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Sulautettujen järjestelmien koko ja monimutkaisuus ovat viime vuosina kasvaneet 

kiihtyvällä tahdilla. Siksi suunnittelun tuottavuutta täytyy tehostaa, johon on pyritty 

mm. käyttämällä uudelleenkäytettäviä logiikkakomponentteja. Uudelleenkäytön 

tehostaminen vaatii uusia suunnittelutyökaluja ja metodeja. IP-XACT on XML-

pohjainen metadata standardi, jolla kuvataan uudelleenkäytettäviä 

logiikkakomponentteja, eli IP-lohkoja, työkalu- toteutus- ja toimittajaneutraalilla 

tavalla. Ongelmana IP-XACT:in yleistymisessä on ollut työkalujen tuki. Saatavilla ei 

ole aiemmin ollut vapaan lähdekoodin suunnittelutyökaluja ja kaupalliset vaihtoehdot 

ovat kalliita, mikä rajoittaa pienten ja keskisuurten yritysten mahdollisuuksia ottaa IP-

XACT käyttöön. 

 

Tässä diplomityössä esitellään avoimen lähdekoodin Kactus2 työkalu IP-XACT-

pohjaiseen suunnitteluun. Työn aiheena on työkalun kirjastonhallinta- ja IP-

paketointimoduulit, joiden avulla IP-lohkoille voidaan luoda metadata-kuvaukset ja 

hallinnoida lohkoja automatisoidusti. Diplomityössä esitellään muutamia lisäyksiä, 

jotka laajentavat alkuperäistä standardia myös tuotetiedon hallintaan. Työssä sekä 

suunniteltiin että toteutettiin kirjastonhallinnan ja paketoinnin vaatimat luokat ja 

käyttöliittymänäkymät. Toteutuksessa käytettiin C++ ohjelmointikieltä ja 

ohjelmistokehyksenä käytettiin Qt:n avoimen lähdekoodin versiota 4.8.3. 

Kehitysympäristönä toimi Microsoftin Visual Studio 2008, johon oli asennettu Qt 

lisäosa. Qt mahdollistaa järjestelmäriippumattoman koodin kirjoittamisen, joten 

Kactus2 on julkaistu sekä Windows että Linux käyttöjärjestelmille. 

 

Esiteltyjen moduulien koot koodiriveinä ovat 7.500 kirjastonhallinta- ja 21.000 IP-

paketointimoduulille. Vastaavat luokkien määrät ovat 26 ja 156. Koko Kactus2:n 

koodirivimäärä on 103.000 riviä. Kirjastonhallinta sisältää kaksi eri näkymää kirjaston 

rakenteesta, sekä oman osan kirjaston hakuehtojen määrittämiseen. Paketointimoduuli 

sisältää 28 eri editoria. Käyttöliittymästä on pyritty tekemään selkeä ja 

helppokäyttöinen, jotta käyttäjien olisi helppo omaksua uusia toimintatapoja. Lisäksi 

työkaluun on lisätty kontekstipohjainen opastusjärjestelmä, joka reagoi käyttäjän 

tekemisiin. Kokonaisuudessaan Kactus2:n eri versioita on ladattu yli 1.700 kertaa. 
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The size and complexity of embedded systems have grown at an accelerating pace over 

the last years. This causes demand to improve the productivity of the design process e.g. 

by enhancing the reusability of logic components, also called IP-blocks. Improving 

reusability requires use of new design tools and methods. IP-XACT is a XML based 

metadata standard, which describes IP-blocks in a tool, implementation and vendor 

neutral way. Previously there hasn’t been open source design tools supporting IP-XACT 

and the commercial tools are expensive, thus limiting the ability of small and middle-

sized companies to use IP-XACT.  

 

This thesis presents an open source IP-XACT design tool called Kactus2. The scope of 

the thesis is the library management and IP-packaging modules, which enable 

automated management of IP-blocks. The thesis presents a few extensions to the 

standard, which expand the original scope of IP-XACT towards product management. 

The design and implementation of the library management and IP-packaging classes 

and the user interfaces are described. The implementation language was C++ and the 

used development framework was the open source version 4.8.3 of Qt. The 

development environment was Microsoft Visual Studio 2008 with the Qt add-in 

installed. Qt enables cross-platform development, which facilitated the release of 

Kactus2 for both Windows and Linux operating systems. 

 

The sizes of the presented modules in code lines are 7.500 for library management and 

21.000 for IP-packaging. The corresponding class counts are 26 and 156. The code line 

count for whole Kactus2 tool is 103.000 lines. Library management contains two views 

of the library structure and a segment to define search options. Packaging module 

contains 28 editors for different elements of the metadata. The graphical user interface 

was designed to be easy to use, enabling users to adopt new design methods. Also, the 

tool contains a context based help system, which reacts to user’s actions giving advice 

related to the task on hand. The total download count for different Kactus2 versions is 

over 1.700.  
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LIST OF SYMBOLS AND ABBREVIATIONS 
 

FPGA Field-programmable gate array 

IP-block Intellectual property block 

IP-XACT XML based metadata-format for automated configuration and 

integration of electronic systems. 

SoC System-on-Chip  

Metadata A general term for descriptive data. 

Verilog Hardware description language for modeling digital circuits. 

VHDL Very High Speed Integrated Circuit Hardware Description 

Language 

VLNV Vendor, Library, Name, Version. 

XML eXtensible Markup Language. 





 

 

1 INTRODUCTION 

This master’s thesis is related to FPGA-based embedded system design and presents 

development work for an open source design tool called Kactus2 [1].  

 

A typical embedded system product consists of a hardware platform and software being 

executed on one or more programmable cores. Hardware platforms consist of system-

on-chips (SoC), which consist of reusable intellectual property blocks (IP-blocks). An 

IP-block is a reusable unit of logic that is owned by one party [2]. Figure 1.1 depicts an 

example case of a system hierarchy. One platform may contain several different 

implementations and, on the other hand, same implementation may be ported on several 

different platforms. 

 

Figure 1.1. System hierarchy 

 

Today digital systems are getting larger and more complicated at an increasing pace. 

The integration of IP-blocks into larger systems and porting of these systems to 

different platforms has become a complex task. Traditionally the solution for these 

problems has been to develop IP-libraries in several different implementation languages 

such as VHDL, Verilog and C-programming language. This kind of approach results in 

having systems, which contain IP-blocks implemented in several different 

implementation languages, radically expanding the range of possible configurations. 

The used design tools also require additional information on the systems, which 

increases the configuration count even further. This creates demand for tools, which 

efficiently manage the different configurations and variations of products on the market. 

 

IP-XACT metadata provides a possibility to package the IP-block’s essential 

information in a tool, implementation and vendor neutral way. The purpose of this 
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Thesis is to develop a tool, which understands IP-XACT and is able to manage the IP-

library based on IP-XACT. Kactus2 is designed to help the management and integration 

of reusable intellectual property blocks. 

 

The Thesis is organized as follows. The next Chapter introduces the concepts of IP-

block and System-on-Chip. It also explains the basics of IP-XACT, a metadata standard 

for configuration and integration of IP-blocks. The third Chapter lists related tools on 

the market. Chapter four introduces the Kactus2 tool, which is the main focus of this 

Thesis. The fifth Chapter lists the use cases of library management and sixth Chapter 

the different phases of IP packaging. Chapters seven and eight explain the 

implementation details of library management and IP packaging module. The ninth 

Chapter contains evaluation of the presented modules and finally Chapter ten contains 

the conclusions of the topics discussed on this Thesis. 
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2 IP INTEGRATION 

This Chapter explains the basic principles of IP-blocks and System-on-Chips (SoC), 

what they are and what they can be used for. The basics about IP-XACT, a standard 

used to package IP-blocks for easier reuse, are also explained. Finally the different 

phases to add new IP-blocks to the library and the extensions made to the original 

standard are depicted. 

2.1 System-on-Chip 

A System-on-Chip consists of several IP-blocks and contains almost all different parts 

of the system on a single VLSI chip [2]. While testing and verification of a single IP-

block focuses on making sure the block functions correctly, the main focus on SoCs is 

checking the cooperation of IP-blocks instantiated on the chip. In case of large designs 

the workload can be divided into smaller portions by dividing the system hierarchy into 

smaller subsystems. This way each level has fewer components to test, therefore making 

the testing and verification process simpler. Figure 2.1 shows an example of a small 

SoC, where several IP-blocks are connected together via HIBI-bus [3]. 

 

 
Figure 2.1. A System-on-Chip containing 4 IP-blocks, a bus and 5 external interfaces. 

 

Figure 2.1 contains a large light blue rectangle which is the HIBI-bus connecting the 

other IP-blocks. On the right side, there are blocks performing different functionalities 
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such as PCI-Express adapter, memory controller and a DMA-controller. On the edges of 

the Figure, the external interfaces of the chip are shown, e.g. the reset interface. 

 

The SoCs today may be very complicated containing several different clock regions and 

dozens or hundreds of IP-blocks [4]. An example of modern SoC is the Texas 

Instruments OMAP platform for mobile applications [5]. The OMAP platform contains 

e.g. two ARM Cortex A9 CPUs, vast scale of I/O peripherals, a DSP processor and a 

graphics accelerator. This level of complexity sets great demands on testing and 

verification processes. Reuse of IP-blocks can greatly ease this workload when one can 

use the same blocks and subsystems that have already been tested previously. 

  

In addition to the large number of IP-blocks, also different configurations of the same 

system set challenges for the developer. For example, in the example SoC, the PCIe-

adapter could be replaced by an Ethernet interface while the rest of the system remains 

the same. When developing a new system it is not wise to always start all over from 

scratch, but making use of the old systems saves a lot of time and effort. One way to 

upgrade the system can be to develop a new software implementation which runs on the 

old hardware platform, until a new hardware implementation reaches the market. On the 

other hand, old software may be run on a new hardware platform or both of them can be 

upgraded simultaneously. In each case, it must be explicit which configurations have 

been tested and verified in each product. 

2.2 IP-block information contents 

As an example, Figure 2.2 depicts the directory structure of the HIBI-bus showing the 

different versions (2.0 and 3.0), the documentation files (directory doc), implementation 

files (directory vhd) and the test benches (directory tb). 

 

 

Figure 2.2. The directory structure and files of HIBI-bus. 
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The owner of an IP-block may use the block in one's own systems or it can be licensed 

to another party. Typically IP-block implements a clearly defined functionality and can 

be used in many systems. The block may also be configurable to improve its reusability 

in different systems. By using the same block more than once, the cost of development 

can be spread among several parties. 

 

The configurability of IP-blocks may vary greatly. Configurability of a transistor-level 

design is minor but respectively one can estimate, for example, the performance and 

timing limitations very well. In contrast an IP-block which consists of source codes 

written in VHDL-language may be very well configurable but the estimates for its 

performance are very rough. 

 

One IP-block contains much more than just the source codes, the file count may easily 

increase to dozens or even hundreds of files. The better the IP-block is documented, the 

easier it is to reuse it in another system. In addition to the source and documentation 

files the IP may contain files for testing and verification.  

2.2.1 Documentation files 

A user manual is the most important subsidiary deliverable. Without the user manual the 

IP-block is almost useless for third party developers who do not know the detailed 

implementation of the block. In addition to the user manual, the documentation files 

may include class, block and sequence diagrams, which explain how the IP-block 

functions. For hardware IP-blocks, the datasheets must explain how to configure and 

boot the IP. The documentation material should reveal how to connect the block with 

the rest of the system and what kind of requirements it sets for the connections. The 

interfaces of the IP-block must be documented clearly. For example in software IPs, the 

class interfaces must be defined, and for hardware IPs the ports and their timing 

diagrams must be included. 

2.2.2 Testing and verification files 

A test plan should reveal how the testing of the IP-block is planned: what test cases are 

planned and how the block is expected to behave in those test cases. The test report 

should explain what tests were executed and how the IP actually behaved in those tests. 

Especially all deviations between the expected behavior and the actual behavior must be 

reported clearly. Test coverage analysis can be used to estimate the quality of the testing 

and how reliable the IP-block is. Test log can be used by third parties to repeat the tests 

and verify the block behavior with the given test cases themselves. The types of the test 

logs may vary from simulation log files to screenshot videos recorded during graphical 

user interface testing. 

 

A test bench can be used to automate the testing of the IP-block. The test bench should 

include the automatic checking of the test results. For hardware blocks the test bench 

may be a VHDL entity which instantiates the design under test. For software there are 

several software frameworks, especially for unit testing, which can be used to write 

automated tests that check the results of the tests against the expected outputs. 
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2.2.3 Source files of the implementation 

The most essential part of the IP-block is the implementation files. If there are other IP-

blocks that are needed for the main block to function, then also the source codes of 

those blocks must be included. An example of this could be a third party library used by 

the IP. For hardware IP-blocks there may also exist some software components, such as 

drivers. 

2.2.4 Files to help the initialization of the IP-block 

The initialization of the IP-block is much easier if the block includes an example use 

case where the block is instantiated and used. A makefile will help compiling the IP and 

lists its internal dependencies. Synthesis scripts are similar auxiliary files for hardware 

IPs. 

2.3 IP-XACT-standard 

IP-XACT is an XML format standard developed originally by SPIRIT Consortium for 

configuration and integration of electronic components and designs [6]. The current 

version 1.5, that Kactus2 supports, is also approved as IEEE 1685-2009 standard. The 

purpose of the standard is to provide tool, implementation and vendor neutral format to 

describe the essential information of an IP-block. Metadata is a general term for 

descriptive data. In this case its purpose is to list, for example, the interfaces and file 

sets of an IP-block. 

 

The reusability of the block can be increased by making it easier to port it from one 

development environment to another. Therefore a tool-neutral approach is very 

beneficial. The implementation-neutral approach means that the metadata does not limit 

the language the block is implemented in. This way there will be no unnecessary 

dependencies in the IP library between implementation languages and different 

configurations can be managed easily [7]. 

 

The standard defines 7 different types of IP-XACT documents [6]: 

1. Component describes a single component in the library. For example the 

interfaces and files for the component are listed here. 

2. Design contains a hierarchical design which consists of the components 

instantiated in this design. It is a kind of textual block diagram of the system. 

3. Design configuration defines the configurations used in a hierarchical 

design. 

4. Bus definition contains the general information of a hardware bus. 

5. Abstraction definition defines the logical signals and attributes of a hardware 

bus. 

6. Generator chain defines a group of scripts that can be used e.g. for 

automatic configuration of a component. 

7. Abstractor is used to combine designs from different abstraction levels. 
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Each document creates a single object in the library. The different objects can be 

uniquely identified by a VLNV-identifier. The identifier consists of tuple {vendor, 

library, name, and version}. All references between the documents are made using the 

VLNV-identifier. 

 

The library can be better managed when the dependencies between IP-blocks are 

documented and in a format that can be read by computers. This way it is possible to 

clearly display to users the dependencies between the components and how a single 

component consists of sub-components. This also facilitates the management of third-

party libraries because the developers are not needed to explain to integrators, what 

components depend on each other and what kind of requirements they set for their 

interfaces. By agreeing on the naming policies of the VLNV-identifiers, it is also 

possible to manage the dependencies across library bounds because the dependencies 

are seen in references from one object to another [8]. 

2.3.1 IP-XACT based IP-block integration 

Figure 2.3 depicts the different phases to add a new IP-block to the library. 

 

 

Figure 2.3. Adding a new IP-block to the library and composing of new blocks [9]. 

 

The left side of the Figure displays the different phases of the design process and the 

right side the documents being handled in each phase. When adding a new IP-block to 

the library, it must be packaged with IP-XACT metadata. This makes it possible to 

automatically manage the IP library when the data is in computer readable format. The 

user can search for a single component from the hundreds or thousands of components 

in the library by defining search criteria and filters to display only the desired types of 

components. 

  

In phase 2 a new hierarchical component is created by creating a design description, 

which lists the components instantiated with their mutual connections. The created 

hierarchical component is also displayed in the library among the other components and 

it can be instantiated itself in some other hierarchical component to create deeper 

hierarchies of sub-systems. 
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To create a final product, phases 3 and 4 are used. Phase 3 sets the used configurations 

and settings for each component instance. Phase 4 generates the needed files, for 

example the structural-level VHDL code for the top-level component. Finally the source 

codes can be e.g. synthesized using the tools provided by an FPGA-vendor. 

 

Figure 2.4 displays a screenshot of the component editor in Kactus2, used to create a 

metadata package for a component. The bottom of the figure displays a part of the saved 

metadata for HIBI-bus. The metadata displays the information of a single VHDL file 

and what compile options are set for it. 

 

 

Figure 2.4. The component editor and the saved XML data for a single VHDL file. 

 

The part marked with number 1 contains information for the path and options of a single 

file. The path is a relative path from the XML file to the source file. The part marked 

with number 2 contains the compile commands and options for different file types. 

 

The more detailed and strict the metadata package of an IP-block, the more precise are 

the search results and statistics of the library. When the packaged data is correct and up-
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to-date, it is possible to perform different types of data mining operations on the library. 

For example, one could generate a weekly report of the library reporting, not only the 

number of IP-blocks, but also their maturity levels, complexity and dependencies. 

2.3.2 Elements of a component 

Each IP-block will add at least one component-document to the library. Components 

can be used to describe processors, peripherals such as DMA controllers, and buses like 

the HIBI-bus. Component contains several elements used to describe different types of 

information. Not all elements are required for a single component and different types of 

components will use different elements. Table 2.1 describes some of the elements of a 

component supported by Kactus2 [6]. 

 

Table 2.1. Different elements of a component. 

IP-XACT 

element 

Description 

VLNV An unambiguous identifier used to identify the component in the 

library. 

Bus interfaces Describes all external interfaces of a component. Bus interface 

groups ports together to form a bus. 

Channels Describes interconnections between interfaces inside of the 

component. This element can be used to describe a bus connecting 

interfaces together. 

Address spaces Describes the addressable space seen from bus interfaces with 

interface mode of master. This can be used to describe the address 

space seen by a CPU through bus interface. 

Memory maps Describes the addressable area seen through bus interfaces with 

interface mode of slave. 

Ports Describes a list of ports for the component. These are used to 

describe the external connections of the component. 

Model 

parameters 

Describes the parameters needed to configure the model 

implementation specified in a view. 

Views Describes the different views of a component. Component may have 

different views. For example one view for the RTL implementation 

and one for the written documentation of the component. 

File sets Describes groups of files that can be e.g. grouped by their function. 

One file set may contain the source files and other the documentation 

files of the component. 

Cpus Describes the programmable processors of the component. 

Other clock 

drivers 

Describes clock signals within a component that are not directly 

associated with an external port of the component. For example 

generated clock signals can be listed here. 

Parameters Describes parameters that can be used to configure the component. 

Description Contains the textual description of the component. This can be used 

to document a human readable description of the component. 
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The components in the library can be divided into two categories by their internal 

structure: 

 Non-hierarchical components do not contain any kind of metadata 

documentation of their internal subcomponents. They are not dependent of other 

components through VLNV-references and contain all source codes and 

documentation they need in their own metadata package. The metadata package 

of these components refers directly to the files in its file sets. The only VLNV-

references are bus and abstraction definitions, if any. 

 Hierarchical components consist of other IP-XACT sub-components. These 

sub-components can be non-hierarchical or hierarchical to form deeper 

hierarchies of system design. A Hierarchical component contains VLNV-

reference to design, which instantiates the sub-components. It does not contain 

the files of the sub-components because they are contained in the sub-

component descriptions. The hierarchical component may contain structural 

level source codes. The structural level code can also be generated automatically 

when the component instances and their connections have been defined, like in 

the example SoC on page 3.  

2.3.3 Extensions to the standard 

Kactus2 uses some extensions to the original IP-XACT standard. These extensions are 

designed to improve the usability and efficiency of the tool. The largest extensions are 

related to the software design process, which is itself out of the scope of this work. 

Figure 2.5 depicts the used extensions and their relation to the original IP-XACT 

standard. 

 

 

Figure 2.5. The extensions to the scope of IP-XACT standard [10]. 
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2.3.3.1 New IP-XACT objects 

Figure 2.6 displays the extensions on the implementation axis, formulated as a stack. 

These extensions are implemented by new IP-XACT object types and interfaces to both 

new and standard components: 

a) SW component 

b) SW design 

c) API (SW) definition 

d) COM definition 

e) System design (SW architecture mapped to HW) 

 

The new interfaces are API, for software components, and COM, for both HW and SW 

components.  

 

 

Figure 2.6. New IP-XACT object and interface types. 

 

API interfaces are used to connect SW components to each other. For example, the API 

provided by a driver is documented in API definition, which lists e.g. the functions of 

the API. The driver SW component contains an API interface which refers to the API 

definition, thus promising to implement the interface requirements. The application SW 

component also contains an API interface, which means that the application uses the 

API in some way. When the two API interfaces are connected together, this means the 

application uses the API provided by the driver component. 

 

The communication between IP-blocks can be abstracted to a higher abstraction level by 

using software stacks, which implement a higher level communication mechanism. An 

example of this kind of higher level communication abstraction is the Multicore 

Association Communications API (MCAPI) [11]. 

 

Usually the communication in higher abstraction levels is implemented by software run 

on a processor. The software implements the logical communication channels but the 

underlying hardware components do not know of these logical connections. For these 

logical communication channels to be functional, some kind of hardware dependent 
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software driver is needed. Figure 2.7 depicts how the communication abstractions are 

handled in Kactus2. 

 

 
Figure 2.7. Higher level communication interfaces in hardware components. 

 

Kactus2 uses extensions called COM definition and COM interface to support higher 

level communication. COM definition is an IP-XACT-like XML document, which 

describes the transfer types and communication properties used in the communication 

method. COM interface is similar to the bus interfaces in standard IP-XACT, which lift 

the connection abstraction from port-level to bus-level. COM interfaces are included in 

the hardware component and they contain a reference to the COM definition which is 

implemented by the interface.  

 

The COM Interface also defines the transfer type used in the interface and the direction 

of the communication. Of course, as mentioned before, the hardware component doesn’t 

implement the communication abstraction and therefore the COM interface refers to a 

software component(s) which provide the implementation. This way, e.g. a DCT 

accelerator can be used through an MCAPI endpoint [11] in a software application, even 

though the hardware accelerator was not designed to support MCAPI. 

 

The basic IP-XACT standard would require the software drivers to be packaged within 

the hardware component’s file sets. The COM extension allows the drivers to be 

packaged in their own software component, which defines its own software interfaces to 

be used in an application. This way the hardware component still contains reference to 

its drivers, but the drivers can also be re-used to build other custom software stacks if 
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needed. Also, the API provided by the drivers is explicitly defined in the library and 

could be used e.g. to help the software/hardware co-design. 

2.3.3.2 Kactus2 attributes for IP-block 

Other extensions are new attributes to describe the hierarchy level, implementation type 

and firmness of the IP-block [10]. These attributes are used for categorization of the 

blocks and have no effect how the blocks behave in the tool. 

 

Making use of these attributes allows library handler to filter the objects shown to the 

user and also to display the object type to user with a correct icon in the library views. 

 

Table 2.2 lists the Kactus2 attributes, their possible values and their explanations. 

 

Table 2.2. The different Kactus2 attributes. 

Attribute scope Attribute value Description 

  Global Does not fit into any other category. 

  Product Represents a final product. 

Product Hierarchy Board 
Represents development- or final hardware 
platform e.g. a circuit board. 

  Chip Represents a chip e.g. some specific FPGA-chip. 

  SoC Represents a system-on-chip. 

  IP Represents a single IP-block. 

  HW Hardware implementation. 

Implementation SW Software implementation. 

  SYS 

Contains information about the software 
component mapping to the underlying hardware 
platform. 

  Template 

A model that can be used as a base when creating 
new components to the library but can’t be used 
as such. 

Firmness Mutable Component is fully modifiable. 

 
Parameterizable 

Component contains parameters that can be used 
to configure it but it can't be modified further. 

  Fixed 
Component can’t be configured in any way and it 
is frozen to its final state. 

  



14 

3 RELATED TOOLS 

The system design tools on the market can be divided into two different categories. 

There are tools used to compose systems from higher abstraction level models e.g. by 

generating executable program code from UML-models. On the other group are the 

tools that manage completed IP-blocks and integrate them into larger entities. The 

Kactus2 software, described in this Thesis, belongs to the second group. Typically the 

tools in the second group require that the blocks contain some kind of metadata to ease 

the integration and configuration of the sub-blocks. 

 

Mentor Graphics provides a tool called HDL Designer, which contains a graphical user 

interface to instantiate and connect sub-blocks by drawing lines between the ports of the 

blocks. HDL Designer supports IP-XACT standard but also enables functional 

descriptions such as state machines [12]. 

 

Altera provides a tool called SOPC Builder as a part of their Quartus II development 

software [13]. In this tool, the IP-blocks are packaged as library components and are 

connected to each other by using a graphical tool. When the connections are made, 

SOPC Builder generates the needed connection logic automatically between the blocks. 

The metadata format used by the tool is not standardized and it is completely tool 

specific and the connection network is always Avalon bus developed by Altera. Altera 

also provides a tool called QSys which is the newer version of SOPC but the basic 

principle of the tool is similar [14]. 

 

ARM has developed a tool called CoreLink AMBA Designer [15]. The tool supports IP-

XACT versions 1.2 and 1.4 which are older than the current IEEE standard 1685-2009 

which Kactus2 uses. Version 1.4 is quite similar to the latest version but contains 

differences e.g. in the register elements. The AMBA Designer uses the ARM Fabric IPs 

and allows the integration and configuration of those IP-blocks into larger systems. The 

tool outputs a top-level Verilog file which connects the different IPs together and also 

the top level IP-XACT description which can be used in the next level of integration. 

 

Synopsys has a CoreBuilder tool which can be used to create IP-XACT metadata 

packages for a component [16]. The tool is similar to the component editor module 

presented in this thesis. CoreBuilder supports both the Synopsys’ coreKits and also IP-

XACT components. It asks the user to input the details of the IP block and then creates 

the desired package to be used in an integration phase. CoreAssembler is the integration 

tool for assembly and configuration of an IP-based subsystem [17]. 

 

Duolog provides an integration tool called Socrates Weaver [18]. It supports importing 

and exporting of IP-XACT to integrate IP-blocks into larger systems and then creating 

the metadata package for the entire system.  
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Magillem has IP packaging tool called Magillem IP-XACT Packager [19].  It enables 

user to import existing source files such as VHDL to create an IP-XACT description, 

which can be used to build the IP library. Magillem Platform Assembly is the design and 

integration tool, which uses the IP-blocks created with the packager to create larger 

systems [20].  

 

OpenTLM environment provides tools for the development and verification of 

SystemC/TLM IP models. The OpenTLM IDE integrates an IP-XACT editor which can 

be used to create/edit IP-XACT metadata packages [21]. The tool is open source and 

can be downloaded in the project’s SourceForge page. 

 

There are not many tools for packaging software blocks. Of course the different project 

files of development platforms, which contain the files needed by the project, their 

dependencies and compilation options, could be considered as metadata. This kind of 

metadata is not standardized and the project files are not interoperable between different 

tools and sometimes not even with different versions of the same tool. The closest tool 

neutral standard for software packaging might be the Linux packet management system 

[22] but it is meant for higher level packets used to ease the installation of software for 

personal computers. 
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4 OVERVIEW OF KACTUS2 

Kactus2 is a metadata based design tool for embedded products. It aims to ease the 

reuse of IP-blocks with the help of a graphical user interface. The goal is to provide a 

tool, implementation, and vendor independent method for IP-integration using IP-

XACT-metadata. The presented Kactus2 version is 2.0. Kactus2 can be used for the 

following tasks. 

 

a) Package existing IPs to create “electronic datasheets”. 

b) Manage IP-XACT library by importing libraries from other vendors, checking 

library integrity and exporting IP library. 

c)  Create quick draft blueprints for IP, System-on-Chip, printed circuit board 

(PCB) and product, all stored in IP-XACT format. 

d) Create system designs, used to map SW to HW. 

e) Create SW architecture using higher level communication abstractions. 

f) Configure designs to increase reusability of IPs. 

g) Generate structural top-level VHDL code for HW designs. 

h) Generate code templates, including VHDL entities, ports and C headers, for new 

IPs based on their IP-XACT descriptions. 

i) Generate synthesis and simulation scripts for designs. 

j) Generate combined documentation for whole systems through all hierarchy 

levels of a product. 

 

Figure 4.1 displays a screenshot of Kactus2 user interface with the IP-packaging module 

open. 
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Figure 4.1. Screenshot of Kactus2 with component editor. 

 

On the left side of the screenshot is the library management module, which is presented 

in Chapter 5. The item in the middle is the component editor which is the module used 

to create the IP-XACT packages for components, explained in Chapter 6. These two 

modules are presented in this Thesis in detail but the other parts of the software are 

introduced only briefly. 

 

The component preview is used to display a preview what the currently selected 

component looks like in the integration phase. This helps user to find the correct 

component in the library, because it shows the interfaces of the component visually. The 

message console is used to print notifications and possible errors to user. The help on 

the right is context sensitive and changes when user selects different elements on the 

component editor. Figure 4.2 shows another screenshot of Kactus2 with the design 

editor.  
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Figure 4.2. Screenshot of Kactus2 with HW design editor. 

 

Figure 4.2 displays a design editor in the middle containing three components 

instantiated. The design editor is used in the integration phase of the development to 

instantiate components created with the component editor. The left side of the Figure 

displays a new object dialog where the user can select the type of object to create. On 

the right there are several different context specific editors which are used e.g. to edit 

the details of the component instances. Whenever user selects an item in the design 

editor, an editor for the item is presented. For example, the user has selected a bus 

interface and the details of the interface are shown on the right. 

 

Kactus2 uses different icons to display the object type to the user in the library views, as 

depicted in Figure 4.3. The VLNV identifying the object is seen on the right side of the 

icon. 

 
Figure 4.3. The icons for different object types. 
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4.1 Kactus2 implementation 

Kactus2 was implemented in C++-language using cross-platform Qt application and UI 

framework [23]. The version used in this work is Qt 4.8.3. There were several reasons 

for selecting Qt as the development framework. Kactus2 is an open source project so a 

framework which is released with an open source license was desired. One of the major 

reasons was also the ability for cross-platform development, which enabled the release 

of Kactus2 for several different operating systems such as Linux, Windows and Mac OS 

X in the future.  

 

Python language was also considered when selecting the framework. It has large 

number of GUI frameworks available and some of the features of Kactus2, such as 

XML parsing and VHDL code generation would have been easier to implement using 

Python. However, this would have made the installation package for Kactus2 more 

complex because also installation of Python interpreter would have been needed. Use of 

Python was therefore rejected. Java would have also been an option but the visual 

outlook of Java GUI frameworks, such as Swing, was not satisfactory to the 

development team. The graphical user interface of Kactus2 consists of widgets, which 

display information, interact with the user and act as containers for other widgets [24]. 

 

The used development environment is Microsoft Visual Studio 2008 [25] with Qt’s 

Visual Studio add-in installed, which enables Qt development on Visual Studio. 

Although the development and testing has been mostly done on computers running on 

Windows operating systems, other platforms have been considered and platform-

dependent code has been avoided. Kactus2 has been tested to run on at least Linux’s 

Ubuntu and Debian distributions as well as Windows XP and 7 in both 32 and 64 bit 

versions. 

  

Agile software development methods have been used in the development process. There 

have been several different parties submitting demands for the tools and the demands 

have changed several times during the development. Therefore, the traditional waterfall 

method wouldn’t have suited for this type of development because of the rapid changes 

in system requirements. The Kactus2 development team contained two key coders, 

which performed the unit testing of modules and also part of the system testing. For 

system testing, there has been several parties which have used the tool in both the 

development and the release environment. The extremely agile nature of the 

development has forced re-writing of some of the codes due to major changes in system 

requirements. 

4.1.1 Signals & slots 

The use of signals and slots mechanism of Qt enables the use of very modular code 

[26]. Signals and slots are an alternative for the traditional callback mechanism which is 

commonly used in GUI programming. The use of signals and slots enables the 

communication between two classes which do not know of each other. It is enough that 

some code module makes the connection from the signal to the slot. Figure 4.4 depicts 

the signals and slots communication mechanism. 
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Figure 4.4. The signals and slots communication mechanism. 

 

The implemented modules and the whole Kactus2, use signals and slots to improve the 

modularity of the software. For example, the message console has two slots: one for 

error messages and one for notifications. None of the other modules are aware of the 

message console but when they emit a notification signal, it is forwarded to the message 

console, which then prints the message for user to see. The message console prints 

notification and error signals with different outlook to provide a clear distinction 

between the message types. 
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5 MANAGEMENT OF THE LIBRARY 

The library management module allows user to navigate through the object hierarchy 

and view dependencies between components. The user can search for objects by their 

VLNV identifiers or object attributes, which makes finding the correct object easier. 

The module also checks the validity of the objects and reports if there are objects with 

invalid or missing data. 

 

LibraryHandler is the class which implements the interface for library management 

module of Kactus2 software. It does not only manage the components and their designs 

but also the interface definitions of hardware buses and software objects. Chapter 7 

depicts the implementation of the library management module. The different objects are 

identified by using the previously mentioned VLNV-identifier. By creating naming 

policies for VLNV-fields, it is possible to unify and clarify the library structure, thus 

keeping the IP-blocks easier to manage [8]. Moreover, our extensions (of Chapter 2.3.3) 

also aid in management.  

 

Figure 5.1 shows a screen shot of the two library views of library management module.  
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Figure 5.1. The hierarchical view and the VLNV-tree view. 

 

The hierarchical tree view on the left displays the dependencies between different 

objects. Each component on the tree contains the designs it refers to and the designs 

contain the components instantiated in them. The non-hierarchical flat components, 

such as SRAM_512KB, obviously do not contain any children because they lack the 

design reference. On the view user can see the entire structure of an example product 

samos_2012 which is the topmost object on the tree. The product contains a board level 

component which contains a chip and so on, until the hierarchy reaches the IP-blocks 

written in VHDL-language on the bottom of the hierarchy. 

 

The VLNV tree on the right side is constructed from the VLNVs of the objects. The 

appearance of this view can be greatly influenced by naming policies. The tree is 

constructed by taking one of the VLNV-fields on each level to create a four-level deep 

tree structure. For example the full VLNV of the object on the top of the view is 

TUT:board:altera_de2_board:1.0. 
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Component de2_samos_soc is marked with red on both views. This means that the 

component is not in valid state and contains some errors. The error could be a missing 

file or invalid reference to an object that does not exist in the library. User can explicitly 

ask the library handler to do error checking on the objects of the library and view the 

error reports to fix the objects into valid state. The error reporting is explained in more 

detail on Chapter 5.1.2. 

 

Kactus2 attributes extend the scope of IP-XACT, as depicted in Chapter 2.3.3.2, 

allowing users to document e.g. the structure of the development board to the IP-XACT 

metadata. This way it is possible to control the documentation, source codes and 

configurations of an entire product and get the product data management in a machine 

readable format. When the library contains information on what configurations and 

platforms a product uses, it could be possible for example to build a matching test 

environment automatically [27]. 

 

Figure 5.2 displays the 11 use cases of the library management module which are 

explained in the following Chapters. 

 

 

Figure 5.2. Use cases of library management. 

5.1 Entire library 

Some operations are directed to the entire library instead of single items. For example, 

searching for new items on the hard drive will cause all items to be re-parsed. 
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5.1.1 Search for new items on the disk 

The "Library" section in the ribbon menu on top of Kactus2 contains icon to set the 

directory paths for the libraries. Figure 5.3 shows the icon in the user interface of 

Kactus2. 

 

Figure 5.3. Set library paths for Kactus2. 

 

The user can define library paths that are used as base when starting to search for new 

library items. When Kactus2 is started it takes these paths and starts to search for IP-

XACT objects in those directories and their subdirectories. The found objects are 

displayed to the user in library views described earlier. IP-XACT objects are searched 

by seeking for IP-XACT-related tags in all files with XML suffix. User may start the 

library search at any time when Kactus2 is running. Together with the search, an 

integrity check is done to the library objects to find possible errors in the library. 

Integrity check is explained in more detail in Chapter 5.1.2. The different phases when 

searching for objects on the disk are explained in Chapter 7.5.2. 

5.1.2 Checking library integrity 

Most of the library objects contain references to other objects via VLNV-identifiers. All 

hierarchical components require these references to design and configuration files but 

also non-hierarchical components may contain bus interfaces that refer to a bus 

definition. Components also contain references to files saved on the disk in form of 

relative file paths. Third category is references within a document. For example, bus 

interface groups ports together to form a bus by listing port names that belong to the 

interface.  

 

If any of these refers to an item that does not exist, the object is no longer in valid state 

and it might not work correctly. A source file may be missing or renamed, thus breaking 

the IP-block. On the other hand, a bus interface may refer to a port that does not exist, 

which causes a conflict between metadata and the actual source implementation and will 

result in problems during the integration phase. 

 

Figure 5.1 displays the library views where one object is displayed in red meaning that 

the object is not valid. The objects can be opened to an editor for closer inspection and 

errors can be corrected. During the integrity check the library handler also provides an 

error report, which is printed to the message console in Kactus2 user interface, 

displayed in Figure 4.1. Each erroneous object is listed and beneath it, the errors it 

contains. Finally, a summary of different error types found in the library is printed. 

Figure 5.4 displays an example of an error report and the summary of integrity check. 
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Figure 5.4. The summary of integrity check and an example of an error. 

5.1.3 Parsing item dependencies 

The hierarchical view visualizes both the direct and indirect dependencies of the 

components. The library handler also provides interface for other modules to get a list 

of dependencies of the library object. The handler can tell which other objects a 

component needs, but also which components need the specified object. This way it is 

possible to check the dependencies in both directions of the hierarchy.  

 

This functionality can be used e.g. when opening a component in the component editor. 

If the component is instantiated in one or more designs, the user is informed which 

components are affected. Figure 5.5 shows a dialog where the user is asked if he is sure 

he wants to edit the component, which is a sub-component in a hierarchical component 

named de2_sdram_example. 

 

 

Figure 5.5. A warning informing about the implications of editing the component. 

5.2 Item management 

The following use cases are directed specifically to the selected item. These use cases 

are available through the context menu in the library views. 

5.2.1 Create new item 

Library handler allows a user to create new items to the library through the context 

menus in library views. See Figure 5.6 for an example. 
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Figure 5.6. Adding a new item to the library. 

 

The context menu allows the user to select what type of object is to be created. After 

selecting the correct action, a dialog is opened where the user can input the VLNV for 

the new object. The VLNV of the selected object is automatically set to the dialog as 

default for usability reasons. 

5.2.2 Open item for viewing or editing 

Library handler displays the objects in the library in two different views as explained 

earlier. Both views enable the user to open the object in an editor for more detailed 

viewing. Figure 5.7 displays the context menu used to open the editor.  

 

 

Figure 5.7. Open object for editing. 

 

Different object types have their own editors on Kactus2. Components are edited by the 

component editor, which is explained in this thesis. Other editors are not addressed on 

the thesis but the library handler selects the correct editor automatically based on the 

object type. When opening an object, the library handler reads the XML formatted IP-

XACT file saved on the disk and parses its contents into a data structure. After this, the 

library handler selects the correct editor for the object type and forwards the data 

structure to it.  

 

Figure 5.7 displays two options to open a hierarchical component. The selected option 

on top "Open HW Design" opens the hierarchical view of the component, which 

displays the contents of the design and the components instantiated in the design. The 

operations of opening a hierarchical design are explained in Chapter 7.5.1. The lower 

"Open Component" opens the component editor, which is explained in detail in Chapter 

6. 
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5.2.3 Open the metadata to XML editor 

Sometimes the user may need to open the selected document in an XML editor instead 

of the IP-XACT editors in Kactus2, see Figure 5.8 for example. This option opens the 

file in operating system’s default XML editor. However, usage of Kactus2 editors is 

recommended because they provide support for error checking and help the user when 

creating references between objects. 

 

 

Figure 5.8. Open document in XML editor. 

5.2.4 Save item 

As mentioned before, each object type has its own editor that handles the modification 

of the data structures. However, the library handler takes care of the saving process 

itself. When the user wants to save the modified object, the library handler takes the 

modified data structure and writes it to the disk. If the object is new and is not yet in the 

library, the user is asked to select a path to which the XML file is written into. If the 

object was already in the library, the handler knows the location and overwrites the 

previous file. Because the files are overwritten, it is recommended to use some version 

control system, such as SVN or Git, to help restore previous versions of the objects. 

5.2.5 Export item 

The user may wish to hand over a single IP-block, or part of the library, for a third party 

without disclosing the whole library. To make this easier, the library handler contains an 

export function that can be selected in the context menu, as in Figure 5.9. Kactus2 

prompts the user to select a destination directory to export the selected object to. The 

target may be another directory on the same disk, a directory on network disk, or e.g. a 

USB-memory. After this, the library management module copies the selected object, 

and all its dependencies, to the new location. Both direct dependencies of the object and 

indirect dependencies through other objects are copied to maintain the objects in a valid 

state. This way, all needed IP-XACT objects and files are copied with a single click and 

files are not lost accidentally. 
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Figure 5.9. Export item. 

 

The exporting of files to a new location is only possible when the file references within 

components are made with relative file paths. This is why component editor always 

selects relative paths when adding files to the component metadata. 

5.2.6 Remove item 

The VLNV-tree view allows the user to remove objects from the library. When the 

object is selected to be removed, the handler checks the library if there are other objects 

in the library that are tightly associated with it and should also be removed. This check 

is done to keep the library as clean as possible and to avoid accidentally leaving 

unnecessary objects to the library. Also, when removing a component, its files might 

need to be removed from the disk. 

 

Tightly associated objects are: 

 In case of hardware buses, bus definition and abstraction definition. If the other 

is removed, it is often unnecessary to preserve the other. This is why the tool 

suggests removing both objects. 

 Hierarchical components contain a design configuration and a design. A 

hierarchical component may contain several different configurations and designs 

and when removed also all of these are suggested to be removed.  

 

Before anything is removed, the user is presented a dialog to select which library 

objects and files to remove. After clicking "Ok" these items are removed from the 

library and disk. If the user wants to save some of the items, they can be unchecked in 

the dialog and they will not be removed. Figure 5.10 displays the dialog asking if the 

user is sure he wants to remove a hierarchical component altera_de_II_demo and its 

configuration and design. Also the files contained in the component are listed. 
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Figure 5.10. The confirmation dialog for the user to select, which items to remove. 

5.3 Viewing 

The following use cases affect how the library looks like. They do not change the 

library structure but only the visual outlook of the library views. 

5.3.1 Search for item in the library 

The number of objects in the library may become very large, making it hard to locate a 

specific object in the library. This is why the library handler provides a search-

functionality in the VLNV-fields. Only objects that match search criteria are displayed 

in the library views. Figure 5.11 shows how the search looks like in the  user interface. 

 

 

Figure 5.11.  Only items that match the search criteria are shown in the search results. 
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Only objects that's VLNV-identifiers contain the given keywords are shown. The search 

results contain all object types such as hibi_segment component and hibi_clocks bus 

definition. The user may also use wildcards (?) and (*) to replace characters in search 

terms. 

5.3.2 Filter item types 

In addition to the search functionality, the library handler provides option to filter 

objects based on the object types. This can be used together with the search terms e.g. in 

order to search for “mutable” hardware components containing name "hibi". Filtering 

uses the Kactus2 attributes (Chapter 2.3.3.2) and allows the user to select which 

attribute options are to be shown in the library views. Figure 5.12 displays the menu for 

selecting the filtering conditions. 

 

 
Figure 5.12. Selecting the filtering conditions. 
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6 PACKAGING OF AN IP-BLOCK WITH 

COMPONENT EDITOR 

The component editor module is used to package IP-XACT components. It provides 

help and advice but also reports errors in the metadata to help the packaging process. 

The visual user interface is much more user friendly than the traditional XML editing 

tools. This editor is used in the phase 1 of the Figure on page 7. When the essential 

information of an IP-block is packaged in the component metadata, it is easier to 

manage and reuse the block. Figure 6.1 displays the user interface of the component 

editor.  

 

 

Figure 6.1. The user interface of the component editor. 

 

On the left side of the Figure 6.1 is the navigation tree of the editor, which corresponds 

to the IP-XACT elements in Table 2.1. This tree can be used to browse between 

different elements of the component. When clicking an item in the tree the 

corresponding editor for that element is opened to the editor area in the middle. On the 

right side is the area reserved for element visualizations. Currently, only address spaces 

contain a visualization widget but more will be implemented in future versions of 

Kactus2. When the user adds new elements to the component, e.g. a new file set, they 

are added to the tree. The implementation of the component editor is explained in 

Chapter 8. 

 

The following Chapters will explain the 23 different element-editors and their purposes 

in more detail. Each Chapter contains a screen shot of the editor interface and an 

explanation of the different fields. The editors edit the IP-XACT metadata of their 
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corresponding elements within a component and more detailed description of the 

different fields can be found in the IP-XACT standard [6]. 

 

There are two types of editors. Summaries contain a table displaying the settings of the 

items. Some elements, such as parameters, only contain a summary editor because all 

element fields can be accessed in the table. Some more complicated elements, such as 

files, require several editors to handle different levels of detail. All elements contain a 

name field, used to identify the element, and a textual description explaining the 

purpose of the element in question. The mandatory fields of each editor are marked with 

yellow color. If some information is invalid, such as reference to a missing element, or 

mandatory fields are empty, the element is displayed in red color. 

6.1 General Editor 

General Editor is the first editor shown to the user when he opens the component editor. 

It contains the general information of a component, such as description. Figure 6.2 

shows the user interface of the general editor.  

 

 

Figure 6.2. The user interface of general editor. 

 

VLNV-identifier and the path to the XML file are shown on the top of the editor. These 

fields can’t be modified and if the user wants to change the VLNV then the component 

must be saved as a new component. Kactus2 attributes contain the hierarchy, firmness 

and implementation, of which the implementation can’t be modified (see Chapter 

2.3.3.2).  

 

The component preview box on the bottom displays how the component will look like 

when instantiated in a design. The preview displays the bus interfaces of the component 
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and also the ports that are marked to be seen as ad hoc ports. In this case, there are 5 bus 

interfaces. 

6.2 File set summary 

The files of a component are grouped together by file sets. The grouping can be based 

on e.g. the file types (sources, documentation, simulation, etc.). There are 3 different 

editors for the file packaging: the file set summary, file set specific editor and file 

editor. File set summary is seen in Figure 6.3. 

 

 

Figure 6.3. The user interface of file sets editor. 

 

Group identifiers can be used to describe the function or purpose of the file set with a 

single word. All columns can be modified in the editor to set the general information of 

the different file sets. If a file set is in invalid state then the editor displays the 

associated row in red. 

 

Group identifiers can contain several identifiers and the possible options are not limited. 

However, the editor suggests the following options for the group identifiers: 

a) Diagnostics 

b) Documentation 

c) ProjectFiles 

d) Simulation 

e) SourceFiles 

6.2.1 File set editor 

File set editor sets the details of a single file set and adds and removes files. File sets 

basically group files together so they can be easily referenced by other sections of a 

component. Figure 6.4 displays the user interface of the file set editor. 
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Figure 6.4. The user interface of file set editor. 

 

The file path of each file is the relative path from the component’s XML file. File types 

column displays the file types defined for the file and the description contains the 

textual description of a single file. The file types and description columns are editable 

but the file name and file path are not. The “Add Files” button opens a dialog used to 

select files on the disk to add to the file set. 

 

If a file is in invalid state, e.g. missing a mandatory file type, then the file is displayed in 

red color. The order of files is maintained and can be changed by dragging rows. If the 

compilation order of files is important then the files should be listed in the order needed 

by the compilation. 

 

The default build command applies to all files of the specified type. For example, all 

VHDL files in this file set are compiled with Modelsim’s vcom and the given flags. 

Replacing default flags means that flags defined in higher level will be replaced by the 

flags defined in this file set. For example, the flags may be defined in the views of 

component. If files are not replaced then they are appended to the default flags. Group 

identifiers are used to describe the purpose of the file set and they are same as in 

Chapter 6.2. 

 

Dependent directories can be used to describe a list of paths to directories containing 

files on which the file set depends, such as third party libraries. 
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6.2.1.1 File editor 

File editor sets the details of a single file within a file set. This allows a more detailed 

description of the file and its dependencies. Figure 6.5 displays the user interface of a 

file editor. 

 

 

Figure 6.5. The user interface of file editor. 

 

The top part of the editor contains the same information as the previous editor. 

 

The logical name of a file can be used e.g. to specify a VHDL library for a VHDL-file. 

If the “only used as default”-check box is checked then the logical name can be 

overridden by another process. For example in case of VHDL, the library where 

component is compiled to, could change by changing the compilation flags. 

 

The “is include file” and “contains external declarations” -check boxes can be used to 

specify the file is an include file and that the file contains external declarations and is 

needed by other files in this file set. 

 

The description and the build command can be defined also file-by-file. Replacing the 

default flags means that only these flags are used to build the file. Otherwise the flags 

are appended to the flags received e.g. from the file set. The target name specifies a path 

to the file that is derived from this file when the build process is run. It is not needed 

with VHDL but is useful e.g. with C++. 
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6.3 Model parameters editor 

Model parameters editor is used to add, remove and modify the model parameters of a 

component. Model parameters are often used in HDL languages to pass information to 

the model to configure it, e.g. generics in VHDL. Figure 6.6 displays the user interface 

of a model parameters editor. 

 

 
Figure 6.6. The user interface of model parameters editor. 

 

Each model parameter has a name and a type, which is language specific. The usage 

type can be either typed or nontyped. Typed parameters appear in object-oriented 

languages, e.g. in C++. Non-typed parameters are found in all languages, e.g. in VHDL 

all types are non-typed. Value contains the default value of the model parameter if it 

isn’t assigned in the design upon instantiation. 

6.4 Parameters editor 

Parameters editor is used to add, remove and modify parameters of a component. Figure 

6.7 shows the user interface of the parameters editor. Some sub-elements within the 

component also contain parameters but the scope of parameters is always restricted to 

the containing element, e.g. parameters of a view can only be used within that view. 

Component’s parameters have the scope of the entire component. Value contains the 

default value of the parameter. 

 

Figure 6.7. The user interface of parameters editor. 

6.5 Memory map summary 

Memory map summary is used to add and remove memory maps. Memory map 

specifies the addressable area seen through a slave bus interface, e.g. the registers that 

other components can access (status, control). Figure 6.8 displays the user interface of 

the memory maps editor.  
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Figure 6.8. The user interface of memory maps editor. 

 

The address unit bits-column is used to define the number of data bits each address 

increment of the memory map contains. The default setting for a memory map is byte 

addressable (8 bits). 

6.5.1 Memory map editor 

Memory map editor is used to set the details of a single memory map by defining 

address blocks. The memory maps use 4 editors, each of them extending to different 

level of detail. Address blocks may either define registers or a contiguous block of 

memory but not both at the same time. Figure 6.9 depicts the different levels of memory 

map. 

 

Figure 6.9. The hierarchy of memory map. 

 

Figure 6.10 displays the user interface of the memory map editor. 

 

 

Figure 6.10. The user interface of memory map editor. 
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Usage specifies the type of the address block. The possible values are: 

a) Memory specifies the entire address block as memory. 

b) Register specifies the entire block to contain registers and nothing else. 

c) Reserved specifies the entire block as reserved for unknown usage. 

The only type that may contain registers is the usage type of register. 

  

Base address specifies the starting address for the address block. It is expressed in 

addressing units from the containing memory map. Range of the address block is also 

expressed in addressing units and specifies how many units the block contains. Width is 

the bit width of a row in the address block. 

 

The access column is used to specify the accessibility of the block. The possible values 

are: 

a) Read-write 

b) Read-only 

c) Write-only 

d) Read-writeOnce 

e) writeOnce 

 

Value true in volatile column indicates that the stored value may change without 

assigning a write operation. For example, a register may change its value in case of an 

interrupt. 

6.5.1.1 Address block editor 

This editor is used to define registers to the address block. Each row in the editor 

specifies a single register, Figure 6.11 

 

 
Figure 6.11. The user interface of address block editor. 

 

Each register has a name and a textual description. Offset specifies the location of the 

register from the start of the containing address block expressed as the number of 

addressing units. Size defines the number of bits the register contains. Dimension 

assigns an unbounded dimension to the register. Volatile indicates if the register value 

may change without a write operation to it, e.g. by an interrupt event. Access specifies 

the accessibility of the register, the possible values are listed in the Chapter 6.5.1. 

 

The user can set the value that register gets on reset. Reset mask defines the bits of the 

register that have a known reset value. Bit value of 1 means that the corresponding bit 

has a known reset value. 0 means that the value is unknown, e.g. the 20 top-most bits of 

STATUS are set. 
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6.5.1.2 Register editor 

Register sets the details of a single register by assigning bit fields to it. A bit field may 

contain just one bit, the whole register or something in between. Figure 6.12 displays 

the user interface of the register editor. 

 

 

Figure 6.12. The user interface of the register editor. 

 

Offset describes the starting bit of the field within the containing register. Width 

specifies how many bits are included in the field. Volatile indicates that there is no 

guarantee what a read operation will return because the register may change its value 

without write operations e.g. as a result of an interrupt. Access column specifies the 

accessibility of the field, the possible values are listed in Chapter 6.5.1. 

  

The modified write value describes how the data in the field is manipulated on a write 

operation. For example, bits can be set, cleared, toggled or the value written is stored to 

the field as such. 

 

Read action specifies the action that happens after a read operation, the possible values 

are: 

a) Empty setting indicates that field is not modified after a read operation. 

b) Clear indicates that all bits in the field are cleared after a read operation. 

c) Set indicates that all bits in the field are set after a read operation. 

d) Modify indicates that the bits in the field are modified in some way after a read 

operation. 

 

Testable specifies if the field is testable by an automated register test. Test constraint 

specifies the constraints for the automated tests for the field, the possible values are: 

a) UnConstrained indicates that there are no constraints for the written or read 

data. This is the default setting. 

b) Restore indicates that the field’s value must be restored to its original value 

before accessing another register. 

c) WriteAsRead indicates that the data written to a field must be same that was 

read previously from the field. 

d) ReadOnly indicates that the field can only be read. 

  



40 

6.5.1.3 Field editor 

The field editor sets the details of a register field. For example, it defines enumerated 

values as the legal bit patterns. Figure 6.13 shows an example. 

 

 
Figure 6.13. The user interface of field editor. 

 

The table defines the bit patterns, which can be identified by a name. This can be used 

to define the legal bit patterns for a field or to define some default settings to help 

configuration. 

 

The write value constraints define the legal values the user may write to a field. The 

options are: 

a) No constraints indicating that there are no constraints for values to be written. 

b) Write as read indicating that only legal values to be written are the same that 

were previously read from the field. 

c) Use enumerated values indicating that the defined enumerated values are the 

only legal values that can be written. 

d) Set minimum and maximum limits indicating that the user may set the 

minimum and maximum limits for the values written to the field. 
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6.6 Address space summary 

Address space summary is used to add and remove address spaces. The summary 

enables the user to set the general information of an address space, see Figure 6.14 for 

the user interface. 

 

 

Figure 6.14. The user interface of address spaces editor. 

Addressable unit size specifies the number of bits each address increment contains. The 

default is 8, which means byte addressable. Width means the width of a row in the 

address space in bits. The range of an address space is expressed as addressable units, 

e.g. in this case the address space is 2G * 8b = 2GB. 

6.6.1 Address space editor 

Address space editor is used to set the details of a single address space. Address space 

defines a logical address space used by a CPU. Figure 6.15 shows the user interface of 

the address space editor. 

 

 
Figure 6.15. The user interface of address space editor. The example shows a 2GB 

address space, which is divided into 3 segments. 



42 

 

On the left side are the editor fields that can be used to set the details of an address 

space. The right side has a visualization displaying the address space in its current state. 

The general group contains the same settings that can be set through the address spaces 

summary, presented in Chapter 6.6.  

 

Each address space can be divided into segments. The user can specify the starting 

offset for the segment and define how many addressable units the segment has (range). 

The visualization on the right side reacts on the changes in both the general settings and 

segment changes to display how the segments are situated in the address space. The 

width of the address space sets the maximum transfer length of a single transaction. 

 

Address space can have parameters. They are set similarly as in Chapter 6.4 but their 

scope is limited to the containing address space. 

6.7 View summary 

View summary, Figure 6.16, is used to add and remove views. The views are used to 

provide different configurations of the component. For example, the component may 

contain one view for simulation and one for synthesis purposes. 

 

 
Figure 6.16. The user interface of views editor. 

 

The view type is not editable and is used to inform the user if the view is hierarchical or 

not. A hierarchical view contains a reference to a design or configuration which 

instantiates sub-components. A non-hierarchical view references the file sets within the 

containing component. Views that are currently in an invalid state will be displayed in 

red. 

6.7.1 View editor 

View editor sets the details of a single view. There are 2 types of views: hierarchical 

and non-hierarchical, as depicted in Chapter 2.3.2. Some elements are common for both 

view types, Figure 6.17, but some change according to the type, Figure 6.18. The view 

type can be changed, thus changing the outlook of the editor. 

 



43 

 

Figure 6.17. The common elements of the view editor. 

 

The name and description are common for all views as well as the environment 

identifiers specifying information about the tool environment of the view. 

 

 
Figure 6.18. The view type specific elements. 

 

The view type is used to select between non-hierarchical and hierarchical views. The 

left side of the Figure 6.18 displays the elements for non-hierarchical, and the right side 

for hierarchical views. 

  

Language specifies the HDL for the view, e.g. this may be VHDL or verilog. Model 

name is language-specific and therefore depends on the implementation language of the 

view. For VHDL, this may be a configuration name or the entity(architecture) name. 

File set references contain a list of file set names within the component, used by this 

view. Default file build commands contain a list of build commands and flags for the 

files contained in the file sets. 

 



44 

The hierarchy reference contains a VLNV-reference to a design configuration or design 

document. These documents list the sub-components instantiated in the hierarchical 

design and their configurations. The design objects can be edited by a design editor, 

omitted from this Thesis. 

 

The reference to a top-level implementation view is a Kactus2 specific extension used 

to refer to a non-hierarchical view containing the rtl-implementation of the component. 

Usually a component contains a non-hierarchical view which contains the top-level 

structural VHDL. This extension refers to the view to include the source codes, e.g. 

when generating a compilation script for simulation or synthesis. Figure 6.19 depicts the 

reference to other views. 

 

 

Figure 6.19. The references between views and other objects. 

6.8 Ports editor 

Ports editor provides a table containing all the ports of a component. This editor is used 

to add, remove and edit the ports. Figure 6.20 shows the user interface and an example 

of the matching VHDL code. 
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Figure 6.20. The user interface of ports editor and an example of VHDL code declaring 

the ports. 

 

Port name identifies each port and must match the name of the port in the 

implementation language. For example, in case of VHDL the ports listed in the entity 

declaration are to be listed here.  

 

The direction column specifies the direction of the port and has 4 options: 

a) In for input ports. 

b) Out for output ports. 

c) Inout for bidirectional and tri-state ports. 

d) Phantom for ports that exist on the IP-XACT component but not on the 

implementation. 

 

The left and right bound define the width of the port in case of vectored ports. The 

width of the port is left bound – right bound + 1. In case of scalar ports left bound = 

right bound. 

 

The port type specifies the type of the port in the implementation language. In case of 

VHDL, the typical values for scalar and vectored ports are std_logic and 

std_logic_vector. The type definition is a language specific reference to where the type 

is defined. For the previous example the type definition is IEEE.std_logic_1164.all. In 

case of SystemC the type definition is the include file name, e.g. systemc.h.  

 

The default value is used to assign a value for an unconnected port. This is used, for 

example, when generating a structural VHDL for the top-level hierarchical component 

to assign values to input ports that are not connected to any other port within the design. 

 

The ad hoc column is a Kactus2 specific extension which is used in the graphical user 

interface of a hierarchical design. Figure 6.21 displays an example of a component 

instance that has ports set as ad hoc ports. 
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Figure 6.21. The ad hoc ports on a component instance. 

 

In this case the instance has 5 bus interfaces: clk, led, rst_n, from_hibi and pkt_codec. 

Normally, this is all that the user sees of the interfaces of a component, but if the user 

selects ports to be ad hoc then they are also shown. Figure 6.21 displays two ad hoc 

ports: rx_av_in and led_out, the directions of the ports can also be seen by the port icon. 

6.9 Bus interface summary 

The bus interface summary, Figure 6.22, is used to add and remove bus interfaces. Bus 

interface groups ports together to form interfaces that e.g. fulfill requirements of a bus 

protocol.  

 

Figure 6.22. The user interface of bus interfaces editor. 

 

The bus and abstraction definition columns are not editable and they display the VLNV-

identifiers of the IP-XACT documents defining qualities of the hardware bus that the 

interface fulfills. The next two subsections explain how they are edited.  

 

The interface column is used to select the interface mode of a bus interface. There are 7 

different interface modes: 

a) Master indicates that this interface initiates transactions. 

b) Slave responds to transactions. 

c) System is something that does not fit into the master or slave category. 

d) Mirrored slave is the mirrored version of slave interface and may provide 

address offsets to the connected slave interfaces. 

e) Mirrored master is the mirrored version of master interface. 

f) Mirrored system is the mirrored version of system interface. 

g) Monitor is an interface that can be used for verification process. This interface 

type gathers data from other interfaces. 

The mirrored interfaces have the same ports as the normal interfaces but the directions 

of the ports are inverted. Table 6.1 depicts the connectivity of different interface modes.  
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Table 6.1. The connectivity of interface modes. 

Interface 

mode 

Master Slave System Mirrored 

Slave 

Mirrored 

master 

Mirrored 

system 

Monitor 

Master No       

Slave Yes* No      

System No No Yes     

Mirrored 

slave 

No Yes No No    

Mirrored 

master 

Yes No No No No   

Mirrored 

system 

No No Yes No No No  

Monitor Yes** Yes** Yes** Yes** Yes** Yes** No 

* The direct master-slave connection can be enabled or disabled in the interface’s bus 

definition 

** Each monitor interface defines itself what interface modes it can be connected to. 
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6.9.1 Bus interface editor 

The bus interface editor, Figure 6.23, contains two tabs: the general tab to set the 

general settings of the interface and the port maps tab which groups ports to the 

interface. 

 

 

Figure 6.23. The user interface of bus interface editor. 

 

Bus definition and abstraction definition contain VLNV-references to the IP-XACT 

documents associated with this interface. Those documents define the qualities this 

interface must meet, e.g. the abstraction definition defines the logical signals that 

belong to the bus. These logical signals are used to define how the physical ports of the 

component are connected in the bus. This is explained in Chapter 6.9.1.1. 
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Interface mode selects the interface mode of the bus interface, e.g. slave. Below the 

combo box are the interface mode specific fields used to edit options of the currently 

selected interface mode. With slave, these include memory map and bridge info. 

 

In the general group the addressable unit size defines how many bits are included in the 

least addressable unit of the bus. The default setting is byte addressable (8 bits). The 

endianness indicates whether the interface is big-endian or little-endian. The bit steering 

can be set to on or off. The bit steering on implies that the interface is able to align data 

on different byte channels in case of addressable interfaces. The default setting when the 

bit steering is not set is off. When checked, the connection required indicates that when 

instantiated in a design, this interface must be connected to some other interface. 

6.9.1.1 Port maps 

The port maps tab, Figure 6.24, of a bus interface editor groups the physical ports of the 

containing component to the logical signals listed in the associated abstraction 

definition. 

 

Figure 6.24. The user interface of port maps editor. 

 

The top-left corner contains a list of the logical signals that were defined in the 

abstraction definition assigned in the general tab. The top-right corner contains a list of 

the physical ports of the component. The bottom table displays the mappings between 

logical signals and physical ports. A mapping can be created by dragging an item from 

one of the top lists to the another or by selecting an item in the both lists and pressing 

enter or clicking the connect button. After this, the selected items disappear from the top 

lists and appear as mapped on the port map table.  

 

If the user selects several items on both lists and connects them, then mappings between 

the ports are made in the order which the items were listed. If a mapping from one port 

to many is desired, then the user may toggle the “1 to many” button and select a single 

item on either list and connect it to all selected ports on the other list. The user can 

remove the mappings from the bottom table by selecting the row and pressing delete or 

selecting “Remove mapping” from the context menu. When a mapping is removed, the 
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associated ports return to the top lists. Pressing the clean up-button will remove any 

duplicate ports from the lists. Figure 6.25 depicts how the physical ports between two 

component instances are connected through their bus interfaces. 

 

Figure 6.25. The association between physical ports and logical signals. 

 

On the left side is a list of physical ports found on the component A. The right side lists 

the physical ports found on a component B. The lines between the physical ports and the 

logical signals represent the created port mappings in the bus interfaces. For example, 

component A has mapped its port comm_out to the logical signal COMM. Because the 

component B has mapped its port comm_in to the same logical signal this means that 

the ports are connected together if the user connects these interfaces together in a 

design.  

 

Of course, if no connection is made between the component instances in the design then 

no ports are connected. All ports of the component do not need to be mapped in the 

interface nor do all the logical signals of the abstraction definition need to be associated 

with a physical port. Abstraction definition defines the directions of the signals in 

different interface modes, thus making it possible to validate connections so that two 

output ports are not accidentally connected to each other. In the Figure 6.25 the 

abstraction definition could have defined the DATA signal to have direction out in 

master interfaces and in at slave interfaces. 

 

A vectored physical port can be sliced to connect only part of it by assigning left and 

right bounds in the mapping table. Figure 6.26 depicts how a part of the physical port 

can be connected. 
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Figure 6.26. Connecting only a part of a vectored port in port map. 

6.10 Channels editor 

Channels editor provides a summary of the channels in the component. A Channel is 

used within a bus component to describe which bus interfaces are connected via bus. 

Only mirrored interfaces can be connected via channel. Figure 6.27 shows the user 

interface of the channels editor. 

 

Figure 6.27. The user interface of channels editor. 

 

Interface references contain the names of the mirrored bus interfaces that are grouped to 

a same channel. Figure 6.28 illustrates the connections between mirrored bus interfaces. 

 

 
Figure 6.28. A channel connecting bus interfaces within a component. 
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6.11 Cpus editor 

The cpus editor, Figure 6.29, displays the programmable cores the component contains. 

 

 
Figure 6.29. The user interface of cpus editor. 

 

Address space references contain the address spaces specifying the logical address 

space of the CPU. The master interfaces of a component may refer to the same address 

spaces to create a link between programmable core and interface. 

6.12 Other clock drivers editor 

Other clock drivers-editor, Figure 6.30, shows the clocks within the component, which 

are not directly associated with a top-level port. These kinds of clocks could be e.g. 

virtual clocks or generated clocks. 

 

Figure 6.30. The user interface of other clock drivers editor. 

 

The clock source specifies the physical path and name of the clock generation cell. The 

rest of the columns are used to describe the waveform of the clock signal. The time 

units are either ps (picoseconds) or ns (nanoseconds). Figure 6.31 depicts the 

association of the different columns to the waveform of a clock pulse. 

 

 
Figure 6.31. The waveform of a clock pulse. 

 

The clock period defines the length of one cycle of clock pulse. Pulse offset describes 

the time delay from start of the pulse to the first transition. Pulse value defines the logic 

value which the transition is made to. Pulse duration specifies how long the value 

defined in pulse value is held. 
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7 LIBRARY MANAGEMENT MODULE 

LibraryHandler implements the interface for library management module providing 

services for other modules in Kactus2. It contains both a graphical user interface for the 

user to interact with library objects and also a programmatic interface for other program 

modules. Figure 7.1 shows the class structure of the library management module. 

 

 

Figure 7.1. The structure of library management module. 

 

The graphical user interface of the library management is explained in Chapter 5. The 

main class is LibraryHandler, on the bottom of the Figure. It consists of 3 data classes: 

LibraryData, HierarchyModel, and LibraryTreeModel, which contain the data 
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structures. It also contains two widgets: HierarchyWidget and LibraryTreeWidget, 

which contain the library views shown to user. The two library views, presented in 

Chapter 5, are implemented by HierarchyView and LibraryTreeView, which are 

connected to corresponding filter classes to enable the use of the search and filtering 

options. The library views follow the model/view architecture depicted in Chapter 8.1.2 

and the model classes for the views and filters are HierarchyModel and 

LibraryTreeModel. Figure 7.2 shows which classes are visible in the graphical user 

interface of library management module. 

 

 

Figure 7.2. The GUI classes of library management module. The hierarchical view is on 

the left and VLNV tree on the right. 

 

VLNVDialer is the container class for the search and filtering options in the GUI. 

FilterWidget implements the filtering options for different groups of attributes. 

DialerWidget implements the search widget, enabling searching for text in different 

VLNV-fields. VLNVDialer is connected to both filter classes to update changes in 

search conditions. 

 

One of the most important services in the programmatic interface of library handler is 

the parsing of IP-XACT XML files into data structures. LibraryComponent is the base 

class for all IP-XACT data structures, such as components and designs, and 

libraryHandler keeps a cache of these classes to provide faster parsing of library items. 
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7.1 Data structures 

Library management module contains several different data structures to enable 

different views to the library and to allow navigating the library structure and 

dependencies. LibraryInterface is the interface class which all other modules use to 

access the library management services. It is an abstract class and doesn’t contain any 

implementation code, which makes it easy to change the implementation of the library 

services if necessary, e.g. changing the library management to use data bases. The 

interface contains 17 functions to retrieve data or information from the library, 11 slots 

to perform actions to the library and 12 signals to pass information from the library to 

other modules. 

 

LibraryHandler is the class that implements the functions declared in LibraryInterface. 

Some of the services it provides itself and some it forwards to one of its member 

classes. LibraryData is the main data class for the library management module. It does 

the parsing and searching of IP-XACT files on the disk as well as checks the library 

integrity. Figure 7.3 displays the class diagram of the data classes within library 

management, the connections with the GUI classes are omitted from this Figure. 
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Figure 7.3. The data classes used in library management module. 

 

As mentioned before, LibraryData searches for IP-XACT files on the disk and saves the 

VLNV-identifiers and file paths of the found objects to its libraryitems_ -map structure. 

After the files are searched, the found VLNVs are forwarded to LibraryTreeModel and 

HierarchyModel. These classes use the VLNV-identifiers to build their own data 

structures to provide the library views seen in the GUI of library management module, 

(see Figure 7.2). When LibraryHandler needs an object to be parsed from a file, it calls 
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for LibraryData which has the file path in its map structure and reads the file. Figure 7.4 

displays the class diagram for the HierarchyModel and HierarchyItem. 

  

 

Figure 7.4. The class diagram of hierarchy tree model. 

 

HierarchyModel provides the hierarchical data structure which can be seen in the library 

management user interface. It constructs a tree structure, which represents the object 

dependencies in the library. For example, a hierarchical component contains its design 

objects under it in the tree, such as hibi_segment in Figure 7.2. HierarchyItem 

represents one item in the tree. All instances of HierarchyItem identify a single object in 

the library. HierarchyModel owns only one instance of HierarchyItem which is the tree 

root not shown to the user. The root item then owns the other items which are visible. 

HierarchyItem provides several functions to manipulate the tree e.g. in case of delete 

operation.  

 

Figure 7.5 displays the class diagram of the VLNV tree model, which is the other 

library view in the GUI. 
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Figure 7.5. The class diagram of vlnv tree model. 
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LibraryTreeModel provides the VLNV tree structure, seen in the user interface of 

library management module. It uses the VLNV-identifiers of the library objects to 

construct a tree, which holds 4 levels: one for each VLNV-field. LibraryItem is the class 

to represent one item in the tree. LibraryTreeModel owns one instance of LibraryItem, 

which is the tree root. The root item owns the items in vendor level and so on. Only the 

leaf-items which display the version-fields can identify a single object in the library. All 

other higher level items represent a group of objects. Figure 7.6 depicts how the items 

form the VLNV tree. 

 

Figure 7.6. Items in the VLNV tree.  

7.2 Hierarchy view 

Hierarchy view displays the library hierarchy in a tree structure. Hierarchy view follows 

the model/view architecture, see Chapter 8.1.2 for details. HierarchyWidget is the 

container class, which owns the view and filter classes and sets the layout for the 

hierarchy view. Figure 7.7 displays the class diagram containing the 3 classes related to 

hierarchy view. 



60 

 

Figure 7.7. The hierarchy view classes. 

 

HierarchyModel contains the actual tree data structure displayed to the user, explained 

in Chapter 7.1. HierarchyFilter acts as an intermediate class between the model and 

view and filters the items to display based on settings received from VLNVDialer. 

HierarchyView is the tree view class which is shown in the GUI. 
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7.3 VLNV tree view 

VLNV tree view displays the library objects based on their VLNV-identifiers. It follows 

the model/view architecture depicted in Chapter 8.1.2. LibraryTreeWidget is the 

container class, which owns the view and filter classes and sets the layout for the VLNV 

tree view. Figure 7.8 displays the class diagram containing the classes related to the 

VLNV tree view. 

 

 

Figure 7.8. The VLNV tree view classes. 

 

The tree structure shown to the user is contained in the LibraryTreeModel which is the 

model class, explained in Chapter 7.1. LibraryTreeFilter is connected to VLNVDialer to 

receive the filtering settings used to select which objects are shown in the view. 

LibraryTreeView is the view class which is visible to the user. 
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7.4 VLNV dialer 

VLNV dialer, Figure 7.9, contains the implementations to set filtering and search 

options, which specify the objects to show in the library views.  

 

 
Figure 7.9. The class diagram of VLNV dialer. 

 

VLNVDialer is a container which sets the layout for two classes. FilterWidget contains 

the check boxes to select which object types, hierarchy levels, etc. to show in the views. 

 

DialerWidget contains the implementation for the text search within VLNV-identifiers, 

see Chapter 5.3.1. It contains four combo boxes, each matching one of the fields in the 

VLNV-identifier. It is connected to the root item of the VLNV tree view to allow 

navigation through the VLNV data structure. 
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7.4.1 Filter widget 

Filter widget, Figure 7.10, provides functionality to select different filtering options to 

hide/show certain types of library objects from the user.  

 

 

Figure 7.10. The class diagram of filter widget. 

 

FilterWidget, see Chapter 5.3.2, contains four different group boxes with each of them 

handling the options for corresponding type. TypeGroup’s settings are based on the IP-

XACT object types. ImplementationGroup, FirmnessGroup and HierarchyGroup base 

their filtering settings to the Kactus2 attributes depicted in Chapter 2.3.3.2. 
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7.5 Use cases as sequence diagrams 

This Section contains 4 sequence diagrams to demonstrate the communication between 

classes in some of the use cases presented earlier in Chapter 5. 

7.5.1 Open hierarchical component in an editor 

Figure 7.11 depicts the different phases when the user selects a hierarchical component 

in the hierarchical library view to be opened in the design editor. 

 

 

Figure 7.11. Open hierarchical component to an editor. 

 

1. The user selects the desired component through the hierarchical library view. 

2. The view forwards the request to the model class HierarchyModel 

3. HierarchyModel identifies the selected component based on the model index and 

forwards the VLNV-identifier to LibraryHandler. 

4. LibraryHandler calls LibraryData to parse the component XML file on the disk 

to Component data structure. 

5. LibraryData reads the data on the disk and parses the XML into data structure. 

6. LibraryData returns pointer to the parsed data to LibraryHandler which takes 

ownership of the class. 

7. Component is asked for a list of its hierarchical views. 

8. A list of strings is returned which contains the hierarchical view names.  

9. LibraryHandler forwards the VLNV-identifier of the component and the 

hierarchical view name to MainWindow, which manages the editors. 
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7.5.2 Search for objects on the disk 

Figure 7.12 depicts the different phases when the user wants to search the disk for new 

IP-XACT objects. 

 

 

Figure 7.12. Searching for IP-XACT objects on the disk. 

 

1. The user clicks to search for new objects in the MainWindow user interface. 

2. MainWindow forwards the request to LibraryHandler 

3. LibraryHandler forwards the request to LibraryData which manages the library 

paths. 

4. LibraryData uses QSettings to read the saved library paths from a settings file. 

5. QSettings returns the library paths in a string list. 

6. LibraryData calls for its own parseDirectory() function to parse the directory 

structure recursively. Phases 6-10 are repeated for each library path and their 

subdirectories. 

7. The files in the directory are checked to see if they are XML files. 

8. Each XML file is parsed to check if it is an IP-XACT object. 
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9. When an IP-XACT object is found, its VLNV searched. 

10. The VLNV of the object is saved along with the file path to the object. 

11. When all files and folders have been scanned, the integrity of the found IP-

XACT objects is checked. 

12. The objects are parsed into data structures which contain the information of the 

XML files. 

13. First the internal integrity of the object is checked. 

14. The information on the integrity is returned along with the possible error reports. 

15. The object dependencies are requested. 

16. A list of VLNV-identifiers is returned which contains the dependencies of the 

object. If one of these refers to an object not found in the library, the object is 

not valid. 

17. The file references are requested from the object. 

18. A list of relative file paths is returned. If one of these files is not found in the 

disk then the object is not valid. 

19. The possible error reports of the object are printed to the message console for the 

user to read. 
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7.5.3 Exporting a component 

Figure 7.13 displays a sequence diagram showing the different phases when selecting a 

component to be exported to a new location on the disk. 

 

 

Figure 7.13. Exporting a component to a new location. 

 

1. The user selects a component to be exported to a new location. 

2. HierarchyView forwards the request to the model class. 

3. HierarchyModel identifies the object and forwards its VLNV-identifier to 

LibraryHandler. 

4. LibraryHandler asks the user to input a target directory to export the object to. 

5. The user selects the target directory. 

6. LibraryHandler calls for its own copyFiles() function to copy all dependencies 

of an object to a new location. 

7. LibraryHandler asks LibraryData to parse the object from the disk. Note: if the 

object is already parsed in the memory then parsing is not necessary. 

8. LibraryData parses the object to a data structure. 

9. Pointer to the parsed data structure is returned to LibraryHandler. 

10. LibraryHandler asks the object for its file dependencies. 

11. The object returns the file paths in a list. 

12. LibraryHandler asks the object for dependencies to other IP-XACT objects. 

13. The VLNV-identifiers of the references are returned in a list. 

14. All files are copied to a new location. 
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7.5.4 Deleting a component 

Figure 7.14 depicts the different phases of selecting a component to be removed from 

the library and the disk. 

 

 

Figure 7.14. Deleting a component from the library. 

 

1. The user selects the component to be removed in the VLNV-tree view. 

2. LibraryTreeView forwards the request to the model class. 

3. LibraryTreeModel identifies the tree item and requests the VLNV-identifiers of 

the objects the item represents in the tree. 

4. The VLNV-identifiers are returned in a list. 

5. LibraryTreeModel forwards the VLNV-identifiers to LibraryHandler. 

6. LibraryHandler constructs an instance of ObjectRemoveDialog, which 

implements the dialog to select which objects and files are to be removed. 

7. LibraryHandler adds the VLNV of the selected object to the dialog. 

8. Now the dialog contains the VLNV of the selected object. 
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9. LibraryHandler requests LibraryData to parse the selected object. Note: If the 

object is already parsed in the memory then parsing is not necessary. 

10. LibraryData parses the object to a data structure. 

11. A pointer to the parsed data structure is returned. 

12. LibraryHandler requests the object for its file references. 

13. The file paths are returned in a list. 

14. LibraryHandler adds the file paths to the dialog. 

15. The dialog now contains both the VLNV-identifiers and the file references. 

16. Dialog is executed and the user is prompted to confirm the objects to remove. 

17. LibraryHandler checks if the user accepted the dialog. 

18. LibraryHandler requests the objects that the user selected to be removed. 

19. The list of objects is returned to LibraryHandler. The list is processed. In case of 

file paths the file is removed from the disk and in case of VLNV reference the 

XML file of the identified object is removed. 

20. Finally the directories, which were left empty after the delete operations, are 

removed from the disk. If some directories still contain other files, they are left 

intact. 
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8 COMPONENT EDITOR MODULE 

Component editor module is used to create the IP-XACT metadata package for an IP-

block. It operates on a data structure which is parsed from component IP-XACT-

document type. The different elements of component are explained briefly in Chapter 

2.3.2. Each element has its own sub-editor class and some elements are even divided 

into several editors due to their complicated structure. Figure 8.1 displays the class 

diagram that contains the basic structure of component editor module and the relations 

between navigation tree and 21 sub-editors. 
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Figure 8.1. The class diagram of component editor and its navigation tree. 

 

The top part of the Figure shows classes that form the basic structure of the editor. 

TabDocument is the base class for all editors of Kactus2 and defines the interface to be 

implemented in its sub-classes. Figure 8.2 displays the basic structure in more detail. 

 

The bottom part of the Figure 8.1, shows the items that form the navigation tree in the 

component editor. On the left are the tree items which match the different IP-XACT 

elements in the standard. Each item is a sub-class of ComponentEditorItem, which 
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contains the basic functionality for a tree item. On the right side are the different editors 

for each tree item. When a tree item is clicked in the navigation tree the matching editor 

is displayed to the user. All editors are sub-classes of ItemEditor which defines the 

interface for all sub-editors. ComponentEditorRootItem is the root of the navigation tree 

and it is not displayed to the user. Therefore it doesn't have an editor assigned for it. 
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Figure 8.2. The structure of the component editor. 
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The graphical user interface of ComponentEditor can be divided into three parts: 

navigation tree, editor area and visualization area. On the left side of the GUI is the 

navigation tree which is implemented by ComponentTreeView acting as the view class 

and ComponentEditorTreeModel acting as the model class. This follows the model/view 

architecture explained in Chapter 8.1.2. The tree model contains only one instance of 

ComponentEditorRootItem which is the tree root. All other tree items are located either 

directly or indirectly under the root item. ComponentEditorItem is the base class for all 

tree items and contains all functionality for managing the tree structure. The defined 

abstract functions that must be implemented in sub-classes contain element and editor 

specific functionality, such as checking the validity of the item. 

 

ComponentEditorGroupSlot is a placeholder for widgets in the component editor's 

layout. When the user selects a tree item, ComponentEditor asks it for the matching 

editor and places the editor inside editorSlot_ instance of the group slot. The 

visualizerSlot_ within ComponentEditor is reserved for items that have a visualization 

widget to help the user to see the effects of editing the element. On the current version 

of Kactus2, the visualization is used only on address spaces but this functionality will be 

extended to other elements in future versions. If the selected tree item does not contain a 

visualizer-widget, then the slot is hidden and will not take up space on user's screen. 

Figure 8.3 depicts the different classes in the user interface of component editor. 

 

 

Figure 8.3. The GUI classes of component editor module. 
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8.1 Common editors and classes 

Component editor uses some common classes within several editors whenever possible 

to make the code easier to maintain. For example, name and description are fields 

contained in several different elements making it logical to use the same generic editor 

for them. Also, some classes can be used as base classes, and only the editor specific 

functionality is implemented in sub-classes. Below is listed the common classes so their 

detailed descriptions can be omitted from editor specific chapters. 

8.1.1 Item editor interface class 

Item editor, Figure 8.4, is the base class for all editors used in the component editor. It 

declares the interface, which is used to connect the different editors to the component 

editor’s skeleton. 

 

Figure 8.4. The ItemEditor base class. 

 

The pure virtual functions isValid() and refresh() must be implemented in base classes 

to perform the editor specific validation and refreshing of the editor’s elements. The 

contentChanged() signal is used to inform that the user has edited the component’s data 

structure somehow and the component must be saved in order for the changes to take 

effect. Signals errorMessage() and noticeMessage() can be used to print notifications to 

the user in the message console of Kactus2. Signal helpUrlRequested() is associated 

with the context sensitive help system to open a correct help page for the editor when it 

is shown to the user. The childAdded(), -Removed() and -Moved() signals are used to 

inform the navigation tree that it should add, remove or relocate its children under the 

selected branch. 

8.1.2 Model/view architecture in Kactus2 

The model-view-controller design pattern is commonly used to separate the user 

interface from the actual data being presented. This allows showing the same data in 

multiple ways, e.g. with a table or a bar chart. In Qt, the view and controller objects are 

combined into same class to simplify the framework [28]. This model/view architecture 

is used in Kactus2 to display and edit lists, tables and tree structures. Especially the 

summary tables in component editor module use this architecture to display lists of 

objects and their attributes. Also, the library management module uses model/view 
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architecture to display the library items to the user. Figure 8.5 depicts the model/view 

architecture used in Qt. 

 

 

Figure 8.5. The Qt model/view architecture. 

 

In case of component editor the source of data is the underlying IP-XACT model parsed 

from the XML file. The model class accesses the data to read information and write the 

changes made by the user. Views retrieve data from the model class and show it to the 

user. The sort proxy between model and view classes is optional (option a in the Figure) 

and can be used to provide custom sorting operations. If the proxy class is missing then 

the model is connected directly to view (option b). Custom delegate classes can be used 

to render the data in a specific way to be shown in the view. When the data is edited, the 

delegate communicates with the model to provide appropriate editors and to save the 

data back to the model. 

 

The model/view architecture is implemented by sub-classing Qt’s default 

implementations. Figure 8.6 depicts the basic structure of the table editors within 

component editor module. 
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Figure 8.6. The implementation of table editors. 

 

The model classes inherit QAbstractTableModel which provides the default 

implementation to provide model indexes to views. The following 7 functions are 

implemented in sub-classes: 

1. rowCount() obtains the number of rows to display in the table. 

2. columnCount() obtains the number of columns to display in the table. 

3. data() obtains the data for an item identified by a model index. 

4. headerData() obtains the headers for the different columns of the table. 

5. flags() is used by view to know how the data of an item can be handled. 

6. setData() saves data of an item back to the model. 

7. isValid() is used to know if the items in the model are in valid state. 

 

The three slots of model are used to add, remove and relocate items stored in the model. 

The signal contentChanged() is used to inform component editor that the underlying 
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data structure has changed and in order for changes to take effect, editor should save the 

changes. Other two signals are used to print errors and notifications to the message 

console of Kactus2, if needed. 

 

QSortFilterProxyModel acts between the model and view classes. Its purpose is the 

sorting of items displayed in the view. By using this class, sorting of items can be 

performed without modifying the original data structure. This class can be sub-classed 

to provide custom implementation of the sorting. The original model class can also be 

connected directly to the view to leave the intermediate sorter class out. 

 

The delegate classes inherit QStyledItemDelegate and use the default implementation to 

render the data. Sub-classes re-implement the following functions to provide data-

specific editors: 

1. createEditor() constructs the correct editor and returns pointer to it. For 

example, strings are often edited with a simple line editor but if the possible 

options are limited to an enumerated list, a combo box can be used. 

2. setEditorData() retrieves the current data from the model and sets it to the 

editor. 

3. setModelData() retrieves the data set in the editor and saves it to the model. 

The commitAndCloseEditor() slot is used to commit the data from the sending editor 

and to close the editor. 

 

Editable table view is a general purpose view, which can be connected to model classes 

implementing the QAbstractTableModel-abstract class. This view is used in all editors 

within component editor where information is presented to the user in a table form, such 

as ports summary. 

 

The class contains different actions that are displayed to the user in the context menu of 

the view. The table view contains handler for triggered()-signal of each action, see 

Figure 8.7 for an example of the editable table view with the context menu. 

 

 
Figure 8.7. An example screenshot of the table editor. 

 

The setItemsDraggable() function can be used to enable or disable dragging of rows in 

the view. Adding, removing and moving of a row, is informed to the connected model 

by emitting one of the associated signals. 

 

Table 8.1 lists the tables used in component editor module and the classes that 

implement the previously mentioned roles in each case. EditableTableView is used as a 
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view class in all cases, except in FilesEditor, where FilesView provides a custom add 

functionality to choose a file in the file system. The class diagrams of the editors are 

found in the appendices listed in the table. 

 

Table 8.1. The table editors in IP-packaging. 

Editor Model class Delegate class Class 

diagram 

Parameter group 

box 

ParametersModel LineEditDelegate Appendix 1 

File builders editor FileBuildersModel FileBuildersDelegate Appendix 2 

File sets editor FileSetsModel FileSetsDelegate Appendix 3 

Files editor FilesModel FilesDelegate Appendix 4 

Model parameter 

editor 

ModelParameterModel UsageDelegate Appendix 5 

Parameters editor ParametersModel LineEditDelegate Appendix 6 

Address spaces 

editor 

AddressSpacesModel AddressSpaces-Delegate Appendix 7 

Memory maps 

editor 

MemoryMapsModel MemoryMapsDelegate Appendix 8 

Memory map 

editor 

MemoryMapModel MemoryMapDelegate Appendix 9 

Address block 

editor 

AddressBlockModel AddressBlockDelegate Appendix 10 

Register editor RegisterTableModel RegisterDelegate Appendix 11 

Views editor ViewsModel LineEditDelegate Appendix 12 

Environment 

identifier editor 

EnvIdentifiersModel EnvIdentifiersDelegate Appendix 13 

Ports editor PortsModel PortsDelegate Appendix 14 

Bus interfaces 

editor 

BusInterfacesModel BusInterfacesDelegate Appendix 15 

Channels editor ChannelsModel ChannelsDelegate Appendix 16 

CPUs editor CpusModel CpusDelegate Appendix 17 

Other clock drivers 

editor 

OtherClockDrivers-

Model 

OtherClockDrivers-

Delegate 

Appendix 18 
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8.1.3 List manager 

List manager, Figure 8.8, is the common editor used to display and edit a list of strings, 

such as file types, within the editors. It is used as such, or as a base class when a more 

specific functionality is needed.  

 

 

Figure 8.8. The class structure of list manager. 

 

List manager follows the previously mentioned model/view architecture with the 

exception that is uses the default delegate implementation for lists. List manager 

contains two classes to contain the data and display it in the user interface. 

ListManagerModel is the model class managing the item list to be displayed. 

EditableListView is the view class displaying the items to the user and providing the 

graphical user interface. The two classes are connected together via Qt’s signals and 

slots mechanism. List manager provides interface to set and retrieve list of strings stored 

in the model. Figure 8.9 displays the user interface of the list manager, where user is 

editing a list of group identifiers for a file set. 

 

 
Figure 8.9. The list manager user interface. 
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8.1.4 Name group editor 

Name group editor, Figure 8.10, is used to edit the NameGroup struct, which contains 

name, display name and description fields. It is used e.g. in the file set editor. This 

editor is never used alone but as a member of a parent editor. For example, file set 

editor forwards the file set model’s nameGroup struct to this editor. This way, the same 

editor can be used in several places, thus providing a consistent GUI appearance for 

users.  

 

 
Figure 8.10. The structure of name group editor. 

 

The underlying IP-XACT model is edited through a reference, this way the editor does 

not need to know, to which element the struct belongs to, allowing very generic usage 

of the editor. Name group editor provides functions to retrieve the data set for the editor 

text fields through getter-functions. The isValid()-function can be used to check if the 

editor is in valid state and refresh() slot can be used to update the contents of the editor 

to match the data stored in the associated model. The three private slots listed last on the 

class are handlers for changes in the editor when the user edits one of the editor fields. 

Figure 8.11 displays the user interface of the name group editor. 

 

 

Figure 8.11. The name group editor user interface. 
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8.2 General Editor 

General Editor, Figure 8.12, is used to edit the general settings of a component, which 

do not belong to any of the sub-elements. It displays the VLNV-identifier of the 

component as well as the Kactus2 attributes. 

 

 
Figure 8.12. The structure of general editor. 

 

GeneralEditor is a container class which owns the VLNVDisplayer, 

KactusAttributeEditor, DescEditor and ComponentPreviewBox. VLNVDisplayer 

displays the component’s VLNV-identifier to the user along with the file path of the 

component’s XML file. These settings are not editable and if the user wants to change 

the VLNV then component must be saved as new component with different VLNV. 

 

KactusAttributeEditor is used to display and edit the Kactus2 attributes of the 

component, which are depicted in Chapter 2.3.3.2. The implementation attribute can’t 

be edited but product hierarchy and firmness are editable. Changes in the editor emit 

contentChanged()-signal which is connected to general editor’s onAttributesChange()-

slot to set the changes to the model. 

 

DescEditor provides a text field to view and edit the free textual description of the 

component. When description is edited, general editor’s onDescriptionChange()-slot 

saves the changes to component. 
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ComponentPreviewBox displays to the user, how the component appears when it is 

instantiated in a design. It shows the different interfaces and possible ad hoc ports. 

Figure 8.13 depicts the GUI classes of general editor. 

 

 

Figure 8.13. The GUI classes of general editor. 
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8.3 File set editor 

File set editor is used to edit a single file set of a component. It displays the detailed 

settings of a file set and provides an editor to add and remove files contained in the file 

set. Figure 8.14 displays the class diagram of file set editor. 

 

 

Figure 8.14. The structure of file set editor. 

 

File set editor, Figure 8.15, is a container which has 5 editors to edit different elements: 

1. NameGroupEditor is used to edit the name and description of file set. Editor is 

explained in Chapter 8.1.4. 

2. FileBuildersEditor, Table 8.1, is used to assign build commands for different 

file types. 

3. FilesEditor, Table 8.1, is used to add and remove files contained in the file set. 

4. GroupManager is used to edit the group identifiers of the file set. The editor 

inherits ListManager depicted in Chapter 8.1.3. The sub-class uses the base class 

functionality otherwise but provides suggestions for possible group identifier 

names for the user to select, e.g. sourceFiles or documentation. 

5. DirListManager is used to edit a list of directories on which the file set depends. 

The editor inherits ListManager, which is depicted in Chapter 8.1.3. 
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Figure 8.15. The GUI classes of file set editor. 

8.4 File editor 

File editor is used to edit the details of a single file. Figure 8.16 shows the class diagram 

of the file editor. 

 
Figure 8.16. The structure of file editor. 
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The graphical user interface of file editor displays two tabs and they are also seen in the 

class diagram: FileGeneralTab for general settings of a file and FileExtraTab for 

external dependencies. FileGeneralTab is explained in Chapter 8.4.1. 

 

FileExtraTab is container class which owns three editors. DirListManager inherits 

ListManager which is depicted in Chapter 8.1.3. ExportedNames and imageTypes are 

direct instances of ListManager. 
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8.4.1 File general tab 

File general tab, Figure 8.17, is used to edit the most often used elements of a single 

file. 

 

Figure 8.17. The structure of  file general tab. 

 

FileNameEditor contains a line edit widget, which is used to set the relative file path to 

the file. Line edit re-implements the mouse press event to open a dialog to select a file 

in the file system. FileTypeEditor inherits ListManager, which is depicted in Chapter 
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8.1.3. The sub-class is used to provide a list of suggestions for pre-defined file types 

listed in the IP-XACT standard [6].  

 

FileGeneralEditor contains several editors to set e.g. the description of the file. 

FileBuildCommand contains line editors to set the file specific build command for the 

file. Figure 8.18 shows the GUI classes of file general tab. 

 

 

Figure 8.18. The GUI classes of file general tab. 

8.5 Address space editor 

Address space editor, Figure 8.19, is used to edit the details of a single address space. It 

also contains a class to visualize the address space, and segments it contains to the user. 

Chapter 6.6.1 explains the user interface and the purpose of each element. 
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Figure 8.19. The structure of address space editor. 
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Address space editor is a container for several editors of which 2 are generic editors: 

1. NameGroupEditor sets the name and description of address space and is 

explained in Chapter 8.1.4. 

2. ParameterGroupBox, Table 8.1, edits the parameters of the address space. 

 

SegmentEditor is an editor to add, remove and edit the segments inside an address 

space. It follows the presented model/view architecture with some modifications. 

SegmentEditor uses the EditableTableView as view class and SegmentsModel provides 

the model functionality. The difference is the SegmentProxy which acts as the proxy 

model between view and the original model to provide specific sorting functionality by 

implementing lessthan()-function. 

 

AddressSpaceGeneralEditor sets addressable unit size, range and width of the address 

space. These qualities are also edited in address spaces editor, Table 8.1. 

 

AddressSpaceVisualizer draws the address space on the screen for the user to view it. It 

contains Area structs, which define the bounds of each segment. Visualizer is connected 

to the general editor and segment editor to get updates of changes in them, so the 

visualization can also be updated simultaneously. Figure 8.20 shows the GUI classes of 

address space editor. 

 

 
Figure 8.20. The GUI classes of address space editor. 
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8.6 Field editor 

Field editor is used to edit the details of a single bit field within a register. Figure 8.21 

displays the structure of the editor. 

 

 
Figure 8.21. The structure of field editor. 

 

FieldEditor is the container class, which owns the other classes and sets the layout for 

the editor. It contains two different parts: one to set enumerated values for the bit field 

and one to set constraints for write values.  

 

Editor for enumerated values follows the model/view architecture depicted in Chapter 

8.1.2, where EnumeratedValueModel implements the model class and 

EnumeratedValueDelegate provides the delegate functionality. 
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WriteValueConstraintEditor provides functionality to set write constraints e.g. by using 

the listed enumerated values or setting minimum and maximum values. The editor 

contains a handler slot for each GUI element such as onUseEnum(). Figure 8.22 

displays the GUI classes of field editor. 

 

 

Figure 8.22. The GUI classes of field editor. 

8.7 View editor 

View editor, Figure 8.23, provides functionality to edit the details of a single view. It 

contains elements for both hierarchic and non-hierarchic views but changes its visual 

appearance according to the view type. 

 

 

Figure 8.23. The structure of view editor. 

 

ViewEditor is the container class which owns the other classes and sets their layout in 

the editor. It contains a combo box viewTypeSelector to select between hierarchical and 

non-hierarchical views and adjusts the layout accordingly. The editor contains 6 editors: 

1. NameGroupEditor edits the name and description of the view and is depicted in 

Chapter 8.1.4. 
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2. ParameterGroupBox, Table 8.1, edits the parameters of the view. 

3. FileBuilderEditor, Table 8.1, defines file build commands for files referenced in 

the view. 

4. EnvIdentifierEditor, Table 8.1, sets up environment identifiers for the view. 

5. FlatViewGeneralTab modifies settings that are only included in non-hierarchical 

views. 

6. HierarchyRefWidget is used in hierarchical views to set the hierarchy reference 

to a design or design configuration containing the hierarchical description of the 

component. It only contains one instance of VLNVEditor and its class diagram is 

therefore omitted. 

 

Figure 8.24 shows the GUI classes of view editor. 

 

 

Figure 8.24. The GUI classes of view editor.. 

 

Flat view general tab, Figure 8.25, is used to edit the details of a single non-hierarchical 

view. 
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Figure 8.25. The structure of flat view general tab. 

 

FlatViewGeneralTab is the container class, which contains editors to set the language 

and model name elements of a view. It also contains an instance of FileSetRefEditor, 

which is used to refer to the file sets of the component. FileSetRefEditor is a sub-class 

of ListManager, which is depicted in Chapter 8.1.3, but it re-implements the initialize()-

function to provide a combo box to select among existing file sets. 

8.8 Bus interface editor 

Bus interface editor, Figure 8.26, contains two tabs to edit the details of a single bus 

interface. 

 

 
Figure 8.26. The structure of bus interface editor. 

 

The elements of a bus interface are divided into 2 categories: 

1. BusIfGeneralTab contains editors to set the general settings of a bus interface 

and reference the used bus and abstraction definition. This editor is explained in 

Chapter 8.8.1. 
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2. BusIfPortmapTab is used to specify, which ports are connected to the logical 

signals defined in the abstraction definition assigned in the generals tab. This 

editor is explained in Chapter 8.8.2. 

8.8.1 Bus interface general settings 

Bus interface general tab, Figure 8.27, provides functionality to set general settings, 

such as name, type (master, slave, etc.) and VLNV references, of a single bus interface. 

 

 
Figure 8.27. The structure of bus interface’s general editor. 
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BusIfGeneralTab contains 6 different editor types. Two instances of VLNVEditor are 

used to specify a VLNV reference to a bus definition and abstraction definition objects 

in the library. These objects define the qualities of a bus, which this interface promises 

to fulfill. NameGroupEditor, depicted in Chapter 8.1.4, is used to edit the name and 

description of the bus interface. ParameterGroupBox, listed in Table 8.1, is used to set 

the interface-specific parameters. BusIfGeneralDetails contains a group of editors for 

the general settings.  

 

InterfaceModeStack contains five editors to edit the interface mode specific details of a 

bus. Only one of these editors is visible at a time. InterfaceModeSelector is used to 

select the interface mode and it is connected to the onModeChanged() slot in 

BusIfGeneralTab, thus changing the visible editor on InterfaceModeStack. The possible 

modes and their respective editors are shown in Table 8.2. Some editors are used to edit 

both the normal and mirrored versions of interface modes. 

 

Table 8.2. Interface modes and their editors. 

Interface mode Used editor 

MASTER BusIfInterfaceMaster 

SLAVE BusIfInterfaceSlave 

SYSTEM BusIfInterfaceSystem 

MIRRORED MASTER BusIfInterfaceMaster 

MIRRORED SLAVE BusIfInterfaceMSlave 

MIRRORED SYSTEM BusIfInterfaceSystem 

MONITOR BusIfInterfaceMonitor 

 

Figure 8.28 shows the GUI classes of bus interface general settings. 
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Figure 8.28. The GUI classes of bus interface general settings. 

8.8.2 Bus interface port map settings 

Bus interface port map tab, Figure 8.29, provides functionality to set the port maps of a 

bus interface. It follows the model/view architecture with the exception that it contains 

several different views and models. 
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Figure 8.29. The structure of port map editor. 

 

BusIfPortmapTab contains three different view-model pairs. Figure 8.30 displays the 

different view classes in the graphical user interface of the editor. 

 



99 

 

Figure 8.30. The views in port maps editor. 

 

LogicalListView is connected to the LogicalListModel that provides the logical signals 

listed in the referenced abstraction definition. PhysListView is connected to the 

PhysListModel which provides the ports listed in the component metadata (which 

correspond to HDL ports). PortListView and PortListModel act as base classes and 

provide most of the functionality needed to present a list of items.  

 

PortMapsView is connected to the PortMapsModel which provides the port maps of the 

interface. When the user creates a new port map it is added to the model and displayed 

to the user.  
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9 EVALUATION OF THE WORK 

Kactus2 is released as open source software under GPL2 license. The open source 

version of the Qt framework was used to provide a cross-platform design tool for 

embedded MP-SoC. Table 9.1 lists the line and class counts of the presented modules 

(the two topmost rows) and the whole project. 

 

Table 9.1. The code statistics of Kactus2 v2.0. 

Module LOC [C++] Class count 

Component editor 

(IP packaging module) 

21 108 156 

Library handler 

(Library management module) 

7 427 26 

IP-XACT data structures 25 271 75 

Design editor, software flow, etc. 

(omitted from this thesis) 

49544 232 

Kactus2 total 103 350 489 

 

The IP-XACT data structures which are used to read and modify the IP-XACT XML 

metadata are shown to give an example of the library complexity. Figure 9.1 displays 

the development of the entire Kactus2 software since its first release in October 2011. 

 

 
Figure 9.1. Total code development. 

 

The graph is drawn since the start of the first release and therefore doesn’t start at 0 

LOC. The development of the Kactus2 begun in June 2010. Also noticeable is the total 

code count which differs from the total count in Table 9.1. The graph contains the total 

code count including also other languages not related to the implementation and 
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therefore not included in the table. Figure 9.2 displays the LOC development by 

language. 

 

 

Figure 9.2. Lines of code by language. 

 

The Ohloh tool [29] used to draw the graph interprets the code header files (.h) as C-

code, which results in large amount of C-code. The code is actually C++ so by 

combining the C++ and C-codes the total code count matches with the amount reported 

on Table 9.1. The XML code comes from the example library of the project as well as 

the documentation which is mostly UML-graphs saved in XML format. Also, a minor 

part of the XML is contributed by the project files used. HTML is used in the context 

sensitive help system in Kactus2. The help pages displayed are written in HTML to 

provide better ability to modify the outlook of the pages compared to basic text files. 

HTML also enables the use of pictures. Table 9.2 shows detailed statistics of the used 

languages. 

 

Table 9.2. Statistics of the used languages. 

 
 

As mentioned before, the C-code is actually the headers of the C++-classes, which 

explains the large ratio of comments to code lines in the C-code section. The makefiles 

and scripts shown in the table are related to the Linux release versions of Kactus2. 
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Figure 9.3 displays the commit count to the SVN repository since the first release of 

Kactus2. The average commit count per month is about 40 commits. 

 

 
Figure 9.3. Total commits per month. 

9.1 Maintainability 

The maintainability is an important factor and should be considered already in the 

design process of the software. This has been considered in the presented modules as 

well as the whole Kactus2 by trying to make the software as modular as possible. The 

inheritance mechanism is used to encapsulate the common interfaces and services of the 

classes. For example, the library management module has an abstract class 

LibraryInterface as an interface class. If the implementation of the library management 

should be changed, it is possible to simply write another class which implements the 

interface and replace the current LibraryHandler-class.  

 

In the component editor module, the same principle is used. ComponentEditor is a sub-

class of TabDocument, which is the base class for all editors in Kactus2, as explained in 

Chapter 8. The basic structure of the component editor allows a developer to add a new 

element to be edited very easily. The tree items in the navigation tree handle the tree 

operations, and all the developer needs to do is to write the element-specific 

functionalities. In Kactus2, the basic structure of the component editor has been used in 

other editors as well, and only the visible tree structure has been re-written. 

 

The use of signals and slots in Kactus2 improves the modularity of the software, thus 

improving maintainability. Two modules can be connected to each other without either 

of them being aware of this. As long as the parameters of the signal and slot don’t 

change, it is possible to change either module.   

 

Although the modules presented in this thesis have clear interfaces, which they use to 

communicate with the rest of the software, when looking inside the modules there is 

chance for improvement. As mentioned in Chapter 4.1, the development process has 

been very agile and the requirements have changed several times during the 

implementation. This has caused some ad hoc style code fixes to be written, which 

make maintenance harder. The component editor is currently in a fairly good state 
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because some requirements forced re-writing of the editor almost completely. When 

writing the new implementation, the new and old requirements were taken into account 

to design a better architecture for the editor.  

 

However, in the library management module there are several inter-dependencies, 

which make the code hard to maintain and understand. The main reason for this has 

been the introduction of several new object types and their categorization. The Kactus2 

attributes are not part of the original IP-XACT standard [6] and were therefore not 

planned in the original design of the library management module. Also the data to be 

shown in the library views has changed and one separate search view was rejected after 

implementation of the library search functionality. The code has been restructured 

during the project to keep the situation under control but at some point it may become 

necessary to re-design the library management module, at least the library views part, 

which is shown to the user. This would also allow development of some new features to 

the library management module. 

 

One issue in the maintainability of the component editor module in the future is the 

possible new versions of IP-XACT. Currently the data structures used to view and edit 

the IP-XACT metadata follow the IP-XACT 1685 XML structure very tightly. If the 

data structures change, this requires much work also on the component editor. All sub-

editors of the component editor module, as well as the navigation tree are dependent on 

the data structures. This hasn’t been an issue so far since no new versions of IP-XACT 

standard have been released during 2 years of development and there hasn’t been need 

to support the old versions. Also, if support for several different versions is needed 

simultaneously then it wouldn’t be reasonable to have their own editor modules but to 

use the same editor for all standard versions.  

 

The solution to this problem could be the separation of the data structures from the 

parsing and writing code. This way Kactus2 would use its internal data structures no 

matter how, or in what format, it would be written on the disk. This would also enable 

the use of a data base as the library storage instead of the disk. Each different metadata 

version would have its own parsing and writing code, which would convert the data 

from the internal data structures to the appropriate form. Now the user could use the 

same editors to manipulate the metadata and simply select the format for the data to 

save. Parsers could also be added as plug-ins to allow use of other metadata types. For 

example, an Altera QSys project could be imported to Kactus2 and then be saved as an 

IP-XACT file. 

 

A common problem when developing the software is to keep the documentation up to 

date with the implementation code. To ease this problem, the comments in the Kactus2 

code have been written using the Doxygen notation [30]. This enables the automated 

generation of software documentation, such as method descriptions, at any time. Of 

course this requires the comments in the code lines to be up to date and precise, but this 

would be a reasonable requirement in a software project anyway. The use of Doxygen 

notation doesn’t fully solve the need for other documentation, such as UML diagrams, 

but this eases the burden of maintaining the documentation in an agile software process. 
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9.2 Usability 

The graphical outlook of Kactus2 is quite unique when compared to the other design 

tools in the same category. This can be an opportunity but also a disadvantage. The 

fresh design aspect gives possibilities to explore new ways to do things but they must be 

intuitive enough for users to feel comfortable with them. If the learning effort is too 

high to start using the software, users will not adapt to the new methods. For this reason, 

one of the goals in designing Kactus2 has been to keep the learning effort as low as 

possible while still preserving the ability for users to do complicated things. 

 

In the library management module, the library objects have icons which identify the 

object type. This way it is easier for the user to understand the library structure and find 

the desired objects. Also the different library views help. The user can choose which 

view to use in each situation. The filter functionality was added, because in certain 

situations it is not necessary to view e.g. software components when integrating a 

hardware platform. This way the user is not strained with excessive information, which 

helps focusing on the work at hand. When agreeing on the naming policies of the 

library, it is possible to use the search functionality to limit the items to display very 

efficiently. In any case, the search helps users to find correct objects in a large library. 

 

In the component editor module, there are several aspects which are considered to make 

the packaging tool easy to use. The navigation tree is designed to support the intuitive 

way of starting at the top and moving downwards. The objects, which do not contain 

references to other elements are aligned to the top of the tree, and when moving down 

the tree, the objects on the top can be referred to. Figure 9.4 depicts the packaging order 

in the tree. 

 

 
Figure 9.4. The packaging order in component editor. 

 

Of course the tool does not force this order to be used and navigation back and forth 

between elements is possible and likely. However, e.g. setting the files first helps the 

user to get started with the basic settings and then advancing to the elements, which 

describe the component in a more detailed way. 
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Many of the sub-editors within component editor use the table editor interface. This is a 

powerful way to manage large quantities of data in a single view. For example, the port 

editor is likely to contain dozens of ports so displaying the data in an efficient way is 

crucial. Also, in elements which require a more detailed editor, the table is used to set 

the general settings of the elements so the user can perform the packaging in a sort of 

top-down method, advancing to the detailed editors after the general settings. 

 

Currently the address space editor is the only editor which provides a visualization of 

the element being edited. The component editor has a specific space reserved for 

visualization widgets in the GUI, explained in Chapter 8, but they have yet to be 

implemented for the other element-types. These visualizations could be used to help 

users to understand the current state of the component when editing, as well as the 

effects of their actions in an intuitive way. Also a visualization tool could be used to 

package e.g. the dependencies between files of the component.  

 

The most important factor for usability in the component editor module is the 

connection to the context sensitive help. When the user navigates through the different 

sub-editors the help window reacts to this by changing the help view to match the active 

editor. This way the user can understand the purpose of the different editor fields even 

without knowing the details of the IP-XACT standard.  

 

The use of Qt framework enables the graphical user interface to adapt to the visual style 

of the different operating systems. This way Kactus2 provides a native outlook in each 

operating system it supports. Figure 9.5 displays an example of the new object dialog in 

Windows Vista and Windows XP. The same release version without any OS-specific 

code is being run in both screenshots.  

 

 

Figure 9.5. The visual outlook in Vista and XP operating systems. 

9.3 Testability 

The main issue for the testability of Kactus2, as well as the presented modules, is the 

lack of test plans and test documentation. The unit testing for the software has been 

performed by the developers but no documentation of the tests has been written. The 



106 

same problem applies for the integration and system level testing of the software. The 

system testing has been performed using the exploratory testing approach which doesn’t 

use predefined test cases [31]. However, some kind of documentation on tests that have 

been executed would help locating the bugs and evaluating the maturity of the software. 

Although the tests were not documented, the bug reports of the found defects were 

saved and documented in a data base. 

 

As mentioned previously in Chapter 4.1, the development process was very agile and 

the requirements changed during the implementation phase. This caused a lot of re-

testing of the modules because one minor change in the code, especially in the library 

management module, affected several parts of the software. Using the exploratory 

approach demands a lot for the tester when re-testing the same module because the 

temptation to skip certain features, which tester believes were not affected, is great.  

 

The use of automated tests could greatly ease the burden of the testing process. Of 

course the writing, and especially maintaining, of the automated tests causes much work 

but when using agile development methods it can be justified because same tests need to 

be run often. When there are several developers writing the code simultaneously and 

committing the changes very frequently, as seen in the Figure 9.3, it is impossible to test 

and verify all changes manually. One way to improve the testing process for Kactus2 

could be to implement automated tests for the most basic elements of the software that 

are no longer subject to rapid changes. For example, the interface of the library 

management module has been stable for many releases. This way the routine tests could 

be automated but the testing of new features could be left for exploratory testing, thus 

easing the burden of maintaining the automated tests. As the software evolves and 

matures, the amount of automated tests can be increased. 

 

The modular structure of the software eases the testing, especially unit testing. The sub-

editors in the component editor module can be tested as separate pieces, which reduces 

the complexity of the tests. Also the underlying IP-XACT data structures are modular 

and it would be very simple to write automated tests for them. The library management 

module could be tested by writing a script, which produces an example library. After 

this, the library management module could be initialized to a known state through its 

programmatic interface and certain queries and operations could be performed to the 

library and their results be verified. This way the unit testing for the modules is quite 

simple to implement. The most complex tests for the library management would 

probably be related to the dependencies between the library objects. 

 

The more difficult parts are the integration  and system testing. The integration testing 

can be done partly in code level but especially the system testing requires GUI tests, 

which are much harder to automate. When there is no documentation on the desired 

results of operations performed in the user interface, it is under the tester’s intuition to 

decide which results are correct and which defects. So far the Kactus2 has been 

developed and tested within the same development team and communication between 

team members has been easy and fluent so this hasn’t caused any problems. However, 

because the presented software has been released under open source license, it is 
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possible to have outside contributors to the project in the future. In this case, it would be 

reasonable to start documenting the correct behavior in different use cases. Also the use 

of automated tests would help verifying the commits from third party contributors. 
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10 CONCLUSIONS 

This thesis presented the IP packaging and library management modules for the open 

source Kactus2 IP-XACT design tool. Kactus2 was developed in C++ language using 

the open source version of Qt cross-platform framework. The development has so far 

taken 2 years for the entire software. The library management module consists about. 

7.500 lines of code and the component editor module 21.000. The purpose of these 

modules is to enable users to create IP-XACT metadata packages for IP-blocks and 

manage the IP-library in an efficient way. The most important features of the library 

management are the parsing and writing of the IP-XACT metadata, integrity checks of 

the library objects and the dependency management between the library objects. For the 

component editor module, the most important elements in the packaging process are the 

files and interfaces of an IP-block. These enable the integration of the IP-block to larger 

systems. 

 

This Thesis explained the IP-XACT elements supported by Kactus2 as well as the 

hardware related extensions to the standard. These extensions enable extending the 

scope of the IP-XACT standard from IP and SoC level to product management and 

facilitate the packaging of hardware related software, such as drivers, to the IP-blocks. 

The different use cases of the library management were introduced and explained, as 

well as the IP packaging process. The implementation details contained the UML-class 

diagrams of the modules and some example sequence diagrams of the library 

management use cases.  

 

The possible improvements or changes in the future for the library management module 

could be the support for databases and library overview report. The current file based 

implementation requires the use of network drives or version control systems if the IP-

XACT libraries are used by several people. The database approach could ease the use of 

libraries over network. However, the use of version control systems has its advantages 

allowing the tracking of the changes to the documents. The use of databases would 

probably scale better to very large libraries. 

 

The reporting feature for the library management module could be used to get an 

overview of the current library. Since the scope of IP-XACT has been extended from IP 

and SoC level to products, it might be useful to get statistical analysis of the library or 

products. The reports could include for example: 

1. The component count and type (HW, SW, System). 

2. The number of hardware bus definitions or software APIs. 

3. How many component instances hierarchical components contain on average. 

4. How many files a component contains on average. 

5. How many different products, boards or chips the library supports. 
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This information could be used to measure the maturity and complexity of the products 

and the whole library. For example, it would be possible to save the statistics daily to 

generate a graph, depicting the progress of a product development. 

 

The component editor module could be improved by adding a packaging wizard to 

guide through the start of the packaging process. This wizard could contain a parser to 

extract the data of the component’s interfaces from the top level VHDL or verilog file. 

This way the component’s ports and model parameters could be automatically added to 

the IP-XACT metadata. The same parser could be used to determine the dependencies 

between the component’s files. This kind of automation would facilitate packaging of 

large quantities of legacy IPs to IP-XACT format. Also, the previously mentioned 

visualizations could be extended to several different elements, for example: 

a) File dependencies could be visualized to the user in the file set editor. 

b) Memory maps and their registers could be visualized to make the editing more 

intuitive. 

c) Channels between bus interfaces within component could show the connections 

in hardware buses. 

d) The bus interface summary could display which ports are mapped to which 

interfaces. 

 

Some of these improvements have already been considered and designed to be 

implemented in the future versions of Kactus2. 
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