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ABSTRACT 
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The product development and lifecycle management is constantly affected by digitaliza-

tion. The same trend has been also observed in the simulation technology. The system 

simulation has evolved from applications with limited and specific use cases to more 

standardized and multi-disciplinary tools. The “Digital Twin” concept is the most recent 

advancement in this field where its definition is beyond a simulator. The concept arose 

from the “Industry 4.0” development and it can be described as a bi-directional commu-

nication between physical products data and their digital representation in the entire prod-

uct lifecycle. 

A hybrid power module consists of components such as an engine, a gearbox, the gener-

ator sets, the batteries, and technologies for efficiently exploiting the mechanical energy 

form the engine and the electrical energy from the batteries. The modular product devel-

opment necessitates adoption of systems engineering approaches and principles in order 

to handle the product lifecycle management appropriately. Handling the product lifecycle 

management for the hybrid power modules encompasses the integration of disengaged 

elements, data, and stakeholders throughout the product development. 

In order to address the abovementioned problem, model-based systems engineering ap-

proach incorporates available tools and technologies. A product lifecycle management 

platform and tools in hand like web services and functional mock-up interface justify the 

development of a digital twin application. This application must be able to reveal the 

adoption of system of systems view for hybrid power module development. This can be 

achieved by creating a reference system model and continuously enriching it with the 

product lifecycle data. To begin with the implementation of a digital twin application, 

systems engineering theories are studied, a software development lifecycle is chosen, pro-

totypes of the application, and development technologies are selected. Lastly, the appli-

cation is programmed and deployed. 

The digital twin application is embedded inside a product lifecycle management platform 

and exploits other resources and data alongside. The application is a simplified imple-

mentation of the “V” lifecycle model in systems engineering and achieves objectives like 

task-centered product development, value co-creation in business processes, product data 

management, simulation-based, and requirements validation among others. 
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1. INTRODUCTION 

The first chapter of the thesis is dedicated to elucidating the agenda and intentions for the 

topic of choice and revealing the goals to be accomplished and research questions to be 

fulfilled. In the end of this chapter, the scope of the research and structure of the thesis is 

outlined. 

1.1 Motivation 

Product design, manufacturing and service offering have always been evolving into more 

efficient and better-organized approaches. In the 1960s and 1970s, within the first wave 

of IT, industries vastly exploited automated activities and enhanced communication in 

the value chain, order processing and computer aided design and manufacturing. In the 

1980s and 1990s, within the second wave of IT and advent of the Internet, coordination 

and integration of activities and communication significantly boosted. The first two 

waves dramatically improved the productivity of design and manufacturing. However, 

industries have yet to take advantage of the third wave of Information technology, con-

nected products data and computer sciences advancements. [1] 

In the simulation technology, similar trends have been observed over the time. Simulation 

initially used to refer to individual applications with very limited and specific use cases. 

Well ahead, simulation became a standard tool to answer a specific design and an engi-

neering needs. Afterwards, simulation-based system design was introduced to allow a 

systematic approach to multi-disciplinary systems, one example of which is the model-

based systems engineering. The latest movement in simulation is referred to as the “Dig-

ital Twin” concept, firstly used and described by NASA: [2] “A Digital Twin is an inte-

grated multi-physics, multiscale simulation of a vehicle or system that uses the best avail-

able physical models, sensor updates, fleet history, etc., to mirror the life of its corre-

sponding flying twin.” [3] 

The “Digital Twin” in the context of product design and manufacturing is attained through 

integration of individual and disengaged elements throughout the product lifecycle. These 

elements, depending on products’ nature, can be viewed as simulation models and data, 

operating and field data, test data, live data and product data, which are all initially dis-

connected. The “Digital Twin” notion originally emanates from industry 4.0 development 

and describes bi-directional communication and behavior of physical artefacts with their 

digital representation [4].  
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The product lifecycle management (PLM) is the essential and yet intangible procedure in 

product development in manufacturing firms. Therefore, adopting a functional PLM sys-

tem has become an integral part of modern product development. Acquiring and imple-

menting a well-organized and comprehensive PLM system can be a rigorous work, how-

ever; it will reimburse once it is fully adopted within the organization and activities. 

Numerous benefits that stems from applying the “Digital Twin” concept as a PLM system 

on the one hand, and shortcomings of current system on the other hand, came to be the 

main motivation for the study of possible opportunities, substitutes and amendments of 

the existing system. Moreover, with the adoption of PLM platforms within manufacturing 

firms, construction and integration of new systems and technologies is meaningfully fa-

cilitated. 

1.2 Justification 

There is a set of objectives that justify the need for taking systems engineering approach 

towards product development. The “Digital Twin” in a small scale and in combination 

with the data available in the PLM platform aims to demonstrate several use cases that 

address the challenges faced in product development. These use cases amount to: 

 Integration and communication of the digital twin application with an existing 

PLM platform and sharing the resources. 

 Model-based systems engineering (MBSE) and task-centered product develop-

ment. 

 Verification and validation of simulation data together with requirements and test 

results. 

 Speeding up the selection of bill of materials (BOM) based on products configu-

ration. 

Additionally, one objective is also providing a better insight into all the stages of product 

lifecycle with the main goal of feeding the data as inputs to business and generating values 

accordingly. The “Digital Twin” concept aims to provide a flawless communication 

among involved parties and available data in order to deliver business values. For in-

stance, one of the outcomes of achieving the abovementioned goals is reduction in time 

to market [5], [6]. 

1.3 Research Problem 

Concisely, the problem emanates from mismanagement and inability to engage relevant 

factors and data throughout the product lifecycle in an appropriate way. More in detail, 

complications can be boiled down to the following viewpoints: 



3 

 One issue can be pointed out as disconnected models and data. Models in this 

context are simulation models by executing of which various results are generated 

known as simulation data. There are also different instances of simulation models 

with corresponding results (also known as product configurations). So this prob-

lem can also be referred to as unobtainability of all the product configurations 

with their data in a common database where the results could be dynamically val-

idated and verified with respect to the product requirements and test data. 

 

 Moreover, product data management (PDM) and choosing the best components 

for the product based on the simulation results, product requirements and cus-

tomer needs can be considerably enhanced as a result of a more efficient PLM 

system. 

1.4 Research Questions 

Based on the research problems stated above, the research methodology in engineering 

suggests observing the existing solutions, coming up with a better solution, developing it, 

analyzing it and finally validating the proposed solution [7].  

The existing methods and practices in product development and specifically in the design 

phase which is the main focus in this study are not efficient. The research methodology 

raises questions about formalizing and structuring the product design. The main research 

questions to be fulfilled through this study are outlined as follows: 

 How could a general-purpose system model be formed in order to serve as a ref-

erence for different product configurations? 

 What infrastructure is needed for the system model to be generated and where 

could it be hosted? 

 In what ways a system model could be augmented with other product data? 

 How is the communication between a system model and the PLM data estab-

lished? 

1.5 Scope and Limitations 

Since the research is prepared in system simulation group and is a part of hybrid power 

module development research team, its scope is mainly bound by the scope of activities 

and support from these teams within the organization. However, the results of this study 

can be extended to include a more comprehensive list of product development teams and 

activities with corresponding use cases. 

In order to keep the scope of this study within time and academic structural constraints, 

some limitations are proposed. The application developed as “Digital Twin for Hybrid 
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Installations” focuses mainly on the early stages of a product lifecycle. So the main at-

tention is given to “twinning” the product in the simulation and design phase and choice 

of the product components accordingly. Hence, the research questions are merely and 

exclusively investigated for a certain product and limited use cases. 

1.6 Structure 

This thesis is structured as follows: 

The first chapter introduces the topic of the study, motivations, objectives justifying the 

need for such studies, research problems that the study aims to resolve, research questions 

and, lastly, the scope and limitations of study and application. 

The second chapter focuses mainly on the theoretical notions and attempts to shed lights 

on the basics of the systems engineering through a more profound and comprehensive 

literature review. Moreover, a literature concerning the “Digital Twin” concept is inves-

tigated and industrial practices for similar problems are reviewed. In the end, the main 

conclusions of the chapter as a state of the art is presented. 

The third chapter reveals a methodology of the digital twin creation. First, the research 

proposal for the research question of the study is presented. Then, models, tools and tech-

niques are explored.  

The fourth chapter describes the implementation of the digital twin demo application and 

tends to clarify the use cases employed. Furthermore, core activities for development and 

deployment of the application are denoted. Finally, this chapter outlines the results of the 

implementation. 

The fifth chapter reviews accomplishments, challenges and possible future work and ex-

plores whether or not the objectives and research questions are determined. 
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2. LITERATURE AND INDUSTRIAL PRACTICES 

REVIEW 

This chapter is merely dedicated to the theory, literature and industrial practices review 

for the topic of study. First, systems engineering principles as the backbone of the “Digital 

Twin” is precisely looked over. Afterwards, the “Digital Twin” and its connections with 

systems engineering is investigated more in detail, supported by several literature studies 

and previous research. And last but not least, main conclusions of the literature and in-

dustrial practices review are presented as state of the art. 

2.1 Systems Engineering Review 

Systems engineering originates from systems thinking that perceives the system as a 

whole and identifies causal relationship of variables and entities within the system. Sys-

tems engineering supports all the broad aspects and activities related to a system through-

out its lifecycle from the early emergence of the need for the system by business to the 

definition of requirements and options, design, construction, deployment, utilization, sup-

port and, lastly, removal from service. [8] 

In this section, first the system, its components and basic concepts are defined. Then the 

system lifecycle and principles of the systems engineering are more delved into. Next, a 

brief review of the systems engineering standards is presented. Afterwards, the structural 

and behavioral models in systems engineering are explained and, last but not least, the 

contribution of these model to the model-based systems engineering is investigated. 

2.1.1 System 

A system is comprised of a set of elements with their connections and interrelations. Once 

the system with the aforementioned characteristics is identified, it is bordered by systems 

boundary and becomes a system of interest (SOI). Elements within the system can be 

related to that of another system or a broader system of interest. See Figure 1. The purpose 

of a system is to provide a solution to a business problem. [9] 

A system is not merely a product but includes coordination of personnel, activities, facil-

ities, policies, organization, data and support that delivers an operational capability. A 

system can be considered as a solution to a problem and descried as a logical and physical 

architecture. A logical description basically focuses on what a system is and what it is 

aimed for. A physical description, on the other hand, emphasizes the elements of the sys-

tem, how they are related and the way they should be manufactured. The logical architec-

ture of a system as a problem domain has to be viewed as a business case without a current 
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logic, and it is the responsibility of the customer. The physical architecture of the system 

being interrelated with its logical counterpart comes later and is the responsibility of the 

developer or the organization that implements the system. [9]  

 

Figure 1. System of interest: elements, connections and system boundary. 

The logical architecture of a system consists of a hierarchical structure of the system mis-

sion and its subsystems as functions that serve for the system mission. The physical ar-

chitecture of a system is made up of the hierarchical structure of the system, its subsys-

tems, assemblies and components. For instance, a hybrid vessel is considered as a system, 

subsystems are hybrid power module components, and assemblies are various combina-

tions and choices of components within the hybrid power modules. It is important to note 

that the components in hybrid power module, such as the engine, gearbox and propeller, 

are each a system as they are developed independently with their own mission. A system 

of systems (SOS) notion comes into view when these systems are combined and tuned to 

operate for a broader system mission. [9]  

Modularization of products necessitates implementation of systems engineering in a sense 

that the components of a system should cease to serve for their own purpose and mission. 

However, they must be optimized for their own purpose while serving for the system 

mission. If this view is not adopted, the system is most likely not optimized. 
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2.1.2 System Lifecycle 

Systems have a life; they come into existence, are utilized and are finally disposed of after 

they have served their purpose. Throughout the system life, there is a number of activities 

and phases that each is built on top of proceeding activity or phase. The sum of these 

phases throughout the systems life is called system lifecycle. [9]  

Systems lifecycle can be viewed as four main stages [9]: 

 A pre-acquisition stage where the initial business need for the system is identified 

and the system is conceptualized. This stage is the result of business planning and 

includes activities to justify the need, considering the technology in use and avail-

able resources. 

 An acquisition stage where the system is formalized. This stage bring the concep-

tualized system into existence by coordinating resources in order to comply with 

the business needs and requirements (BNR) identified in the pre-acquisition stage 

along with stakeholders’ needs and requirements (SNR) and the system require-

ment specification (SyRS). 

 A utilization stage where the system is used and evolved. At this stage the system 

is operated and continuously supported and maintained by the organization to 

modify the performance shortfalls or adopting to changes in the operation or the 

operating environment. 

 A retirement stage where the system is disposed of. This stage is handled once the 

system is no longer needed or keeping and maintaining the system is not cost 

effective any more. Thus, the systems is disposed of and, if a substitute is needed, 

a new business case and planning has to be created. 

During the system lifecycle stages, there is a number of parties involved also known as 

stakeholders. A customer is the end user of the system and, in the context of business 

management, a function of the pre-acquisition stage. Project management is highly en-

gaged in the acquisition stage and supported by several disciplines, such as systems en-

gineering, requirements engineering, quality assurance, etc. Operators are supporting and 

maintaining the system during its utilization stage. [9]  

2.1.3 Principles of Systems Engineering 

One of the key aspects of systems engineering is its top-down approach. Traditionally, 

engineering problems are dealt with in a bottom-up approach where components are de-

signed and constructed and then assembled to be a part of a bigger system. However, 

systems engineering emphasizes on top-down approach where first, system level require-

ments are identified and then the system is broken down to sub-systems, assemblies and 
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components along with the transformation of system requirements. The Top-down ap-

proach is well defined by a “V” lifecycle model. While the system design is top-down, 

integration remains to be bottom-up. See Figure 2. [9]  

 

Figure 2. “V” lifecycle development model. Design is top-down and integration is 

bottom-up. [10] 

Another aspect of systems engineering is requirements engineering. Initially, require-

ments are generated as a result of the business need for the system. Next, these require-

ments are translated into statements that form the basis of the logical design and, eventu-

ally, the physical design. During the transition of the requirements to lower levels, atten-

tion should be paid to translate and include all the relevant requirements. The process of 

handling requirements transitions is called requirements engineering. Requirements trac-

tability is the ability of following systems design requirements in the top-down approach 

and inclusion of requirements in a higher level requirement in the bottom-up system in-

tegration. [9]  

Another aspect of systems engineering is its lifecycle focus, meaning that all the system 

lifecycle stages are influenced by systems engineering. This implies that the system 

lifecycle should not be merely focused on the pre-acquisition and acquisition stages but 

also on the utilization stage where the system spends the majority of its life. [9] 

Other aspects of systems engineering are optimization and balance. As mentioned earlier 

in section 2.1.1, fully optimized components do not guarantee am optimized system. 

However, designing the system by having a higher-level system mission in mind can re-

sult in an overall optimal and balanced system. This aspect is a feature of the top-down 

approach. [9] 
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Moreover, systems engineering by integrating various disciplines and management prin-

ciples ensures sustainable development of complex systems. 

2.1.4 Standards 

Since 1930s, systems engineering has been evolving and its guidelines have been stand-

ardized in different areas [8]. In this section, the most noteworthy standards related to 

systems engineering, system lifecycle, and other associated factors is briefly documented.  

ISO/IEC/IEEE 15288: International standard for system and software engineering with a 

focus on system lifecycle processes. Initially introduced in 2002. 

ANSI/EIA-632: Standard of processes for engineering the systems. The Top-down ap-

proach idea is documented in this standard. 

ISO/IEC/IEEE 26702: Standard for system engineering that focuses on application and 

management of the systems engineering processes. 

MIL-STD-499B: Military standard for systems engineering. 

ISO/IEC 29148: Standard for systems and software engineering with focus on system 

lifecycle processes and requirements engineering. 

2.1.5 System Modeling 

In order to model complex systems, a standard modeling tool and language are needed. 

For that purpose, the International Council on Systems Engineering (INCOSE) accompa-

nied by the Object Management Group (OMG) extended the Unified Modeling Language 

(UML) that is a general-purpose modeling tool for software engineering. The result was 

the emergence of SysML that serves for modeling, design and validation of complex en-

gineering systems. [11] 

Using SysML, it is possible to model the behavior of a system and verify the system 

design [4]. Majority of SysML diagrams are either directly inherited from UML diagrams 

or modified in order to better serve for systems modeling. There is also a number of dia-

grams introduced in SysML that are non-existent in UML. Figure 3 shows the SysML 

diagrams and their relations. 
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Figure 3. SysML diagrams. [8] 

Use case diagrams allow the engineer to model systems, actors, use cases and the inter-

actions among them. Activity diagrams depict the activities and flow of data or actions. 

The sequence diagram represents the message flow among objects. The state machine 

diagram models the state of a system upon triggering events. The block definition diagram 

is a substitute for the class diagram in UML and is used for modeling the structure of the 

system. The internal block diagram models the internal structure of individual blocks. 

The package diagram is used for organizing the models by structuring systems elements 

into packages. [12] 

There are also two other diagrams that have no equivalence in UML: the requirement 

diagram which is used for representing systems requirements, connections among re-

quirements and system elements. The parametric diagram is used for modeling the system 

parameters. [12] 

As an example, the waterfall model of systems engineering “V” lifecycle, previously 

shown in Figure 2, can be modeled by the state machine diagram depicted in Figure 4. 

According to it, initially system requirements are defined and then, in the system design 

phase, these requirements are associated to subsystems. Next, in the system elements are 

integrated and, afterwards, there are system installation, evolution and decommissioning 

phases. 
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Figure 4. State machine diagram of systems engineering lifecycle model. [12] 

2.1.6 Model-Based Systems Engineering 

Model-based systems engineering (MBSE) is a methodology – a combination of models, 

tools and techniques that aims to support systems engineering. The INCOSE defines the 

MBSE as “a formalized application of modeling to support system requirements, design, 

analysis and verification throughout the lifecycle of the system by incorporating a set of 

models and simulation practices into systems engineering” [8]. 

Implementing the MBSE approach in product development results in numerous benefits. 

The MBSE improves and facilitates communication among involved stakeholders and 

reduces the system complexity significantly by distributing the system models to be 

viewed and evolved from different perspectives. Consequently, product quality is im-

proved as a result of evolving and evaluating system models throughout the system lifecy-

cle. Another aspect of the MBSE approach is its knowledge-driven nature and reusability 

that reduces model design cycle time. [8] 

The MBSE approach is usually compared to traditional document-based approach where 

the information generated through the lifecycle of the system is stored in documents like 

system specifications, reports, verification plans and procedures. This hinders the mainte-

nance and synchronization of information and reduces its quality. On the other hand, the 

MBSE approach by structuring the systems information and encapsulating it in system 

models expedites the maintenance, communication and reusability of systems require-

ments, architecture and design. Furthermore, digitalized manufacturing and continuous 

data gathering and processing enriches the models constantly with production, operating 

and servicing information. [6], [8] 
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The object oriented systems engineering method (OOSEM) is a response to the need for 

flexible and extendable systems design. OOSEM is an MBSE method that combines ob-

ject-oriented concept with systems engineering through encapsulating the system lifecy-

cle phases, – consistent with the “V” model, by supporting requirement specification, 

analysis, design, verification and validation and capturing them in objects or blocks. 

Therefore, it facilitates reusability, inheritance and design evolution. Moreover, OOSEM 

integrates MBSE with object-oriented software programming. [8] 

Applying the object oriented methods to systems engineering and systems lifecycle, struc-

tures the system and generates a better insight into the systems architecture and all the 

underlying system elements (see Figure 5), one of the outcomes of which is tackling the 

missing interoperability of simulation systems with various system models. Nevertheless, 

a thorough approach or paradigm that incorporates simulation technology and communi-

cation through that in the whole lifecycle of the system has yet to be established. 

 

Figure 5. MBSE methods structure systems architecture. [4] 

“Communication by simulation” is the core tenet of the MBSE [3]. MBSE by incorporat-

ing simulation technology aims to cope with the cumulative complexity of technical sys-

tems. Integration of simulation-based systems engineering with established systems en-

gineering methods, such as the OOSEM, leads to increased cost efficiency in the devel-

opment process, reduced development time, more sophisticated design and improved 

overall systems reliability. [4] 

2.2 Digital Twin Concept Review 

It is challenging to associate a precise and thorough definition with the “Digital Twin” 

concept as it has taken its meaning from the context and perspective where it has been 

developed and deployed. Efforts in implementing the “Digital Twin” concept have been 
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more restricted to product management and recently to shop floor and production systems 

[13]. 

Nonetheless, the “Digital Twin” in this context can be defined as a structuring element in 

combining the MBSE and simulation technology. The “Digital Twin” is not necessarily 

a comprehensive model of a physical product but a number of simulation models and 

other relevant data that evolve through the lifecycle of the product [14]. 

Up to now, some of the key features of the “Digital Twin” concept have been revealed. 

Since it is more of an abstract concept and its definition is inherited from its features and 

benefits, in this section the key features and essentials of the “Digital Twin” concept are 

more clarified. Moreover, building blocks for its implementation are represented. Lastly, 

it is investigated whether or not this paradigm is feasible and affordable.  

2.2.1 Features 

The “Digital Twin” concept is aimed to facilitate communication and information ex-

change among involved players, thus it is essential in itself to provide simplicity and ac-

cessibility while maintaining reliability. Developing the “Digital Twin” infrastructure, 

while keeping the MBSE method in mind ensures these goals. Likewise, the same applies 

to connections and communication among dispersed tools and applications, such as man-

ufacturing, procurement, maintenance, warehousing, and filed service. 

A “Digital Twin” needs to take a comprehensive approach. This means that it has to hold 

the systems models (system structure, components and data), and act as an analytics 

framework to support the system visibility and prediction. Visibility is realized in moni-

toring the condition and operations of the product as well as linking the disconnected 

pieces of information or system components. Prediction is supported by modeling tech-

niques to foresee future behavior and state of a system. Therefore, a “Digital Twin” can 

act as a knowledge base for the product data and provide insight into the system. 

Storing, managing and reusing the product information as mentioned above denotes that 

a “Digital Twin” can be viewed as a PLM system. Semantic data management (SDM) 

that covers both the virtual and real lifecycle of the product along with the flow of infor-

mation is provided by the PLM approach. [15], [16] 

In section 2.1.2, the system lifecycle was discussed briefly. The same definition may be 

applied to a product, assuming it to be a complex system. Thus, a “Digital Twin” as a 

PLM system needs to encompass the four lifecycle stages, namely introduction, growth, 

maturity, and decline. Applying these stages to the engineering field, as depicted in Figure 

6, better clarifies the areas where a “Digital Twin” can be utilized. [17] 
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Figure 6. Areas where a “Digital Twin” can be utilized as a PLM system. [17] 

2.2.2 Building Blocks 

By combining multi-physics, multiscale, and probabilistic simulation of complex prod-

ucts along with models and sensory data, a “Digital Twin” replicates the life of its peer 

physical twin. Thus, a “Digital Twin” can be based on three building blocks: a physical 

product, a virtual product and connecting data that links the physical product to the virtual 

product. [2] 

The “Digital Twin” building blocks in the design phase (conceptual design, detailed de-

sign, and virtual verification) are exemplified in Figure 7 [17]. The capabilities of a “Dig-

ital Twin” within the scope of this study are very well represented in this figure. 

A “Digital Twin” needs a vast amount of data to be able to effectively virtualize the real 

product and predict its performance. Therefore, its true implementation requires an inter-

disciplinary approach. The industrial internet or industrial IoT (IIoT – industrial internet 

of things) takes care of sensory data retrieval. Big data analysis is required to orchestrate 

the vast amount of data and its integration with models. 
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Figure 7. “Digital Twin” in design phase of the product. [17] 

The processed data and models have to be efficiently retrieved from the isolated databases 

in order to interface with the end users. Web services are means of communicating among 

machines, through which, communication between an application and the resources in a 

database can be handled.  

An application is another significant element through which the “Digital Twin” interfaces 

with the real world and communicates with involved players and other services (e.g. mar-

ket pricing). The application needs to appropriately visualize the processed data and sup-

port real-time monitoring and prediction of the real product behavior. 

2.2.3 Feasibility 

While implementing a model-centric design and the “Digital Twin” generates numerous 

benefits in product development, there is a number of challenges and obstructions that 

have to be considered. Challenges in the way of implementing the “Digital Twin” concept 

are boiled down to: 

 Lack of conceptual basis: one challenge in implementing the “Digital Twin” con-

cept is the inability to apply a comprehensive model to all activities in design and 

production. Such to serve the vision of the “Digital Twin” is required to be ex-

tendible, interoperable and scalable. [6]  

 Computational deficiencies: another obstacle in full implementation of the “Dig-

ital Twin” concept is the lack of computational capabilities. To inherit features of 

a “Digital Twin” requires a parallel execution of simulation and real time execu-

tion of models. Complex models can dramatically aggregate the problem and 

completely hinder the execution of them. [18] 
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 Workforce: implementing the “Digital Twin” requires a significant number of re-

sources and workforce to produce software codes for the simulation and run-time 

environment. Furthermore, the massive amount of data that is constantly being 

produced, as a result of running models, requires unprecedented amount of data 

analysis work. [18] 

 Cost and affordability: depending on the complexity of the models and scope of 

implementation, the “Digital Twin” concept can bring forth vast capital and main-

taining costs. Costs are directly influenced by the abovementioned obstructions 

such as simulation complexity and workforce. [18] 

2.3 Industrial Practices Review 

This section investigates the background of the “Digital Twin” concept from the point of 

view of major and influential industries and manufacturing firms. 

The concept of a twin was initially proposed by NASA for the Apollo program where 

“two identical space vehicles were built to allow mirroring the condition of the flying 

space vehicle during the operation. The vehicle remaining on the ground was known as 

the twin and, prior to operation, it was used for training and after that for mirroring the 

real operating conditions and real time behavior of the flying vehicle”. [3] 

The notion of a “Digital Twin” was originally initiated from Industry 4.0 development 

and denotes the virtual model development for a product, establishing a one-to-one con-

nection and data exchange between a physical product and its virtual counterpart. There-

fore, an evolving model of the product is virtually available throughout the product lifecy-

cle. The “Digital Twin” concept can be described in three main points as suggested in [4]: 

 An infrastructure that facilitates storing and accessing systems model and data. 

 Clarification of systems functionality as data is processed and systems behavior 

is constantly monitored. 

 Communication interfaces and means of correlating data and players through the 

lifecycle of the system. 

Simulation is an integrated part of a “Digital Twin” by means of which virtual models 

come to real life and become experimentable [4]. Virtual models of the physical products 

are not only used for validation and verification, but they can also be seen as master prod-

uct models with characteristics corresponding to the product [6]. 

Hence, the “Digital Twin” concept can also be viewed as a management system [3] where 

simulation technology is combined and applied to the MBSE principles. The “Digital 

Twin” concept highly contributes to the vision of the MBSE by encompassing system 

modeling and simulation in entire phases of a system lifecycle as well as for the whole 
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system elements. Therefore, simulation capacities can be applied to systems engineering. 

[4] 

Once a “Digital Twin” of a physical system is placed in the center of a development 

process (see Figure 8), system development is reshaped dramatically [19].  

 

Figure 8. Digital twin of physical systems in the center of development reshapes sys-

tems development. [6]  

Before the industrial revolution, products were handcrafted by technicians as distinctive 

products based on a given template. However, after the industrial revolution and advent 

of mass production, manufacturing shifted to creating similar and interchangeable copies. 

[6] 

There are two approaches combining the concept of customized and efficient product 

development. Mass customization aims to combine customized product development 

with near to mass production efficiency that is out of scope of this study. Another concept 

is referred to as the “Digital Twin” approach that stems from creating a copy of the system 

of interest in order to be used for establishing a relationship with real product and enabling 

justification for that. [6] 

Major industries and companies have different views toward the concept of the “Digital 

Twin”. Nevertheless, the core of it, the replication of a real system or product remains the 

same, and diverse views are a result of the different types of industries and their focus. 
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The goals that these industries tend to achieve through implementing the “Digital Twin” 

concept can illuminate its definition: 

 PTC1 (a software company) establishes a connection between a virtual and an ac-

tual product and tracks its status while it is being used by the customer. Thus, it 

holds a history and an overview of the product and its performance. 

 Dassault Systèmes2 (a 3D software company) focuses on complying design with 

product targets and the product design performance. 

 SIEMENS3 (industry, energy, healthcare and infrastructure) focuses on enhancing 

quality and efficiency in manufacturing. 

 General Electric4 (aviation, healthcare and power sectors) attends to forecast con-

dition and performance of their products. 

 TESLA5 (an electric vehicles manufacturer) focuses on creating a “Digital Twin” 

for each manufactured car, therefore allowing real-time condition monitoring of 

the cars. 

 Deloitte6: focuses on manufacturing processes and delivers a digital twin as a ser-

vice in order to generate business values [20]. 

2.4 State of The Art 

In this section, a comparison of product development in the form of “as-is” vs. “to-be” is 

presented. This assessment is made from the technology viewpoint and based on experi-

ence, observations and communication in the core team7 meetings. The comparison is 

simplified and is limited to a few general use cases in the product development lifecycle. 

Once the business case for a product is created, a research group for design, development 

and delivery of the product is formed. A research group in the research and development 

organization is structured in a way to get all the competencies and stake holders together 

in order to ensure achievement of the research project goals. The roles in the team are 

defined to support the final product functionality, mechanical design, engine operation, 

performance and control, system simulation and system integration. [21]  

Once the research team is established and members know their responsibilities, the pro-

cess of project requirements definition and value proposition starts. 

Currently, the project requirement documentation is Excel-based and collected by the 

members of the core team. These requirements account for the detailed specifications of 

                                                
1 https://www.ptc.com 
2 https://www.3ds.com 
3 https://www.siemens.com 
4 https://www.ge.com 
5 https://www.tesla.com 
6 https://www.deloitte.com 
7 Hybrid Platform Team, Wärtsilä Finland Oy 
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all the components in the module, and they are vessel-specific. This process can be quite 

tedious and time-consuming due to possible miscommunication within the organization 

and unavailability of data. Also, the independent function of separate teams for different 

system components is one reason behind this. 

A more efficient way of handling project requirements is systems engineering approach 

as suggested in section 2.1.3. This means that the vessel requirements could be initially 

defined by the customer. Then in the next step, requirements from the customer’s point 

of view would be translated into general technical requirements and consequently broken 

down and handed over to appropriate teams within the organization in order to collect the 

detailed specifications. 

Currently, the systems simulation engineer who holds the responsibility of integrating the 

systems components and simulating the system behavior as a whole, receives the require-

ment specifications and tunes the simulation models on the basis of them. Lack of infor-

mation about system components and vessel requirements due to miscommunication 

within the organization hinders and slows down simulation engineers’ work. 

The process of systems simulation could be significantly enhanced through the use of 

model-based systems engineering methods. Different configurations of each component 

could be generated and a system model created on the basis of the requirements. System 

model creation can be significantly boosted by exchanging component configurations and 

simulating accordingly. 

Traditionally, once the simulation results are generated and the system design agreed 

upon, the production and integration of the product components starts. The process of 

production and integration is handled in different production units. Neither at this stage, 

nor the previous ones, the customer is necessarily fully aware of the product status until 

the final product is ready for delivery. Moreover, development team may not be able to 

receive timely feedback about production and system status. 

Production and integration of system components could be boosted through the use of the 

Internet of Things (IoT) and continuous updates of product status throughout the devel-

opment lifecycle. Moreover, all the players in the system development could receive a 

real-time status and report of the system. 

The “Digital Twin” vision is not merely restricted to product development but aims to 

support its physical counterpart in all other lifecycle phases, such as operation until the 

product is disposed of. Thus, after product development, the use cases and focus are 

mostly on monitoring the system condition and delivering services, such as predictive and 

preventive maintenance. 
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3. RESEARCH PROPOSAL AND METHODOLOGY  

This chapter brings the methodology of the “Digital Twin” concept to light. First, the 

proposal for the digital twin interface is illustrated by describing the hybrid power mod-

ules, their digital counterpart and corresponding sources of data, and enumerating a num-

ber of scenarios and use cases to be implemented in the solution. Next, the models used 

and generated to support the development of this study are elucidated. Finally, Tools that 

have been used throughout the study and development of the “Digital Twin” demo appli-

cation are presented. 

3.1 Proposal 

In order to tackle with the research problems of this study, the idea of digital twin interface 

is proposed. The digital twin interface is intended as a web based application that not only 

maintains a connection to other web resources such as PLM data, but also serves as a 

reference system model that continuously evolves along with the physical product lifecy-

cle. Therefore, a replicate of a physical product is accessible on the web, enriched with 

all the physical product data that spans from design phase data to the operation and 

maintenance data. Besides, the system model generated for one product, can be utilized 

as a reference model for other similar products in order to streamline the product devel-

opment and optimize time and resources within the organization.  

In the scope of this study, a “Digital Twin” is researched as thoroughly as possible. How-

ever, its implementation is narrowed down to a manageable number of scenarios and use 

cases since its full implementation may not be simply achieved due to time constraints 

and the available resources. In this section, a description of a product (hybrid power mod-

ule) is given and the concept of a digitalized product, data sources and information re-

trieval is discussed. The scenarios and uses cases that will be put into practice are re-

viewed. Within this scope, the “Digital Twin” concept is implemented to verify that the 

product requirement specification is consistent with the product intents and customers’ 

expectations [6]. 

3.1.1 Product Description 

Research, study and implementation of the “Digital Twin” concept and applying the sys-

tems engineering principles are targeted for hybrid power modules (Figure 9). Each hy-

brid power module is made up of set of components that is tuned and harmonized to serve 

for a specific vessel type. [22]  
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Figure 9. Integrated hybrid power module. [22]  

A hybrid power module is an integrated set of components that work as a system. It in-

cludes a main engine with a clutch, a power take off / power take in (PTO/PTI) that har-

nesses the mechanical energy of the drive shaft and converts it to electrical energy, a two-

speed gearbox, an energy storage system, a DC link and power drives, and an energy 

management system. [22]  

The hybrid power modules aim to combine customer needs with the organization’s ex-

pertise and experience in the marine industry to deliver the state of the art power module 

solution to continue being competitive in the marine market while maintaining marine 

regulations. Some values that are aimed for by delivering hybrid power modules boil 

down to smokeless start of engine while the vessel is in the harbor, emission control, 

damping the load fluctuations, and cost efficiency.  

The hybrid power modules were nominated for study and application of the “Digital 

Twin” concept and systems engineering due to various reasons. From a lifecycle man-

agement point of view, upon starting this study, development of product was in the pre-

acquisition phase. Therefore, there has been room for many research and development 

studies and discussions. Another reason is the modular nature and customizability of this 

product for different operating profiles, well justifying the need for systems engineering 

approaches. 
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3.1.2 Data Types and Retrieval 

A digitalized product stems from the fact that product data is constantly being collected 

throughout the product lifecycle phases. This data could span from a very basic require-

ments definition in the pre-acquisition phase to design requirements and data (simulation 

data and results), production and manufacturing, operating and servicing. 

It is assumed that the product is digitalized and all the product data is available in digital 

format. However, there is a lack of a management system where the actors can query their 

needed data, observe the system performance and predict the system behavior [3]. 

Digitalized and smart products generally hold three types of data: architectural data, com-

ponent data, and operating or usage data [15]. 

 Architectural data is generated mainly in the pre-acquisition and acquisition 

phases and usually stored in local and dispersed databases. The requirements def-

inition for a product is an example of architectural data. Detailed product require-

ments are generated in several sessions of meetings and, in some cases through 

the use of history data. Such data forms the basis and initial conceptualization of 

a product. 

 Component data is generated during the design and analysis phase and stored in a 

cluster or local machines. Simulation data generated by successfully running the 

simulations is an example of such data. Furthermore, through the use of data ana-

lytics, such data can be analyzed to produce further knowledge in the system com-

ponents domain. Product data and system components are available as services.  

 Test and operating data is also available in specified databases and restricted for 

authorized users. Such data is attained through testing the product before release 

and then by monitoring the performance while the product is in operation. Simi-

larly to component data, a significant amount of data analysis is required for the 

operating data to discover the hidden knowledge and useful patterns. 

One of the goals of the “Digital Twin” concept is the integration of heterogeneous data 

and information from different sources. These sources of data are not in a unified struc-

ture, and that makes the process of data retrieval challenging.  

As noted previously, data sources are quite dispersed and disconnected. The combination 

of a PLM8 and an SLM9 (service lifecycle management) platforms, resolves the problem 

of data access and integration to some extent. Through the use of REST (Representational 

state transfer protocol) API, it is possible to fetch some product requirements, simulation 

models, lifecycle data, and results from the PLM and SLM platforms. 

                                                
8 3DEXPERIENCE platform 
9 Teamcenter platform 
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Retrieving and integrating data from all the different sources is out of scope of the “Dig-

ital Twin” demo application. Thus, the main focus is on retrieving data from the PLM 

platform that holds the components data and is used for product data management. 

3.1.3 Scenarios and Use Cases 

As the title of this thesis suggests, the digital twin interface is to be implemented for the 

hybrid vessels. Thus, the main focus is on the hybrid power modules as they hold the 

features of complex systems (hybrid power modules explained in section 3.1.1). Never-

theless, it could be extended to include other modules or products as well.  

The set of roles and scenarios considered for the implementation of the digital twin inter-

face: 

 Customer as one of the actors logs into the digital twin interface and: 

o Views the status of the product and its development phase. 

o Defines the requirements for the product.  

 Product Manager as another actor logs into the digital twin interface and: 

o Views the customer requirements and translates them into technical and 

systems requirements to be used by simulation engineers. 

o Views the reports generated by the simulation engineer on the basis of 

chosen simulation configurations and approves the appropriate report. 

o Handles the product data management based on approved simulation con-

figuration. 

o Checks other relevant information regarding the vessel and their status. 

 Simulation Engineer logs into the digital twin interface and: 

o Selects one of the generated requirement specifications for the hybrid 

power module. 

o Views the systems requirements (functional and non-functional require-

ments) and appends documents or simulation configurations to the test 

cases based on the requirement specifications. 

o Selects different simulation configurations and checks the systems com-

ponents. 

o Based on simulation results, requirements and test data, handles the sys-

tems analysis and generates a report for the selected simulation configura-

tion. 

Based on the description given for the scenarios, it can be implied that actors involved in 

the system interact and form a closed loop. Furthermore, a use case diagram (Figure 10) 

is created to better envisage the system, actors, use cases and scenarios. This use case 

diagram is the basis for the development of the application. 
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Figure 10. Use case diagram for the digital twin interface. 

In order to further elaborate the scenarios described for the application, sequence dia-

grams are created based on the use case diagram in Figure 10. A sequence diagram, while 

maintaining simplicity, shows all the interactions between each actor and the system. 

Figure 11 shows the sequence diagram for customer interactions with the digital twin 

interface. The customer visits the digital twin application and logs into the system with 

relevant credentials. Upon a successful log-in, product status can be accessed. Moreover, 

the customer defines the requirements where they are added to the list of product require-

ments.  

 

Figure 11. Sequence diagram showing customer interactions with the system. 
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Figure 12 shows the sequence diagram for the simulation engineer interactions with the 

digital twin interface. The simulation engineer visits the digital twin application and logs 

into the system with relevant credentials. Once logged-in, the simulation engineer 

chooses a requirement specification for the given product and the digital twin interface 

shows the system requirement specification. Next, the simulation engineer chooses a sim-

ulation configuration based on the system requirements and verifies the system compo-

nents. Finally, the digital twin interface shows the simulation, test and requirements data 

using data tags where they can be used for analysis and generating reports. 

 

Figure 12. Sequence diagram showing simulation engineer interactions with the sys-

tem. 

Figure 13 represent the product manager interactions with the digital twin interface. The 

product manager visits the digital twin application and logs into the system with relevant 

credentials. Once logged-in, the digital twin interface shows the requirements defined by 

the customer. Then, the product manager generates the technical requirements specifica-

tion for the product. Moreover, the reports previously generated by the simulation engi-

neer are shown to the product manager where a simulation configuration can be approved. 

Finally, based on the approved simulation configuration, the product manager selects the 

bill of materials for each component through the established connection with PDM. 
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Figure 13. Sequence diagram showing product manager’s interactions with the sys-

tem. 

3.2 Models 

This section is about the models used and generated in this study. The simulation models 

are developed for any specific vessel type by a system simulation engineer. Using various 

simulation models from different vendors is not quite efficient for the “Digital Twin” 

development due to inoperability and license issues. Therefore, by using the functional 

mock-up interface (FMI), any specific simulation model is converted to functional mock-

up units (FMUs) to facilitate interoperability and integration of heterogeneous models. 

3.2.1 System Simulation 

This section, presents a brief description and overview of simulation technology as a key 

element in the “Digital Twin” concept; in a manufacturing framework. 

Having its basis on the theories of probability, simulation in many areas of technology 

has proven to be a trusted and affordable approach to predict and observe the behavior of 

systems and real life phenomena. Simulation in the manufacturing perspective is com-

puter-aided design and analysis of manufactured products in order to predict and improve 

the systems design and behavior by manipulating and modifying the involved and con-

trolling parameters. [23] 
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Following an established logic, simulation models are created with a certain degree of 

precision and simplified assumptions to replicate the real life systems and processes. Sim-

ulation data generated by successfully running simulation models open the door to nu-

merous applications and possibilities. Once the data is stored, many scenarios of statistical 

analysis and validation can be applied [23].  

There is a variety of approaches to facilitate simulation of different real life phenomena, 

systems and processes. The key element in them is the applicability of results to the real 

system with a sufficient accuracy. The most well-known approaches to simulation tech-

nologies can be listed as: [4] 

 Block-oriented simulation (e.g. Simulink10, GT-Suite11) 

 Declarative modeling (Modelica12)  

 Discrete-event simulation 

 Finite element analysis (FEA) simulation 

 Mechatronics systems simulation 

System simulation is the essence and main source of component data. Different kind of 

simulation approaches can be incorporated to achieve the replication of systems behav-

iour, depending on the systems nature. The choice of the simulation approach and, sub-

sequently, the framework in which the simulation model has to be developed is affected 

by the available resources and capabilities within the company. Among different ap-

proaches to and frameworks for system simulation, the block-oriented approach is chosen 

for the simulation model development of fishing vessel that holds the hybrid power mod-

ule.  

Simulink is a tool for modelling and analysing dynamic systems through accessing 

MATLAB data files and functions. With a graphical user interface (GUI), it exploits the 

block-oriented simulation approach [24]. Simulation models are either designed or cho-

sen from Simulink libraries and toolboxes. The main challenge in creating the simulation 

model is converting the physical system to a set of equations that forms the Simulink 

building blocks. [24]  

Every Simulink block consists of one or more inputs and outputs. Therefore, a number of 

blocks are connected together to form a greater entity. Once the simulation model by a 

meaningful connection of blocks is generated, simulation may run. By running the simu-

lation, the model is converted to a set of equations and solved by the hosting simulation 

solver. Then the simulation results are generated and may be used for different purposes 

such as visualization and data analysis. [24]  

                                                
10 https://www.mathworks.com/products/simulink.html 
11 https://www.gtisoft.com 
12 https://www.modelica.org 

https://www.mathworks.com/products/simulink.html
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A simulation model of each system component is created similarly to form a sub-model 

set to cover the system in whole. Therefore, connecting the sub-models generates the 

model of the whole vessel. A simulation model of the hybrid power module for a specific 

fishing vessel was created through the connection of sub-models representing the module 

components. Figure 14 shows the Simulink model of the engine that is a complex sub-

model of the hybrid power module. 

 

Figure 14. Simulink model of the engine. Inputs are each connected to blocks inside 

the engine model. 

3.2.2 Functional Mock-up Interface (FMI) 

One of the challenges in implementing model-based system design for development of 

complex systems is heterogeneity of systems models. A number of tools and methods 

have been introduced to accommodate to such issues, each with its strengths and defi-

ciencies. The functional mock-up interface (FMI) is a recent response to the need for a 

standardized and tool-independent framework with the goal of co-simulation and model 

exchange. [25] 

FMI development was initially started by Daimler AG with the aim of exchange of sim-

ulation models among vendors and various simulation environments. Now this standard 

is being supported and maintained by Modelica Association13. This standard encompasses 

conversion of simulation models to functional mock-up units (FMUs). [26]  

The exported simulation models (FMUs) act as black boxes that serve for port-based 

communication by encapsulating concepts for simulation algorithm interaction [4]. Each 

FMU contains a model description xml file, source code and libraries. The xml file holds 

the description of the simulation model, inputs, outputs, parameters and their values (See 

Figure 15). The source code and libraries are in the form of a dynamic link library (dll) 

                                                
13 https://www.modelica.org 
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in order to ensure the protection of source code which holds the functionality of FMU. 

[27] 

The mechanisms through which FMUs interact with the host simulator is provided by: 

 Model Exchange (FMI-ME) where the FMU does not hold its solver and requires 

the host simulator to perform numerical integrations [25]. 

 Co-Simulation (FMI-CS) where each FMU holds its own solver or execution 

mechanism. Use of FMI for co-simulation is aimed for interoperability of different 

simulation models [25]. 

As it was mentioned in section 2.1.5, SysML is used for modeling complex systems. 

SysML supports multi-modeling and co-simulation and therefore it is fully compliant 

with FMI [28]. In other words, each FMU demonstrates the behavior of one or more 

SysML blocks [4]. 

The simulation model of a fishing vessel elucidated in section 3.2.1 can then be exported 

by a specific FMU exporting tool to an FMU. Exportation can be either performed for 

individual simulation models or for the whole model as a single FMU. The exported 

FMUs resemble the simulation models with the difference that internal blocks and func-

tionality are hidden. Hence, for tuning and configuring the FMUs, it is only possible to 

modify numerical values of parameters that are used inside the FMU. This can be done 

either by tuning the model variable values in the model description XML inside the FMU 

package (Program 1 in Appendix A) or by importing the FMU into a simulation environ-

ment and changing the parameter values (Figure 15). 

Once the simulation models are successfully exported to FMUs, files with the .fmu ex-

tension are generated. FMUs are each a package containing a model description XML (an 

example of which is partly shown in Program 1 in Appendix A), C code and supporting 

libraries. These FMUs can then be imported to supporting modeling and simulation tools. 

These FMUs in the simulation environments can be coupled with other FMUs or models. 

In Figure 15, the corresponding FMU of a simulation model of the engine (Figure 14) is 

generated and then imported to a simulator. In Figure 15 the FMU of the engine is se-

lected. With all the simulation details being hidden, it is only possible to modify the nu-

meric values of the parameters. 

Once the model composed of FMUs is created, it is possible to configure the component 

parameter values or to add a different abstraction of the model for each FMU. Execution 

of the process runs the simulation and stores the results in the csv format into the database. 



30 

 

Figure 15. FMU of engine in a simulator. Simulation details are hidden. 

Since the FMI is an open standard and tool-independent, it can be utilized in any frame-

work, making it an appropriate candidate for use together with the digital twin interface. 

Because a “Digital Twin” tends to deliver an overall picture of the system, the simulation 

details have to be hidden from the systems engineer and other involved parties. Thus, 

FMI eases the transition to simulation for non-experts [4].  

Simulation is an integral part of a “Digital Twin”, and performing it through the use of 

the FMI not only hides the unnecessary complexity from the user [4], but also results in 

extra benefits: 

 Different types of simulation models, such as Simulink models, the FEA (finite 

element analysis) simulations, etc., can be integrated and used together [4]. 

 The user does not need to have expertise in all modelling tools and to meticulously 

model the functionality and all the interactions among models in order to run the 

simulation. The simulator (e.g. Multiscale Experiment Creation) performs this job 

[4]. 

3.3 Tools and Frameworks 

In this section, tools and frameworks that are used and created for the implementation of 

a “Digital Twin” are studied. The digital twin interface has to reside in an environment 

that facilitates the integration and utilization of other tools and resources. Therefore, a 

PLM platform was chosen as the hosting environment where executing simulation and 

accessing simulation results as well as other resources are handled through web services.  
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3.3.1 PLM Platform 

3DEXPERIENCE is a PLM platform introduced by Dassault Systèmes14 with the aim of 

expanding digital and smart product development beyond product lifecycle management. 

This platform intends to connect the large community of contributors in product devel-

opment and task management from marketing to sales to engineering. This platform ex-

pand the 3D-based digital engineering to other engineering domains. [29] 

This platform can be accessed both in the cloud or local installation. Representation of 

platform capability is specified by a user interface that maintains access to 3D design, 

analysis, simulation, and intelligence software applications through quadrants of a com-

pass (Figure 16). Furthermore, collaborative and interactive environment of the platform 

facilitates accelerated report generation and enables distributing and reusing simulation 

models and results. [29] 

Other important features of this platform are extendibility and connectivity. As the plat-

form is in the cloud, third party applications can be readily integrated into the platform 

and the required data being queried from the cloud. The demo application for the “Digital 

Twin” is also developed on this platform in order to make use of other applications and 

platform resources. 

 

Figure 16. 3DEXPERIENCE platform. Quadrants of the compass on top left, give ac-

cess to various applications. 

3.3.2 Multiscale Experiment Creation 

“Multiscale Experiment Creation” is the name of an environment for creating a process, 

importing FMUs and running the simulation. Once the FMUs are imported to the process, 

                                                
14 https://www.3ds.com 
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block components of the corresponding simulation model are constructed in the applica-

tion canvas with the corresponding input and output ports (Figure 15). These ports should 

be connected correspondingly in order to produce appropriate results upon the execution 

of simulation model.  

3.3.3 Web Services 

The web is used to access documents, multimedia and other web resources using unified 

resource locators (URL) via a web browser. The web can also be used for communication 

among machines by using web services. There are two general mechanisms for imple-

menting web services: representational state transfer (REST) and simple object access 

protocol (SOAP). Both mechanisms communicate through the web service description 

language (WSDL) with some infrastructural differences. [30] 

 REST services manipulate web resources over the hypertext transfer protocol 

(HTTP) through GET, POST, PUT or DELETE methods in order to send a request 

message from the client to the server. A response message from the server is in 

the format of XML or JSON, and it is usually requested along with a request mes-

sage by the client. [30] 

 SOAP services use a remote procedure call (RPC) to interact with web resources. 

In the RPC style, an HTTP URL and a POST method are used only to get the 

incoming and returning SOAP calls through. The SOAP protocol is included in 

the XML body and adds a layer of complexity and dependence on XML. [30] 

In order to retrieve the resources from the PLM platform, RESTful services are employed. 

The RESTful services are an API defined by Java for developing web service applica-

tions. This choice has been made due to several reasons: 

 REST, allowing a variety of data formats such as JSON has some advantages over 

SOAP where only supports XML. These advantages comprise faster parsing, bet-

ter support for browser and higher performance.  

 The PLM platform comes with Java web service project templates along with li-

braries. There are also generic methods appended to the project to facilitate the 

web service creation. 

Before creating a web service, a Java object for the resource needs to be generated, next, 

a method is created to handle the object and last, a Java web service with a method, path 

and query parameters employs the method to retrieve the requested resource from the 

PLM platform database. As an example, in order to access simulation data, first the sim-

ulation activity should be explored. To find all the simulation processes referenced by a 

Test Case, first a Test Case object is created, then the method (Program 2 in Appendix A) 

is generated to extract the object ID of all the simulation processes.  
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The method shown in Program 2 in Appendix A, finds all the simulation object IDs ref-

erenced by a Test Case by using the Test Case object ID. Then the simulation process IDs 

are appended to a list. The web service that implements this method to handle the request 

is shown in Program 3 in Appendix A. The GET method is used and a unique path for 

this purpose. The web service, by means of the method in Program 2 in Appendix A, 

connects to the data base and handles the request. 

Once the web services are created, the project folder is exported to a Java archive (JAR) 

file and installed on the server. Therefore, requests to the generated paths with appropriate 

methods and query parameters return the desired response. 

3.3.4 Digital Twin Interface 

As mentioned in section 3.3.1, one feature of the PLM platform is extendibility. This 

platform supports development and integration of third party applications. Thus, the ap-

plication to demonstrate the “Digital Twin” for hybrid installations resides in this plat-

form to leverage the built-in features of the platform. 

The digital twin interface for hybrid installations is developed as a web application with 

a graphical user interface (GUI) to validate the theoretical study of the “Digital Twin” 

and reveal its benefits and feasibility in practice. The interactions between the digital twin 

interface and resources in the platform are handled either via web services or by direct 

interaction, such as drag and drop of documents. 

For instance, the integration of the digital twin interface with the “multiscale experiment 

creation tool”. It assists with creation of different configurations of the system by manip-

ulating the variables and abstractions. Therefore, the integration generates a virtual copy 

of the product and facilitates the instance reasoning and customization of a product. 

The digital twin interface aims to elucidate the key features of applying systems engi-

neering and digitalization to a hybrid power module lifecycle while maintaining simplic-

ity and exploiting available resources. The development and deployment of the digital 

twin interface is more thoroughly explained in chapter 4. 
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4. IMPLEMENTATION 

In this chapter, the implementation of a “Digital Twin” as a demo interface is presented. 

First, the development and deployment of the application is described more in detail. Af-

terwards, use cases defined in chapter 3 are validated in order to demonstrate the results. 

In the end of this chapter, the results of the work and implementation of the digital twin 

application are presented.  

4.1 Development and Deployment 

In this section, the development and deployment of the application is delved into. First, 

software development lifecycles (SDLC) are briefly explained and the adopted approach 

is identified. Next, the initial design of the web application in the form of sketches and 

prototypes is presented. Afterwards, the web application development technologies uti-

lized during the development phase are specified. Next, the web service calls and query 

structure for retrieving the needed data from the platform database and the integration of 

the application with external sources are described. Last but not least, the deployment of 

the application on the platform is explained. 

4.1.1 Software Development Life Cycle 

The SDLC is a framework that aims to structure the development of an application from 

the early conceptualization phase until its deployment and maintenance. The SDLC ap-

proach has numerous similarities with system lifecycle definition since many of the sys-

tems engineering principles have been borrowed and adopted from software develop-

ment. [31] 

An SDLC framework is comprised of a set of models that describe the steps followed in 

application development. These models can be categorized in three major groups: linear, 

iterative, and a combination of linear and iterative. A linear model is sequential, which 

means that the next stage will not initiate before the completion of the previous stage. In 

an iterative model, all the stages are revisited at least once more. A combined model de-

notes that an iterative model can be halted at a certain stage. [31] 

Based on the broad categories above, many models have been recognized. The most pop-

ular ones are categorized as the waterfall model, incremental model, V model, spiral 

model, rapid application development, and agile model. The waterfall model, also known 

as the cascade model, suggests software to be developed in stages. Royce15 modified this 

model and introduced a feedback loop so that each preceding stage could be revisited. 

                                                
15 Winston Royce, 1970 
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The incremental model that is an iterative waterfall starts with a simple implementation 

of software and evolves by iterations. The V-model, introduced by the INCOSE, is basi-

cally similar to that of system lifecycle explained in section 2.1.2. In the spiral model, 

software development repeatedly passes through iterations. In each spiral a prototype is 

built, verified against requirements and validated through testing. The rapid application 

development is a methodology that uses minimal planning for prototyping. In the agile 

model, application releases are arranged in small time frames, and it ensures that an op-

erating version of the application is always delivered in each iteration. The agile model 

very well suits small projects and full-stack development. [31] 

For development of a digital twin application, an agile model of the SDLC approach is 

chosen. According to the definition given for the agile model, the timing is arranged so 

that, in each iteration, a functional application capturing small incremental changes or 

new features is released and continuously evolved in the following iterations based on 

feedback and testing. 

4.1.2 Design 

The conceptualization and initial planning of the project were handled in meetings with 

a system analysis supervisor16. Based on the requirements defined initially and in order 

to create an insight into the final solution, prototypes of the application were sketched and 

shared with stakeholders. Figure 17 illustrates a sketch of the simulation engineer’s dash-

board along with the related information.  

 

Figure 17. A sketch of simulation engineer’s dashboard. 

 

                                                
16 Juho Könnö, Wärtsilä Finland Oy 
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Similarly, sketches for all the use cases, scenarios and actors are created and interactions 

of each user with the application identified based on the sequence diagrams. 

4.1.3 Web Application Development Technologies 

Web application development is composed of client side and server side programming. 

Client side or front-end programming is interpreted by a web browser and interfaces with 

the user accessing application. Server side programming, on the other hand, is in the back-

end and not directly accessible by the user. However, server side programming is used to 

communicate with the web server and exchange data. 

Among numerous technologies for development of a digital twin application, a limited 

number of web technologies were used for the demo application in this study in order to 

maintain agile and straightforward development of an application within the scope of this 

thesis (See Figure 18). 

In the client side programming, hypertext markup language (HTML), cascading style 

sheets (CSS), and JavaScript are the main technologies and backbone of the application 

interface. Html is used for representing the content of the web application. CSS does the 

styling, and JavaScript delivers the functionality. 

JavaScript libraries are used to ease the application development through providing 

ready-made modules. jQuery17 simplifies the client side scripting. React is another library 

that facilities user interface creation though rendering the application components via cli-

ent side scripting. Plotly JS18 is a D319-based (data driven documents) library that assists 

visualizing the data. Similarly, there are CSS libraries that facilitate styling the application 

user interface. Bootstrap20 and Foundation21 are used for that purpose. 

Node JS22 is a JavaScript framework that supports server side scripting through JavaS-

cript. MongoDB23 is a free and open-source NoSQL database program. As a part of this 

project, a Node JS application and MongoDB cloud database are created to store and 

retrieve some data. Communication between the digital twin application and the Node JS 

application is maintained by Socket.IO that is a JavaScript library for webSocket. 

                                                
17 http://jquery.com 
18 https://plot.ly/javascript 
19 https://d3js.org 
20 https://getbootstrap.com 
21 https://foundation.zurb.com 
22 https://nodejs.org 
23 https://mongodb.com 
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Figure 18. Major web development technologies and frameworks used for digital 

twin application development. 

4.1.4 Coding, Testing, and Integrating 

Once the application architecture and use cases are defined, the process of application 

creation begins. HTML, JavaScript, and CSS files form the basis of the web application. 

In the HTML file, the application metadata, the CSS style sheets, and scripts are declared. 

The script tag in HTML references Require JS24 that is a JavaScript module loader. There-

fore, one Script tag handles the loading of all modules and improves the speed and quality 

of code. 

On the client side, object oriented JavaScript is used and use cases are implemented in a 

modular manner to support reusability and ease of maintenance. The JavaScript code 

forms the major portion of coding. Thanks to React JS, most of the HTML code is also 

implemented in the JavaScript code and components are initiated using a Foundation 

stylesheet and rendered to the corresponding HTML placeholders. 

Node JS application is a minimal solution that is merely used as a bridge between the 

digital twin application and MongoDB cloud database. Implementation of Node JS appli-

cation is also handled through JavaScript coding. 

Furthermore, in order to transfer data between a web server and web browser, XML Http 

Request (XHR) is used. XHR API is formed based on the web service previously created 

(section 3.3.3). The PLM platform comes with a library that assists with web service calls. 

Program 4 in Appendix A shows how a web service call is structured. Similar to XHR 

API, it is possible to specify the request method, query parameters, and data type. 

                                                
24 http://requirejs.org 
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Code testing and debugging is a crucial part of application development. Errors in the 

syntax and logics of the program are inevitable. Searching for the errors, modifying them 

and testing the application requires significant time and effort. This process is handled in 

the browser console. 

4.1.5 Deployment on Platform 

Once the application is deployed on the web server through a built-in mechanism in the 

PLM platform, an icon for the application shows up in the platform application quadrant 

pointing to the URI of the application on the web server. An embedded application inside 

the platform is called a “Widget”. The platform supports execution and communication 

among multiple widgets on the dashboard. 

The deployed application is further tested to assure that it works flawlessly inside the 

platform in terms of accessing the PLM platform inherit libraries. Moreover, although the 

communication with external application, e.g. the Node JS application, is maintained 

through the web socket, the access could still be hindered due to security issues. Such 

issues are handled via incorporating a self-signed certificates for external applications. 

4.2 Results 

The main goal of a “Digital Twin” is to increase an insight into the target system. Inter-

actions of a human with the application can be modeled as human-in-the-loop where the 

outcome and results of the process are affected by human choices. Simulation results and 

data out of isolation can be used for various applications and simulation-based ap-

proaches. Simulation-based validation and optimization are some examples [32]. 

4.2.1 Task-centered Product Development 

The term “task-centered” responses to the question of who is going to access the system 

to do what. The industry terminology for this term is “task and user analysis”. Task anal-

ysis refers to the fact that the systems must be able to handle what it is intended for. User 

analysis, on the other hand, refers to the appropriate distribution of tasks to the system 

users so that the relevant task and information is correctly routed to the intended system 

users.  

One of the main objectives of digital twin application is communication among the in-

volved players and value co-creation. This justifies the task and user analysis in the design 

and implementation phase of the application. Users of the application must be carefully 

identified based on the tasks that have to be fulfilled by adhering to the systems engineer-

ing lifecycle approach explained in section 2.1.3. 
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In order to deliver tasks and information appropriately to users, each user must be first 

clearly characterized and identified. Defining the user in the design phase is thus of a 

great importance. The users of the digital twin application were characterized in section 

3.1.3. The users are narrowed down to a simulation engineer, customer, and product man-

ager. First, on logging in to the application, the user is selected. Figure 19 shows the login 

page of the digital twin application. The user, logs into the digital twin application with 

the user credentials and selection of module and vessel types. 

 

Figure 19. User, module and vessel type are identified when logging in to the appli-

cation. 

In the next step, after logging in to the application, corresponding tasks and information 

interface with the user. This is handled by implementing the application architecture de-

fined in section 3.1.3. Based on the definition given for task-centered product develop-

ment, tasks and information rendered for each user have to amount to a concrete pattern 

for product lifecycle management. This pattern, in the course of this study, is the “V” 

lifecycle model of systems engineering (see Figure 20). 
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Figure 20. Simplified “V” lifecycle model of systems engineering in task-centered 

product development. 

Based on the definition given above and initial design considerations, the results of im-

plementing task-centered product development can be outlined. Customer, as the starting 

point in the top-down approach of the simplified “V” lifecycle model of systems engi-

neering (Figure 20), defines the product and requirements from the customer’s point of 

view while dismissing the technical design matters. Figure 21 shows the system require-

ments panel in the digital twin application that is merely accessible by customer. 

 

Figure 21. System requirements panel personalized for the customer. 
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The product manager, as another application user, acts as a connection between the cus-

tomer and the simulation engineer. This is also depicted in Figure 20. For instance, re-

quirements previously created by the customer should then be translated to the technical 

system requirements. The product manager takes care of integrations as such. The trans-

lation of the customer’s needs to requirement specifications is handled though a built-in 

application in the PLM platform. Afterwards, the requirement specification is imported 

to the digital twin application by dragging it from the platform and dropping it into the 

specified area in the product manager’s dashboard (see Figure 22).  

 

Figure 22. Requirement specification creation in platform and its integration with ap-

plication. 

In the lower layers of the simplified “V” lifecycle model of systems engineering (Figure 

20), system design and simulation are dominant chores that have to be dealt with accord-

ing to the requirement specification generated by the product manager. In the digital twin 

application, this layer is simplified and converged to the simulation engineer actor. Task-

centered product development necessitates a set of tasks to be fulfilled by the simulation 

engineer. 

The simulation engineer can browse the requirements and, based on the requirement spec-

ification generated by the product manager, creates a simulation or uses an existing sim-

ulation in the platform to attach to the requirement specification. Simulation-based vali-

dation and product requirements analysis are among other major tasks designated to the 

simulation engineer. They will be thoroughly discussed in section 4.2.2 and 4.2.3 respec-

tively.  
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At this point, all the stages of the simplified “V” lifecycle model of systems engineering 

in a top-down approach are paved. Then, the tasks have to be appropriately distributed to 

the users in the bottom-up approach (Figure 20). The simulation engineer generates a 

report based on simulation and requirement validation along with the simulation config-

uration chosen. The product manager approves one of the simulation configurations based 

on the report from the simulation engineer. Customer in the meanwhile, monitors the 

status of the product. 

Besides the core tasks mentioned so far, there are other tasks and information interfacing 

with the application users that further assist them with product development. These tasks 

are further elaborated in the following sections. 

4.2.2 Simulation-based Validation 

Once the simulation is successfully executed on the platform, the simulation results in the 

form of the csv are recorded into the platform file system. By querying this data via the 

REST API, a link to the simulation results is generated. By accessing the data and param-

eterizing them, arrays of data can be utilized for different analyses.  

On selecting of a simulation configuration by simulation engineer, generic plots of all the 

simulation data (mostly consist of inputs and outputs of the blocks) are created on one 

panel. Figure 23 illustrates some graphs of engine parameters with respect to time. 

 

Figure 23. Generic plots of simulation results of a selected configuration. 
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Moreover, the test data from product components, e.g. engine, are hardwired to the appli-

cation. This is of significant importance in reasoning of the simulation results. Therefore, 

a custom and an interactive plotting tool are also developed in a separate panel where the 

simulation data and test results can be visualized, compared, and validated. Figure 24 

shows an example where the simulation data is validated with its corresponding test data 

by using the interactive plotting tool developed in the digital twin application. In this plot, 

the result of the rotational speed of an engine from a simulation is compared with that of 

the test results. 

 

Figure 24. Validation of simulation data with corresponding test results. 

4.2.3 Product Requirements Analysis 

System requirements are generated as PLM parameters during the systems requirements 

definition phase. PLM parameters are global product parameters. These requirements are 

structured in the platform so that the requirement specification forms a tree structure with 

chapters and requirements under them that further expand to test cases. Each test case 

may reference to a simulation template and a number of PLM parameters. Each test case 

is further expanded to a number of test executions that each represent an individual run 

or execution per design iteration. Thus, each test execution may reference to a simulation 

process indicating different instances of the simulation template referenced by the parent 

test case. 

In order to visualize the abovementioned functionality in the application, first the REST 

API (explained in section 3.3.3) for the given purpose is created and deployed on the 
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server. Afterwards, thorough XHR API explained in section 4.1.3, the needed resources 

and objects are queried and visualized in the application. 

Figure 25 illustrates how a requirement specification is structured. In this specific exam-

ple, engine concept validation as the requirement specification has multiple chapters un-

derneath. The cylinder head chapter is expanded to a number of requirements namely 

safety factor, valve guide deformation, flame deck temperatures, and Gasket sealing pres-

sure. Further expanding of one of the requirements leads to test cases, each with corre-

sponding test execution, PLM parameters and possible referenced simulations. 

On the right side, there is a panel that represents more detailed information about each 

object underneath the requirement specification and is represented upon clicking on each 

object. The information on this panel is based on the metadata that is automatically gen-

erated while creating or maintaining objects on the platform. 

 

Figure 25. Tree structure for a requirement specification on the left. Object metadata 

panel on the right. 

In the digital twin application, it is assumed that the requirement specifications are created 

by the product manager in the platform based on the customer’s needs. Similarly to sim-

ulation-based validation, requirements analysis is one of the tasks of the simulation engi-

neer. 

Product requirements data stored as PLM parameters are then queried using the REST 

API, and their values (usually specified as minimum and maximum allowed values) are 
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parameterized. Thus, similarly to simulation data validation, the product requirements can 

be compared with the simulation results. Figure 26 show the visualization of one of the 

requirements that can be used for validation of simulation results. Requirements valida-

tion for the simulation results is also achieved in a similar manner as validation using test 

data depicted in Figure 24. 

 

Figure 26. Product requirements visualization. 

4.2.4 Business Value Prospects 

One of the main objectives of implementing the digital twin application is the conver-

gence of information that expedites decision making in business functions and sales. 

Among the wide range of business opportunities, product data management and resource 

planning are implemented in digital twin application. Following, some of the business 

value prospects are outlined: 

 PDM is an existing software and database that contains comprehensive infor-

mation about different products, their detailed bills of materials, and their real-

time status. One of the crucial tasks of the product manager is product data man-

agement and resource planning. The digital twin application, by maintaining com-

munication with PDM software, allows the product manager to query the product 

data and make the selection for the bill of materials for the product based on the 

reports from the simulation engineer. Figure 27 illustrates a panel where the prod-

uct manager queries the data regarding different engines. 
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Figure 27. Integrating PDM with the digital twin application. 

 Service scheduling, condition based monitoring and predictive maintenance are 

among other business value prospects that can be exploited from the digital twin 

implementation. Since the focus of this study is solely on the early stages of prod-

uct development and no operating data is yet available, its implementation in the 

digital twin application is restricted to a panel where the product manager can 

manually add maintenance records and service schedules. 
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5. CONCLUSION 

This chapter concludes the theoretical study and implementation of the digital twin appli-

cation for hybrid installations. First, accomplishments based on the goals set initially are 

reviewed. Afterwards, challenges and limitations in implementation of the application are 

narrowed down. Finally, the possible future work and modifications are outlined. 

5.1 Accomplishments 

Based on the results of theoretical research, the “Digital Twin” can be inferred as a gen-

eral system model that is initiated with the products conceptualization and constantly 

evolves with the product lifecycle. 

Throughout the theoretical study of the “Digital Twin” concept and implementing it prac-

tically, the goals initially set have been pursued. A demo application for digital twin em-

bedded in the PLM platform leverages built-in platform features alongside integration 

with other services and introduction of new features. The following main achievements 

are noted: 

 Flawless integration and communication of the digital twin application with the 

existing PLM platform data through web services. 

 Applying systems engineering principles and model-based systems engineering 

to the product development and implementing it in a simplified manner in the 

digital twin application. 

 Assessing and analyzing simulation results and product requirements. Reasoning 

and validation of these data with respect to acquired test results. 

 Supporting the business and sales functions by facilitating the bill of materials 

selection through connection of the digital twin application with the PDM.  

5.2 Challenges and Limitations 

Undoubtedly, development of ideas, concepts and methods cannot be handled without 

coping with any challenges and limitations. The majority of challenges in implementing 

the digital twin application was faced in integration with the platform and communication 

with its resources. Moreover, the execution of simulation inside the platform was not 

carried out without challenges, and many sessions were dedicated to fixing errors together 

with the simulation engineer and platform support. 

Apart from limitations set in the beginning of the study, another limitation arose on the 

way of implementing the application. In the initial plan, the FMU simulator was supposed 
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to be embedded inside the digital twin interface in order to facilitate dynamically simu-

lating the product configurations based on the product requirements specifications. How-

ever, lack of an open API for the simulator hindered the plan and instead the “multiscale 

experiment creation tool” was decided to be used in companion with the digital twin in-

terface. 

5.3 Future Work 

The concept and implementation of the digital twin application could be extended to take 

account of a wider scope. A number of future work possibilities are outlined here: 

 A future work could focus on other stages of product lifecycle, such as manufac-

turing and servicing. The current solution merely covers the system design phase. 

 The implementation could extend to other types of modules and productions than 

the hybrid power modules. 

 Another future work could look for methods that automate some or all use cases 

within the product lifecycle stages. For instance, instead of manually creating 

product configuration of product, a method could dynamically generate product 

configurations based on standardized product requirement specifications. Conse-

quently, simulating the created configurations and validating them. 

 An important aspect of the “Digital Twin” concept is the real-time monitoring of 

the system and retrieving the sensory data. This aspect is ignored in the course of 

this study as the hybrid power module production has just been initiated. Thus, a 

future work could take such use cases into account. 
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APPENDIX A: PROGRAMS  
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<?xml version="1.0" encoding="UTF-8"?> 
<fmiModelDescription 
  fmiVersion="2.0" 
  modelName="Engine_sf" 
  guid="{38eb6135-5153-4198-a1a7-8fc7d52e5191}"  
  description="S-function with FMI generated from Simulink model 
Engine" 
  author="Unknown" 
  version="1.5" 
  generationTool="Dassault Systemes FMI Kit for Simulink, ver. 
2.4.0 (MATLAB 8.11 (R2016b) 25-Aug-2016)" 
  generationDateAndTime="2017-12-20T06:18:48Z" 
  variableNamingConvention="structured" 
  numberOfEventIndicators="0"> 
  <CoSimulation 
    modelIdentifier="Engine_sf" 
    canHandleVariableCommunicationStepSize="true" 
    canInterpolateInputs="true"/> 
  <DefaultExperiment startTime="0.0" 
    stepSize="0.1"/> 
  <ModelVariables> 
  <ModelStructures> 
</fmiModelDescription> 

Program 1. Model description XML defines the model variables and structure. 
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public ArrayList<SimulationProcessObject> getSimulationPro-
cessesReferencedByTestCase(Context context, TestCaseObject 
testCaseObject) throws Exception { 

// Container 
 ArrayList<SimulationProcessObject> simulationProcessOb-
jectList = new ArrayList<SimulationProcessObject>(); 
 
      // Create Handle to object id 
 DomainObject dom = new DomainObject(testCaseObject.get-
TestCaseBusinessObject().getObjectId()); 
 String relType = Common.RELATIONSHIP_TYPE_REFER-
ENCED_SIMULATIONS; 
 String objType = Common.OBJECT_TYPE_SIMULATION; 
 StringList objSelectList = new StringList(DomainCon-
stants.SELECT_ID); 
 short recurseLevel = 1; 
 
 MapList relBusObjPageList = dom.getRelatedObjects(con-
text, relType, objType, objSelectList, null, true, true, re-
curseLevel, "", ""); 
 
 // Loop Map List and create array of simulation process 
Object 
 for (int ii = 0; ii < relBusObjPageList.size(); ii++) { 
 // Get the simulation process object id 
 String simulaitonProcessId = ((Map<String, String>) 
relBusObjPageList.get(ii)).get("id"); 
 
 // Create a simulation process object 
 SimulationProcessObject simulationProcessObject = new 
SimulationProcessObject(new BusinessObject(simulaitonProces-
sId)); 
 
 // Append this test case to the list 
 simulationProcessObjectList.add(simulationProcessOb-
ject); 
 } 
 return simulationProcessObjectList; 
} 

Program 2. A method to extract all the simulation processes referenced by 

a Test Case 
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@GET 
@Path("/getSimulationProcessesReferencedByTC") 
public Response getSimulationProcessesReferencedByTC(@ja-
vax.ws.rs.core.Context HttpServletRequest request, @Query-
Param("id") String id) { 
   
  JSONObject output = new JSONObject(); 
  matrix.db.Context context = null; 
  try { 
    output.put("msg", "KO"); 
    JSONArray mySimulationProcessList = new JSONArray(); 
    try { 
 boolean isSCMandatory = false; 
 context = getAuthenticatedContext(request, isSCMandatory); 
 ENOCSWebServServices.setRoleonContext(context); 
        
 WartsilaMethods wartsilaMethods = new WartsilaMethods(); 
 ArrayList<SimulationProcessObject> simulationProcessList = 
wartsilaMethods.getSimulationProcessesReferencedByTestCase(con-
text, new TestCaseObject(new BusinessObject(id))); 
     
 for (SimulationProcessObject simulationProcessObject : sim-
ulationProcessList) { 
   mySimulationExperienceList.put(simulationExperienceOb-
ject.getSimulationExperienceBusinessObject().getObjectId()); 
      } 
 output.put("Simulation Processes", mySimulationProcess-
List); 
   output.put("msg", "OK"); 
     
    } catch (Exception e) { 
 output.put("msg", e.getMessage()); 
 e.printStackTrace(); 
    } 
  } catch (Exception e1) { 
    e1.printStackTrace(); 
  } 
  return Response.status(HttpServletResponse.SC_OK).entity(out-
put.toString()).build(); 
} 

Program 3. Web service to GET all the simulation process referenced by a Test 

Case.  
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WAFData.authenticatedRequest(the3DSpaceUrlService+'/Simulia-
Tools/ExpandObject', { 
         
  'method': 'GET', 
  'data': { 
    'objectId': oid 
  }, 
  'type': 'json', 
  'onComplete': someFunction(data) 
}) 

Program 4. Web service call used for communicating with 3DEXPERI-

ENCE web server. 


