
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Figure 5.5: Concept of granularity [33].

Figure 5.6: De�nition of protoform of p [33].

Computational

µD(v) = sup
r
(µB(

∫
U

µA(u)r(u)du)),

subject to v =

∫
U

µC(u)r(u)du,∫
U

r(u)du = 1

where X is a real-valued random variable, A, B, C and D are fuzzy sets, r is the

probability density of X and U = {u}. [33] presents an outline of a C/D rulebase

consisting of ten principal deduction rules in symbolic form.

Zadeh [33] gives several examples on computing with generalized constraints. Cal-

culation in GTU is viewed as query answering. Consider a situation where proposi-

tion is p = "Most Swedes are tall" and the question q = "What is the average height

of Swedes?". The precisiated forms can be expressed as
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Figure 5.7: Computation/deduction module [33].

p∗ :
1

n
(µtall(h1) + · · ·+ µtall(hn)) is most,

q∗ : ans(q|p) = 1

n
(h1 + · · ·+ hn).

where hi is the height of i:th Swede in population G = (ui, ..., un) of Swedes,

µtall(h) is the membership function of "tall". Let µave(v) be the membership function

of average height. By applying the extension principle rule from the database [33;

34], computation reduces to variational problem

µave(v) = sup
h

(
µmost

( 1
n

(
µtall(h1) + · · ·+ µtall(hn)

)))
Another example given in [32] is the balls-in-box problem: A box contains about

20 black and white balls. Most are black. There are several times as many black

balls as white. What is the number of white balls? In precisiated form:

p1 : (X + Y ) is ∗20

p2 : X is most × ∗20

p3 : X is several × Y

q : Y is ?A

where ∗20 is approximately 20 and ?A denotes the queried variable. Approxi-



5. Hybrid Approaches 40

mately ∗a is a problem of precisiation, i.e. is a generalized constraint on the value a

that needs to be precisiated suitably. [32] does not give detailed explanation how to

calculate the example, merely states that it reduces to fuzzy integer programming,

see �gure 5.8.

Figure 5.8: Balls-in-box problem solution [32].

5.3.5 Booking agent example

Expressing the booking agent example in terms of GTU, let proposition p be "Holi-

dayInn has good reviews, probably doesn't have a balcony and costs 155e. Scandic

has excellent reviews, probably has a balcony and costs 160e." and the question q

"Which hotel ranks higher, considering reviews, balcony and price?". The precisi-

ated forms could be

p1∗ = Reviews(HolidayInn) is good,

Balcony(HolidayInn) isp unlikely,

Price(HolidayInn) is 155. (5.12)

p2∗ = Reviews(Scandic) is excellent,

Balcony(Scandic) isp likely,

Price(Scandic) is 160. (5.13)
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q∗ = Reviews(?X) is high ∧ Balcony(?X) is likely ∧ Price(?X) is low (5.14)

The GTU, as presented in [32; 33] is unfortunately not mature enough to calcu-

late this example without developing the theory further. According to the principles

of GCL, the query could be formulated as the conjunction of the constraints on Re-

views, Balcony and Price. Unfortunately, GTU does not present strict formalisms

to do this. There are three major areas where GTU should be developed further

for it to be implementable. 1) Present complete formalism for the generalized con-

straint language , or, as [33] notes this is an in�nite set, a subset of the GCL called

the standard constraint language (SCL) which is likely to be enough for practical

applications. 2) Present methods to precisiate any natural language proposition.

3) Develop algorithms for the precisiation, protoform transformation and computa-

tion/deduction.

A possible way of calculating the example might be to conjunctively combine the

terms in proposition p1∗ to get "(Reviews(HolidayInn) is good) ∧ (Balcony(HolidayInn)
isp likely) ∧ (Price(HolidayInn) is 155)". To have a semantic meaning, this propo-

sition needs a GCL, for example how to conjunctively combine good and likely.

One is a fuzzy membership degree, the other is a probability distribution. One in-

terpretation for this could be borrowed from Probabilistic Fuzzy Description Logic

Programs explained in section 5.2 - the conjunction of a fuzzy membership degree

with probability is the expected truth value. It is not immediately clear how this

could be used in GC propagation in the C/D module. A simple rule could possibly

reduce the calculation to the application of the rules presented in [33], but more

research is required to ascertain how.

The generalized theory of uncertainty is by no means a mature technology, but

might o�er semantic web agents a way to reason with uncertainties with di�erent se-

mantics - vague statements about incomplete information or probabilistic statements

about vague information. That is, fuzzy statements on probabilistic information or

probabilistic statements on fuzzy information. E.g. "There is heavy snowfall in

Tampere", with the snowfall being a probability distribution and heavy a fuzzy

membership. Conversely, "Bob is likely to be tall", where Bob being tall is a fuzzy

membership and likely a probability distribution on the fuzzy statement.
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6. CONCLUSION

Describing information in a way that is accessible to both humans and machines is

no trivial task. There are challenges in developing the theoretical back-end of logics

for ontologies so that machines can reason with semantic information. Practical

algorithms need to be decidable - terminate in a reasonable time. Additionally, the

Semantic Web brings a challenging environment where information can be untrust-

worthy, missing or vague. Some of the most prominent approaches in the literature

in dealing with uncertainty were described.

W3C Uncertainty Reasoning for the World Wide Web Incubator Group divides

uncertainty into six types: ambiguity, empirical, randomness, vagueness, inconsis-

tency and incompleteness. They can be seen as special cases of two types of in-

formation: information for which de�nition is lacking (vague, inconsistent, ambigu-

ous) and incomplete information (empirical, randomness, incompleteness). Roughly

fuzzy methods are best suited for vague information while probabilistic methods are

best for incomplete information.

Probabilistic approaches have a strong theoretical background and long tradition

in dealing with uncertainty across all �elds of research. Applied to the Semantic

Web, the most prominent probabilistic method is MEBN/PR-OWL. It combines �rst

order probabilistic logic with Semantic Web ontologies. The downside is de�ning

uncertainty in terms of MEBN is a tedious, error prone task which requires deep

knowledge of both the application domain and MEBN theory.

One of the selling points of fuzzy logic is that it is easy to interpret. Applied to

the Semantic Web, Fuzzy OWL 2 provides a simple way to add fuzzy annotations to

OWL 2, using existing OWL 2 syntax and editors. For fuzzy reasoning, dedicated

fuzzy reasoning systems need to be used, such as FiRE, DeLorean or FuzzyDL.

The main emphasis was to consider situations where several semantically dif-

ferent forms of uncertainty occur in a single application. A hotel booking agent

example was provided as a way to illustrate the sources of uncertainty and the ap-

proaches in dealing with them. The probabilistic fuzzy description logic program

approach by Straccia and Lukasiewicz [25] provides a ready to implement theory

with considerable thought put into algorithms and implementation.

Fuzzy description logics are, however, less �exible than the general theory of un-

certainty proposed by Zadeh [33]. GTU is a much less mature theory, providing no
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strict formalisms to translate every NL proposition into the generalized constraint

form and much less in the way of decidable algorithms for processing and reasoning.

It does not consider large knowledge bases and the e�ciency of a possible imple-

mentation either. It would require 1) strict formalism of GCL, 2) a detailed method

to precisiate any NL proposition and 3) e�cient algorithms.

In theory, a uni�ed framework for dealing with all kinds of uncertainty would be

ideal. GTU, at present, is not complete or ready for implementation. Probabilistic

fuzzy description logic program approach is, and will likely perform su�ciently in

practice. Like the Semantic Web, the future of it is uncertain. Which methods

will see widespread use, only time will tell, but one would think the methods that

are su�ciently e�ective in practice and require the least e�ort to implement and

maintain should prevail.
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