
MIAO ZHAO

DESIGN OF DIGITAL INTEGRATOR FOR ROGOWSKI COIL SEN-
SOR

Master of Science Thesis

Examiner: Pro. Timo D. Hämäläinen

Examiner and topic approved by the
Council of the Faculty of Computing
and Electrical Engineering on 4
March 2015

2

ABSTRACT

MIAO ZHAO: Design of Digital Integrator for Rogowski Coil Sensor
Tampere University of Technology
Master of Science Thesis, 94 pages, 5 Appendix pages
April 2015
Master’s Degree Programme in Information Technology
Major: Digital and Computer Electronics
Examiner: Professor Timo D. Hämäläinen

Keywords: Rogowski coil sensor, digital integrator design, Newton - Cotes Inte-
gration, Genetic Algorithm optimization, finite word length effect.

The goal of this thesis is to create a well performed digital Rogowski coil integrator on
PC for later implementation on FPGA, and the final filter is applied with fixed point
arithmetic. Integrator’s design and optimization based on the specification provided by
the company. During the implementation, the constraints of the hardware should be
taken into account, and the design method needs to be verified by simulations and prac-
tical experiments and tests.

There are two design phases to implementing the filter. The first phase is software
implementation, the integrator is realized by creating the MATLAB and C models. The
other phase is hardware realization. By software application, the filter could be simu-
lated with targeted test benches. After the software application is verified, hardware
implementation could be carried out if it is necessary. In this thesis, RTL model is de-
rived from the C model via translating it with VHDL. Afterward, the integrator is im-
plemented on FPGA board for practical field tests.

From the tests, the validity, practicability of the Rogowski integrator have to be verified
from the perspective of both functionality and performance. The software implementa-
tion of the integrator is capable of filtering different kinds of the input signals with rea-
sonable and acceptable outputs. Meanwhile, in the practical application, the integrator
performed well when dealing with various earth fault cases. All, in brief, this Rogowski
integrator has to satisfy the standard of the design specification.

3

PREFACE

This thesis was made for the Department of Pervasive Computing, Faculty of Compu-
ting and Electrical Engineering, Tampere University of Technology, in cooperation with
ABB Oy Medium Voltage Products.

I would like to thank my examiner Prof. Timo D. Hämäläinen at Tampere University of
Technology for help with my thesis plan and the text. I would like to thank my
supervisor Frej Suomi at ABB for the valuable insight during my design of the
Rogowski coil integrator. Thank Mika Kauppinen and Juha Ekholm for the opportunity
to do this thesis at ABB Medium Voltage Products in Vaasa. At last, I’d like to thank
my parents for their unconditional understanding and support for my studying and
working in Finland.

Tampere, 16 March 2015

Miao Zhao

4

TABLE OF CONTENTS

Abstract .. 2

Preface ... 3

1. Introduction .. 11

1.1 Background and Motivation .. 11

1.2 Requirements and Constraints ... 11

1.3 Design Platform and Tools .. 12

1.4 Organization of Thesis .. 13

2. Theoretical Background .. 14

2.1 Characteristics of Rogowski Coil Sensor ... 14

2.2 Integrators for Rogowski Coil Sensor .. 15

2.2.1 Analog and Digital Integrators .. 15

2.2.2 Digital Filter Design Issues... 16

2.3 Digital Integration Algorithms... 24

2.3.1 Direct Design Method Based On the Frequency Response 24

2.3.2 Newton-Cotes Integration Rules ... 25

2.3.3 Pole-Zero Placement .. 26

2.3.4 Optimization Method ... 27

3. Digital Integrator Design... 31

3.1 Coefficients Calculation .. 31

3.1.1 Starting Point Filter Design .. 32

3.1.2 Coefficients Optimization ... 41

3.1.3 Design Example ... 44

3.2 Structure Realization ... 53

5

3.2.1 Available Structures ... 53

3.2.2 Finite Word Length Effects Analysis .. 56

4. Filter Implementation .. 61

4.1 Software Implementation .. 61

4.1.1 MATLAB Model ... 61

4.1.2 C-Language Model ... 69

4.1.3 Performance Evaluation ... 70

4.2 Hardware Implementation ... 74

4.2.1 Topology .. 74

5. Testing Results and Analysis .. 76

5.1 Functional Verification.. 76

5.1.1 Sinusoidal Input ... 76

5.1.2 DC Input .. 77

5.1.3 Impulse Input ... 78

5.1.4 Noise Input ... 79

5.1.5 Complex Input.. 80

5.2 Performance Verification .. 80

5.2.1 Solid Earth-Fault .. 81

5.2.2 Low-ohmic Earth-Fault .. 82

5.2.3 High-ohmic Earth-Fault .. 82

5.2.4 Intermittent Earth-Fault .. 84

5.3 Summary of the Tests .. 84

6. Conclusions .. 85

6.1 Discussion ... 85

6.2 Challenge .. 86

6

References .. 87

7

LIST OF FIGURES

Rogowski integrator workflow ... 12

Rogowski Coil’s structure [10] .. 14

Block diagrams of FIR and IIR filters .. 16

Direct and Transposed Direct Form I Structures 21

Direct and Transposed Direct Form II Structures 22

Cascaded second order filter with Direct and Transposed Direct
Form I structures ... 23

Cascaded second order filter with Direct and Transposed Direct
Form II structures ... 23

A simple Genetic Algorithm Cycle [39] ... 27

Simple Genetic Algorithm Cycle .. 31

Frequency response of the resulted filter 33

Magnitude responses of three filters .. 34

Phase responses of three filters ... 34

Frequency response of trapezoidal integrator after adding a notch 35

Frequency response of directly designed filter 36

Magnitude and Phase responses of directly designed filter and
candidate 1 filter ... 37

Pole- zero position of the original trapezoidal integrator 38

Frequency response of the modified first-order trapezoidal integrator
 .. 39

Pole- zero position of the 3rd-order integrator 40

Magnitude response of 3rd-order integrator and the Candidate 1 filter
 .. 40

Variation in fitness values through generations with pSize numbers of
a) 20, b) 30 and c) 40 .. 47

8

Frequency responses of Filter1, Filter2 and Filter3, a) Magnitude
Responses, b) Phase Responses ... 50

Impulse and step responses of Filter2 and Filter3 52

Direct Form I of the 4th order IIR filter .. 53

Direct Form II of the 4th order IIR filter .. 54

Transposed Direct Form I of the 4th order IIR filter 54

Transposed Direct Form II of 4th order IIR filter 55

Cascaded second order filter with Direct Form II 56

Cascaded second order filter with Direct Form II transposed 56

Pole-zero deviations .. 58

Round-off Noise Power Spectrum .. 59

Filtering Functionality Simulation ... 60

The 4th-order filter Cascade Form structure 61

Filtering results of noise inputs with different amplitudes 64

Filtering results of noise inputs (0.005xIn) with different data
types .. 65

Filtering results of noise inputs (60xIn) with different data types ... 66

Filtering results of noise inputs (0.5xIn) with different data types .. 66

Filtering results of sinusoidal input (0.005xIn) 67

Output error comparisons of different data types 68

Output error comparison of different data types 68

Block diagram of filter functioning .. 71

Filtering results of test case 1 .. 71

Output results after one operation on FPGA 72

Output signals after integration and the error between two signals 72

9

Output signals after integration ... 73

Filter topology of one section .. 75

Simulation results with sinusoidal input ... 76

Simulation results with DC input ... 77

Simulation results with impulse input... 78

Simulation results with derivative of impulse input 78

Simulation results with random noise input 79

Simulation results with complex input .. 80

Simulation results with solid earth-fault .. 81

Simulation results with low-ohmic earth-fault 82

Simulation results with high-ohmic earth-fault 83

Simulation results with intermittent earth-fault 84

10

 LIST OF SYMBOLS AND ABBREVIATIONS

CT Current Transformer
AC Analog Current
PC Personal Computer.
FPGA Field-Programmable Gate Array.
BIBO Bounded-Input Bounded-Output.
ADC Analog -to-Digital Converter.
VHDL Verilog Hardware Description Language.
LTI Linear Time Invariant.
MSB Most Significant Bit
LSB Least Significant Bit
GA Genetic Algorithm.
RMS Root Mean Square
RTL Register Transfer Level

i Measured current from Rogowski sensor
Vout Output signal form Rogowski sensor
MR Mutual inductance
h(k) Impulse response sequence
Z Complex variable
a Denominator of filter coefficients
b Numerator of filter coefficients
N Filter’s order

11

1. INTRODUCTION

1.1 Background and Motivation

In electrical engineering, including power system, current transformers (CTs) have been
traditionally used for protection and measurement applications for the main reason of
their ability to produce the high power output. However, the emergence of microproces-
sor based equipment made high power output unnecessary and introduced other meas-
urements techniques. One such measuring device that equips many advantages over CTs
is the Rogowski coil transducers [1].

Rogowski coils are commonly incorporated in measuring and protection systems
throughout the industry and in research. Its feature of “air-cored” offers an advantage
over iron-cored measuring devices [2]. Thanks to the benefits of Rogowski coils, such
as high accuracy, excellent linearity, wide dynamic range, wide band and no magnetic
saturation, they can replace CTs and be used for protection, metering and control
purpose in the general electric current measurement field [1], [3], [4], [5], [6], [7]. The
advantages of Rogowski coil sensor over the traditional current transducers will make
it be more extensively used in the future.

Based on the principle of Faraday’s law of electromagnetic induction, Rogowski coil
produces a voltage output signal which is proportional to the derivative of the current
signal. An integrator is required to restore the measured AC waveform from the voltage
signal induced in the Rogowski coil sensor [1]. With a well-designed integrator, the
Rogowski coil can achieve excellent performance such as higher accuracy and better
linearity than conventional CTs [6]. Thus, an integrator with high performance is the
key to guaranteeing the high measuring accuracy of Rogowski coil sensor [3].

This thesis’ goal is to design a well performed digital Rogowski coil integrator on PC
for later implementation on FPGA. The idea is to find a proper method to design an
integrator with respect to all the specifications and requirements need to be concerned,
and improve the performance of the filter as much as possible. Additionally, the con-
straints of the hardware should be taken into account, and the design method needs to
be verified by simulations and practical experiments and tests.

1.2 Requirements and Constraints

This thesis was made by request of ABB Oy, Medium Voltage Products in Vaasa. The
main requirements and specifications are listed as below:

12

1. The target frequency range of the integrator is from 10 to 1250 Hz. The integrator
will work in electric power grid with frequency of 50 Hz. Thus, the primary focus
should be paid to the frequency around 50 Hz.

2. For the frequency response, the magnitude response should follow the equation
Magnitude = 50 / Frequency as close as possible. The phase response should be -90
degree as close as possible.

3. The group delay should be as flat as possible and as small as possible. Additionally,
it is better that from 50Hz, the group delay is positive and as close to zero as possi-
ble. The max group delay should be no more than two samples when the sampling
frequency is 9600Hz.

4. The filter needs to be implemented with fixed point arithmetic.

5. The step response should decay to zero as near as possible.

6. The filter should be BIBO stable.

7. Measurement and ADC quantization noise should not accumulate to disturbingly
large DC levels in the integrator.

8. The structure and bit widths of filter implemented on FPGA should be designed to
not suffer too many rounding errors.

1.3 Design Platform and Tools

In this thesis, the optimized integrator is finally implemented on the hardware platform,
which is an FPGA applied in a protection relay. Figure 1 briefly shows the general
workflow, where that Rogowski integrator works.

We developed the integrator in a software approach. To guarantee the computability of
the filter structure, and as well to verify the accuracy of this structure are of substantial
importance in the design [9]. Thus, before the filter algorithm is finally implemented on
the FPGA board, the digital filter is designed and simulated on PC with the aid of
MATLAB and Visual Studio. All of the early designs and optimizations on the digital
integrator are done with MATLAB. After that, Visual Studio is used to create a filter

Rogowski integrator workflow

13

model in C language. The C model is utilized for making the VHDL, where the ad-
vantage is that C is easier for a VHDL designer to understand that MATLAB code.

1.4 Organization of Thesis

In the subsequent part of this thesis, Chapter 2 introduces the theoretical background
related to the thesis work. In Chapter 3, specific integrator design algorithms are real-
ized, tested and corresponding comparisons are conducted through simulation with the
using of MATLAB. The best design method for the following actual design work is
chosen in the end. After deciding the design method of the filter, a detailed explanation
of the process of practical design work is introduced in chapter 4. This section contains
the distinct approaches to filter’s software and hardware implementations. Chapter 5
provides the testing results of the filter, the analysis of filter’s performance is made
afterward. Chapter 7 consists of the conclusion of the thesis work and possible further
work that could be done after this thesis work.

14

2. THEORETICAL BACKGROUND

2.1 Characteristics of Rogowski Coil Sensor

A Rogowski Coil is an air-cored coil, in which the windings are twined evenly on a non-
magnetic skeleton. The Rogowski coil has galvanic isolation [45] with the measured
circuit, which is convenient for isolated measurements of high voltage circuits. Thus, it
can be utilized as sensing element, such as electronic current transformer. The detailed
operation theory of Rogowski coil can be found by referring [9].

The measurement of current is based on Faraday’s Law and Ampere’s Circuital
Law. Figure 2 shows the structure of a Rogowski coil. When the measured current I
goes through a cable encircled by the coil, the output signal is a voltage	 ௢ܸ௨௧, which is
proportional to the rate of change of the measured current.

Rogowski coil sensor’s current vs. voltage properties is shown in Equation (1):

௢ܸ௨௧ = ோܯ−
ௗ௜
ௗ௧

 (1)

In which, t is the time and ோ is the mutual inductance between the primary and theܯ
secondary windings [10].

The output signal is a so-called transmitted signal, it is proportional to the derivative of
the primary current. The phase shift between the input and output signal is 90 degrees
[10]. The original signal can be reproduced by integrating the output voltage, as Equa-
tion (2) shows in the following [11]:

݅ = ଵ
ெೃ
∫ ௢ܸ௨௧݀ݐ
௧
଴ (2)

Rogowski Coil’s structure [10]

15

Due to the absence of iron in a Rogowski coil sensor, no magnetic saturation occurs. As
a result, the output is linear over the whole current range up to the highest current. How-
ever, in practical the cabling and connectors will restrict the dynamic range.

Intermittent Earth Fault

An imperative reflection of the integrator’s performance is the intermittent earth fault.
Intermittent earth fault is a particular type of failure that is encountered mainly in com-
pensated grid with underground cables. According to [12], intermittent earth fault “is
characterized by repetitious of short duration self-extinguishing faults. This kind of
failure tends to be difficult for conventional directional earth fault protection relays to
detect due to highly irregular wave shape of residual current. Whereas residual over-
voltage relays used typically as a substation backup protection have better chances for
fault detection because of more steady behavior of residual voltage.” Due to this fact,
intermittent earth fault can often cause non-selective tripping of the substation backup
protection and eventually an outage with substantial cost. ” That is why in thesis, a
particular integrator’s performance test for the intermittent earth fault is made. It is nec-
essary to guarantee that the integrator functions well under intermittent earth fault.

2.2 Integrators for Rogowski Coil Sensor

2.2.1 Analog and Digital Integrators

Analog and digital methods can implement the integration part of the Rogowski coil.
Analog integrators are usually composed of inertial elements such as amplifier, resistors,
and capacitors. Currently, analog integrators are generally at the end of Rogowski coils
to transform input current’s amplitude and phase. However, analog devices are not tem-
perature and aging stable, which could cause problems, such as leakage, loss of capacity
and zero-drift in the analog devices. In addition, it is relatively inflexible to design the
feedback and compensation of an analog integrator [13]. All of these factors existing in
analog devices are potential to result in integration errors.

Digital integrator, however, possesses the outstanding features which overcome the in-
herent weak points of analog one. It is based on the sampling algorithm, which samples
the signal directly and then restores the original signal by numerical integration meth-
ods. Furthermore, the disadvantages of classical analog integrator, such as thermal and
time stability, could be entirely avoided [14].

Digital integrator, featuring higher accuracy and stability, good phase response perfor-
mance as well as flexible structures, are used widely now in Rogowski coil sensors [15].
There are several methods, such as using Data acquisition card and PC to implement
digital integrators, the most common method is using ADC and DSP to realize the digital
integrator [14].

16

Therefore, in this paper, a digital integrator of the Rogowski coil was designed,
using several integration algorithms.

2.2.2 Digital Filter Design Issues

The design of digital integrators is essentially the design of digital filters. According to
[16], “A digital filter is a system that implements a mathematical algorithm in hardware
and/or software, in order to achieve the filtering goal in a particular region of a signal
spectrum.”

Types and Representations

Digital filters can be categorized into several groups depending on the criteria used for
classification. The two main types of digital filters are finite impulse response (FIR) and
infinite impulse response (IIR) filters. Both of the filters can be represented by the im-
pulse response sequence, which is often denoted as ℎ(݇)	(݇ = 0, 1, …) [16]. Since the
digital filters we are going to design are linear and time-invariant (LTI), the general
forms of FIR filter and IIR filter can be expressed as:

(݊)ݕ = ∑ ℎ(݇)ݔ(݊ − ݇)ேିଵ
௞ୀ଴ (3)

(݊)ݕ = ∑ ℎ(݇)ݔ(݊ − ݇)ஶ
௞ୀ଴ (4)

Where ݊)ݔ − ݇) is present input and is (݊)ݕ the output sequence. FIR filters are also
called as non-recursive digital filters since they do not have the feedback. Sometimes,
however, recursive algorithms can be used for the realization of FIR filter. Unlike FIR
filters, IIR filters have the feedback and they are therefore known as recursive digital
filters. Figure 3 shows the block diagrams of FIR and IIR filters.

In practice, the IIR filtering equation is expressed in a recursive form as equation (5)
since it is not feasible to represent the impulse response, which is theoretically infinite.

 Block diagrams of FIR and IIR filters

17

(݊)ݕ = ∑ ℎ(݇)ݔ(݊ − ݇)ஶ
௞ୀ଴ = ∑ ܾ௞ݔ(݊ − ݇) −∑ ܽ௞ݕ(݊ − ݇)ெ

௞ୀ଴
ே
௞ୀ଴ (5)

Where ܽ௞ and ܾ௞ are the coefficients of the filter. Equation (3) and (4) below are also
respectively called as difference equations for FIR and IIR filters. For LTI as well as
causal filters, FIR and IIR filters can be expressed as transfer functions in the Z-domain,
then the forms could be like the following:

(ݖ)ܪ = ∑ ℎ(݇)ିݖ௞ேିଵ
௞ୀ଴ (6)

(ݖ)ܪ = ∑ ܾ௞ିݖ௞/(ே
௞ୀ଴ 1 + ∑ ܽ௞ିݖ௞ெ

௞ୀଵ) (7)

Where the filter order equals to the greater one of M or N (in FIR filter, the order equals
to N). Transfer functions are of huge importance in evaluating the frequency response
for the filters.

FIR and IIR can also be differentiated by visualizing the place of the poles. For FIR
Filter, all of the poles of the filters locate at the origin, and, as a result, the shape of the
frequency responses are determined only from the locations of the zeroes. On the other
hand, IIR filters have the poles to move inside the unit circle, permitting them to con-
tribute more heavily to the shape of the frequency responses.

For FIR filters, they often have linear phase responses, and they are always stable. When
comparing with the IIR filters, it frequently needs higher filter order than FIR filters to
achieve the same response for fixed specifications [16]. As a price, for IIR filters, they
always have non-linear phase responses and have big potentials to be unstable.

Digital Filter Design Issues

Selection of Filter Type

It is always a trade-off between the choices of IIR and FIR filters. However, the decision
is mostly dependent on the specific design conditions. It is much easier to choose FIR
filter when there is a need for linear phase, and there is no strict requirement on the filter
order. However, when considering the filter order or when particular phase response is
needed, it is better to choose IIR filter. Even though, there is a big risk to get unstable
filter during the design. In many applications, the linearity of the phase response is not
as important as the computational efficiency [8]. However, in this thesis, specific phase
response is required, and with the resource consumption of hardware taken into account
[18], which makes IIR filter a better choice.

General Design Steps

Following are the design steps for an IIR filter in this thesis:

18

1. Filter Specification. Filter specification determines the characteristics of the de-
sired filter and indicates the requirements we should meet during the design pro-
cess. The objective of designing a digital filter is to develop a causal transfer
function .which can satisfy the filter specifications (ݖ)ܪ

2. Coefficients Calculation. When the specification is made, an essential step is to
decide the transfer function, which could realize the filter frequency response
specifications as well as possible. In other words, it means to find out the optimal
filter coefficients. The filter’s order needs to be estimated after the selection of
the digital filter type. There are several approaches to developing a filter, the
particular method is based on the transfer function and the filter specifications.
Additionally, it is necessary to guarantee the filter to be stable when an IIR filter
is desired.

3. Structure Realization. For IIR and FIR filters, there are different kinds of struc-
tures. IIR filters often use direct, cascade and parallel forms, for FIR filters, di-
rect form is widely used. When considering the finite word length problems,
cascade and parallel structures are better choices than direct form in IIR filter
design, as cascade and parallel structures have fewer coefficient sensitivity
problems than direct forms, especially when they are with high filter order. In
many applications, a higher order IIR filter is implemented either in a
presentation of cascade of second-order sections or in the form of a parallel con-
nection of second-order sections. Poles are more sensitive to the quantized coef-
ficients and other finite word length effects [8].

4. Implementation. The practical filter application is either done in software or
hardware, but neither can provide infinite precision for the coefficients as well
as the signal variables. It turns out that direct realization of a digital filter may
not satisfy the designer’s expectation for the performance due to the finite pre-
cision arithmetic [9]. Thus, it is necessary to develop new suitable filter struc-
tures when converted from transfer function, and to avoid significant finite word-
length effects.

Fixed Point Consideration

In digital filters, the arithmetic operations can be coarsely divided into three broad cat-
egories: floating-point, fixed-point, and block floating point representations [18]. We
assume floating-point arithmetic of the calculation and approximation steps during the
design process. Then fixed point arithmetic is employed by replacing the floating point
arithmetic. It is evident that finite word length effects will degrade the filter’s
performance, and the extent of the effects have to be confirmed before the IIR filter is

19

finally implemented. In addition, it is necessary to find a remedy if the degradation is
not acceptable [16].

In the practical filter implementation, it is often necessary to represent the coefficients
by specific number of bits. The number is represented in the way that a binary point is
used to separate the integer part from the fractional part [8]. In addition, a sign bit is
placed in the leading position for the signed fixed point number. The fixed point format
varies depending on the way negative number are represented. In this case, the fixed
point negative numbers are represented in two’s complement representation. For
example, a positive number has the sign bit 0 while a negative number has the sign bit
1 [20]. In general, the decimal equivalent of a binary number consisting of B1 integer
bits and B2 fractional bits, which could be represented as following form [21]:

∑ ௜2௜஻ଵିଵܣ
௜ୀି௕ 					 (8)

From above we get:

஻ଵିଶܣ஻ଵିଵܣ ଶିܣଵିܣ∆଴ܣଵܣ… 	(9)																																																																																							஻ଶିܣ…

Where each bit ௜ is either a 0 or a 1, the leftmost bitܣ ஻ଵିଵis called the mostܣ signifi-
cant bit (MSB), and the rightmost bit, .୆ଶ is called the least significant bit (LSB)ିܣ ∆
denotes the binary point or radix point, which is fixed.

Radix point of a number is used to separate its integer and fractional numeric fields [18].
For description convenience, a fixed point number is represented in a form of s B.B2 in
this thesis, where B is the sum of B1 and B2. In other words, B is the total bit width of
the number, and B2 is the bit width of the fractional part.

The basic arithmetic operations in the implementation of digital filtering algorithms are
addition (subtraction) and multiplication. It should be carefully treated that the arithme-
tic of addition and multiplication of two fixed-point binary numbers may result in more
bits than those in the two numbers [22]. As a consequence, when the result is stored
back in the memory, the result must either be truncated or rounded to fit the memory
word-length. That is one of the word-length effects caused by the finite word length.

The use of finite precision arithmetic leads to three types of finite word-length effects
[16].

1. Quantization. The quantization includes input/output quantization and the coef-
ficient quantization. We mainly focus on the coefficient quantization in this the-
sis. Quantization of the filter coefficients is likely to disturb the locations of the
filter’ poles and zeroes. Then, the corresponding filter response is different from
the ideal filter response. This deterministic frequency response error is referred
to as coefficient quantization error.

20

2. Arithmetic round off errors. Quantization makes it necessary to quantize filter
calculations by rounding or truncation. Round off noise is like low-level noise
in the filter output, which comes from rounding or truncating calculations during
the filtering process.

3. Overflow. With fixed point arithmetic, it is possible for filter calculations to
overflow. The overflow occurs when the result of an addition exceeds permissi-
ble word-length.

Structure Realization

Structure realization is based on the known transfer function. The structural representa-
tion plays a crucial role in filter implementations, for it provides the relations between
intermediate variables with the input and the output [8].

For one filter or one transfer function, several equivalent structures are available. How-
ever, in practice, when fixed point arithmetic is employed, a particular realization be-
haves differently from its other equivalent realizations. Hence, under a fixed point arith-
metic, it is necessary to choose a structure which has good quantization properties
carefully. Here in our case, we only consider the realization problem of IIR filters. We
outline several common forms that are used in the realization of IIR filters.

Direct Form I Structures

As Figure 4 shows, Direct Form I structure on the left can be regarded as an all-zero
filter section followed in the series by an all-pole filter section. In general, it is always
possible to implement a Nth-order filter using only N delay elements (Here we assume
M equals to N). Direct Form I structure needs twice as many delays as are necessary.

21

The right side of the figure shows transposed Direct Form I structure. The difference
between direct and direct transpose realizations is not significant. Both structures have
the same multiplication coefficients. The position of delays determines the main differ-
ence. Similar to direct realization structure, the direct transpose realization structure uses
2N delays, (2N+1) multiplications and 2N additions.

One advantage of the direct form I implementation is that it cannot overflow internally
in two's complement fixed-point arithmetic while most IIR filter implementations do
not have this property [23]. The disadvantages of this realization includes the greatest
sensitivity to the accuracy of coefficients, and the biggest complexity due to implemen-
tation.

Direct Form II Structures

 Direct and Transposed Direct Form I Structures

https://ccrma.stanford.edu/~jos/filters/Difference_Equation.html

22

The direct form II structure is shown on the left side of figure 5[15]. It can be regarded
as an all-pole filter section followed by an all-zero filter section. It is canonical with
respect to delays, since the delay elements associated with the all-pole, and all-zero sec-
tions are shared with each other. As a result, direct form II realization structure has re-
duced number of delays to the minimum, that is, N delays. That is the main advantage
over direct form I realization structures.

On the right side of figure 5 is the transposed direct form II structure It uses N delay
elements, (2N+1) multiplications and only (N +1) additions, while direct form II needs
(N +1) additions.

Unlike direct form I structure, overflow can occur at the delays in direct form II struc-
ture with fixed-point arithmetic. In general, all direct-form structures are very sensitive
to round-off errors in the coefficients, especially for filter with high orders. For this
reason, series low-order sections are applied in filter realization to get lower quantiza-
tion sensitivity [23].

Cascaded Second-Order

 Direct and Transposed Direct Form II Structures

http://ccrma.stanford.edu/realsimple/Delay/Delay_lines.html
https://ccrma.stanford.edu/~jos/mdft/Binary_Integer_Fixed_Point_Numbers.html

23

As indicated before, under fixed point arithmetic, equivalent structures have different
performance. Especially when the filter order is high, direct realization of the filter is
very sensitive to finite word-length effects and should be avoided in these cases [16]. In
practice, the transfer function is broken down into smaller sections, typically second
and/or first order blocks, which are connected in cascade. For a cascaded second order
filter, there are two 2nd order filters connected in the cascaded form. Figure 6 and Figure
7 describe the differences of these two structures.

Cascaded second order filter with Direct and Transposed Di-
rect Form I structures

Cascaded second order filter with Direct and Transposed Di-
rect Form II structures

24

2.3 Digital Integration Algorithms

This chapter presents several known integrator design practices with general theories.
The specific design for a starting point filter will be explained later with details in chap-
ter 3.

2.3.1 Direct Design Method Based On the Frequency Response

By analyzing the design specification, there is an explicit requirement for magnitude
and phase response in the particular frequency range of interest. With the help of
MATLAB Signal Processing Toolbox, we could use the function “invfreqz” to generate
corresponding filter coefficients. This function finds a discrete-time transfer function
that corresponds to a given complex frequency response. From a laboratory analysis
standpoint, “invfreqz” can be used to convert magnitude and phase data into transfer
functions [24, 25]. This function performs like [26]:

[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace')

Where the parameters are explained in the following:

· h is the vector that stores the complex frequency response
· w is the vector specifying the frequency points
· m is the desired order of the numerator
· n is the desired order of the denominator
· wt is a weighting factors vector of the same length as w
· iter is the iteration bounds
· tol is the convergence parameter

The function returns the real numerator and denominator coefficients in vec-
tors b and a of the transfer function:

(ݖ)ܪ = ∑ ܾ௞ିݖ௞/(௡
௞ୀ଴ 1 + ∑ ܽ௞ିݖ௞௠

௞ୀଵ) (10)

Based on the frequency response specification, it is easy to specify the input parameters.
It is a very fast way to design a filter. However, the resulted filter performance needs to
be tested since specifying comprehensive frequency points for the filter is difficult to
some extinct, and it could not describe the frequency response in an exact way with
good precision. As a result, the filter we obtained with have deviations from the speci-
fications. It is necessary to specify the input parameter carefully during the design, and
several iterations may do help for getting better coefficients.

25

2.3.2 Newton-Cotes Integration Rules

The transfer function of digital IIR integrators could be derived by the simple applica-
tion of z-transform to the difference equations defined by the various numerical integra-
tion rules [27, 28]. There are several methods to implement the basic integrators which
are based on the Newton-Cotes integration rules, such as Al-Alaoui’s first-, second- and
third-order integrators and [27, 30], Ngo’s third-order integrator [31]. Newton-cotes in-
terpolation formula is a technique that calculates a definite integral/curve by replacing
that curve by a more integrable and simpler curve [32].

In numerical analysis, the Newton-Cotes integration rules are carried out by evaluating
the integrand at equally spaced points [47]. A related good starting point filter is neces-
sary to guarantee the convergence to the optimal solution. A few of the classical
integrators using newton-cotes rules are worth mentioning, like Trapezoidal Integrator
[27], Simpson Integrator [33], Rectangular Integrator, which are among the most
popular methods for approximating the evaluation of the definite integrals [18]. In this
section, these three integration rules are introduced.

Trapezoidal algorithm

The numerical integration rule of Trapezoidal algorithm [27] could be represented as
the following function:

∫ ݐ݀(ݐ)݂ ≈ ௛
ଶ

[݂(ܿ) + ݂(ܿ + ݀)]; 				ℎ = (݀ − ܿ);				ௗ
௖ (11)

Where, is the function that needs to be integrated between the interval (ݐ)݂ c to d, and
c is smaller or equal to d. The transfer function of the trapezoidal integrator to Z domain
is given by:

்ܪ = ்
ଶ
ଵା௭షభ

ଵି௭షభ
 (12)

Where T is constant, that is obtained from the transformation. Based on the transfer
function, the coefficients of the integrator are directly obtained in (13). However, the
derived filter is not stable, this issue will be discussed later.

 Numerator coefficients: b0 = 1, b1 = 1;

Denominator coefficients: a0 = 2, a1 = -2. (13)

Simpson algorithm

The Simpson algorithm [27, 33, 34] could be represented in the following formation:

26

∫ ݐ݀(ݐ)݂ ≈ ௛
ଷ
ቂ݂(ܿ) + 4݂ ቀ௖ାௗ

ଶ
ቁ+ ݂(݀)ቃ ; 				ℎ = (݀ − ܿ);				ௗ

௖ (14)

The transfer function of the Simpson 1/3 integrator is given by:

ௌܪ = ்
ଷ
௭షమାସ௭షభାଵ

ଵି௭షమ
 (15)

This filter is a third order filter. The coefficients are listed as following:

Numerator coefficients: b0 = 1, b1 = 4, b2 = 1;

Denominator coefficients: a0 = 3, a1 = 0, a2 = -3. (16)

Except for the Simpson 1/3 rule, there is another Simpson 3/8 rule which could yield a
4th order filter, which we will not discuss in our case.

Rectangular Algorithm

The Rectangular algorithm [27, 35, 36] could be represented as following:

∫ ݐ݀(ݐ)݂ ≈ h ∗ f(c); 				ℎ = (݀ − ܿ);				ௗ
௖	 (17)

The transfer function of the Simpson integrator is given by:

ோܪ = ܶ ଵ
ଵି௭షభ

 (18)

This filter is a third order filter. The coefficients are listed as following:

Numerator coefficients: b0 = 0, b1 = 1;

Denominator coefficients: a0 = 1, a1=-1. (19)

2.3.3 Pole-Zero Placement

In general, the frequency response of an ideal digital integrator [32, 37] is given by:

(ݓ)ܪ = ଵ
௝௪

(20)

Where ݆ = √−1 and .is the angular frequency in radians ݓ

The filter can be directly derived since the transfer function of this filter is known. Then
by analyzing the specification, new desired filter with higher order is designed by adding
extra zeroes and poles to the primary filter. This approach is also known as the pole-
zero placement method. When a zero is placed at a given point on the z-plane, the fre-
quency response will be zero at the corresponding point. On the other hand, a pole

27

produces a peak at the relevant frequency point. In order to make the filter stable, all of
the poles need to be inside the unit circle.

2.3.4 Optimization Method

Since the design of digital filters involves multiple design specifications, which are often
conflicting, generally there is no easy way to an optimal design. Optimization based
methods are presented to design digital filters that would satisfy the prescribed specifi-
cation. However, optimization methods often require more computation work than basic
design methods and are not so time efficient.

After generating the starting point filter, global optimization method is employed. Ge-
netic Algorithm (GA) [38] is a good method to improve on a good but not perfect filter.

Genetic Algorithms (GAs) is one type of evolutionary algorithms, which are based on
the mechanics of natural selection and genetics [39]. As an optimization method, GAs
are flexible, generic and robust. GAs operate on a population of several individuals in
parallel in each generation/iteration, where each individual, notated as the chromosome,
represents one candidate solution to the problem. GAs search the solution space of a
function through the use of simulation and evolution, during which the fittest one sur-
vives. According to the heuristic characteristic of GA, the most qualified individuals of
the population are prior to survive and reproduce the next generation, thus improving
the successive generations, and the most fitting characteristics are imposed in the next
generation. On the other hand, inferior individuals can just survive and reproduce by
chance [40, 41]. A simplified GA process is presented in following figure:

A complete GA entailing four fundamental steps is introduced as follows [40]:

Step 1: Initializing a random population.

A simple Genetic Algorithm Cycle [39]

28

Step 2: Evaluating the fitness of the chromosomes by precisely defined criteria, which
is based on the design requirements for searching the best matching solutions.

Step 3: If the chromosome with best fitness value satisfies the requirements sufficiently,
producing that chromosome as the expected solution and stop. Otherwise, continue to
Step 4.

Step 4: Applying crossover and mutation among the chromosomes to generate more
chromosomes, and then restart at Step 2.

Then the derived algorithm is summarized with specific notations in the following [40]:

1 Supply a population P0 of N individuals and corresponding
fitness value for each individual in one generation.

2 Iteration from 1 to i

3 Choose individuals ௜ܲ
ᇱ from selection function (௜ܲ − 1) for

reproduction.

4 New generation ௜ܲ is got from reproduction function	 ௜ܲ
ᇱ

5 Evaluate (௜ܲ) by evaluation function

6 Jump to next generation i=i+1

7 Repeat Step (3) until termination

8 Print out best solution found

Six fundamental issues are used in a GA algorithm: chromosome representation,
selection function, genetic operators, initial population, termination criteria, and
the fitness function. These issues will be discussed separately later in this section [41].

Chromosome Representation

In a Genetic Algorithm, chromosome representation is used for describing the individ-
uals who will be manipulated by other functions. According to [40], “The chromosome
representation is crucial for a GA since the representation scheme determines how the
problem is prototyped in GA and affects the determination of other genetic operators.
Each chromosome consists of a sequence of genes from a particular alphabet. An
alphabet could be made of binary digits, floating point numbers, integers, symbols, ma-
trices, etc.”

29

Selection Function

The purpose of individual selection is to create new successive generations. Selection
plays a crucial role in a GA. A probabilistic selection is performed based on the individ-
ual’s fitness value so that the better individuals have an increased chance of being se-
lected. An individual in the population can be chosen more than once with all individuals
in the population having a chance of being selected. There are several strategies for the
selection process: roulette wheel selection, scaling techniques, tournament, elitist mod-
els and ranking methods [38, 40].

Roulette wheel, to be as the first selection method, was developed by Holland [42]. The
probability, ௟ܲ, for each individual is defined by:

P[Individual	݈	is	chosen] = ி೗
∑ ிೕ
ು೚೛ೄ೔೥೐
ೕసభ

(21)

Where ௟ܨ equals the fitness of individual l.

Ranking methods only require the evaluation function to map the solutions to a partially
ordered set, thus allowing for minimization and negativity. Ranking methods assign ௜ܲ

based on the rank of solution i when all solutions are sorted. Normalized geometric
ranking, [43], defines ௟ܲ for each individual by:

P[Individual	݈	is	chosen] = −ᇱ(1ݍ ௥ିଵ (22)(ݍ

Where:

· q = the probability of selecting the best individual,
· r = the rank of the individual, where 1 is the best.
· P = the population size
· ᇱݍ = ௤

ଵି(ଵି௤)ು

Genetic Operators

Genetic operators provide the underlying search mechanism of the GA. The operators
are used to create new solutions based on existing solutions in the population. There are
two fundamental types of operators: mutation and crossover. Crossover takes two indi-
viduals and produces two new individuals while mutation alters one individual to pro-
duce a single new solution. The application of these two fundamental types of operators
and their derivatives depends on the chromosome representation used.

30

Initialization, Termination, Evaluation Function

An initial population must be created for the GA at the beginning. The most common
method is to generate individuals for the entire population randomly. However, since
GA can iteratively improve existing individuals, the beginning population can be stored
as potentially useful solutions, with the remaining randomly generated individuals in
the population.

According to [44], “The GA moves from generation to generation selecting and repro-
ducing parents until a termination criterion is met. The most often used stopping crite-
rion is a specified maximum number of generation. Another termination strategy in-
volves population convergence criteria. In general, as will force much of the entire pop-
ulation to converge to a single solution.” Alternatively, a target value for the evaluation
measure can be established based on some arbitrary threshold.

Fitness functions of many forms can be used in a GA, subject to the minimal require-
ments that the function can map the population into a partially ordered set.

31

3. DIGITAL INTEGRATOR DESIGN

In this thesis, an optimal digital integrator is designed step by step. This filter is expected
approximately to fulfill all the specifications mentioned in chapter 1. It is a multi-crite-
rion design problem as there are specific requirements for both magnitude and phase
responses. To this end, several design methods are combined.

Firstly, the choice of starting point filter has a great influence to the further optimization.
Its design strategy varies depending on what integration algorithms are employed. The
starting point filter is carefully selected by referring to the design specification and con-
straints mentioned in Section 1.2. There are three proposed approaches that we could
choose to create a starting point filter.

Secondly, optimized filter is obtained by applying optimization algorithms to the
starting point filter, GA optimization method is used in this thesis.

After the optimal filter is derived, several filter structures are proposed to illustrate the
suitability and stability of the desired filter with fixed point arithmetic. The frequency
responses, as well as the corresponding filter structures, will be presented graphically.
Group delay and time domain responses are compared with the specified criteria.

In this case, the design flow is explained in Figure 9 as following:

3.1 Coefficients Calculation

Three different methods are proposed in this chapter. The methods introduced here can
be used as suitable candidates for finding proper starting point digital integrators. Both
the amplitude and the phase responses are taken into consideration during the design.
The best starting point filter is carefully chosen by comparing the filter’s performance,
which is based on the specification mentioned in chapter 1. This design strategy is rela-
tively fast and straightforward to find a close neighborhood of the desired filter. The
whole design process used floating point arithmetic with aid of MATLAB.

Simple Genetic Algorithm Cycle

32

3.1.1 Starting Point Filter Design

In this section, several integrators are designed. All the filters’ coefficients use floating
point arithmetic, the finite word length effects are not taken into consideration at this
design stage.

Direct Designed Integrators

For direct design method, the most important thing is to find out proper input parame-
ters. It is mainly a process of trial and try. In the beginning, very simple data are used,
then according to the output coefficients and filter performance, corresponding modifi-
cations can be done.

According to the filter specification, the filter operates with frequency of 9.6 KHz. The
interesting frequency range (w) is from 10 to 1250 Hz, which is specified in radiance
between 0 to 2π. The magnitude (mag) at 50 Hz should be exactly 1. For expected filter
performance, magnitude at 0 Hz should be 0. The phase response (phase) should be -90
degree as close as possible. Here “wt” is initial for weight. These parameters are set in
the following table. Then the first experiment is carried out by applying the above pa-
rameters to the function invfreqz. It yields a 3rd order filter, obtained coefficients are
shown as well in the table:

Table 1. Example settings of using direct design method

Parameters Value

w [0,pi*25/4800,pi*50/4800,pi*100/4800,pi*200/4800,

pi*400/4800,pi*800/4800,pi*1250/4800,pi*4800/4800]

mag [0,2,1,0.5,0.25,0.1,0.06,0.03,0.00001]

phase [0/180*pi,-89/180*pi,-89.75/180*pi,-89.90/180*pi,

-89.94/180*pi,-89.97/180*pi,-89.98/180*pi,-89.99/180*pi,

-89.999/180*pi]

wt [1,1,10,10,10,10,10,10]

Function: [b,a] = invfreqz(mag.*exp(1i*phase),w,3,3,wt,1000,0.01,'trace');

Result

b [-0.04035058,0.058111759,0.041267960,-0.05772230]

a [1,-0.97516931,-0.99410984, 0.970325597]

Figure 10 shows the frequency response of this 3rd order filter:

33

Comment: Form the figure, the magnitude barely match the requirements, and the phase
response of this filter is not good. As a result, this filter could not be taken as a starting
point filter. If this method is further used, it undoubtfully will take a lot of time for
tuning the parameters. However, the performance of the filter cannot be guaranteed.
Thus, it is better to use other methods.

Newton-cotes Based Digital Integrators

Three different digital integrators based on Newton-cotes rules are simulated in this sec-
tion: trapezoidal digital integrator, Simpson digital integrator and rectangular digital
integrator. Here the simulation configuration and the results of the simulation are given.
The example codes of simulators can be found in Appendix. It is evident that the pro-
posed integrators have different orders, and correspondingly have different frequency
responses.

Trapezoidal Digital Integrator: Based on the transfer function which is mentioned in
section 2.3, the coefficients is directly obtained (i.e., b is [1 1] and a is [2 -2]). The
coefficients are applied into the MATLAB function tf2zp. Then to stabilize the system
as optimization, specifically, all of the poles are kept inside the unit circle by multiplying
the previous pole’s value with 0.9995. Even though the multiplier of 0.9995 is near to
1, the performance of the filter will change to some extent because IIR filters are very
sensitive to the change of poles.

Simpson Digital Integrator: Here Simpson 1/3 rule is chosen. The same configuration
is done as above, the example simulator can be found in Appendix.

Frequency response of the resulted filter

34

Rectangular Digital Integrator: By analyzing the transfer function, we get the coeffi-
cients as following and by the same means to apply the coefficients to MATLAB func-
tions.

The magnitude and phase responses of the above filters are depicted separately in fol-
lowing figures.

Comment: According to the figures, the trapezoidal integrator has better performance
in terms of the phase response. When it comes to magnitude response, rectangular
integrator has more similarities with the ideal filter, and the trapezoidal integrator has
better performance than the Simpson filter. Since the phase response is more
complicated to be tuned in the optimization process, it is more reasonable to choose
trapezoidal filter for further optimization.

Magnitude responses of three filters

Phase responses of three filters

35

Next, in order to get a better filter, either optimization methods needs to be applied, or
the filter’s order needs to be increased if the trapezoidal integrator was chosen as the
starting point filter. Based on this conclusion, we increased the order of trapezoidal
integrator by adding a notch near 0 Hz. The example simulator is given in Appendix.
and the corresponding frequency response showed in Figure 11 proved our choice was

right.

Comment: After adding a notch, here this modified filter is called as candidate 1filter.
This filter has not only good phase response but also excellent magnitude response. As
a result, this filter could be a superb choice for the starting point integrator.

 Frequency response of trapezoidal integrator after adding a notch

36

Direct Design Based On the Frequency Response

Another fundamental digital integrator was derived by directly identifying the transfer
function, which corresponds to the given frequency response. In this case, the expected
magnitude and phase response .are defined at first in specific frequency points	࢝	and	ࢎ

Then the MATLAB function invfreqz is used to convert data into transfer function co-
efficients. A simple case is introduced in Appendix to explain how it works:

Comment: By analyzing the above figure, it is evident that both magnitude and phase
response of the integrator is far away from the expectation of the desired filter. As a
conclusion, even though further optimization methods could be used on the filter, it
would cost more time to choose this method to design the starting point filter than to
select the candidate 1 filter.

A comparison between the directly designed filter and candidate 1 filter is given in
Figure 15. It is evident that candidate 1 filter has better performance than the directly
designed filter.

 Frequency response of directly designed filter

37

Pole-Zero Placement

In order to obtain the desired frequency response, poles and zeros can be placed strate-
gically on the ideal integrator to generate new integrators. This method can as well be
used to increase the filter’s order because the higher the order, the better the performance
of the filter.

Design Instance 1

An example is shown to explain how to guarantee the designed filter be stable and how
to adjust the magnitude response by means of tuning gain parameter.

Magnitude and Phase responses of directly designed filter
and candidate 1 filter

38

Here the original trapezoidal integrator is employed to illustrate how the pole-zero
placement method works. Figure 14 shows the position of pole and zero of the trapezoi-
dal integrator on z-plane.

Comment: As it is known, the filter is stable when all of the poles are inside the unit
circle. However, from the above figure, it 's hard to tell whether the poles are inside the
unit circle or not. In order to guarantee the stability of the filter, the pole’s position needs
to be adjusted. The same method mentioned in the section for trapezoidal integrator
design (program 1) in Appendix is utilized to make sure the position of poles.

Now the filter is stable. By adjusting the obtained gain value k, the magnitude response
of the filter at 50 Hz is tuned to be 1 (i.e., 0 dB). Figure 17 is the magnitude and phase
response of the modified first-order trapezoidal integrator obtained above. As the figure
shows, it is clear that the magnitude response at 50 Hz is very close to 0 dB.

Pole- zero position of the original trapezoidal integrator

39

Design Instance 2

This example is for explaining how to utilize pole-zero placement to add a notch for a
filter. According to Figure 17, the phase response of the first order trapezoidal integrator
performs well. However the magnitude response at 0 Hz is huge, which means that if
there is a DC input, the output value of the filter will be saturated and would never
decay. This result is not expected. Additionally, based on the specification, it is needed
to minimize the magnitude response at 0 Hz. Therefore, it is necessary to add a notch
around 0 Hz, where the pole-zero placement method is utilized again.

A conjunct pair of zero and pole is added around 0 Hz, which will yield a 3 rd-order filter.
What needs to be mentioned here is that the width of the notch affects the stability,
impulse response and other performance of the filter. A concrete example is given in
Appendix.

Frequency response of the modified first-order trapezoi-
dal integrator

40

The new filter’s zero-pole-gain value are obtained after these operations. As is shown
in Figure 18, all of the poles and zeros are quite near to the boundary of the unit circle.
In other words, even though tiny changes of the coefficients of the filter, the poles will
have great chances to be outside the unit circle, and the filter will be unstable corre-
spondingly. As a result, in order to get a better filter, the coefficients or the positions of
poles and zeros need to be adjusted carefully.

Figure 19 gives a comparison between this 3rd-order integrator and the previous candi-
date 1 filter.

Summary: this 3rd order filter is very similar to candidate 1 filter. In brief, this filter is
developed from the basic trapezoidal filter, by means of adjusting the gain value and

Pole- zero position of the 3rd-order integrator

Magnitude response of 3rd-order integrator and the Candi-
date 1 filter

41

adding a notch (or increase the order of the filter). That is, we used the basic design
method as well as pole-zero placement to develop a 3rd order starting point filter. As a
result, it is not very easy to develop a well-performed filter by purely using only one
design method. We should take all of the specifications into account and take advantage
of all of the methods we have to make the filter as better as possible.

3.1.2 Coefficients Optimization

Above section mentioned that the higher of the filter’s order, the greater possibility of
getting a better performance. In this section, a genetic algorithm is proposed to solve the
optimization problems in search of better 3rd and 4th order filters. Both the 3rd and 4th

order filters are derived by using the pole-zero placement method above. The 4th order
filter is obtained by adding a new notch around 0 Hz on the GA optimized 3rd order
candidate 1 filter, which has very good frequency response and impulse response if the
fitness function is well defined.

The GA optimization was implemented with the aid of MATLAB. In this case, 5 user-
defined MATLAB functions are created, which are: GA_optimization, Selection,
Fit_Evaluation, Mutation, and Crossover. For confidential consideration, this thesis
would not show the whole subroutines. But in the rest of the section, the main aspects
associated with the algorithm are discussed with details.

GA_optimization Function

This is the primary function of GA optimization method in this thesis, which runs the
simulated evolution. The primary call to this function is given by the following
MATLAB command:

[BestValue,best,bestfit]=GA_optimization(pSize,pGen,N,Fs,pCross,pMutation,
mutStr)

Output parameters

· BestValue is the best solution string, i.e. final solution,
· Best is group of each BestValue from every generation during optimization,
· Bestfit is group of fitness value from every generation.

Input parameters

· pSize is the size of the population
· pGen is number of iterations
· N is the order of the filter
· Fs is the sampling frequency
· pCross is crossover possibility

42

· pMutation is a mutation possibility
· mutStr is strength of mutation

Population Initialization

The purpose of population initialization is to provide the GA_optimization a starting
point filter. It is executed by using the method of pole-zero placement. The particular
operation to place the poles and zeros is based on the observation and analysis of pole-
zero distribution (Figure 18), which is from a basic 3rd order filter.

Based on the pole-zero distribution graph, there are 3 steps to be done to determine the
strategy of corresponding pole-zero placement.

Step 1: Find the general distributions of all zeros. From the graph we can see, there is
one zero on the negative real axis, and other two on the positive real axis. The absolute
values are all smaller than one but very near to the unit boundary. MATLAB function
rand can be used to generate the initial values of zeros.

Step 2: Find the general distributions of all poles. There is one pole right on the positive
real axis, which is quite near to the unit circle but smaller than 1. There are two poles
with very small angles, which is quite near to the real axis.

Step 3: Determine the variation interval for each variable (or the search space), includ-
ing all zeros and poles as well as the scale value.

An example of how to generate new poles and zeros can be found in Appendix.

Termination Condition

The termination algorithm determines when to stop the simulated evolution and return
the result population. GA_optimization checks the termination condition every gener-
ation. The function will terminate either at specified generation or the optimal or max
generation when best individual case is found.

Selection Function

The selection function determines which of the individuals will survive and continue to
the next generation. The GA_optimization function calls the selection function each
generation after new population is created from the old one. The basic function call used
is:

[selectpop] = Selection(pop)

Where selectpop is the new population selected, input pop is the current population. In
our selection algorithm, both Ranking method and Roulette wheel are used. The former

43

one is to decide the choosing probability, the latter one is to choose the individual
from the current population based on the choosing probability.

Fitness Function

The function is called from GA main fucntion to determine the fitness of each solution
string generated during the search process. It is important to decide which performance
of the filter should be taken into account and how to evaluate it, that is, how to translate
the performance into quantifiable data. For example, the filter’s magnitude responses at
interesting frequency points are necessary to be represented and evaluated. In addition,
phase response, group delay, impulse response and stability of the filter have to be taken
into consideration.

After the evaluated performance is decided, the priority of these factors needs to be
determined. Furthermore, the metric standard, which determines what kind of data is
useful and what kind of data is bad has to be made. There should be significant differ-
ences in the fitness values between the well performed and the badly performed filters.

Fitness function is called by GA_optimization twice during every generation. One is at
the beginning, and the other is at the end after the new generation was derived. Here is
the basic call of this function:

[fitness] = Fit_Evaluation(pop)

Where fitness is the fitness value for every individual of the current generation pop,
which is the input to the function.

Mutation and Crossover Functions

Mutation is one of the operator functions of the GA, the other one is Crossover, both of
which provide the search mechanism for GA and create new solutions based on existing
solutions in the population. Mutation changes one individual’s value to produce a new
solution, which could be tuned by the mutation strength. Crossover takes two
individuals’ value and provides two new individuals after corresponding operations.

The function call for Mutation is as follows:

[NewPop]=Mutation(OldPop,pMutation,mutStr)

Where OldPop is the current generation, pMutation is the mutation possibility for the
generation and mutStr is the mutation strength for one picked individual. The newPop
is the new generation with mutated individuals.

The Crossover function is similar:

44

[NewPop]=CrossOver(OldPop,pCross,opts)

Where OldPop is the current generation, pCross is the crossover possibility for the
generation and opts is the option for different crossover strategy. In this thesis, we use
multi-point and equally crossover algorithms. The newPop is the new generation of
mutated individuals.

3.1.3 Design Example

In this section, a detailed explanation of the designing and optimization process is given.
It is based on the real experiments by optimizing the 3rd and 4th ordered integrators.

Starting Point Filter Generating

At first, a starting point filter has to be designed for GA optimization. This filter is taken
as the best individual among all the population at the first generation. Then, when the
optimization process starts, the starting point filter will be replaced by the new one
which has better fitness value. Here, candidate 1 filter is chosen for GA optimization.
The primary 3rd order filter’s zero-pole-gain value is listed at Table 2 as following:

Table 2. Example of setting the individual and population for GA optimization

Parameters Value

zeros [-1 1 1]

poles [0.999500000000000 0.998363753826255 0.998363753826255]

gain 0.016361741209689

Function:

Individual=[zeros poles gain];

Population=[Individual 1; Individual 2; … ; Individual d];

The coefficients of one individual or filter are expressed in a row vector in function (1).
The whole population in one generation are stored in a matrix, which is shown in func-
tion (2), here d is the size of one population.

Before optimization, the chosen starting point filter is stored as one individual at the end
of the first-generation matrix. The other individuals are generated by using Pole-Zero
Placement method.

In the following parts of this section, a 3rd and a 4th order integrators are generated. The
whole optimization processes of the two filters are almost the same. They use the same
operators and same basic function parameters. The only difference is the individual gen-
erating method because they have different filter orders.

45

In order to create a new 3rd order filter, the first step is to observe the pole and zero
distributions. According to Figure 18, all of the three poles are very close to the positive
axis of the unit circle. Two zeros are near or on the positive real axis, and the rest one is
on or close to the negative real axis of the unit circle. From above analysis, a new ran-
dom 3rd order integrator is generated by Pole-Zero Placement method, and the code is
shown in Program 8 in Appendix.

That’s how new individuals are created in GA optimization. After this optimization,
better 3rd order integrator can be obtained with well-defined fitness function. If the op-
timization results are not satisfactory, more times of iterations are need for the optimi-
zation until a best filter is found.

Based on the optimized 3rd order integrator, a 4th order integrator is generated by adding
a notch exactly at 0 Hz. An example is shown in Program 9 in Appendix:

Since a notch is directly added at 0 Hz, the notch angle is 0, there is no need to think
about the conjunct pair of the new zero and pole. That’s why the filter’s order is only
increased from 3 to 4 but not 5. All of the poles are at the positive part of the unit circle,
and they are very close to the unit border. For the zeros, there are 3 of them at the positive
part on the unit circle, the other one is on the negative side. According to this conclusion,
new filters for 4th order filter optimization can be created, the code is given in Program
10 in Appendix.

When the starting point filter and the population for optimization are ready, the GA
optimization Process can be started.

3rd order filter optimization

The starting point filter for optimization is ready from the last section. Then, the input
parameters for the optimization function need to be decided.

[BestValue, best, bestfit] = GA_optimization (pSize, pGen, N, Fs,pCross, pMu-
tation, mutStr, options)

Except for pSize and pGen, the rest of parameters are set as following:

 N = 3; % the order of the filter

 pCross = 0.85; %crossover

 pMutation = 0.10; % mutation

 mutStr = 1;% strength of mutation

 Fs = 9600;

 options = 0;

The most relevant parameters are pSize and pGen since they have high impacts on the
optimized results. There is a trade-off between the computation efficiency and the total

46

optimization time. If pSize and pGen are huge, even though more optimization results
could be found, the time that the whole optimization process will take will be longer
correspondingly. That’s why different parameter pairs of pSize and pGen are used for
testing in this case.

Table X shows the optimized individuals obtained during the optimization process with
different input values of pSize and pGen. It is obvious that the bigger pSize and pGen
are, the longer the whole optimization process is. It is necessary to select a proper pair
of pSize and pGen for the further optimization. That’s also the point of this experiment.

Table 3. Optimization results for different input pairs of pSize and pGen

pSize pGen Optimized Individuals

20 100 7

30 100 6

40 100 4

20 300 14

30 300 13

40 300 19

20 500 13

30 500 12

40 500 11

Comment: Finally, the number of pGen is set to be 300. When pGen is too small
(pGen=100), there are not enough optimized results. When pGen is big (pGen=500), the
optimization does not converge any longer. When pGen=300, reasonable number of
optimized individuals are obtained, and it takes shorter optimization time than
pGen=500.

47

The optimization process is plotted to show the variations in fitness values when the
generations are evolving. Figure 20 depicts the differences in the fitness values tuning
process with different pSize numbers.

Comment: According to above figures, the optimization results were not stable when
pSize was small. When pSize changed to be bigger, the optimization results tended to
be more reasonable. In account to optimization efficiency, it is a better choice to set
pSize as 30.

(a)

(b)

(c)
Variation in fitness values through generations with pSize

numbers of a) 20, b) 30 and c) 40

48

Performance Test

Even though the optimization method has been chosen, it is not very easy to select a
suitable filter by simply adopting the GA optimization functions. One reason is that the
input parameters of the GA functions should be appropriately chosen, for the purpose
of getting good optimization result without taking too much computation time. On the
other hand, not all of the optimization results are valid since the fitness function could
not take all of the performance factors into account for evaluation. And sometimes the
optimized results deviate from the primary filter coefficients too much that the resulted
new filter is not an integrator any more. That’s why additional functional tests are still
needed after optimization.

The following is an explanation about how to validate the optimization results.

According to the GA functions, all of the results are stored in a matrix, in which every
row is a set of coefficients consist of zeros, poles and the gain factor of a filter. The
latest optimized result is stored in the first row of the matrix. For most cases, the first
row of the matrix could be taken as the best-optimized result among all of the results.
However, sometimes it doesn’t work since the fitness function could not evaluate the
filter adequately. Then the following tests are needed for further selection of the best
filter coefficients.

The optimized results are obtained from the above experiments when pSize=30 and
pGen=300, there are 13 optimized results obtained from this optimization case. The first
row, the last row and the middle row (7th row) are selected for the comparison of their
performance. These three filters are separately named as Filter1, Filter2, and Filter3. In
order to describe the filter in a clear way, here the coefficients are only present in the
first four digits after the decimal point, and all the coefficients are in floating point rep-
resentation. Table 4 shows the results:

Table 4. Filters’ pole-zero-grain value from the GA optimization

Filter 1

Filter1=[-0.6557 0.9929 1.6168 0.1308+0.0001i 0.4153-0.0003i 0.6672 0.0107]

Z1=[-0.6557 0.9929 1.6168]

P1=[0.1308+0.0001i 0.4153-0.0003i 0.6672]

K1=0.0107

Filter 2

Filter2=[-0.9999 0.9934 1.0454 0.9978+0.0004i 0.9970-0.0002i 0.9921
0.0163]

Z2=[-0.9999 0.9934 1.0454]

P2=[0.9978+0.0004i 0.9970-0.0002i 0.9921]

49

K2=0.0163

Filter 3

Filter3=[-0.9999 0.9937 0.9993 0.9993+0.0006i 0.9977-0.0005i 0.9959
0.0162]

Z3=[-0.9999 0.9937 0.9993]

P3=[0.9993+0.0006i 0.9977-0.0005i 0.9959]

K3=0.0162

For the performance test, firstly the stability of every filter need to be tested. After that,
it is necessary to examine the filter’s responses in frequency and time domains. Then
the zero-pole-gain values are transformed into filter objects with specific filter structures.
Here Direct form II transposed filter structure is used for all of the filters.

The following codes test the filter’s stability:

1

2

3

[b,a]=zp2tf(z’,p’,k);

HD=dfilt.df2t(b,a);

flag=isstable(hd);

If the filter is stable, flag equals to 1. Otherwise flag equals to 0. In this case, these three
filters are stable. If a filter is found unstable, it should be abandoned immediately.

In the next step, the filters’ frequency response is tested. The frequency response of
Filter1, Filter2, and Filter3 are shown as following:

50

Comment: From Figure 21, Filter1 should be abandoned since both magnitude and
phase responses of it are far worse than the other two filters. It also proves that a filter
with best fitness value is not the best choice.

Then Filter 2 and Filter 3 are compared again. Form above figures, it is obvious that
Filter 3 has better performance than Filter 2. But in some cases, it is very difficult to
distinguish the two filters only by the frequency responses if the filters have very similar
coefficients, or even some coefficients of the filters are the same. Then it is necessary
to compare filters’ performance in particular frequency points. The following codes are
shown as an example in Table 5:

(a)

(b)
Frequency responses of Filter1, Filter2 and Filter3, a)

Magnitude Responses, b) Phase Responses

51

Table 5. Example codes showing how to test filter’s performance

Test magnitude response at 0 Hz and 50 Hz:

1

2

3

4

5

6

[h,w]=freqz(hd,9600,'whole');

resps=[abs(h)];

angles=angle(h)*180/pi;

w=w*4800/pi;

mag0=resps(1)% magnitude at 0 Hz

mag50=resps(51)% magnitude at 50 Hz

Test phase response at 50 Hz and 1000 Hz:

1

2

ang50=angles(51)% phase at 50 Hz

ang1000=angles(1001)% phase at 1000 Hz

Test group delay from 10 Hz to 1300 Hz with interval 10 Hz:

1 [grpd]=grpdelay(hd,[10:10:1300],9600);

All of the above tests are about filter performance in the frequency domain. The filter’s
performance in the time domain can be compared as well by checking out its impulse
and step responses. An example is shown in Table 6:

Table 6. Example codes showing how to test the filter in the time domain

Test its impulse and step responses

1

2

3

4

Ts=1/9600;

sys=tf(b,a,Ts);

% impulse response

[impy,impt]=impulse(sys);

% step response

 [stpy,stpt]=step(sys);

The results are visualized by plotting the response variances with time changing. Fig-
ure 22 shows the impulse and step responses of Filter2 and Filter3.

52

Comment: According to the above figure, Filter3 has better performance than Filter2
in both Impulse response and Step response. From the previous test, Filter3 also has
excellent performance in the frequency domain. Thus, Filter3 is an excellent proof of
the effectiveness of the GA optimization functions. In order to get even better filter,
Filter3 can be further optimized by using the GA optimization again, or by increasing
the filter’s order and applying it to GA optimization.

In the following section, a 4th-order filter’s optimization is discussed.

4th order filter optimization

From last section, a very good 3rd order filter is obtained. Next a 4th order filter is gen-
erated by adding a notch at 0 Hz. The newly generated filter has the following coeffi-
cients:

z = [-0.9999 0.9937 0.9992 1.0000]
p = [0.9992+0.0006i 0.9977-.0005i 0.9958 0.9940]
k = 0.01623

This filter is taken to be starting point filter for the 4th order filter optimization. Then,
the next optimization process is exactly the same as the 3rd order filter. According to
previous experience, pSize and pGen are separately set to be 30 and 300. Performance

Impulse and step responses of Filter2 and Filter3

53

tests are necessary after the optimization. After picking out the best result, it can be
chosen to be the starting point filter for the next optimization round. After 3-5 times’
iterations, a 4th order integrator with very good performance is obtained.

3.2 Structure Realization

After the optimization, the next step is to realize the filter with a suitable filter structure.
Several available structures have been introduced in Chapter 2. This section mainly dis-
cusses important issues about how to select a right filter structure.

3.2.1 Available Structures

When fixed point arithmetic is employed, carefully choosing a suitable structure is
critical. Based on the structures mentioned in Chapter 2, basic filter structures can be
taken into consideration at first. The following four figures show Direct Form structures
of this 4th order IIR filter. All of the structures are described in block diagrams and
derived by the Simulink toolbox of MATLAB.

Direct Form I Structure:

Direct Form I of the 4th order IIR filter

54

Direct Form II Structure:

Transposed Direct Form I Structure:

Direct Form II of the 4th order IIR filter

Transposed Direct Form I of the 4th order IIR filter

55

Transposed Direct Form II Structure:

By analyzing these four structures, the implementation costs that each structure takes
are list in Table 7 shows the details:

Table 7. Implementation Costs for Different Filter Structures

Filter

Structure

Number of

Multipliers

Number of

Adders

Number of

State

Direct I 9 8 8

Direct II 9 8 4

Transposed
Direct I

9 8 8

Transposed
Direct II

9 8 4

Comment: Direct II structures have obvious advantages on saving the recourses. As
this filter will be implemented on FPGA, Direct Form II structure is chosen for the fur-
ther analysis. As is the case with all direct-form filter structures, the filter’ poles and

Transposed Direct Form II of 4th order IIR filter

https://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html

56

zeros can be very sensitive to round-off errors, especially for higher order direct form
filters. But for a simple second-order section, this problem could be settled. Thus, to
minimize this sensitivity, it is common to factor filter transfer functions into series
and/or parallel second-order sections. In the following, two cascaded structures with
direct form II format.

Cascaded Direct Form II Structure:

Cascaded Transposed Direct Form II Structure:

3.2.2 Finite Word Length Effects Analysis

When the filter is using floating point arithmetic, the filter’s performance remains unaf-
fected with different structures. That’s why Transposed Direct Form II structure can be
used for all filters during the coefficients calculation. In practice, fixed point arithmetic
is employed when MATLAB is used to simulate the filter with different structures.

In the following section, the 4th order filter which is obtained in section 3.1is taken as a
reference filter. Because this filter is designed with floating point arithmetic, it will not
suffer from the performance degradation that caused by finite word length effects.

Cascaded second order filter with Direct Form II

Cascaded second order filter with Direct Form II transposed

https://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html

57

Fixed Point Implementation

It is necessary to implement fixed point arithmetic on this 4th order IIR filter for filter
realization. When deciding fixed point format of the coefficients, the software and hard-
ware limitations need to be taken into account. Technically, there is no limitation when
using MATLAB to simulate with different fixed point formats. In practice, in order to
save the resources of the hardware, the best choice is to use as a short bit width as pos-
sible. As the goal is to use reasonable bits to achieve good and acceptable filter perfor-
mance when compared with the original filter in floating point format. To this end, the
bit width of the coefficients is set to be 32 bits, which is the same length as the input
data.

After the bit width is chosen, another important issue is how to distribute of the coeffi-
cients’ integer and fractional bits. The fractional bits have a decisive effect on the data
precision, and during calculation, proper integer bits could avoid overflow errors [ref-
erence].

Taking the 4th order direct form II structure as example, Table 8 explains how to set the
filter’s fixed point format with specific structures with MATLAB:

Table 8. Example showing how to set filter’s fixed point attributes

Design direct form II filter object HD

HD=dfilt.df2(b,a);

Specify fixed point attributes and Word and Fractional length properties

HD.Arithmetic = 'fixed'; % Set fixed point precision

HD.Roundmode = 'floor'; % Set rounding strategy

HD.AccumWordLength = 64;

HD.StateWordLength = 64;

HD.CoeffWordLength = 32;

HD.InputWordLength = 32;

HD.OutputWordLength = 32;

HD.InputfracLength = 31;

HD.OutputfracLength = 31;

To ensure satisfactory fixed-point operation of the 4th order IIR filter, the following is-
sues are necessary to be examined:

· Stability
· Coefficient Quantization
· Round-off Noise

58

Stability

The easiest way to check this attribute is using MATLAB function “isstable”:

flag = isstable(HD);

If the flag has value 1, the filter is stable. Otherwise, the filter is unstable, and the fixed
point version is not suitable for the filter.

Then the stability of the Cascaded and Direct Form II structures are tested with 32 bits
coefficients format. These four filters are found stable.

There is another way to test the filter’s stability, which is related to the poles’ position
on pole/zero plot. Next section will discuss this issue.

Coefficient Quantization

The effect of quantization can be seen in the pole/zero plot. In fact, the issue of filter’s
stability has to do with the denominator coefficients and correspondingly the poles, on
the pole/zero plot.

Pole-zero Deviation

For a quantized filter, the quantized coefficients will cause the displacement of poles
and zeroes of the filter. Since the poles are very sensitive to a fixed point arithmetic, and
a small change in the coefficients will cause the poles’ position changes, which may
yield significant performance changes correspondingly. In the following part, the dis-
placement of poles and zeroes are discussed and analyzed by comparing different filter
structures with the ideal filter.

In Figure 29, this is the pole/zero plot of the filter in Direct Form II structure. The real
part of z-domain is zoomed in to show clearly how the poles and zeros’ positions deviate
from the reference filter.

Pole-zero deviations

59

Comment: It is easy to see that the poles’ positions have visible changes at the resolu-
tion of 10^-3. The zeros’ positions didn’t change too much. It proves that poles are more
sensitive to coefficients quantization effects. For stability, only if any one of the poles
is out of the unit circle, this filter with corresponding structure is unstable and invalid.
When plotting the pole/zero diagram for the transposed Direct form II structure as well
as the other 2 cascade structures, it turns out that there is no big difference in the pole
and zero positions between each of these four filters. As a result, it is very difficult to
define which filter structure has better performance with fixed point arithmetic by ob-
serving the pole-zero deviations in our case.

Round-off Noise Analysis

Figure 30 depicts the round-off noise spectrum of the four filter structures. It is evident
that cascade transposed direct form II structure has the best performance when compared
to the other three structures. The second best filter structure is transposed direct form II.
The other two filters have very huge round off noise, these two structures have to be
abandoned.

Round-off Noise Power Spectrum

60

Filtering Functionality Simulation

From the finite word length effect analysis, two appropriate filter structures are decided:
Transposed Direct II and Cascade Second Order Section with Transposed Direct
II structures. Finite word length effects are not the only issues that have to be carefully
treated when choosing the filter’s structure. The filter’s functionality is also an essential
factor that needs to be checked.

In this section, the filtering functionality of these filters is simulated with the MATLAB
function “filter”:

Y=filter(HD,X);

It filters a vector of real or complex input data X through a fixed-point filter HD, pro-
ducing filtered output data Y. The vectors X and Y have the same length. In this case,
sinusoidal input X is generated in fixed point format s32.31, this signal is applied to the
filter function together with these two filter objects. Then the outputs Y is compared
with the reference signal, which should be the ideal output result. Figure 31 shows the
filtering results.

Comment: It is obvious that filter with cascade structure has excellent output result
while the transposed direct II filter has very bad output results. Its output signal deviates
from the reference signal significantly.

This chapter gives a complete explanation of the process of how to design an integrator
with MATLAB. Based on all the facts, the filter structure can be decided to be Cascade
Second Order Section Transposed Direct II.

Filtering Functionality Simulation

61

4. FILTER IMPLEMENTATION

In modern real-time DSP, it is an efficient way to operate filtering cooperated with DSP
processors. There are basic blocks onboard, including inbuilt hardware multipliers. This
approach is called as hardware implementation [reference]. In some cases, the filter is
implemented in a higher level language, such as C or MATLAB. The filter is then run
on the computer. This approach is described as software implementation. In the follow-
ing part, both two design strategies are explained in details with the filter derived above.

The filter is created with cascade realization using the second-order direct II form. The
filter’s structure is as following. This original filter is called as HD0, using the floating
point arithmetic.

4.1 Software Implementation

It is necessary to verify that the designed filter indeed meet the design specification.
Software implementation is an effective method to test the functionality of the filter
before the hardware implementation. In this thesis, MATLAB and C language are em-
ployed in the filter implementation for computer simulation, which contains the FPGA
test and the earth fault test. After the simulation, there is a discussion of the feasibility,
reliability and effectiveness of MATLAB and C models.

4.1.1 MATLAB Model

The first approach is describing the filter in the form of MATLAB equations. A valid
computational algorithm is based on the right ordered equations, which can characterize
the filter’s structure correctly.

The 4th-order filter Cascade Form structure

62

This model must be capable of filtering both floating point and fixed point data. It is an
easy way to design firstly the floating point filtering part, and then add fixed point arith-
metic to the model. Since fixed point precision affects a lot of the filtering performance.
It is necessary to guarantee that the model with floating point can work properly before
fixed point arithmetic is implemented.

Floating Point Filtering

This section mainly focuses on how to create right ordered equations for the MATLAB
model. Before deciding the equations, the filter’s coefficients are initialized accordingly.

Figure 32 shows the filter’ block diagram, with each section realized using a standard
bi-quad structure. Here, section 1 is taken as an example to illustrate the algorithm for
generating the right equations. The corresponding sets of difference equations are as
follows. For section2, the equations should be the same order as in section1.

1

2

3

4

5

6

7

8

9

S1in=x*s(0);

S1out= S1in+S1sum0;

S1ma1=S1out*(-S1a1);

S1mb1=S1in*S1b1;

S1sum1=S1ma1+S1mb1;

S1sum0=S1sum1+S1sum2;

S1ma2=S1out*(-S1a2);

S1mb2=S1in*S1b2;

S1sum2=S1mb2+S1ma2;

Here a proposed function named as “filter_matlab” is used to represent the MATLAB
model. This model is a m-file function with input and output parameters. The basic way
that this model deals with signals is like the following, (details cannot be narrated)

y(n) = filter_matlab (x(n), option)

Where y(n) is the filtering output vector or matrix, x(n) is the input signal in a matrix
form. The option is used for choosing the mode of the filter, which means using filtering
operation or not, and it has values of either 1 or 0.

Computability Test

The values of all the coefficients in this model now are in floating points. For the original
filter HD0, MATLAB function “filter” is used to execute the filtering operations. While
for the MATLAB model, the filtering function is realized by directly applying the input
signal to the function. The testing strategy is to use the same input signal for both filters
and then compare the outputs of them. The operations are following:

Out1= filter(HD0, X);

63

Out2= filter_matlab (X, 1);

Where Out1 and Out2 represent the filtering outputs, X(notation) is the sinusoidal input.
It turns out that Out1 exactly equals to Out2, which proves that the MATLAB model is
computable and functions well.

Fixed Point Filtering

After the computability test, the basic MATLAB model is verified to be functional. The
next step is to add the fixed point arithmetic on the basic model. Appropriate data pre-
cision of the filter needs to be decided by means of several tests and analysis. It is obvi-
ous that if more bits are used when implementing fixed point arithmetic, the more pre-
cise the filter would be. However, with the hardware resource limitation under consid-
eration, the input and output precision are decided to be s32.31.

In this case, the word-length of all coefficients are set to be 32 bits, as same as the input
and output data. Since the value of the coefficients varies in relatively broad range, cor-
respondingly the fractional part length of coefficients varies as well. Then, how to
choose the proper fixed point representation for the intermediate variables becomes a
primary problem. An appropriate method is to assess the effects of finite word length
on the filter performance and tune the fixed point precision.

The filter’s performance is evaluated by means of noise simulation. In general, integra-
tors can have stability problems with zero input with some noise, which will result in
output with DC levels due to rounding errors. The DC levels sometimes even go quite
high. This happens mainly when there is no signal from the Rogowski coil. The main
reason for doing noise test is to check whether the integrator generates DC output or
not, and if it does, how much the DC output appears to be.

During the test, noise input is applied as a training signal to simulate the filter with
different coefficient precisions. By comparing and analyzing the output data, the fixed
point representation of the coefficients is finally decided. It is necessary to tune carefully
and select the coefficients’ precision, a very good choice would yield smallest or even
no DC output when small noise input signal is processed by the filter. Figure 33 shows
the DC output with the final precision that be chosen. It is evident that the filter can
avoid visible noise interrupts. There will not be significant DC level in the output, for
both noise signals with huge or tiny amplitudes.

64

Dynamic Range

When it comes to the DC fluctuations, the dynamic range needs to be mentioned, which
is dependent on the system. In this thesis, the required dynamic range is 60xIn in RMS
level for current measurements.

On the FPGA board, after the AD converter, the first operation is to scale the input to
an intermediate signal level. This means for the current input, +/-1 s32.31 representation
indicates the whole dynamic range of 60*In, where In is configurable by the user. For
confidential consideration, the thesis would not explain in detail about how to decide
the signal level. According to the company’s requirement, the signal’s RMS (Root Mean
Square) level is set to be 4.1667e-05. The following is an example when using the
MATLAB sine function to create a signal:

signal=4.1667e-05* sin(2*pi*f*t)

Where we obtain the signal’s RMS value of 4.1667e-05 and peak value of 4.1667e-
05*sqrt (2) = 5.8926e-05. As a result, the expected output level should be less than
4.1667e-05.

Noise Simulation

After settling the problem of input signal range, noise tests can be executed afterwards.
The tests include random noise input with different amplitudes: 0.005xIn, 0.5xIn and
60xIn.

MATLAB function is used to generate these noise inputs. Function “rand” can be used
to generate random numbers and matrices with elements uniformly distributed in the

Filtering results of noise inputs with different amplitudes

65

interval (0,1). Likewise, function “randn” can be used to generate random numbers and
matrices with items that are usually distributed with zero mean and unity variance [].
And all of the input data are in the fixed point format of S32.31. Then it comes to the
specific tests.

Test Case 1

At first, a comparison is done between two different data precisions: S32.30 and S64.60.
They are separately the shortest and longest word length that can be used in the hardware
implementation. Figure 34 to 36 depict the simulation results of noise inputs with the
two filters in S32.30 and S64.60. These noise inputs are with different amplitudes levels
ranging from very small to regular.

From Figure 34, it is evident that filter with data type S32.30 generates significant DC
level in the output while filter with data type S64. 60 works normally.

Filtering results of noise inputs (0.005xIn) with different data
types

66

From Figure 35, it proves that when the noise input is normal, the filtering outputs of
both filters are normal as well. For this reason, it shows the filter’s feasibility when
dealing with normal input signals. On the other hand, this filtering result reflects that it
is necessary to test the filter with small input to guarantee its stability.

From Figure 35, it is not easy to distinguish the outputs of the filters. Figure 36 proves
again that when the input signal grows to nomal amplitude, both of the filters can work
normally.

Filtering results of noise inputs (0.5xIn) with different data
types

Filtering results of noise inputs (60xIn) with different data
types

67

Based on the above results, it is obvious that filter with data type S64.60 is capable of
dealing different noise inputs, even when the signal is very small. Then it is necessary
to test whether this filter can also deal with tiny sinusoidal input signal. Figure 37 gives
the simulation result, when the input signal is in amplitude of 0.005xIn.

Comment: The filter with different word-length has quite different output results of the
same noise inputs. When using numeric type S64.60, there is no DC fluctuation accu-
mulation in the output, and there is no apparent degradation in the performance with the
typical input signal. On the contrary, when using numeric type S32. 30, the noise output
is quite great and it’s even greater than the noise input values. It is evident that more
bits are needed in the integrator.

Test Case 2

From Test Case 1, numeric type S64. 60 is proved sufficient to guarantee good perfor-
mance. However, more bits means the expense of increased cost. The goal of this test is
to find a filter with shortest bit width but still can perform well. More specifically, the
new filter does not degrade normal operations too much or make the filter unstable. Here
the following numeric types are proposed for testing: S60. 56, S54. 50, S50, 40. In order
to test and guarantee the performance of the new filter with shorter bit width, input with
very small amplitude (0.005xIn) is used in this test. In order to compare the performance
differences, each new data type is compared with data type S64.60, the output errors
based on the reference signal are depicted in Figure 38.

Filtering results of sinusoidal input (0.005xIn)

68

Figure 38 shows that except for the filter with data type of S50. 40, other filters per-
formed well. This means that data type S50. 40 is not sufficient, in another word, either
the whole data bits or the fractional bits are not long enough. Then new numeric types
are proposed: S50. 45, S54. 43. The outputs of these three filters are presented in Figure

39.

Output error comparison of different data types

Output error comparisons of different data types

69

From the figure above, it is evident that numeric type S54.43 has awful filtering perfor-
mance, even though with a longer bit width. This fact indicates that the primary reason
for performance degradation is that the fractional bits are not long enough. From this,
the numeric type S50.45 could be a real choice. For more precision consideration and
several more functional experiments, the filter’s numeric type is finally decided to be
S53.45.

4.1.2 C-Language Model

The second proposed approach is to realize the filter by C language. C model is benefi-
cial than MATLAB in the sense to directly make VHDL from C, without the aid of
Mathworks C to VHDL tool.

The fixed-point representation of the filter has been carefully chosen for filter realization
with MATLAB. However, the descriptions of the same coefficients and intermediate
data of the filter are different in C model. In MATLAB model, the fixed-point algo-
rithms are designed by using the built-in MATLAB Fixed-Point Toolbox. MATLAB
functions such as “fi”, “fimath” are used to construct and characterize the fixed-point
numeric objects directly from the floating-point numeric type. When referring to the C
language model, the data is in the appearance of integer numeric type, which needs to
be transformed again from the fixed-point data. For a fixed point number A, the corre-
sponding integer type A_int is derived by following operation:

A_int=A.int;

Multi-Precision Library -- GMP Implementation

In C language model, there are several variables that need more than 64 bits after the
arithmetic operations (mainly multiplication). It is obvious basic integer types in C lan-
guage are not sufficient for this case, a new method to represent the filter’s variables is
needed. For this purpose, GNU Multiple Precision (GMP) Arithmetic Library is intro-
duced. It is a free library for arbitrary precision arithmetic, operating on signed integers,
rational numbers and floating-point numbers [43].

The integer arithmetic functions provided by GMP library is also called as “mpz”. There
are about 150 arithmetic and logic functions in this category [43]. GMP integers are
stored in objects of type mpz_t, and the GMP integer functions start with the prefix
mpz_. In Table 9, integer A_int and GMP integer A_mpz are used to explain the basic
operations of GMP integer functions.

70

Table 9. Basic GMP integer functions

Data Initialization

mpz_init_set_si(A_mpz, A_int); // Assign the value of A_int to A_mpz

or

mpz_init(a_mpz); // A_mpz is initialized to with default value 0

Data Conversion

B_int= mpz_get_si(A_mpz); // Convert A_mpz (mpz int) to B_int (int)

Integer Arithmetic

mpz_add(C_mpz, A_mpz ,B_mpz); // C_mpz= A_mpz+B_mpz

mpz_mul(C_mpz, A_mpz, B_mpz); // C_mpz= A_mpz+B_mpz

mpz_fdiv_q_2exp(m, m, 22); // C_mpz= A_mpz+B_mpz

4.1.3 Performance Evaluation

Since MATLAB and C Language models represent the same digital filter, the outputs
of these two models must be exactly the same. The equivalence test is done by compar-
ing the output of the two models with the same input. It turns out that the only difference
between these two models is the filtering time when the input is in fixed point arithmetic.
The C model is obviously faster than MATLAB model. That’s another advantage of C
model.

Either model can be used for the following FPGA test and Earth-Fault test. Even though
the C model is much faster, in some cases it is still more convenient to use MATLAB
model. Since MATLAB has built-in analysis and debugging visualization tools while C
does not have.

FPGA Test

This test is based on the company’s FPGA model, which is applied to modeling the real-
time FPGA analog signal processing. MATLAB’s Fixed-Point Toolbox is used to sim-
ulate the fixed point arithmetic operations for the real FPGA hardware. The filter model
is one integrated part of this FPGA model.

71

A test bench is made for this model. Test cases are simulated in this test bench, some
are especially designed for the Rogowski integration functionality testing. Two funda-
mental sine waves are employed for the functionality tests. One is used as test signal,
and the other is used for testing reference. The brief function diagram is shown in Figure
40.

The two sine waves are all the same except for the phase difference, the test signal is
90-degree phase lead to the reference signal. Theoretically if the filter works correctly,
the output of the two signals should be exactly the same. Here two test cases under
different frequency conditions are listed for analyzing the integrator’s performance.

Test Case 1

This test is done in 9.6 kHz. After the scaling work, the input signal is applied to the
FPGA model for a series of operations. Figure 41 shows the two scaled input signals.
Except for the phase difference, the two signals are exactly the same.

Comment: After the input correction, the signal in channel 1 is integrated by the
integrator while the signal in channel 2 stays the same. Figure 41 shows output signals
that after integration, signal in channel 1 changed to have the same phase as signal in

Block diagram of filter functioning

Filtering results of test case 1

72

channel 2. And the deviation in amplitude is very small. This proves that this filter is
equipped with the integration functionality

When the filter’s functionality is verified, the next step is to examine its performance.
The proposed method is to check how much difference there is between the output signal
and the reference one. Figure 42 plots the error between the integrated and reference
signals. The maximum value of the error is about 0.02 while the amplitude of the signal
is 0.5. The error percentage is 4%, which is acceptable.

The output data are applied to several other operations after the integrator. This provides
another idea for testing the quality of the output signal. That is, to check the output of
the integrated signal, and then compare the deviation from the reference output without
integration. Since the purpose of Rogowski integrator is to restore the current and apply
it for further processing. Figure 43 shows the output results after one operation on the

Output results after one operation on FPGA

Output signals after integration and the error between two
signals

73

FPGA board. The entire signal shapes are nearly the same in these two signals, while
there are visional but acceptable deviations/error between them. And the deviations be-
come very close to zero with time passing by. This declares that even though the inte-
grator can works perfectly, the performance is still very good.

Test Case 2

In this case, input signals are tested at frequency of 12.5 Hz, the input signals are the
same as test case 1. The idea of this test the integrator functionality with small
frequency. Figure 44 shows the result of the integration. This integrator works as ex-
pected considering the frequency response figures of the filter for 12.5 Hz. Since there
is no apparent phase deviations and the shape of the two signals are similar. This test
case proves that even though in very small frequency, the integrator will not suffer un-

expected deviations.

Earth-Fault Test

The main purpose of this test is to guarantee that the integrator can normally work under
circumstances when some intermittent earth faults happen. The specific test bench is
designed for simulating the earth-fault on the output signal of the integrator. The test
bench will generate the simulation result with corresponding text messages.

The test data used for testing came from the practical field test recordings, which is
composed of three current channels and three voltage channels. The three phase current
channels are I1, I2, I3, with different phase. It has very high sampling frequency up to
100 KHz and relatively significant amplitudes for the integrators. It is necessary to op-
erate the data with downsampling and rescaling operations before applying it to the in-
tegrator. After being resampled and rescaled, the three channel currents are used to the

Output signals after integration

74

MATLAB model. After integration, these three channels are combined into one channel
by taking the average operation, which yields I0. I0 is downsampled again from 9.6 kHz
to 1.6 kHz, which is the working frequency in the earth fault test bench.

The same operations are executed on the three voltage channels, the new voltage signal
V0 is finally obtained. I0 and V0 are stored in one file, which is taken as an input param-
eter or test case in the earth fault test.

It is not convincing to say that the integrator is good enough by taking only one test case
for this proving. The number of test cases should be sufficient to demonstrate this argu-
ment. There are a lot of test data in the recordings. As a result, every file storing different
I0 and V0 values can be considered as a test case. These test cases are applied to the
simulation.

For confidential consideration, the simulation messages are not shown here. The result
shows that these test case are passed. It proves that the integrator work well under the
conditions where earth-fault occurs. This is very important in the practical application.

4.2 Hardware Implementation

After the functionality and the performance of the integrator have been verified, this
integrator should be realized with hardware implementation, which is built on FPGA.
The design of the hardware model is based on the C model developed above. Here for
confidential consideration, only the topology of this integrator is shown.

4.2.1 Topology

The Rogowski integrator is composed of two cascaded second order filters. The two
filters are almost the same in the structure. Topology of the first cascaded section is
depicted in Figure 45.

75

The topology gives particular bit width of each coefficient as well as the internal varia-
bles. Red markings in the figure are corresponding delays in each stage. The implemen-
tation is realized by means of state machine operation, using a single multiplier and a
single wide summing block (another sum operation gets inferred into output saturation
logic). The delay for the calculated output data is at a minimum only 4 clock cycles.
Delay is always generated to match the delay in group delay filter, which is especially
design for the Rogowski integrator.

Filter topology of one section

76

5. TESTING RESULTS AND ANALYSIS

For the purpose of testing, the integrator designed above is applied to both computer
simulation and practical field tests. This chapter mainly discusses and analyze the
essential functionality and performance of the filter that required by the design specifi-
cation.

5.1 Functional Verification

The integration functionality test is conducted by analyzing the outputs of the integrator,
which is applied to different typical type of inputs. Five primary test cases are carried
out in this section.

In the necessary tests, typical signals such as DC input, sinusoidal inputs, unit step in-
puts, etc. are generated at first. These tests also involve the conversion of data from
floating point to fixed point format. And the data is in the numeric type of S32.31. The
input data is real number within the particular scaling range. When test data are ready,
reference signals are generated according to the outputs of an ideal integrator or inte-
grator in floating point format. In the following, each test case with different input will
be discussed.

5.1.1 Sinusoidal Input

As the smaller the signal, the more possibility that the accuracy will get worse. And it
is necessary to make sure the integrator can normally work with very small inputs. Thus,
the sinusoidal input is with RMS value of 0.005xIn, and it is in 50 Hz frequency. The

Simulation results with sinusoidal input

77

filtering result is compared with the original input signal as well the reference signal.
Figure 46 depicts the comparison.

The figure shows that the filter integrated the input signal with -90-degree shift and
almost the same amplitude of the previous signal is kept. As in the specification, when
the input signal is 50 Hz, the integrated result should exactly 1. The figure also proves
that the integrated signal is almost the same as the reference signal, even though, the
input is relatively small. This fact indicates that this integrator normally works even with
tiny input signals.

5.1.2 DC Input

According to the specification, the integrator output should be zero with the DC input
to prevent the integrator windup. When designing the integrator in chapter 3, notches
were explicitly added correctly at 0 Hz for this purpose. However in a practical imple-
mentation, it is very difficult to realize excellent performance for quantization effects.
Additionally, the filter’s magnitude response at 50 Hz should be 1, and then there will
be a very steep peak between these two frequency points. As a conclusion, the expected
output for a DC input may have fluctuates at the beginning, but it will decay to zero with
time passing.

In this test case, the input is still in the range of 0.005xIn to ensure the filter’s function-
ality. Figure 47 shows the filtering result.

From the figure, the output has relative but acceptable fluctuate in the beginning. With
time passing by, the output tended to be zero. It is very good to see that after 10000
samples (9.6 kHz sampling frequency is used so that the period is about 1 second), the
output is very close to 0. This test result proves again that the integrator normally works .

Simulation results with DC input

78

5.1.3 Impulse Input

The impulse signal is used as an input to check the filter’s stability when dealing with
signal which has immediate changes in the amplitude. It is very necessary for the filter
to be steady when such kind of condition happens. Figure 48 shows the result.

As an input, the impulse signal has the value of 1xIn in the first sample, then the signal
turns to be 0 afterward. From the figure, the integrated output is very small and decays
to zero very quickly.

Derivative of impulse Input

Simulation results with impulse input

Simulation results with derivative of impulse input

79

Figure 49 shows the output of a derivative impulse signal. This test simulates the deriv-
ative of a real current impulse, which should result in an impulse output without many
residual fluctuations. The filtering result proves that the filter works well.

5.1.4 Noise Input

The purpose of taking noise as input is to exam that whether the integrator would gen-
erate or cumulate DC level in the output signal. In practical application, it is unavoidable

that the input under operation will be mixed with some extra noises. A well-performed
filter has to deal this properly, that is the output should stably stay in acceptable ampli-
tude range without obvious value changes. Figure 50 shows the integrating result.

Based on the figure, the DC level of the output is very small. And, even though, the
input noise is very small, the output of the integrator is far smaller than the noise signal.
It is necessary to guarantee. The input is simulated with 5 seconds, the output stayed
with similar small values. In a brief, the integrator handles very well with noise input
problems.

Simulation results with random noise input

80

5.1.5 Complex Input

In practice, the normal input signal is mixed with noises. In this test case, we will test
the functionality of the integrator by applying AC signal with noises. The AC signal is
standard sinusoidal data with frequency of 50 Hz. The simulation result is presented in.

Here, in the above figure, the integrated signal has very small fluctuates and degraded
the noise in the output. There is no apparent fluctuate in the output, and it remains a
general sinusoidal signal shape.

5.2 Performance Verification

From the functionality verification section, we confirm that the integrator could
normally work. For industry application, the requirements for an integrator will be even
stricter. That’s why we conduct the following performance tests to verify that the de-
signed integrator could filter signal with excellent performance in the specified fields.

The performance of the integrator is reflected by the current which is calculated by in-
tegrating the signals from Rogowski sensor. The current data is from the latest field test
recordings with the integrator embedded on the FPGA board. Since the filter’s perfor-
mance has been simulated with test bench already, the main idea of this section is to
verify that the practical field tests of the integrator match the simulation results.

When we simulated the data for earth fault tests, the value of calculated I0 was derived
from the sum of three phase current channels, which at first passed through the
Rogowski sensor and then were filtered by the MATLAB or C integrator model. In
practical tests, the calculated I0 value is stored in the recording of the analog channels.
Meanwhile there is also a reference I0, which is from a core balance current transformer.
Thus, it is very easy to extract the I0 and calculated I0 for comparison and analysis
directly from the recordings.

Simulation results with complex input

81

There are different test cases since there are hundreds of recording files, and the field
tests covered different kind of faults, we will mainly list several test cases with various
earth faults introduced. For each test case, the calculated I0 is analyzed by the following
three performance issues:

· Accuracy
· Transient State
· Stable State

5.2.1 Solid Earth-Fault

At first, we analyze the test case where the solid earth-fault was interrupted. From Figure
52, it is evident that the accuracy of the calculated I0 is very good since the two current
signals overlap on each other relatively well.

Then the figure is zoomed in for more details about the transient and stable states. The
diagram in the below of Figure 52 depicts the transient state after the earth fault was
introduced. As we could see, there are fluctuates in the calculated I0 signal but the am-
plitude and phase of the current are almost the same as the reference signal. We could
refer this condition to the Impulse Response simulation in section 5.1.3 since the tran-
sient process is similar to the impulse response. In that simulation, the response at first

Simulation results with solid earth-fault

82

went up immediately with very high amplitude and then went down to a lower amplitude
level. Afterwards the response returns to zero. Here, in this case, the calculated I0 has a
similar response when the fault happened, which was like an impulse interrupted in the
typical signal.

After the transient state, the current went to a stable state, in the zoomed in diagram, we
could see that the calculated I0 has very great matching degree to the reference I0. As a
conclusion, the practical performance of the integrator in the solid earth-fault is
excellent.

5.2.2 Low-ohmic Earth-Fault

In this section, a similar analysis is done for the integrator when the low-ohmic earth-
fault happens. The following figure is derived from one of the test recordings.

This test case is a very good proof of the integrator’s great performance. From the above
figure, even in the transient state, the calculated I0 has very small deviations from the
reference I0. The accuracy of calculated I0 is at a very high level.

5.2.3 High-ohmic Earth-Fault

Figure 54 shows the calculated I0 and corresponding reference I0 when a high-ohmic
earth-fault happens. This test case is similar to the low-ohmic earth fault case. For both

Simulation results with low-ohmic earth-fault

83

cases, they have very good performances in the transient state, one problem is that there
are small current fluctuations in the stable state. But in the general, the accuracy of the
calculated I0 are very high in both amplitude and phase responses.

Simulation results with high-ohmic earth-fault

84

5.2.4 Intermittent Earth-Fault

The last test case is about the performance of the integrator when the intermittent earth-
fault happens. Figure 55 displays the test results.

The integrator performed very well in this test case, it is evident that the calculated I0 is
in very high accuracy when compared to the reference current. There are several inter-
rupts during the transient state, the calculated I0 has almost the same amplitude as well
as phase value with the reference I0. There are no noticeable fluctuations in the current.

5.3 Summary of the Tests

From the above tests, the validity, practicability of the Rogowski integrator have been
verified from the perspective of both functionality and performance. The software im-
plementation of the integrator is capable of filtering different kinds of the input signals
with reasonable and acceptable outputs. Meanwhile, in the practical application, the in-
tegrator performed well when dealing with various earth fault cases. All, in brief, this
Rogowski integrator is within the standard of the design specification.

	

Simulation results with intermittent earth-fault

85

6. CONCLUSIONS

6.1 Discussion

As an imperative part of the Rogowski sensor, the integrator plays a significant role in
the accuracy of the measured current. A lot of issues need to be considered when de-
signing an integrator.

Choosing a good starting point filter for further improvements is necessary at the first
stage. Several methods can be utilized during the design. In our design, the fundamental
prototype adopted is a trapezoidal integrator. Then we optimize the filter by increasing
the filter’s order with pole-zero placement. Pole-zero placement is a very efficient way
to increase or insert a particular notch/peak. The filter’s performance regularly turns
better after increasing its order. However the increase of the order comes along with the
price of more resource costs, a good designer should find a proper balance between the
performance and the costs.

Genetic Algorithm is used for the filter’s optimization. There are also other computa-
tional algorithms for optimization, such as simulated annealing algorithm, differential
evolution algorithm, particle swarm algorithm, colony optimization algorithm, and Tabu
search algorithm, etc. [34]. The efficiency of Genetic Algorithm depends on how well
defined of the fitness function. The fitness function evaluates the filter’s performance
and gives corresponding fitness values. The evaluation standard refers a lot to the design
specification. Thus, a proper definition and analysis of the specification is very
important for the designer.

For a high order IIR filter, the general choice for the structure realization is the second
order sections in cascade or parallel form. The decision also lies on the finite word-
length effects if fixed point arithmetic is employed in the filter. The coefficients and
intermediate variables’ accuracy will be degraded by the quantization effects, which will
cause the filter’s performance deviation. Other finite word-length effects also affect the
performance of the filter. A good structure could effectively minify the effects to some
extent.

There are two approaches to implementing the filter. One is software implementation,
the other is hardware realization. Software approach in our case is realized by creating
the MATLAB and C model of the integrator. By software implementation, the filter
could be simulated with targeted test benches. It is very efficient and valuable method
to exam the filter’s functionality before implementing it in the hardware. When the soft-
ware implementation is verified, hardware implementation could be carried out if it is
necessary. In our case, RTL model is derived from the C model by translating it with

86

VHDL. Afterward, the integrator is implemented on FPGA board for practical field
tests.

Based on the testing results, the performance of design integrator is very good when
referring to the design specification. The basic magnitude and phase response of the
calculated I0 are of very high accuracy. Its ability of dealing with different earth faults
is also very good.

6.2 Challenge

There is always improvement remaining to be done. For this integrator, what could be
considered to improve is the DC fluctuations caused by the noise in small currents. One
possible solution is to increase the filter’s order, which may have a positive effect in the
frequency range around 0 Hz. The other method under consideration is to use new opti-
mization method for searching even better filter coefficients.

	

87

REFERENCES

[1] Kojovic, Ljubomir. "Rogowski coils suit relay protection and measurement [of
power systems]." Computer Applications in Power, IEEE 10.3 (1997): 47-52.

[2] Ward, David A., and J. La T. Exon. "Using Rogowski coils for transient current
measurements." Engineering Science & Education Journal 2.3 (1993): 105-113.

[3] Luo, Pandian, Hong-bin Li, and Zhen-Hua Li. "Two high accuracy digital inte-
grators for Rogowski current transducers." Review of Scientific Instruments 85.1
(2014): 015102.

[4] Zhang, Gang, et al. "A new electro-optic hybrid current-sensing scheme for cur-
rent measurement at high voltage." Review of scientific instruments 70.9 (1999):
3755-3758.

[5] Tong, Yue, and Bin Hong Li. "An accurate continuous calibration system for
high voltage current transformer." Review of Scientific Instruments 82.2 (2011):
025107.

[6] Becherini, G., et al. "Critical parameters for mutual inductance between
Rogowski coil and primary conductor." Instrumentation and Measurement Tech-
nology Conference, 2009. I2MTC'09. IEEE. IEEE, 2009.

[7] Ljubomir Kojovic, Martin Bishop. Rogowski Coil Designs. Available:
https://www.pacw.org/issue/autumn_2007_issue/protec-
tion_rogowski/rogowski_coil_designs/complete_article/1.html

[8] Mitra S K, Kuo Y. Digital signal processing: a computer-based approach [M].
New York: McGraw-Hill, 2006.

[9] IEEE Standard C37.235-2007, IEEE Guide for the Application of
Rogowski Coils Used for Protective Relaying Purposes.

[10] V. Skendzic, B. Hughes. Using Rogowski coils inside protective relays[C]//Pro-
tective Relay Engineers, 2013 66th Annual Conference for. IEEE, 2013: 1-10.

[11] Ramboz, John D. "Machinable Rogowski coil, design and calibration."Instru-
mentation and Measurement Technology Conference, 1995. IMTC/95. Proceed-
ings. Integrating Intelligent Instrumentation and Control., IEEE. IEEE, 1995.

88

[12] Sensor Technology, Applications for medium voltage, ABB Medium Voltage
Products. Available: http://www05.abb.com/global/scot/scot229.nsf/veritydis-
play/576c37ea10824a4bc1257b12002a396d/$file/NewAndInnovativeWay_arti-
cle_757842_ENa.pdf

[13] Xin Z, Longhua M. Design for digital integrator of Rogowski coil based on pipe-
line structure[C]//Power and Energy Engineering Conference (APPEEC), 2010
Asia-Pacific. IEEE, 2010: 1-4.

[14] D'Antona, G., et al. "AC current-to-voltage transducer based on digital pro-
cessing of Rogowski coils signal." Sensors for Industry Conference, 2002. 2nd
ISA/IEEE. IEEE, 2002.

[15] 高迎霞, et al. "基于 Rogowski 线圈的电流互感器信号处理中积分算法的研

究."电测与仪表 43.11 (2007): 1-5.

[16] Ifeachor E C, Jervis B W. Digital signal processing: a practical approach[M].
Pearson Education, 2002. P318-33, p455-62, 509-30,

[17] Hatem Bchir. Simultaneous Amplitude and Phase Optimization of IIR Filters.
Master Thesis of Tampere University of Technology, 2009

[18] Hwang, Kai. Computer arithmetic: principles, architecture and design. John
Wiley & Sons, Inc., 1979.

[19] Cofer, R. C., and Ben Harding. "Fixed-Point DSP Algorithm Implementa-
tion."EE Times-Ind

[20] Juha Yli Kaakinen. Optimization of Recursive Digital Filters for Practical Imple-
mentations. Master Thesis of Tampere University of Technology, 2009

[21] Hussain, Zahir M., Amin Z. Sadik, and Peter O’Shea. Digital signal processing:
an introduction with MATLAB and applications. Springer Science & Business
Media, 2011.

[22] Goldenberg, L. M., B. D. Matiushkin, and M. N. Poliak. "Digital signal pro-
cessing: Handbook." Moscow Izdatel Radio Sviaz 1 (1985).

[23] Direct-Form I. Available: https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html

[24] Levi, E. C. "Complex-Curve Fitting." IRE Transactions on Automatic Control.
Vol. AC-4, 1959, pp. 37–44.

89

[25] Dennis, J. E., Jr., and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall,
1983.

[26] invfreqz - MathWorks - MATLAB and Simulink for Technical ...(n.d.). Availa-
ble: http://www.mathworks.com/help/signal/ref/invfreqz.html

[27] Al-Alaoui M A. Class of digital integrators and differentiators [J]. IET Signal
Processing, 2011, 5(2): 251-260.

[28] Le Bihan, J. "Novel class of digital integrators and differentiators."Electronics
Letters 29.11 (1993): 971-973.

[29] Hoffman, Joe D., and Steven Frankel. Numerical methods for engineers and sci-
entists. CRC press, 2001.

[30] Al-Alaoui, Mohamad Adnan. "A class of second-order integrators and low-pass
differentiators." Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on 42.4 (1995): 220-223.

[31] Ngo, Nam Quoc. "A new approach for the design of wideband digital integrator
and differentiator." Circuits and Systems II: Express Briefs, IEEE Transactions
on 53.9 (2006): 936-940.

[32] Thakur, Gaurav Kumar, Ankur Gupta, and D. Upadhyay. "Optimization Algo-
rithm Approach for Error Minimization of Digital Integrators and Differentia-
tors." ARTCom. 2009.

[33] Tseng, Chien-Cheng, and Su-Ling Lee. "Design of digital integrator using inter-
laced sampling method and Simpson integration rule." Communications and In-
formation Technologies (ISCIT), 2012 International Symposium on. IEEE, 2012.

[34] Tseng, C-C. "Digital integrator design using Simpson rule and fractional delay
filter." IEE Proceedings-Vision, Image and Signal Processing 153.1 (2006): 79-
86.

[35] Al-Alaoui, Mohamad Adnan. "Class of digital integrators and differentia-
tors."IET Signal Processing 5.2 (2011): 251-260.

[36] Tseng, Chien-Cheng, and Su-Ling Lee. "Digital IIR integrator design using
Richardson extrapolation and fractional delay." Circuits and Systems I: Regular
Papers, IEEE Transactions on 55.8 (2008): 2300-2309.

[37] Jain, Madhu, Maneesha Gupta, and Nitin Jain. "Linear phase second order recur-
sive digital integrators and differentiators." Radioengineering 21.2 (2012).

90

[38] Goldberg, David E., and John H. Holland. "Genetic algorithms and machine
learning." Machine learning 3.2 (1988): 95-99.

[39] Karaboga, Nurhan, and Bahadir Cetinkaya. "Design of minimum phase digital
IIR filters by using genetic algorithm." Proceedings of the 6th Nordic signal
Processing Symposium-NORSIG. Vol. 2004. 2004.

[40] Houck, Christopher R., Jeff Joines, and Michael G. Kay. "A genetic algorithm
for function optimization: a Matlab implementation." NCSU-IE TR95.09 (1995).

[41] Tang, Kit-Sang, et al. "Genetic algorithms and their applications." Signal Pro-
cessing Magazine, IEEE 13.6 (1996): 22-37.

[42] Holland, John H. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. U Mich-
igan Press, 1975.

[43] Joines, Jeffrey A., and Christopher R. Houck. "On the use of non-stationary pen-
alty functions to solve nonlinear constrained optimization problems with
GA's." Evolutionary Computation, 1994. IEEE World Congress on Computa-
tional Intelligence., Proceedings of the First IEEE Conference on. IEEE, 1994.

[44] Gen, Mitsuo, and Runwei Cheng. Genetic algorithms and engineering optimiza-
tion. Vol. 7. John Wiley & Sons, 2000.

[45] Galvanic Isolation, Available: http://en.wikipedia.org/wiki/Galvanic_isolation

[46] GNU MP Manual, Available: https://gmplib.org/manual/

[47] Newton–Cotes quadrature formula. Encyclopedia of Mathematics. Available:
http://www.encyclopediaofmath.org/index.php?title=New-
ton%E2%80%93Cotes_quadrature_formula&oldid=22841

http://en.wikipedia.org/wiki/Galvanic_isolation
https://gmplib.org/manual/
http://www.encyclopediaofmath.org/index.php?title=Newton%E2%80%93Cotes_quadrature_formula&oldid=22841
http://www.encyclopediaofmath.org/index.php?title=Newton%E2%80%93Cotes_quadrature_formula&oldid=22841

91

APPENDIX: MATLAB CODES

1

2

3

4

5

6

b=[1 1]

a=[2 -2]

[z,p,k]=tf2zp(b,a)

if abs(p)>=1

 p=0.9995*(real(p)/abs(p)+1i*imag(p)/abs(p));

end

Program 1. Example code for Trapezoidal Digital Integrator

1

2

3

4

5

6

b=[1 4 1]

a=[3 0 -3]

[z,p,k]=tf2zp(b,a)

if abs(p)>=1

 p=0.9995*(real(p)/abs(p)+1i*imag(p)/abs(p))

end

Program 2. Example code for Simpson Digital Integrator

1

2

3

4

5

6

7

b=[0 1]

a=[1 -1]

[z,p,k]=tf2zp(b,a)

if abs(p)>=1

 p=0.9995*(real(p)/abs(p)+1i*imag(p)/abs(p));

end

 [b,a]=zp2tf(z,p,k)

Program 3. Example code for Rectangular Digital Integrator

92

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

b2=[1 1]

a2=[2 -2]

[z2,p2,k2]=tf2zp(b2,a2)

if abs(p2)>=1

 p2=0.9995*(real(p2)/abs(p2)+1i*imag(p2)/abs(p2));

end

[b2,a2]=zp2tf(z2,p2,k2)

notchHz=0.5;%Hz

width=10;%Hz

notchAngle=360*notchHz/9600;

z2=[z2 cos(notchAngle*pi/180)+1i*sin(notchAngle*pi/180)];

z2= [z2 conj(z2(2))];

r=1-(width/9600)*pi;

p2=[p2 r*cos(notchAngle*pi/180)+1i*r*sin(notchAngle*pi/180)];

p2=[p2 conj(p2(2))];

x1=29.159320336410961

[b2,a2]=zp2tf(z2',p2',k2/x1)

fvtool(b2,a2)

Program 4. An example of higher order trapezoidal integrator

1

2

3

4

5

6

7

Fs=9600;

w = [0 pi*25/4800 pi*50/4800 pi*100/4800 pi*1600/4800 pi*4800/4800

mag = [0 2 1 0.5 0.03125 0.01041666]; %magnitudes

phase = [0/180*pi - 87/180*pi - 89.75/180*pi - 89.80/180*pi –

89.9/180*pi- 89.95/180*pi]; % phases

wt = [1 1 10 10 10 10];

[b,a] = invfreqz(mag.*exp(1i*phase),w,3,3,wt,1000,0.01,'trace');

[zeroes, poles, k] = tf2zpk(b, a);

Program 5. Integrator design with direct design method

1

2

3

4

5

notchHz=0;

width=5;

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

z=[z cos(notchAngle*pi/180)+1i*sin(notchAngle*pi/180)];

93

6

7

8

z=[z conj(z(2))];

p=[p r*cos(notchAngle*pi/180)+1i*r*sin(notchAngle*pi/180)];

p=[p conj(p(2))];

result

z = [-1 1 1]

p = [0.999500000000000 0.998363753826255 0.998363753826255]

k = 0.016361741209689

Program 6. Example code for generating a 3rd order filter by pole zero place-
ment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

for j=1:N

 notchHz=rand;%Hz

 width=10*rand;% 0-20Hz

 notchAngle=360*notchHz/9600;

 r=1-(width/9600)*pi;

 if j==1

 zn(j) = -1 + 0.01*rand;

 zn(j+1) = 0.99 + 0.01*rand;

 elseif j==N

 zn(j) = 0.99 + 0.1*rand;

 end

 if j==N

 pn(j) = 0.99 + 0.01*rand;

 else

 pn(j)=(r*cos(notchAngle*pi/180)+1i*r*sin(notchAn

 gle*pi/180));

 notchHz=rand;%Hz

 width=10*rand;% 0-20Hz

 notchAngle=360*notchHz/9600;

 r=1-(width/9600)*pi;

 pn(j+1)=(r*cos(notchAngle*pi/180)-1i*r*sin(notchAn

 gle*pi/180));

 end

 kn = 0.0162+0.0001*rand ;

end

Program 7. Example code for generating 3rd order filter of GA optimization

94

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

notchHz=rand;

width=20*rand;

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

zn(1) = -1 + 0.01*rand;

zn(2) = 0.99 + 0.01*rand;

zn(3) = 0.99 + 0.1*rand;

pn(1) = 0.99 + 0.01*rand;

pn(2) = (r*cos(notchAngle*pi/180)+1i*r*sin(notchAngle*pi/180));

notchHz=rand; %Hz

width=10*rand;

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

pn(3) = (r*cos(notchAngle*pi/180)-1i*r*sin(notchAnle*pi/180));

kn = 0.0162+0.0001*rand ;

Individualn=[zn pn kn];

Program 8. Example code of generating a 3rd order

1

2

3

4

5

6

7

9

10

11

% 3rd order filter

z = [-1 1 1]

p = [0.999500000000000 0.998363753826255 0.998363753826255]

k = 0.016361741209689

notchHz=0;

width=20*rand;

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

z1=[z cos(notchAngle*pi/180)+1i*sin(notchAngle*pi/180)];

p1=[p r*cos(notchAngle*pi/180)+1i*r*sin(notchAngle*pi/180)];

k1=0.0162+0.0001*rand;

Result

% 4th order filter

z1 = [-1 1 1 1]

p1 = [0.999500000000 0.99836375382625 0.99836375382625 0.9946676459419]

k1 = 0.016361741209689

95

Program 9. Example code for generating a 4th order integrator by adding a
notch exactly at 0 Hz

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

notchHz=rand; %put zero in the range [0,5]Hz

width=5*rand; %width of notch 0-5Hz

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

zn(1) = -1 + 0.01*rand;

zn(2) = 0.99 + 0.01*rand;

zn(3) = 0.99 + 0.01*rand;

zn(4)= cos(notchAngle*pi/180)+1i*sin(notchAngle*pi/180);

pn(1) = (0.99 + 0.01*rand);

pn(4) = r*cos(notchAngle*pi/180)+1i*r*sin(notchAngle*pi/180);

notchHz=10*rand; %put zero in the range [0,10]Hz

width=20*rand; %width of notch 0-20Hz

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

pn(2)=r*cos(notchAngle*pi/180)+1i*r*sin(notchAngle*pi/180);

notchHz=10*rand;

width=20*rand;

notchAngle=360*notchHz/9600;

r=1-(width/9600)*pi;

pn(3)=r*cos(notchAngle*pi/180)-1i*r*sin(notchAngle*pi/180);

kn=0.0162+0.0001*rand;

Individualn=[zn pn kn];

Program 10. Example code for creating new filters for 4th order filter optimization

	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 Background and Motivation
	1.2 Requirements and Constraints
	1.3 Design Platform and Tools
	1.4 Organization of Thesis

	2. THEORETICAL BACKGROUND
	2.1 Characteristics of Rogowski Coil Sensor
	2.2 Integrators for Rogowski Coil Sensor
	2.2.1 Analog and Digital Integrators
	2.2.2 Digital Filter Design Issues
	Types and Representations
	Digital Filter Design Issues

	2.3 Digital Integration Algorithms
	2.3.1 Direct Design Method Based On the Frequency Response
	2.3.2 Newton-Cotes Integration Rules
	Trapezoidal algorithm
	Simpson algorithm
	Rectangular Algorithm

	2.3.3 Pole-Zero Placement
	2.3.4 Optimization Method
	Chromosome Representation
	Selection Function
	Genetic Operators
	Initialization, Termination, Evaluation Function

	3. DIGITAL INTEGRATOR DESIGN
	3.1 Coefficients Calculation
	3.1.1 Starting Point Filter Design
	Direct Designed Integrators
	Newton-cotes Based Digital Integrators
	Direct Design Based On the Frequency Response
	Pole-Zero Placement

	3.1.2 Coefficients Optimization
	GA_optimization Function
	Selection Function
	Fitness Function
	Mutation and Crossover Functions

	3.1.3 Design Example
	Starting Point Filter Generating
	3rd order filter optimization
	Performance Test
	4th order filter optimization

	3.2 Structure Realization
	3.2.1 Available Structures
	3.2.2 Finite Word Length Effects Analysis
	Fixed Point Implementation
	Filtering Functionality Simulation

	4. FILTER IMPLEMENTATION
	4.1 Software Implementation
	4.1.1 MATLAB Model
	4.1.2 C-Language Model
	4.1.3 Performance Evaluation
	FPGA Test
	Earth-Fault Test

	4.2 Hardware Implementation
	4.2.1 Topology

	5. TESTING RESULTS AND ANALYSIS
	5.1 Functional Verification
	5.1.1 Sinusoidal Input
	5.1.2 DC Input
	5.1.3 Impulse Input
	5.1.4 Noise Input
	5.1.5 Complex Input

	5.2 Performance Verification
	5.2.1 Solid Earth-Fault
	5.2.2 Low-ohmic Earth-Fault
	5.2.3 High-ohmic Earth-Fault
	5.2.4 Intermittent Earth-Fault

	5.3 Summary of the Tests

	6. CONCLUSIONS
	6.1 Discussion
	6.2 Challenge

	REFERENCES

