

ANTTI KAMPPI

LIBRARY MANAGEMENT IMPLEMENTATION ON KACTUS2 IP-

XACT TOOL

Master's thesis

Examiner: Prof. Timo D. Hämäläinen, Dr. Erno
Salminen
Examiner and topic approved by the Faculty
Council of the Faculty of Computing and
Electrical Engineering on 7. November 2012.

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
ANTTI KAMPPI: Kirjastonhallinnan toteutus Kactus2 IP-XACT työkalussa
Diplomityö, 112 sivua, 18 liitesivua
Joulukuu 2012
Pääaine: Sulautetut järjestelmät
Tarkastajat: Prof. Timo D. Hämäläinen ja TkT Erno Salminen
Avainsanat: Järjestelmäpiiri, IP-lohko, kirjastonhallinta, metadata, IP-XACT

Sulautettujen järjestelmien koko ja monimutkaisuus ovat viime vuosina kasvaneet

kiihtyvällä tahdilla. Siksi suunnittelun tuottavuutta täytyy tehostaa, johon on pyritty

mm. käyttämällä uudelleenkäytettäviä logiikkakomponentteja. Uudelleenkäytön

tehostaminen vaatii uusia suunnittelutyökaluja ja metodeja. IP-XACT on XML-

pohjainen metadata standardi, jolla kuvataan uudelleenkäytettäviä

logiikkakomponentteja, eli IP-lohkoja, työkalu- toteutus- ja toimittajaneutraalilla

tavalla. Ongelmana IP-XACT:in yleistymisessä on ollut työkalujen tuki. Saatavilla ei

ole aiemmin ollut vapaan lähdekoodin suunnittelutyökaluja ja kaupalliset vaihtoehdot

ovat kalliita, mikä rajoittaa pienten ja keskisuurten yritysten mahdollisuuksia ottaa IP-

XACT käyttöön.

Tässä diplomityössä esitellään avoimen lähdekoodin Kactus2 työkalu IP-XACT-

pohjaiseen suunnitteluun. Työn aiheena on työkalun kirjastonhallinta- ja IP-

paketointimoduulit, joiden avulla IP-lohkoille voidaan luoda metadata-kuvaukset ja

hallinnoida lohkoja automatisoidusti. Diplomityössä esitellään muutamia lisäyksiä,

jotka laajentavat alkuperäistä standardia myös tuotetiedon hallintaan. Työssä sekä

suunniteltiin että toteutettiin kirjastonhallinnan ja paketoinnin vaatimat luokat ja

käyttöliittymänäkymät. Toteutuksessa käytettiin C++ ohjelmointikieltä ja

ohjelmistokehyksenä käytettiin Qt:n avoimen lähdekoodin versiota 4.8.3.

Kehitysympäristönä toimi Microsoftin Visual Studio 2008, johon oli asennettu Qt

lisäosa. Qt mahdollistaa järjestelmäriippumattoman koodin kirjoittamisen, joten

Kactus2 on julkaistu sekä Windows että Linux käyttöjärjestelmille.

Esiteltyjen moduulien koot koodiriveinä ovat 7.500 kirjastonhallinta- ja 21.000 IP-

paketointimoduulille. Vastaavat luokkien määrät ovat 26 ja 156. Koko Kactus2:n

koodirivimäärä on 103.000 riviä. Kirjastonhallinta sisältää kaksi eri näkymää kirjaston

rakenteesta, sekä oman osan kirjaston hakuehtojen määrittämiseen. Paketointimoduuli

sisältää 28 eri editoria. Käyttöliittymästä on pyritty tekemään selkeä ja

helppokäyttöinen, jotta käyttäjien olisi helppo omaksua uusia toimintatapoja. Lisäksi

työkaluun on lisätty kontekstipohjainen opastusjärjestelmä, joka reagoi käyttäjän

tekemisiin. Kokonaisuudessaan Kactus2:n eri versioita on ladattu yli 1.700 kertaa.

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
ANTTI KAMPPI: Library management implementation on Kactus2 IP-XACT
tool
Master of Science Thesis, 112 pages, 18 appendices
December 2012
Major: Embedded Systems
Examiners: Prof. Timo D. Hämäläinen and Dr. Erno Salminen
Keywords: System-on-Chip, IP-block, library management, metadata, IP-XACT

The size and complexity of embedded systems have grown at an accelerating pace over

the last years. This causes demand to improve the productivity of the design process e.g.

by enhancing the reusability of logic components, also called IP-blocks. Improving

reusability requires use of new design tools and methods. IP-XACT is a XML based

metadata standard, which describes IP-blocks in a tool, implementation and vendor

neutral way. Previously there hasn’t been open source design tools supporting IP-XACT

and the commercial tools are expensive, thus limiting the ability of small and middle-

sized companies to use IP-XACT.

This thesis presents an open source IP-XACT design tool called Kactus2. The scope of

the thesis is the library management and IP-packaging modules, which enable

automated management of IP-blocks. The thesis presents a few extensions to the

standard, which expand the original scope of IP-XACT towards product management.

The design and implementation of the library management and IP-packaging classes

and the user interfaces are described. The implementation language was C++ and the

used development framework was the open source version 4.8.3 of Qt. The

development environment was Microsoft Visual Studio 2008 with the Qt add-in

installed. Qt enables cross-platform development, which facilitated the release of

Kactus2 for both Windows and Linux operating systems.

The sizes of the presented modules in code lines are 7.500 for library management and

21.000 for IP-packaging. The corresponding class counts are 26 and 156. The code line

count for whole Kactus2 tool is 103.000 lines. Library management contains two views

of the library structure and a segment to define search options. Packaging module

contains 28 editors for different elements of the metadata. The graphical user interface

was designed to be easy to use, enabling users to adopt new design methods. Also, the

tool contains a context based help system, which reacts to user’s actions giving advice

related to the task on hand. The total download count for different Kactus2 versions is

over 1.700.

TABLE OF CONTENTS

Tiivistelmä .. ii

Abstract .. iii

List of symbols and abbreviations .. vii

1 Introduction ... 1

2 IP Integration... 3

2.1 System-on-Chip.. 3

2.2 IP-block information contents .. 4

2.2.1 Documentation files ... 5

2.2.2 Testing and verification files ... 5

2.2.3 Source files of the implementation .. 6

2.2.4 Files to help the initialization of the IP-block 6

2.3 IP-XACT-standard ... 6

2.3.1 IP-XACT based IP-block integration ... 7

2.3.2 Elements of a component ... 9

2.3.3 Extensions to the standard ... 10

2.3.3.1 New IP-XACT objects .. 11

2.3.3.2 Kactus2 attributes for IP-block 13

3 Related tools .. 14

4 Overview of Kactus2 .. 16

4.1 Kactus2 implementation ... 19

4.1.1 Signals & slots ... 19

5 Management of the library .. 21

5.1 Entire library .. 23

5.1.1 Search for new items on the disk ... 24

5.1.2 Checking library integrity .. 24

5.1.3 Parsing item dependencies ... 25

5.2 Item management ... 25

5.2.1 Create new item ... 25

5.2.2 Open item for viewing or editing ... 26

5.2.3 Open the metadata to XML editor ... 27

5.2.4 Save item .. 27

5.2.5 Export item ... 27

5.2.6 Remove item .. 28

5.3 Viewing .. 29

5.3.1 Search for item in the library ... 29

5.3.2 Filter item types ... 30

6 Packaging of an IP-block with component editor ... 31

6.1 General Editor .. 32

6.2 File set summary .. 33

6.2.1 File set editor .. 33

6.2.1.1 File editor ... 35

6.3 Model parameters editor... 36

6.4 Parameters editor .. 36

6.5 Memory map summary .. 36

6.5.1 Memory map editor .. 37

6.5.1.1 Address block editor .. 38

6.5.1.2 Register editor ... 39

6.5.1.3 Field editor ... 40

6.6 Address space summary ... 41

6.6.1 Address space editor .. 41

6.7 View summary ... 42

6.7.1 View editor ... 42

6.8 Ports editor ... 44

6.9 Bus interface summary ... 46

6.9.1 Bus interface editor .. 48

6.9.1.1 Port maps ... 49

6.10 Channels editor ... 51

6.11 Cpus editor ... 52

6.12 Other clock drivers editor ... 52

7 Library management module .. 53

7.1 Data structures .. 55

7.2 Hierarchy view ... 59

7.3 VLNV tree view ... 61

7.4 VLNV dialer ... 62

7.4.1 Filter widget ... 63

7.5 Use cases as sequence diagrams... 64

7.5.1 Open hierarchical component in an editor 64

7.5.2 Search for objects on the disk .. 65

7.5.3 Exporting a component .. 67

7.5.4 Deleting a component .. 68

8 Component editor module ... 70

8.1 Common editors and classes .. 75

8.1.1 Item editor interface class .. 75

8.1.2 Model/view architecture in Kactus2 .. 75

8.1.3 List manager ... 80

8.1.4 Name group editor ... 81

8.2 General Editor .. 82

8.3 File set editor .. 84

8.4 File editor ... 85

8.4.1 File general tab ... 87

8.5 Address space editor... 88

8.6 Field editor ... 91

8.7 View editor ... 92

8.8 Bus interface editor .. 94

8.8.1 Bus interface general settings .. 95

8.8.2 Bus interface port map settings .. 97

9 Evaluation of the work .. 100

9.1 Maintainability ... 102

9.2 Usability ... 104

9.3 Testability ... 105

10 Conclusions ... 108

References ... 110

Appendix 1: Parameter group box .. 113

Appendix 2: File builders editor ... 114

Appendix 3: File sets editor .. 115

Appendix 4: Files editor .. 116

Appendix 5: Model parameter editor .. 117

Appendix 6: Parameters editor .. 118

Appendix 7: Address spaces editor ... 119

Appendix 8: memory maps editor ... 120

Appendix 9: Memory map editor .. 121

Appendix 10: Address block editor .. 122

Appendix 11: Register editor .. 123

Appendix 12: Views editor ... 124

Appendix 13: Environment identifier editor ... 125

Appendix 14: Ports editor ... 126

Appendix 15: Bus interfaces editor ... 127

Appendix 16: Channels editor... 128

Appendix 17: Cpus editor ... 129

Appendix 18: Other clock drivers editor ... 130

LIST OF SYMBOLS AND ABBREVIATIONS

FPGA Field-programmable gate array

IP-block Intellectual property block

IP-XACT XML based metadata-format for automated configuration and

integration of electronic systems.

SoC System-on-Chip

Metadata A general term for descriptive data.

Verilog Hardware description language for modeling digital circuits.

VHDL Very High Speed Integrated Circuit Hardware Description

Language

VLNV Vendor, Library, Name, Version.

XML eXtensible Markup Language.

1 INTRODUCTION

This master’s thesis is related to FPGA-based embedded system design and presents

development work for an open source design tool called Kactus2 [1].

A typical embedded system product consists of a hardware platform and software being

executed on one or more programmable cores. Hardware platforms consist of system-

on-chips (SoC), which consist of reusable intellectual property blocks (IP-blocks). An

IP-block is a reusable unit of logic that is owned by one party [2]. Figure 1.1 depicts an

example case of a system hierarchy. One platform may contain several different

implementations and, on the other hand, same implementation may be ported on several

different platforms.

Figure 1.1. System hierarchy

Today digital systems are getting larger and more complicated at an increasing pace.

The integration of IP-blocks into larger systems and porting of these systems to

different platforms has become a complex task. Traditionally the solution for these

problems has been to develop IP-libraries in several different implementation languages

such as VHDL, Verilog and C-programming language. This kind of approach results in

having systems, which contain IP-blocks implemented in several different

implementation languages, radically expanding the range of possible configurations.

The used design tools also require additional information on the systems, which

increases the configuration count even further. This creates demand for tools, which

efficiently manage the different configurations and variations of products on the market.

IP-XACT metadata provides a possibility to package the IP-block’s essential

information in a tool, implementation and vendor neutral way. The purpose of this

2

Thesis is to develop a tool, which understands IP-XACT and is able to manage the IP-

library based on IP-XACT. Kactus2 is designed to help the management and integration

of reusable intellectual property blocks.

The Thesis is organized as follows. The next Chapter introduces the concepts of IP-

block and System-on-Chip. It also explains the basics of IP-XACT, a metadata standard

for configuration and integration of IP-blocks. The third Chapter lists related tools on

the market. Chapter four introduces the Kactus2 tool, which is the main focus of this

Thesis. The fifth Chapter lists the use cases of library management and sixth Chapter

the different phases of IP packaging. Chapters seven and eight explain the

implementation details of library management and IP packaging module. The ninth

Chapter contains evaluation of the presented modules and finally Chapter ten contains

the conclusions of the topics discussed on this Thesis.

3

2 IP INTEGRATION

This Chapter explains the basic principles of IP-blocks and System-on-Chips (SoC),

what they are and what they can be used for. The basics about IP-XACT, a standard

used to package IP-blocks for easier reuse, are also explained. Finally the different

phases to add new IP-blocks to the library and the extensions made to the original

standard are depicted.

2.1 System-on-Chip

A System-on-Chip consists of several IP-blocks and contains almost all different parts

of the system on a single VLSI chip [2]. While testing and verification of a single IP-

block focuses on making sure the block functions correctly, the main focus on SoCs is

checking the cooperation of IP-blocks instantiated on the chip. In case of large designs

the workload can be divided into smaller portions by dividing the system hierarchy into

smaller subsystems. This way each level has fewer components to test, therefore making

the testing and verification process simpler. Figure 2.1 shows an example of a small

SoC, where several IP-blocks are connected together via HIBI-bus [3].

Figure 2.1. A System-on-Chip containing 4 IP-blocks, a bus and 5 external interfaces.

Figure 2.1 contains a large light blue rectangle which is the HIBI-bus connecting the

other IP-blocks. On the right side, there are blocks performing different functionalities

4

such as PCI-Express adapter, memory controller and a DMA-controller. On the edges of

the Figure, the external interfaces of the chip are shown, e.g. the reset interface.

The SoCs today may be very complicated containing several different clock regions and

dozens or hundreds of IP-blocks [4]. An example of modern SoC is the Texas

Instruments OMAP platform for mobile applications [5]. The OMAP platform contains

e.g. two ARM Cortex A9 CPUs, vast scale of I/O peripherals, a DSP processor and a

graphics accelerator. This level of complexity sets great demands on testing and

verification processes. Reuse of IP-blocks can greatly ease this workload when one can

use the same blocks and subsystems that have already been tested previously.

In addition to the large number of IP-blocks, also different configurations of the same

system set challenges for the developer. For example, in the example SoC, the PCIe-

adapter could be replaced by an Ethernet interface while the rest of the system remains

the same. When developing a new system it is not wise to always start all over from

scratch, but making use of the old systems saves a lot of time and effort. One way to

upgrade the system can be to develop a new software implementation which runs on the

old hardware platform, until a new hardware implementation reaches the market. On the

other hand, old software may be run on a new hardware platform or both of them can be

upgraded simultaneously. In each case, it must be explicit which configurations have

been tested and verified in each product.

2.2 IP-block information contents

As an example, Figure 2.2 depicts the directory structure of the HIBI-bus showing the

different versions (2.0 and 3.0), the documentation files (directory doc), implementation

files (directory vhd) and the test benches (directory tb).

Figure 2.2. The directory structure and files of HIBI-bus.

5

The owner of an IP-block may use the block in one's own systems or it can be licensed

to another party. Typically IP-block implements a clearly defined functionality and can

be used in many systems. The block may also be configurable to improve its reusability

in different systems. By using the same block more than once, the cost of development

can be spread among several parties.

The configurability of IP-blocks may vary greatly. Configurability of a transistor-level

design is minor but respectively one can estimate, for example, the performance and

timing limitations very well. In contrast an IP-block which consists of source codes

written in VHDL-language may be very well configurable but the estimates for its

performance are very rough.

One IP-block contains much more than just the source codes, the file count may easily

increase to dozens or even hundreds of files. The better the IP-block is documented, the

easier it is to reuse it in another system. In addition to the source and documentation

files the IP may contain files for testing and verification.

2.2.1 Documentation files

A user manual is the most important subsidiary deliverable. Without the user manual the

IP-block is almost useless for third party developers who do not know the detailed

implementation of the block. In addition to the user manual, the documentation files

may include class, block and sequence diagrams, which explain how the IP-block

functions. For hardware IP-blocks, the datasheets must explain how to configure and

boot the IP. The documentation material should reveal how to connect the block with

the rest of the system and what kind of requirements it sets for the connections. The

interfaces of the IP-block must be documented clearly. For example in software IPs, the

class interfaces must be defined, and for hardware IPs the ports and their timing

diagrams must be included.

2.2.2 Testing and verification files

A test plan should reveal how the testing of the IP-block is planned: what test cases are

planned and how the block is expected to behave in those test cases. The test report

should explain what tests were executed and how the IP actually behaved in those tests.

Especially all deviations between the expected behavior and the actual behavior must be

reported clearly. Test coverage analysis can be used to estimate the quality of the testing

and how reliable the IP-block is. Test log can be used by third parties to repeat the tests

and verify the block behavior with the given test cases themselves. The types of the test

logs may vary from simulation log files to screenshot videos recorded during graphical

user interface testing.

A test bench can be used to automate the testing of the IP-block. The test bench should

include the automatic checking of the test results. For hardware blocks the test bench

may be a VHDL entity which instantiates the design under test. For software there are

several software frameworks, especially for unit testing, which can be used to write

automated tests that check the results of the tests against the expected outputs.

6

2.2.3 Source files of the implementation

The most essential part of the IP-block is the implementation files. If there are other IP-

blocks that are needed for the main block to function, then also the source codes of

those blocks must be included. An example of this could be a third party library used by

the IP. For hardware IP-blocks there may also exist some software components, such as

drivers.

2.2.4 Files to help the initialization of the IP-block

The initialization of the IP-block is much easier if the block includes an example use

case where the block is instantiated and used. A makefile will help compiling the IP and

lists its internal dependencies. Synthesis scripts are similar auxiliary files for hardware

IPs.

2.3 IP-XACT-standard

IP-XACT is an XML format standard developed originally by SPIRIT Consortium for

configuration and integration of electronic components and designs [6]. The current

version 1.5, that Kactus2 supports, is also approved as IEEE 1685-2009 standard. The

purpose of the standard is to provide tool, implementation and vendor neutral format to

describe the essential information of an IP-block. Metadata is a general term for

descriptive data. In this case its purpose is to list, for example, the interfaces and file

sets of an IP-block.

The reusability of the block can be increased by making it easier to port it from one

development environment to another. Therefore a tool-neutral approach is very

beneficial. The implementation-neutral approach means that the metadata does not limit

the language the block is implemented in. This way there will be no unnecessary

dependencies in the IP library between implementation languages and different

configurations can be managed easily [7].

The standard defines 7 different types of IP-XACT documents [6]:

1. Component describes a single component in the library. For example the

interfaces and files for the component are listed here.

2. Design contains a hierarchical design which consists of the components

instantiated in this design. It is a kind of textual block diagram of the system.

3. Design configuration defines the configurations used in a hierarchical

design.

4. Bus definition contains the general information of a hardware bus.

5. Abstraction definition defines the logical signals and attributes of a hardware

bus.

6. Generator chain defines a group of scripts that can be used e.g. for

automatic configuration of a component.

7. Abstractor is used to combine designs from different abstraction levels.

7

Each document creates a single object in the library. The different objects can be

uniquely identified by a VLNV-identifier. The identifier consists of tuple {vendor,

library, name, and version}. All references between the documents are made using the

VLNV-identifier.

The library can be better managed when the dependencies between IP-blocks are

documented and in a format that can be read by computers. This way it is possible to

clearly display to users the dependencies between the components and how a single

component consists of sub-components. This also facilitates the management of third-

party libraries because the developers are not needed to explain to integrators, what

components depend on each other and what kind of requirements they set for their

interfaces. By agreeing on the naming policies of the VLNV-identifiers, it is also

possible to manage the dependencies across library bounds because the dependencies

are seen in references from one object to another [8].

2.3.1 IP-XACT based IP-block integration

Figure 2.3 depicts the different phases to add a new IP-block to the library.

Figure 2.3. Adding a new IP-block to the library and composing of new blocks [9].

The left side of the Figure displays the different phases of the design process and the

right side the documents being handled in each phase. When adding a new IP-block to

the library, it must be packaged with IP-XACT metadata. This makes it possible to

automatically manage the IP library when the data is in computer readable format. The

user can search for a single component from the hundreds or thousands of components

in the library by defining search criteria and filters to display only the desired types of

components.

In phase 2 a new hierarchical component is created by creating a design description,

which lists the components instantiated with their mutual connections. The created

hierarchical component is also displayed in the library among the other components and

it can be instantiated itself in some other hierarchical component to create deeper

hierarchies of sub-systems.

8

To create a final product, phases 3 and 4 are used. Phase 3 sets the used configurations

and settings for each component instance. Phase 4 generates the needed files, for

example the structural-level VHDL code for the top-level component. Finally the source

codes can be e.g. synthesized using the tools provided by an FPGA-vendor.

Figure 2.4 displays a screenshot of the component editor in Kactus2, used to create a

metadata package for a component. The bottom of the figure displays a part of the saved

metadata for HIBI-bus. The metadata displays the information of a single VHDL file

and what compile options are set for it.

Figure 2.4. The component editor and the saved XML data for a single VHDL file.

The part marked with number 1 contains information for the path and options of a single

file. The path is a relative path from the XML file to the source file. The part marked

with number 2 contains the compile commands and options for different file types.

The more detailed and strict the metadata package of an IP-block, the more precise are

the search results and statistics of the library. When the packaged data is correct and up-

9

to-date, it is possible to perform different types of data mining operations on the library.

For example, one could generate a weekly report of the library reporting, not only the

number of IP-blocks, but also their maturity levels, complexity and dependencies.

2.3.2 Elements of a component

Each IP-block will add at least one component-document to the library. Components

can be used to describe processors, peripherals such as DMA controllers, and buses like

the HIBI-bus. Component contains several elements used to describe different types of

information. Not all elements are required for a single component and different types of

components will use different elements. Table 2.1 describes some of the elements of a

component supported by Kactus2 [6].

Table 2.1. Different elements of a component.

IP-XACT

element

Description

VLNV An unambiguous identifier used to identify the component in the

library.

Bus interfaces Describes all external interfaces of a component. Bus interface

groups ports together to form a bus.

Channels Describes interconnections between interfaces inside of the

component. This element can be used to describe a bus connecting

interfaces together.

Address spaces Describes the addressable space seen from bus interfaces with

interface mode of master. This can be used to describe the address

space seen by a CPU through bus interface.

Memory maps Describes the addressable area seen through bus interfaces with

interface mode of slave.

Ports Describes a list of ports for the component. These are used to

describe the external connections of the component.

Model

parameters

Describes the parameters needed to configure the model

implementation specified in a view.

Views Describes the different views of a component. Component may have

different views. For example one view for the RTL implementation

and one for the written documentation of the component.

File sets Describes groups of files that can be e.g. grouped by their function.

One file set may contain the source files and other the documentation

files of the component.

Cpus Describes the programmable processors of the component.

Other clock

drivers

Describes clock signals within a component that are not directly

associated with an external port of the component. For example

generated clock signals can be listed here.

Parameters Describes parameters that can be used to configure the component.

Description Contains the textual description of the component. This can be used

to document a human readable description of the component.

10

The components in the library can be divided into two categories by their internal

structure:

 Non-hierarchical components do not contain any kind of metadata

documentation of their internal subcomponents. They are not dependent of other

components through VLNV-references and contain all source codes and

documentation they need in their own metadata package. The metadata package

of these components refers directly to the files in its file sets. The only VLNV-

references are bus and abstraction definitions, if any.

 Hierarchical components consist of other IP-XACT sub-components. These

sub-components can be non-hierarchical or hierarchical to form deeper

hierarchies of system design. A Hierarchical component contains VLNV-

reference to design, which instantiates the sub-components. It does not contain

the files of the sub-components because they are contained in the sub-

component descriptions. The hierarchical component may contain structural

level source codes. The structural level code can also be generated automatically

when the component instances and their connections have been defined, like in

the example SoC on page 3.

2.3.3 Extensions to the standard

Kactus2 uses some extensions to the original IP-XACT standard. These extensions are

designed to improve the usability and efficiency of the tool. The largest extensions are

related to the software design process, which is itself out of the scope of this work.

Figure 2.5 depicts the used extensions and their relation to the original IP-XACT

standard.

Figure 2.5. The extensions to the scope of IP-XACT standard [10].

11

2.3.3.1 New IP-XACT objects

Figure 2.6 displays the extensions on the implementation axis, formulated as a stack.

These extensions are implemented by new IP-XACT object types and interfaces to both

new and standard components:

a) SW component

b) SW design

c) API (SW) definition

d) COM definition

e) System design (SW architecture mapped to HW)

The new interfaces are API, for software components, and COM, for both HW and SW

components.

Figure 2.6. New IP-XACT object and interface types.

API interfaces are used to connect SW components to each other. For example, the API

provided by a driver is documented in API definition, which lists e.g. the functions of

the API. The driver SW component contains an API interface which refers to the API

definition, thus promising to implement the interface requirements. The application SW

component also contains an API interface, which means that the application uses the

API in some way. When the two API interfaces are connected together, this means the

application uses the API provided by the driver component.

The communication between IP-blocks can be abstracted to a higher abstraction level by

using software stacks, which implement a higher level communication mechanism. An

example of this kind of higher level communication abstraction is the Multicore

Association Communications API (MCAPI) [11].

Usually the communication in higher abstraction levels is implemented by software run

on a processor. The software implements the logical communication channels but the

underlying hardware components do not know of these logical connections. For these

logical communication channels to be functional, some kind of hardware dependent

12

software driver is needed. Figure 2.7 depicts how the communication abstractions are

handled in Kactus2.

Figure 2.7. Higher level communication interfaces in hardware components.

Kactus2 uses extensions called COM definition and COM interface to support higher

level communication. COM definition is an IP-XACT-like XML document, which

describes the transfer types and communication properties used in the communication

method. COM interface is similar to the bus interfaces in standard IP-XACT, which lift

the connection abstraction from port-level to bus-level. COM interfaces are included in

the hardware component and they contain a reference to the COM definition which is

implemented by the interface.

The COM Interface also defines the transfer type used in the interface and the direction

of the communication. Of course, as mentioned before, the hardware component doesn’t

implement the communication abstraction and therefore the COM interface refers to a

software component(s) which provide the implementation. This way, e.g. a DCT

accelerator can be used through an MCAPI endpoint [11] in a software application, even

though the hardware accelerator was not designed to support MCAPI.

The basic IP-XACT standard would require the software drivers to be packaged within

the hardware component’s file sets. The COM extension allows the drivers to be

packaged in their own software component, which defines its own software interfaces to

be used in an application. This way the hardware component still contains reference to

its drivers, but the drivers can also be re-used to build other custom software stacks if

13

needed. Also, the API provided by the drivers is explicitly defined in the library and

could be used e.g. to help the software/hardware co-design.

2.3.3.2 Kactus2 attributes for IP-block

Other extensions are new attributes to describe the hierarchy level, implementation type

and firmness of the IP-block [10]. These attributes are used for categorization of the

blocks and have no effect how the blocks behave in the tool.

Making use of these attributes allows library handler to filter the objects shown to the

user and also to display the object type to user with a correct icon in the library views.

Table 2.2 lists the Kactus2 attributes, their possible values and their explanations.

Table 2.2. The different Kactus2 attributes.

Attribute scope Attribute value Description

 Global Does not fit into any other category.

 Product Represents a final product.

Product Hierarchy Board
Represents development- or final hardware
platform e.g. a circuit board.

 Chip Represents a chip e.g. some specific FPGA-chip.

 SoC Represents a system-on-chip.

 IP Represents a single IP-block.

 HW Hardware implementation.

Implementation SW Software implementation.

 SYS

Contains information about the software
component mapping to the underlying hardware
platform.

 Template

A model that can be used as a base when creating
new components to the library but can’t be used
as such.

Firmness Mutable Component is fully modifiable.

Parameterizable

Component contains parameters that can be used
to configure it but it can't be modified further.

 Fixed
Component can’t be configured in any way and it
is frozen to its final state.

14

3 RELATED TOOLS

The system design tools on the market can be divided into two different categories.

There are tools used to compose systems from higher abstraction level models e.g. by

generating executable program code from UML-models. On the other group are the

tools that manage completed IP-blocks and integrate them into larger entities. The

Kactus2 software, described in this Thesis, belongs to the second group. Typically the

tools in the second group require that the blocks contain some kind of metadata to ease

the integration and configuration of the sub-blocks.

Mentor Graphics provides a tool called HDL Designer, which contains a graphical user

interface to instantiate and connect sub-blocks by drawing lines between the ports of the

blocks. HDL Designer supports IP-XACT standard but also enables functional

descriptions such as state machines [12].

Altera provides a tool called SOPC Builder as a part of their Quartus II development

software [13]. In this tool, the IP-blocks are packaged as library components and are

connected to each other by using a graphical tool. When the connections are made,

SOPC Builder generates the needed connection logic automatically between the blocks.

The metadata format used by the tool is not standardized and it is completely tool

specific and the connection network is always Avalon bus developed by Altera. Altera

also provides a tool called QSys which is the newer version of SOPC but the basic

principle of the tool is similar [14].

ARM has developed a tool called CoreLink AMBA Designer [15]. The tool supports IP-

XACT versions 1.2 and 1.4 which are older than the current IEEE standard 1685-2009

which Kactus2 uses. Version 1.4 is quite similar to the latest version but contains

differences e.g. in the register elements. The AMBA Designer uses the ARM Fabric IPs

and allows the integration and configuration of those IP-blocks into larger systems. The

tool outputs a top-level Verilog file which connects the different IPs together and also

the top level IP-XACT description which can be used in the next level of integration.

Synopsys has a CoreBuilder tool which can be used to create IP-XACT metadata

packages for a component [16]. The tool is similar to the component editor module

presented in this thesis. CoreBuilder supports both the Synopsys’ coreKits and also IP-

XACT components. It asks the user to input the details of the IP block and then creates

the desired package to be used in an integration phase. CoreAssembler is the integration

tool for assembly and configuration of an IP-based subsystem [17].

Duolog provides an integration tool called Socrates Weaver [18]. It supports importing

and exporting of IP-XACT to integrate IP-blocks into larger systems and then creating

the metadata package for the entire system.

15

Magillem has IP packaging tool called Magillem IP-XACT Packager [19]. It enables

user to import existing source files such as VHDL to create an IP-XACT description,

which can be used to build the IP library. Magillem Platform Assembly is the design and

integration tool, which uses the IP-blocks created with the packager to create larger

systems [20].

OpenTLM environment provides tools for the development and verification of

SystemC/TLM IP models. The OpenTLM IDE integrates an IP-XACT editor which can

be used to create/edit IP-XACT metadata packages [21]. The tool is open source and

can be downloaded in the project’s SourceForge page.

There are not many tools for packaging software blocks. Of course the different project

files of development platforms, which contain the files needed by the project, their

dependencies and compilation options, could be considered as metadata. This kind of

metadata is not standardized and the project files are not interoperable between different

tools and sometimes not even with different versions of the same tool. The closest tool

neutral standard for software packaging might be the Linux packet management system

[22] but it is meant for higher level packets used to ease the installation of software for

personal computers.

16

4 OVERVIEW OF KACTUS2

Kactus2 is a metadata based design tool for embedded products. It aims to ease the

reuse of IP-blocks with the help of a graphical user interface. The goal is to provide a

tool, implementation, and vendor independent method for IP-integration using IP-

XACT-metadata. The presented Kactus2 version is 2.0. Kactus2 can be used for the

following tasks.

a) Package existing IPs to create “electronic datasheets”.

b) Manage IP-XACT library by importing libraries from other vendors, checking

library integrity and exporting IP library.

c) Create quick draft blueprints for IP, System-on-Chip, printed circuit board

(PCB) and product, all stored in IP-XACT format.

d) Create system designs, used to map SW to HW.

e) Create SW architecture using higher level communication abstractions.

f) Configure designs to increase reusability of IPs.

g) Generate structural top-level VHDL code for HW designs.

h) Generate code templates, including VHDL entities, ports and C headers, for new

IPs based on their IP-XACT descriptions.

i) Generate synthesis and simulation scripts for designs.

j) Generate combined documentation for whole systems through all hierarchy

levels of a product.

Figure 4.1 displays a screenshot of Kactus2 user interface with the IP-packaging module

open.

17

Figure 4.1. Screenshot of Kactus2 with component editor.

On the left side of the screenshot is the library management module, which is presented

in Chapter 5. The item in the middle is the component editor which is the module used

to create the IP-XACT packages for components, explained in Chapter 6. These two

modules are presented in this Thesis in detail but the other parts of the software are

introduced only briefly.

The component preview is used to display a preview what the currently selected

component looks like in the integration phase. This helps user to find the correct

component in the library, because it shows the interfaces of the component visually. The

message console is used to print notifications and possible errors to user. The help on

the right is context sensitive and changes when user selects different elements on the

component editor. Figure 4.2 shows another screenshot of Kactus2 with the design

editor.

18

Figure 4.2. Screenshot of Kactus2 with HW design editor.

Figure 4.2 displays a design editor in the middle containing three components

instantiated. The design editor is used in the integration phase of the development to

instantiate components created with the component editor. The left side of the Figure

displays a new object dialog where the user can select the type of object to create. On

the right there are several different context specific editors which are used e.g. to edit

the details of the component instances. Whenever user selects an item in the design

editor, an editor for the item is presented. For example, the user has selected a bus

interface and the details of the interface are shown on the right.

Kactus2 uses different icons to display the object type to the user in the library views, as

depicted in Figure 4.3. The VLNV identifying the object is seen on the right side of the

icon.

Figure 4.3. The icons for different object types.

19

4.1 Kactus2 implementation

Kactus2 was implemented in C++-language using cross-platform Qt application and UI

framework [23]. The version used in this work is Qt 4.8.3. There were several reasons

for selecting Qt as the development framework. Kactus2 is an open source project so a

framework which is released with an open source license was desired. One of the major

reasons was also the ability for cross-platform development, which enabled the release

of Kactus2 for several different operating systems such as Linux, Windows and Mac OS

X in the future.

Python language was also considered when selecting the framework. It has large

number of GUI frameworks available and some of the features of Kactus2, such as

XML parsing and VHDL code generation would have been easier to implement using

Python. However, this would have made the installation package for Kactus2 more

complex because also installation of Python interpreter would have been needed. Use of

Python was therefore rejected. Java would have also been an option but the visual

outlook of Java GUI frameworks, such as Swing, was not satisfactory to the

development team. The graphical user interface of Kactus2 consists of widgets, which

display information, interact with the user and act as containers for other widgets [24].

The used development environment is Microsoft Visual Studio 2008 [25] with Qt’s

Visual Studio add-in installed, which enables Qt development on Visual Studio.

Although the development and testing has been mostly done on computers running on

Windows operating systems, other platforms have been considered and platform-

dependent code has been avoided. Kactus2 has been tested to run on at least Linux’s

Ubuntu and Debian distributions as well as Windows XP and 7 in both 32 and 64 bit

versions.

Agile software development methods have been used in the development process. There

have been several different parties submitting demands for the tools and the demands

have changed several times during the development. Therefore, the traditional waterfall

method wouldn’t have suited for this type of development because of the rapid changes

in system requirements. The Kactus2 development team contained two key coders,

which performed the unit testing of modules and also part of the system testing. For

system testing, there has been several parties which have used the tool in both the

development and the release environment. The extremely agile nature of the

development has forced re-writing of some of the codes due to major changes in system

requirements.

4.1.1 Signals & slots

The use of signals and slots mechanism of Qt enables the use of very modular code

[26]. Signals and slots are an alternative for the traditional callback mechanism which is

commonly used in GUI programming. The use of signals and slots enables the

communication between two classes which do not know of each other. It is enough that

some code module makes the connection from the signal to the slot. Figure 4.4 depicts

the signals and slots communication mechanism.

20

Figure 4.4. The signals and slots communication mechanism.

The implemented modules and the whole Kactus2, use signals and slots to improve the

modularity of the software. For example, the message console has two slots: one for

error messages and one for notifications. None of the other modules are aware of the

message console but when they emit a notification signal, it is forwarded to the message

console, which then prints the message for user to see. The message console prints

notification and error signals with different outlook to provide a clear distinction

between the message types.

21

5 MANAGEMENT OF THE LIBRARY

The library management module allows user to navigate through the object hierarchy

and view dependencies between components. The user can search for objects by their

VLNV identifiers or object attributes, which makes finding the correct object easier.

The module also checks the validity of the objects and reports if there are objects with

invalid or missing data.

LibraryHandler is the class which implements the interface for library management

module of Kactus2 software. It does not only manage the components and their designs

but also the interface definitions of hardware buses and software objects. Chapter 7

depicts the implementation of the library management module. The different objects are

identified by using the previously mentioned VLNV-identifier. By creating naming

policies for VLNV-fields, it is possible to unify and clarify the library structure, thus

keeping the IP-blocks easier to manage [8]. Moreover, our extensions (of Chapter 2.3.3)

also aid in management.

Figure 5.1 shows a screen shot of the two library views of library management module.

22

Figure 5.1. The hierarchical view and the VLNV-tree view.

The hierarchical tree view on the left displays the dependencies between different

objects. Each component on the tree contains the designs it refers to and the designs

contain the components instantiated in them. The non-hierarchical flat components,

such as SRAM_512KB, obviously do not contain any children because they lack the

design reference. On the view user can see the entire structure of an example product

samos_2012 which is the topmost object on the tree. The product contains a board level

component which contains a chip and so on, until the hierarchy reaches the IP-blocks

written in VHDL-language on the bottom of the hierarchy.

The VLNV tree on the right side is constructed from the VLNVs of the objects. The

appearance of this view can be greatly influenced by naming policies. The tree is

constructed by taking one of the VLNV-fields on each level to create a four-level deep

tree structure. For example the full VLNV of the object on the top of the view is

TUT:board:altera_de2_board:1.0.

23

Component de2_samos_soc is marked with red on both views. This means that the

component is not in valid state and contains some errors. The error could be a missing

file or invalid reference to an object that does not exist in the library. User can explicitly

ask the library handler to do error checking on the objects of the library and view the

error reports to fix the objects into valid state. The error reporting is explained in more

detail on Chapter 5.1.2.

Kactus2 attributes extend the scope of IP-XACT, as depicted in Chapter 2.3.3.2,

allowing users to document e.g. the structure of the development board to the IP-XACT

metadata. This way it is possible to control the documentation, source codes and

configurations of an entire product and get the product data management in a machine

readable format. When the library contains information on what configurations and

platforms a product uses, it could be possible for example to build a matching test

environment automatically [27].

Figure 5.2 displays the 11 use cases of the library management module which are

explained in the following Chapters.

Figure 5.2. Use cases of library management.

5.1 Entire library

Some operations are directed to the entire library instead of single items. For example,

searching for new items on the hard drive will cause all items to be re-parsed.

24

5.1.1 Search for new items on the disk

The "Library" section in the ribbon menu on top of Kactus2 contains icon to set the

directory paths for the libraries. Figure 5.3 shows the icon in the user interface of

Kactus2.

Figure 5.3. Set library paths for Kactus2.

The user can define library paths that are used as base when starting to search for new

library items. When Kactus2 is started it takes these paths and starts to search for IP-

XACT objects in those directories and their subdirectories. The found objects are

displayed to the user in library views described earlier. IP-XACT objects are searched

by seeking for IP-XACT-related tags in all files with XML suffix. User may start the

library search at any time when Kactus2 is running. Together with the search, an

integrity check is done to the library objects to find possible errors in the library.

Integrity check is explained in more detail in Chapter 5.1.2. The different phases when

searching for objects on the disk are explained in Chapter 7.5.2.

5.1.2 Checking library integrity

Most of the library objects contain references to other objects via VLNV-identifiers. All

hierarchical components require these references to design and configuration files but

also non-hierarchical components may contain bus interfaces that refer to a bus

definition. Components also contain references to files saved on the disk in form of

relative file paths. Third category is references within a document. For example, bus

interface groups ports together to form a bus by listing port names that belong to the

interface.

If any of these refers to an item that does not exist, the object is no longer in valid state

and it might not work correctly. A source file may be missing or renamed, thus breaking

the IP-block. On the other hand, a bus interface may refer to a port that does not exist,

which causes a conflict between metadata and the actual source implementation and will

result in problems during the integration phase.

Figure 5.1 displays the library views where one object is displayed in red meaning that

the object is not valid. The objects can be opened to an editor for closer inspection and

errors can be corrected. During the integrity check the library handler also provides an

error report, which is printed to the message console in Kactus2 user interface,

displayed in Figure 4.1. Each erroneous object is listed and beneath it, the errors it

contains. Finally, a summary of different error types found in the library is printed.

Figure 5.4 displays an example of an error report and the summary of integrity check.

25

Figure 5.4. The summary of integrity check and an example of an error.

5.1.3 Parsing item dependencies

The hierarchical view visualizes both the direct and indirect dependencies of the

components. The library handler also provides interface for other modules to get a list

of dependencies of the library object. The handler can tell which other objects a

component needs, but also which components need the specified object. This way it is

possible to check the dependencies in both directions of the hierarchy.

This functionality can be used e.g. when opening a component in the component editor.

If the component is instantiated in one or more designs, the user is informed which

components are affected. Figure 5.5 shows a dialog where the user is asked if he is sure

he wants to edit the component, which is a sub-component in a hierarchical component

named de2_sdram_example.

Figure 5.5. A warning informing about the implications of editing the component.

5.2 Item management

The following use cases are directed specifically to the selected item. These use cases

are available through the context menu in the library views.

5.2.1 Create new item

Library handler allows a user to create new items to the library through the context

menus in library views. See Figure 5.6 for an example.

26

Figure 5.6. Adding a new item to the library.

The context menu allows the user to select what type of object is to be created. After

selecting the correct action, a dialog is opened where the user can input the VLNV for

the new object. The VLNV of the selected object is automatically set to the dialog as

default for usability reasons.

5.2.2 Open item for viewing or editing

Library handler displays the objects in the library in two different views as explained

earlier. Both views enable the user to open the object in an editor for more detailed

viewing. Figure 5.7 displays the context menu used to open the editor.

Figure 5.7. Open object for editing.

Different object types have their own editors on Kactus2. Components are edited by the

component editor, which is explained in this thesis. Other editors are not addressed on

the thesis but the library handler selects the correct editor automatically based on the

object type. When opening an object, the library handler reads the XML formatted IP-

XACT file saved on the disk and parses its contents into a data structure. After this, the

library handler selects the correct editor for the object type and forwards the data

structure to it.

Figure 5.7 displays two options to open a hierarchical component. The selected option

on top "Open HW Design" opens the hierarchical view of the component, which

displays the contents of the design and the components instantiated in the design. The

operations of opening a hierarchical design are explained in Chapter 7.5.1. The lower

"Open Component" opens the component editor, which is explained in detail in Chapter

6.

27

5.2.3 Open the metadata to XML editor

Sometimes the user may need to open the selected document in an XML editor instead

of the IP-XACT editors in Kactus2, see Figure 5.8 for example. This option opens the

file in operating system’s default XML editor. However, usage of Kactus2 editors is

recommended because they provide support for error checking and help the user when

creating references between objects.

Figure 5.8. Open document in XML editor.

5.2.4 Save item

As mentioned before, each object type has its own editor that handles the modification

of the data structures. However, the library handler takes care of the saving process

itself. When the user wants to save the modified object, the library handler takes the

modified data structure and writes it to the disk. If the object is new and is not yet in the

library, the user is asked to select a path to which the XML file is written into. If the

object was already in the library, the handler knows the location and overwrites the

previous file. Because the files are overwritten, it is recommended to use some version

control system, such as SVN or Git, to help restore previous versions of the objects.

5.2.5 Export item

The user may wish to hand over a single IP-block, or part of the library, for a third party

without disclosing the whole library. To make this easier, the library handler contains an

export function that can be selected in the context menu, as in Figure 5.9. Kactus2

prompts the user to select a destination directory to export the selected object to. The

target may be another directory on the same disk, a directory on network disk, or e.g. a

USB-memory. After this, the library management module copies the selected object,

and all its dependencies, to the new location. Both direct dependencies of the object and

indirect dependencies through other objects are copied to maintain the objects in a valid

state. This way, all needed IP-XACT objects and files are copied with a single click and

files are not lost accidentally.

28

Figure 5.9. Export item.

The exporting of files to a new location is only possible when the file references within

components are made with relative file paths. This is why component editor always

selects relative paths when adding files to the component metadata.

5.2.6 Remove item

The VLNV-tree view allows the user to remove objects from the library. When the

object is selected to be removed, the handler checks the library if there are other objects

in the library that are tightly associated with it and should also be removed. This check

is done to keep the library as clean as possible and to avoid accidentally leaving

unnecessary objects to the library. Also, when removing a component, its files might

need to be removed from the disk.

Tightly associated objects are:

 In case of hardware buses, bus definition and abstraction definition. If the other

is removed, it is often unnecessary to preserve the other. This is why the tool

suggests removing both objects.

 Hierarchical components contain a design configuration and a design. A

hierarchical component may contain several different configurations and designs

and when removed also all of these are suggested to be removed.

Before anything is removed, the user is presented a dialog to select which library

objects and files to remove. After clicking "Ok" these items are removed from the

library and disk. If the user wants to save some of the items, they can be unchecked in

the dialog and they will not be removed. Figure 5.10 displays the dialog asking if the

user is sure he wants to remove a hierarchical component altera_de_II_demo and its

configuration and design. Also the files contained in the component are listed.

29

Figure 5.10. The confirmation dialog for the user to select, which items to remove.

5.3 Viewing

The following use cases affect how the library looks like. They do not change the

library structure but only the visual outlook of the library views.

5.3.1 Search for item in the library

The number of objects in the library may become very large, making it hard to locate a

specific object in the library. This is why the library handler provides a search-

functionality in the VLNV-fields. Only objects that match search criteria are displayed

in the library views. Figure 5.11 shows how the search looks like in the user interface.

Figure 5.11. Only items that match the search criteria are shown in the search results.

30

Only objects that's VLNV-identifiers contain the given keywords are shown. The search

results contain all object types such as hibi_segment component and hibi_clocks bus

definition. The user may also use wildcards (?) and (*) to replace characters in search

terms.

5.3.2 Filter item types

In addition to the search functionality, the library handler provides option to filter

objects based on the object types. This can be used together with the search terms e.g. in

order to search for “mutable” hardware components containing name "hibi". Filtering

uses the Kactus2 attributes (Chapter 2.3.3.2) and allows the user to select which

attribute options are to be shown in the library views. Figure 5.12 displays the menu for

selecting the filtering conditions.

Figure 5.12. Selecting the filtering conditions.

31

6 PACKAGING OF AN IP-BLOCK WITH

COMPONENT EDITOR

The component editor module is used to package IP-XACT components. It provides

help and advice but also reports errors in the metadata to help the packaging process.

The visual user interface is much more user friendly than the traditional XML editing

tools. This editor is used in the phase 1 of the Figure on page 7. When the essential

information of an IP-block is packaged in the component metadata, it is easier to

manage and reuse the block. Figure 6.1 displays the user interface of the component

editor.

Figure 6.1. The user interface of the component editor.

On the left side of the Figure 6.1 is the navigation tree of the editor, which corresponds

to the IP-XACT elements in Table 2.1. This tree can be used to browse between

different elements of the component. When clicking an item in the tree the

corresponding editor for that element is opened to the editor area in the middle. On the

right side is the area reserved for element visualizations. Currently, only address spaces

contain a visualization widget but more will be implemented in future versions of

Kactus2. When the user adds new elements to the component, e.g. a new file set, they

are added to the tree. The implementation of the component editor is explained in

Chapter 8.

The following Chapters will explain the 23 different element-editors and their purposes

in more detail. Each Chapter contains a screen shot of the editor interface and an

explanation of the different fields. The editors edit the IP-XACT metadata of their

32

corresponding elements within a component and more detailed description of the

different fields can be found in the IP-XACT standard [6].

There are two types of editors. Summaries contain a table displaying the settings of the

items. Some elements, such as parameters, only contain a summary editor because all

element fields can be accessed in the table. Some more complicated elements, such as

files, require several editors to handle different levels of detail. All elements contain a

name field, used to identify the element, and a textual description explaining the

purpose of the element in question. The mandatory fields of each editor are marked with

yellow color. If some information is invalid, such as reference to a missing element, or

mandatory fields are empty, the element is displayed in red color.

6.1 General Editor

General Editor is the first editor shown to the user when he opens the component editor.

It contains the general information of a component, such as description. Figure 6.2

shows the user interface of the general editor.

Figure 6.2. The user interface of general editor.

VLNV-identifier and the path to the XML file are shown on the top of the editor. These

fields can’t be modified and if the user wants to change the VLNV then the component

must be saved as a new component. Kactus2 attributes contain the hierarchy, firmness

and implementation, of which the implementation can’t be modified (see Chapter

2.3.3.2).

The component preview box on the bottom displays how the component will look like

when instantiated in a design. The preview displays the bus interfaces of the component

33

and also the ports that are marked to be seen as ad hoc ports. In this case, there are 5 bus

interfaces.

6.2 File set summary

The files of a component are grouped together by file sets. The grouping can be based

on e.g. the file types (sources, documentation, simulation, etc.). There are 3 different

editors for the file packaging: the file set summary, file set specific editor and file

editor. File set summary is seen in Figure 6.3.

Figure 6.3. The user interface of file sets editor.

Group identifiers can be used to describe the function or purpose of the file set with a

single word. All columns can be modified in the editor to set the general information of

the different file sets. If a file set is in invalid state then the editor displays the

associated row in red.

Group identifiers can contain several identifiers and the possible options are not limited.

However, the editor suggests the following options for the group identifiers:

a) Diagnostics

b) Documentation

c) ProjectFiles

d) Simulation

e) SourceFiles

6.2.1 File set editor

File set editor sets the details of a single file set and adds and removes files. File sets

basically group files together so they can be easily referenced by other sections of a

component. Figure 6.4 displays the user interface of the file set editor.

34

Figure 6.4. The user interface of file set editor.

The file path of each file is the relative path from the component’s XML file. File types

column displays the file types defined for the file and the description contains the

textual description of a single file. The file types and description columns are editable

but the file name and file path are not. The “Add Files” button opens a dialog used to

select files on the disk to add to the file set.

If a file is in invalid state, e.g. missing a mandatory file type, then the file is displayed in

red color. The order of files is maintained and can be changed by dragging rows. If the

compilation order of files is important then the files should be listed in the order needed

by the compilation.

The default build command applies to all files of the specified type. For example, all

VHDL files in this file set are compiled with Modelsim’s vcom and the given flags.

Replacing default flags means that flags defined in higher level will be replaced by the

flags defined in this file set. For example, the flags may be defined in the views of

component. If files are not replaced then they are appended to the default flags. Group

identifiers are used to describe the purpose of the file set and they are same as in

Chapter 6.2.

Dependent directories can be used to describe a list of paths to directories containing

files on which the file set depends, such as third party libraries.

35

6.2.1.1 File editor

File editor sets the details of a single file within a file set. This allows a more detailed

description of the file and its dependencies. Figure 6.5 displays the user interface of a

file editor.

Figure 6.5. The user interface of file editor.

The top part of the editor contains the same information as the previous editor.

The logical name of a file can be used e.g. to specify a VHDL library for a VHDL-file.

If the “only used as default”-check box is checked then the logical name can be

overridden by another process. For example in case of VHDL, the library where

component is compiled to, could change by changing the compilation flags.

The “is include file” and “contains external declarations” -check boxes can be used to

specify the file is an include file and that the file contains external declarations and is

needed by other files in this file set.

The description and the build command can be defined also file-by-file. Replacing the

default flags means that only these flags are used to build the file. Otherwise the flags

are appended to the flags received e.g. from the file set. The target name specifies a path

to the file that is derived from this file when the build process is run. It is not needed

with VHDL but is useful e.g. with C++.

36

6.3 Model parameters editor

Model parameters editor is used to add, remove and modify the model parameters of a

component. Model parameters are often used in HDL languages to pass information to

the model to configure it, e.g. generics in VHDL. Figure 6.6 displays the user interface

of a model parameters editor.

Figure 6.6. The user interface of model parameters editor.

Each model parameter has a name and a type, which is language specific. The usage

type can be either typed or nontyped. Typed parameters appear in object-oriented

languages, e.g. in C++. Non-typed parameters are found in all languages, e.g. in VHDL

all types are non-typed. Value contains the default value of the model parameter if it

isn’t assigned in the design upon instantiation.

6.4 Parameters editor

Parameters editor is used to add, remove and modify parameters of a component. Figure

6.7 shows the user interface of the parameters editor. Some sub-elements within the

component also contain parameters but the scope of parameters is always restricted to

the containing element, e.g. parameters of a view can only be used within that view.

Component’s parameters have the scope of the entire component. Value contains the

default value of the parameter.

Figure 6.7. The user interface of parameters editor.

6.5 Memory map summary

Memory map summary is used to add and remove memory maps. Memory map

specifies the addressable area seen through a slave bus interface, e.g. the registers that

other components can access (status, control). Figure 6.8 displays the user interface of

the memory maps editor.

37

Figure 6.8. The user interface of memory maps editor.

The address unit bits-column is used to define the number of data bits each address

increment of the memory map contains. The default setting for a memory map is byte

addressable (8 bits).

6.5.1 Memory map editor

Memory map editor is used to set the details of a single memory map by defining

address blocks. The memory maps use 4 editors, each of them extending to different

level of detail. Address blocks may either define registers or a contiguous block of

memory but not both at the same time. Figure 6.9 depicts the different levels of memory

map.

Figure 6.9. The hierarchy of memory map.

Figure 6.10 displays the user interface of the memory map editor.

Figure 6.10. The user interface of memory map editor.

38

Usage specifies the type of the address block. The possible values are:

a) Memory specifies the entire address block as memory.

b) Register specifies the entire block to contain registers and nothing else.

c) Reserved specifies the entire block as reserved for unknown usage.

The only type that may contain registers is the usage type of register.

Base address specifies the starting address for the address block. It is expressed in

addressing units from the containing memory map. Range of the address block is also

expressed in addressing units and specifies how many units the block contains. Width is

the bit width of a row in the address block.

The access column is used to specify the accessibility of the block. The possible values

are:

a) Read-write

b) Read-only

c) Write-only

d) Read-writeOnce

e) writeOnce

Value true in volatile column indicates that the stored value may change without

assigning a write operation. For example, a register may change its value in case of an

interrupt.

6.5.1.1 Address block editor

This editor is used to define registers to the address block. Each row in the editor

specifies a single register, Figure 6.11

Figure 6.11. The user interface of address block editor.

Each register has a name and a textual description. Offset specifies the location of the

register from the start of the containing address block expressed as the number of

addressing units. Size defines the number of bits the register contains. Dimension

assigns an unbounded dimension to the register. Volatile indicates if the register value

may change without a write operation to it, e.g. by an interrupt event. Access specifies

the accessibility of the register, the possible values are listed in the Chapter 6.5.1.

The user can set the value that register gets on reset. Reset mask defines the bits of the

register that have a known reset value. Bit value of 1 means that the corresponding bit

has a known reset value. 0 means that the value is unknown, e.g. the 20 top-most bits of

STATUS are set.

39

6.5.1.2 Register editor

Register sets the details of a single register by assigning bit fields to it. A bit field may

contain just one bit, the whole register or something in between. Figure 6.12 displays

the user interface of the register editor.

Figure 6.12. The user interface of the register editor.

Offset describes the starting bit of the field within the containing register. Width

specifies how many bits are included in the field. Volatile indicates that there is no

guarantee what a read operation will return because the register may change its value

without write operations e.g. as a result of an interrupt. Access column specifies the

accessibility of the field, the possible values are listed in Chapter 6.5.1.

The modified write value describes how the data in the field is manipulated on a write

operation. For example, bits can be set, cleared, toggled or the value written is stored to

the field as such.

Read action specifies the action that happens after a read operation, the possible values

are:

a) Empty setting indicates that field is not modified after a read operation.

b) Clear indicates that all bits in the field are cleared after a read operation.

c) Set indicates that all bits in the field are set after a read operation.

d) Modify indicates that the bits in the field are modified in some way after a read

operation.

Testable specifies if the field is testable by an automated register test. Test constraint

specifies the constraints for the automated tests for the field, the possible values are:

a) UnConstrained indicates that there are no constraints for the written or read

data. This is the default setting.

b) Restore indicates that the field’s value must be restored to its original value

before accessing another register.

c) WriteAsRead indicates that the data written to a field must be same that was

read previously from the field.

d) ReadOnly indicates that the field can only be read.

40

6.5.1.3 Field editor

The field editor sets the details of a register field. For example, it defines enumerated

values as the legal bit patterns. Figure 6.13 shows an example.

Figure 6.13. The user interface of field editor.

The table defines the bit patterns, which can be identified by a name. This can be used

to define the legal bit patterns for a field or to define some default settings to help

configuration.

The write value constraints define the legal values the user may write to a field. The

options are:

a) No constraints indicating that there are no constraints for values to be written.

b) Write as read indicating that only legal values to be written are the same that

were previously read from the field.

c) Use enumerated values indicating that the defined enumerated values are the

only legal values that can be written.

d) Set minimum and maximum limits indicating that the user may set the

minimum and maximum limits for the values written to the field.

41

6.6 Address space summary

Address space summary is used to add and remove address spaces. The summary

enables the user to set the general information of an address space, see Figure 6.14 for

the user interface.

Figure 6.14. The user interface of address spaces editor.

Addressable unit size specifies the number of bits each address increment contains. The

default is 8, which means byte addressable. Width means the width of a row in the

address space in bits. The range of an address space is expressed as addressable units,

e.g. in this case the address space is 2G * 8b = 2GB.

6.6.1 Address space editor

Address space editor is used to set the details of a single address space. Address space

defines a logical address space used by a CPU. Figure 6.15 shows the user interface of

the address space editor.

Figure 6.15. The user interface of address space editor. The example shows a 2GB

address space, which is divided into 3 segments.

42

On the left side are the editor fields that can be used to set the details of an address

space. The right side has a visualization displaying the address space in its current state.

The general group contains the same settings that can be set through the address spaces

summary, presented in Chapter 6.6.

Each address space can be divided into segments. The user can specify the starting

offset for the segment and define how many addressable units the segment has (range).

The visualization on the right side reacts on the changes in both the general settings and

segment changes to display how the segments are situated in the address space. The

width of the address space sets the maximum transfer length of a single transaction.

Address space can have parameters. They are set similarly as in Chapter 6.4 but their

scope is limited to the containing address space.

6.7 View summary

View summary, Figure 6.16, is used to add and remove views. The views are used to

provide different configurations of the component. For example, the component may

contain one view for simulation and one for synthesis purposes.

Figure 6.16. The user interface of views editor.

The view type is not editable and is used to inform the user if the view is hierarchical or

not. A hierarchical view contains a reference to a design or configuration which

instantiates sub-components. A non-hierarchical view references the file sets within the

containing component. Views that are currently in an invalid state will be displayed in

red.

6.7.1 View editor

View editor sets the details of a single view. There are 2 types of views: hierarchical

and non-hierarchical, as depicted in Chapter 2.3.2. Some elements are common for both

view types, Figure 6.17, but some change according to the type, Figure 6.18. The view

type can be changed, thus changing the outlook of the editor.

43

Figure 6.17. The common elements of the view editor.

The name and description are common for all views as well as the environment

identifiers specifying information about the tool environment of the view.

Figure 6.18. The view type specific elements.

The view type is used to select between non-hierarchical and hierarchical views. The

left side of the Figure 6.18 displays the elements for non-hierarchical, and the right side

for hierarchical views.

Language specifies the HDL for the view, e.g. this may be VHDL or verilog. Model

name is language-specific and therefore depends on the implementation language of the

view. For VHDL, this may be a configuration name or the entity(architecture) name.

File set references contain a list of file set names within the component, used by this

view. Default file build commands contain a list of build commands and flags for the

files contained in the file sets.

44

The hierarchy reference contains a VLNV-reference to a design configuration or design

document. These documents list the sub-components instantiated in the hierarchical

design and their configurations. The design objects can be edited by a design editor,

omitted from this Thesis.

The reference to a top-level implementation view is a Kactus2 specific extension used

to refer to a non-hierarchical view containing the rtl-implementation of the component.

Usually a component contains a non-hierarchical view which contains the top-level

structural VHDL. This extension refers to the view to include the source codes, e.g.

when generating a compilation script for simulation or synthesis. Figure 6.19 depicts the

reference to other views.

Figure 6.19. The references between views and other objects.

6.8 Ports editor

Ports editor provides a table containing all the ports of a component. This editor is used

to add, remove and edit the ports. Figure 6.20 shows the user interface and an example

of the matching VHDL code.

45

Figure 6.20. The user interface of ports editor and an example of VHDL code declaring

the ports.

Port name identifies each port and must match the name of the port in the

implementation language. For example, in case of VHDL the ports listed in the entity

declaration are to be listed here.

The direction column specifies the direction of the port and has 4 options:

a) In for input ports.

b) Out for output ports.

c) Inout for bidirectional and tri-state ports.

d) Phantom for ports that exist on the IP-XACT component but not on the

implementation.

The left and right bound define the width of the port in case of vectored ports. The

width of the port is left bound – right bound + 1. In case of scalar ports left bound =

right bound.

The port type specifies the type of the port in the implementation language. In case of

VHDL, the typical values for scalar and vectored ports are std_logic and

std_logic_vector. The type definition is a language specific reference to where the type

is defined. For the previous example the type definition is IEEE.std_logic_1164.all. In

case of SystemC the type definition is the include file name, e.g. systemc.h.

The default value is used to assign a value for an unconnected port. This is used, for

example, when generating a structural VHDL for the top-level hierarchical component

to assign values to input ports that are not connected to any other port within the design.

The ad hoc column is a Kactus2 specific extension which is used in the graphical user

interface of a hierarchical design. Figure 6.21 displays an example of a component

instance that has ports set as ad hoc ports.

46

Figure 6.21. The ad hoc ports on a component instance.

In this case the instance has 5 bus interfaces: clk, led, rst_n, from_hibi and pkt_codec.

Normally, this is all that the user sees of the interfaces of a component, but if the user

selects ports to be ad hoc then they are also shown. Figure 6.21 displays two ad hoc

ports: rx_av_in and led_out, the directions of the ports can also be seen by the port icon.

6.9 Bus interface summary

The bus interface summary, Figure 6.22, is used to add and remove bus interfaces. Bus

interface groups ports together to form interfaces that e.g. fulfill requirements of a bus

protocol.

Figure 6.22. The user interface of bus interfaces editor.

The bus and abstraction definition columns are not editable and they display the VLNV-

identifiers of the IP-XACT documents defining qualities of the hardware bus that the

interface fulfills. The next two subsections explain how they are edited.

The interface column is used to select the interface mode of a bus interface. There are 7

different interface modes:

a) Master indicates that this interface initiates transactions.

b) Slave responds to transactions.

c) System is something that does not fit into the master or slave category.

d) Mirrored slave is the mirrored version of slave interface and may provide

address offsets to the connected slave interfaces.

e) Mirrored master is the mirrored version of master interface.

f) Mirrored system is the mirrored version of system interface.

g) Monitor is an interface that can be used for verification process. This interface

type gathers data from other interfaces.

The mirrored interfaces have the same ports as the normal interfaces but the directions

of the ports are inverted. Table 6.1 depicts the connectivity of different interface modes.

47

Table 6.1. The connectivity of interface modes.

Interface

mode

Master Slave System Mirrored

Slave

Mirrored

master

Mirrored

system

Monitor

Master No

Slave Yes* No

System No No Yes

Mirrored

slave

No Yes No No

Mirrored

master

Yes No No No No

Mirrored

system

No No Yes No No No

Monitor Yes** Yes** Yes** Yes** Yes** Yes** No

* The direct master-slave connection can be enabled or disabled in the interface’s bus

definition

** Each monitor interface defines itself what interface modes it can be connected to.

48

6.9.1 Bus interface editor

The bus interface editor, Figure 6.23, contains two tabs: the general tab to set the

general settings of the interface and the port maps tab which groups ports to the

interface.

Figure 6.23. The user interface of bus interface editor.

Bus definition and abstraction definition contain VLNV-references to the IP-XACT

documents associated with this interface. Those documents define the qualities this

interface must meet, e.g. the abstraction definition defines the logical signals that

belong to the bus. These logical signals are used to define how the physical ports of the

component are connected in the bus. This is explained in Chapter 6.9.1.1.

49

Interface mode selects the interface mode of the bus interface, e.g. slave. Below the

combo box are the interface mode specific fields used to edit options of the currently

selected interface mode. With slave, these include memory map and bridge info.

In the general group the addressable unit size defines how many bits are included in the

least addressable unit of the bus. The default setting is byte addressable (8 bits). The

endianness indicates whether the interface is big-endian or little-endian. The bit steering

can be set to on or off. The bit steering on implies that the interface is able to align data

on different byte channels in case of addressable interfaces. The default setting when the

bit steering is not set is off. When checked, the connection required indicates that when

instantiated in a design, this interface must be connected to some other interface.

6.9.1.1 Port maps

The port maps tab, Figure 6.24, of a bus interface editor groups the physical ports of the

containing component to the logical signals listed in the associated abstraction

definition.

Figure 6.24. The user interface of port maps editor.

The top-left corner contains a list of the logical signals that were defined in the

abstraction definition assigned in the general tab. The top-right corner contains a list of

the physical ports of the component. The bottom table displays the mappings between

logical signals and physical ports. A mapping can be created by dragging an item from

one of the top lists to the another or by selecting an item in the both lists and pressing

enter or clicking the connect button. After this, the selected items disappear from the top

lists and appear as mapped on the port map table.

If the user selects several items on both lists and connects them, then mappings between

the ports are made in the order which the items were listed. If a mapping from one port

to many is desired, then the user may toggle the “1 to many” button and select a single

item on either list and connect it to all selected ports on the other list. The user can

remove the mappings from the bottom table by selecting the row and pressing delete or

selecting “Remove mapping” from the context menu. When a mapping is removed, the

50

associated ports return to the top lists. Pressing the clean up-button will remove any

duplicate ports from the lists. Figure 6.25 depicts how the physical ports between two

component instances are connected through their bus interfaces.

Figure 6.25. The association between physical ports and logical signals.

On the left side is a list of physical ports found on the component A. The right side lists

the physical ports found on a component B. The lines between the physical ports and the

logical signals represent the created port mappings in the bus interfaces. For example,

component A has mapped its port comm_out to the logical signal COMM. Because the

component B has mapped its port comm_in to the same logical signal this means that

the ports are connected together if the user connects these interfaces together in a

design.

Of course, if no connection is made between the component instances in the design then

no ports are connected. All ports of the component do not need to be mapped in the

interface nor do all the logical signals of the abstraction definition need to be associated

with a physical port. Abstraction definition defines the directions of the signals in

different interface modes, thus making it possible to validate connections so that two

output ports are not accidentally connected to each other. In the Figure 6.25 the

abstraction definition could have defined the DATA signal to have direction out in

master interfaces and in at slave interfaces.

A vectored physical port can be sliced to connect only part of it by assigning left and

right bounds in the mapping table. Figure 6.26 depicts how a part of the physical port

can be connected.

51

Figure 6.26. Connecting only a part of a vectored port in port map.

6.10 Channels editor

Channels editor provides a summary of the channels in the component. A Channel is

used within a bus component to describe which bus interfaces are connected via bus.

Only mirrored interfaces can be connected via channel. Figure 6.27 shows the user

interface of the channels editor.

Figure 6.27. The user interface of channels editor.

Interface references contain the names of the mirrored bus interfaces that are grouped to

a same channel. Figure 6.28 illustrates the connections between mirrored bus interfaces.

Figure 6.28. A channel connecting bus interfaces within a component.

52

6.11 Cpus editor

The cpus editor, Figure 6.29, displays the programmable cores the component contains.

Figure 6.29. The user interface of cpus editor.

Address space references contain the address spaces specifying the logical address

space of the CPU. The master interfaces of a component may refer to the same address

spaces to create a link between programmable core and interface.

6.12 Other clock drivers editor

Other clock drivers-editor, Figure 6.30, shows the clocks within the component, which

are not directly associated with a top-level port. These kinds of clocks could be e.g.

virtual clocks or generated clocks.

Figure 6.30. The user interface of other clock drivers editor.

The clock source specifies the physical path and name of the clock generation cell. The

rest of the columns are used to describe the waveform of the clock signal. The time

units are either ps (picoseconds) or ns (nanoseconds). Figure 6.31 depicts the

association of the different columns to the waveform of a clock pulse.

Figure 6.31. The waveform of a clock pulse.

The clock period defines the length of one cycle of clock pulse. Pulse offset describes

the time delay from start of the pulse to the first transition. Pulse value defines the logic

value which the transition is made to. Pulse duration specifies how long the value

defined in pulse value is held.

53

7 LIBRARY MANAGEMENT MODULE

LibraryHandler implements the interface for library management module providing

services for other modules in Kactus2. It contains both a graphical user interface for the

user to interact with library objects and also a programmatic interface for other program

modules. Figure 7.1 shows the class structure of the library management module.

Figure 7.1. The structure of library management module.

The graphical user interface of the library management is explained in Chapter 5. The

main class is LibraryHandler, on the bottom of the Figure. It consists of 3 data classes:

LibraryData, HierarchyModel, and LibraryTreeModel, which contain the data

54

structures. It also contains two widgets: HierarchyWidget and LibraryTreeWidget,

which contain the library views shown to user. The two library views, presented in

Chapter 5, are implemented by HierarchyView and LibraryTreeView, which are

connected to corresponding filter classes to enable the use of the search and filtering

options. The library views follow the model/view architecture depicted in Chapter 8.1.2

and the model classes for the views and filters are HierarchyModel and

LibraryTreeModel. Figure 7.2 shows which classes are visible in the graphical user

interface of library management module.

Figure 7.2. The GUI classes of library management module. The hierarchical view is on

the left and VLNV tree on the right.

VLNVDialer is the container class for the search and filtering options in the GUI.

FilterWidget implements the filtering options for different groups of attributes.

DialerWidget implements the search widget, enabling searching for text in different

VLNV-fields. VLNVDialer is connected to both filter classes to update changes in

search conditions.

One of the most important services in the programmatic interface of library handler is

the parsing of IP-XACT XML files into data structures. LibraryComponent is the base

class for all IP-XACT data structures, such as components and designs, and

libraryHandler keeps a cache of these classes to provide faster parsing of library items.

55

7.1 Data structures

Library management module contains several different data structures to enable

different views to the library and to allow navigating the library structure and

dependencies. LibraryInterface is the interface class which all other modules use to

access the library management services. It is an abstract class and doesn’t contain any

implementation code, which makes it easy to change the implementation of the library

services if necessary, e.g. changing the library management to use data bases. The

interface contains 17 functions to retrieve data or information from the library, 11 slots

to perform actions to the library and 12 signals to pass information from the library to

other modules.

LibraryHandler is the class that implements the functions declared in LibraryInterface.

Some of the services it provides itself and some it forwards to one of its member

classes. LibraryData is the main data class for the library management module. It does

the parsing and searching of IP-XACT files on the disk as well as checks the library

integrity. Figure 7.3 displays the class diagram of the data classes within library

management, the connections with the GUI classes are omitted from this Figure.

56

Figure 7.3. The data classes used in library management module.

As mentioned before, LibraryData searches for IP-XACT files on the disk and saves the

VLNV-identifiers and file paths of the found objects to its libraryitems_ -map structure.

After the files are searched, the found VLNVs are forwarded to LibraryTreeModel and

HierarchyModel. These classes use the VLNV-identifiers to build their own data

structures to provide the library views seen in the GUI of library management module,

(see Figure 7.2). When LibraryHandler needs an object to be parsed from a file, it calls

57

for LibraryData which has the file path in its map structure and reads the file. Figure 7.4

displays the class diagram for the HierarchyModel and HierarchyItem.

Figure 7.4. The class diagram of hierarchy tree model.

HierarchyModel provides the hierarchical data structure which can be seen in the library

management user interface. It constructs a tree structure, which represents the object

dependencies in the library. For example, a hierarchical component contains its design

objects under it in the tree, such as hibi_segment in Figure 7.2. HierarchyItem

represents one item in the tree. All instances of HierarchyItem identify a single object in

the library. HierarchyModel owns only one instance of HierarchyItem which is the tree

root not shown to the user. The root item then owns the other items which are visible.

HierarchyItem provides several functions to manipulate the tree e.g. in case of delete

operation.

Figure 7.5 displays the class diagram of the VLNV tree model, which is the other

library view in the GUI.

58

Figure 7.5. The class diagram of vlnv tree model.

59

LibraryTreeModel provides the VLNV tree structure, seen in the user interface of

library management module. It uses the VLNV-identifiers of the library objects to

construct a tree, which holds 4 levels: one for each VLNV-field. LibraryItem is the class

to represent one item in the tree. LibraryTreeModel owns one instance of LibraryItem,

which is the tree root. The root item owns the items in vendor level and so on. Only the

leaf-items which display the version-fields can identify a single object in the library. All

other higher level items represent a group of objects. Figure 7.6 depicts how the items

form the VLNV tree.

Figure 7.6. Items in the VLNV tree.

7.2 Hierarchy view

Hierarchy view displays the library hierarchy in a tree structure. Hierarchy view follows

the model/view architecture, see Chapter 8.1.2 for details. HierarchyWidget is the

container class, which owns the view and filter classes and sets the layout for the

hierarchy view. Figure 7.7 displays the class diagram containing the 3 classes related to

hierarchy view.

60

Figure 7.7. The hierarchy view classes.

HierarchyModel contains the actual tree data structure displayed to the user, explained

in Chapter 7.1. HierarchyFilter acts as an intermediate class between the model and

view and filters the items to display based on settings received from VLNVDialer.

HierarchyView is the tree view class which is shown in the GUI.

61

7.3 VLNV tree view

VLNV tree view displays the library objects based on their VLNV-identifiers. It follows

the model/view architecture depicted in Chapter 8.1.2. LibraryTreeWidget is the

container class, which owns the view and filter classes and sets the layout for the VLNV

tree view. Figure 7.8 displays the class diagram containing the classes related to the

VLNV tree view.

Figure 7.8. The VLNV tree view classes.

The tree structure shown to the user is contained in the LibraryTreeModel which is the

model class, explained in Chapter 7.1. LibraryTreeFilter is connected to VLNVDialer to

receive the filtering settings used to select which objects are shown in the view.

LibraryTreeView is the view class which is visible to the user.

62

7.4 VLNV dialer

VLNV dialer, Figure 7.9, contains the implementations to set filtering and search

options, which specify the objects to show in the library views.

Figure 7.9. The class diagram of VLNV dialer.

VLNVDialer is a container which sets the layout for two classes. FilterWidget contains

the check boxes to select which object types, hierarchy levels, etc. to show in the views.

DialerWidget contains the implementation for the text search within VLNV-identifiers,

see Chapter 5.3.1. It contains four combo boxes, each matching one of the fields in the

VLNV-identifier. It is connected to the root item of the VLNV tree view to allow

navigation through the VLNV data structure.

63

7.4.1 Filter widget

Filter widget, Figure 7.10, provides functionality to select different filtering options to

hide/show certain types of library objects from the user.

Figure 7.10. The class diagram of filter widget.

FilterWidget, see Chapter 5.3.2, contains four different group boxes with each of them

handling the options for corresponding type. TypeGroup’s settings are based on the IP-

XACT object types. ImplementationGroup, FirmnessGroup and HierarchyGroup base

their filtering settings to the Kactus2 attributes depicted in Chapter 2.3.3.2.

64

7.5 Use cases as sequence diagrams

This Section contains 4 sequence diagrams to demonstrate the communication between

classes in some of the use cases presented earlier in Chapter 5.

7.5.1 Open hierarchical component in an editor

Figure 7.11 depicts the different phases when the user selects a hierarchical component

in the hierarchical library view to be opened in the design editor.

Figure 7.11. Open hierarchical component to an editor.

1. The user selects the desired component through the hierarchical library view.

2. The view forwards the request to the model class HierarchyModel

3. HierarchyModel identifies the selected component based on the model index and

forwards the VLNV-identifier to LibraryHandler.

4. LibraryHandler calls LibraryData to parse the component XML file on the disk

to Component data structure.

5. LibraryData reads the data on the disk and parses the XML into data structure.

6. LibraryData returns pointer to the parsed data to LibraryHandler which takes

ownership of the class.

7. Component is asked for a list of its hierarchical views.

8. A list of strings is returned which contains the hierarchical view names.

9. LibraryHandler forwards the VLNV-identifier of the component and the

hierarchical view name to MainWindow, which manages the editors.

65

7.5.2 Search for objects on the disk

Figure 7.12 depicts the different phases when the user wants to search the disk for new

IP-XACT objects.

Figure 7.12. Searching for IP-XACT objects on the disk.

1. The user clicks to search for new objects in the MainWindow user interface.

2. MainWindow forwards the request to LibraryHandler

3. LibraryHandler forwards the request to LibraryData which manages the library

paths.

4. LibraryData uses QSettings to read the saved library paths from a settings file.

5. QSettings returns the library paths in a string list.

6. LibraryData calls for its own parseDirectory() function to parse the directory

structure recursively. Phases 6-10 are repeated for each library path and their

subdirectories.

7. The files in the directory are checked to see if they are XML files.

8. Each XML file is parsed to check if it is an IP-XACT object.

66

9. When an IP-XACT object is found, its VLNV searched.

10. The VLNV of the object is saved along with the file path to the object.

11. When all files and folders have been scanned, the integrity of the found IP-

XACT objects is checked.

12. The objects are parsed into data structures which contain the information of the

XML files.

13. First the internal integrity of the object is checked.

14. The information on the integrity is returned along with the possible error reports.

15. The object dependencies are requested.

16. A list of VLNV-identifiers is returned which contains the dependencies of the

object. If one of these refers to an object not found in the library, the object is

not valid.

17. The file references are requested from the object.

18. A list of relative file paths is returned. If one of these files is not found in the

disk then the object is not valid.

19. The possible error reports of the object are printed to the message console for the

user to read.

67

7.5.3 Exporting a component

Figure 7.13 displays a sequence diagram showing the different phases when selecting a

component to be exported to a new location on the disk.

Figure 7.13. Exporting a component to a new location.

1. The user selects a component to be exported to a new location.

2. HierarchyView forwards the request to the model class.

3. HierarchyModel identifies the object and forwards its VLNV-identifier to

LibraryHandler.

4. LibraryHandler asks the user to input a target directory to export the object to.

5. The user selects the target directory.

6. LibraryHandler calls for its own copyFiles() function to copy all dependencies

of an object to a new location.

7. LibraryHandler asks LibraryData to parse the object from the disk. Note: if the

object is already parsed in the memory then parsing is not necessary.

8. LibraryData parses the object to a data structure.

9. Pointer to the parsed data structure is returned to LibraryHandler.

10. LibraryHandler asks the object for its file dependencies.

11. The object returns the file paths in a list.

12. LibraryHandler asks the object for dependencies to other IP-XACT objects.

13. The VLNV-identifiers of the references are returned in a list.

14. All files are copied to a new location.

68

7.5.4 Deleting a component

Figure 7.14 depicts the different phases of selecting a component to be removed from

the library and the disk.

Figure 7.14. Deleting a component from the library.

1. The user selects the component to be removed in the VLNV-tree view.

2. LibraryTreeView forwards the request to the model class.

3. LibraryTreeModel identifies the tree item and requests the VLNV-identifiers of

the objects the item represents in the tree.

4. The VLNV-identifiers are returned in a list.

5. LibraryTreeModel forwards the VLNV-identifiers to LibraryHandler.

6. LibraryHandler constructs an instance of ObjectRemoveDialog, which

implements the dialog to select which objects and files are to be removed.

7. LibraryHandler adds the VLNV of the selected object to the dialog.

8. Now the dialog contains the VLNV of the selected object.

69

9. LibraryHandler requests LibraryData to parse the selected object. Note: If the

object is already parsed in the memory then parsing is not necessary.

10. LibraryData parses the object to a data structure.

11. A pointer to the parsed data structure is returned.

12. LibraryHandler requests the object for its file references.

13. The file paths are returned in a list.

14. LibraryHandler adds the file paths to the dialog.

15. The dialog now contains both the VLNV-identifiers and the file references.

16. Dialog is executed and the user is prompted to confirm the objects to remove.

17. LibraryHandler checks if the user accepted the dialog.

18. LibraryHandler requests the objects that the user selected to be removed.

19. The list of objects is returned to LibraryHandler. The list is processed. In case of

file paths the file is removed from the disk and in case of VLNV reference the

XML file of the identified object is removed.

20. Finally the directories, which were left empty after the delete operations, are

removed from the disk. If some directories still contain other files, they are left

intact.

70

8 COMPONENT EDITOR MODULE

Component editor module is used to create the IP-XACT metadata package for an IP-

block. It operates on a data structure which is parsed from component IP-XACT-

document type. The different elements of component are explained briefly in Chapter

2.3.2. Each element has its own sub-editor class and some elements are even divided

into several editors due to their complicated structure. Figure 8.1 displays the class

diagram that contains the basic structure of component editor module and the relations

between navigation tree and 21 sub-editors.

71

Figure 8.1. The class diagram of component editor and its navigation tree.

The top part of the Figure shows classes that form the basic structure of the editor.

TabDocument is the base class for all editors of Kactus2 and defines the interface to be

implemented in its sub-classes. Figure 8.2 displays the basic structure in more detail.

The bottom part of the Figure 8.1, shows the items that form the navigation tree in the

component editor. On the left are the tree items which match the different IP-XACT

elements in the standard. Each item is a sub-class of ComponentEditorItem, which

72

contains the basic functionality for a tree item. On the right side are the different editors

for each tree item. When a tree item is clicked in the navigation tree the matching editor

is displayed to the user. All editors are sub-classes of ItemEditor which defines the

interface for all sub-editors. ComponentEditorRootItem is the root of the navigation tree

and it is not displayed to the user. Therefore it doesn't have an editor assigned for it.

73

Figure 8.2. The structure of the component editor.

74

The graphical user interface of ComponentEditor can be divided into three parts:

navigation tree, editor area and visualization area. On the left side of the GUI is the

navigation tree which is implemented by ComponentTreeView acting as the view class

and ComponentEditorTreeModel acting as the model class. This follows the model/view

architecture explained in Chapter 8.1.2. The tree model contains only one instance of

ComponentEditorRootItem which is the tree root. All other tree items are located either

directly or indirectly under the root item. ComponentEditorItem is the base class for all

tree items and contains all functionality for managing the tree structure. The defined

abstract functions that must be implemented in sub-classes contain element and editor

specific functionality, such as checking the validity of the item.

ComponentEditorGroupSlot is a placeholder for widgets in the component editor's

layout. When the user selects a tree item, ComponentEditor asks it for the matching

editor and places the editor inside editorSlot_ instance of the group slot. The

visualizerSlot_ within ComponentEditor is reserved for items that have a visualization

widget to help the user to see the effects of editing the element. On the current version

of Kactus2, the visualization is used only on address spaces but this functionality will be

extended to other elements in future versions. If the selected tree item does not contain a

visualizer-widget, then the slot is hidden and will not take up space on user's screen.

Figure 8.3 depicts the different classes in the user interface of component editor.

Figure 8.3. The GUI classes of component editor module.

75

8.1 Common editors and classes

Component editor uses some common classes within several editors whenever possible

to make the code easier to maintain. For example, name and description are fields

contained in several different elements making it logical to use the same generic editor

for them. Also, some classes can be used as base classes, and only the editor specific

functionality is implemented in sub-classes. Below is listed the common classes so their

detailed descriptions can be omitted from editor specific chapters.

8.1.1 Item editor interface class

Item editor, Figure 8.4, is the base class for all editors used in the component editor. It

declares the interface, which is used to connect the different editors to the component

editor’s skeleton.

Figure 8.4. The ItemEditor base class.

The pure virtual functions isValid() and refresh() must be implemented in base classes

to perform the editor specific validation and refreshing of the editor’s elements. The

contentChanged() signal is used to inform that the user has edited the component’s data

structure somehow and the component must be saved in order for the changes to take

effect. Signals errorMessage() and noticeMessage() can be used to print notifications to

the user in the message console of Kactus2. Signal helpUrlRequested() is associated

with the context sensitive help system to open a correct help page for the editor when it

is shown to the user. The childAdded(), -Removed() and -Moved() signals are used to

inform the navigation tree that it should add, remove or relocate its children under the

selected branch.

8.1.2 Model/view architecture in Kactus2

The model-view-controller design pattern is commonly used to separate the user

interface from the actual data being presented. This allows showing the same data in

multiple ways, e.g. with a table or a bar chart. In Qt, the view and controller objects are

combined into same class to simplify the framework [28]. This model/view architecture

is used in Kactus2 to display and edit lists, tables and tree structures. Especially the

summary tables in component editor module use this architecture to display lists of

objects and their attributes. Also, the library management module uses model/view

76

architecture to display the library items to the user. Figure 8.5 depicts the model/view

architecture used in Qt.

Figure 8.5. The Qt model/view architecture.

In case of component editor the source of data is the underlying IP-XACT model parsed

from the XML file. The model class accesses the data to read information and write the

changes made by the user. Views retrieve data from the model class and show it to the

user. The sort proxy between model and view classes is optional (option a in the Figure)

and can be used to provide custom sorting operations. If the proxy class is missing then

the model is connected directly to view (option b). Custom delegate classes can be used

to render the data in a specific way to be shown in the view. When the data is edited, the

delegate communicates with the model to provide appropriate editors and to save the

data back to the model.

The model/view architecture is implemented by sub-classing Qt’s default

implementations. Figure 8.6 depicts the basic structure of the table editors within

component editor module.

77

Figure 8.6. The implementation of table editors.

The model classes inherit QAbstractTableModel which provides the default

implementation to provide model indexes to views. The following 7 functions are

implemented in sub-classes:

1. rowCount() obtains the number of rows to display in the table.

2. columnCount() obtains the number of columns to display in the table.

3. data() obtains the data for an item identified by a model index.

4. headerData() obtains the headers for the different columns of the table.

5. flags() is used by view to know how the data of an item can be handled.

6. setData() saves data of an item back to the model.

7. isValid() is used to know if the items in the model are in valid state.

The three slots of model are used to add, remove and relocate items stored in the model.

The signal contentChanged() is used to inform component editor that the underlying

78

data structure has changed and in order for changes to take effect, editor should save the

changes. Other two signals are used to print errors and notifications to the message

console of Kactus2, if needed.

QSortFilterProxyModel acts between the model and view classes. Its purpose is the

sorting of items displayed in the view. By using this class, sorting of items can be

performed without modifying the original data structure. This class can be sub-classed

to provide custom implementation of the sorting. The original model class can also be

connected directly to the view to leave the intermediate sorter class out.

The delegate classes inherit QStyledItemDelegate and use the default implementation to

render the data. Sub-classes re-implement the following functions to provide data-

specific editors:

1. createEditor() constructs the correct editor and returns pointer to it. For

example, strings are often edited with a simple line editor but if the possible

options are limited to an enumerated list, a combo box can be used.

2. setEditorData() retrieves the current data from the model and sets it to the

editor.

3. setModelData() retrieves the data set in the editor and saves it to the model.

The commitAndCloseEditor() slot is used to commit the data from the sending editor

and to close the editor.

Editable table view is a general purpose view, which can be connected to model classes

implementing the QAbstractTableModel-abstract class. This view is used in all editors

within component editor where information is presented to the user in a table form, such

as ports summary.

The class contains different actions that are displayed to the user in the context menu of

the view. The table view contains handler for triggered()-signal of each action, see

Figure 8.7 for an example of the editable table view with the context menu.

Figure 8.7. An example screenshot of the table editor.

The setItemsDraggable() function can be used to enable or disable dragging of rows in

the view. Adding, removing and moving of a row, is informed to the connected model

by emitting one of the associated signals.

Table 8.1 lists the tables used in component editor module and the classes that

implement the previously mentioned roles in each case. EditableTableView is used as a

79

view class in all cases, except in FilesEditor, where FilesView provides a custom add

functionality to choose a file in the file system. The class diagrams of the editors are

found in the appendices listed in the table.

Table 8.1. The table editors in IP-packaging.

Editor Model class Delegate class Class

diagram

Parameter group

box

ParametersModel LineEditDelegate Appendix 1

File builders editor FileBuildersModel FileBuildersDelegate Appendix 2

File sets editor FileSetsModel FileSetsDelegate Appendix 3

Files editor FilesModel FilesDelegate Appendix 4

Model parameter

editor

ModelParameterModel UsageDelegate Appendix 5

Parameters editor ParametersModel LineEditDelegate Appendix 6

Address spaces

editor

AddressSpacesModel AddressSpaces-Delegate Appendix 7

Memory maps

editor

MemoryMapsModel MemoryMapsDelegate Appendix 8

Memory map

editor

MemoryMapModel MemoryMapDelegate Appendix 9

Address block

editor

AddressBlockModel AddressBlockDelegate Appendix 10

Register editor RegisterTableModel RegisterDelegate Appendix 11

Views editor ViewsModel LineEditDelegate Appendix 12

Environment

identifier editor

EnvIdentifiersModel EnvIdentifiersDelegate Appendix 13

Ports editor PortsModel PortsDelegate Appendix 14

Bus interfaces

editor

BusInterfacesModel BusInterfacesDelegate Appendix 15

Channels editor ChannelsModel ChannelsDelegate Appendix 16

CPUs editor CpusModel CpusDelegate Appendix 17

Other clock drivers

editor

OtherClockDrivers-

Model

OtherClockDrivers-

Delegate

Appendix 18

80

8.1.3 List manager

List manager, Figure 8.8, is the common editor used to display and edit a list of strings,

such as file types, within the editors. It is used as such, or as a base class when a more

specific functionality is needed.

Figure 8.8. The class structure of list manager.

List manager follows the previously mentioned model/view architecture with the

exception that is uses the default delegate implementation for lists. List manager

contains two classes to contain the data and display it in the user interface.

ListManagerModel is the model class managing the item list to be displayed.

EditableListView is the view class displaying the items to the user and providing the

graphical user interface. The two classes are connected together via Qt’s signals and

slots mechanism. List manager provides interface to set and retrieve list of strings stored

in the model. Figure 8.9 displays the user interface of the list manager, where user is

editing a list of group identifiers for a file set.

Figure 8.9. The list manager user interface.

81

8.1.4 Name group editor

Name group editor, Figure 8.10, is used to edit the NameGroup struct, which contains

name, display name and description fields. It is used e.g. in the file set editor. This

editor is never used alone but as a member of a parent editor. For example, file set

editor forwards the file set model’s nameGroup struct to this editor. This way, the same

editor can be used in several places, thus providing a consistent GUI appearance for

users.

Figure 8.10. The structure of name group editor.

The underlying IP-XACT model is edited through a reference, this way the editor does

not need to know, to which element the struct belongs to, allowing very generic usage

of the editor. Name group editor provides functions to retrieve the data set for the editor

text fields through getter-functions. The isValid()-function can be used to check if the

editor is in valid state and refresh() slot can be used to update the contents of the editor

to match the data stored in the associated model. The three private slots listed last on the

class are handlers for changes in the editor when the user edits one of the editor fields.

Figure 8.11 displays the user interface of the name group editor.

Figure 8.11. The name group editor user interface.

82

8.2 General Editor

General Editor, Figure 8.12, is used to edit the general settings of a component, which

do not belong to any of the sub-elements. It displays the VLNV-identifier of the

component as well as the Kactus2 attributes.

Figure 8.12. The structure of general editor.

GeneralEditor is a container class which owns the VLNVDisplayer,

KactusAttributeEditor, DescEditor and ComponentPreviewBox. VLNVDisplayer

displays the component’s VLNV-identifier to the user along with the file path of the

component’s XML file. These settings are not editable and if the user wants to change

the VLNV then component must be saved as new component with different VLNV.

KactusAttributeEditor is used to display and edit the Kactus2 attributes of the

component, which are depicted in Chapter 2.3.3.2. The implementation attribute can’t

be edited but product hierarchy and firmness are editable. Changes in the editor emit

contentChanged()-signal which is connected to general editor’s onAttributesChange()-

slot to set the changes to the model.

DescEditor provides a text field to view and edit the free textual description of the

component. When description is edited, general editor’s onDescriptionChange()-slot

saves the changes to component.

83

ComponentPreviewBox displays to the user, how the component appears when it is

instantiated in a design. It shows the different interfaces and possible ad hoc ports.

Figure 8.13 depicts the GUI classes of general editor.

Figure 8.13. The GUI classes of general editor.

84

8.3 File set editor

File set editor is used to edit a single file set of a component. It displays the detailed

settings of a file set and provides an editor to add and remove files contained in the file

set. Figure 8.14 displays the class diagram of file set editor.

Figure 8.14. The structure of file set editor.

File set editor, Figure 8.15, is a container which has 5 editors to edit different elements:

1. NameGroupEditor is used to edit the name and description of file set. Editor is

explained in Chapter 8.1.4.

2. FileBuildersEditor, Table 8.1, is used to assign build commands for different

file types.

3. FilesEditor, Table 8.1, is used to add and remove files contained in the file set.

4. GroupManager is used to edit the group identifiers of the file set. The editor

inherits ListManager depicted in Chapter 8.1.3. The sub-class uses the base class

functionality otherwise but provides suggestions for possible group identifier

names for the user to select, e.g. sourceFiles or documentation.

5. DirListManager is used to edit a list of directories on which the file set depends.

The editor inherits ListManager, which is depicted in Chapter 8.1.3.

85

Figure 8.15. The GUI classes of file set editor.

8.4 File editor

File editor is used to edit the details of a single file. Figure 8.16 shows the class diagram

of the file editor.

Figure 8.16. The structure of file editor.

86

The graphical user interface of file editor displays two tabs and they are also seen in the

class diagram: FileGeneralTab for general settings of a file and FileExtraTab for

external dependencies. FileGeneralTab is explained in Chapter 8.4.1.

FileExtraTab is container class which owns three editors. DirListManager inherits

ListManager which is depicted in Chapter 8.1.3. ExportedNames and imageTypes are

direct instances of ListManager.

87

8.4.1 File general tab

File general tab, Figure 8.17, is used to edit the most often used elements of a single

file.

Figure 8.17. The structure of file general tab.

FileNameEditor contains a line edit widget, which is used to set the relative file path to

the file. Line edit re-implements the mouse press event to open a dialog to select a file

in the file system. FileTypeEditor inherits ListManager, which is depicted in Chapter

88

8.1.3. The sub-class is used to provide a list of suggestions for pre-defined file types

listed in the IP-XACT standard [6].

FileGeneralEditor contains several editors to set e.g. the description of the file.

FileBuildCommand contains line editors to set the file specific build command for the

file. Figure 8.18 shows the GUI classes of file general tab.

Figure 8.18. The GUI classes of file general tab.

8.5 Address space editor

Address space editor, Figure 8.19, is used to edit the details of a single address space. It

also contains a class to visualize the address space, and segments it contains to the user.

Chapter 6.6.1 explains the user interface and the purpose of each element.

89

Figure 8.19. The structure of address space editor.

90

Address space editor is a container for several editors of which 2 are generic editors:

1. NameGroupEditor sets the name and description of address space and is

explained in Chapter 8.1.4.

2. ParameterGroupBox, Table 8.1, edits the parameters of the address space.

SegmentEditor is an editor to add, remove and edit the segments inside an address

space. It follows the presented model/view architecture with some modifications.

SegmentEditor uses the EditableTableView as view class and SegmentsModel provides

the model functionality. The difference is the SegmentProxy which acts as the proxy

model between view and the original model to provide specific sorting functionality by

implementing lessthan()-function.

AddressSpaceGeneralEditor sets addressable unit size, range and width of the address

space. These qualities are also edited in address spaces editor, Table 8.1.

AddressSpaceVisualizer draws the address space on the screen for the user to view it. It

contains Area structs, which define the bounds of each segment. Visualizer is connected

to the general editor and segment editor to get updates of changes in them, so the

visualization can also be updated simultaneously. Figure 8.20 shows the GUI classes of

address space editor.

Figure 8.20. The GUI classes of address space editor.

91

8.6 Field editor

Field editor is used to edit the details of a single bit field within a register. Figure 8.21

displays the structure of the editor.

Figure 8.21. The structure of field editor.

FieldEditor is the container class, which owns the other classes and sets the layout for

the editor. It contains two different parts: one to set enumerated values for the bit field

and one to set constraints for write values.

Editor for enumerated values follows the model/view architecture depicted in Chapter

8.1.2, where EnumeratedValueModel implements the model class and

EnumeratedValueDelegate provides the delegate functionality.

92

WriteValueConstraintEditor provides functionality to set write constraints e.g. by using

the listed enumerated values or setting minimum and maximum values. The editor

contains a handler slot for each GUI element such as onUseEnum(). Figure 8.22

displays the GUI classes of field editor.

Figure 8.22. The GUI classes of field editor.

8.7 View editor

View editor, Figure 8.23, provides functionality to edit the details of a single view. It

contains elements for both hierarchic and non-hierarchic views but changes its visual

appearance according to the view type.

Figure 8.23. The structure of view editor.

ViewEditor is the container class which owns the other classes and sets their layout in

the editor. It contains a combo box viewTypeSelector to select between hierarchical and

non-hierarchical views and adjusts the layout accordingly. The editor contains 6 editors:

1. NameGroupEditor edits the name and description of the view and is depicted in

Chapter 8.1.4.

93

2. ParameterGroupBox, Table 8.1, edits the parameters of the view.

3. FileBuilderEditor, Table 8.1, defines file build commands for files referenced in

the view.

4. EnvIdentifierEditor, Table 8.1, sets up environment identifiers for the view.

5. FlatViewGeneralTab modifies settings that are only included in non-hierarchical

views.

6. HierarchyRefWidget is used in hierarchical views to set the hierarchy reference

to a design or design configuration containing the hierarchical description of the

component. It only contains one instance of VLNVEditor and its class diagram is

therefore omitted.

Figure 8.24 shows the GUI classes of view editor.

Figure 8.24. The GUI classes of view editor..

Flat view general tab, Figure 8.25, is used to edit the details of a single non-hierarchical

view.

94

Figure 8.25. The structure of flat view general tab.

FlatViewGeneralTab is the container class, which contains editors to set the language

and model name elements of a view. It also contains an instance of FileSetRefEditor,

which is used to refer to the file sets of the component. FileSetRefEditor is a sub-class

of ListManager, which is depicted in Chapter 8.1.3, but it re-implements the initialize()-

function to provide a combo box to select among existing file sets.

8.8 Bus interface editor

Bus interface editor, Figure 8.26, contains two tabs to edit the details of a single bus

interface.

Figure 8.26. The structure of bus interface editor.

The elements of a bus interface are divided into 2 categories:

1. BusIfGeneralTab contains editors to set the general settings of a bus interface

and reference the used bus and abstraction definition. This editor is explained in

Chapter 8.8.1.

95

2. BusIfPortmapTab is used to specify, which ports are connected to the logical

signals defined in the abstraction definition assigned in the generals tab. This

editor is explained in Chapter 8.8.2.

8.8.1 Bus interface general settings

Bus interface general tab, Figure 8.27, provides functionality to set general settings,

such as name, type (master, slave, etc.) and VLNV references, of a single bus interface.

Figure 8.27. The structure of bus interface’s general editor.

96

BusIfGeneralTab contains 6 different editor types. Two instances of VLNVEditor are

used to specify a VLNV reference to a bus definition and abstraction definition objects

in the library. These objects define the qualities of a bus, which this interface promises

to fulfill. NameGroupEditor, depicted in Chapter 8.1.4, is used to edit the name and

description of the bus interface. ParameterGroupBox, listed in Table 8.1, is used to set

the interface-specific parameters. BusIfGeneralDetails contains a group of editors for

the general settings.

InterfaceModeStack contains five editors to edit the interface mode specific details of a

bus. Only one of these editors is visible at a time. InterfaceModeSelector is used to

select the interface mode and it is connected to the onModeChanged() slot in

BusIfGeneralTab, thus changing the visible editor on InterfaceModeStack. The possible

modes and their respective editors are shown in Table 8.2. Some editors are used to edit

both the normal and mirrored versions of interface modes.

Table 8.2. Interface modes and their editors.

Interface mode Used editor

MASTER BusIfInterfaceMaster

SLAVE BusIfInterfaceSlave

SYSTEM BusIfInterfaceSystem

MIRRORED MASTER BusIfInterfaceMaster

MIRRORED SLAVE BusIfInterfaceMSlave

MIRRORED SYSTEM BusIfInterfaceSystem

MONITOR BusIfInterfaceMonitor

Figure 8.28 shows the GUI classes of bus interface general settings.

97

Figure 8.28. The GUI classes of bus interface general settings.

8.8.2 Bus interface port map settings

Bus interface port map tab, Figure 8.29, provides functionality to set the port maps of a

bus interface. It follows the model/view architecture with the exception that it contains

several different views and models.

98

Figure 8.29. The structure of port map editor.

BusIfPortmapTab contains three different view-model pairs. Figure 8.30 displays the

different view classes in the graphical user interface of the editor.

99

Figure 8.30. The views in port maps editor.

LogicalListView is connected to the LogicalListModel that provides the logical signals

listed in the referenced abstraction definition. PhysListView is connected to the

PhysListModel which provides the ports listed in the component metadata (which

correspond to HDL ports). PortListView and PortListModel act as base classes and

provide most of the functionality needed to present a list of items.

PortMapsView is connected to the PortMapsModel which provides the port maps of the

interface. When the user creates a new port map it is added to the model and displayed

to the user.

100

9 EVALUATION OF THE WORK

Kactus2 is released as open source software under GPL2 license. The open source

version of the Qt framework was used to provide a cross-platform design tool for

embedded MP-SoC. Table 9.1 lists the line and class counts of the presented modules

(the two topmost rows) and the whole project.

Table 9.1. The code statistics of Kactus2 v2.0.

Module LOC [C++] Class count

Component editor

(IP packaging module)

21 108 156

Library handler

(Library management module)

7 427 26

IP-XACT data structures 25 271 75

Design editor, software flow, etc.

(omitted from this thesis)

49544 232

Kactus2 total 103 350 489

The IP-XACT data structures which are used to read and modify the IP-XACT XML

metadata are shown to give an example of the library complexity. Figure 9.1 displays

the development of the entire Kactus2 software since its first release in October 2011.

Figure 9.1. Total code development.

The graph is drawn since the start of the first release and therefore doesn’t start at 0

LOC. The development of the Kactus2 begun in June 2010. Also noticeable is the total

code count which differs from the total count in Table 9.1. The graph contains the total

code count including also other languages not related to the implementation and

101

therefore not included in the table. Figure 9.2 displays the LOC development by

language.

Figure 9.2. Lines of code by language.

The Ohloh tool [29] used to draw the graph interprets the code header files (.h) as C-

code, which results in large amount of C-code. The code is actually C++ so by

combining the C++ and C-codes the total code count matches with the amount reported

on Table 9.1. The XML code comes from the example library of the project as well as

the documentation which is mostly UML-graphs saved in XML format. Also, a minor

part of the XML is contributed by the project files used. HTML is used in the context

sensitive help system in Kactus2. The help pages displayed are written in HTML to

provide better ability to modify the outlook of the pages compared to basic text files.

HTML also enables the use of pictures. Table 9.2 shows detailed statistics of the used

languages.

Table 9.2. Statistics of the used languages.

As mentioned before, the C-code is actually the headers of the C++-classes, which

explains the large ratio of comments to code lines in the C-code section. The makefiles

and scripts shown in the table are related to the Linux release versions of Kactus2.

102

Figure 9.3 displays the commit count to the SVN repository since the first release of

Kactus2. The average commit count per month is about 40 commits.

Figure 9.3. Total commits per month.

9.1 Maintainability

The maintainability is an important factor and should be considered already in the

design process of the software. This has been considered in the presented modules as

well as the whole Kactus2 by trying to make the software as modular as possible. The

inheritance mechanism is used to encapsulate the common interfaces and services of the

classes. For example, the library management module has an abstract class

LibraryInterface as an interface class. If the implementation of the library management

should be changed, it is possible to simply write another class which implements the

interface and replace the current LibraryHandler-class.

In the component editor module, the same principle is used. ComponentEditor is a sub-

class of TabDocument, which is the base class for all editors in Kactus2, as explained in

Chapter 8. The basic structure of the component editor allows a developer to add a new

element to be edited very easily. The tree items in the navigation tree handle the tree

operations, and all the developer needs to do is to write the element-specific

functionalities. In Kactus2, the basic structure of the component editor has been used in

other editors as well, and only the visible tree structure has been re-written.

The use of signals and slots in Kactus2 improves the modularity of the software, thus

improving maintainability. Two modules can be connected to each other without either

of them being aware of this. As long as the parameters of the signal and slot don’t

change, it is possible to change either module.

Although the modules presented in this thesis have clear interfaces, which they use to

communicate with the rest of the software, when looking inside the modules there is

chance for improvement. As mentioned in Chapter 4.1, the development process has

been very agile and the requirements have changed several times during the

implementation. This has caused some ad hoc style code fixes to be written, which

make maintenance harder. The component editor is currently in a fairly good state

103

because some requirements forced re-writing of the editor almost completely. When

writing the new implementation, the new and old requirements were taken into account

to design a better architecture for the editor.

However, in the library management module there are several inter-dependencies,

which make the code hard to maintain and understand. The main reason for this has

been the introduction of several new object types and their categorization. The Kactus2

attributes are not part of the original IP-XACT standard [6] and were therefore not

planned in the original design of the library management module. Also the data to be

shown in the library views has changed and one separate search view was rejected after

implementation of the library search functionality. The code has been restructured

during the project to keep the situation under control but at some point it may become

necessary to re-design the library management module, at least the library views part,

which is shown to the user. This would also allow development of some new features to

the library management module.

One issue in the maintainability of the component editor module in the future is the

possible new versions of IP-XACT. Currently the data structures used to view and edit

the IP-XACT metadata follow the IP-XACT 1685 XML structure very tightly. If the

data structures change, this requires much work also on the component editor. All sub-

editors of the component editor module, as well as the navigation tree are dependent on

the data structures. This hasn’t been an issue so far since no new versions of IP-XACT

standard have been released during 2 years of development and there hasn’t been need

to support the old versions. Also, if support for several different versions is needed

simultaneously then it wouldn’t be reasonable to have their own editor modules but to

use the same editor for all standard versions.

The solution to this problem could be the separation of the data structures from the

parsing and writing code. This way Kactus2 would use its internal data structures no

matter how, or in what format, it would be written on the disk. This would also enable

the use of a data base as the library storage instead of the disk. Each different metadata

version would have its own parsing and writing code, which would convert the data

from the internal data structures to the appropriate form. Now the user could use the

same editors to manipulate the metadata and simply select the format for the data to

save. Parsers could also be added as plug-ins to allow use of other metadata types. For

example, an Altera QSys project could be imported to Kactus2 and then be saved as an

IP-XACT file.

A common problem when developing the software is to keep the documentation up to

date with the implementation code. To ease this problem, the comments in the Kactus2

code have been written using the Doxygen notation [30]. This enables the automated

generation of software documentation, such as method descriptions, at any time. Of

course this requires the comments in the code lines to be up to date and precise, but this

would be a reasonable requirement in a software project anyway. The use of Doxygen

notation doesn’t fully solve the need for other documentation, such as UML diagrams,

but this eases the burden of maintaining the documentation in an agile software process.

104

9.2 Usability

The graphical outlook of Kactus2 is quite unique when compared to the other design

tools in the same category. This can be an opportunity but also a disadvantage. The

fresh design aspect gives possibilities to explore new ways to do things but they must be

intuitive enough for users to feel comfortable with them. If the learning effort is too

high to start using the software, users will not adapt to the new methods. For this reason,

one of the goals in designing Kactus2 has been to keep the learning effort as low as

possible while still preserving the ability for users to do complicated things.

In the library management module, the library objects have icons which identify the

object type. This way it is easier for the user to understand the library structure and find

the desired objects. Also the different library views help. The user can choose which

view to use in each situation. The filter functionality was added, because in certain

situations it is not necessary to view e.g. software components when integrating a

hardware platform. This way the user is not strained with excessive information, which

helps focusing on the work at hand. When agreeing on the naming policies of the

library, it is possible to use the search functionality to limit the items to display very

efficiently. In any case, the search helps users to find correct objects in a large library.

In the component editor module, there are several aspects which are considered to make

the packaging tool easy to use. The navigation tree is designed to support the intuitive

way of starting at the top and moving downwards. The objects, which do not contain

references to other elements are aligned to the top of the tree, and when moving down

the tree, the objects on the top can be referred to. Figure 9.4 depicts the packaging order

in the tree.

Figure 9.4. The packaging order in component editor.

Of course the tool does not force this order to be used and navigation back and forth

between elements is possible and likely. However, e.g. setting the files first helps the

user to get started with the basic settings and then advancing to the elements, which

describe the component in a more detailed way.

105

Many of the sub-editors within component editor use the table editor interface. This is a

powerful way to manage large quantities of data in a single view. For example, the port

editor is likely to contain dozens of ports so displaying the data in an efficient way is

crucial. Also, in elements which require a more detailed editor, the table is used to set

the general settings of the elements so the user can perform the packaging in a sort of

top-down method, advancing to the detailed editors after the general settings.

Currently the address space editor is the only editor which provides a visualization of

the element being edited. The component editor has a specific space reserved for

visualization widgets in the GUI, explained in Chapter 8, but they have yet to be

implemented for the other element-types. These visualizations could be used to help

users to understand the current state of the component when editing, as well as the

effects of their actions in an intuitive way. Also a visualization tool could be used to

package e.g. the dependencies between files of the component.

The most important factor for usability in the component editor module is the

connection to the context sensitive help. When the user navigates through the different

sub-editors the help window reacts to this by changing the help view to match the active

editor. This way the user can understand the purpose of the different editor fields even

without knowing the details of the IP-XACT standard.

The use of Qt framework enables the graphical user interface to adapt to the visual style

of the different operating systems. This way Kactus2 provides a native outlook in each

operating system it supports. Figure 9.5 displays an example of the new object dialog in

Windows Vista and Windows XP. The same release version without any OS-specific

code is being run in both screenshots.

Figure 9.5. The visual outlook in Vista and XP operating systems.

9.3 Testability

The main issue for the testability of Kactus2, as well as the presented modules, is the

lack of test plans and test documentation. The unit testing for the software has been

performed by the developers but no documentation of the tests has been written. The

106

same problem applies for the integration and system level testing of the software. The

system testing has been performed using the exploratory testing approach which doesn’t

use predefined test cases [31]. However, some kind of documentation on tests that have

been executed would help locating the bugs and evaluating the maturity of the software.

Although the tests were not documented, the bug reports of the found defects were

saved and documented in a data base.

As mentioned previously in Chapter 4.1, the development process was very agile and

the requirements changed during the implementation phase. This caused a lot of re-

testing of the modules because one minor change in the code, especially in the library

management module, affected several parts of the software. Using the exploratory

approach demands a lot for the tester when re-testing the same module because the

temptation to skip certain features, which tester believes were not affected, is great.

The use of automated tests could greatly ease the burden of the testing process. Of

course the writing, and especially maintaining, of the automated tests causes much work

but when using agile development methods it can be justified because same tests need to

be run often. When there are several developers writing the code simultaneously and

committing the changes very frequently, as seen in the Figure 9.3, it is impossible to test

and verify all changes manually. One way to improve the testing process for Kactus2

could be to implement automated tests for the most basic elements of the software that

are no longer subject to rapid changes. For example, the interface of the library

management module has been stable for many releases. This way the routine tests could

be automated but the testing of new features could be left for exploratory testing, thus

easing the burden of maintaining the automated tests. As the software evolves and

matures, the amount of automated tests can be increased.

The modular structure of the software eases the testing, especially unit testing. The sub-

editors in the component editor module can be tested as separate pieces, which reduces

the complexity of the tests. Also the underlying IP-XACT data structures are modular

and it would be very simple to write automated tests for them. The library management

module could be tested by writing a script, which produces an example library. After

this, the library management module could be initialized to a known state through its

programmatic interface and certain queries and operations could be performed to the

library and their results be verified. This way the unit testing for the modules is quite

simple to implement. The most complex tests for the library management would

probably be related to the dependencies between the library objects.

The more difficult parts are the integration and system testing. The integration testing

can be done partly in code level but especially the system testing requires GUI tests,

which are much harder to automate. When there is no documentation on the desired

results of operations performed in the user interface, it is under the tester’s intuition to

decide which results are correct and which defects. So far the Kactus2 has been

developed and tested within the same development team and communication between

team members has been easy and fluent so this hasn’t caused any problems. However,

because the presented software has been released under open source license, it is

107

possible to have outside contributors to the project in the future. In this case, it would be

reasonable to start documenting the correct behavior in different use cases. Also the use

of automated tests would help verifying the commits from third party contributors.

108

10 CONCLUSIONS

This thesis presented the IP packaging and library management modules for the open

source Kactus2 IP-XACT design tool. Kactus2 was developed in C++ language using

the open source version of Qt cross-platform framework. The development has so far

taken 2 years for the entire software. The library management module consists about.

7.500 lines of code and the component editor module 21.000. The purpose of these

modules is to enable users to create IP-XACT metadata packages for IP-blocks and

manage the IP-library in an efficient way. The most important features of the library

management are the parsing and writing of the IP-XACT metadata, integrity checks of

the library objects and the dependency management between the library objects. For the

component editor module, the most important elements in the packaging process are the

files and interfaces of an IP-block. These enable the integration of the IP-block to larger

systems.

This Thesis explained the IP-XACT elements supported by Kactus2 as well as the

hardware related extensions to the standard. These extensions enable extending the

scope of the IP-XACT standard from IP and SoC level to product management and

facilitate the packaging of hardware related software, such as drivers, to the IP-blocks.

The different use cases of the library management were introduced and explained, as

well as the IP packaging process. The implementation details contained the UML-class

diagrams of the modules and some example sequence diagrams of the library

management use cases.

The possible improvements or changes in the future for the library management module

could be the support for databases and library overview report. The current file based

implementation requires the use of network drives or version control systems if the IP-

XACT libraries are used by several people. The database approach could ease the use of

libraries over network. However, the use of version control systems has its advantages

allowing the tracking of the changes to the documents. The use of databases would

probably scale better to very large libraries.

The reporting feature for the library management module could be used to get an

overview of the current library. Since the scope of IP-XACT has been extended from IP

and SoC level to products, it might be useful to get statistical analysis of the library or

products. The reports could include for example:

1. The component count and type (HW, SW, System).

2. The number of hardware bus definitions or software APIs.

3. How many component instances hierarchical components contain on average.

4. How many files a component contains on average.

5. How many different products, boards or chips the library supports.

109

This information could be used to measure the maturity and complexity of the products

and the whole library. For example, it would be possible to save the statistics daily to

generate a graph, depicting the progress of a product development.

The component editor module could be improved by adding a packaging wizard to

guide through the start of the packaging process. This wizard could contain a parser to

extract the data of the component’s interfaces from the top level VHDL or verilog file.

This way the component’s ports and model parameters could be automatically added to

the IP-XACT metadata. The same parser could be used to determine the dependencies

between the component’s files. This kind of automation would facilitate packaging of

large quantities of legacy IPs to IP-XACT format. Also, the previously mentioned

visualizations could be extended to several different elements, for example:

a) File dependencies could be visualized to the user in the file set editor.

b) Memory maps and their registers could be visualized to make the editing more

intuitive.

c) Channels between bus interfaces within component could show the connections

in hardware buses.

d) The bus interface summary could display which ports are mapped to which

interfaces.

Some of these improvements have already been considered and designed to be

implemented in the future versions of Kactus2.

110

REFERENCES

[1] Kactus2. Tampere University of Technology, Department of Computer Systems

[WWW].[accessed on 28.10.2012]. Available at:

http://funbase.cs.tut.fi/index.php/Kactus2

[2] Bergamaschi, R.A, Cohn, J. The A to Z of SoCs. IEEE/ACM International

Conference on Computer Aided Design. 10-14 Nov. 2002. pp. 791-798.

[3] Salminen, E. On Design and Comparison of On-Chip Networks, Dissertation.

Tampere 2010. Tampere University of Technology, Department of Computer

Systems. Publication 87. 230 p.

[4] F.R. Wagner et al., Strategies for the integration of hardware and software IP

 components in embedded systems-on-chip, Integration, the VLSI Journal,

 September 2004. Vol. 37, Iss. 4, pp. 223-252.

[5] Texas Instruments. OMAP 4 mobile applications platform. [WWW]. [accessed

on 23.10.2012]. Available at http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf

[6] IEEE Std 1685-2009. IEEE Standard for IP-XACT, Standard Structure for

 Packaging, Integrating, and Reusing IP within Tool Flows. New York 2010.

 IEEE. 360 p.

[7] Kruijtzer, W. van der Wolf, P. de Kock, E. Stuyt, J. Ecker, W. Mayer, A. Hustin,

S. Amerijckx, C. de Paoli, S. Vaumorin, E. Industrial IP integration flows based

on IP-XACT standards. Design, Automation and Test in Europe, 2008. DATE

'08 , pp.32-37, 10-14 March 2008.

[8] Matilainen, M. IP-lohkojen jaottelu ja nimeäminen. Bachelor's Thesis. Tampere.

2011. Tampere University of Technology, Department of Computer Systems.

23 p.

[9] Kamppi, A, Matilainen, L, Määttä, J, Salminen, E, Hämäläinen, T.D,

 Hännikäinen, M. Kactus2: Environment for Embedded Product Development

 Using IP-XACT and MCAPI. Digital System Design, August 31-September 2

 2011. Oulu, Finland 2011. pp. 262-265.

[10] Matilainen, M, Kamppi, A, Määttä, J-M, Hämäläinen, T.D. 2011. Kactus2: IP-

XACT/IEEE1685 Compatible Design Environment For Embedded

Multiprocessor System-on-Chip products. Technical report. 47 p.

[11] Matilainen, L, Salminen, E, Hämäläinen, T.D. MCAPI abstraction on FPGA

based SoC design. FPGA World. 2012. 6 p.

http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf

111

[12] HDL Designer. Mentor Graphics Corporation. Wilsonville, OR, USA [WWW].

 [accessed on 28.10.2012]. Available at:

 http://www.mentor.com/products/fpga/hdl_design/hdl_designer_series/

[13] SOPC Builder. Altera Corporation. San Jose, CA, USA [WWW].[accessed on

 28.10.2012]. Available at:

 http://www.altera.com/support/software/system/sopc/sof-sopc_builder.html

[14] QSys System Integration Tool. Altera Corporation. San Jose, CA, USA

 [WWW]. [accessed on 28.10.2012]. Available at:

 http://www.altera.com/support/software/system/qsys/sof-qsys-index.html

[15] CoreLink AMBA Designer. ARM Holdings. Cambridge, United Kingdom

[WWW]. [accessed on 28.10.2012]. Available at:

http://www.arm.com/products/system-ip/amba-design-tools/amba-designer.php

[16] CoreBuilder. Synopsys Inc. Mountain View, California, United States [WWW].

[accessed on 28.10.2012]. Available at:

http://www.synopsys.com/dw/ipdir.php?ds=core_builder

[17] CoreAssembler. Synopsys Inc. Mountain View, California, United States

[WWW]. [accessed on 28.10.2012]. Available at:

http://www.synopsys.com/dw/ipdir.php?ds=core_assembler

[18] Socrates Weaver. Duolog Technologies. Dublin, Ireland [WWW]. [accessed on

28.10.2012]. Available at: http://www.duolog.com/products/socrates-weaver/

[19] Magillem IP-XACT Packager. Magillem Design Services. Paris, France

[WWW]. [accessed on 28.10.2012]. Available at:

http://www.magillem.com/eda/manage-your-ip-portfolio-metadata-in-a-fully-

automated-and-scriptable-way-magillem-ip-xact-packager-mip

[20] Magillem Platform Assembly. Magillem Design Services. Paris, France

[WWW]. [accessed on 28.10.2012]. Available at:

http://www.magillem.com/eda/assemble-configure-and-manage-systems-

hierarchy-in-a-graphical-front-end-magillem-platform-assembly-mpa

[21] OpenTLM IDE. OpenTLM Project [WWW]. [accessed on 28.10.2012].

 Available at: http://opentlm.minalogic.net/comp/tools/ip-xact-editor

[22] Lan Yu-Qing. Extraction Methods on Linux Package Dependency Relations.

 Information Engineering and Computer Science. 19-20.12.2009. Beijing, China.

 2009. pp. 1-5.

[23] Qt Cross-platform application and UI framework. Nokia Norge AS. Norway

 [WWW]. [accessed on 28.10.2012]. Available at: http://qt.nokia.com/

http://www.arm.com/products/system-ip/amba-design-tools/amba-designer.php
http://www.synopsys.com/dw/ipdir.php?ds=core_assembler
http://www.duolog.com/products/socrates-weaver/
http://www.magillem.com/eda/manage-your-ip-portfolio-metadata-in-a-fully-automated-and-scriptable-way-magillem-ip-xact-packager-mip
http://www.magillem.com/eda/manage-your-ip-portfolio-metadata-in-a-fully-automated-and-scriptable-way-magillem-ip-xact-packager-mip
http://www.magillem.com/eda/assemble-configure-and-manage-systems-hierarchy-in-a-graphical-front-end-magillem-platform-assembly-mpa
http://www.magillem.com/eda/assemble-configure-and-manage-systems-hierarchy-in-a-graphical-front-end-magillem-platform-assembly-mpa
http://opentlm.minalogic.net/comp/tools/ip-xact-editor
http://qt.nokia.com/

112

[24] Widgets and Layouts. Qt Reference Documentation [WWW]. [accessed on

7.11.2012]. Available at: http://doc.qt.digia.com/qt/widgets-and-layouts.html

[25] Microsoft Visual Studio. Microsoft Corporation. Redmond WA, USA [WWW].

 [accessed on 28.10.2012]. Available at:

 http://www.microsoft.com/visualstudio/eng/whats-new

[26] Qt signals & slots. Qt Reference Documentation [WWW]. [accessed on

28.10.2012]. Available at: http://doc.qt.digia.com/qt/signalsandslots.html

[27] Salminen, E, Hämäläinen, T.D, Hännikäinen, M. Applying IP-XACT in Product

 Data Management. International Symposium on System-on-Chip. October 31-

 November 2 2011. Tampere, Finland. pp. 86-91.

[28] Model/View Programming. Qt Developer Network [WWW]. [accessed on

 28.10.2012]. Available at: http://qt-project.org/doc/qt-4.8/model-view-

 programming.html

[29] The Ohloh code indexing project. Black Duck Software Inc. Burlington MA,

USA [WWW]. [accessed on 7.11.2012]. Available at:

http://www.ohloh.net/p/kactus2

[30] Doxygen documentation system [WWW]. [accessed on 28.10.2012]. Available

at: http://www.stack.nl/~dimitri/doxygen/index.html

[31] Exploratory Testing Explained. Bach, J [WWW]. [accessed on 28.10.2012].

Available at:

http://people.eecs.ku.edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-

testing.pdf

http://doc.qt.digia.com/qt/widgets-and-layouts.html
http://www.microsoft.com/visualstudio/eng/whats-new
http://doc.qt.digia.com/qt/signalsandslots.html
http://www.ohloh.net/p/kactus2
http://www.stack.nl/~dimitri/doxygen/index.html
http://people.eecs.ku.edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-testing.pdf
http://people.eecs.ku.edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-testing.pdf

113

APPENDIX 1: PARAMETER GROUP BOX

114

APPENDIX 2: FILE BUILDERS EDITOR

115

APPENDIX 3: FILE SETS EDITOR

116

APPENDIX 4: FILES EDITOR

117

APPENDIX 5: MODEL PARAMETER EDITOR

118

APPENDIX 6: PARAMETERS EDITOR

119

APPENDIX 7: ADDRESS SPACES EDITOR

120

APPENDIX 8: MEMORY MAPS EDITOR

121

APPENDIX 9: MEMORY MAP EDITOR

122

APPENDIX 10: ADDRESS BLOCK EDITOR

123

APPENDIX 11: REGISTER EDITOR

124

APPENDIX 12: VIEWS EDITOR

125

APPENDIX 13: ENVIRONMENT IDENTIFIER EDITOR

126

APPENDIX 14: PORTS EDITOR

127

APPENDIX 15: BUS INTERFACES EDITOR

128

APPENDIX 16: CHANNELS EDITOR

129

APPENDIX 17: CPUS EDITOR

130

APPENDIX 18: OTHER CLOCK DRIVERS EDITOR

	Tiivistelmä
	Abstract
	List of symbols and abbreviations
	1 Introduction
	2 IP Integration
	2.1 System-on-Chip
	2.2 IP-block information contents
	2.2.1 Documentation files
	2.2.2 Testing and verification files
	2.2.3 Source files of the implementation
	2.2.4 Files to help the initialization of the IP-block

	2.3 IP-XACT-standard
	2.3.1 IP-XACT based IP-block integration
	2.3.2 Elements of a component
	2.3.3 Extensions to the standard
	2.3.3.1 New IP-XACT objects
	2.3.3.2 Kactus2 attributes for IP-block

	3 Related tools
	4 Overview of Kactus2
	4.1 Kactus2 implementation
	4.1.1 Signals & slots

	5 Management of the library
	5.1 Entire library
	5.1.1 Search for new items on the disk
	5.1.2 Checking library integrity
	5.1.3 Parsing item dependencies

	5.2 Item management
	5.2.1 Create new item
	5.2.2 Open item for viewing or editing
	5.2.3 Open the metadata to XML editor
	5.2.4 Save item
	5.2.5 Export item
	5.2.6 Remove item

	5.3 Viewing
	5.3.1 Search for item in the library
	5.3.2 Filter item types

	6 Packaging of an IP-block with component editor
	6.1 General Editor
	6.2 File set summary
	6.2.1 File set editor
	6.2.1.1 File editor

	6.3 Model parameters editor
	6.4 Parameters editor
	6.5 Memory map summary
	6.5.1 Memory map editor
	6.5.1.1 Address block editor
	6.5.1.2 Register editor
	6.5.1.3 Field editor

	6.6 Address space summary
	6.6.1 Address space editor

	6.7 View summary
	6.7.1 View editor

	6.8 Ports editor
	6.9 Bus interface summary
	6.9.1 Bus interface editor
	6.9.1.1 Port maps

	6.10 Channels editor
	6.11 Cpus editor
	6.12 Other clock drivers editor

	7 Library management module
	7.1 Data structures
	7.2 Hierarchy view
	7.3 VLNV tree view
	7.4 VLNV dialer
	7.4.1 Filter widget

	7.5 Use cases as sequence diagrams
	7.5.1 Open hierarchical component in an editor
	7.5.2 Search for objects on the disk
	7.5.3 Exporting a component
	7.5.4 Deleting a component

	8 Component editor module
	8.1 Common editors and classes
	8.1.1 Item editor interface class
	8.1.2 Model/view architecture in Kactus2
	8.1.3 List manager
	8.1.4 Name group editor

	8.2 General Editor
	8.3 File set editor
	8.4 File editor
	8.4.1 File general tab

	8.5 Address space editor
	8.6 Field editor
	8.7 View editor
	8.8 Bus interface editor
	8.8.1 Bus interface general settings
	8.8.2 Bus interface port map settings

	9 Evaluation of the work
	9.1 Maintainability
	9.2 Usability
	9.3 Testability

	10 Conclusions
	References
	Appendix 1: Parameter group box
	Appendix 2: File builders editor
	Appendix 3: File sets editor
	Appendix 4: Files editor
	Appendix 5: Model parameter editor
	Appendix 6: Parameters editor
	Appendix 7: Address spaces editor
	Appendix 8: memory maps editor
	Appendix 9: Memory map editor
	Appendix 10: Address block editor
	Appendix 11: Register editor
	Appendix 12: Views editor
	Appendix 13: Environment identifier editor
	Appendix 14: Ports editor
	Appendix 15: Bus interfaces editor
	Appendix 16: Channels editor
	Appendix 17: Cpus editor
	Appendix 18: Other clock drivers editor

