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Kehitämme yksinkertaisen näköön pohjautuvan kuvanlaadun mittausmenetelmän

stokastisella rasteroinnilla tuotetuille kuville. Uusi metriikka pohjautuu siihen, mi-

ten näköalueen hermosolut reagoivat eritaajuuksisiin signaaleihin, ja soveltaa ole-

massaolevien metriikoiden ideoita sekä näkötutkimuksen tuloksia. Peittoilmiö jäte-

tään uudessa metriikassa huomiotta, koska sillä ei ole merkittävää vaikutusta tällä

sovellusalueella. Uusi metriikka korreloi vahvasti HDR-VDP2:n kanssa, mutta on kä-

sitteellisesti tätä yksinkertaisempi ja soveltuu pienempien laatuerojen mittaamiseen.

HDR-VDP2:n lisäksi metriikan tuloksia verrataan MS-SSIM-metriikan tuloksiin.

Uutta metriikkaa sovelletaan erilaisilla näytteenottomenetelmillä tuotettujen kuvien

vertailuun. Mittauksissa käytetään niitä varten rakennettuja kolmiulotteisia testi-

näkymiä muutaman laajalti käytetyn luonnollisen näkymän lisäksi. Tällä saadaan

kvantitatiivista tietoa näytteenottomenetelmien tuottamasta kuvanlaadusta, vah-

vuuksista ja heikkouksista. Näytepistejoukon tähtidiskrepanssin ja kuvanlaadun vä-

liltä löytyy korrelaatio, joskaan diskrepanssi ei ole yksin riittävä menetelmä arvioi-

maan kuvanlaatua. Laitteistoystävällinen matalan diskrepanssin näytteenottomene-

telmä menestyy hyvin, mutta laatuero pikselikohtaisesti strati�oituun näytteenot-

toon pienenee, kun näytteiden määrä nousee.

Laatuanalyysin taustamateriaalina esitetään perusteellinen matemaattinen malli ku-

vasarjan tuottamiseksi dynaamisen kolmiulotteisen näkymän pohjalta.
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We develop a simple perceptual image quality metric for images resulting from

stochastic rasterization. The new metric is based on the frequency selectivity of

cortical cells, using ideas derived from existing perceptual metrics and research of

the human visual system. Masking is not taken into account in the metric, since it

does not have a signi�cant e�ect in this speci�c application. The new metric achieves

high correlation with results from HDR-VDP2 while being conceptually simple and

accurately re�ecting smaller quality di�erences than the existing metrics. In addition

to HDR-VDP2, measurement results are compared against MS-SSIM results.

The new metric is applied to a set of images produced with di�erent sampling

schemes to provide quantitative information about the relative quality, strengths,

and weaknesses of the di�erent sampling schemes. Several purpose-built three-

dimensional test scenes are used for this quality analysis in addition to a few widely

used natural scenes. The star discrepancy of sampling patterns is found to be

correlated to the average perceptual quality, even though discrepancy can not be

recommended as the sole method for estimating perceptual quality. A hardware-

friendly low-discrepancy sampling scheme achieves generally good results, but the

quality di�erence to simpler per-pixel strati�ed sampling decreases as the sample

count increases.

A comprehensive mathematical model of rendering discrete frames from dynamic

3D scenes is provided as background to the quality analysis.
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ABBREVIATIONS, TERMS, AND SYMBOLS

BPMSE Band-pass Pyramid MSE introduced in Section 5.3.

Chrominance The hue and saturation components of color or how the

light is composed of di�erent wavelengths, as opposed

to how bright the light is.

CSF Contrast sensitivity function introduced in Section 4.6.

FFT Fast Fourier transform. An algorithm for e�ciently cal-

culating the Fourier transform of a discrete signal.

fMRI Functional magnetic resonance imaging. A medical

imaging technique which dynamically measures blood

�ow to brain cells. The blood �ow is correlated to brain

activity.

Foveal vision Vision of things that a person is directly looking at.

Opposite of peripheral vision.

GPU Graphics processing unit, a collection of dedicated hard-

ware for graphics processing. Usually GPUs are geared

towards rasterization, though they are getting increas-

ingly used as generic massively parallel processing units.

HDR High dynamic range, meaning color values having a high

range of brightness. Usually such color values are rep-

resented as �oating point numbers as opposed to the

common integer representation.

HVS Human visual system, encompassing the eyes and the

parts of the nervous system dedicated to vision.

HWLDS Hardware-friendly low-discrepancy sampling scheme

used in our measurements in Chapter 6.

Luminance Density of total light emitted in the visible area of the

spectrum, which determines the human perceived power

of the light.

MOS Mean opinion score. Mean of normalized subjective im-

age quality scores, usually in a scale from 1 to 5 or 0 to

100.

MSE Mean square error.

MSSIM Mean structural similarity index, mean value of a di�er-

ence map produced by the SSIM metric.

MS-SSIM Multi-scale structural similarity index, an image quality

metric based on SSIM.
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Nyquist limit Frequency limit given by the Nyquist-Shannon sampling

theorem. If some content frequency of the sampled sig-

nal is above the Nyquist limit of the sample density, the

sampled signal becomes aliased.

O�ine rendering Rendering computer generated images without time

constraints, for example for the purposes of an archi-

tectural visualization or an animated movie.

PSD Power spectral density. A function demonstrating how

signal power is distributed among frequencies.

Psychophysics Study of relationships between physical stimuli and the

perceptions that they cause.

Receptive �eld The collection of neurons that feeds signals to a single

neuron.

RGB Red, green and blue. Red, green and blue triplets are

used in computer graphics to represent colors percepti-

ble to humans.

RMSE Root mean square error.

SPP Samples per pixel.

SSIM Structural similarity index, an image quality metric orig-

inally developed by Wang, introduced in Section 5.2.3.

VDP Visible Di�erences Predictor, an image quality metric

originally developed by S. Daly, introduced in Section

5.2.2.

Visual cortex The part of the brain's cerebral cortex dedicated to pro-

cessing visual information. Also known as the striate

cortex.

z-score Normalized value of a subjective image quality score.
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1. INTRODUCTION

Taking a photograph with a camera involves light passing through a two-dimensional

aperture during a non-zero shutter interval. This results in a two-dimensional (2D)

image with defocus blur and motion blur, e�ects that are also desirable in com-

puter generated graphics. They are important for achieving realistic appearance

[42, Chapter 6], and sometimes exaggerated motion blur is used to emphasize the

feeling of motion [1, Chapter 6.8]. If the rendering process is interpreted as trying

to approximate a time-dependent continuous image function, motion blur is also

necessary to achieve temporal anti-aliasing.

So far, real-time rendering has relied on coarse approximations of these e�ects,

but in a couple of GPU generations stochastic rasterization might become a viable

method to render high-quality defocus blur and motion blur in real time [48] [33]

[45] [37]. Many of the principles concerning stochastic rasterization also apply to

distribution raytracing, which is a similar algorithm used widely in o�ine rendering.

The sampling pattern used in stochastic rasterization can be regular or completely

randomized and it can vary between pixels. Either way, the characteristics of the

sampling pattern greatly a�ect perceived image quality [42, Chapter 7.2]. Time

complexity of the rendering is dependent on the total number of samples taken

[42, Chapter 7.2], so having an e�cient sampling pattern is especially important in

real-time applications.

Attempts to improve sampling approaches have been based on simple mathemat-

ical characteristics of sampling patterns and subjectively perceived image quality,

but an objective perceptual image quality metric enables more accurate assessment

of the quality of the rendering [48]. Ideally, stochastic rasterization sampling pat-

terns could also be optimized automatically using an objective image quality metric.

There are already precedents in optimizing 2D sampling patterns [25] and multidi-

mensional low-discrepancy sequences [8] using other kinds of metrics.

We begin by discussing the underlying algorithms of stochastic rasterization:

emulating a camera in three-dimensional (3D) space in Chapter 2 and sampling and

reconstruction in Chapter 3. From there on the focus switches on to the human

visual system or HVS in Chapter 4 and image quality metrics in Chapter 5. Finally,

image quality metrics are applied to stochastic rasterization in Chapter 6. Results

and opportunities for further research are analyzed in Chapter 7.



2

2. CAMERA IN 3D SPACE

3D rendering takes a 3D scene as an input and produces a two-dimensional image

of it as an output [42, Chapters 1, 6]. If the aim is to create the perception of

actual 3D space, perspective projection is used. Ideally, the image resulting from

this perspective projection shows what the observer would see if he looked at the 3D

scene through his screen. The screen can be thought of as a window to the 3D scene

from some vantage point in the real world. The color at a position on the screen

corresponds to the light ray passing through that position from the scene towards

the aperture of the observer's eye. This basic geometry of perspective projection of

a 3D scene is illustrated in Figure 2.1a.
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Figure 2.1: a) The eye model of projecting a 3D scene. The eye and screen are given
coordinates in the 3D scene and the screen's coordinates de�ne the image plane. b) The
camera model of projecting a 3D scene onto an image plane through the camera's aperture.
Note that the image on the image plane is mirrored with respect to the center of the plane.

In computer graphics terminology, the word camera is usually used instead of

eye. This is despite the fact that in a real camera, the �lm de�ning the image

plane is always located behind the aperture, instead of in front of it like in our

ideal model of viewing a 3D scene in Figure 2.1a. This camera model of perspective

projection is presented in Figure 2.1b. However, the correspondence between image

plane positions and light rays is essentially equivalent in these two models. The
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camera model is favorable because geometry presented in Figure 2.1b is often easier

to work with, particularly in the case of depth of �eld focus discussed in Section 2.3.

The use of the term camera is even easier to justify if the aim is not to present

a window to a 3D scene, but to actually emulate the appearance of real-world pho-

tography. This is a very common stylistic choice. The di�erence might not seem

signi�cant, but multiple phenomena including lens distortion, lens �are, non-circular

aperture shape, and sensor noise or grain are only present in photography. The

screen is then just a 2D display device for the resulting image.

The camera model is developed in the following sections. We start from a simple

pinhole camera in Section 2.2 and then introduce non-point-like aperture in Section

2.3. We will also discuss shutter speed in Section 2.4. The following Section 2.1 goes

over the mathematical notation used throughout this chapter.

2.1 Notation

For this purposes of this chapter, an image is thought of as an image function, a

continuous function that returns a color value c for a given point in time t and a

given x, y position on the image plane [42, Chapter 7.1.5]. x, y, and t are all de�ned

as continuous variables.

f(x, y, t)→ c. (2.1)

Everything in this chapter is explained using a camera-relative coordinate space.

The camera aperture is located at the origin, facing towards the positive z axis, and

the image plane is perpendicular to the z axis. The notation zp is used for the z

coordinate of the image plane, which is always negative. 3D scenes are essentially

thought of as collections of static objects that have a clearly de�ned surface �

speci�cally, we de�ne function scene(t) that gives a static snapshot of an arbitrary

dynamic 3D scene at time t.

Function intersect(r, s) intersects the ray de�ned by r with the scene s. The

function returns the intersection with the closest surface, de�ned as the intersection

with the minimum positive z value. If there is no such intersection, the function

returns a null value.

Function shade(i) is an arbitrary shading function that returns a color value based

on an intersection. For the purposes of this chapter, the exact representation of color

values is not important. For actually simulating light, the color values should model

the whole wavelength distribution across the electromagnetic spectrum. Practical

rendering algorithms usually use shading functions yielding red, green, and blue

triplets that cover a subset of the shades that are perceptible to humans.
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2.2 Pinhole Aperture

The simplest possible perspective rendering of a 3D scene treats the camera's aper-

ture as a pinhole, essentially just a single point in 3D space. Each visible point in

the scene is projected into one point on the image plane. This results in an entirely

sharp image of the 3D scene.

Let us consider a single image plane position x, y, zp. The line that intersects

both this point and the pinhole aperture located at the origin is given by

rpinhole(x, y) = α · (x, y, zp), (2.2)

where α ∈ R is an arbitrary coe�cient. If we restrict α to be negative, we get

all the positions along the ray that extends from the aperture towards the positive

z direction � in other words, the desired light ray corresponding to the speci�ed

image plane position.

Using this, we de�ne the pinhole image function fpinhole, which returns the color

at the image plane position x, y and time t. Its value is determined by calculating

the shading at the surface of the nearest object that intersects with rpinhole(x, y):

fpinhole(x, y, t) = shade(intersect(rpinhole(x, y), scene(t))). (2.3)

2.3 Aperture and Lens

In reality, the aperture of a camera or an eye is not point-like, but rather has some

�nite two-dimensional shape of non-zero area [42, Chapter 6.2.3]. Additionally, a

lens system located around the aperture di�racts rays from the scene depending on

which part of the aperture they hit. As a result, only objects at a certain distance

from the aperture are projected in perfect focus. This distance from the aperture

de�nes the so-called focal plane. Points that are not at the focal plane are projected

onto an area called circle of confusion. In e�ect, the image is partially blurred, and

we use the term defocus blur. This e�ect is demonstrated in Figure 2.2.

The size of the circle of confusion depends on how far the projected point is from

the focal plane. The circle of confusion might not always be a circle, but it takes the

same shape as the aperture. In photography, the term bokeh is used for the shapes

created by defocus blur especially if the aperture is not circle-shaped.

The z-coordinate of the focal plane is determined by how the lens system and the

image plane are physically laid out. Given the z-coordinate of the focal plane zf ,

and knowing that the aperture is located at the origin, we can calculate where rays

intersecting at given x, y on the image plane intersect on the focal plane. This so

called focal point pf (x, y) is given by
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focal
plane
zf

image
plane
( lm)
zp

aperture /
lens system

(origin)

circle of
confusion

Figure 2.2: Side view of the camera demonstrating defocus blur and the circle of confusion.
The lens system refracts light rays so that rays intersecting at the focal plane also intersect
at the image plane. Observe the sharp projection of a point on the focal plane, and the
blurred projection of another point not on the focal plane. Figure modeled after [42,
Chapter 6.2.3].

pf (x, y) = (x, y, zp)(zf/zp). (2.4)

Now the line equation through an arbitrary point u, v on the aperture towards

the focal point corresponding to x, y on the image plane is given by

r(x, y, u, v) = (u, v, 0) + α · (pf (x, y)− (u, v, 0)), (2.5)

where α ∈ R is an arbitrary coe�cient. This time, we must restrict α to be positive

to get the positions along the ray in the positive z direction.

This formulation of the ray equation is simpli�ed in the sense that it assumes

the lens system perfectly follows the focal plane model. With actual physical lens

systems, this is not always entirely true [42, Chapter 6.2.3]. To model an actual

physical lens system, additional distortion could be added, but this simple model is

su�cient for our purposes.

In addition, we de�ne L(u, v) as follows:

L(u, v) =

{
1 if u, v ∈ A

0 if u, v 6∈ A
, (2.6)

where A is the set of points inside the aperture area. Using this, we obtain a formula

for the color given a certain aperture position u, v, and the other coordinates x, y,

and t:

fuv(x, y, t, u, v) = shade(intersect(r(x, y, u, v), scene(t))) · L(u, v). (2.7)
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To calculate the total light reaching a given point on the image plane, we have

to integrate this function over the aperture dimensions u and v. Since we have

de�ned the aperture as �nite, we can de�ne extents U and V for the aperture so

that L(u, v) can only be 1 when the absolute aperture coordinates are inside them,

or more formally (|u| > U)∨(|v| > V )⇒ L(u, v) = 0. Using these, the full de�nition

of the image function is as follows:

f(x, y, t) =

∫ V

−V

∫ U

−U

fuv(x, y, t, u, v)dudv. (2.8)

2.4 Shutter Speed and Time

In the previous section, the projection was done at a single instant. If our aim is

to emulate photography, we have a non-zero shutter interval T during which light

passes through the aperture. For the sake of simplicity, we assume that the shutter

opens instantaneously and closes instantaneously. We arrive at the cinematographic

image function fc(x, y, t0), where we integrate the point color value over the frame

interval:

fc(x, y, t0) =

∫ t0+T

t0

f(x, y, t)dt, (2.9)

where t0 is the time at which the shutter opens. Note that the longer the shutter

interval T is, the more light rays pass through the aperture. To achieve uniform

luminance across frames with di�erent T , the output can be scaled by 1
T
.

When used to render video, the resulting motion blur gives us a similar perception

of �uid motion as with cinematography. The literature in the area often assumes

that the cinematographic image function is used [34] [33].
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3. SAMPLING AND RECONSTRUCTION

3.1 Reconstructing Frames from the Image Function

So far, we have treated the image resulting from the 3D rendering as a continuous

function of x, y coordinates on the image plane and time t. In practice we are able

to render and display only a �nite number of bitmap frames of the projection. This

equates to sampling the continuous image function with a regular grid in x, y, and

t. In e�ect, the display device reconstructs the original continuous image function

using these discrete samples, similarly to how a speaker system reconstructs an

one-dimensional continuous audio signal from samples in the t dimension.

According to the Nyquist-Shannon sampling theorem, taking discrete samples of

a high-frequency function will result in aliasing artifacts [50, Chapter 3]. To avoid

aliasing, we need to �lter out the frequencies above the Nyquist limits given by the

density of the pixel grid and the framerate before sampling. In the pinhole aperture

case with only x, y, and t dimensions, this gives us the low-pass �ltered continuous

image function

ipinhole(x, y, t) = l(x, y, t) ∗ fpinhole(x, y, t), (3.1)

where l(x, y, t) is a suitable low-pass �lter and the ∗ operator denotes convolution.
If we assume that the low-pass �lter has perfect frequency response, sampling this

function gives the best possible approximation of fpinhole we can achieve within the

limits of the density of the pixel grid and the framerate. The shape of the low-pass

�lter in t determines the amount of motion blur, which is actually just temporal

anti-aliasing.

However, if the aim is to emulate cinematography, time is treated di�erently from

the image plane dimensions x, y, and we use the cinematographic image function

given in Section 2.4. If the cinematographic image function is chosen to be used,

the low-pass �lter does not take t into account, we explicitly control the amount of

motion blur with the shutter interval T and the formula becomes:

icpinhole(x, y, t0) = l(x, y) ∗
∫ t0+T

t0

fpinhole(x, y, t)dt. (3.2)

This is actually equivalent to using Equation (3.1) with l(x, y, t) that is separable
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to a spatial �lter and a box �lter in t [17]. This means that the cinematographic

image function is just a special case of the more generic formulation of generating

frames from a dynamic 3D scene. Thinking in terms of the generic formulation

gives a more complete understanding of the reconstruction problem, but thinking in

terms of the cinematographic image function can be appropriate when the aim is to

simulate a camera.

The implications of choosing one approach or the other may not seem signi�cant

at �rst, but it is easy to construct situations where content of the image function

is above the Nyquist limit of the framerate, and using the cinematographic image

function results in temporal aliasing [17]. One common example of temporal aliasing

is rapidly spinning wheels appearing to spin backwards.

For the non-zero aperture case, we need to alter Equation (3.1) to include in-

tegrating over the u and v dimensions. The low-pass �ltered image function with

defocus blur is:

i(x, y, t) = l(x, y, t) ∗ f(x, y, t) = l(x, y, t) ∗
∫ V

−V

∫ U

−U

(fuv(x, y, t, u, v))dudv. (3.3)

We now have a perfect formulation for the low-pass �ltered image. This function

can be sampled at the pixel locations and frame times ti to get the �nal color values

for each displayed pixel.

The remaining problem is that solving the result of this function analytically is

not practically possible, so we will have to approximate it numerically. We will do

this by sampling the color function fuv(x, y, t, u, v) given in Equation (2.7) across

the x, y, t, u, and v dimensions, and reconstructing the continuous image function

f(x, y, t) from these samples. To summarize, the whole process of generating bitmap

frames from a dynamic 3D scene consists of the following steps [42, Chapter 7.7]:

1. Sampling the color function across the x, y, u, v, t dimensions.

2. Reconstructing the continuous image function f(x, y, t) from the samples as

accurately as possible.

3. Filtering out frequencies above the Nyquist limits given by the density of our

pixel grid and the framerate.

4. Sampling the image function at pixel locations and the frame time t0 to get

the �nal color values.

In practice, steps 2 and 3 are combined into a single reconstruction �lter.

To express the whole process as mathematical formula, the sampling pattern can

be represented as a distribution of Dirac delta functions s(x, y, t, u, v) [34]:
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s(x, y, t, u, v) =
N∑
i=1

δ((x− xi) · (y − yi) · (t− ti) · (u− ui) · (v − vi)), (3.4)

where N is the total number of samples and (xi, yi, ti, ui, vi) gives the position of

the ith sample. Using this, the approximation done by sampling and reconstructing

can be expressed as:

i(x, y, t) = r(x, y, t) ∗
∫ V

−V

∫ U

−U

(fuv(x, y, t, u, v) · s(x, y, t, u, v))dudv, (3.5)

where r(x, y, t) is the combined low-pass and reconstruction �lter.

The important thing to note here is that the di�erent dimensions of the sam-

pled function have di�erent roles in the approximation of the image function. The

aperture dimensions u and v are folded away completely by integrating over them,

whereas the other dimensions are not. Big changes in the value of fuv are also usu-

ally dependent on one or two speci�c dimensions at a time � it is said that the

function has low e�ective dimension [20]. This means that the characteristics of

lower dimensional projections of s can tell a lot about its e�ectiveness in capturing

the shape of the function.

No matter which image function is being used, two factors determine the quality

of the reconstruction. One is the sampling pattern s(x, y, t, u, v), but the combined

low-pass and reconstruction �lter r(x, y) or r(x, y, t) also plays an important role.

Signal processing theory gives us the encouraging result that the sinc �lter can be

used to perfectly reconstruct a sampled signal. However, perfect reconstruction is

possible only when the original signal is band-limited in terms of frequency.

In 3D graphics, object edges unfortunately introduce in�nite-frequency compo-

nents to the image function, so perfect reconstruction is impossible, and using the

sinc �lter results in undesirable ringing artifacts [42, Chapter 7.1.2] [35]. The theory

behind perfect reconstruction also relies on uniformly spaced samples. In addition,

the sinc �lter has in�nite extents, so any practical application of it would be only an

approximation. However, several other high-quality combined low-pass and recon-

struction �lters have been developed and are being used widely in o�ine rendering

[42, Chapter 7.7.1]. Many good �lters are found from the family of cubic �lters, for

example the Mitchell-Netravali �lter [35].

Until recently, real-time rendering has not bene�ted from these advanced com-

bined low-pass and reconstruction �lters, and has been relying on the simple box

�lter instead [1, Chapter 4.4]. Increased quality was sought only by increasing the

number of samples. However, this approach is no longer optimal due to increased
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shading function complexity, which can be only partially alleviated by sharing shad-

ing results between neighboring samples of the same object. Because of this, current

research in spatial anti-aliasing for real-time applications has been focused on im-

plementing better �ltering as a post-processing step [19].

Many recent real-time rendering engines use only one or two samples per pixel

combined with sophisticated contrast dependent �lters. This approach typically

results in quality that is comparable to using four or eight samples per pixel with

a box �lter, which e�ectively demonstrates the importance of high-quality �ltering.

Some of these �ltering implementations reuse samples across the t dimension for

spatial anti-aliasing by reprojecting them [18].

3.2 Implementation: Distribution Raytracing

The most straightforward way to implement the sampling process is using distribu-

tion raytracing, earlier known as distributed raytracing. In distribution raytracing,

Equation (2.7) is explicitly computed for each sample [5]. Each sampled light ray is

traced back from the aperture to the nearest intersection by testing the ray equation

against surface equations of objects in the scene. The shading function is typically

computed by evaluating additional rays from the intersection [42, Chapter 1]. These

rays can be refracted, re�ected or cast towards a light source to evaluate shadow-

ing. The naive algorithm for distribution raytracing is presented as pseudocode in

Algorithm 1.

Algorithm 1 Computing a bitmap frame from a scene using the naive implemen-
tation of distribution raytracing.

function find intersection(ray, scene)
closest ← intersection(ray, scene.background)
for each object in scene do

if ray intersects object and intersection(ray, object).z < closest.z then
closest ← intersection(ray, object)

end if

end for

return closest
end function

for all sample positions (x, y, t, u, v) do
framebu�er[x,y] ← shade(�nd intersection(ray(x, y, u, v), scene(t)))

end for

frame ← downsample(�lter(framebu�er))

If s is the number of samples or rays and n is the number of objects in the scene,

the naive algorithm to implement raytracing has O(ns) time complexity. This can

be improved for common scenes by introducing spatial subdivision data structures to



3. Sampling and Reconstruction 11

e�ciently narrow down which objects can potentially intersect each ray [42, Chapter

4]. Hierarchical spatial subdivision moves the time complexity of rendering closer to

O(s log n), though good hierarchical structures can also be expensive to construct.

Optimized implementations also take advantage of instruction-level parallelism in

modern CPUs and GPUs to evaluate multiple rays at once [4]. Still, the �exibility

and simplicity of raytracing come at a cost of e�ciency. Even today, raytracing is

not typically used in real-time applications, even though there have been several

proof-of-concept implementations [4] [28].

3.3 Implementation: Stochastic Rasterization

Since raytracing is so computationally intensive, more e�cient rasterization algo-

rithms have been used for 3D rendering especially in real-time applications. While

modern GPUs are increasingly becoming generic parallel processing units, they

are geared towards implementing an e�cient rasterization based graphics pipeline.

While raytracing supports multiple kinds of surface equations, in rasterization, all

objects are constructed out of polygons.

We will �rst cover traditional rasterization, which implements pinhole render-

ing discussed in Section 2.2. First, vertices de�ning the polygons in the scene at

frame time t0 go through a perspective transformation that projects them into the

unit cube [1, Chapter 2.3]. After the transformation, the x and y coordinates of

the vertices have a linear relationship to their image plane coordinates, and the z

coordinate in the [-1, 1] range represents depth.

The rasterization pipeline then computes which x, y sample positions each poly-

gon covers, or the image plane bounds for the polygon. The pipeline iterates over

the samples within the image plane bounds of each polygon and evaluates the shad-

ing function for each sample, storing the results in the framebu�er [1, Chapter 2.4].

Visibility of polygons that overlap in the x and y dimensions is determined by using

the z-bu�er algorithm, comparing the calculated z value of each sample to the value

stored in the z-bu�er at the sample's x, y position. Using the z-bu�er algorithm,

the polygons in the scene can be processed in an arbitrary order.

After all the polygons have been rendered into the framebu�er, the �nal bitmap

is reconstructed and downsampled from the framebu�er samples. The rasterization

algorithm is presented as pseudocode in Algorithm 2.

Many e�ects that are trivial to implement in a physically correct way using ray-

tracing are usually approximated with complex algorithms in rasterization based 3D

rendering. Such e�ects include shadows, re�ections, and to some extent also motion

blur and depth of �eld. In real-time applications, motion blur and depth of �eld

are typically approximated using post-processing �lters on pinhole rendered images.

This approach is unavoidably prone to undesirable artifacts, which typically appear
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Algorithm 2 Computing a bitmap frame from a scene at time t0 using traditional
rasterization and the z-bu�er algorithm.

for all sample positions (x, y) do
zbu�er[x, y] ← 1

end for

for each polygon in scene(t0) do
for each sample position (x, y) in polygon do

if z(polygon, x, y) < zbu�er[x, y] then
zbu�er[x, y] ← z(polygon, x, y)
framebu�er[x, y] ← shade(polygon, x, y)

end if

end for

end for

frame ← downsample(�lter(framebu�er))

especially around silhouette edges [2, Chapter 10] [33].

The accumulation bu�ering technique is another option for implementing motion

blur or depth of �eld in real-time applications. In accumulation bu�ering, frames

rendered with di�erent t, u, v parameters are averaged together [2, Chapter 10]. This

converges to the correct result when the amount of accumulations is increased, but

coupling the dimensions together for every sample is clearly suboptimal compared

to distributing the samples individually.

Stochastic rasterization generalizes the rasterization approach to separately vary

the sample locations in all dimensions, so that better sampling patterns and sub-

sequently better estimation of motion blur and depth of �eld become possible [3].

In traditional rasterization, the image plane bounds of a polygon are de�ned by the

polygon edges at time t0. In stochastic rasterization, the image plane bounds for a

single polygon are expanded to encapsulate all image plane positions of the polygon

in the sampled t, u, v intervals [3]. Motion can be approximated as linear to make

the implementation more e�cient.

The polygon visibility is then tested at each x, y, t, u, v sample position inside

these expanded image plane bounds. Optimized implementations use various tricks

to reduce the required number of visibility tests [26]. If the polygon is visible at

a given sample position and the z-bu�er test passes, the shading function is then

evaluated for this sample and the result is stored in the framebu�er. Filtering and

downsampling are performed similarly to traditional rasterization, though special-

ized post-processing algorithms have also been developed to improve the quality

of the resulting image [48]. The stochastic rasterization algorithm is presented as

pseudocode in Algorithm 3.

The e�ciency advantages of choosing stochastic rasterization over distribution

raytracing might not be immediately apparent from the pseudocode. In the worst
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Algorithm 3 Computing a bitmap frame from a scene using stochastic rasterization
and the z-bu�er algorithm.

for all sample positions (x, y) do
zbu�er[x, y] ← 1

end for

for each polygon in scene do
for each sample position (x, y, t, u, v) in expandedbounds(polygon) do

zp ← z(polygon, x, y, t, u, v)
if visible(polygon, x, y, t, u, v) and zp < zbu�er(x, y) then

zbu�er[x, y] ← zp
framebu�er[x, y] ← shade(polygon, x, y, t, u, v)

end if

end for

end for

frame ← downsample(�lter(framebu�er))

case, the expanded bounds for each polygon cover the whole screen, and the al-

gorithm has O(ns) time complexity. However, the amount of samples included in

the average polygon's image plane bounds can usually be made much smaller than

the total number of samples s. Furthermore, iterating over the samples can be im-

plemented more e�ciently than iterating over the rays in raytracing, since many

computations can be performed per vertex instead of per sample.

3.3.1 Stochastic Transparency

Transparent polygons are problematic for rasterization, since they can not simply

rely on the depth-testing provided by the z-bu�er algorithm [27]. In o�ine rendering,

the a-bu�er algorithm is sometimes used to collect a depth-sorted list of overlapping

polygons for each sample. Using the a-bu�er algorithm is not feasible for real-

time rendering, since the amount of space needed by each sample is practically

unbounded. In real-time rasterization, transparent polygons are usually separated

from the rest of the scene, depth-sorted, and rendered in back-to-front order after

the rest of the scene has already been rendered into the framebu�er [1, Chapter 4.5].

The need to handle transparent polygons separately can be eliminated by using

stochastic transparency [27]. With stochastic transparency, the polygon is rendered

as if it were either completely opaque or completely transparent at each sample, but

the opaque option is chosen only when a random variable is less than the polygon's

opacity value. Using this algorithm, transparent polygons can be processed in ar-

bitrary order and the process can be completed in a �xed amount of space. This

approach is somewhat similar to the earlier �xed pattern transparency techniques

[1, Chapter 4.5], but can generate much better results coupled with higher sampling

rates and high-quality �ltering.
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3.4 Sampling Schemes

We already discussed the importance of the low-pass and reconstruction �lter to

image quality. In stochastic rasterization, the design of the sampling pattern is

equally important [42, Chapter 7.2]. The naive approach is to sample the image

function at evenly spaced grid points � this is called the uniform grid sampling

pattern. As the density of the grid is increased, the e�ective Nyquist frequency gets

pushed higher, and we get an increasingly accurate reconstruction of the sampled

function. We say that our reconstruction converges towards the correct result when

the sample density is increased. Sample density is usually measured as samples per

pixel (SPP).

The uniform grid pattern can work relatively well with a limited amount of dimen-

sions, but as the amount of dimensions increases, the amount of evenly spaced sam-

ples required to accurately capture the sampled function becomes unmanageable.

Sampling patterns with certain type of variability can capture high-dimensional

functions much more e�ectively [8]. We already mentioned that lower-dimensional

projections of the sampling pattern are often more important than uniformly cover-

ing the whole sampling space.

How the error resulting from inadequate sample density manifests is also im-

portant. In general, the aim of sampling scheme design is to shape the error into

high-frequency random noise, which will largely be eliminated by the low-pass �lter

step. There are some sampling pattern analysis methods that can be used to quan-

tify how well sampling patterns achieve this goal. We will look into these analysis

methods in the following two sections. Section 3.5 explains what is meant by sam-

pling pattern discrepancy, and Section 3.6 discusses how frequency analysis can be

applied to sampling patterns.

The sections after that discuss speci�c sampling schemes. We �rst discuss sam-

pling schemes that have been developed for anti-aliasing in the x, y dimensions in

Section 3.7. After that, we give an overview of issues that are speci�c to stochastic

rasterization sampling patterns in Section 3.8, especially achieving the desired aper-

ture distribution, and explain speci�c sampling schemes that are suitable for high

dimensional sampling in Sections 3.9 to 3.13.

3.5 Sampling Pattern Discrepancy

The discrepancy of a sampling pattern is de�ned as the maximum di�erence between

a shape's volume and the relative number of sample points in that volume [42,

Chapter 7.4] [13, Chapter 10.5.18]. We assume that we are sampling the unit d-

dimensional volume, which has one corner located at the origin. Given a sequence

of points xi inside the unit volume and a set of shapes S, discrepancy DN is de�ned
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as

DN(x1...xN , S) = sups∈S

∣∣∣∣#{xi ∈ s}
N

− λ(s)

∣∣∣∣ , (3.6)

where s is a shape in the set of shapes S, #{xi ∈ s} gives the number of points

inside s and λ(s) is the d-dimensional volume of s.

All sets of shapes S do not yield meaningful discrepancy values, of course. Now, S

can be for example the set of all axis-aligned boxes inside the unit volume that have

one corner located at the origin. The term star discrepancy is used for the discrep-

ancy measure using such a set of boxes. The formal de�nition of star discrepancy

D∗
N is

D∗
N(x1...xN) = DN(x1...xN , B) = supb∈B

∣∣∣∣∣#{xi ∈ b}
N

−
d∏

j=1

cj

∣∣∣∣∣ , (3.7)

where B is a set of axis-aligned boxes b that have one corner located at the origin and

another corner located at point c inside the unit d-dimensional volume. Other sets

of shapes S that have been used for analyzing discrepancy in graphics research have

included arbitrary boxes and spheres inside the unit volume and arbitrary linear

division of the unit volume [13, Chapter 10.5.18]. However, star discrepancy is the

most commonly used discrepancy measure.

Sometimes discrepancy measures can be solved analytically, but for more complex

shapes and long sequences of points the analytical solution can be very hard to

derive, computationally very expensive or both. For such cases, discrepancy can be

estimated numerically by selecting some representative subset of shapes in S and

calculating the maximum discrepancy from them.

Sampling pattern discrepancy indicates how well the set of points covers the space

that is being sampled. Low discrepancy ensures that low-frequency components

of the sampled function are sampled su�ciently to accurately reconstruct them.

However, discrepancy is not a su�cient sampling pattern quality measure by itself

[13, Chapter 10.5.18]. Particularly, low discrepancy does not ensure that aliasing

error manifests as visually less distracting noise [42, Chapter 7.4]. This is easily

apparent in the case of sampling in one dimension, where an evenly spaced sequence

of points is optimal in terms of discrepancy, even though it does not help with

aliasing error.

Experimental results from two-dimensional sampling also speak against using dis-

crepancy as the sole measure of sampling pattern quality. Jittered sampling detailed

in Section 3.10 results in lower discrepancy than Poisson disk sampling detailed in

Section 3.12, even though it was found to produce more grainy images in practice

[13, Chapter 10.5.18]. Discrepancy also does not take the reconstruction �lter into
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account, which can have just as large e�ect on image quality as the sampling pattern

[25].

As the amount of dimensions increases, low-discrepancy sampling patterns be-

come less uniform, and usually work relatively well as sampling patterns in practice

[42, Chapter 7.4], so using discrepancy as a quality measure is more justi�ed in

the case of high dimensional sampling. Nevertheless, even high dimensional low-

discrepancy sequences can be more prone to structured aliasing than true randomly

distributed sequences. We will see how star discrepancy measurements of 5D sam-

pling patterns compare to image quality measurements in Section 6.10.

3.6 Frequency Analysis of Sampling Patterns

Sampling pattern quality can be analyzed by looking at its power spectral density

or PSD, which tells how the power of a signal is distributed in terms of frequency

[32] [13, Chapter 9.2.2]. Power spectral density Rf (ω) of a signal f(x̄) is de�ned as

the Fourier transform of its autocorrelation function rf (ȳ):

Rf (ω̄) = F [rf (ȳ)] = F [f(x̄) ∗ f(−x̄)]. (3.8)

For a real-valued signal, this is equal to the square of the magnitude of the Fourier

transform of f(x̄):

Rf (ω̄) = |F [f(x̄)]|2. (3.9)

Back in Section 3.1, we showed that a sampling pattern can be represented as

a distribution of Dirac delta functions. The Fourier transform of a whole class of

sampling patterns can be solved analytically in some simple cases, but in cases

where the sampling pattern has a more complex de�nition, the overall PSD of a

pattern must usually be approximated with the average discretized PSD from several

instances of the pattern [32].

At least in the cases where all the sampled dimensions have an equal role in

the �nal result, it is reasonable to assume that radially symmetric responses are

appropriate [32]. Using this assumption, the information in a multidimensional

PSD can be condensed into two graphs representing power and anisotropy relative

to the radius from the origin.

To do this radial analysis, the frequency domain is split into a set of circular

annuli that are centered on the origin [32] [24]. Radial power Pi and the variance σ2
i

are computed within each annulus. In the two-dimensional case, the radial power is

given by
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Pi = 1/Ai

∫ 2π

0

∫ fi+1

fi

Rf (fcosθ, fsinθ)fdfdθ (3.10)

where Ai is the area of an annulus de�ned by radii fi and fi +1. The series of radii

is spaced evenly so that annuli further from the origin have more area than ones

near the origin.

The variance σ2
i within an annulus used as the anisotropy measure is given by

σ2
i = 1/Ai

∫ 2π

0

∫ fi+1

fi

(Rf (fcosθ, fsinθ)− Pi)
2fdfdθ (3.11)

These formulae are approximated on the discrete grid by assigning each sample

to an annulus based on its location, and calculating the area of an annulus as the

number of samples falling into the annulus.

In the case of the x, y dimensions, the desirable properties of the frequency spec-

trum are relatively well understood. We would like the power spectrum to demon-

strate blue noise characteristics, with the DC spike at the origin and the noise

concentrated at the high frequencies [24]. No signi�cant spikes signaling structure

should be visible. The anisotropy spectrum should be relatively �at, representing

equal characteristics across orientations.

However, applying this kind of frequency analysis to higher dimensional sampling

in the context of rendering is more complex and not as well understood [34]. This

is because the sampled dimensions beyond x, y, and t do not exist anymore in our

projection into a series of bitmap frames. Thus we can expect at least the u and

v dimensions to play a qualitatively di�erent role in the sampling pattern than the

spatial dimensions, and it is hard to determine what exact frequency characteristics

would be desirable in these dimensions.

Whether the t dimension has a qualitatively di�erent role from the spatial di-

mensions is an interesting question. Looking only at the reconstruction formula, it

is exactly the same as the spatial dimensions, but on the other hand time surely is

di�erent in the context of human vision. Image functions common in rendering also

likely behave di�erently with respect to t than with respect to x or y.

Calculating the Fourier transform of a high dimensional signal is also compu-

tationally intensive � a resolution of 64 grid points per dimension already yields

a grid with about 1 billion points in the case of 5 dimensions. We could exploit

the fact that lower-dimensional projections of sampling patterns often matter more

than the distribution in the whole high-dimensional space [20]. This means that we

could get useful results from applying Fourier analysis only to the lower-dimensional

projections. Still, we might miss some characteristics that are only visible from the

higher dimensional data.
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Summarizing the blue-noise characteristics of the power and anisotropy spectra

with a single number is also non-trivial. Because of these issues, frequency analysis

is a much more impractical tool for analyzing high-dimensional sampling patterns

than using discrepancy measures.

3.7 Sampling Schemes for Spatial Anti-aliasing

Sampling patterns and �lters for the image plane x and y dimensions is a well-

researched problem [25]. These dimensions get special treatment, since sampling

them is relevant for all graphics applications, not just rendering 3D scenes with

motion blur and defocus blur. Many of the sampling schemes developed for spatial

anti-aliasing are closely coupled with a speci�c �lter, since they have been designed

for a real-time hardware-based implementation. There is evidence that quality anal-

ysis of the sampling patterns also needs to take the �lter into account [25].

Thinking of pixels as rectangular regions of the image is an incorrect mental model

of the reconstruction problem [42], but we can illustrate the proximity of samples to

each pixel location by making a Voronoi diagram of the pixels, which yields a grid

of rectangular regions centered on the pixel locations. A reasonable requirement for

any sampling pattern is that at least one sample hits any such rectangle.

In the case of just the x and y dimensions, uniform sampling can be preferable

to nonuniform sampling at very low sample counts, since it prevents polygon edges

appearing jittery when a box �lter is used. For four uniform samples per pixel, a

rotated grid scheme has been found to be optimal for accurately representing object

edges [25] and is widely used. The sample locations and the �lter for this scheme

are illustrated in Figure 3.1a.

a) b)

Figure 3.1: Samples on the image plane are illustrated as disks with the radius scaled
according to the sample weight in the �lter. In these patterns all the samples have equal
weights. The grid lines indicate the extents of the square neighborhoods of each pixel
center. a) The rotated grid sampling pattern. b) The Flipquad sampling pattern. The
�gures are modeled after �gures in [25].

With an uniform sampling scheme, closely packed object edges can cause disturb-

ing repeating artifacts, but using an interleaved pattern that repeats across just two
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pixels can make them mostly imperceptible [22]. The Flipquad scheme combines

this kind of interleaved sampling with sharing samples across pixels to facilitate a

sampling rate of just two samples per pixel, while achieving similar results as the

rotated grid scheme. The sample locations and the �lter of the Flipquad sampling

scheme are illustrated in Figure 3.1b.

3.8 5D Stochastic Sampling Schemes

Simple sampling patterns developed for the x and y dimensions are not directly

applicable when three more dimensions are added. While simple uniform sampling

still performs relatively well in the case of just two dimensions, structured aliasing

is much more easily visible when sampling also in the t, u, and v dimensions. See

Figure 3.2 for an example. In the following sections we will investigate better sample

generation approaches, such as random sampling featured in Figure 3.2c.

a) b) c)

Figure 3.2: a) The reference rendering of a checkerboarded billboard with heavy defocus
blur. b) Using uniform grid sampling with 16 discrete grid points on the aperture results
in signi�cant structured aliasing. c) Random sampling with 16 samples per pixel trades
the structured aliasing to random noise.

In this section, we concentrate on the speci�c problem of how to achieve u, v

distributions that follow the desired aperture shape. We need to achieve this goal

while simultaneously maintaining the qualities of a well-formed point distribution.

The simplest way to achieve an arbitrary sample distribution in the u, v dimen-

sions is using the rejection method [42, Chapter 13.3.2]. As long as our sampling

pattern guarantees that there is no correlation between the aperture coordinates and

other dimensions, simply discarding sample locations that fall out of the aperture

distribution L(u, v) does not change the desirable qualities of the sampling pattern.

Unfortunately, using the rejection method will result in a lower sample density, so

the sample generator should be able to generate more sample locations to be �ltered

to achieve a desired constant sample density. This is not a trivial requirement in the

case of all sample generation methods, since the generated samples might be well

distributed only with certain speci�c total numbers of samples.
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In most cases, circular aperture shape is desirable. To achieve this, the u, v

coordinates need to be uniformly distributed across the unit disk. For this, we

do not necessarily need to use the rejection method, but can transform u and v

coordinates from a square distribution to a disk-shaped distribution.

To do this, we need a square-to-disk mapping that has three key qualities: pre-

serving fractional area of shapes, preserving continuity, and low distortion of shapes

[49]. Preserving fractional area of a shape R is de�ned as

λ(R)

λ(S)
=

λ(m(R))

λ(m(S))
, (3.12)

where λ is a function determining the area of a shape, S is the unit square, m is the

mapping function, and R is an arbitrary shape inside the unit square. Continuity

is de�ned as usual, and it should be preserved also in the inverse disk-to-square

mapping.

A formal de�nition for the low distortion of shapes is more complex and out-

side the scope of this thesis. For the purposes of sampling, preserving the relative

distances of neighboring points after the mapping to some small degree of error is

basically enough.

A simple mapping of concentric squares into concentric circles, from here on

concentric-square mapping, satis�es all three criteria [49] [42, Chapter 13.6.2]. The

mapping is illustrated in Figure 3.3. We assume that our u and v coordinates are

separately uniformly distributed across the [−1, 1] range. The concentric-square

mapping for a point inside the unit square can be constructed from this mapping

covering one fourth of the unit square:

mp([uS, vS]) =

[
uS cos

(
πvS
4uS

)
, uS sin

(
πvS
4uS

)]
, (3.13)

where uS and vS are the coordinates on the unit square andmp is the partial mapping

[49]. The fourth covered by this mapping is the right side of the both diagonals of

the square where uS > |vS|. This fourth is highlighted in Figure 3.3. The mappings

for the other three parts of the unit square are symmetric to this one.

3.9 Random Sampling

In random sampling, sample locations are simply taken from an uniform random

distribution in all dimensions [42, Chapter 7.3]. As long as the random numbers

have su�ciently high quality, this trades all structured aliasing artifacts to less

distracting random noise [13, Chapter 9.1.2], which makes it superior compared to

uniform grid sampling. Similarly to uniform grid sampling, reconstruction from

random sampling is guaranteed to converge towards the correct result as the sample



3. Sampling and Reconstruction 21

Figure 3.3: Mapping concentric squares to concentric circles. The line segments on the left
are mapped to the curves on the right. The fourth given in Equation (3.13) is highlighted.

count is increased [13, Chapter 9.2.2].

The downside of random sampling is that the samples are not evenly distributed

in space, and thus do not cover it e�ectively: there can be large volumes inside the

sampling space that do not have a single sample, and also dense concentrations of

samples [13, Chapter 9.4]. In other words, random sampling patterns have generally

high discrepancy. Lower-dimensional projections of the pattern share these same

characteristics. As a result, distracting medium-frequency artifacts may appear in

the rendered images, though such artifacts will not have any regular structure.

3.10 Strati�ed Sampling

Random sampling can be improved upon by stratifying the sampling space: instead

of generating random sample locations inside the whole sampling space, we �rst

divide the sampling space into equally sized strata, each of which will contain an

equal number of samples [42, Chapter 7.3]. In principle, dividing the samples equally

among pixels is already a kind of strati�cation of the sampling space, though we

will use the term random sampling in this case.

In practice, we split each dimension of the sampling space into equally sized

non-overlapping intervals, so that the whole d-dimensional sampling space is split

into equally sized axis-aligned boxes. Then we assign one sample to each box, or

stratum. This can be understood as randomly jittering the sample locations of a

uniform grid pattern. Because of this, the term jittered sampling is sometimes used

for this sampling scheme.

The number of strata needed for this division is the product of the numbers of

strata in each dimension, and thus quickly rises as a function of the number of

dimensions. The number of strata needed to have n strata in each of d dimensions

is nd. For two strata per dimension, a total of 32 strata would already be needed to

sample 5 dimensions. For four strata per dimension, 1024 strata would be needed.
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This is an instance of an e�ect known as the curse of dimensionality [42, Chapter

7.3].

The curse of dimensionality can be mitigated by using so-called padded strat-

i�cation [42, Chapter 7.3], which exploits the low e�ective dimensionality of the

sampled function. In a padded strati�ed sampling scheme, dimensions are strati�ed

separately and the resulting sets of coordinates are then randomly associated with

each other. An e�ective approach is to stratify image plane coordinates in two di-

mensions, time in one dimension and aperture coordinates in two dimensions, and

then randomly associate these three sets of coordinates together for each pixel or a

small neighborhood of pixels.

If the sample locations inside the strata are generated randomly, the strati�ed

sampling schemes have the same guarantees as random sampling: error will mani-

fest as random noise, and the reconstruction will converge to the correct result as

the number of samples is increased. However, since the strati�ed patterns cover the

sampling space more evenly than uniform random sampling, they have lower dis-

crepancy. This results in the error being pushed to higher frequencies. The padded

strati�ed sampling scheme is relatively easy to understand and implement, but can

still produce good images with a reasonable number of samples.

3.11 Latin Hypercube Sampling

Latin hypercube sampling, or n-rooks sampling as it is sometimes called, is a spe-

cial case of padded strati�cation [42, Chapter 7.3]. In Latin hypercube sampling,

all of the dimensions are strati�ed separately, and the coordinates from di�erent

dimensions are then randomly associated with each other. This process is typically

applied separately for each pixel.

Latin hypercube sampling has the advantage that any number of samples can be

used � the number of samples does not need to be a product of the numbers of

strata in di�erent dimensions. This makes it more �exible than strati�ed sampling,

though it has less guarantees considering sampling pattern discrepancy and the two-

dimensional projections, and can thus result in lower image quality. On the other

hand, its superior one-dimensional projections can help it attain better image quality

in some cases.

3.12 Poisson Disk Sampling

One problem with strati�ed sampling is that samples may still be clumped together

at the edges of neighbouring strata [42, Chapter 7.5] [13, Chapter 9.4]. Sampling

patterns satisfying the Poisson disk property solve this problem: all sample points

have a minimum distance to all other points in the pattern. The distance measure
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needs to wrap around the edges of each sampled interval to avoid sample points

clumping to the edges of the sampled intervals. Patterns satisfying the Poisson disk

property have low discrepancy and good frequency characteristics [24] [21].

Generating patterns that have the Poisson disk property can be done by using

the dart throwing algorithm [24] [42, Chapter 7.5]: on each iteration, a random

sample point is added to the pattern only if it does not break the Poisson disk

property. This is computationally a very expensive process, since a large number of

candidate points may need to be tested before a suitable one is found. Furthermore,

the resulting total number of points is hard to determine in advance [13, Chapter

10.5.12].

If we are willing to use a pattern that has only roughly the same characteristics

as a true Poisson disk distribution, we may use more e�cient sample generation

methods. The best-candidate method consists of generating a set number of candi-

date points on each iteration, and choosing the one that has maximum distance to

the points already in the pattern [42, Chapter 7.5]. Any number of points can easily

be generated with this method.

There is some empirical evidence that generating a Poisson disk distribution or a

best-candidate pattern directly in �ve dimensions is not the best approach [56], likely

due to the low e�ective dimensionality of the sampled function. Rather Poisson disk

distributions should be generated separately for the time, aperture, and spatial do-

mains and then randomly associated with each other, similarly to the recommended

approach to padded strati�cation. Still, we will concentrate on �ve-dimensional

best-candidate patterns in our measurements to explore their characteristics.

More sophisticated methods for creating or approximating Poisson disk patterns

also exist, though research on the area has mostly focused on generating two-

dimensional patterns [24] [21] [13, Chapter 10.5.15]. Of course, they can still be

applied to higher-dimensional sampling by combining multiple lower-dimensional

distributions generated with such methods. A method based on Voronoi diagrams

should directly extend to higher dimensions [21], though it is signi�cantly more

complicated to implement than the best-candidate and dart-throwing methods.

Other distance measures than Euclidean distance can also be applied to generate

a best-candidate pattern in �ve dimensions. Since we prefer good lower-dimensional

projections rather than an optimal distribution in the whole sampling space, a dis-

tance measure that more e�ectively penalizes proximity in any single dimension can

be used instead of separately generating the distributions in the di�erent dimen-

sions. We will test one such improved distance measure, which is the sum of the

square roots of the absolute distances in all dimensions:
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d =
√
|xa − xb|+

√
|ya − yb|+

√
|ta − tb|+

√
|ua − ub|+

√
|va − vb|. (3.14)

To the best of our knowledge, this is a novel variation of generating a best-

candidate sampling pattern for rendering.

3.13 Low-Discrepancy Sampling

There are some pseudo-random sampling schemes that aim speci�cally for low dis-

crepancy. These methods can produce patterns that have some improved charac-

teristics even over Poisson disk sampling, and some of them are also remarkably

e�cient to implement in software or hardware [42, Chapter 7.4.2]. Only a few lines

of code are required.

The �rst two methods we will discuss are based on the radical inverse function

Φb, which converts a nonnegative integer to a decimal value in [0, 1). This conversion

is done by re�ecting the digits di in base b around the decimal point:

Φb(n) = 0.d1d2...dm. (3.15)

The d-dimensional Halton point sequence is de�ned using the radical inverse

function with a di�erent base in each dimension. The bases must be relatively

prime to each other, so we will use the �rst n prime numbers p1...pn [42, Chapter

7.4.2]. A point in the Halton sequence is given by

xi = (Φ2(i),Φ3(i),Φ5(i), ...,Φpn(i)). (3.16)

Any subsequence of the Halton sequence is well-distributed. If the number of

points N is known in advance, we can use the Hammersley sequence, which gives

slightly lower discrepancy:

xi =

(
i

N
,Φ2(i),Φ3(i), ...,Φpn(i)

)
. (3.17)

Again, other relatively prime bases for the radical inverse function could also be

used. Both the Halton and the Hammersley sequences have asymptotically optimal

star discrepancy [42, Chapter 7.4.2].

However, Halton and Hammersley sequences can still exhibit regular patterns as

the base of the radical inverse increases [42, Chapter 7.4.2]. Permuting the digits fed

to the radical inverse function can be used to mitigate this problem, so that these

methods can be applied to higher-dimensional sampling.

We will not cover the construction of the much more complex Sobol sequences
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here in detail, but will cover some of the theory behind them to understand how

they behave in terms of discrepancy. The approach for constructing Sobol sequences

that was used in our measurements was taken from [20].

So-called (t,m, d)-nets are a theoretical construct which can be used to explain

why some low-discrepancy sequences are able to attain low star discrepancy [20].

Let d ≥ 1 be our amount of dimensions, b ≥ 2 and 0 ≤ t ≤ m be integers. A point

set of bm points is a (t,m, d)-net, if each box in a division of the sampling space into

bm−t identical rectangular boxes contains exactly bt points. In the Sobol sequence,

b = 2. An example of a (0, 4, 2)-net is given in Figure 3.4.

Figure 3.4: Example of a (0, 4, 2)-net. There are 24−0 = 16 boxes in each of the �ve possible
unique divisions. Each box contains 20 = 1 point. Figure modeled after [42, Chapter 7.4.3]

A point set that is a (t,m, d)-net has an upper bound on its star discrepancy

depending on 1/bm−t [20]. Thus, the smaller the t value is, the lower the discrepancy.

The t-value of a Sobol sequence is given by

t =
d∑

j=1

(sj − 1), (3.18)

where sj is the degree of the primitive polynomial in dimension j, used to generate

the Sobol sequence [20]. In practice this means that the t value increases as more

dimensions are added. The t value of lower dimensional projections can be optimized

by choosing the parameters for generating the sequence carefully [20].
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To have di�erent low-discrepancy point sets for each pixel, it is possible to scram-

ble (t,m, d)-nets while preserving their desirable properties [42, Chapter 7.4.2]. The

implementation used in our measurements also achieves co-operation between pix-

els by intelligently distributing partially scrambled indices of the Sobol sequence

between pixels.
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4. THE HUMAN VISUAL SYSTEM

4.1 Overview

The human visual system encompasses the eyes and the parts of the brain that are

specialized in processing visual input [12, Chapters 1, 6] [15]. An overview of the

visual system is presented in Figure 4.1. Light �rst passes through the cornea, the

pupil, and the lens of the eye. It then gets converted to nervous signals in the retina,

which are passed on through the optic nerve �bers and the lateral geniculate nuclei

to the visual cortex in the rearmost part of the cerebral cortex. There are also some

other brain regions that react to visual input, but the visual cortex is thought to be

the most important.
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Figure 4.1: A simpli�ed diagram of a cross section of the HVS. The human eye is presented
on the left, and the whole HVS in the context of the human brain on the right. The �gures
are modeled after �gures in [12] [15] [14, Chapter 2]. This side view omits details related
to stereo vision: there are two eyes and two lateral geniculate nuclei, left and right, and
roughly half of the optic nerves from each eye cross over to the lateral geniculate nucleus
on the other side of the head [12]. The visual cortex is likewise divided to the left and
right halves. The lateral geniculate nucleus on the left is responsible for processing the
signals from the left half of both retinas, and the lateral geniculate nucleus on the right is
responsible for processing the signals from the right half of both retinas [12, Chapter 1].

The optics of the human eye are relatively simple. The aperture provided by the

pupil limits the amount of light entering the eye, and the curved cornea and the lens

inside the eye refract the incoming light to focus on objects at a certain distance.

Microelectrode experiments and closely examining dissected eyes have also given us
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a relatively good idea of how the retina operates [12, Chapters 1, 6] [15]. The retina

is discussed in more detail in Section 4.2.

The operation of the lateral geniculate nuclei and the visual cortex are much more

complex, but psychophysical experiments and fMRI measurements of the brain have

given us at least a rough overview on how the early stages of the visual cortex op-

erate. fMRI only sees blood �ow, not neurons actually �ring, which makes its

temporal resolution inherently limited [38]. However, its spatial resolution is rela-

tively good, and there have been some studies of human visual cortex activity in

response to static images. Recently, researchers at Berkeley also correlated human

brain activity to characteristics of video samples, and subsequently used this data

to reconstruct videos of the visual experience from fMRI measurements [38]. The

visual cortex is discussed in more detail in Section 4.5.

4.2 Retina and Visual Acuity

The eyes, and especially the retina have a couple of interesting properties concerning

the study of image quality. There are two kinds of photoreceptor cells in the retina:

rods and cones. Rods are simple cells that respond to a relatively wide array of

wavelengths and are sensitive to very low amounts of light, as little as single photons.

This low-light vision provided by the rods is referred to as scotopic vision.

Whereas there is only one type of rods, there are three di�erent types of cones.

Each type of cone reacts to a di�erent distribution of wavelengths of visible light,

thus providing the basis of color vision [15, Chapter 8]. The cones are larger than

rods and mostly concentrated on the fovea, where they are tightly packed to provide

a small area of accurate color vision [15, Chapter 3] [12, Chapter 6]. The high-

luminance color vision provided by cones is referred to as photopic vision.

The density of cells in the fovea provides an upper bound on the visual acuity,

the ability to resolve small details, of the human vision. It is most useful to measure

visual acuity as an angular quantity � how big angle does one phase of a regular

high-contrast grating have to cover in the observer's �eld of view to become visible.

In the fovea, the visual acuity is at most about 100 cycles/degree [15, Chapter

3]. The visual acuity of the fovea gives us an upper bound on the useful spatial

resolution of computer generated imagery.

The chemical reactions that result from light hitting either type of photoreceptor

are not instantaneous, but take place over several milliseconds [13, Chapter 1.3].

This, in e�ect, performs low-pass temporal �ltering on the received signal, eliminat-

ing �ickering above roughly 60 Hz. This can be understood as an upper limit for

the temporal acuity of the HVS: as a general rule, a video signal displayed at 60 Hz

is indistinguishable from a time-continuous image. If the discrete video signal does

not have signi�cant temporal aliasing, an even lower framerate can be practically
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indistinguishable from 60 Hz.

The photoreceptor cells connect to the optic nerve via two layers of nerve cells

inside the retina, bipolar cells and ganglion cells. There are about 100 receptors

for each optic nerve �ber, so these �rst layers of nerve cells already perform some

processing on the visual input [15, Chapter 3] [12, Chapters 1, 6]. In the fovea,

almost every receptor has its own ganglion cell and optic nerve �ber, so this does

not a�ect the peak visual acuity, but a much larger array of cells feeds a single

ganglion cell in the peripheral areas [15, Chapter 3].

The receptive �elds of di�erent ganglion cells also overlap each other, and there is

evidence the ganglion cells perform a sort of a convolution function over the output

of the receptors [12, Chapters 5-6]. The shape of this convolution function is roughly

the di�erence of two Gaussian functions. It is hypothesized that this provides the

earliest processing stage of an edge detection method used by the HVS [12, Chapter

5].

4.3 Color Vision

The HVS perceives color from the outputs of the three di�erent types of cone recep-

tors. It is important to note that the three types of cones do not directly correlate

to the monochromatic red, green, and blue color channels of display devices, but

they react to overlapping wavelength distributions of light.

blue/yellow

opponency

red/green

opponency

+

-

-

L cones M cones S cones

Figure 4.2: The red/green and blue/yellow opponency pairs in the HVS.

These color signals from the cones are then processed into two opponent pairs

in the HVS [12, Chapter 17] [55]. First the ratio of red and green cone signals

determines the output of the red/green opponency path. If the red and green signals

are in balance, they cancel each other out. The total of the red and green cone

signals form yellow, which determines most of our perception of luminance, and is

in turn the opponent of the blue cone signal on the blue/yellow opponency path.

The opponent pairs are illustrated in Figure 4.2.



30 4. The Human Visual System

4.4 Luminance Adaptation

The photoreceptors adapt to di�erent levels of luminance, which means that the

HVS's sensitivity to luminance changes depends on the ambient level of luminance

[14, Chapter 2] [6]. One model for this nonlinearity in the luminance response is

given by:

R

Rmax

=
Ln

Ln + αn
, (4.1)

where R/Rmax is the normalized luminance response of the photoreceptor, L is the

input luminance and α is the semisaturation constant [6]. The exponent parameter

n for the model should be chosen from between 0.7 and 1.0. The semisaturation

constant grows linearly with respect to the light level to which the part of the retina

is adapted.

4.5 The Structure of the Visual Cortex

The axons of the ganglion cells of the retina terminate in the two lateral geniculate

nuclei, which perform the second stage of �ltering to the visual signal [12, Chapters

1, 9]. What exactly happens in the lateral geniculate nucleus is unknown, but the

mapping from the retina to the lateral geniculate nucleus is still quite straightfor-

ward. The connections from the retina project to 6 bilayers in each lateral geniculate

nucleus � in e�ect, each nucleus holds 12 copies of the left or right half of the retinal

images. The area dedicated to foveal vision is relatively large compared to peripheral

vision.

The lateral geniculate nuclei also have lots of feedback connections from the

visual cortex. One hypothesis is that the lateral geniculate nuclei are a part of an

incremental object recognition system [12, Chapters 1, 9]. According to that, the

initial impression from the feedforward connections determines rough categorization,

and the feedback connections from the visual cortex help in choosing details of the

image signal for further recognition processes.

The visual cortex itself is organized in hypercolumns, which are hypothesized to

perform di�erent kinds of low-level visual analysis to parts of the image signal [12,

Chapter 9]. However, the complexity involved means that their function has not been

deduced from neurophysical experiments [12, Chapter 4]. Instead, the knowledge

of the visual cortex builds largely on psychophysical evidence, and neurophysical

experiments have only been able to con�rm the psychophysical �ndings in some

cases.
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4.6 Contrast Sensitivity Function

One of the de�ning characteristics of the low-level behavior of the visual cortex is its

sensitivity to contrasting patterns, which is de�ned by the contrast sensitivity func-

tion or CSF [12, Chapter 4] [13, Chapter 1]. The value of the CSF is determined as

the amount of contrast needed to make a given pattern perceptible. The parameters

and the shape of the CSF have been determined from testing the perceptibility of

di�erent contrast gratings. The most important parameter is the spatial frequency

of the pattern, which gets its upper bound from the acuity of foveal vision. The

CSF for a vertical grating of changing frequency is demonstrated in Figure 4.3.

Contrast grating orientation and distance from the center of the gaze also a�ect

perceptibility. Horizontal and vertical gratings are slightly more perceptible than di-

agonal ones. Scotopic vision has a di�erent CSF from photopic vision, and generally

lower contrast sensitivity [13, Chapter 1.4].

According to Mannos' model, the frequency-relative CSF for a contrast grating

the has approximate form of

c(f/f0)e
−f/f0 , (4.2)

where f is the frequency of the contrast grating and f0 is the frequency with the

highest perceptibility. Estimates for f0 range from 3 to 5 cycles/degree [29].

The most telling indication of the operation of the HVS are adaptation afteref-

fects that a�ect the CSF [12, Chapter 4] [13, Chapter 1]. Adaptation to a constant

stimulus causes nerve cells to inhibit further signals, which can decrease the per-

ceptibility of a certain kind of grating. This results in a notch in the CSF, which

shows that there are neural pathways tuned to detecting certain spatial frequencies

and orientations of contrast gratings. In e�ect, the collection of neural pathways

dedicated to a given spatial frequency can be thought of as a band-pass �lter on the

image signal.

There is not yet much exact quantitative data about these frequency-tuned chan-

nels of the HVS, but experiments suggest that they split the frequency spectrum

into 1 to 3 octave wide sections [51] [55]. In one comprehensive study of the macaque

visual cortex, the width of the frequency tuning varied greatly among cells, but the

most narrowly tuned cells had about 1 octave worth of frequency bandwidth and 26

degrees of orientation bandwidth [51].

Some mathematical results explain why this kind of frequency and orientation

selectivity might have evolved, and add further support for the �ndings [11]. In

typical natural images, the energy is divided quite evenly among the octaves on the

frequency spectrum. This results in that the information in natural images can be

e�ectively coded by the kind of orientation and frequency selective channels present
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a) b)

Figure 4.3: a) A demonstration of the approximate shape of the frequency-relative CSF for
a horizontal sinusoidal grating. Contrast decreases linearly towards the top of the image,
and frequency increases exponentially towards the right. If viewed from a certain distance,
the frequencies on the left and on the right need more contrast than the frequencies in the
middle to become visible. The grating was rendered so that viewing it from a distance
of 10 times its width results in a smooth frequency scale from 0.1 cycles per degree to 70
cycles per degree. The �gure is modeled after [12, Chapter 4]. b) The corresponding CSF
plot using the model in Equation (4.2) and f0 = 4 cycles/degree.

in the visual cortex.

The CSF model has been criticized on the basis that contrast sensitivity has

only been de�ned with regards to relatively simple signals, most typically sinusoidal

gratings [54]. It is unclear how well the perception of more complex signals can be

understood in terms of the CSF. Still, CSF is perhaps the most useful quantitative

model of the HVS that is based on its currently measurable functionality.

4.7 Masking

Di�erent parts of the signal content can a�ect each other's perceptibility in the

HVS. A certain signal might not be visible in the presence of another, or might

only become perceptible in the presence of another. These phenomena are known

as masking [55]. We will call the signal that hides another signal from perception

the masking signal, and the signal that is being hidden the masked signal.

Masking is a gradual phenomenon depending on the strength of the masking

signal. This behavior has been modeled using a threshold elevation model, where

the visibility threshold of the masked signal begins rising after the masking signal

reaches a set contrast level [6]. Below this level, there is no signi�cant masking

e�ect.
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Masking e�ects have been determined for both sinusoidal gratings and uniform

noise �elds [6]. Most often, masking has been modeled inside a single frequency-

tuned channel, though there is some recent evidence that inter-channel masking

also occurs [55]. Nevertheless, masking is strongest when the masking and masked

signals contain similar spatial frequencies.

In the case of stochastic rasterization, high-frequency error manifests only in the

presence of low-frequency blur in the reference signal, so there is usually no signif-

icant chance of masking e�ects coming into play. This makes masking somewhat

uninteresting in the context of stochastic rasterization. This is in contrast with pin-

hole rendering, where sharp textures in the reference signal would commonly mask

any approximation errors that manifest as noise. As the amount of blurriness in

an image rendered with stochastic rasterization increases, the artifacts not only get

worse, but also stand out more.

Sometimes di�erent degrees of blurriness are overlapping in the reference signal,

for example in the presence of motion blurred objects against a static background.

However, in this kind of cases masking e�ects can only hide or distort the approx-

imation error. If our aim is to measure the worst-case quality resulting from using

a certain sampling pattern, taking masking e�ects into account can actually be

counterproductive.
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5. IMAGE QUALITY METRICS

5.1 Mean Square Error and Peak Signal-to-Noise Ratio

Most practical approaches to measure image quality are based on comparing de-

graded images to some perfect reference image [40] [10] [55]. The degradation might

be caused by imperfections in analog systems, lossy image compression, or in our

case by approximation errors made when rendering 3D scenes. Let the reference

signal be A, and let the degraded signal be B. The mean square error or MSE

between these two discrete signals is de�ned as

MSE(A,B) =
N∑
i=0

(A[i]−B[i])2, (5.1)

where N is the sample count of the signals being compared, and A[i] and B[i]

are sample values of signals A and B at index i [40]. Signals with more than one

dimension can be compared by using any bijection from values of i to the coordinate

space. Note that A and B are interchangeable, so MSE is symmetric. The square

root of MSE called root mean square error or RMSE is also sometimes used [14,

Chapter 8.1]. RMSE is de�ned as

RMSE(A,B) =
√
MSE(A,B) =

√√√√ N∑
i=0

(A[i]−B[i])2. (5.2)

Due to its simplicity, MSE is widely used as a signal quality metric [40] [53]. It is

sometimes presented in the form of signal-to-noise ratio SNR or peak signal-to-noise

ratio PSNR. SNR determines the amount of noise relative to the actual signal, and

PSNR relative to the peak signal, which is in our case the maximum possible color

luminance value. PSNR is usually given on a logarithmic scale, computed using

PSNR(A,B) = 10 log10
max2

MSE(A,B)
, (5.3)

where max is the maximum value of a single sample. If the samples were 8-bit

luminance values, max would be 255 [16].

Like one could infer from the previous chapter, MSE, RMSE, and PSNR are

somewhat arbitrary when used as a quality measure. MSE can be interpreted as
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the energy of the error signal, but there is no perceptual basis for it as an error

metric [10]. Obviously, MSE or PSNR do not take masking or contrast sensitivity

into account, so they correlate with subjective image quality measurements only in

a very limited fashion [16] [55] [40].

The PSNR resulting from lossy image or video compression has been studied ex-

tensively [10] [55] [16]. While PSNR usually changes monotonically with respect to

subjectively perceived quality when just adjusting the parameters of a compression

method for a single type of content, it cannot really be considered as an accurate

quality metric when either the compression method or the content varies [16]. While

the artifacts typically appearing in stochastic rasterization are not as varied as ar-

tifacts resulting from image compression, this still makes PSNR less than ideal for

our purposes.

The problems of PSNR are easy to demonstrate by using an arti�cial example.

Consider a defocus blurred white rectangle rendered using one sample per pixel and

a box �lter. The maximum PSNR for this example would be achieved by having

a white rectangle with rounded corners in the image, even though an image with

the density of white pixels varying smoothly along the blur radius would clearly

represent the blurring more accurately.

5.2 Perceptual Metrics

There are many existing image quality metrics that try to take the characteristics

of HVS into account. Most such perceptual metrics take a bottom-up approach to

the HVS, commonly trying to simulate some combination of non-linear luminance

response of the retina, variable contrast sensitivity, and di�erent kinds of masking.

Some other perceptual metrics start from some intuitive notion of the end goals

of the HVS, such as object recognition, and construct the metric from there in a

top-down fashion.

Conversation on objective perceptual metrics dates back to the seventies. At

that time, the term distortion measure was also used [29]. Nearly all of the metrics

have been designed to detect artifacts appearing in image or video transmission or

storage � whether resulting from imperfections in analog systems or lossy digital

compression.

The terminology used by di�erent perceptual metric authors is very varied [40].

The area of study lies between psychology, signal processing, and information theory,

and terminology has been adapted from the traditions of each of these disciplines.

Some of the �rst perceptual metrics were based on weighting the frequency do-

main representation of the images with the CSF [40] [36]. This can outperform

simple PSNR, but the connection to the HVS is not exactly clear, since the HVS

does not actually perform Fourier analysis.
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Some metrics improve on this simple application of Fourier analysis by operating

on a series of band-pass �ltered images [40]. Many of these are based on Peli's

de�nition of contrast perception [41]. According to this de�nition, the contrast at a

location on a certain frequency band is the band-pass image pixel divided by local

luminance. The local luminance is de�ned as the value at that location in a low-pass

�ltered image.

Damera-Venkata's [7] Noise Quality Measure or NQM is one of the metrics based

on Peli's de�nition of contrast. NQM uses a bank of cosine-log band-pass �lters in

the frequency domain to split the image into a pyramid of band-pass images. NQM

also enhances Peli's contrast model by introducing per-pixel variable thresholding

based on frequency masking. NQM fared quite well when evaluated against a limited

set of subjective test results [7], but it has not been proven by a more comprehensive

evaluation.

Interestingly, NQM's pyramid of band-pass images is de�ned beginning from the

lowest frequencies and the high-frequency residual is completely omitted from con-

sideration. Because the amount of steps in the pyramid is limited, the high-frequency

residual could actually contain a lot of the interesting frequency content in the case

of large, fullscreen images. For this reason, the metric would probably require read-

justment before it could be applied to typical graphics rendering cases.

Nowadays, Visible Di�erences Predictor or VDP [6] is one of the most widely used

perceptual metrics [10]. Further development since the original publication has led

to the existence of several di�erent variations of VDP. Other notable contemporary

metrics include Structural Similarity Index or SSIM [53] and its variants. In Section

5.2.2 and Section 5.2.3 we will look into these two metric families in more detail.

In the next section, we will look into how perceptual metrics have been evaluated

against subjective measurements.

5.2.1 Evaluating Metrics Against Subjective Measurements

Perceptual metrics can be evaluated by comparing the metric results to subjective

measurements. The extent of the resulting correlation is often called the performance

of the metric [40].

The results of subjective measurements are usually given in the form of mean

opinion score or MOS. Mean opinion score is calculated by taking the mean of

image quality scores on a linear scale given by test subjects [46]. Before taking the

mean, the image quality scores given by subjects need to be normalized. One such

normalization approach is to convert them to so called z-scores [46]. The z-score zij

for image j and subject i is given by
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zij =
dij − d̄i

σi

, (5.4)

where d̄i and σi are the mean score and the standard deviation of scores given by

subject i, respectively. This ensures that di�erent scoring patterns of individual test

subjects do not skew the results.

There are large databases of MOS measurements that have been used in the

evaluation of several di�erent metrics [40]. One widely used database is the LIVE

database [46] [47], which contains images with 5 di�erent types of distortions. The

di�erence mean opinion score from more than 20 test subjects has been recorded for

each of the nearly 800 image pairs.

The TID2008 database improves on LIVE by including a set of 17 di�erent distor-

tion types, many of them di�erent kinds of noise [44] [43]. In total, TID2008 contains

1700 test images. TID2008 is also based on an order of magnitude more subjective

measurements, though it has achieved this by compromising on the consistency of

the test setups. However, TID2008 claims smaller normalized variance and thus

higher accuracy in its measurements than LIVE. A summary of the distortion types

found in LIVE and TID2008 is given in Table 5.1.

Distortion Type LIVE TID2008
Additive Gaussian noise X X

Additive noise with increased intensity in color components X
Spatially correlated noise X

Masked noise X
High frequency noise X

Impulse noise X
Quantization noise X

Gaussian blur X X
Image denoising X

JPEG compression X X
JPEG2000 compression X X

JPEG transmission errors X
JPEG2000 transmission errors X X
Non eccentricity pattern noise X

Local block-wise distortions of di�erent intensity X
Mean shift X

Contrast change X

Table 5.1: Summary of distortion types in LIVE and TID2008.

One major weakness of the LIVE and TID2008 databases is that they use only

photographic source images, with the only exception of one arti�cial test image in

TID2008 [47]. In addition, none of the source images in the databases exhibit signi�-
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cant motion blur, and only a few of them exhibit signi�cant defocus blur. Paintings,

drawings, and 3D renderings are not included in either database. The goal in 3D

rendering is not always photorealism, even though stochastic rasterization is used to

speci�cally recreate e�ects that are usually found in photography. As a redeeming

factor, the subject matter of the photographs and their visual characteristics are

quite varied in both of the databases.

Of the distortion types included in LIVE, the white noise distortion type is most

similar to the approximation errors seen in stochastic rasterization. In LIVE, the

white noise was added to the images in linear RGB color space, where the color

values were scaled to the [0,1] range. The noise values were taken from a Gaussian

distribution with standard deviations varying from 0.012 to 2.0. LIVE contains 174

sample images with white noise applied. The same standard deviation was used

for all color channels, but noise was applied separately to each color channel. The

resulting color values were again clamped to the [0,1] range after the noise was

applied.

This type of white noise still di�ers from stochastic rasterization approximation

errors in some respects. First of all, the approximation errors are not uniformly

distributed across the image, but the amount of noise depends on the amount of

depth of �eld blur and motion blur at each pixel. Second, with high-quality sam-

pling patterns the approximation errors are concentrated on the high frequencies.

Third, the approximation errors may result in structured artifacts depending on the

sampling pattern. Fourth, the approximation errors are correlated across di�erent

color channels.

Only some of the additional noise types added in TID2008 are relevant for our

purposes. Additive Gaussian noise with increased intensity in color components,

spatially correlated noise, impulse noise and quantization noise are not similar to

the approximation errors seen in stochastic rasterization. Masked noise and high-

frequency noise are relevant, however.

Masked noise is distributed nonuniformly across the image, even though it is

concentrated on the areas with sharp features instead of blurred areas, and high-

frequency noise has a spectrum more similar to the approximation errors produced

by high-quality sampling patterns. However, these noise types are still uncorrelated

across color channels and produce less varied artifacts than stochastic rasterization.

These di�erences are signi�cant enough that constructing a database of subjec-

tive measurements from rasterized images would add value compared to using the

TID2008 database.

All the same, LIVE and TID2008 measurements and metrics evaluated against

them still provide an adequate point of comparison for our purposes. Especially

results from TID2008 are interesting, since the database includes a more varied set
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of noise distortions than LIVE. The white noise, high-frequency noise, and masked

noise results from TID2008 could provide one basis for evaluation of a perceptual

quality metric for stochastic rasterization.

5.2.2 Visible Di�erences Predictor

The VDP image quality metric is constructed in a bottom-up fashion. The metric

takes the two image signals being compared, and performs transformations that aim

to simulate the processing happening in the HVS. The simulation includes three

major characteristics of the HVS: nonlinear luminance response, frequency- and

orientation-tuned channels, and masking. The transformed signals are then com-

pared at each sample location to determine whether the di�erence at that location

is likely to be visible. The result of this process is a di�erence map of pixels that

are likely to be perceptually di�erent.

It is important to note that the �rst version of VDP does not provide a way to

compare the quality of two di�erent images, but it only shows where perceptible

errors are located in each image [6]. Producing a di�erence map can be useful

in adaptive lossy compression, but in most cases the results still need subjective

analysis. The original version of VDP is interesting mostly due to the quality of its

HVS simulation rather than its usefulness as a metric.

However, further publications on VDP have de�ned some aggregation functions

that pool the pointwise error perceptibility predictions into a single number to be

used for comparison. For High Dynamic Range Visible Di�erences Predictor 2 or

HDR-VDP2, such an aggregation function was de�ned by correlating the results of

several possible aggregation functions with databases of subjective image quality

measurements and choosing the aggregation function that produced the best corre-

lation [31]. As a result, HDR-VDP2 achieved better correlation with some of such

databases than any other known method.

Comparative studies of perceptual metrics have also ranked VDP as one of the

most versatile methods available [10]. VDP is able to assess many di�erent kinds

of errors and disregard those that are not important to human perception. As a

mature metric, its results have been con�rmed many times over by psychophysical

measurements.

One big weakness of the VDP family of metrics is that it does not provide a way

to measure color di�erences. All images need to be converted to a monochrome

color space before measurement. In the context of our application, taking masking

e�ects into account can also be counterproductive, as discussed in Section 4.7. This

should not be a signi�cant factor in most of the test images we will use in our

measurements, however.
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5.2.3 Structural Similarity Index

SSIM variants are another well known metric family that has also achieved high

correlation with databases of subjective image quality measurements [53]. Unlike

VDP, SSIM follows a top-down design philosophy, starting from the assumption

that the HVS's function is to extract structural information from natural images.

The metric does not try to explicitly model the processes of the HVS, but splits

the image spatially into windows and does statistical analysis on them to extract

structural information.

The SSIM index for each window separately estimates di�erences in luminance,

contrast, and structure using mean intensity, standard deviation, and covariance.

These values are then combined to form the per-window SSIM index by multiplying

them together. Luminance di�erence l(x, y) between local window a in image A and

the corresponding local window b in image B is calculated using

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1

, (5.5)

where µa is the mean intensity of window a and µb is the mean intensity of

window b. This formula results in a value between 0 and 1, with 1 signifying zero

di�erence in luminance. The C1 constant is included to stabilize the formula when

denominator is very close to zero.

The contrast di�erence c(a, b) between two corresponding windows is calculated

using a similar formula:

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2

, (5.6)

where σa is the standard deviation of window a, σb is the standard deviation of

window b and C2 is another stabilizing constant. The stabilizing constants Cn used

in SSIM are calculated using:

Cn = (KnL)
2, (5.7)

where L is the maximum luminance value and Kn are user-supplied positive con-

stants that should be signi�cantly smaller than 1.

The structural similarity s(a, b) of two corresponding windows is calculated as

the stabilized Pearson correlation coe�cient with the formula:

s(a, b) =
σab +

C2

2

σaσb +
C2

2

, (5.8)

where σab is the covariance of the local windows a and b. Finally, the SSIM index

of two corresponding local windows is calculated as a weighted product of l(a, b),
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c(a, b), and s(a, b):

SSIM(a, b) = l(a, b)αc(a, b)βs(a, b)γ. (5.9)

It is recommended that the weighting constants are chosen as α = β = γ = 1, so

that the formula becomes:

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)
. (5.10)

The result of the per-window analysis is a di�erence map as in VDP, but the

original SSIM has two characteristics that sets it apart from VDP [53]. First of

all, SSIM aims to capture the extent of the di�erences rather than just determining

whether the di�erence is visible in a binary fashion.

Second, SSIM also recommends Mean SSIM or MSSIM of the spatial windows

as a pooling method. MSSIM has achieved moderate correlation with databases of

subjective image quality measurements [31]. MSSIM is de�ned as

MSSIM(A,B) =
1

n

n∑
j=1

SSIM(aj, bj), (5.11)

where A and B are the images being compared, aj and bj are the image content at

the jth local window, and n is the total number of local windows.

SSIM has been improved further in Multi-Scale SSIM or MS-SSIM, which com-

putes SSIM of a pyramid of downsampled low-pass �ltered images and pools the

results together [54]. Each �ltering pass applies a box low-pass �lter and down-

samples the image by a factor of 2. The original image is indexed as Scale 1. The

formula for MS-SSIM is

MS-SSIM(a, b) = [lM(a, b)]αM ·
M∏
j=1

[cj(a, b)]
βj [sj(a, b)]

γj , (5.12)

where lj, cj, and sj give the luminance, contrast and structure di�erence at scale j,

respectively, and M is the maximum scale of low-pass �ltering. From the formula

we can see that the luminance di�erence is calculated only for the highest Scale M,

whereas the contrast di�erence and the structure di�erence are calculated for every

scale. It is suggested that αj = βj = γj and that weights would be normalized so

that
∑M

j=1 γj = 1 to enable direct comparison of di�erent weight vectors [54].

With optimized weights, MS-SSIM has achieved very good correlation with data-

bases of subjective image quality measurements, including LIVE and TID2008. Its

performance is comparable to or in some cases better than that what has been

achieved with HDR-VDP2 [31]. However, it is notable that MS-SSIM did not achieve

higher performance than PSNR in the case of white noise measurements in LIVE
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[46]. This casts doubts on MS-SSIMs usefulness in measuring stochastic rasterization

quality, and it should be used only as a secondary reference.

5.3 Band-pass Pyramid Mean Square Error

In Section 4.6, it was shown that the HVS e�ectively performs band-pass �ltering to

the image signal at di�erent frequencies as one of the stages in its object recognition

process. This has been a common premise in many existing image quality metrics.

In this section, we develop a new objective image quality metric that concentrates on

simulating this aspect of the HVS. This is a good approach for measuring stochas-

tic rasterization quality, since other major characteristics of the HVS do not play

a signi�cant role when considering errors that are typical for stochastic rasteriza-

tion. As explained in Section 4.7, taking masking e�ects into account could even be

counterproductive.

By disregarding secondary characteristics, we are able to develop a metric that is

conceptually and computationally simple. Of course, we will end up with a metric

that is not as versatile as many existing perceptual quality metrics, but tuned only

to this speci�c application.

That being said, the metric should still achieve high correlation with more versa-

tile perceptual quality metrics when used to evaluate images produced by stochastic

rasterization. This is an important secondary goal for the metric and one indicator

of the metric's quality.

The band-pass �lter we need for the metric is simplest to implement as a di�erence

between two Gaussian low-pass �lters. Using a Gaussian �lter especially bene�ts

computability, since it is the only circularly symmetric two-dimensional �lter that

is separable into two applications of one-dimensional �lters in the x and y directions

[50, Chapter 24]. If the dimensions of the image are N times N , and the dimensions

of a two-dimensional �lter are M times M , the time complexity of two-dimensional

convolution is O(N2M2), whereas time complexity of two one-dimensional convolu-

tions is O(N2M).

Using the di�erence of Gaussians as our �lter also has some basis in the physiology

of the HVS, even though the frequency and orientation selective channels in the

HVS are usually modeled by Gabor �lters [7] [6]. The di�erence of Gaussians is a

good model for the response of the retinal nerve cells with wide receptive �elds as

explained in Section 4.2. The di�erence of Gaussians is also a good approximation

of the Laplacian of Gaussian �lter, which is used as an edge detection �lter in

computer vision applications [9].

The one-dimensional Gaussian �lter for standard deviation σ is given by

gσ(x) =
1

2πσ2
e

w2

2σ2 , (5.13)
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where w is the distance from the �lter center. Using this, we de�ne LP(A, σ) as either

the signal itself or the signal low-pass �ltered with two one-dimensional Gaussian

�lters of a given standard deviation:

LP(A, σ) =

{
A ∗ gσx ∗ gσy if σ 6= 0

A if σ = 0
. (5.14)

where x in subscript denotes convolution in the x direction and y in subscript denotes

convolution in the y direction. Again, these two convolutions are equivalent to taking

a two-dimensional convolution with a two-dimensional Gaussian �lter. In practice,

we will do the convolutions between a discrete image signal and a discrete Gaussian

�lter kernel. To do this e�ciently, the Gaussian kernel is windowed to a conservative

width of dσ · 3e · 2 + 1.

This discretization of the Gaussian kernel has some implications for its accuracy.

First, the sum of the resulting weights can be di�erent from 1. To compensate for

this, the weights are normalized by multiplying them with a constant to make the

sum of the weights 1 again. In addition, the actual standard deviation computed

from the discrete �lter kernel can be di�erent from the σ that was used to specify

the kernel. We chose not to compensate for this, since it only slightly skews the

ratio between the standard deviations of two consecutive �lter kernels used when

computing the di�erence of Gaussians.

Now, the band-pass �ltered image is de�ned as the di�erence between two LP(A, σ)

images:

BP(A, k) = LP(A, σ̄[k + 1])− LP(A, σ̄[k]), (5.15)

where σ̄ is a series of standard deviations indexed by k. Using this, we de�ne the

band-pass �ltered di�erence measure FRMSE(A,B, k) by taking the RMSE of two

image signals A and B �ltered with a di�erence of Gaussians �lter:

FRMSE(A,B, k) =

√√√√ N∑
i=1

(BP(A, k)[i]− BP(B, k)[i])2, (5.16)

where N is the total amount of samples in ABP [k]. Our new metric is simply a

weighted sum of these FRMSEs. For this, we use a series of σ values σ̄ starting

from 0, 1
2
, 1, 2 and doubling from there on each iteration, so that each FRMSE we

compute covers a range of one octave. The low-frequency residual beyond a chosen

k is omitted from consideration.

It is appropriate to use these 1-octave sections based on what we know of the

HVS and the spectral energy distribution found in natural images [41]. In natural

images, the spectral energy is divided roughly evenly among this kind of sections,
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and dividing the images this way produces an e�cient image code. The width of

1 octave is a reasonable choice based on what is known about the bandwidth of

cortical simple cells.

The resulting metric labeled Band-pass Pyramid MSE or BPMSE, is de�ned as

BPMSE(A,B) =
M∑
k=1

W [k] · FRMSE(A,B, k), (5.17)

where W is a vector with length M containing arbitrary weights for the series of

FRMSE values. We choose a good set of weights for BPMSE in Section 6.7.

5.4 Application to Color Images

So far all our metrics have been directly applicable only to monochrome images.

However, display devices typically have red, green, and blue color channels, which

then get processed by the HVS to signals of luminance and opponency pairs of

green-red and blue-yellow.

The simplest way to compare color images is to convert them to a monochrome

color space. This method is used in many contemporary metrics, SSIM and VDP

among them [6] [53]. However, conversion to a single channel can greatly diminish

the perceptibility of errors as demonstrated in Figure 5.1, which is not desirable.

Ideally, we would use a perceptual color di�erence measure. Many such measures

have been developed based on the CIE Lab color space, which aims to be percep-

tually uniform [40] [13, Chapter 1]. Simply taking the Euclidean distance between

CIE Lab values is a relatively accurate measure, but several more advanced mea-

sures have also been developed, some reaching better correlation with psychophysical

results [40].

However, our aim is to develop a metric for analyzing stochastic rasterization,

which typically operates in linear RGB color space, and color does not play a sig-

ni�cant role in the rasterization algorithm. It can be thought that each of the

RGB color channels in the resulting image is a separate rendering with di�erent

monochromatic shading parameters.

We do want to take color di�erences into account on a rudimentary level to re�ect

the errors in each color channel, but a perceptual approach to color quality adds little

value. Furthermore, to evaluate the perceptual approach to color we would need an

altogether di�erent sample set than the one we get with stochastic rasterization.

Based on this reasoning, we use the Euclidean distance of the RGB values as the

basis of BPMSE for RGB images. This replaces the simple luminance di�erence

that was used with monochrome images. Equation (5.18) de�nes the di�erence of

two RGB color values as their Euclidean distance in RGB space.
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a) b)

c)

Figure 5.1: Notice how the color di�erence between the object and the background is much
more perceptible in the color �gure a) than in the monochrome conversion b), as is the
error resulting from stochastic rasterization with a low sample count. In the red color
channel represented in �gure c), the di�erence is very perceptible.

A[i]−B[i] =
√
(Ar[i]−Br[i])2 + (Ag[i]−Bg[i])2 + (Ab[i]−Bb[i])2. (5.18)

A and B are now RGB images, where the letter in subscript denotes the channel

red, green or blue. BPMSE is calculated from this de�nition of per-pixel di�erence

by using equations (5.14)-(5.17) as before, only with band-pass �ltering applied

separately to each color channel.

Unfortunately, this simple method of comparing RGB colors can not be directly

applied to SSIM-based metrics, and developing a conceptually sound VDP variant

based on it would also be challenging. One possible strategy would be to take

SSIM or VDP measurements independently from each color channel and sum these

together, but there is no existing research on this. So, BPMSE is the only metric

included in our experiments which takes color di�erences into account. Of course,

this does not a�ect measurements of images that are monochrome to begin with.
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5.5 Quantization Error

To display images on a digital display device, the red, green or blue color values

need to be quantized to n-bit integers. It is useful to know the PSNR resulting from

such quantization. This PSNR can be used as a point of comparison for approxi-

mation errors, especially when the aim is to create high-quality images. When the

approximation errors are smaller than the quantization error, they practically do

not a�ect the displayed image.

Quantizing uniformly distributed real numbers to integers results in an uniformly

distributed error between −1
2
and 1

2
. From this we can calculate the MSE for the

quantization error by integrating over the range of possible error values. This theo-

retical value for quantization MSE or QMSE is given by

QMSE =

∫ 1
2

− 1
2

x2dx. (5.19)

This gives us an absolute value of 1
12
, or a relative value of 1

3 060
if we apply it

to the common 8-bit quantization normalized to the [0, 1] range. From this, we

can also calculate the peak signal-to-quantization-noise ratio or PSQNR, using the

formula

PSQNR = 10 log10
(2b − 1)2

QMSE
, (5.20)

where b is the quantization bit depth. For 8-bit quantization, this formula gives us

the value of 10 log10(780 300), or approximately 58.9226 dB.
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6. MEASURING IMAGE QUALITY OF

STOCHASTIC RASTERIZATION

6.1 Test Scenes

We developed a set of 16 abstract test scenes to measure image quality resulting from

di�erent sampling schemes. The abstract scenes were designed to isolate speci�c

characteristics of the sampling patterns and reveal some of their �aws, but they also

remained reasonably close to real content so that they would not introduce irrelevant

types of errors. The abstract scenes can be divided into three sets based on their

contents.

We will call the �rst two abstract scenes the gradient scenes. They are meant

to produce a linear gradient due to motion blur or the combination of motion blur

and defocus blur. These scenes are intended to reveal especially how the sampling

pattern is distributed in the t dimension.

We will call the second set of abstract scenes the horizon scenes. This set of ab-

stract scenes contains a checkerboard perpendicular to the image plane and varying

kinds of blur. These are meant to reveal subtle regularities in the sampling patterns

and also determine their behavior with images that have varying edge densities and

orientations. One of these test scenes is rendered entirely without blur to determine

the spatial anti-aliasing quality of the sampling pattern.

We will call the third set of abstract scenes the other scenes. These contain defo-

cus blurred and motion blurred quads facing the camera, some with a checkerboard

texture. The ones with defocus blur are meant to reveal especially how the sampling

pattern is distributed in the u and v dimensions. The higher-frequency checkerboard

patterns are interesting, since they can reveal regularities in the sampling patterns.

In addition to the abstract scenes, four natural scenes were used. The scenes are

not natural in the sense that they would be completely realistic, but they combine

di�erent shapes and textures so that images resulting from rendering them share

the characteristics of natural images. Most importantly, they are similar to the pho-

tographic material that perceptual image metrics have traditionally been evaluated

with. The natural scenes included Fairy Forest featuring defocus blur and three

variations of a speeding Mustang sports car featuring di�erent kinds of blur.

A complete illustrated list of the test scenes is found from Appendix A.
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6.2 Rasterizer Software And Con�guration

The stochastic rasterizer software we used was designed to simulate hardware-

friendly sampling and reconstruction schemes. As such it implements uniform sam-

ple density across pixels and a simple box reconstruction �lter in x, y, and t. Each

sample is weighted equally, and no samples are shared between di�erent pixels.

These are reasonable limitations for a hardware renderer, and were found to be

acceptable for our purposes.

We ran our main series of experiments with the following sampling schemes.

1. Random sampling. x, y, t, u, and v coordinates were randomized independent

of each other.

2. Padded strati�ed sampling. x, y, t, u, and v were strati�ed e�ciently for each

pixel using padded strati�cation as described in Section 3.10.

3. Latin hypercube sampling. x, y, t, u, and v were strati�ed separately for each

pixel, as described in Section 3.11.

4. Best-candidate sampling. A sampling pattern approximating a Poisson disk

pattern was generated using an Euclidean distance measure in all of the 5

dimensions. The Euclidean distance measure was taken from a normalized

sampling space where the t, u, and v values were in the [0, 1] interval, and

pixel centers were 1 unit apart in the x and y dimensions. The algorithm

generated an equal number of sample positions for each pixel neighborhood by

restricting the candidates to a randomly selected pixel neighborhood on each

iteration. 64 candidates were generated for each sample position.

5. Best-candidate sampling (non-Euclidean). A sampling pattern was generated

using the distance measure given in Equation (3.14). Otherwise, the sampling

scheme implementation was identical to the best-candidate sampling.

6. Hardware-friendly low-discrepancy sampling, or HWLDS from now on. t, u,

and v coordinates were generated with Sobol matrices using techniques given

in Section 3.13. Coordinates for x and y dimensions were equal to the sample

coordinates used for anti-aliasing in the Nvidia Fermi GPU architecture when

there were at most 16 samples per pixel, and generated using the Hammersley

sequence when there were more. The x, y sequence was the same for all pixels.

All patterns used the concentric-square mapping square-to-disk method described

in Section 3.8 to transform the square UV coordinate distribution into the unit disk.

All patterns except the random sampling repeated in N ×N pixel tiles so that they

could be cached for e�ciency. The width of the tile N was chosen according to the
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sample count so that the tiling would not noticeably a�ect the perceptual quality.

The implementations of all sampling patterns were veri�ed manually by inspecting

all of their 2D projections.

The Mersenne Twister algorithm was used as the source of pseudo-random num-

bers for the random, strati�ed, jittered, and best-candidate sampling schemes. The

period of the algorithm is magnitudes larger than the total number of samples in any

of the generated images. The same pseudo-random sequence was used to generate

the required numbers for all of the samples.

The software implemented per-pixel transparency with stochastic transparency,

which is visible as some additional error in the Fairy Forest scene. The threshold

values for stochastic transparency were uniform random numbers for all patterns

except for HWLDS, which generated them from a low-discrepancy sequence. The

values were scrambled by bitwise XORing them with polygon IDs to avoid correlation

between polygons.

All images were rendered as 32-bit �oating point linear RGB bitmaps.

6.3 High-quality Reference Images

Perfect reference images are impossible to acquire in the general case, so reference

images were rendered with the padded strati�ed sampling pattern introduced in

Section 3.10. The simple box reconstruction �lter was used also for the reference

images. The box �lter does not yield optimal image quality, but it ensures that

reconstruction does not a�ect the comparisons between the sampling schemes.

214 = 16 384 samples per pixel were used to render the reference images. This

gives 128 x, y, u, and v strata and 16 384 t strata for each pixel. PSNRs between

images generated with two di�erent random seeds with this sampling scheme were

computed to give an indication of reference image quality. These PSNR values

are given in Table 6.1, and were reasonably close or above the PSQNR of 8-bit

quantization de�ned in Section 5.5 in almost all cases.

Since the error manifests as mostly white noise, this means that the di�erences

between the two reference images would be virtually invisible on an ordinary com-

puter monitor. Manual inspection reveals that reference images for scenes 2 and 11

still have a small amount of visible noise, but the level is low enough that it should

not signi�cantly skew the measurement results.

6.4 Artifact Classi�cation

Roughly six types of visible artifacts could be found in the rendered images. Un-

derstanding the causes of these artifacts is important for assessing sampling pattern

quality.
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Scene PSNR (dB)
1 Blank billboard in motion 71.87
2 Blank billboard in motion and defocus 48.38
3 Blank billboard in 1x defocus 68.22
4 Blank billboard in 2x defocus 66.89
5 Blank billboard in 3x defocus 65.66
6 Blank billboard with camera zooming 70.22
7 8x8 checkerboarded billboard with camera zooming 61.54
8 8x8 checkerboarded billboard in defocus 60.46
9 16x16 checkerboarded billboard in defocus 56.97
10 32x32 checkerboarded billboard in defocus 53.94
11 64x64 checkerboarded billboard in defocus 51.06
12 Checkerboard in partial defocus 53.10
13 Checkerboard in partial defocus with texture �ltering 59.03
14 Checkerboard with high amount of parallel motion 53.87
15 Checkerboard with low amount of parallel motion 54.31
16 Checkerboard in focus 69.67
17 Fairy Forest 66.76
18 Mustang in defocus and motion 63.50
19 Mustang in motion 71.05
20 Mustang in defocus 71.21

Table 6.1: PSNRs between two reference images generated with di�erent random seeds.
The average PSQNR from 8-bit quantization is approximately 58.92 dB.

High-frequency noise. This error type was the most expected. Most of the

stochastic rasterization approximation errors manifested as high-frequency uniform

noise with the appearance of random noise. This noise was not visually very dis-

tracting save for the lowest sample density levels. It can be e�ectively �ltered out in

reconstruction. A successful image quality metric should deemphasize this artifact

compared to the other, more severe artifacts.

Structured medium-frequency artifacts. Lower-frequency noise with some

regular structure appeared in some of the checkerboard scenes rendered with the

pseudo-random sampling patterns. This was also to be expected, though the strength

of the noise could be surprisingly high. This type of noise is visually very distract-

ing, and it should be easily caught by all of the perceptual image quality metrics we

surveyed.

Spatial aliasing. Spatial aliasing was easily apparent in the in-focus checker-

board scene with those low-density sampling patterns that had the same relative x

and y sample coordinates for each pixel. Spatial aliasing manifested as jagged edges

and Moiré patterns near the horizon.

Tiling. Most of the sample patterns we used repeated periodically in the x and
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y dimensions. The tiling period was made su�ciently large for each sample density

level so it would not noticeably a�ect the perceptual quality. Still, in some cases

careful examination could reveal that repeating sampling patterns had been used.

This artifact can not be detected by those metrics that operate on a small window

of the image at a time, such as SSIM-based metrics. Image quality metrics based

on Fourier analysis obviously have an advantage in detecting this.

Ideally, a production system would not use a repeating sampling pattern but

would be able to generate as many unique sample positions as are needed on the �y.

This e�ectively rules out slow sampling pattern generation methods. For real-time

applications, fast sampling pattern generation could be done by implementing some

low-discrepancy sequence in hardware.

Perceived change of brightness. This was especially apparent in the black

and white scenes, where images rendered with fewer samples per pixel commonly

appeared brighter. This can be due to luminance nonlinearity of the display device

and to a smaller extent the luminance nonlinearity of the human vision. This e�ect

was much greater than what we expected, but it could be mostly countered by

applying gamma correction to the images in software. This highlights the importance

of color correction for stochastic rasterization.

Perceived banding. Surprisingly strong banding artifacts could be seen in some

of the images approximating smooth gradients. This was not caused by any kind of

bias in the actual color values, but was found to be an e�ect of background-dependent

contrast. Bright dots on a darker background are perceived to be brighter than they

are. When there is a large number of bright dots on an uniform background, the

edge of such a region of dots is perceived as structure in the image. This e�ect could

not be �xed by gamma correction.

These artifacts appeared in the images of black and white scenes rendered with

sampling patterns that had per-pixel strati�cation. In these cases, pixels can only

get two distinct color values at any single point of a uniform gradient created by a

moving edge in the strati�ed dimension. This creates large regions where there are

a number of single-colored brighter dots on a single-colored background.

The banding is an interesting artifact, because it suggests that there can be a

downside to perfect strati�cation in the sampling pattern. However, images that had

the banding artifacts still had subjectively better perceptual quality than the images

rendered with the random sampling pattern, and the banding artifacts ceased to be

disturbing around the sample density of 16 samples per pixel. Better reconstruction

�ltering could also lessen the importance of this artifact.



52 6. Measuring Image Quality of Stochastic Rasterization

6.5 Comparison With Dithering

Rendering an image of a black-and-white scene with a 1 sample reconstruction �lter

results in an image with only black (0) or white (1) pixels. If n samples are equally

weighted to reconstruct a pixel, there are n + 1 possible distinct grey levels, since

either 0, 1, ... or n samples can be evaluated as white. These n + 1 grey levels are

evenly distributed in the range [0, 1].

Based on this information on the grey levels, additional references can be gen-

erated for the black-and-white scenes by applying dithering to the high-quality ref-

erence image. Since the dithered images have similar characteristics as the images

that have been rasterized with low sample counts, they can be used to parametrize

and evaluate image quality metrics for stochastic rasterization.

We used Ostromoukhov's high-quality error-di�usion dithering method to gen-

erate these additional reference images. The method operates with an optimized

�lter kernel for each 8-bit grey level [39]. The method was applied to �oating point

bitmaps so that each �oating point color value was rounded to the closest 8-bit

integer to choose the �lter kernel.

Error-di�usion dithering can result in certain kinds of undesirable artifacts. The

common Floyd-Steinberg method is prone to structural artifacts at speci�c grey

levels [39] and top edges of horizontal gradients. See Figure 6.1a for an example of

Floyd-Steinberg dithering.

Ostromoukhov's method was created speci�cally to produce good output at the

problematic grey levels [39], but it is also prone to slight artifacts at the top edges of

horizontal gradients. Images containing mostly horizontal gradients were transposed

prior to dithering to avoid these artifacts. Pixels were processed in serpentine order.

See Figure 6.1b for an example of Ostromoukhov dithering.

Dithering to more than 2 grey levels with the error di�usion methods was found

to result in similar banding artifacts as strati�ed sampling. These artifacts were

mitigated by adding random noise to the images prior to dithering. Noise with the

amplitude of 1
3
d, where d is the di�erence between two consecutive grey levels, was

experimentally determined to produce good output.

The idea to add random noise was derived from an improved version of Ostro-

moukhov's dithering method that used random threshold modulation to shape the

spectrum of the dithered images [57]. Noise was not added to pixels that were en-

tirely black or white in the reference image. See Figures 6.1c and 6.1d for an example

of this.

It was found that the dithered images often had noticeably higher perceptual

quality than the images rasterized with the best known sampling patterns. Sampling

has the inherent disadvantage that it does not know the shape of the original image
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a)

b)

c)

d)

Figure 6.1: a) Floyd-Steinberg dithering of a horizontal gradient demonstrating the prob-
lematic grey levels and the artifacts near the corners of the top edge. b) Ostromoukhov
dithering of the same gradient, transposed to avoid the edge artifacts. c) Ostromoukhov
dithering to 5 grey levels. Notice the banding artifacts. d) Ostromoukhov dithering to 5
grey levels with added noise. The dithering is not as accurate as the one above, but the
undesirable banding is mostly gone.

function in advance, so results from optimal dithering are bound to be better than

results from optimal sampling. Thus the improvement potential of the sampling

patterns cannot be judged only based on this, even though it is always possible to

construct an image-speci�c sampling pattern that results in the exact same image

as the dithering.

6.6 Parametrizing Existing Metrics

We compared the new BPMSE metric against Matlab implementations of two other

perceptual image quality metrics: HDR-VDP2 [30] and MS-SSIM [23]. In addition,

we did this comparison with the original MSSIM [52], though we expected the similar

MS-SSIM to simply outperform it in all cases. All of these require some parameters

to be chosen when they are used.

The HDR-VDP2 Matlab implementation was used with the default recommended

viewing distance setting of 30 pixels per degree, which corresponds to a typical view-



54 6. Measuring Image Quality of Stochastic Rasterization

ing distance for a 72 dpi computer monitor. The luminance color encoding setting

was used with all images, and color images were converted to monochrome luminance

maps prior to measurement. The RGB color encoding settings that the implemen-

tation o�ers exist only for convenience, and the metric still internally operates only

on monochrome images.

The original MSSIM suggests taking viewing distance into account by down-

sampling the images prior to measurement. It is suggested that all images are

downsampled to approximately 256 times 256 pixels [52], but this stems from the

assumption that the viewing distance is a few times higher than the physical width

of the image. With fullscreen viewing on a computer monitor the viewing distance

is usually shorter. Thus our test images were only downsampled to the width of 512

pixels, or half of their original width prior to measurement. This has a similar e�ect

as increasing the sampling rate to 4 times its original value.

The MS-SSIM metric was used with default parametrization. This means 5 dif-

ferent levels of low-pass �ltering weighted with the weight vector given in Table 6.2.

The default stabilizing constants K1 = 0.01 and K2 = 0.03 and the default Gaussian

window �lter were used for both MSSIM and MS-SSIM.

MS-SSIM scale 1 2 3 4 5
Weight 0.0448 0.2856 0.3001 0.2363 0.1333

Table 6.2: The default weights for MS-SSIM.

6.7 BPMSE Weights

There does not exist a database of subjective quality measurements for stochastic

rasterization, and creation of such a database is a very time-consuming e�ort. For

this reason, we derived the BPMSE weight vectorW by maximizing correlation with

leading contemporary metrics, MS-SSIM and HDR-VDP2. The sum of Spearman

rank correlation coe�cients with MS-SSIM and HDR-VDP2 was used as the �tness

measure. The correlation with HDR-VDP2 was given �ve times the weight of cor-

relation with MS-SSIM, since MS-SSIM was determined not to perform as well on

noise artifacts.

We used all of our stochastic rasterization quality measurements for calculating

the correlation coe�cients. Since correlation between RGB measurements using

BPMSE and monochrome measurements using MS-SSIM and HDR-VDP2 is not

meaningful, we used monochrome conversions of the RGB scenes for computing the

BPMSE values for these correlations.

Our �rst approach was to derive the weight vector from Mannos' CSF model
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detailed in Section 4.6. This approach has the drawback that the CSF is not com-

pletely appropriate for assessing contrast perceptibility when the contrast is su�-

ciently above the visibility threshold [54], but it turned out to yield good results in

practice. We used the same 30 pixels per degree viewing distance parameter as we

used with HDR-VDP2, and chose the CSF peak frequency parameter for the model

between 3.0 and 5.0 degrees by testing peak frequencies with increments of 0.01 and

choosing the one which resulted in the highest �tness measure.

We included six FRMSE values in each BPMSE measurement, so that the largest

�lter had a standard deviation of 16 pixels. The resulting peak frequency for the

CSF model was 3.38 degrees, and the absolute Spearman rank correlation coe�cients

with MS-SSIM and HDR-VDP2 were 0.9447 and 0.9870, respectively. These can be

considered good results.

The BPMSE values are plotted against MS-SSIM and HDR-VDP2 values in Fig-

ure 6.2. It can be seen that the correlation with HDR-VDP2 is good overall. The

overall correlation with MS-SSIM is not as good, which was to be expected. How-

ever, when the MS-SSIM results are examined scene-by-scene, they show much bet-

ter correlation with BPMSE and HDR-VDP2. It looks like MS-SSIM does have a

relationship to perceptual quality even in the case of stochastic rasterization noise,

but the MS-SSIM values can not be compared across di�erent scenes.

In addition to this approach, we used a simple hill-climbing evolutionary algo-

rithm to seek better correlation with weights that were di�erent from the CSF model.

The algorithm added random variation to all the weights simultaneously and tested

if the changes would improve the �tness measure. To avoid only hitting the local

maximum, the amount of random variation added was varied between iterations.

The evolutionary method sometimes yielded erratically varying weights, and even

the very best set of weights we found put suspiciously low weight on the second lowest

band-pass frequency. We suppose that this is because of the uneven distribution of

rendering artifacts among frequency levels in our set of samples. For this reason,

the universal applicability of weights derived using this evolutionary approach is

questionable.

FRMSE level k 1 2 3 4 5 6
CSF-derived weights 0.00104 0.0441 0.203 0.308 0.268 0.177

Evolved weights 0.000223 0.0552 0.0636 0.154 0.00884 0.718

Table 6.3: Weights for BPMSE. We chose to use the CSF-derived weights.

The best absolute Spearman rank correlation coe�cients with MS-SSIM and

HDR-VDP2 found using the evolutionary approach were approximately 0.9451 and

0.9872, respectively. Since these are just marginally better than the results for the
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a)

b)

Figure 6.2: a) BPMSE measurements plotted against MS-SSIM measurements. b) BPMSE
measurements plotted against HDR-VDP2 mean opinion score predictions.

weights derived from the CSF model and we have reason to suspect the validity of

these weights, the original weights from the CSF model were chosen to be used. The

weights were normalized so that their sum is 1 and then rounded to three signi�cant
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digits. The weights from the CSF model and the weights resulting from evolving

them can be found in Table 6.3.

6.8 Measurement Results for the Arti�cial Scenes

There was a very clear pattern to the typical quality measurements for any single

scene. The HWLDS pattern, which has good co-operation between samples for

di�erent pixels, dominated at lower sample densities. It was followed by the Latin

hypercube and the padded strati�ed sampling patterns, which were equal to the

random pattern at 1 sample per pixel, but caught on to the HWLDS at higher

sample densities. HWLDS proved worse than the Latin hypercube and padded

strati�ed sampling patterns only in a few scenes where using it resulted in distracting

structured artifacts.

The best-candidate patterns had co-operation between di�erent pixels, but it

was not quite as e�ective as with the HWLDS pattern. The pattern with the non-

Euclidean distance measure was clearly better than the ordinary Poisson-disk pat-

tern, which was to be expected. However, it still failed to match the strati�ed

pattern in quality at higher sample densities. This con�rms the assumption that it

is better to generate distributions separately for the spatial and aperture domains,

though this complicates achieving co-operation between pixels.

The random pattern performed the worst in but a few scenes, where it occasion-

ally surpassed the HWLDS exhibiting structured artifacts. As expected, it always

performed worse than the Latin hypercube and padded strati�ed sampling patterns.

Overall, the BPMSE measurement results were found to be well in line with sub-

jective quality. The typical pattern seen in the measurement results is illustrated in

Figure 6.3a.

The worst structured artifacts could be found from the checkerboard scenes with

defocus blur. An example of the HWLDS image compared to the image from padded

strati�ed sampling is shown in Figure 6.3d.

Some of the most interesting results were measured from the checkerboard scene

with small amount of parallel motion. Here, some structured artifacts appeared

near the horizon when using the HWLDS scheme even at high sample densities.

It seems like some systematic �aw in the sampling pattern prevented the rendered

image from converging towards the correct result even as the sample density was

increased. The measurement results from this scene can be found from Figure 6.3b,

and the artifacts from Figure 6.3c.

The horizon scene with defocus blur had earlier revealed a �aw in the earlier

version of the HWLDS implementation, which did not correctly permute the sample

locations in the x, y dimensions with high sample counts. This �aw was then �xed

to make the measurements. It seems like this class of scenes is generally very good
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reference strati ed HWLDS

16 samples per pixel 256 samples per pixel

c)

d)

a) b)

Figure 6.3: a) The typical pattern found from the measurement results. b) In this scene
(checkerboard with low amount of parallel motion), renderings using HWLDS failed to
converge towards the correct result even as the sample density was increased. Results
from the padded strati�ed and Latin hypercube patterns are practically identical, since
the error comes mostly from motion blur. c) The artifacts seen near the horizon which
did not disappear as the sample density of HWLDS was increased. The images are from
16 SPP and 256 SPP renderings. d) Structured artifacts from 4 SPP HWLDS compared
to random noise from 4 SPP padded strati�ed sampling and the reference image from the
16× 16 checkerboard in defocus scene.

for revealing errors from the sampling patterns. This should come as no surprise,

since the scenes contain patterns with a wide range of frequencies with respect to the

x, y dimensions. In the presence of motion and defocus, these patterns also interact

with each other.

From these results we can determine that even slight structure in the sampling

pattern can result in visible �aws in some worst-case situations. The scenes we

measured were not too far o� from content in real-life applications, so some of these
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worst-case situations are bound to be found in real-life applications. The HWLDS

sampling pattern exhibited generally very good results, but it would need further

re�nement to make it robust enough for production use.

The di�erence between Latin hypercube and padded strati�ed sampling schemes

was not usually very large. Generally speaking, the Latin hypercube scheme per-

formed better with lower sample densities and showed superior spatial anti-aliasing,

but the padded strati�ed scheme often surpassed it at 256 samples per pixel. This

suggests that the padded strati�ed sampling scheme would generally be a better

choice for o�ine rendering.

Due to the amount of computational resources needed, we did not duplicate the

measurements with images rendered with di�erent random seeds, so we are not able

to give error estimates for our results. However, manual inspection of the quality

of images rendered with di�erent instances of the random pattern did not reveal

signi�cant di�erences, and the regularity of our results suggests that there is no

signi�cant error.

Figure 6.4: BPMSE-RMSE correlation. In the results of our measurements, there are
many cases where RMSE signi�cantly overestimates the perceptual error as measured by
BPMSE, and some cases where it underestimates it.

The value that BPMSE adds over RMSE is evident from some outliers in the

BPMSE-RMSE correlation. RMSE tends to underestimate perceptual error in some
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cases where there was signi�cant structured error, such as in the checkerboard scenes

rendered with the HWLDS pattern with low sample density. It would be easy to

construct more arti�cial examples where RMSE underestimates the perceptual error.

On the other hand, RMSE overestimates perceptual error in the images where there

is good co-operation between pixels, especially images rendered with HWLDS at 1

SPP and corresponding dithered images. BPMSE results are plotted against RMSE

results in Figure 6.4.

6.9 Measurement Results for the Natural Scenes

The measurement results for the natural scenes were generally in line with those for

the arti�cial scenes. HWLDS dominated at lower sample densities, but the Latin

hypercube and the padded strati�ed patterns caught on at higher sample densities.

The degree of error in the natural scenes was generally lower than in the arti�cial

scenes. This was to be expected, since the natural scenes were not speci�cally

designed to reveal errors in the sampling patterns, and the resulting images have

large areas with little or no blur.

It is notable that both MS-SSIM and HDR-VDP2 struggled to quantify quality

di�erences between 16 and 256 samples per pixel in some of the natural scenes.

They unavoidably underestimated the errors due to only operating on single-channel

images, and HDR-VDP2 likely classi�ed some of them as sub-threshold. BPMSE

operating on RGB images could more easily detect these smaller errors, giving more

�ne-grained information on the image quality. BPMSE measurements taken directly

from the RGB images were often 1.5 times as high as BPMSE measurements taken

from their single-channel conversions.

6.10 Ranking Sampling Schemes by Perceptual Quality

We have shown that we are able to automatically assess image quality produced

by di�erent sampling schemes with good accuracy. However, this does not yet give

us a way to assign a quality score to a sampling scheme, since we do not have a

well-de�ned method to summarize the image quality measurements across di�erent

scenes with a single numerical value. In this section, we will consider such methods

and also compare them with sampling pattern discrepancy measurements.

The BPMSE values are obviously scene-dependent � the measurements we showed

in the preceding chapters for di�erent scenes followed the same general pattern, but

the overall extent of the error varied depending on how much blurring and how much

contrasting patterns the scene contained. To compensate for this, we can normalize

a series of measurements from a scene by scaling them to cover a range from 0 to 1.

We do this by using
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BPMSEn(A,B) =
BPMSE(A,B)−min

max−min+ C
, (6.1)

where C is a small stabilizing constant, min is the minimum measurement from

the given scene and max is the maximum measurement from the given scene. This

makes the measurements from di�erent scenes comparable to each other.

De�ning a representative set of test scenes is not as simple. Our arti�cial test

scenes clearly separate di�erent aspects of the sampling patterns from each other,

but this occurs to some extent also with the natural scenes we are targeting. Judging

which aspects are most important is not trivial. We generally want good average

performance out of the sampling pattern, but on the other hand would like to

minimize worst-case error that actually manifests with the targeted scenes.

In the end, manually inspecting BPMSE results across di�erent scenes is the

only way to get a complete understanding of how the sampling pattern behaves.

This is still less time-consuming than subjectively assessing each image individually.

Additionally, a simple average over the normalized results from some representative

set of scenes can be used as an overall quality measure, but the averaged results

might hide important errors in speci�c scenes.

Discrepancy still remains a widely used tool to measure sampling pattern qual-

ity, even if it has its shortcomings discussed in Section 3.5. Star discrepancy can

be measured from an arbitrarily sized tile in the image plane. We measured how

star discrepancy measurements from tiles with di�erent widths compare to average

normalized BPMSE across our entire set of test scenes.

We tested image plane tiles sized 1× 1, 2× 2, 3× 3, and 4× 4 pixels. To avoid

random variability, 9 tiles of pixels were chosen inside the sampling pattern and

the �nal discrepancy value was averaged from their approximate measurements.

We measured the Spearman rank correlation coe�cient, Kendall rank correlation

coe�cient, and maximum Pearson correlation coe�cient from a set of di�erent �tting

functions between the star discrepancy measurements and the average normalized

BPMSE measurements. These correlation coe�cients are plotted against the tile

width used in measuring the discrepancy in Figure 6.5a.

The correlation is the highest when the star discrepancy is measured from 2× 2

pixel tiles. This is understandable, since it takes co-operation between pixels into

account. Measuring from a larger tile than 2×2 pixels results in no additional bene�t
in this sense, and the discrepancy measures become more similar for di�erent pat-

terns, which increases the potential for error. The relationship between discrepancy

and average BPMSE is also closest to linear with 2×2 pixel tiles. So, we recommend
that star discrepancy measurements should be taken from approximately 2×2 pixel

tiles.

That is not to say that star discrepancy in �ve dimensions should necessarily be
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a)

b)

Figure 6.5: a) Correlation coe�cients between average normalized BPMSE measurements
and star discrepancy measurements taken from di�erent-sized pixel tiles. b) Star dis-
crepancy measurements from 2× 2 pixel tiles plotted against average normalized BPMSE
measurements.
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used at all. The correlation coe�cients we got overestimate its ability to predict

which sampling scheme performs the best, as large di�erences in discrepancy are

seen between sample densities, but not as much between di�erent sampling patterns

at the same sample density. To illustrate this, our average normalized image quality

measurements are plotted against 2× 2 pixel tile star discrepancy in Figure 6.5b.
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7. CONCLUSIONS AND FURTHER RESEARCH

The BPMSE metric met the goals we set for it. The metric is conceptually sim-

ple, e�cient to compute compared to leading perceptual metrics, and re�ects the

actual image quality of images rendered using stochastic rasterization better than

simple RMSE. The simplicity of BPMSE is enabled by the realization that masking

phenomena do not a�ect worst-case perceptual quality of stochastic rasterization.

Our measurement results from images rendered with di�erent sampling schemes

are mostly in line with earlier results. Using low-discrepancy sequences is usually

very e�ective, but they can be prone to structured artifacts. The artifacts could

be surprisingly severe in some cases that we would expect to manifest also in real-

world content. Padded strati�ed sampling and Latin hypercube sampling performed

relatively well while avoiding these artifacts, but they can not be implemented as

e�ciently. Best-candidate sampling schemes generated in 5D space could achieve

some co-operation between pixels, but clearly lost to per-pixel padded strati�ed and

Latin hypercube schemes on higher sample counts.

There seem to be no shortcuts to assigning an overall quality score for a sampling

scheme even if we have a very good image quality metric in our disposal. The quality

should always be evaluated in the context of the desired application. Sampling

pattern discrepancy does not tell the whole truth of the resulting image quality

either, though star discrepancy computed from 2 × 2 pixel tiles of the sampling

pattern achieved reasonable correlation with average image quality. The test scenes

we used provide a reasonable basis for assessing di�erent basic characteristics of the

sampling patterns, but the comprehensiveness of the test scene set is by no means

proven.

There are many opportunities for further research in the area. Constructing a

database of subjective image quality measurements of rendered images would ease

evaluating the performance of perceptual metrics for rendering. Existing widely

used databases rely almost solely on photographic images with arti�cially added

corruption.

Investigating the possibility of a no-reference image quality metric for rendered

images would also be interesting. In stochastic rasterization, error typically man-

ifests as noise at speci�c frequencies, and in some cases it could be isolated from

the image without having a reference. This is the case especially with the kind of
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arti�cial test scenes we mostly used in our measurements, where there is no high-

frequency texture that could be misinterpreted as noise.

Sampling patterns could also be optimized using BPMSE or other perceptual

metrics. Potential optimization approaches include evolving Latin hypercube per-

mutations or evolving parameters for generating low-discrepancy sequences.

We also left out comparisons of di�erent low-pass and reconstruction �lters, and

opted to use the simple box �lter for all of the rendered images. Better reference

images could be generated by choosing an appropriate high-quality �lter. This would

enable measuring the e�ects of di�erent �lters also with lower sample densities.

We would expect the rasterization algorithms to be predominantly used to render

video, and measuring video quality would be yet another research opportunity. We

would expect the time dimension behavior of the sampling pattern to become more

important in the case of video, and some artifacts in the bitmap frames could appear

more or less severe in the presence of motion.

As a closing note, it was surprising to note how temporal reconstruction is usually

left to so little attention in the literature. Most research just assumes that the

cinematographic image function is used. Even if the shutter closing and opening

is accounted for, this corresponds roughly to a box reconstruction �lter in t. In

terms of sampling theory, the box �lter is suboptimal. The choice of �lter might

be a practical consideration in interactive applications and a stylistic choice in the

case of o�ine rendered animation, but most of the research fails to convey a deep

understanding of temporal reconstruction. The formulae are often presented as if

integrating over t would not have a perfectly valid signal processing interpretation.

We found only one practical introduction to temporal anti-aliasing presented in

[17]. This formulation of the reconstruction with respect to time presented in Chap-

ter 3 can be used whether the aim is to emulate cinematography or to reconstruct

the original time-dependent image function as accurately as possible. Especially 3D

games and stereoscopic animated movies which try to immerse the viewer into the

scene could bene�t from bypassing the camera analogy.
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A. TEST SCENES

1. Blank billboard in motion

A billboard �lling the viewport at

t0 and moving completely out of

view towards the right at t1. Pro-

duces a linear gradient from black

to white.

2. Blank billboard in motion

and defocus

A billboard �lling the viewport

at t0 and moving out of view at

t1 with additional defocus blur.

Produces a smooth gradient.

3. Blank billboard in 1x de-

focus

A blank white billboard centered

in the viewport in defocus with

aperture radius r

4. Blank billboard in 2x de-

focus

A blank white billboard centered

in the viewport in defocus with

aperture radius 2 · r
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5. Blank billboard in 3x de-

focus

A blank white billboard centered

in the viewport in defocus with

aperture radius 3 · r

6. Blank billboard with cam-

era zooming

A blank white billboard centered

in the viewport with the camera

moving directly towards it from t0

to t1

7. 8x8 checkerboarded bill-

board with camera zooming

A checkerboarded billboard cen-

tered in the viewport with the

camera moving directly towards

it from t0 to t1

8. 8x8 checkerboarded bill-

board in defocus

A billboard with 8x8 checker-

board centered in the viewport in

defocus with aperture radius 2 · r



A. Test Scenes 73

9. 16x16 checkerboarded bill-

board in defocus

A billboard with 16x16 checker-

board centered in the viewport in

defocus with aperture radius 2 · r

10. 32x32 checkerboarded

billboard in defocus

A billboard with 32x32 checker-

board centered in the viewport in

defocus with aperture radius 2 · r

11. 64x64 checkerboarded

billboard in defocus

A billboard with 64x64 checker-

board centered in the viewport in

defocus with aperture radius 2 · r

12. Checkerboard in partial

defocus

A checkerboard of black and

white tiles perpendicular to the

image plane in partial defocus
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13. Checkerboard in partial

defocus with texture �ltering

A checkerboard of black and

white tiles perpendicular to the

image plane in partial defocus.

The checkerboard pattern comes

from a texture with trilinear �l-

tering.

14. Checkerboard with high

amount of parallel motion

A checkerboard of black and

white tiles perpendicular to the

image plane in complete focus.

The camera is moving parallel

to the checkerboard towards the

horizon across 9 rows of checker-

board tiles.

15. Checkerboard with low

amount of parallel motion

A checkerboard of black and

white tiles perpendicular to the

image plane in complete focus.

The camera is moving parallel

to the checkerboard towards the

horizon across one row of checker-

board tiles.

16. Checkerboard in focus

A checkerboard of black and

white tiles perpendicular to the

image plane in complete focus.
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17. Fairy Forest

A scene depicting a fairy in a for-

est, with the camera stationary

near the fairy's hand.

18. Mustang in defocus and

motion

A Mustang in partial defocus and

moving forward on a blank blue

background.

19. Mustang in motion

A Mustang in complete focus

moving forward on a blank blue

background.

20. Mustang in defocus

A Mustang in partial defocus on

a blank blue background.


