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ABSTRACT
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The availability and performance of satellite-based navigation systems are the
weakest in urban areas and indoor spaces, where the user density would be high.
In these environments alternative low-cost positioning techniques are needed. This
thesis considers positioning using received signal strength (RSS) measurements of
terrestrial wireless networks.

No prior knowledge of the considered wireless networks is assumed in this thesis,
but only a simplified statistical path loss model for signal propagation. The model
parameters are estimated for each base station of the network separately using
pre-collected learning data. The method is based on Bayesian estimation theory
that characterizes the precision of the parameter estimates, which is an essential
feature. Three Bayesian position estimation methods are proposed in this thesis.
Two versions of each are compared: one uses point estimates for the model parame-
ters and assumes them to be accurate, whereas the other takes the finite parameter
precisions into account.

Real-data tests are accomplished using cellular networks in outdoor and wireless
local area networks (WLAN) in indoor spaces. The tests indicate that taking the
finite parameter precisions into account improves positioning accuracy and especially
makes error estimation more realistic. Furthermore, RSS-based methods outperform
the method that uses only the list of observed base stations and no RSS informa-
tion. The advantages of parametric methods compared with the k-nearest neighbour
method, which can be regarded as the state-of-the-art positioning method, are also
shown.
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Satelliitteihin perustuvien paikannusjärjestelmien suorituskyky on heikoimmillaan
kaupunkialueilla ja sisätiloissa, joissa käyttäjätiheys olisi suuri. Näissä ympäristöis-
sä on tarvetta vaihtoehtoisille matalan kustannuksen paikannusmenetelmille. Tämä
työ käsittelee paikannusmenetelmiä, jotka perustuvat maanpäällisten langattomien
verkkojen signaalinvoimakkuuksien mittaamiseen.

Käsiteltävistä langattomista verkoista ei oleteta mitään esitietoja vaan vain yksin-
kertainen tilastollinen vaimenemismalli signaalin etenemiselle. Mallin parametrit es-
timoidaan verkon kullekin tukiasemalle erikseen käyttäen etukäteen kerättyä ope-
tusaineistoa. Menetelmä perustuu bayesläiseen estimointiteoriaan, joka mallintaa
myös parametriestimaattien tarkkuutta, mikä on keskeinen ominaisuus. Paikan es-
timointiin esitetään kolme bayesläistä menetelmää. Kustakin vertailussa on kaksi
versiota: toinen käyttää mallin parametreille piste-estimaatteja ja olettaa ne tar-
koiksi, kun taas toinen huomioi parametriestimaattien tarkkuudet.

Menetelmiä testataan todellisella mittausaineistolla käyttäen matkapuhelinverkkoja
ulkopaikannuksessa ja langattomia lähiverkkoja sisätilapaikannuksessa. Testien pe-
rusteella äärellisten parametritarkkuuksien huomioiminen parantaa paikannustark-
kuutta ja erityisesti virhearvioinnin realistisuutta. Lisäksi signaalinvoimakkuusmit-
tauksia käyttävät menetelmät toimivat paremmin kuin menetelmä, joka käyttää
vain tietoa kuulluista tukiasemista ilman signaalinvoimakkuusinformaatiota. Tässä
työssä osoitetaan myös parametristen menetelmien edut verrattuna k:n lähimmän
naapurin menetelmään, jota voidaan pitää kehittyneimpänä ratkaisuna esitettyyn
paikannusongelmaan.
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2D two-dimensional
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95% err. 95% quantile of errors

“acc” algorithm assuming point estimates of PL parameters accurate

AOA angle of arrival

AP access point
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CA coverage area

CKF Cubature Kalman filter

Cons. (95%) consistency of a Bayesian estimate

EKF Extended Kalman filter

EKF2 Second order extended Kalman filter

FP fingerprint

GMF Gaussian mixture filter

GN Gauss–Newton

GNSS Global Navigation Satellite System
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ID identification number

IEKF Iterated extended Kalman filter

KF Kalman filter

MAP maximum a posteriori, mode of the posterior density

MC Monte Carlo

MCMC Markov chain Monte Carlo

Mean mean error

Med median error

MH Metropolis–Hastings

“N” algorithm using normal prior for PL parameters

pdf probability density function

PL path loss

PKF Positioning Kalman filter
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RM radiomap

RSCP Received Signal Code Power

RSS received signal strength

RX signal receiver

TDOA time difference of arrival

TOA time of arrival

TX signal transmitter

UE user equipment

UKF Unscented Kalman filter

WCDMA Wideband Code Division Multiple Access

WLAN wireless local area network
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Symbols

Matrices are denoted with unitalicized uppercase letters. Vectors and scalars are
not distinguished. Random variables are typed with boldface font, their realizations
with normal font.

∝ is proportional, equal up to a multiplying constant
∝∼ is approximately proportional

x≪ y x is much less than y

x := y value y is assigned into variable x (in algorithm listings)

x←D random number is generated from probability distribution D

and assigned to variable x

x ∈ A x is an element of set A

A ∋ x set A includes element x

A ⊂ B set A is a subset of set B

N set of natural numbers (without zero)

N0 set of natural numbers and zero

Z set of integers

R set of real numbers

R
+ set of positive real numbers

argmin
x

f(x) value x that minimizes function f

argmin
x∈A

f(x) value x that minimizes function f in the set A

f : A→ B function f with domain A and codomain B

supp(f) support of function f

x 7→ f(x) function that maps x to f(x)
∫

integral
df
dx

, f ′ derivative of function f , derivative vector of function f (row

vector), Jacobian matrix of f
∂f
∂x

partial derivative (matrix) of function f with respect to variable x

loga(x) a-based logarithm of x

ln(x) natural logarithm of x
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‖x‖ Euclidean norm of vector x

AT transpose of matrix A

A−1 inverse of matrix A

A† Moore–Penrose pseudoinverse of matrix A

I identity matrix

O zero matrix

N (A) kernel of matrix A

rank(A) rank of matrix A

det(A) determinant of matrix A

blkdiag(A, B) block diagonal matrix

‖A‖ Frobenius norm of matrix A

{xk}, {xk}∞
i=0 sequence of x0, x1, x2, . . .

{xk}N
i=0 finite sequence of x0, x1, x2, . . . , xN

{xk} stochastic process of x0, x1, x2, . . .
∑N

k=0 xi the sum x0 + x1 + x2 + · · ·+ xN

x the state of the system

xk time-variant state components of the dynamical system

at time instant tk

x̂ prior mean of the state

Σ̂x prior covariance matrix of the state

x̂+ posterior mean of the state

Σ̂+ posterior covariance matrix of the state

a unknown model parameters, time-invariant state components

â prior mean of the unknown model parameters

Σ̂a prior covariance matrix of the unknown model parameters

ξ complete state, ξ =
[

xT aT
]

T

w process noise (vector)

Q covariance matrix of process noise

Φ state transition matrix, objective function of the Gauss–Newton

(GN) algorithm

y measurement vector, received signal strength (RSS) measurement

h measurement model function

H measurement model matrix, Jacobian matrix of the measurement

model function h

v measurement noise, shadowing term in the path loss model

R covariance matrix of measurement noise

P(A | B) probability of A given B

p(x | y = y) conditional probability density function (pdf) of random variable

x given y = y

viii



p(x | y) short-hand notation of the previous one

L(x) likelihood function of random variable x

E(x) expectation value of random variable x

var(x) variance or covariance matrix of random variable x

E(x | y) conditional expectation value of random variable x given y = y

var(x | y) conditional variance or covariance matrix of random variable x

given y = y

N (m, P) (multivariate) normal distribution with mean m and

covariance matrix P

N (x | m, P) pdf of the (multivariate) normal distribution with mean m and

covariance matrix P

Unif (x, y) uniform distribution in interval (x, y)

π target distribution of the Metropolis–Hastings (MH) algorithm

r(x, y) MH ratio with current state x and proposal value y

Nb length of burn-in period in MH algorithm

Jk Jacobian matrix of the measurement model function at kth

GN iteration

(∆x)k GN step at kth iteration

αk GN damping coefficient at kth iteration
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k , P−

k mean and covariance matrix of the Kalman filter prediction step

Kk Kalman gain
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k mean and covariance matrix of the Kalman filter update step
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A apparent transmitter power

n path loss exponent, attenuation factor
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σ (in path loss model context) standard deviation of shadowing
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and BS position in MH algorithm

ix



Chapter 1

Introduction

The commercial significance of location information and navigating methods has
been growing rapidly due to the upsurge in the number of mobile applications that
are based on awareness of the user’s position. The process of finding one’s location is
called positioning in this thesis. Many positioning applications use information from
a global navigation satellite system (GNSS) such as the Global Positioning System
(GPS). Nowadays it is generally considered that satellite-based outdoor positioning
is a solved problem at least in sparsely populated areas.

However, there are numerous use cases where a low cost positioning method that
does not utilize satellite-based information can be preferable. There are also cases
where satellite-based information is completely unavailable. For instance, densely
built urban areas and indoor spaces may be completely or partially shadowed from
radio signals transmitted by satellites. The user density might, however, be high-
est in these environments. The technology for receiving and interpreting a GNSS
measurement is already considered inexpensive, but the energy consumption that
the GNSS connection requires can be too high for many use cases. Satellite-based
methods can also be supported by some terrestrial source, for example in decreasing
the time to first fix value of the GNSS receiver.

Recently, an increasing amount of research interest has been focused on terrestrial
sources of location information, such as cellular networks, WLANs (wireless local
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area networks) and television and radio networks. In addition to different net-
work sources, inertia sensors, barometers and compasses, for example, could also
be used for positioning. Algorithms that combine pieces of location information
that originate from various sources are called hybrid positioning algorithms. This
thesis concentrates on positioning with wireless networks, but the possibilities of
combining additional information into the presented algorithms are discussed.

A network measurement that is used for positioning includes typically the identi-
fication number (ID) of the transmitting base station (BS) and other information
on the signal, which is an electromagnetic wave. The receiver is a mobile terminal
that is called the user equipment (UE) in this thesis. This thesis studies finger-
printing, which is a technique where a positioning measurement is compared with a
database of similar measurements (radiomap, RM) that have been collected before-
hand. It is then probable that the UE is located in the area where the measurement
resembles the RM measurements. This thesis considers mainly the measurements
that are based on measuring the intensity of the signal that the UE receives. RSS
is the received signal strength, and path loss model is a model for signal strength
attenuation.

In the literature, there are numerous studies on location estimation with terrestrial
wireless networks and fingerprinting methods, among others [6, 22, 34, 15]. There
are also commercial implementations, for example [41, 11, 31].

The usability of many terrestrial location information sources is limited by noisiness
of measurements. Noise can be highly dependent on e.g. the topography of the sur-
rounding terrain or buildings. It can vary by season, by the time of day or even by
the way the UE is carried. Thus, the noise tends to be too complex to be modeled
accurately. Stochastic models are typically used in modeling the measurement pro-
cesses; the position cannot be calculated accurately but it has to be estimated. For
general usability and especially for combining measurements of different kind, it is
crucial to have information on the accuracy of the position estimate.

Bayesian statistics is a collection of statistical principles and methods in which
randomness is seen to describe the missing information. Therefore, all the quantities
are represented by probability distributions, i.e. random variables, and whenever
the exact value of a quantity is unknown, the distribution is assumed to have a
nonzero variance. Thus, the concept of error estimate has a well-defined and intuitive
probabilistic interpretation in this approach. Bayesian statistics has proved to be
a successful approach in various fields of engineering. In this thesis, not only the
measurements but also the user position is modeled as a random variable; every
possible position is linked with a number that describes the probability of the UE
to be located in that particular spot.

In this thesis the form of the RM is parametric, so the learning data are summarized
by a relatively small number of statistics that are estimated using the data. These
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statistics are then used in positioning as measurement model parameters. Since
the parameter values are, however, estimated from the learning data rather than
some physical or otherwise known constants, they are dynamical and imprecise in
nature. This feature is emphasized by the fact that positioning is done using the
existing infrastructure; no reconfiguring of the existing communication networks is
assumed in this thesis. Therefore, in this thesis the measurement model parameters
are also random variables that have have nonzero variance. This is shown to have a
significant effect on the estimation of the user position and its uncertainty.

The strength of the Bayesian methodology becomes apparent, when there are several
measurements whose information contents are to be merged to obtain the optimal
estimate. These measurements may have completely different statistical models.
Examples of different measurement models are a direct position measurement with
multivariate Gaussian noise, a distance measurement with univariate Gaussian noise,
a velocity measurement and a direction measurement.

Another typical example of measurement combination is a time series, which may
contain more information on the position at a certain time instant than only the
measurement of this single time instant. This leads to a state space model that
consists of motion and measurement models, both being stochastic models. Bayesian
statistics provides a very general framework for the time series problem and state
space model. A recursive algorithm that estimates the state given the previous state
and the new measurements is called a filter.

The theoretical scope of this thesis is to study the use of parametric estimation
methods and unknown measurement model parameters in positioning. Concern-
ing the application, RSS-based positioning with wireless networks, this thesis also
presents methods for using RSS measurements in positioning and evaluates their
efficiency with real data tests.

Chapter 2 of this thesis provides mathematical background for three mathematical
methods that are typical in Bayesian estimation: grid, Metropolis–Hastings sampler
(MH) and Gauss–Newton algorithm (GN). The fundamental theory of Bayesian time
series estimation involving unknown static parameters is presented in Chapter 3.

In Chapter 4 the presented algorithms are formulated for the localization problem.
A GN-based algorithm is presented for dynamic estimation of the model parameters
and their precisions for each BS. The input is a learning data set collected at known
positions. Furthermore, methods for positioning with the estimated model param-
eters are presented. The proposed positioning algorithms are MH sampler and GN
algorithm. The grid method, in which the probability density values are computed
in a predefined set of positions, is used as a reference algorithm.

In Chapter 5 the performance of each method is evaluated by collecting test sets
of data from both outdoor and indoor environments. For each of the methods, two
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versions are compared: The first one uses point estimates for the model parameters
and assumes them to be accurate. The second version assumes the parameters to
follow specified probabilistic model in which uncertainty is involved in the parameter
values. The advantage of RSS measurements is measured by comparing the results
with a cell-ID-based method that does not use RSS but relies only on the list of
observed BSs [19]. In the outdoor tests, the used network is a WCDMA (Wideband
Code Division Multiple Access) cellular network in Tampere, Finland [45, Ch. 3].
In the indoor tests, the network of WLAN access points inside one campus building
is used. In the indoor case, the measurements are filtered to achieve reliable results.
Chapter 6 presents the conclusions of the thesis and some ideas for future research.



Chapter 2

Static estimation

This section considers Bayesian inference of a system that is observed by noisy
measurements. In the Bayesian philosophy, the estimation theory is based on two
random variables: the state that characterizes the system and the measurement that
represents the observable properties of the system. In this thesis, the state is divided
into two components, x ∈ R

Nx being the target of estimation and a ∈ R
Na including

system parameters whose values are uninteresting but whose uncertainty has to be
taken into account in the estimation process. Measurement vector y ∈ R

Ny includes
the data that are received and that are related to the state through a specified
measurement model function. The aim of the estimation process is to infer the pdf
(probability density function) of the state given a realization of the measurement
vector p(x | y = y), where the argument of the pdf indicates the random variable
whose distribution the pdf represents. In this thesis, this conditional pdf is denoted
shortly with p(x | y).

In Bayesian statistical terminology, the prior distribution is the pdf of the state
which comprises all the information on the state that exists before the actual mea-
surement is received. The joint prior distribution of x and a is denoted by p(x, a).
In this thesis, the state components x and a are assumed independent a priori. The
measurements are included using the measurement model p(y | x = x, a = a), in
short p(y | x, a). When this expression is treated as a function of the state, it is called
the likelihood function and denoted with L(x, a) = p(y | x = x, a = a) = p(y | x, a).
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The pdf p(x, a | y) is called the posterior of the (complete) state. Posterior pdf
comprises all the information of the state given the prior information and the mea-
surement information. The mutual relation of these functions is expressed in the
following theorem that is very important in the Baysian statistical theory.

Theorem 2.1. (Bayes’ rule)

p(x, a | y) =
p(y | x, a)p(x, a)

∫∫

p(y | x, a)p(x, a) da dx
(2.1)

Proof. By the definition of conditional pdf

p(x, a | y) =
p(x, a, y)

p(y)
=

p(y | x, a)p(x, a)
p(y)

,

which is again obtained using the definition of conditional pdf. Thus, since

p(y) =
∫∫

p(x, a, y) da dx =
∫∫

p(y | x, a)p(x, a) da dx,

the relation of the theorem holds.

The Bayes’ rule is conventionally expressed in the form p(x, a | y)∝ p(y | x, a)p(x, a),
where symbol ∝ indicates equality except for a multiplier that is constant with
respect to the posterior density variables x and a.

The following theorem gives the theoretical background for combining several mea-
surements recursively. According to it, the posterior distribution can be used as a
prior, when a new measurement is received and the posterior is updated.

Theorem 2.2. (Updating the posterior) If random variables y1 and y2 are

conditionally independent given x and a, then

p(x, a | y1, y2) =
p(y2 | x, a)p(x, a | y1)

∫

p(y2 | x, a)p(x, a | y1) da dx
. (2.2)

Proof. By Theorem 2.1

p(x, a | y1, y2)∝ p(y2 | x, a, y1)p(x, a | y1)

= p(y2 | x, a)p(x, a | y1),

where the last equality follows from the conditional independence of y1 and y2 given
x and a. Since the denominator in (2.1) is by definition the normalization constant
of the pdf, this proves the statement.
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A very commonly used measurement model is the model with Gaussian prior, non-
linear measurement function and additive Gaussian measurement errors. For this
model, the measurement equation can be expressed as

y = h(x, a) + v, (2.3)

where h is possibly nonlinear, Borel measurable measurement function, and
v∼N (0, R) is zero-mean Gaussian random variable that is independent of the state
components x and a. Formulated with probability distributions, the measurement
model is

p(x, a) = N
(

x | x̂, Σ̂x

)

·N
(

a | â, Σ̂a

)

p(y | x, a) = N (y | h(x, a), R)
(2.4)

The estimation methods that are described in this chapter are the grid algorithm,
Metropolis–Hastings sampler and Gauss–Newton algorithm. Regarding the Gauss–
Newton algorithm, the results of this thesis could be extended to Student-t dis-
tributed measurement noises [30]. Other classes of measurement noise distributions
are usually tractable only by the grid method or by Monte Carlo methods, to which
class the Metropolis–Hastings algorithm belongs.

2.1 Grid algorithm

The mathematically simplest but generally computationally heaviest estimation al-
gorithm is the grid method. In this method the estimation space is a bounded subset
of the complete state-space that is assumed to include almost all posterior probabil-
ity mass. The grid is a set of regularly located points with a predefined density [40].
The posterior pdf for the state components x in the model (2.4) is thus obtained
using the Bayes’ rule (2.1) and marginalisation of the full posterior:

p(x | y) =
∫

p(x, a | y) da

∝
∫

p(y | x, a)p(x, a) da =
∫

p(y | a, x)p(x)p(a) da.
(2.5)

The normalisation constant does not have to be computed, since it is the same for
all the grid points. If the marginalisation integral cannot be evaluated analytically,
i.e. if there is no closed elementary function representation for it, the integral can be
approximated with some numerical methods [28]. This thesis uses the Monte Carlo
integration which is a numerical integration method that is based on generating
pseudo-random numbers [18, Ch. 4].



CHAPTER 2. STATIC ESTIMATION 8

Grid-based methods tend to be computationally inefficient especially if the state-
space is multidimensional or the grid area cannot be bounded tightly enough. Fur-
thermore, the grid area should not be bounded too tightly, since this could distort
the estimate. [40]

2.2 Metropolis–Hastings algorithm

One solution for computational inefficiency problems of grid solvers is the class
of Monte Carlo (MC) algorithms. They are algorithms that use pseudo-random
numbers. Pseudo-random numbers are generated by computers using determinis-
tic algorithms that have been shown to produce sequences that follow the speci-
fied distribution. There are sophisticated algorithms for generating sets of pseudo-
random numbers from the uniform distribution between 0 and 1, and for some of
the most common probability distributions, such as the multivariate normal distri-
bution, there are simple analytical formulas for converting these sets to follow other
distributions. [18, Ch. 3]

Markov chain Monte Carlo methods (MCMC) are Monte Carlo algorithms that
generate realizations of a certain type of random variable sequences called Markov
processes (See Definition 3.2). The Markov process simulated by the MCMC method
should characterize the problem in a certain sense. The Metropolis–Hastings (MH)
sampling algorithm is an MCMC algorithm that can, at least in principle, generate
a random sample from any probability distribution. Unlike some other MC algo-
rithms, the MH algorithm generates equally weighted samples, so the locations of
the samples follow the target distribution as such. [24]

In this context the posterior pdf (or any probability distribution from which the
samples are drawn) is called the target distribution and denoted with π : RNx → R :
π(x). The support of a function f is defined to be the set supp(f) = {x ∈ D(f) |
f(x) 6= 0}. Let the proposal distribution of the MH algorithm be a probability
distribution x 7→ q(x | y) for which supp(π) ⊂ supp(q(· | y)) holds and from which
it is straightforward to generate pseudo-random numbers for all y ∈ supp(π).

In the MH algorithm a chain of numbers is generated, and the elements of the chain
are called states. MH algorithm consists of the following steps: Assume that the
current state of the Markov process is x ∈ supp(π). Proposal value x′ is generated
from the proposal distribution q(· | x). Let the MH ratio be

r(x, x′) =
π(x′)q(x | x′)
π(x)q(x′ | x)

.

A pseudo-random number u is generated from the standard uniform distribution
Unif (0, 1). If r(x, x′) > u holds, the proposal value is accepted and the value of the
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next state of the chain is set to be the proposal value. In case the proposal value is
rejected, the value of the next state is set to equal the current state. This iteration
is repeated until some termination criterion is met.

Note that it is only the ratio of the target pdf values that is concerned, so the tar-
get distribution function may be unnormalized. This is a notable property, since
posterior pdfs in Bayesian statistics tend to be so complicated that analytical nor-
malization would be impossible and numerical normalization would be at least as
demanding a task as the actual estimation.

Since the first values of the computed chain are highly dependent on the given
initial value, a number of them is conventionally ignored in the estimation. These
states are called the burn-in period, and the length of the burn-in period is denoted
with Nb. This cannot be determined exactly, but it is usually found out by eye by
examining the sampling history plots produced by the algorithm. The MH algorithm
is described in detail in Algorithm 2.1. In the algorithm listing, the estimated mean
of the target distribution is estimated by x̂+ and the estimated covariance matrix
by Σ̂+

x .

Algorithm 2.1 Metropolis–Hastings algorithm

1. Let x0 be the initial sample and set k := 1. Let N be the sample size.

2. Generate x′
k← q(· | xk−1).

3. Compute

r(xk−1, x′
k) :=

π(x′
k) q(xk−1 | x′

k)
π(xk−1) q(x′

k | xk−1)
.

Generate u←Unif (0, 1). If r(xk−1, x′
k) > u, set xk := x′

k. Otherwise, set
xk := xk−1.

4. If k < N , set k := k + 1 and go to step 2. Otherwise, set

x̂+ := 1
N−Nb+1

N
∑

k=Nb

xk , Σ̂+
x := 1

N−Nb+1

N
∑

k=Nb

(xk − x̂)(xk − x̂)T,

where Nb is the length of the burn-in period.

The theorem that guarantees asymptotic convergence of random sequences to the
true moments of target distributions is called the law of large numbers [29, Ch. 2.3].
The Markov processes related to the MH algorithms are autocorrelated, so they do
not fulfill the assumptions of the most well-known law of large numbers. However,
a similar result can be proved to this specific group of Markov processes.
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Theorem 2.3. (Law of large numbers for MH algorithm) Let {xk} be a

Markov process simulated by the MH algorithm with π as a target distribution. Then

for every π-integrable Borel-measurable function f : RNx → R
Nf

∀x0 ∈ R
Nx : P

(

lim
n→∞

1
n+1

n
∑

i=0

f(xk) =
∫

f(x)π(x) dx | x0 = x0

)

= 1, (2.6)

holds, that is, the arithmetic mean of the function values converges almost surely to

the π-integral of the function.

Proof. Omitted. See [18, Ch. 11].

Let us now consider the model (2.4). Let the complete state be ξ =
[

xT aT
]

T.
Then the target distribution is the posterior pdf π(ξ) = π(x, a)∝ p(y | x, a) · p(x, a).
The marginal distribution of x can be extracted by considering only the component
sequence {xk}N

k=0 of the sequence {ξk}N
k=0.

In Figure 2.1 there is an example of positioning with an MH sample with flat prior.
The measurements are noisy distance measurements. The 68% uncertainty ellipse is
based on the Gaussianity approximation of the posterior. Since the initial position
is relatively far away from the likelihood peaks, the first samples are far from the
true likelihood. However, they do not influence the estimation, since the burn-in
samples are discarded.

2.3 Gauss–Newton algorithm

The least squares problem is formulated as finding

argmin
x

Φ(x), (2.7)

where Φ : RNx → R
+ is a function of form Φ(x) = 1

2
‖f(x)‖2 = 1

2

∑Nf

i=1 fi(x)2, where
f : RNx → R

Nf , Nf ≥ Nx is a known function. If f is an affine function, that is, it
can be presented in form f(x) = Ax + b, where A is a matrix and b a vector, the
optimization problem is a linear least squares problem. Otherwise it is a nonlinear
least squares problem.

Gauss–Newton algorithm (GN), also known as the Iterative Reweighted Least
Squares method is an iterative optimization method for nonlinear least squares es-
timation problems. With suitable measurement models, iterative state estimation
methods can be as accurate as any closed form solution but simpler and easier to
implement [39].
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Likelihood
Base stations
Samples
Burn−in samples
Initial position
Estimate
68% uncertainty

Figure 2.1: MH sample of four noisy distance measurements. There are 1000
samples of which 50 samples form the burn-in that is discarded from the estimation.
Compare with Figure 2.2 in which the same likelihood is estimated with the same
initial position using the Gauss–Newton algorithm.

The derivation of the GN method is based on iterative linearization and analytical
solving of the linearized problem. The linearization approximation of the objective
function at point x0 is

f(x) ≈ f(x0) + J(x0)(x− x0), (2.8)

where J = df
dx

is the derivative matrix of function f also known as the Jacobian
matrix. Thus, the problem can be approximated by the linear least squares problem

argmin
x

Φ(x) ≈ argmin
x

1
2
‖f(x0) + J0(x− x0)‖2

= argmin
x

1
2
‖J0x− (J0x0 − f(x0))‖2

,

(2.9)

where x0 is a linearization point and J0 = J(x0). The linearized minimization
problem can be solved using the following theorem.

Theorem 2.4. (Linear least squares) Assume that x ∈ R
n and assume that

y ∈ R
m is a known vector with m ≥ n and that A ∈ R

m×n is a known matrix. Then

there exists a solution to the problem

argmin
x

1
2
‖Ax− y‖2

. (2.10)
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It is unique if and only if rank(A) = n. Furthermore, if the solution exists and is

unique, it is

argmin
x

1
2
‖Ax− y‖2 = (ATA)−1ATy. (2.11)

Proof. Let us first reformulate the expression to be minimized:

‖Ax− y‖2 =
∥

∥

∥Ax− AA†y + AA†y − y
∥

∥

∥

2
=
∥

∥

∥(Ax−AA†y) + (AA†y − y)
∥

∥

∥

2
,

where A† is the Moore–Penrose pseudo-inverse of matrix A. The two summation
terms are orthogonal, since

(Ax−AA†y)T(AA†y − y) = (x−A†y)TAT(AA† − I)y
∗= (x−A†y)TAT(AA† − I)Ty

= (x−A†y)T(AA†A− A)Ty
∗= (x−A†y)TOTy

= 0

where the equalities marked with an asterisk are based on the characteristic prop-
erties of Moore–Penrose pseudo-inverse. Hence, by the Pythagorean theorem

‖Ax− y‖2 =
∥

∥

∥Ax− AA†y
∥

∥

∥

2
+
∥

∥

∥AA†y − y
∥

∥

∥

2

holds. Thus, the point x∗ = A†y minimizes the objective function so the solution to
the linear least squares problem exists. Furthermore, every x∗

v that satisfies

x∗
v = A†y + v, v ∈ N (A),

where N (A) is the kernel of matrix A, minimizes the objective function, so x∗ is a
unique minimizer if and only if N (A) = {0}. By basic linear algebra, N (A) = {0}
if and only if rank(A) = n.

It remains to show that if rank(A) = n, then A† = (ATA)−1AT. Since, rank(ATA) =
rank(A) = n, the inverse (ATA)−1 exists. Furthermore, the following four properties,
which characterise the Moore–Penrose pseudo-inverse of the matrix A hold:

1. A
(

(ATA)−1AT
)

A = A(ATA)−1(ATA) = A

2.
(

(ATA)−1AT
)

A
(

(ATA)−1AT
)

= (ATA)−1(ATA)(ATA)−1AT = (ATA)−1AT

3.
(

A
(

(ATA)−1AT
))

T = A((ATA)−1)TAT = A(ATA)−1AT, since (ATA)−1 is
symmetric because ATA is symmetric

4.
(

(ATA)−1AT
)

A = I, which is symmetric
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Thus, A† = (ATA)−1AT, if rank(A) = n.

By Theorem 2.4, a solution to the linearized problem (2.9) exists and is unique if
and only if the J0 is full-rank, and then the solution is

argmin
x

1
2
‖f(x0) + J0(x− x0)‖2 = (J0

TJ0)−1J0
T(J0x0 − f(x0))

= (J0
TJ0)−1(J0

TJ0)x0 − (J0
TJ0)−1J0

Tf(x0)

= x0 − (J0
TJ0)

−1J0
Tf(x0).

(2.12)

In the GN algorithm, after computing the optimum of the linearized system, the
system is linearized again in the solution point and the relinearized system is
solved. This iteration is continued until the solution stabilizes, that is, the step
size ∆x = −(JTJ)−1JTf(x) becomes small enough. In practice the iteration is usu-
ally terminated, when the norm of the step size is under some threshold or when
the number of iterations becomes too high.

The convergence of the standard GN iteration is not guaranteed [9, Ch. 9.2.]. To
ensure convergence to a minimum at least locally the step size must be adapted so
that the value of the objective function decreases rapidly enough. This algorithm
is called the damped GN algorithm, and it is presented in detail in Algorithm 2.2.
With certain conditions, damping guarantees that the algorithm converges to a
local minimum if the initialization point is close enough. This statement is proved
by Lemma 2.5 and Theorem 2.6. Lemma 2.5 and Theorem 2.6 use the convergence
results of Appendix C that are based on the ideas of [8, Ch. 1.2].

Algorithm 2.2 Damped Gauss–Newton algorithm

1. Let x0 be the initial value and set k := 0. Set the configuration parameters
s > 0 and δ > 0.

2. Compute the Jacobian matrix Jk := df
dx

(xk).

3. Set (∆x)k := −(Jk
TJk)−1Jk

Tf(xk).

4. Set αk := argmin
α∈(0,s]

‖f(xk + α · (∆x)k)‖.

5. Set xk+1 := xk + αk · (∆x)k.

6. If ‖xk+1 − xk‖ < δ, stop. Otherwise, set k := k + 1 and go to step 2.
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Lemma 2.5. Assume that the function f is continuously differentiable and for the

Jacobian matrix J the set

{σ ∈ R
+
0 | σ is a singular value of J(x) for some x ∈ R

Nx} (2.13)

is bounded above and bounded away from zero. Then the following properties hold

for the damped GN algorithm:

1. Objective function Φ is continuously differentiable.

2. Gauss–Newton step (∆x)k is of form −DkΦ′(xk)T where the set

{σ ∈ R
+
0 | σ is an eigenvalue of Dk for some k ∈ N0}

is bounded above and bounded away from zero.

3. The sequence {αk} is bounded.

4. There exists a constant c ∈ R
+ such that ‖(∆x)k‖ ≤ c ‖Φ′(xk)‖ for all indices

k.

5. Inequality Φ(xk+1) ≤ Φ(xk) holds for all indices k.

Proof. The statements are proved one by one.

1. As a composition of functions f and 1
2
‖·‖2, which are both continuously dif-

ferentiable, the objective function Φ is continuously differentiable.

2. By the chain rule of differentiation

Φ′(x) =
1
2
· 2 ‖f(x)‖ d ‖f(x)‖

dx
= ‖f(x)‖ · f(x)T

‖f(x)‖
df(x)

dx
= f(x)TJ(x).

Hence,

(∆x)k = −(Jk
TJk)−1Φ′(xk)T.

Since the singular values of each Jk are bounded away from zero, matrix Jk
TJk

is invertible, and matrix (Jk
TJk)−1 is positive definite. From the assumption

(2.13) it follows that the set

{σ ∈ R
+
0 | σ is an eigenvalue of (Jk

TJk)−1 for some k ∈ N0}

is bounded above and bounded away from zero.

3. This follows straight from the definition of αk in the damped GN algorithm.
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4. Since the set

{σ ∈ R
+
0 | σ is an eigenvalue of (Jk

TJk)−1 for some k ∈ N0}

is bounded above, the set of matrix norms {‖(Jk
TJk)−1‖ | k ∈ N0} is also

bounded above. Thus,

‖(∆x)k‖ =
∥

∥

∥(Jk
TJk)−1Jk

Tf(xk)
∥

∥

∥

=
∥

∥

∥(Jk
TJk)−1Φ′(xk)T

∥

∥

∥

≤
∥

∥

∥(Jk
TJk)−1

∥

∥

∥ ‖Φ′(xk)‖
≤ c ‖Φ′(xk)‖ ,

where ‖·‖ is the 2-norm of vector or matrix depending on the context and c is
a finite real number that does not depend on the index k.

5. By step 2 and by Lemma C.3 the GN step (∆x)k is a descent direction, so the
statement follows from Lemma C.2.

Theorem 2.6. (Local convergence of damped GN) Assume that the function

f is continuously differentiable and for the Jacobian matrix J(x) the set

{σ ∈ R
+
0 | σ is a singular value of J(x) for some x ∈ R

Nx}

is bounded above and bounded away from zero. Let x∗ be a local minimum of the

objective function Φ = 1
2
‖f(·)‖2. Then there exists an open set S ∋ x∗ such that if

x0 ∈ S, the damped Gauss–Newton algorithm converges to x∗.

Proof. By items 1 and 2 of Lemma 2.5 the damped GN algorithm fulfills the as-
sumptions of Proposition C.4. Thus, if a subsequence of the GN sequence converges,
it converges to a stationary point of Φ.

Furthermore, by the aforementioned property and by items 3, 4 and 5 of Lemma 2.5
the damped GN algorithm fulfills the assumptions of Proposition C.5. This proves
the statement.

For simplicity, the exact line search is not used in this thesis. Instead, the damping
coefficient α is chosen to be the largest element of the sequence {2−i}∞

i=0 that ensures
the objective function value to decrease.
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Let us now consider the model (2.4), denoting the complete state with ξ =

[

x

a

]

. The

GN optimization can now be applied for finding an estimate for the MAP (maximum

a posteriori, posterior mode) value

argmax
ξ

p(ξ | y)

=argmax
ξ

p(ξ)p(y | ξ)

=argmax
ξ

(

N
(

ξ | ξ̂, Σ̂ξ

)

· N (y | h(ξ), R)
)

=argmin
ξ

(

(ξ − ξ̂)TΣ̂−1
ξ (ξ − ξ̂) + (y − h(ξ))TR−1(y − h(ξ))

)

=argmin
ξ

∥

∥

∥

∥

∥

∥





√

Σ̂−1
ξ (ξ − ξ̂)√

R−1(y − h(ξ))





∥

∥

∥

∥

∥

∥

2

,

where
√

A denotes a matrix for which
√

AT
√

A = A. Thus, the optimization function
and the corresponding Jacobian matrix are

f(ξ) =





√

Σ̂−1
ξ (ξ − ξ̂)√

R−1(y − h(ξ))



 , J(ξ) =





√

Σ̂−1
ξ

−
√

R−1H(ξ)



 ,

where H(ξ) is the Jacobian matrix of the measurement model function h. Thus, one
GN step is

(∆ξ)k =− (Jk
TJk)−1Jk

Tf(ξk)

=−
(

Σ̂−1
x + H(ξk)TR−1H(ξk)

)−1 ·
(

Σ̂−1
ξ (ξk − ξ̂) + H(ξk)TR−1(h(ξk)− y)

)

.

The covariance matrix of the posterior can be approximated by linearizing the system
at the MAP-solution of the GN algorithm. Note, however, that the approximation
is valid only if the measurement equation is only slightly nonlinear. The covariance
matrix of the linearized system can be determined using Lemma B.3 of the product
of Gaussian distributions:

var(ξ | y) ≈
(

Σ̂−1
ξ + HTR−1H

)−1
,

where H is the Jacobian of the measurement model function at the linearization
point.

The linearization approximation also implies that the posterior is a Gaussian dis-
tribution, for which the MAP value equals the expectation value. Therefore, for
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almost linear measurement equations the posterior approximation returned by the
GN algorithm is

p(ξ | y) ≈ N
(

ξ | ξk,
(

Σ̂−1
ξ + H(ξk)TR−1H(ξk)

)−1
)

, (2.14)

where ξk is final state estimate of the GN algorithm. Since the marginal distributions
of a multivariate normal distribution are normal distributions with the corresponding
components of the mean and covariance matrix of the multivariate distribution as the
parameters, the marginal posterior for any set of state components can be computed.

Figure 2.2 presents the damped GN sequence of the measurement setup that is the
same as in Figure 2.1. The 68% uncertainty ellipse is based on the Gaussianity
approximation of the posterior.

 

 

Likelihood
Base stations
GN steps
Initial position
Estimate
68% uncertainty

Figure 2.2: GN steps of four noisy distance measurements. Compare with Figure
2.1 in which the same likelihood is estimated with the Metropolis–Hastings algorithm.



Chapter 3

Time-series estimation

In the theory of statistical time series estimation, the unknown properties that
characterize the system are called the state of the system. The state may be time-
variant, and the time-evolution of the state is modeled statistically by a stochastic
motion model. The state is measured by a noisy measurement process, and the
information contained by the measurements should be fused using the motion model.
The aim of Bayesian time series estimation is to infer the posterior distribution of
the state for each time instant given a time series of measurements. This thesis
assumes that the state includes time-invariant components, the estimation of which
may require specific procedures.

To begin with, let us define some basic mathematical concepts involved in time series
estimation. It is assumed that the reader is knowledgeable about the basic concepts
of probability theory.

Definition 3.1. (Stochastic Process) Let (Ω,F , P) be a probability space and
T a set of parameter values that are called time instants. A stochastic process is a
mapping x : Ω× T → R

n such that x(·, t) is random variable for every fixed t ∈ T .
Furthermore, if the parameter set T is enumerable and its elements are denoted by
tk where k ∈ I ⊂ Z, the sequence (x(·, tk))k∈I is a discrete stochastic process and
its elements are denoted by xk = x(·, tk). �
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A stochastic process is called a Markov process, if the distribution of the current state
depends on the earlier state realizations only through the previous state realization.

Definition 3.2. (Markov Process) A discrete stochastic process {xk} is a Markov
process, if

∀k ∈ N : p(xk | x0,...,k−1) = p(xk | xk−1).

�

A white process is a Markov process whose current state is independent of all the
earlier states, that is, for each time step the conditional distribution equals the
marginal distribution.

Definition 3.3. (White process) A discrete stochastic process {xk} is a white
process, if

∀k ∈ N : p(xk | x0,...,k−1) = p(xk).

�

It can also be proved that an element of a Markov process depends on the future
only through the next element and an element of a white process is independent of
the future.

Let us now consider a system whose hidden state can be divided into two compo-
nents: dynamic and static. Let us denote the dynamic component with xk ∈ R

Nx .
It may be time-varying, and it is the actual target of time-series estimation. The
static component ak ∈ R

Na is assumed time-invariant, and it contains system pa-
rameters whose actual values are uninteresting similarly to the state component a

in Chapter 2.

Because the state component xk may be time-varying, this section introduces a
statistical motion model for the state. Since the state is unknown, the Bayesian
estimation theory considers it a random variable at each time instant. To allow
computation with digital computers, the time space has to be discrete, but in the
real positioning system the state evolution is typically a continuous process. How-
ever, certain continuous processes can be discretized so that the estimation can be
performed discretely. [16, Ch. 7.2],[1, Ch. 2.2.5]. Thus, the state is modeled as a
discrete stochastic process.
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Let us denote the initial dynamical state with x0. In this thesis, it is assumed that
the state evolution follows the discrete stochastic difference equation

xk+1 = fk(xk, wk), (3.1)

which is independent of the static part of the state ak. The stochastic process
wk∼N (0, Qk) is called the process noise term, which is assumed to be a white
process and independent of the initial dynamical state x0. It can be proved that
the process {xk} is thus a Markov process [16, Ch. 3.9]. This class of models is
extensively covered by the literature and has numerous physical applications [16,
Ch. 3.7]. Markovian models also allow recursive time series estimation, where only
the latest state estimate and the latest measurement are needed to estimate the
current state.

In this thesis, the system consists of a physical person moving in a Cartesian coordi-
nate system without nonlinear constraints. Therefore, the motion model is assumed
to be linear and the process noise is assumed to be additive. Thus, the motion model
can be formulated

xk+1 = Φkxk + wk, (3.2)

where matrix Φk ∈ R
Nx×Nx is called the state transition matrix. The system is

observed by measurement process that follows the model of (2.3). Thus, the system
follows the Gaussian state-space model of the form

x0∼N (m0, P0)

a0∼N
(

â, Σ̂a

)

xk+1 = Φkxk + wk, wk∼N (0, Qk)

ak+1 = ak

yk = hk(xk, ak) + vk, vk∼N (0, Rk) ,

(3.3)

where {wk} and {vk} are white processes and independent of each other and
independent of x0 and a0. It can be proved that the stochastic process
{
[

xk
T, ak

T, yk+1
T
]

T} is also a Markov process [16, Ch. 3.9]. Since a is a random
constant, it is denoted without the subscript in the next section.

3.1 Optimal Bayesian filtering equations with
static state components

In the Bayesian estimation theory, optimal filtering means a recursive algorithm for
solving the posterior distribution of the state given the all the measurements up to
that time instant p(xk | y1:k). The filter implementations are usually two-phased:



CHAPTER 3. TIME-SERIES ESTIMATION 21

The prediction step predicts the state using the posterior of the latest time instant
and the motion model. The update step modifies the predicted estimate based on
the newest measurement.

The Chapman–Kolmogorov equation for Markov processes is the mathematical back-
ground for the prediction step, thus allowing recursive state updates.

Theorem 3.4. (Chapman–Kolmogorov equation) If the motion model is in-

dependent of a and the stochastic process {
[

xk
T, ak

T, yk+1
T
]

T} is a Markov process,

the equation

p(xk+1, a | y1:k) =
∫

p(xk+1 | xk)p(xk, a | y1:k) dxk. (3.4)

holds.

Proof. By the definition of conditional probability

p(xk+1, xk, a | y1:k) = p(xk+1 | xk, a, y1:k)p(xk, a | y1:k)

= p(xk+1 | xk)p(xk, a | y1:k),

where the second equality follows from the independence of the motion model from
a and from the Markov property of the sequence {

[

xk
T, ak

T, yk+1
T
]

T}. Thus,

p(xk+1, a | y1:k) =
∫

p(xk+1, xk, a | y1:k) dxk

=
∫

p(xk+1 | xk)p(xk, a | y1:k) dxk.

The following theorem is Equation (3.4) for the linear Gaussian special case.

Theorem 3.5. (Filter prediction for linear Gaussian model) Given

p(xk | y1:k) = N
(

xk | m+
k , P+

k

)

, p(xk+1 | xk) = N (xk+1 | Φkxk, Qk)

the following holds:

p(xk+1 | y1:k) = N
(

xk+1 | Φkm+
k , ΦkP+

k Φk
T + Qk

)

. (3.5)

Proof. By Lemma B.2,

p(xk+1 | xk)p(xk | y1:k) = p(xk+1 | xk, y1:k)p(xk | y1:k)

= N

([

xk

xk+1

]

|
[

m+
k

Φkm+
k

]

,

[

P+
k Pk

kΦk
T

ΦkP+
k ΦkP+

k Φk
T + Qk

])
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holds. Thus, by Theorem 3.4 and the marginalisation rule of multivariate Gaussian
distributions

p(xk+1 | y1:k) =
∫

p(xk+1 | xk)p(xk | y1:k) dxk

= N
(

xk+1 | Φkm+
k , ΦkP+

k Φk
T + Qk

)

,

which proves the statement.

The following theorem justifies the update step of the Bayesian filter.

Theorem 3.6. (State update) For the model 3.3 the equation

p(xk, a | y1:k)∝ p(yk | xk, a) p(xk, a | y1:k−1) (3.6)

holds.

Proof. Since the measurement noise {vk} is a white process, yk is independent of
y1:k−1 given the state. Thus, the statement is true by Theorem 2.2.

In the application of this thesis, the use case is that the estimate of the static state a

is not updated online. Formally this means that the posterior distribution of static
state a is approximated to remain unaffected by the received measurements, that is
p(a | xk, y1:k−1) ≈ p(a). In this case, the estimation can be performed only for the
dynamic components xk:

p(xk | y1:k)∝
∫

p(yk | xk, a) p(a) p(xk | y1:k−1) da. (3.7)

This will simplify the estimation notably especially if a has high dimensionality
or the full conditional distribution of the static variables p(a | xk, y1:k−1) is not
analytically tractable.

3.2 Kalman filter and its extensions

In case the measurement model function hk is linear and independent from the
static state components a, that is, there exists a matrix Hk such that hk(x, a) =
Hkx, the mean and covariance of the posterior state of the model (3.3) can be
solved analytically. This celebrated solution was originally published by Rudolf Emil
Kálmán in 1960 [17]. His algorithm, commonly called the Kalman filter (KF), is
given in Algorithm 3.1. The first two rows inside the while loop form the prediction
step of the filter, which is based on the result of Theorem 3.5.
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Algorithm 3.1 Kalman filter
Let mean and covariance matrix of the initial prior be m0 and P0 respectively.

m+
0 := m0

P+
0 := P0

while There are measurements do
m−

k := Φkm+
k−1

P−
k := ΦkP+

k−1Φk
T + Qk

Kk := P−
k Hk

T(HkP−
k Hk

T + Rk)−1

m+
k := m−

k + Kk(yk − Hkm−
k )

P+
k := (I−KkHk)P−

k

end while

The posterior is p(xk | y1:k) = N
(

xk | m+
k , P+

k

)

.

The high usability of the KF is, among others, due to its certain favourable statis-
tical properties which are not restricted in Gaussian error models and easiness of
its implementation [5, Ch. 5]. However, it is applicable only for linear motion and
measurement models, which is a significant limitation. Therefore, several approxi-
mative Kalman filter based methods have been developed for nonlinear problems.
The simplest of them is the (first order) Extended Kalman filter (EKF). In the EKF,
each distribution is approximated by normal distribution with the covariance matrix
that is computed using the linearized model.

With highly nonlinear models, local linearization is not adequate approximation:
for example multiple density peaks or asymmetries of peak shapes are omitted [4].
Nonlocal approximations can be made among others by approximating the mean and
covariance of the distributions and assuming normality, such as in Unscented Kalman
filter (UKF) and Cubature Kalman filter (CKF) [36], or by using the weighted sum
of unimodal pdfs as the pdf, such as in Gaussian mixture filter (GMF) [3]. Local
approximations can also be improved using higher order derivatives of the motion
and measurement models (Second order extended Kalman filter, EKF2 [7, p. 384].
The problem with EKF2 is that computing Hessian matrices analytically tends to
be challenging or completely intractable.

The idea of the Iterated extended Kalman filter (IEKF) is to improve linearization
approximation by choosing the mode of the distribution as linearization point. In
IEKF this is performed linearizing the model iteratively at the solution of the latest
linearized model. Thus, the Gauss–Newton (GN) algorithm is performed at every
time instant. IEKF is presented in Algorithm 3.2.

The IEKF can also be modified by replacing the GN with any other static posi-
tioning algorithm that takes prior mean and covariance matrix as input and returns
posterior mean and covariance matrix. In this technique, the prior can be used for
regularizing the convergence of the static method and for excluding impossible op-
tima. However, since the likelihood is assumed independent of the prior information
in the Bayes’ rule, the prior should not influence the accomplished measurement
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Algorithm 3.2 Iterated extended Kalman filter

m+
0 := m0, P+

0 := P0, k := 1
while There are measurements do

m−
k := Φkm+

k−1

P−
k := ΦkP+

k−1Φk
T + Qk

Perform the damped GN algorithm (Algorithm 2.2) with prior mean m−
k

and covariance matrix P−
k . Denote the output mean and covariance

matrix with m+
k and P+

k

k := k + 1
end while

m+
k and P+

k are the mean and covariance matrix of the approximative posterior.

model approximations too dramatically. For instance, the estimation area of an
estimation grid should not be confined by the prior.



Chapter 4

Positioning using RSS
measurements

This section describes methods for location estimation using signal reception reports
that a mobile user equipment (UE) gives based on signals received from wireless
networks. The process includes two phases: learning phase and positioning phase.

In the learning phase, a pre-collected set of data is used for learning the characteris-
tics of each base station’s signal coverage. The learning measurements are in many
contexts called fingerprints (FP). The database of FPs is maintained in an external
server, so learning can be performed as an offline process, i.e. computations do not
have to be done as real-time processing and their computational efficiency is not
critical in terms of user experience.

The suggested learning method is a parametric estimation method, so the informa-
tion contained in the data is summarized by a relatively small number of parameters
whose values are estimated. The method has been designed so that the estimated
parameter values can be updated recursively, which is useful, since new measure-
ments will be assimilated continually. This is essential for the system’s positioning
performance, since the signal characteristics are not static properties; environmental
effects that influence on signal propagation can vary dramatically over time, and the
structure of the network may not be time invariant either.
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In this thesis, positioning is an online procedure, so the tracking is made in a real-
time manner as the user is using the terminal. There are potentially several ways to
exploit signal reception reports for positioning, and the choice of positioning method
obviously determines the form of the BS database. The mere list of the BSs whose
signal is observed at a certain location is used e.g. in [21, 20]. Distances between
BSs and UE can be estimated using Time of Arrival (TOA) information provided
that the clocks of BSs and UE are synchronized or that their clock biases are known
accurately. For using Time Difference of Arrival (TDOA) it is sufficient that only
the BSs’ clock biases are known. Angle of Arrival (AOA) indicates the direction of
the UE with respect to the BS, and it is also usable for positioning if available. [45,
Ch. 2.3], [37].

This thesis mainly considers the received signal strength (RSS) indicators that mea-
sure the intensity of the electromagnetic wave that the mobile terminal receives.
Using the signal characteristics estimated in the learning phase, RSS measurement
can be transformed into a distance measurement that has some statistical variance.
The signal characteristics estimates are a result of statistical estimation procedure
so they also have finite precisions, and one of the key topics of this thesis is the sig-
nificance of this uncertainty on how realistic the statistical description of the system
is.

4.1 Path loss model

A path loss (PL) model is a model for the propagation of (electromagnetic) signal
in space. This section introduces a simple statistical PL model for an attenuating
radio signal. A standard assumption is that the signal attenuates logarithmically in
terms of the distance between the BS and the UE. This tradition was introduced by
the famous Okumura–Hata models [27, 14].

A PL model typically contains several parameters that have to be determined before
the positioning phase. One conventional way for tuning the parameters is to collect
large amount of data by accomplishing extensive measurement campaigns. If the
model contains enough BS-specific variables whose values are known for each BS,
it may be possible to formulate a model whose parameter values can be tuned
generically for all the BSs, at least with some restrictions. The Okumura–Hata
models are an example of this methodology. Since the attenuation characteristics
tend to change as a function of the distance, some authors tune several PL models
for a BS and choose the correct one based on the RSS value [10].

The methodology adopted by this thesis is dynamic statistical estimation based on
the Bayesian philosophy. Thus, the distribution of the model parameters is estimated
statistically from the learning data, and it is updated if new learning data is added to
the database. This kind of approach has been tested by estimating the parameters
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generically such as in [33, 23], or by estimating the parameters separately for each
BS such as in [25]. In this thesis, the parameters are estimated independently for
each BS in the learning data. The locations of the BSs are not assumed known, but
they are also estimated based on the learning data.

Path loss parameter and location estimation is described in this section only for a
single BS, and this procedure is then applied to each BS. The model is very general
and does not contain variables concerning e.g. frequency or antenna structure of
the BS. The assumption that the parameters of different BSs are statistically inde-
pendent may result in some information losses, but it will simplify the form of the
BS database that is created and reduce the number of recorded statistics.

4.1.1 Derivation of the path loss model

The signal strength as a function of distance r from the BS is defined as

y(r) = 10 log10 (P (r)) ,

where P (r) stands for signal power (in milliwatts) measured at some reference sur-
face. The received signal strength (RSS) is the signal strength measured by the
receiver (RX)

y = 10 log10 (PRX) ,

where PRX = P (rRX), where rRX is the distance between BS and RX. Due to the
logarithmic scale, the unit of RSS measurement is dBm (decibels referenced to mil-
liwatt). In a line-of-sight case the intensity of a received radio signal follows the
inverse-square law

P (r)∝ 1
r2

,

where r is the distance from the BS. Thus, the received signal power can be expressed
as

PRX =
r2

r2
0

P (r0),

where r0 is a specified reference distance. The RSS measurement becomes

y = 10 log10

(

r2

r2
0

P (r0)

)

= 10 log10 (P (r0))− 20 log10

(

r

r0

)

= y(r0)− 20 log10

(

r

r0

)

.
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Conventionally, the reference distance is chosen to be 1 m and the signal strength
at 1 m is called the apparent transmitter power and denoted with A.

The line-of-sight assumption means that there should be no obstacles between BS
and RX. In practice, however, signal attenuation tends to be more rapid than this
model predicts, and this effect depends on the propagation environment. Therefore,
a BS-specific attenuation constant is introduced. The standard solution is to define
the path loss exponent n, for which the relation

P (r)∝ 1
rn

holds. Because all disturbances of the free space assumption lead to larger n, the
inequality n ≥ 2 generally holds. This leads to the equation

y = A− 10n log10(r).

In each environment there tend to be attenuating factors that are very case-specific,
direction dependent, time-variant or otherwise unreasonable to be modeled accu-
rately. For instance, ground surface fluctuations, buildings, heavy traffic and weather
conditions outdoors and walls, floors and furniture indoors could act as such factors.
These factors together form the so called shadowing phenomenon (shadow fading,
slow fading). Thus, the path loss model is

y = A− 10n log10(r) + v, (4.1)

where v is the random variable that models the shadowing. It is usually assumed
that v follows zero-mean normal distribution with environment-specific standard
deviation σ [35, 38]. If the path loss parameters as well as the BS position m and
the UE position p are unknown, they are modeled as random variables:

y = A− 10n log10 ‖m− p‖+ v. (4.2)

4.1.2 Parameter learning

In this section, a method for estimating the PL parameters of a BS is presented. As-
sume that there is a database of measurements each containing the true position, the
list of heard BS-ID’s and the observed RSS levels. This database has been collected
beforehand, and it is assumed that the position fixes are accurate compared with
the accuracy of RSS-based positioning, for example GNSS measurements outdoors.

Let us now consider the observations of one certain BS in the database. Each mea-
surement with index i ∈ {1, . . . , Nℓ} contains (accurate) position pi and measured
RSS level yi. Let us denote the BS position with m. Using the measurement model
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(4.1) and a Gaussian prior for all the parameters, the structure of the model is
similar to that of (2.4) so that

x̂ =
[

A− n− m−T
]

T

Σ̂x = blkdiag
(

σ−
A

2
, σ−

n

2
, Σ−

m

)

h(A, n, m) =









h1(A, n, m)
...

hNℓ
(A, n, m)









R = σ2 · INℓ×Nℓ
,

where the measurement model functions are

hi(A, n, m) = A− 10n log10(‖pi −m‖).

The measurement model function is continuously differentiable everywhere outside
the set of the measurement points, and the partial derivatives of the measurement
function are derived in Section 4.2.3. The Jacobian matrix of the measurement
function h is

H =













1 −10 log10(‖m− p1‖) − 10
ln(10)

n
(m−p1)T

‖m−p1‖2

...
...

...

1 −10 log10(‖m− pNℓ
‖) − 10

ln(10)
n

(m−pNℓ
)T

‖m−pNℓ‖2













. (4.3)

Thus, the inference can be made using the GN algorithm.

All the quantities are given Gaussian priors to improve convergence properties of the
Gauss–Newton algorithm and to ensure the convergence to a physically sensible set
of values. The priors are to be almost uninformative, i.e. Gaussian distributions with
so large variance that the influence on the optimum is negligible. A suitable initial
value for the BS position is the position of the strongest observed measurement.
Initial values for A and n can be chosen more arbitrarily from the valid ranges, since
the distribution is can be supposed to be unimodal enough, if the number of data
points is large.

The algorithm also returns an approximation for the covariance matrix of each quan-
tity. Consequently, it is potentially possible to distinguish between trustworthy and
untrustworthy path loss models. Note that to simplify the analysis it is assumed in
this thesis that the correlations between the PL parameters and the BS coordinates
are so small that they can be neglected.

Due to Theorem 2.2 the Bayesian algorithms are usually recursive: the obtained
posterior can be used as a prior as new measurements are received.
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In an ideal case, the BS position is unambiguously indicated by the strongest RSS
values. If there are several peaks in a practical situation, the GN algorithm may
not handle them satisfactorily. In these cases, the BS positions could be estimated
in grid and the rest of the parameters could be estimated analytically for each
grid point. However, the empirical tests showed that the influence of these effects
on positioning performance is usually negligible and the GN algorithm is reliable
enough.

In Figures 4.1 and 4.2 there are examples of real-data-based RSS powermaps that
are computed by interpolating between measurement points. Coverage areas are the
68% probability ellipses of the normal distribution fitted in the data [21, 20]. Figure
4.1 presents the power map of a BS of cellular network, and in Figure 4.2 there is
the powermap of a wireless local area network (WLAN) access point (AP). Note
that in the WLAN power map the influence of the building’s floor plan is clearly
visible, and the AP is not truly omnidirectional.

4.2 Static positioning

The main purpose of this section is to present implementable algorithms for esti-
mating the mean and covariance matrix of the user position’s posterior distribution.
The detailed algorithm listings are presented in Appendix A.

The RSS model might result in multiple almost equally weighted maximum likeli-
hood solutions for the position. In the Bayesian methodology, a prior distribution,
which may also contain positioning information, is potentially able to make differ-
ence between the likelihood peaks. Moreover, the prior may improve the convergence
properties of iterative algorithms. For mathematical convenience, a Gaussian prior
distribution for the user’s position p(p) = N

(

p | p̂, Σ̂p

)

is assumed.

The prior can possibly reflect location information from other sources, or in case of
time-series filtering, the filter prediction functions as the prior mean p̂ and covariance
Σ̂p. If no prior information exists, e.g. the arithmetic mean of BS positions can be
used as the prior mean. In this case the covariance matrix should be chosen to be
large so that the influence of the prior on the posterior is negligible.
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Figure 4.1: Interpolated power map of a BS of a cellular network with the estimates
for BS position and coverage area and the path loss curve of the same BS. The path
loss model is linear for A and n, so finding them for a given BS position is the
problem of fitting a line to the semilogarithmic distance–RSS plot.
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Figure 4.2: Interpolated power map of a WLAN AP with the estimates for AP
position and coverage area and the path loss curve of the same AP.
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4.2.1 Grid algorithm for RSS measurements

Let p be user position, A apparent TX power, n path loss exponent and m base sta-
tion position. By the given independence assumptions, the full posterior distribution
can be expressed as

p(p, A, n, m | y)∝N
(

y | A− 10n log10(‖m− p‖)), σ2
)

· N
(

p | p̂, Σ̂p

)

· N
([

A

n

]

|
[

Â

n̂

]

, Σ̂A,n

)

· N
(

m | m̂, Σ̂m

)

.

(4.4)

The posterior distribution for position p is obtained by marginalising out the nui-
sance parameters:

p(p | y1:Ny
)∝N

(

p | p̂, Σ̂p

)

·
Ny
∏

i=1

∫∫∫

N
(

yi | Ai − 10ni log10 ‖mi − p‖ , σ2
)

· N
([

Ai

ni

]

|
[

Âi

n̂i

]

, Σ̂Ai,ni

)

·N
(

mi | m̂i, Σ̂mi

)

dAi dni dmi.

This can be computed by sampling Ai, ni and mi, i = 1, . . . , Ny from their prior
distribution and setting

p(p | y1:Ny
) ∝∼ N

(

p | p̂, Σ̂p

)

Ny
∏

i=1

1
N

N
∑

j=1

N
(

yi | Ai,(j) − 10ni,(j) log10

∥

∥

∥mi,(j) − p
∥

∥

∥ , σ2
)

,

where N is the sample size parameter and where i is the index of the measurement
and j the index of the sample. Symbol ∝∼ denotes approximate proportionality.

For simplicity, this thesis uses rectangular grid with constant step sizes. The de-
termination of the grid coverage is loosely based on the position prior distribution.
However, one should be careful with this technique, since the likelihood should not
depend on the prior.

The most crucial implementation issues are the Monte Carlo sample size parameter
N as well as grid size and density. Note that combining the likelihoods of different
BSs is done in logarithmic space to avoid numerical underflows. The grid method
is described in detail in Algorithm A.1.
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4.2.2 Metropolis–Hastings sampler for RSS measurements

To reduce computational complexity and Monte Carlo variance, PL parameters A

and n are marginalized out analytically. This can be done using Lemma B.3 as
follows

p(p, m1:Ny
| y1:Ny

)

∝
∫∫

p(y1:Ny
| p, A1:Ny

, n1:Ny
, m1:Ny

) p(A1:Ny
, n1:Ny

) dA1:Ny
dn1:Ny

· p(p) · p(m1:Ny
)

= p(p) ·
Ny
∏

i=1

p(mi) ·
∫∫

N

(

yi | Bi

[

Ai

ni

]

, σ2

)

· N
([

Ai

ni

]

|
[

Âi

n̂i

]

, Σ̂Ai,ni

)

dAi dni

= p(p) ·
Ny
∏

i=1

p(mi) · N
(

yi | Bi

[

Âi

n̂i

]

, BiΣ̂Ai,ni
Bi

T + σ2

)

,

(4.5)

where

Bi =
[

1 −10 log10 ‖mi − p‖
]

The MH algorithm for RSS measurements is presented in Algorithm A.2, in which
the sample indices are typed in parentheses for clarity.

In the implementation phase, great care must be taken when setting the proposal
distributions to make the algorithm converge in a computationally feasible number
of iterations. To avoid numerical underflows, the numerator and denominator of the
MH ratio should be computed in logarithmic scale. For convenience, the proposal
distributions are chosen to be multivariate normal with the latest accepted value as
the mean and positive definite matrices tuned from the prior covariances of p and
mi as covariance matrices. The covariance matrices of the proposal distributions
are denoted with Pp and Pmi

.

4.2.3 Gauss–Newton algorithm for RSS measurements

An example of iterative state estimation method is the Gauss–Newton algorithm
(GN) that is described is Section 2.3. In this section the GN method is formulated
for the position estimation problem with the presented path loss model.
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For formulating the Regularised Gauss–Newton algorithm, the partial derivatives of
the measurement function h are calculated as follows:

∂hi

∂p
= − 10ni

ln(10)
1

‖mi − p‖ ·
∂ ‖mi − p‖

∂p

= − 10ni

ln(10)
1

‖mi − p‖ ·
(mi − p)T

‖mi − p‖ ·
∂(mi − p)

∂p
=

10ni

ln(10)
(mi − p) T

‖mi − p‖2 ,

∂hi

∂Ai
= 1,

∂hi

∂ni
= −10 log10(‖mi − p‖),

∂hi

∂mi
= − 10ni

ln(10)
1

‖mi − p‖ ·
(mi − p)T

‖mi − p‖ ·
∂(mi − p)

∂mi
= − 10ni

ln(10)
(mi − p) T

‖mi − p‖2 .

The remaining partial derivatives are zeros. Since all the partial derivatives are
continuous, the measurement model function is continuously differentiable whenever
mi 6= p holds for each i. In case this condition does not hold at some stage of the
GN algorithm, a small perturbation can be added to the position estimate.

The prior covariance matrix is always full-rank, so the singular values of the Jacobian
are bounded away from zero, and provided that the perturbation steps are done,
the singular values of the Jacobian are bounded above. Thus, the model fulfills
the assumptions of Theorem 2.6 provided that the simplified line search algorithm
is efficient enough. Theorem 2.6 implies that the algorithm converges locally to a
stationary point of the posterior. Note that the goodness of the prior distribution
and the initial point of the iteration are crucial in forcing the algorithm to converge
to the true MAP (maximum a posteriori, posterior mode).

The GN algorithm for positioning with RSS measurements is presented in Algorithm
A.3. The complete state containing both user position and all the PL parameters is
denoted with ξ. The output of the algorithm contains estimates for the MAP and
the covariance matrix of the posterior of the linearized model.

4.3 Time series positioning

In this thesis the algorithm used for time-series estimation is an approximative
version of the Bayesian filter. Each of the presented positioning algorithms return
the mean and covariance matrix of the posterior density. The posterior of the
position is then approximated be a normal distribution, so by Theorem 3.5 the
prediction step can be done using the prediction step of the Kalman filter (KF). The
predicted estimate is again a Gaussian, so it can be used as a prior for the presented
positioning algorithms. This algorithm is thus the modified-IEKF procedure that is
described in Section 3.2.
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The fact that the shadowing terms of successive RSS measurements are correlated is
omitted in this thesis [13],[19, Ch. 4]. The measurement interval is several seconds,
which diminishes the correlations to some extent compared to cases with higher
measurement frequencies.

Within the considered application, the model parameter distributions are not ex-
pected to be updated online. Thus, the system parameter distributions are not
included in the filter state, so the update step is based on Equation (3.7).

Another filtering alternative would be to use the static estimate as a direct position
measurement in the Kalman filter. In this method, the prior should not be used in
the static estimation except maybe for determining the initial state. This approach
is commonly known as the Positioning Kalman filter (PKF) [4]. In this thesis, the
algorithm described in the previous paragraphs is implemented, since an accurate
prior may help avoid divergence of the static positioning methods and accelerate
their convergence. On the other hand, if the motion model was chosen to contain
derivatives of position, such as velocity or acceleration, the PKF would be the most
flexible scheme.

The main reason for including a Monte Carlo positioning method into this thesis
is the class of particle filter (PF) algorithms [24]. Particle filters are Monte Carlo
algorithms that can, at least in principle, handle practically any motion and mea-
surement model. In positioning, measurement models that are typically handled by
particle filters are for example map constraints and sensor measurements of different
kind. Especially in the field of indoor positioning, this approach has been a subject
of increasing research interest [12, 43, 44].

There also exist algorithms for time-series estimation with static motion models,
that is, motion models with zero variance. In the case of KF extensions, the model
parameters could be included in the filter state with static motion model, since the
positive-definiteness of the measurement error covariance matrix ensures existence
of the matrix inverse that appears in the KF formulas. This kind of static motion
model may, however, result in problems with numerical stability, since the variances
decrease at every measurement time step. PF algorithms can be used with static
motion models only within special conditions [42]. Otherwise, heuristic procedures
such as adding small artificial noise must be adopted to prevent degeneration of the
sample set to only one or few different values.



Chapter 5

Testing and comparison

5.1 RSS likelihood

Figure 5.1 illustrates the influence of the uncertain parameters on the likelihood of

the UE location. In the example case the parameter statistics are

[

Â

n̂

]

=

[

2
3.2

]

,

Σ̂A,n =

[

100 3.5
3.5 0.15

]

, m̂ = 0 and Σ̂m = 2 · 104 · I. These values are based on

our experimental knowledge of the Finnish cellular network. The likelihood plots
presented in the figures are computed using the grid algorithm with very sense grid.
The left column illustrates the likelihoods of the model that takes the parameter
uncertainties into account, and the right column shows the likelihoods assumed that
the path loss parameter values are accurate. The RSS values corresponding to the
likelihoods are −50 (on the left), −75 and −90 dBm. The shadowing standard
deviation is σ = 6 dBm. It can be seen that with strong signals the RSS likelihood
is unimodal or almost unimodal when the parameter uncertainties are taken into
account.

In the case of radially symmetric BS position distribution, the posterior density
depends only on the distance from the mean of the BS position estimate. Figure 5.2
illustrates the likelihoods of the UE position as a function of this distance. They



CHAPTER 5. TESTING AND COMPARISON 38

500 m

Figure 5.1: The likelihoods of measurements −50, −75 and −90 dBm (from the
top row downwards). In the left column, parameter uncertainties have been taken
into account. The likelihoods have been normalized so that the maximal value of each
likelihood is one, and each plot uses the same colour map.
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have been computed using standard Monte Carlo integration and normalized so that
the maximal likelihood value is one. Curve “N” represents algorithms that assume
PL parameters to be normally distributed a priori, and curve “acc” the algorithms
that assume that the parameters are known accurately. Fig. 5.2 shows that the tail
of the “N” curve are considerably heavier.
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Figure 5.2: Likelihoods of measurements −50, −75 and −90 dBm as a function
of the distance from the mean of the BS position estimate. Curve “N” represents
algorithms that assume PL parameters to be normally distributed a priori, and curve
“acc” the algorithm that assumes that the parameters are known accurately.
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In Figure 5.3 the likelihood of two RSS measurements of −80 dBm is presented. The
PL parameters are similar to the ones in Figure 5.1, and the distance between BS’s
is 400 meters. If the parameter uncertainties are not taken into account (on the
right), the support of the likelihood consists of two separate parts, whereas in the
left figure there is significant amount of likelihood mass also in the BS positions’
surroundings.

500 m

Figure 5.3: The combined likelihood of two BS’s with signal strengths −80 dBm.
On the left, parameter uncertainties have been taken into account. The likelihoods
have been normalized so that the maximal value of each likelihood is one, and both
the plots use the same colour map.

5.2 Outdoor tests with cellular data

5.2.1 Experiment setup

A measurement campaign was accomplished to evaluate the performance of different
algorithms in a real use case. First, a large set of fingerprints was collected from
a WCDMA cellular network in Tampere urban area, Finland for learning the ra-
diomap. The measured RSS values are based on the measured Received Signal Code
Power (RSCP) indicator reported by the user equipment. The coverage area of each
BS was estimated by fitting a normal distribution to the data [21, 20]. Furthermore,
path loss model parameters were estimated using the method that was presented in
Section 4.1.2 of this thesis.

The measurement data of cellular networks tends to be spatially correlated [13]. In
order to reduce the effect of correlations, the measurements are mapped to a grid of
pre-specified points before the estimation process. In this setup, the RSS value of a
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grid point is set to be the mean of the RSSs observed in the proximity of the grid
point.

2D-projection effects in the proximity of the BS antenna are taken into account
by increasing the covariance matrix of the BS position artificially with a diagonal
constant matrix. This reflects also errors that stem from GPS errors in the learning
data and measurement error correlations due to environmental effects.

There are three separate outdoor test tracks. The first track (Hervanta) was collected
by a pedestrian in a densely populated urban/suburban area. In the second track
(Lukonmäki) the measurer rode a bicycle with a low velocity in a suburban area.
The third track (Linnainmaa) is a higher velocity suburban bicycle case. In all the
cases the true user positions were tracked down using conventional GPS positioning.
By plotting the GPS solutions on the map, it was confirmed that the GPS error on
the area is small compared to the cellular positioning accuracy.

In all the test tracks, the prior distribution is computed in each estimation point
using the estimated coverage areas of the BS’s that are observed at the point con-
cerned. The prior is the product distribution of Gaussian coverage areas, so it is
also a Gaussian distribution.

5.2.2 Results and discussion

The results of the real-data outdoor tests are in Table 5.1. Abbreviation “N” stands
for the algorithms that assume the path loss parameters to be normally distributed
a priori whereas “acc” indicates that the parameter values are assumed accurate.
“CA” refers to the method in which only the product of coverage areas is used. For
the Lukonmäki case, both the GPS solution and the estimated track are plotted on
the map in Figure 5.4.

The positioning error at one time step is the Euclidean distance of the position
estimate and the corresponding reference location. Columns “Mean”, “Med” and
“95% err.” are mean error, median error and empirical 95% percentile of errors in
meters. “Time” is the the average running time of our Matlab implementation
in seconds. Note that the codes are not highly optimized so the running time
values have to be considered only roughly indicative. The times are also highly
dependent on the chosen configuration parameters. Column “Cons.” displays the
95% consistency that was determined using Gaussian consistency test [7, p. 235]
with risk level 5%. The solver is deemed to be consistent at a certain time step, if
the true position is within the 95%-ellipse of the posterior distribution, assuming
normality of the posterior. The closer “Cons.” is to 95%, the more realistic the
covariance matrix estimation is.
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Table 5.1: Results of static cellular positioning with real data.

Solver Mean Med 95% err. Cons. Time
(m) (m) (m) (%) (s)

Hervanta
grid, N 251 203 433 95 90.3
grid, acc 255 222 446 82 36.5
MH, N 257 211 482 82 42.9
MH, acc 267 228 477 75 14.1
GN, N 255 208 450 88 0.4
GN, acc 259 224 461 67 0.4
CA 260 213 458 99 0.3
Lukonmäki
grid, N 223 159 449 96 100.0
grid, acc 224 159 522 81 53.1
MH, N 225 153 590 87 66.9
MH, acc 234 156 574 74 21.7
GN, N 226 158 536 90 0.6
GN, acc 237 173 548 64 0.5
CA 258 200 575 96 0.3
Linnainmaa
grid, N 195 157 418 96 129.4
grid, acc 195 160 402 90 49.8
MH, N 209 170 500 91 45.2
MH, acc 204 167 476 86 13.9
GN, N 185 155 413 94 0.4
GN, acc 188 158 409 83 0.3
CA 268 207 741 99 0.2

From the figures of Table 5.1 it can be seen that taking the parameter uncertainties
into account improves the consistency remarkably for all the estimation methods.
Accurate covariance matrix estimation is crucial especially when location informa-
tion from other sources is combined with RSS measurements or when positioning is
done with Bayesian time-series filters [4].

Presented “N” algorithms seem to outperform “acc” algorithms slightly in the posi-
tioning accuracy. In the Hervanta case it is questionable whether the RSS measure-
ments should be used at all, if the uncertainties are not in the model. Some filtering
results are also provided in Table 5.2. The used filtering algorithm is described in
Section 4.3. In the Lukonmäki case, this highly simplified filtering method seems
to reduce mean errors by at least 10%, and performance differences between “N”
and “acc” algorithms are somewhat clearer than in the static results in Table 5.1.
The filtering algorithm’s tendency to make the appearance of the estimated track
smoother and less jumpy is illustrated by Figure 5.4.



CHAPTER 5. TESTING AND COMPARISON 43

1 km
 

Reference

Estimate

1 km
 

Reference

Estimate

Figure 5.4: The GPS track (Reference) and the track estimated by the Gauss–
Newton algorithm (Estimate) for the Lukonmäki test track. The static solution is
on the left, and the filtering solution on the right.

Among the three estimation methods, grid and MH sampler approach the exact
Bayesian posterior distribution. The grid gives the precise posterior values in the grid
points assuming that the Monte Carlo integration’s accuracy is adequate. The MH
sampler converges theoretically to the true posterior as the sample size parameter
N approaches infinity. In practice, the rate of convergence in MH algorithms is
highly dependent on the form and parameters of the proposal distributions. With
the chosen configuration the method usually fails to compete with the grid especially
in consistency. However, as discussed in Section 4.3, the Monte Carlo framework is
a flexible and efficient tool especially in time-series analysis of highly nonlinear or
non-Gaussian measurements.

Table 5.2: Cellular positioning results using time-series filtering. Both coverage
areas and path loss models are used in the estimation. The track is the same as
“Lukonmäki” in Table 5.1.

Solver Mean Med 95% err. Cons.
(m) (m) (m) (%)

Lukonmäki
grid, N 193 137 493 86
grid, acc 198 151 503 74
MH, N 198 148 490 81
MH, acc 202 155 493 67
GN, N 194 138 501 85
GN, acc 203 161 510 64
CA 218 205 469 90
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The Gauss–Newton method lacks global convergence properties and the covariance
matrix estimate is based on linearized model and has thus a less clear Bayesian
interpretation. Indeed, the real data tests show that the algorithm’s convergence
is more sensitive to the quality of the prior distribution. However, the presented
results are comparable with those of the other methods, and the GN is clearly the
computationally lightest one of the presented PL algorithms, and the most applicable
one in many real-time solutions.

5.3 Indoor tests with WLAN data

5.3.1 Experiment setup

A large set of WLAN fingerprints was collected in public indoor spaces in the city
of Tampere, Finland for learning the radiomap. The test cases presented in this
thesis are located in a building at Tampere University of Technology campus area.
The test track and most of the learning data have been collected indoors. The
test track consists of several parts measured at different floors of the same building.
The measurement device is a tablet computer, and the reference locations were set
manually on the floor plan figure. Each floor has a separate radiomap, and the
correct floor is assumed known in both learning and positioning phases; that is, no
floor detection is implemented.

Similarly to the outdoor case, the effects due to measurement error correlations
are taken into account heuristically by increasing the covariance matrix of the AP
position artificially with a small diagonal constant matrix. The matrix has been
configured observing the accuracy and consistency of the algorithm in various tracks.

In the indoor cases, the presented RSS-based methods are compared with both cov-
erage area (CA) method and the weighted k-nearest neighbour (WKNN) method,
which can be regarded as the state-of-the-art solution to the RSS-positioning prob-
lem [15]. In the the WKNN method, the measurements are not compressed into
parametric form, i.e. no statistical assumptions are made of the measurement model.
Instead, the whole measurement database is stored in the memory, and the posi-
tioning measurement is compared with every learning measurement. In this thesis,
the used method is the weighted 3-neighbour method, in which the difference of
the measurement to each database point is computed using the Euclidean norm of
RSS differences, and the location estimate is set to the mean value of three closest
database points. The WKNN estimates are not filtered in this paper.



CHAPTER 5. TESTING AND COMPARISON 45

5.3.2 Results and discussion

In outdoor cases, the coverage areas were used as a prior to regulate the convergence
of the RSS-based algorithms. In indoor spaces, however, the performance of the
coverage area algorithm may not be adequate for this purpose. Since, in addition
to that, indoor positioning data tend to be relatively noisy, Bayesian time-series
filters are tested. They provide a regularizing prior and hinder too large jumps of
the position estimate. Table 5.3 presents the positioning results of each positioning
algorithm with different priors. “CA” means that the coverage area solution is
used as a prior for the RSS solution. Columns “Mean”, “Med” and “95% err.” are
mean error, median error and empirical 95% percentile of errors in meters. Column
“Cons.” is the 95% consistency that is defined in Section 5.2.2.

Table 5.3: Comparison of different prior construction methods in indoor position-
ing. In “CA” algorithms, the coverage area estimate is included in the prior for RSS
methods. In “filter” methods, a Bayesian time-series filter is used.

Solver Mean Med 95% err Cons
(m) (m) (m) (%)

CA & grid, static 7.3 7.0 15.0 16
CA & grid, filter 7.3 6.5 14.7 13
grid, filter 7.0 5.4 18.6 87
CA & MH, static 7.7 7.0 15.4 7
CA & MH, filter 7.4 6.7 14.7 13
MH, filter 7.5 6.1 20.2 84
CA & GN, static 7.4 7.1 15.4 16
CA & GN, filter 7.3 6.6 14.6 13
GN, filter 7.6 6.1 20.9 84

Based on Table 5.3, the algorithms with CA prior have serious consistency problems,
which is probably due to dependency of adjacent coverage areas. Thus, the method
that uses the filter prediction as the prior and no CA information is adopted for
the comparison purposes. Note that in the used filter, the PL parameter estimates
are not updated online, but the same prior for the parameters is used for all time
instants. The used filtering algorithm is explained in Section 4.3.

Figure 5.5 shows position solutions for a part of the test track given by both versions
of the GN algorithm. The results of the real-data indoor tests are in Table 5.4 and
Table 5.5. In Table 5.5 only 20% of the fingerprints in the learning data have been
used for 75% of the APs. Abbreviation “N” stands for the algorithms that assume
the PL parameters to be normally distributed a priori whereas “acc” indicates that
the parameter values are assumed known. “CA” refers to the product of coverage
areas. “WKNN” is the (weighted) 3-nearest neighbour method with the Euclidean
distance. “Time” is the the average running time of our Matlab implementation
in seconds.
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Table 5.4: Filtering results for the real data tests for the indoor case. The complete
learning data set used.

Solver Mean Med 95% err Cons Time
(m) (m) (m) (%) (s)

grid, N 7.0 5.4 18.6 87 112.7
grid, acc 7.2 5.4 19.8 80 43.0
MH, N 7.5 6.1 20.2 84 68.2
MH, acc 7.4 6.0 20.1 79 15.5
GN, N 7.6 6.1 20.9 84 0.4
GN, acc 7.7 6.3 23.5 53 0.2
CA 8.7 7.6 16.3 13 0.2
WKNN 5.6 5.2 12.9 30.6

Table 5.5: Results for the real data tests for the indoor case. For 75% of the APs
nine out of ten location reports have been removed artificially. These APs and the
left-out points were chosen randomly.

Solver Mean Med 95% err Cons
(m) (m) (m) (%)

grid, N 7.0 5.8 15.6 93
grid, acc 7.1 6.1 17.7 76
MH, N 7.6 6.8 17.0 84
MH, acc 7.3 6.1 18.2 71
GN, N 7.0 6.0 15.8 93
GN, acc 7.6 6.2 20.0 54
CA 9.9 9.1 20.6 10
WKNN 10.4 7.9 26.5

In terms of the error statistics presented in Table 5.4, the proposed RSS methods
seem to perform better than the coverage area solution but slightly worse than
the WKNN solution in positioning accuracy. Note, however, that both Gauss–
Newton solutions are computationally much more efficient and the requirements
for the database are much lower for the parametric algorithms, since only the PL
parameter estimates and their variances have to be stored for each AP instead of all
the measurement points. Moreover, pruning the database influences the fingerprint
solution much more than the parametric methods.

The parameter uncertainties seem to be essential from the consistency’s viewpoint
also in the indoor case. In practice WLAN positioning in indoor spaces is comple-
mented by additional, more refined sources such as map information, inertial nav-
igation systems or Bluetooth. When several types of measurements are combined,
it is crucial to be knowledgeable of the accuracy of each measurement, and so the
improvement in consistency is a good reason for taking the parameter uncertainties
into account in indoor positioning.
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Figure 5.5: Part of the indoor test track with the GN method. In the upper figure
parameter uncertainties have been taken into account.

Similarly to the outdoor case, the presented “N” algorithms seem to outperform
“acc” algorithms slightly in the positioning accuracy too. However, the performance
differences are somewhat clearer in Table 5.5, where the learning data sets of some
the APs have been pruned. Thus, it seems that PL parameter uncertainties should
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be taken into account especially if some of the APs are likely to be badly mapped.
This might be the case e.g. if there are newly added APs or if the area as a whole
is inadequately covered by the database.



Chapter 6

Conclusions

This thesis presented three statistical positioning methods that use measurement
model with unknown system constants. The performance of the methods was eval-
uated collecting several test sets of real data from wireless networks in outdoor
(WCDMA cellular network) and indoor (WLAN) environments. The used measure-
ments were received signal strength (RSS) measurements, and the unknown system
constants were base station -specific path loss model parameters, whose prior dis-
tributions were estimated from learning data using the Gauss–Newton algorithm.

The real-data tests showed that RSS-based path loss methods outperform the cov-
erage area method that does not use RSS measurements but is only based on the
list of observed BSs. This holds for both cellular–outdoor and WLAN–indoor cases.
In the indoor scenario, the path loss methods were also shown to be comparable
in accuracy with the nonparametric k-nearest neighbour method, which compares
the measurement with the complete fingerprint database. Furthermore, the perfor-
mance of the k-nearest neighbour method is more sensitive to inadequately mapped
APs.

It was also shown that taking the parameter uncertainties into account in the po-
sitioning phase improves consistency of error estimates compared to the methods
where the path loss parameters are assumed to be known accurately. This means
that the positioning error estimates are more realistic when the uncertainties are
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taken into account. Consistency improvement was clear in both outdoor and indoor
scenarios. In positioning accuracy, the versions that take the parameter uncertain-
ties into account seemed to perform equally or mostly slightly better than the ones
that assume known parameters.

The performance differences were emphasized favourably to the methods that take
the parameter uncertainties into account if the database coverage is inadequate. This
was an expectable relation, since the parameter uncertainties measure the goodness
of the PL parameter fit and adequacy of the learning data; if the fit is less reliable for
one BS than for the others, the larger uncertainties automatically give less weight
to the observations from this BS.

In the tests presented in this thesis, taking the parameter uncertainties into account
appeared computationally relatively demanding. However, if needed, the cost could
be cut down without deteriorating the performance too much by using suitable
approximations and simplifications, such as [26, 32]. The crucial idea in this thesis
is that the uncertainties of unknown parameters affect the estimation even though
we are not interested in the actual parameter values.

The consistency improvement provided by parameter uncertainty modeling is espe-
cially significant, when different measurements are combined, since the information
contents of two noisy measurements cannot be merged unless there is reliable knowl-
edge of the accuracy of both measurements. In practice, wireless network -based
positioning is typically complemented by additional, more refined techniques such as
map information or inertial navigation systems. This holds especially in indoor en-
vironments where line-of-sight conditions are challenging and accuracy requirements
high.

Future topics include studying more refined filtering techniques for the RSS mea-
surements with unknown measurement model parameters, such as particle filter-
ing. Filtering methods for models with correlated measurement noise could also be
studied, since the shadowing term of RSS measurements is known to be spatially
correlated.

In Bayesian philosophy, it is straightforward to combine other measurements with
the presented positioning algorithms, at least in principle. Adding maps and inertia-
based information into outdoor and indoor positioning and showing the influence
of the parameter uncertainties in a hybrid positioning system is a topic for future
research. Additional future topic is expanding the presented methods into 3D posi-
tion space especially in indoor spaces, in which floor detection is an interesting and
essential part of navigation.
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Appendix A

Algorithms for RSS positioning

Algorithm A.1 Grid for positioning with RSS measurements

1. Set a grid {pm ∈ R
2 | m ∈ {1, . . . , Nm}} that is assumed to cover almost all

posterior probability mass.

2. For each detected base station i = 1, . . . , Ny, draw
[

Ai,(k)

ni,(k)

]

←N

([

Âi

n̂i

]

, Σ̂Ai,ni

)

mi,(k)←N
(

m̂i, Σ̂mi

)

for k = 1, . . . , N .

3. At each grid point pm compute for each base station i = 1, . . . , Ny and for
each sample k = 1, . . . , N

Ii,m,(k) := N
(

yi | Ai,(k) − 10ni,(k) log10

(∥

∥

∥mi,(k) − pm

∥

∥

∥

)

, σ2
)

,

and Ii,m := 1
N

∑N
k=1 Ii,m,(k). Then set

ℓm := ln
(

N
(

pm | p̂, Σ̂p

))

+
Ny
∑

i=1

ln(Ii,m), Lm := exp(ℓm).

4. Normalize the grid to get a set of weights wm = Lm
∑Nm

m=1
Lm

and compute mean

and covariance matrix estimates

p̂+ =
Nm
∑

m=1

wmpm , Σ̂+
p =

Nm
∑

m=1

wm(pm − p̂+)(pm − p̂+)T.



APPENDIX A. ALGORITHMS FOR RSS POSITIONING 56

Algorithm A.2 Metropolis–Hastings algorithm for RSS measurements

1. Set p(0) := p̂, Ai,(0) := Âi, ni,(0) := n̂i and mi,(0) := m̂i for i = 1, . . . , Ny. Set
ρ(0) using the formula in step 3. Set k := 1.

2. Generate p′
(k)←N

(

p(k−1), Pp

)

, and for each BS i = 1, . . . , Ny, generate

m′
i,(k)←N

(

mi,(k), Pmi

)

.

3. For each i = 1, . . . , Ny, compute Bi,(k) =
[

1 −10 log10

(∥

∥

∥m′
i,(k) − p′

(k)

∥

∥

∥

)]

and

ρ′
(k) := −1

2
(p′

(k) − p̂)TΣ̂−1
p (p′

(k) − p̂) +
Ny
∑

i=1

[

−1
2

(m′
i,(k) − m̂i)

TΣ̂−1
mi

(m′
i,(k) − m̂i)

+ ln
(

N
(

yi | Âi − 10n̂i log10

∥

∥

∥m′
i,(k) − p′

(k)

∥

∥

∥ , Bi,(k)Σ̂Ai,ni
Bi,(k)

T + σ2
))]

4. Set r := exp(ρ′
(k) − ρ(k−1)). Generate u←Unif (0, 1). Compute

if r > u then
for i = 1 : Ny do

mi,(k) := m′
i,(k)

end for
p(k) := p′

(k), ρ(k) := ρ′
(k)

else
for i = 1 : Ny do

mi,(k) := mi,(k−1)

end for
p(k) := p(k−1), ρ(k) := ρ(k−1)

end if

5. Set k := k + 1. If k < N , go to step 2. Otherwise, set

p̂+ :=
1

N −Nb + 1

N
∑

k=Nb

p(k) , Σ̂+
p :=

1
N −Nb + 1

N
∑

k=Nb

(p(k) − p̂+)(p(k) − p̂+)T,

where Nb is the length of the burn-in period.
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Algorithm A.3 Gauss Newton algorithm for positioning with RSS measurements

1. Choose the stopping tolerance δ and maximal iteration number kmax. Let

Σ̂ξ = blkdiag
(

Σ̂p, Σ̂A1,n1
, Σ̂m1

, . . . , Σ̂ANy
,nNy

, Σ̂mNy

)

and

ξ̂ =
[

p̂T Â1 n̂1 m̂1
T . . . ÂNy

n̂Ny
m̂Ny

T
]

T

be the prior covariance and mean. Let the initial state be ξ0 := ξ̂. Set k := 0.
The objective function is denoted with

θ(ξ) := (ξ − ξ̂)TΣ̂ξ

−1
(ξ − ξ̂) +

1
σ2

Ny
∑

i=1

(hi(ξ)− yi)
2.

2. Compute the Jacobian matrix

Jk =











∂h1

∂p
∂h1

∂A1

∂h1

∂n1

∂h1

∂m1
04Ny−4

T

...
. . .

...
∂hNy

∂p
04Ny−4

T ∂hNy

∂ANy

∂hNy

∂nNy

∂hNy

∂mNy











3. Set

∆ξk := −
(

Σ̂−1
ξ +

1
σ2

Jk
TJk

)−1

·
(

Σ̂−1
ξ (ξk − ξ̂) +

1
σ2

Jk
T(h(ξk)− y)

)

.

4. Perform the damping of step length:
α := 1
while ‖θ(ξk + α∆ξk)‖ ≥ ‖θ(ξk)‖ and α > α0 do

α := α
2

end while

where α0 ≪ 2 is a configuration parameter. Set ξk+1 := ξk + α∆ξk.

5. If stopping condition ‖∆ξk‖ < δ is not satisfied and k ≤ kmax, set k := k + 1

and go to Step 2. Otherwise compute P :=
(

Σ̂−1
ξ + 1

σ2 Jk
TJk

)−1
and set the

state estimate

p̂+ := ξk+1,1:2, Σ̂+
p := P1:2,1:2



Appendix B

Properties of Gaussian
distribution

Definition B.1. (Non-degenerate multivariate normal distribution) Let µ ∈
R

d be a vector and Σ ∈ R
d×d be a symmetric positive definite matrix. A random

variable x ∈ R
d follows non-degenerate multivariate normal distribution with mean

µ and covariance matrix Σ if its probability density function (pdf) is

p(x) =
1

(2π)d/2
√

det(Σ)
exp

(

−1
2

(x− µ)TΣ−1(x− µ)
)

. (B.1)

Then the pdf of the distribution is denoted with p(x) = N (x | µ, Σ). �

Lemma B.2. Assume that

p(x) = N
(

x | m−, P−
)

p(y | x) = N (y | Hx, R) .

Then

p(x, y) = p(x) · p(y | x) = N

([

x

y

]

|
[

m−

Hm−

]

,

[

P− P−HT

HP− HP−HT + R

])

.

Proof. Omitted. See [2].
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Lemma B.3. Assume that

p(x) = N
(

x | m−, P−
)

p(y | x) = N (y | Hx, R) .

Then

p(x | y)∝ p(x) · p(y | x) = c · N
(

x | m+, P+
)

,

where

P+ =
(

P−−1 + HTR−1H
)−1

=
(

I− P−HTS−1H
)

P−

m+ = P+
(

P−−1
m− + HTR−1y

)

= m− + P−HTS−1(y − Hm−)

c = N
(

y | Hm−, S
)

,

where S = HP−HT + R.

Proof. Omitted. See [2].



Appendix C

Convergence results for gradient
methods

Gradient methods are optimization methods that are based on moving towards the
optimum point stepwise and the step direction determined by the gradient (deriva-
tive) of the objective function. This section proves the key convergence results for
the general form of gradient method. Further discussion of the topic is provided e.g.
in the book [8]. The proofs of this section are mainly based on ideas presented in
[8, Ch. 1.2].

Definition C.1. (Descent direction) Let Φ : RNx → R
+
0 be a nonnegative func-

tion and x ∈ R
Nx a vector. Vector d ∈ R

Nx is a descent direction, if

Φ′(x)d < 0.

�

Lemma C.2. Let c ∈ (0, 1) be a constant and Φ : R
Nx → R

+
0 a continuously

differentiable function. For any vector x ∈ R
Nx and descent direction dx ∈ R

Nx

there exists s ∈ R
+ so that

∀α ∈ (0, s] : Φ(x)− Φ(x + αdx) ≥ −cαΦ′(x)dx.
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Proof. By the definition of multivariate derivative, the following relation holds for
any x ∈ R

Nx :

Φ(x + αdx)− Φ(x) = αΦ′(x)dx + αǫx(α),

where ǫx(α)→ 0 as α→ 0. Since ǫx(α)→ 0 as α→ 0 and Φ′(x)dx < 0, there exists
s ∈ R

+ so that |ǫx(α)| ≤ −(1− c)Φ′(x)dx for each α ∈ (0, s]. Thus, the inequality

Φ(x + αdx)− Φ(x) = αΦ′(x)dx + αǫx(α)

≤ αΦ′(x)dx + α |ǫx(α)|
≤ α(Φ′(x)dx − (1− c)Φ′(x)dx)

= cαΦ′(x)dx

holds for each α ∈ (0, s]. This proves the statement.

Lemma C.3. Let Φ be a continuously differentiable function and x ∈ R
Nx a point

such that Φ′(x) 6= 0. Then, a vector of form d = −DΦ′(x)T, where D is a positive

definite matrix, is a descent direction for function Φ and point x.

Proof.

Φ′(x)d = −Φ′(x)DΦ′(x) < 0,

since matrix D is positive definite.

Proposition C.4. Let Φ : RNx → R
+
0 be a continuously differentiable function. Let

{xk} be a sequence generated by the recursion

xk+1 = xk + αkdk.

Directions {dk} are defined by dk = −DkΦ′(xk) with symmetric positive definite

matrix Dk such that

{σ ∈ R
+
0 | σ is an eigenvalue of Dk for some k ∈ N0}

is bounded above and bounded away from zero, and

αk = argmin
α∈(0,s]

Φ(xk + αdk).

for some s ∈ R
+. Then if a subsequence of {xk} converges, it converges to a sta-

tionary point of Φ.

Proof. Let us prove that the negation of the statement implies contradiction. As-
sume that x̄ is a limit point of {xk} such that Φ′(x̄) 6= 0T.
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Since the eigenvalues of the matrix Dk are positive and bounded away from zero,
there exists a constant c ∈ R

+ such that min(eig(Dk)) ≥ c for all k. Hence, the
inequalities

Φ′(x)dk = −Φ′(xk)TDkΦ′(xk) ≤ −min(eig(Dk)) ‖Φ′(xk)‖2 ≤ −c ‖Φ′(xk)‖2 (C.1)

holds for each k. Since now limk→∞ Φ′(xk) = Φ′(x̄) 6= 0T, the expression Φ′(xk)dk is
bounded away from zero from some index onwards. Without loss of generality, only
these tails of the sequences are considered in the rest of the proof.

Let the sequence {α̃k} ∈ R be chosen so that for all k

α̃k = max
{

α ∈ (0, s] | Φ(xk)− Φ(xk + αdk) ≥ −1
2

αΦ′(xk)dk

}

.

By Lemma C.3 direction dk is a descent direction, so by Lemma C.2 this sequence
is well-defined. Since αk maximizes Φ(xk) − Φ(xk+1), relation Φ(xk) − Φ(xk+1) ≥
Φ(xk)− Φ(xk + α̃kdk) holds, so

Φ(xk)− Φ(xk+1) ≥ −1
2

α̃kΦ′(xk)dk

holds. Since xk → x̄ and Φ is continuous, Φ(xk)→ Φ(x̄). Thus, Φ(xk)−Φ(xk+1)→
0, so −1

2
α̃kΦ′(xk)dk → 0, so because {Φ′(xk)dk} is bounded away from zero, α̃k → 0

holds. Hence, α̃k ≤ s
2

from some index onwards, so the inequality

Φ(xk)− Φ(xk + 2α̃kdk) < −α̃Φ′(xk)dk

holds. By the mean value theorem there exist ξk ∈ [0, α̃k] such that

Φ(xk + 2α̃kdk)− Φ(xk) = Φ′(x + ξkdk) · 2α̃kdk,

which implies that

Φ′(xk + ξkdk)dk >
1
2

Φ′(xk)dk.

Since {dk} is a bounded sequence, it has a convergent subsequence {dnk
}, the limit

of which is denoted by d̄, and since 0 ≤ ξk ≤ α̃k, ξk → 0 holds. Hence, because

Φ′(xnk
+ ξnk

dnk
)dnk

>
1
2

Φ′(xnk
)dnk

and because Φ′ is continuous,

Φ′(x̄ + 0 · d̄)d̄ ≥ 1
2

Φ′(x̄)d̄
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holds. Thus, the inequality

Φ′(x̄)d̄ ≥ 0 (C.2)

is true.

However, by Eq. C.1, the inequality

Φ′(x̄)d̄k = lim
k→∞

Φ′(xnk
)dnk

≤ −c lim
k→∞
‖Φ′(xnk

)‖2
< 0 (C.3)

holds. Inequalities (C.2) and (C.3) contradict, so Φ′(x̄) = 0T. Thus, the statement
is true.

Proposition C.5. Let Φ : RNx → R
+
0 be a continuously differentiable function. Let

{xk} be a sequence generated by the recursion

xk+1 = xk + αkdk,

where {αk} is a bounded sequence and for which there exists a constant c ∈ R
+ such

that

∀k ∈ N0 : ‖dk‖ ≤ c ‖Φ′(xk)‖ .

Furthermore, assume that Φ(xk+1) ≤ Φ(xk) holds for all indices k and that every

convergent subsequence of {xk} converges to a stationary point of Φ. Let x∗ be a

local minimum of Φ and the only stationary point of Φ within some open set.

Then there exists an open set S such that if xK ∈ S for some index K, then xk ∈ S

for every k ≥ K and

lim
k→∞

xk = x∗.

Proof. By the assumption we can choose a number ρ ∈ R
+ such that x∗ is the only

stationary point of Φ in the set {x | ‖x− x∗‖ < 2ρ} and that

∀x ∈ R
Nx : ‖x− x∗‖ < ρ⇒Φ(x∗) < Φ(x).

Let s be an upper bound of the sequence {αk}. Since Φ′ is continuos, δ ∈ (0, ρ
2
] can

be chosen such that the relation

∀x ∈ R
Nx : ‖x− x∗‖ < δ⇒‖Φ′(x)‖ = ‖Φ′(x)− Φ′(x∗)‖ <

ρ

2sc

holds. Furthermore, let

C = min
{x|δ≤‖x−x∗‖≤ρ}

Φ(x)
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and

S = {x | ‖x− x∗‖ < ρ, Φ(x) < C}.

Let us now assume that xk ∈ S for some k ∈ N0. If ‖xk − x∗‖ ≥ δ held, by
the definition of C either ‖xk − x∗‖ > ρ or Φ(xk) ≥ C would hold, which would
contradict with the assumption that xk ∈ S. Thus, ‖xk − x∗‖ < δ holds, so

‖xk+1 − x∗‖ = ‖(xk + αkdk)− x∗‖
= ‖(xk − x∗) + αkdk‖
≤ ‖xk − x∗‖+ ‖αkdk‖
= ‖xk − x∗‖+ αk ‖dk‖
< δ + sc ‖Φ′(xk)‖
<

ρ

2
+ sc · ρ

2sc
= ρ

holds. Furthermore, since by assumption Φ(xk+1) ≤ Φ(xk),

Φ(xk+1) ≤ Φ(xk) < C

holds, so xk+1 ∈ S. Hence, by the induction principle, assumption xK ∈ S implies
xk ∈ S for every k ≥ K.

Let S̄ be the closure of the set S. Since S̄ is closed and bounded, it is sequentially
compact, so by the Bolzano–Weierstrass theorem, the sequence {xk} has at least
one convergent subsequence, which converges towards a point in S̄. Since S̄ ⊂
{x | ‖x− x∗‖ < 2ρ} holds, x∗ is the only stationary point of Φ within S̄. Since by
assumption the limit of each convergent subsequence of {xk} is a stationary points of
Φ and x∗ is the only stationary point of Φ within S̄, all the convergent subsequences
of {xk} converge to x∗.

If now {xk} did not converge to x∗, there would be a subsequence {xnk
} such that

for some ǫ0 ∈ R
+ inequality ‖xnk

− x∗‖ ≥ ǫ0 holds for all k. By the Bolzano–
Weierstrass theorem, this subsequence would have a convergent subsequence, which
would not converge to x∗, since all its elements have the distance of at least ǫ0 to x∗.
This contradicts with the assumption that every convergent subsequence of {xk}
converges to x∗. Thus, limk→∞ xk = x∗.
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