

ABHISHEKH GUPTA
STOCHASTIC PROCESSES AS A SOURCE OF CELL TO CELL DIVERSITY
AND CELLULAR AGEING
Master of Science Thesis

Examiners: Andre S. Ribeiro
 Imed Hammouda
Examiners and subject approved in the
Faculty of Computing and Electrical
Engineering Council meeting on
09.05.2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Programme in Information Technology
ABHISHEKH GUPTA: Stochastic processes as a source of cell to cell diversity
and cellular ageing
Master of Science Thesis, 58 pages
June 2012
Major subject: Software Systems
Examiners: Andre S. Ribeiro, Imed Hammouda
Keywords: Gene Expression, Cell division, Partitioning, Models, Cell-to-cell di-
versity, Ageing, Stochastic Simulation Algorithm, Compartments

Even populations of monoclonal cells exhibit phenotypic diversity. There are several
sources generating such diversity, including stochasticity in the dynamics of gene ex-
pression, and the stochastic partitioning of molecules during division. This thesis focus-
es on the construction and simulation of a realistic model of gene expression and on the
stochastic partitioning of cellular components during cell division.

First, we present and make use of statistical methods to extract information on the
kinetics of gene expression from live-cell measurements at the single RNA molecule
level. This information allows us to characterize the kinetics of the multi-stepped pro-
cess of transcription initiation, including the degree of noise in transcript production, as
well as the kinetics of partitioning of protein aggregates by the cell’s poles. A model of
single gene expression in a growing population of cells and a model of ageing in bacte-
ria are then constructed based upon these measurements.

Next, we present a new simulator which uses the Stochastic Simulation Algorithm
to simulate the dynamics of intracellular processes in populations of cells, each of which
able to grow and divide with random partitioning of molecules. Cells are represented in
the simulator by compartments that can be created and destroyed at runtime. Logarith-
mic simulation algorithms and efficient data structures were designed and are here pre-
sented, which minimize the computational cost of simulating the dynamics of large cell
populations that involve a large number of chemical reactions.

III

PREFACE

This Master’s thesis was carried out between 2011-2012 at the Computational Systems
Biology Research Group in the Department of Signal Processing, Tampere University
of Technology, Tampere, Finland.

I would like to thank Jason Lloyd Price for his continuous support and technical as-
sistance and Meenakshisundaram Kandhavelu for providing the experimental images
for the measurements.

I would also like to extend my gratitude to Asst. Prof. Andre S. Ribeiro and Adjunct
Prof. Imed Hammouda, for supervising this thesis to its completion.

Tampere, May 21st, 2012

Abhishekh Gupta

IV

CONTENTS
1. Introduction... 1
2. Background ... 3

2.1. Stochastic Processes in Bacteria .. 3
2.1.1. Initiation ... 4
2.1.2. Elongation... 4
2.1.3. Degradation .. 5
2.1.4. Partitioning and Ageing .. 5

2.2. Chemical Master Equation .. 6
2.3. Stochastic Simulation Algorithm .. 7

2.3.1. Direct Method ... 8
2.3.2. First Reaction Method ... 9
2.3.3. Next Reaction Method .. 10
2.3.4. Logarithmic Direct Method ... 12
2.3.5. Partial-propensity Direct Method .. 13
2.3.6. Constant-Time Direct Method ... 14
2.3.7. Delayed Stochastic Simulation Algorithm 16

2.4. Dynamic Compartments ... 17
3. Methods and Approach ... 18

3.1. Measuring the Kinetics of Transcription Initiation in Bacteria................... 18
3.1.1. Experimental Setup ... 18
3.1.2. Image Analysis ... 19
3.1.3. Jump Detection ... 21
3.1.4. Step Inference ... 22

3.2. Assessing the kinetics of partitioning of unwanted protein aggregates 24
3.2.1. Detection of cells and quantification of aggregates 24
3.2.2. Expected difference in number of aggregates between poles 25

3.3. Simulation Approach .. 25
3.3.1. Compartment Representation .. 26
3.3.2. Delayed Reactions .. 27
3.3.3. Compartment Division and Molecule Partitioning 28

4. Simulator Implementation ... 31
4.1. Input Parser .. 33
4.2. Initialization ... 33
4.3. System Model ... 33
4.4. Simulation Runtime .. 34
4.5. Discrete Event Simulation .. 35
4.6. Using the Simulator .. 35

5. Results and Discussion .. 37
5.1. Kinetics of Transcription Initiation of the lar Promoter 37
5.2. Kinetics of Biased Partitioning of Protein Aggregates 39
5.3. Model of Cell-to-Cell Diversity in RNA Numbers 42

V

5.4. Simulating Ageing Processes in Cell Populations...................................... 46
5.5. Simulator Performance ... 48

6. Conclusion .. 51
References .. 53

VI

TERMS AND DEFINITIONS

aTc anhydrotetracycline
CME Chemical Master Equation
DM Direct Method
DNA Deoxyribonucleic Acid
FRM First Reaction Method
GFP Green Fluorescent Protein
IPTG Isopropyl- -D-thiogalactopyranoside
KDE Kernel Density Estimation
LDM Logarithmic Direct method
mRNA messenger Ribonucleic Acid
NRM Next Reaction Method
ODM Optimized Direct Method
PCA Principal Component Analysis
PDM Partial Propensity Method
RBS Ribosome Binding Site
RNA Ribonucleic Acid
RNAp RNA polymerase
SDM Sorting Direct Method
SPDM Sorting Partial Propensity Method
SSA Stochastic Simulation Algorithm
SSA-CR SSA with Composition and Rejection
TSS Transcription Start Site

INTRODUCTION 1

1. INTRODUCTION

All biochemical processes in cells are inherently stochastic. This is of relevance to cells’
behaviour, as in several of these internal cellular processes the intervenient macromole-
cules exist in low copy numbers. This implies that the occurrence of single events such
as the production or degradation of a single molecule may have detectable effects on the
dynamics of the cell. Cellular processes where stochasticity plays a major role include
gene expression and responses to external stimuli. Since these processes affect, to great
extent, the cell’s well-being, it is of importance to understand their statistical properties
[1-4] since these are responsible, among other things, for the cell-to-cell diversity of a
population. For that, it is of interest to construct realistic models of these processes, and
to simulate them, as they allow exploring behavioural patterns and the effects of interval
variables in these processes, which would not be possible, or easily achievable, when
using an experimental approach alone.

Several studies have reported sources of phenotypic diversity in monoclonal cell
populations. In this thesis we focus on constructing models to study two of these
sources, namely, gene expression [1,5,6] and errors in partitioning of molecules during
cell division [7]. Our aim is, from observations of these processes in live cells, to devel-
op a simulator capable of mimicking them in a realistic fashion, so that it can be used as
a test bed for future experiments. To model and simulate these complex processes in a
realistic way we need to consider the underlying events that compose them, namely
their kinetics.

The first process, gene expression has a dynamics that is mostly regulated at its ini-
tial stage, i.e., transcription initiation, a multi-stepped process [8,9]. In vitro studies
have measured the mean durations of some of these steps [10-12]. However, it is un-
known to what extent do these results apply to living bacteria since, for example, they
are not well-stirred environments. Only recently have in vivo methods been developed
to detect in vivo individual RNA molecules as these are produced [13]. These rely on
the tagging of target RNA molecules with fluorescent proteins.

The other process considered here, i.e. the segregation of molecules such as RNAs
and proteins during cell division, is also a source of cell to cell diversity due to, at least,
inevitable deviations from a perfectly even partitioning of molecules between daughter
cells (also referred to as “partitioning errors”) [7]. Notably, different molecules segre-
gate into the two daughter cells in different manners, which implies that while the pro-
cess of segregation is stochastic, it is likely not ‘purely random’. As an example of a
non-purely random partitioning scheme, a study has shown that, in Escherichia coli,

INTRODUCTION 2

some unwanted protein aggregates tend to preferentially accumulate at one of the cell
poles (the older pole), leading to a large difference in the amount inherited by the
daughter cells [14]. This has been linked to ageing in these organisms, since daughter
cells that inherit the older pole exhibit decreased vitality, i.e., rate of division [15].

The methods developed here to model these processes in dynamic populations of
cells are such that they can be incorporated onto Monte Carlo simulations of the Chemi-
cal Master Equation (CME), given the success of this approach in modelling gene ex-
pression [1,16-19]. The canonical implementation of this method is the Stochastic
Simulation Algorithm (SSA) [20].

The SSA in its original version [20] cannot be used to simulate the models we aim
to construct. First, some events (e.g. protein folding) need to modelled as ‘delayed
events’, that is, as non-instantaneous, since they do not consist of bimolecular events.
Since all we aim is to model the kinetics of the processes, not the physical processes,
e.g. this problem is overcome by using algorithms such as the delayed stochastic simu-
lation algorithm [21], as these allow some events to not be instantaneous. Additionally,
a dynamic population of cells requires a dynamic number of reactions since one cannot
predict, beforehand, what molecules will be present in the system at any given time and
thus what reactions need to be modelled. The concept of dynamic compartments is
therefore needed, as they allow sets of reactions to be introduced and removed at
runtime, depending on the evolution of the system [22].

Other problems also require addressing. For example, during the division of a cell,
all molecules within it must be partitioned between the daughter cells, according to
some specified segregation mechanism. Including such component to existing stochastic
simulators (e.g. SGNSim [23]) would allow, e.g., exploring in silico the effects of parti-
tioning in the diversity of cell populations [18].

This thesis aims to construct a simulator able to mimic the temporal evolution of
cell-to-cell diversity in populations due to noise in gene expression, and stochastic parti-
tioning schemes in division. For that, first, we measure the kinetics of transcription ini-
tiation in live bacteria in order to obtain experimental data (section 5.1) that will be used
to develop a more realistic model of single gene expression (section 5.3). We also pre-
sent measurements relative to the partitioning of unwanted protein aggregates (section
5.2). To extract the information from the measurements, new methods were developed
that are also presented here. Namely, we describe the methods developed to measure
distributions of intervals between consecutive transcription events from measurements
in E. coli cells [24,25] (section 3.1), and to measure biases in the spatial segregation of
unwanted aggregates by these cells’ poles (section 3.2).

Finally, we present the simulator of dynamic cell populations capable of modelling
stochastic, compartmentalized processes inside cells, and probabilistic partitioning of
molecules upon cell division (section 4). The simulator is built using a combination of
efficient simulation algorithms so that large chemical systems and large populations of
cells may be simulated in reasonable time.

BACKGROUND 3

2. BACKGROUND

In this section, we first present the biological processes that we focus on. It is followed
by the algorithms and methods currently used to simulate these processes.

2.1. Stochastic Processes in Bacteria

Gene Expression is the process by which information encoded in a gene’s DNA se-
quence is read to synthesize, first, an RNA molecule and, from this RNA, a protein.
Stochastic events in this process have been found to be responsible for fluctuating time
patterns of RNA and protein numbers in individual cells [1]. These fluctuations are a
source of diversity of protein concentrations between cells at any given time, and thus
of phenotypic diversity. For example, stochastic variations in the concentrations of two
independent regulatory proteins competitively controlling a switch point in a pathway
can lead to probabilistic pathway selection. One consequence of this is that an initially
homogeneous cell population may partition into distinct phenotypic subpopulations [1].

Bacteria have been used as model organism to study stochasticity in gene expres-
sion. In these organisms most Ribonucleic acid (RNA) molecules exist in very small
numbers. In particular, for most RNAs, only one to a few molecules is observed at any
given moment in a cell [26]. It has also been shown that the phenotype of these cells is
affected by the number of RNA molecules produced by each gene [27] and the timing
with which they are produced, because protein numbers follow the RNA numbers
[19,28].

Transcription is the process by which genetic information stored in a DNA strand is
copied into a complementary strand of RNA, with the aid of RNA polymerases. One
transcription event results in an RNA copy of a gene, which generally codes for a func-
tional protein. Protein coding RNAs are called messenger RNA (mRNA). Transcription
begins when the RNA polymerase binds to the promoter region of the gene. Once
bound, the RNA polymerase unwinds a small section of the DNA, after which elonga-
tion begins where it uses one strand, known as the coding strand, as a template from
which to synthesize an exact RNA copy [11]. In prokaryotes like bacteria, transcription
is coupled with translation, which is the process of protein synthesis from a specific se-
quence of amino acids. This is accomplished by a protein/RNA hybrid known as ribo-
some. Ribosomes bind to the translation initiation sequence on the mRNA, and elongate
the protein in a similar manner to transcription, creating a new protein.

In prokaryotes, both transcription and translation are stochastic, multi-stepped pro-
cesses. The events in transcription and in translation are probabilistic in nature

BACKGROUND 4

[18,19,29,30], and their kinetics is sequence dependent [5,9,31,32]. In bacteria, stochas-
tic events that occur during transcription initiation [1,6], elongation [6], and mRNA
degradation [32], among others, cause uctuations in the mRNA count [13,33-35].The
production of mRNAs, one at a time, in live cells thus needs to be observed to under-
stand the dynamics of transcription, including initiation and elongation.

2.1.1. Initiation

Transcription in a bacteria starts when an RNA polymerase (RNAp) diffusing along the
DNA strand binds to a promoter region [36]. This process is referred to as the closed
complex formation. Before a productive elongation can occur, the DNA must be bent
and unwound (the open complex formation, during which the RNAp places itself in the
transcription start site (TSS)), and the RNAp’s clamp/jaw must assemble on down-
stream DNA [37]. Initiation is thus a complex process consisting of a series of events
which take a non-negligible amount of time to be completed once started [9]. Once the-
se events are completed, the RNAp begins elongating the complementary RNA strand
and clears the promoter, allowing another RNAp to bind.

Several studies on the kinetics of transcription initiation have measured the mean
durations of some of these steps using in vitro measurements [9-12,38]. The results sug-
gest that the two most rate-limiting steps in initiation are the closed and the open com-
plex formations [9]. The durations of these steps vary widely between promoters [5], as
well as with temperature [36] and concentration of possible activator and repressor mol-
ecules [9].

It has been suggested that the dynamics of gene expression, and therefore one of the
key determinants of cellular phenotype, is largely controlled at the level of initiation
[19,28,39]. The amount of variability in this process is therefore one of the major con-
tributors to the phenotypic diversity in a monoclonal bacterial population.

2.1.2. Elongation

Translation in bacteria can begin before the transcription is completed, and several
translation events can occur in parallel from one transcript. However, since translation
cannot and produce functional proteins before transcription completes, events during
transcription elongation can affect the mean and fluctuations of protein levels. Studies
have shown how events during transcription elongation can affect translation elongation
and thereby produce fluctuations in protein levels [40].

A delayed stochastic model of transcription and translation including events such as
the promoter open complex formation and alternative pathways to elongation, namely
pausing, arrests, editing, RNA polymerase traffic, and premature termination was pro-
posed and used to investigate these effects [40]. Although in some cases, such as certain
exceptional sequence-dependent pauses [5], these events may cause non-negligible fluc-
tuations in RNA and protein numbers, since elongation does not take a large amount of

BACKGROUND 5

time relative to other processes in gene expression [41], these events are not expected to
significantly affect gene expression dynamics for most genes [25].

2.1.3. Degradation

In all living cells, RNA degradation is essential to control the steady-state concentration
of mRNA. It has been found that the enzymes responsible for RNA degradation and
processing are able to assemble into a large multi-protein complex, the RNA
degradosome that consists of RNase E and other enzymes [42]. In this complex, RNase
E has the endoribonucleolytic activities that are responsible for the degradation
of mRNAs. The rate at which this is performed determines the time to reach steady state
and thus affects the gene’s reaction time to external stimuli. Intuitively, it must be fast
to responding to external signals and slow for normal regulation processes.

In bacteria, mRNA degradation is often modelled as a first-order reaction. The half-
life of an mRNA typically ranges from 3 to 8 minutes [28]. No general relationship was
found between an mRNA’s abundance and that mRNA’s half-life, indicating that
though mRNA decay is an important part of the cellular system, it is not generally used
by cells as a regulatory mechanism of RNA and protein abundances [28]. The added
cell-to-cell diversity introduced by such a first-order decay process is known [29].

2.1.4. Partitioning and Ageing

There are other, non-genetic sources of phenotypic diversity between the daughter cells
of a bacterial cell. Because of the low copy number of some molecules in the cells, im-
perfections in a purely unbiased partitioning will lead to increased phenotypic diversity
in a monoclonal population [7,43]. For example, if a particular molecule species segre-
gates independently and randomly into either daughter, this will result in a Binomial
partitioning distribution upon division, which will double the cell-to-cell diversity after
the division, in terms of the normalized variance of the molecule numbers in the popula-
tion. If the molecules form dimers which split evenly into the daughter cells upon divi-
sion, this will lead to a partitioning distribution with less variance than Binomial. Con-
sequently, the partitioning of the molecules at division will introduce less diversity into
the population, and is thus more “ordered” than independent Binomial partitioning. In
contrast, if the molecules form clusters, and the clusters segregate independently, this
will lead to a partitioning distribution with greater variance than Binomial [7]. This
“disordered” partitioning then leads to considerably greater cell-to-cell diversity in the
population after division.

Of particular interest are partitioning schemes in which there is a purposeful asym-
metry in division, even in an organism with apparently morphologically symmetric di-
vision, such as E. coli. In this case, molecules preferentially segregate to one of the
poles prior to division, and thus preferentially partition into one of the daughter cells
[44]. This biased Binomial partitioning is a disordered partitioning scheme which en-

BACKGROUND 6

hances cell-to-cell diversity of RNA and protein numbers [44]. Such a partitioning
scheme has been observed in E. coli, whereby unwanted protein aggregates tend to ac-
cumulate at the older pole of the mother cell [14]. This accumulation has been linked to
decreased vitality, i.e. a slower rate of division, in the daughter cell inheriting the older
pole [14]. This suggests that the two daughters of an E. coli cell should not be consid-
ered as sister cells, but rather as an ageing parent repeatedly giving birth to rejuvenated
offspring [15].

2.2. Chemical Master Equation

Models of the stochastic biochemical processes in bacterial cells must account for the
above effects. That is, they must accurately capture the stochastic nature of the events
occurring in the system. The stochastic formulation of chemical kinetics [45] has suc-
cessfully been applied to these models. This formulation describes the time-evolution of
a well-stirred set of chemically interacting molecules in thermal equilibrium in a fixed
reaction volume. The state of a system with N chemical species at time t is represented
by an N-dimensional vector x containing the number of molecules of each species in the
volume. The change in the population of a species is a consequence of the occurrence of
one of M chemical reactions that can take place between the molecules. The time-
evolution of x takes the form of a random walk through the N-dimensional space of the
populations of the reacting species. This approach to the kinetics of a spatially homoge-
nous system of reacting chemicals is based on the probabilities of occurrence per unit
time of each of these reactions Rµ, based on the current state vector, which are defined
by the propensity function aµ:

aµ(x)dt the probability that a particular combination of the
molecules that are presently in the system will react via reac-
tion Rµ in the next infinitesimal time interval [t, t + dt).

(1)

This definition on its own can be used to derive the master equation for a chemical
system via the laws of probability. Its existence can thus be considered to be the funda-
mental premise of the stochastic formulation of chemical kinetics. The form that the
function aµ takes depends on the type of the reaction it represents. The physical ra-
tionale for unimolecular and bimolecular reactions are as follows.

Unimolecular reactions occur internally within each molecule of a given species Si
and are usually quantum mechanical in nature. The underlying physics dictates that
there is some constant cµ such that cµdt gives the probability that some molecule of Si
will spontaneously react via reaction Rµ in the next infinitesimal time dt [46]. From the
laws of probability, it follows that if there are Xi molecules of Si in the system at a given
instance, the probability that one of them will react via Rµ in the next infinitesimal time
interval is dtcX i . Thus, the propensity function for unimolecular reactions is

.)(cXa ix

BACKGROUND 7

Bimolecular reactions involving two different molecular species Si and Sj occur
when two such molecules meet and react. Using the homogeneity assumption, it can be
shown that there exists a constant cµ such that cµdt gives the probability that a given pair
of molecules will meet and react via reaction Rµ [47]. This constant can be derived from
microphysical properties [48]. If there are iX molecules of Si and jX molecules of Sj
currently in the system, then there are ji XX pairs of these molecules. The probability
that one of these pairs will meet and react via Rµ in the next infinitesimal time dt is
therefore dtcXX ji . The propensity function for bimolecular reactions with different
chemical species is then .)(cXXa jix

For bimolecular reactions between two molecules of the same species Si, the num-
ber of pairs does not grow as 2

iX , since a molecule cannot react with itself and the pairs

ji XX and ij XX must be counted only once. Instead, the number of pairs grows as
2/)1(ii XX , making the propensity function for such a reaction

2/)1()(cXXa iix .
In the stochastic formulation, we would like to describe the joint probability distri-

bution),|,(00 ttP xx of having a given state vector x at time t after the initial conditions
x = x0 at t = t0. Also, we assume that i represents the absolute number of each reactant
that change when reaction Ri occurs. Using equation (1), the rate of change of the prob-
ability of being in a given state x can be expressed as the sum of the probabilities of all
reactions that can change the system’s state into x in the next infinitesimal time interval,
subtracting the sum of the probabilities of all reactions that can cause the system to
leave that state. The result is a partial differential equation for P, the Chemical Master
Equation (CME) [45]:

 M

ttPattPa
t

ttP
1

0000
00),|,()(),|,()(),|,(xxxxxxxx

(2)

This equation determines the probability that each species will have a specified mo-
lecular population at a given future time. The function that satisfies the CME simultane-
ously describes the probability of all possible trajectories through the N-dimensional
state space of reactant populations. Because of the explicit handling of every possible
state that the system can be in, the CME can take an accurate account of the effects of
both fluctuations. This has been a major justification for using the stochastic approach
over the mathematically simpler deterministic approach.

2.3. Stochastic Simulation Algorithm

As the CME in equation (2) can rarely be solved analytically, simulated trajectories of x
versus t are often used to sample the distribution of x instead. This is not the same as
solving the CME numerically, as that would give us the probability density function of
x instead of a random sample of x. The key to generating simulated trajectories of x is

BACKGROUND 8

not the function),|,(00 ttP xx , but rather a new probability function),|,(tp x which
is defined as follows:

dtp),|,(x = the probability that the next reaction in the
system will occur in the infinitesimal time interval [t + , t +
 + d), and will be an R reaction.

(3)

If the system is currently in state x, this function is the joint probability density
function of the two random variables: the time until the next reaction occurs () and the
index of this reaction (). By applying the laws of probability, an exact formula for

),|,(tp x is derived from the fundamental premise equation (1) [47].
)(exp()(),|,(0 xxx aatp (4)

 where,

M

aa
1

0)()(xx .

This equation is the mathematical basis for the stochastic simulation approach. One
implementation of this approach is Stochastic Simulation Algorithm (SSA), a Monte
Carlo procedure for numerically generating time trajectories of the molecular popula-
tions in exact accordance with the CME. The procedure that SSA follows can be listed
as [20]:

1. Set time t = 0. Set up the initial state vector x = x0.
2. With the system in state x at time t, evaluate all the a (x) and their sum a0(x).
3. Using a suitable sampling procedure, generate a random pair),(accord-

ing to the joint probability distribution in equation (3)
4. Output the system state for each sampling point in the time interval [t, t +).
5. If t + t stop, terminate.
6. Set t = t + , and x = x + .
7. Recalculate ai for all i such that any X that was changed in step 4 appears as

a reactant in Ri.
8. Go to step 3.

There are several exact procedures for generating samples of and according to
the joint probability distribution as mentioned in step 3. The two original, statistically
equivalent sampling procedures of the SSA [20] are the Direct Method (DM) and the
First Reaction Method (FRM). The other methods presented here, specifically the Next
Reaction Method (NRM), the Logarithmic Direct method (LDM), and the Partial Pro-
pensity Method (PDM), are all based (in one way or another) on either DM or FRM.

2.3.1. Direct Method

The Direct Method applies the standard inversion generating method of Monte Carlo
theory [20]. In this sampling approach, two random numbers r1 and r2 are drawn from
the uniform distribution in the unit interval, and the random pair),(is computed as:

BACKGROUND 9

)/1ln())(/1(10 ra x (5)

 = the smallest integer satisfying
1' 02').()(xx ara (6)

 The formulae used in this method can be derived on the basis that any two-variable
probability density function can be written as the product of two one-variable probabil-
ity density functions. That is, if d)(1P is the probability that the next reaction will
occur between times t and dt , irrespective of which reaction it might be; and

)|(2P is the probability that the next reaction will be an R reaction, given that the
next reaction occurs in [t , dt), the probability density function in equation
(3) can be written as:
)|()()|(21 PPP

This equation can be rewritten in the form:

M

v
vPP

1
1)|()(

 and,

M

v
vP

PP

1

2

)|(

)|()|(

Using the laws of probability, these have been shown to yield [20]:

)exp()(01 aaP (7)

 02 /)|(aaP (8)
The core idea of the direct method is to first generate according to)(1P and then

generate according to)|(2P . Since P2 is independent of , this can be accomplished
with the formulae in equation (5). The resulting random pair),(will be distributed
according to)|(P . The Direct Method, given a fast, reliable uniform random number
generator, is easily programmable. This method is therefore a simple, rigorous proce-
dure for implementing Step 3 of the SSA.

2.3.2. First Reaction Method

Another sampling approach described in the original formulation of the SSA [20] is the
First Reaction Method. This method, although not as efficient as the direct method, pro-
vides mathematical insights into the stochastic simulation approach. It is based on the
generation of a “tentative reaction times”, v using a random number (r1) from the uni-
form distribution in the unit interval, according to the probability density function in
equation (4). This process is repeated for all reactions to compute all the respective re-
action times given as:

)/1ln())(/1(1rav x (9)
The pair),(is then chosen from the M tentative reaction times such that is the

smallest v and is the corresponding value of v for that particular v . In [20], it was

BACKGROUND 10

proven that the probability density function for this random pair),(is statistically
equivalent to the)|(P prescribed by the CME.

Although this method is as rigorous and exact as the Direct Method, it is generally
slower to compute since it requires M separate random numbers from the uniform ran-
dom number generator for each of the M reactions. However, since its original publica-
tion, this method has been optimized for computational efficiency by means that do not
affect its statistics.

2.3.3. Next Reaction Method

The Next Reaction Method (NRM) [49] is an approach that reduces the computational
costs of the FRM. The FRM must perform O(M) operations per iteration of the SSA,
since it takes a time proportional to M to both update ia s, as well as to generate and
identify the smallest v . Instead, the NRM stores the tentative times generated in previ-
ous iterations (v) in a special data structure, an Indexed Priority Queue, and reuses
them where appropriate, improving its performance significantly.

The NRM uses a directed graph G(V,E) to represent the set of all reactions {Rv} and
their relationship in terms of how they affect the molecules which their propensity func-
tions depend on [49]. In this “dependency graph”, the Vertex set V = {Rv} and there is a
directed edge from vi to vj when reaction Ri changes a molecule’s number, which affects

ja . In other words, the dependency graph is a data structure that tells precisely which
ia s to change after the execution of a reaction. The use of the dependency graph limits

the number calculations of ia s to a minimum in the NRM. Since the number of edges
from a given vertex in a dependency graph is typically small, only a few propensities
are to be updated at each time step.

The nodes to be updated are changed in the place where they are stored, which re-
sults in the bubbling up or down the tree structure. This continues until the property of
priority queue is re-established. This approach takes O(log r) time, where r is number of
reactions in queue. But, if there are a small number of reactions, , that have rate con-
stants faster than the others, then most updates will occur in those reactions and take
approximately O(log) time. This algorithm does not continue further once it reaches a
node that is already in the desired location.

This procedure requires a data structure that can efficiently handle updates to sub-
sets of the i ’s, and can quickly determine which is the smallest i . The NRM uses an
indexed priority queue to accomplish both of these goals. It can be implemented effi-
ciently with a tree of ordered pairs of the form (i, i), where i is the number of a reac-
tion and i is the putative time when reaction i occurs; and an index structure whose ith
element is a pointer to the position in the tree that contains (i, i). Also, the hierarchy of
this tree maintains the heap property in that the parents always have a lower value of i

than either of their children. Consequently, identifying the reaction with smallest can
then be done by examining only the root node, which makes the selection of a reaction

BACKGROUND 11

to run in constant time. An example of the indexed priority queue partway through a
simulation is shown in Figure 1.

Figure 1: Priority Queue that holds the reactions and their respective occurrence time
with an indexed structure.

The steps involved in NRM algorithm, as described in [49], are:
1. Initialize:

a. Set initial numbers of molecules, set t= 0, generate a dependency graph
G;

b. Calculate the propensity function, ia , for all i;
c. For each i, generate a putative time, i , according to an exponential dis-

tribution with parameter ia ;
d. Store the i values in an indexed priority queue P.

2. Let be the reaction whose putative time, , stored in P, is minimum.
3. Let be .
4. Change the number of molecules to reflect execution of reaction . Set t .
5. For each edge (,) in the dependency graph G,

a. Update a ;
b. If , set ;/ ,, ttaa anewolda
c. If = , generate a random number, , according to an exponential dis-

tribution with parameter a , and set ta ;
d. Replace the old a value in P with the new value.

6. Go to Step 2.

This algorithm is exact and is efficient in running time, as well as in the numbers of
random numbers generated in the process (only one per iteration). The run time of the
NRM algorithm is not necessarily proportional to the number of reactions (theoretically
it takes O(log(M))) and the total number of random numbers generated by this Method
equals the sum of the number of reactions with the number of simulation events.

The NRM is thus significantly faster than both the FRM and the DM for large reac-
tion networks containing many species and loosely coupled reaction channels. Also, the
NRM requires O(log(M)) time to find the index of the next reaction whereas DM re-

BACKGROUND 12

quires O(M) time. For small systems, this advantage may not be significant since the
computational cost of maintaining the complex data structures in the NRM dominates
the simulation time. In addition to decreasing the complexity of the NRM, decreasing
the complexity of the data structure required is the other main effort in the attempts to
improve and optimize the DM for large systems.

2.3.4. Logarithmic Direct Method

The Optimized Direct Method (ODM) is an improvement of the DM [50], whereby a0 is
stored along with the other propensities. When propensity ai is recalculated during the
update, the old value is first subtracted from a0 and the new value is added, keeping it up
to date. As a result, a0 does not need to be recalculated every reaction step, eliminating
an O(M) operation from the selection step. However, the selection of index of the next
reaction is still an O(M) operation. To minimize the impact of this linear search, Cao
and colleagues [50] proposed to sort the reactions in order of decreasing ai, allowing the
linear search to terminate at an earlier i. Since the propensities can change frequently
during a simulation, it was also proposed to set the reaction order by running the simula-
tion for a short period beforehand, and sorting the reactions in descending order of the
number of times each reaction occurred. Also, this method uses the concept of depend-
ency graph from NRM, which facilitates the update of propensities of affected reactions.

The ODM was further improved by McCollum and colleagues [51] by reordering
the reactions at runtime instead of having the pre-run step. Every time a reaction occurs,
it is swapped with the one that is below it in the list. The set of high-frequency reactions
will eventually ‘bubble up’ to the front of the reaction list. This so-called Sorting Direct
Method (SDM) allows the simulator to adapt to changes in the frequencies of the reac-
tions.

Despite their improvements, both the ODM and the SDM encounter issues in specif-
ic conditions. First, regardless of the reshuffling of reactions, the linear search remains,
imposing a worst-case runtime of O(M) on the Selection step. Second, both methods
suffer from a precision problem. In a digital computer, there are a limited number of bits
that can be carried in the mantissa of a0. If one reaction has a significantly higher pro-
pensity than another, then both the ODM and SDM will place it closer to the front of the
list. The number of significant bits available to store the difference between the sums of
ai and a0 may not be enough to account for the difference between them. Additionally,
in simulations where the value of a0 covers a wide dynamic range over time due to rare
reactions with high propensity, a large amount of the bits in the mantissa of a0 will be
lost after the reaction with high propensity has been performed since the initial addition
of its propensity will drop these bits.

The Logarithmic Direct Method (LDM) [52] is an approach that has been taken to
optimize the DM avoiding such issues. In the LDM, the reaction propensities are stored
in the leaves of a binary tree and the non-leaf nodes store the sum of the propensities of

BACKGROUND 13

their two children. Each non-leaf node thus contains the portion of the sum of ai’s which
are below it in the tree and are therefore referred to as partial sums. For simplicity, this
can be implemented as a single array, rather than a linked tree with special treatment for
the leaves. In this case, indices below M correspond to partial sums, and indices above
or equal to M correspond to propensities. Since this system stores M reaction propensi-
ties and (M 1) partial sums, it still uses (M) storage space.

During the Selection step, can be calculated from a0, which is readily available at
the root of the tree of partial sums. µ is selected by randomizing a = r1a0, and then per-
forming a binary search through the tree of partial sums. It follows that the runtime of
the selection step is therefore proportional to the height of the tree, (logM).

During the update step, when a propensity ai is updated, then all logM partial sums
above it in the tree are also updated. This implicitly updates a0, which can then immedi-
ately be used in the next reaction step. If R propensities are updated, then it follows that
the runtime of the update step is (R logM). In loosely coupled reaction systems, R is
expected to vanish with M, and the runtime of this step will then be (logM).

2.3.5. Partial-propensity Direct Method

The Partial-propensity Direct Method (PDM) [53] is another SSA formulation where
the computational cost scales, at most, linearly with the number of species, making it
appropriate for strongly coupled networks where the number of species grows slowly in
comparison to the number of reactions. This computational cost is obtained by restrict-
ing the class of systems to networks containing only elementary chemical reactions,
where each reaction consists of at most two reactants. If one of the species from every
reaction propensity is factored out, this leads to “partial” propensities that depend on the
population of at most one species. It has been shown that any non-elementary reaction
can be broken down into elementary reactions, at the expense of an increase in system
size [48,54]. The partial propensity of a reaction,)(i

, with respect to one of its reactants
is defined as the propensity of Rµ per molecule of Si. The partial propensities of three
elementary reactions are given as [53]:

1. Bimolecular reactions (Si + Sj Products):
cXXa ji)(x and cX j

i)(, cX i
j)(, where a is the propensity

of a reaction µ, iX and jX is the number of species Si and Sj.

2. Unimolecular reactions (Si Products): cXa i and ci)(.

3. Source reactions (Products): ca and c)0(.

The PDM uses these partial propensities and groups them such that sampling the in-
dex of the next reaction and, updating the partial propensities after a reaction has red is
performed efficiently. For the sampling step, the partial propensities are grouped ac-
cording to the index of the factored-out reactant, yielding at most N + 1 groups of size
O(N).

BACKGROUND 14

First, the index of the group is randomly selected according to the total partial pro-
pensity in the group multiplied by the group’s species population, after which the partial
propensity inside that group is sampled. This grouping scheme reduces the number of
operations needed to sample the next reaction using a concept that is reminiscent of
two-dimensional cell lists [55].

Once the selected reaction is executed, the dependency graph is used over species
rather than reactions, to nd all partial propensities to be updated. This is possible be-
cause partial propensities depend on the population of at most one species. Consequent-
ly the number of updates is limited to be O(N). Also, as the partial propensities of uni-
molecular reactions are constant and never need to be updated. In strongly coupled reac-
tion networks, where the number of reactions dominates, this removes the dependency
on the number of reactions and instead scales with the number of species. In weakly
coupled networks, the scaling of the computational cost of the update becomes equal to
that of methods that use dependency graphs over reactions, such as ODM, and SDM.

The Sorting Partial-propensity Direct Method (SPDM), a sorting variant of PDM,
uses concepts from the SDM [51] to dynamically rearrange reactions, which in turn re-
duces the average search depth for sampling the next reaction in a multi-scale network.
In this approach, the group index I and the element index J are bubbled up whenever
reaction µ = LI,J is fired. After reordering, an array is used to store I, and an array of ar-
rays of the size of is used for the J’s. This requires additional N + M memory, but re-
duces the search depth to sample the next reaction. Hence, the use of partial propensities
leads to SSA formulations with a computational cost that scales as some function of the
number of species, rather than the number of reactions.

2.3.6. Constant-Time Direct Method

Another computationally efficient approach is an implementation of the DM based on
composition-rejection sampling (CR), referred to as SSA-CR [56]. This algorithm runs
in expected constant-time for both),(generation and propensity update. This means
that the computational cost of a single iteration of the SSA is neither dependent on the
number of reactions nor on the number of species as in the previous methods.

The idea of rejection in the SSA-CR is illustrated in the left panel of Figure 2. The
M reaction channels with non-zero propensity are listed on the x-axis while their respec-
tive propensities are represented by the bars with different heights. The M vertical bars
are then bounded by a rectangle with height amax. First, is chosen randomly using
equation (5) with a0 = Mamax. Second, a random integer r1 is the chosen between 1 and
M, and a second random number r2 is chosen in the range [0, 1). If aµ < r2amax, reaction
µ is executed, while if aµ r2amax, no reaction is performed (the sample is “rejected”). In
either case, the simulation time is advanced by . For example, point A in the figure is
rejected whereas reaction 6 is selected for point B. Thus, in each iteration, this algo-
rithm always uses three random numbers. It is clear that the cost of executing one loop

BACKGROUND 15

does not depend on M, however, many of the loops will now do nothing. In order to
achieve an expected constant runtime per iteration, the second part of the algorithm,
composition, arranges the reactions to bind the probability of rejection.

Figure 2: Figure (left) showing the propensities of reactions bounded by a single rec-
tangle (the rejection procedure of SSA-CR) which can be improved significantly by
grouping the reaction propensities into different groups and considering separate
bounding rectangle, as in figure (right) (composition procedure of SSA-CR).

As illustrated in the right panel of Figure 2, the M reactions can be grouped by their
propensity values into a set of groups G, such that group g contains reactions which
have propensity between (2-g-1amax, 2-gamax]. The algorithm for the selection of a reaction
is then composed of two stages. The rst stage selects a group from G, using the area of
the group’s rectangle as a propensity. If the total propensity of all reactions and the re-
jection area in a group is gp then the total propensity of all reactions is given as:

G

gs pp
1 g (10)

The selection of a particular group requires one random number and a linear scan or
a binary search of the G values. Once a group is selected, the second stage of the algo-
rithm is to select a reaction within the chosen group via the rejection procedure, using a
rectangle that bounds only the reactions in that group.

The number of groups required to cover the entire reaction propensity range will
depend only on the ratio between the reaction with the highest propensity and the reac-
tion with smallest non-zero propensity. In real applications, this ratio is unlikely to be
dependent on N or M, since real reaction systems comprise of very large number of
loosely coupled reactions. The number of groups is therefore independent of N or M,
and the composition portion of the algorithm therefore runs in O(1).

In order to keep the propensities up-to-date, every time a reaction is performed, the
propensity of every dependent reaction is computed and then compared to its old value.
If the reaction stays in the same group, no sums must be updated. If the reaction changes
group, the reaction must be removed from the old group and added to the new group, so
the gp values for both groups must be updated, as well as sp . These are also constant-

BACKGROUND 16

time operations per updated reaction. For addition, a new index is added to the end of
the group list, the group size is incremented, and gp increases by 2-gamax. For deletion,
the reaction at the end of the group list replaces the deleted reaction, the group size is
decremented, and gp decreases by 2-gamax. If the reaction propensity becomes zero, the
reaction is removed from the system.

The overall SSA-CR method exhibits a desired constant-time scaling behaviour. Its
scaling is O(1), independent of M and N, if the number of groups G is independent of M
and N. It is therefore expected to provide a better performance than other methods for
systems with a very large number of loosely coupled reactions M.

2.3.7. Delayed Stochastic Simulation Algorithm

A variant of the SSA was proposed in [49] to simulate complex processes that take a
non-negligible amount of time to complete once initiated. These processes range from
multi stepped processes composed of many simple reactions, such as stepwise elonga-
tion, to conformational changes in large structures, such as the unwinding of the DNA,
among others. The duration of these processes within a cell can, in some case, be of an
order of magnitude comparable to that of a cell’s lifetime. For example, the elongation
of an RNA molecule by an RNA polymerase can take as long as a few minutes in E.
coli, whereas these cells lifetime is of the order of tenths of minutes. These processes
can be represented as single-step delayed reactions, in that some of its products are re-
leased some time later than the depletion of the substrates, and not necessarily all at the
same time. The disadvantage of this method is that the system’s evolution in time is no
longer a purely Markov process, and therefore cannot be simulated with any of the
methods described above.

Nevertheless, these events affect many cellular processes, including the dynamics of
the gene regulatory network [18], and therefore need to be considered. The exact nature
of the process may not be known, so constructing the explicit model may not be feasible
or possible. Allowing reactions that produce their products an arbitrary time later in the
simulation has two advantages. First and foremost, it allows the modeller to insert de-
lays of arbitrary distributions even if the underlying process is not known. Secondly, it
potentially removes many reactions from the system while not affecting its dynamics,
speeding up simulations considerably [49].

To implement reactions that can have delayed products with potentially different de-
lays, these products are placed on a “wait list” as a tuple (tr, i, n), where tr is the time at
which the n molecules of Si product should be released. The wait list itself can be im-
plemented directly in the NRM with logarithmic time per addition or removal by adding
products on the wait list as nodes of the indexed priority queue. Alternatively, it can be
implemented to run alongside a DM implementation as a heap-based priority queue with
the same runtime bounds using the following variant of the Execution step (paraphrased
from [21]):

BACKGROUND 17

if < tmin , where tmin is the earliest entry in the wait list then
Perform the normal SSA Execution step

else
Set t = tmin, and Xi = Xi + n.
Remove the earliest entry from the wait list.

end if

2.4. Dynamic Compartments

In previous sections, simulation algorithms to simulate the time-evolution of a spatially
homogeneous mixture of chemicals in a single reaction volume are discussed. However,
many systems have dynamically-relevant inhomogeneities. It is thus of interest to have
a stochastic formulation which accounts for some of these spatial effects. A first approx-
imation, commonly used, is to divide the space into discrete regions called compart-
ments, each of which assumed to be spatially homogeneous. In what concerns biochem-
ical processes, the cell can be visualized as a hierarchy of compartments, each of which
enclosed by a membrane. Each compartment may contain elementary molecules as well
as other compartments. Examples of such structures in a eukaryotic cell include the mi-
tochondria, the Golgi complex, and other organelles. In this scheme, the processes in a
cell are viewed as sequences of discrete events such as a chemical reaction within a
compartment, transport of molecules outside of, or into a compartment, and creation and
dissolution of compartments.

Here, we make use of the P system formalism [22], which is an approach to simulate
biochemical processes by making use of dynamically changing; nested compartments.
As the presence of the nested compartments in P systems violates the assumption of
homogeneous distribution of molecules of the SSA, we need to extend it [22].

For this, we first maintain the assumption that molecules are spatially homogeneous
within a compartment, and therefore any of the variants of the SSA described above can
be used to simulate the dynamics within each compartment. The transport of molecules
from one compartment to another, as well as the creation and dissolution of compart-
ments, are treated as reactions within the enclosing compartment. The multiple concur-
rent SSA simulations can then be integrated by using a NRM-like algorithm to deter-
mine in which compartment the next reaction takes place, effectively turning it into a
‘Next Compartment Method’.

METHODS AND APPROACH 18

3. METHODS AND APPROACH

We are interested in creating a realistic model of stochastic gene expression in E. coli.
Therefore, we must first measure transcription dynamics in live bacteria. In this section,
we describe the experimental procedures along with image processing and statistical
methods used to obtain the required parameter values. This data from the experiments
and theoretical knowledge from section 2.1 will be used in constructing a realistic mod-
el of gene expression, with particular emphasis in the kinetics of initiation.

We also measure the spatial kinetics of unwanted protein aggregates in live E. coli
cells, which determines their partitioning distribution upon division. In this section, we
also describe the experimental as well as the statistical methods to measure biases in
partitioning of unwanted aggregates by these cells’ poles. The data obtained is used in
modelling the partitioning mechanisms of aggregates within the cells.

Finally, we present the design of a simulator that will be used to simulate the afore-
mentioned models. The design is based on a combination of the efficient implementa-
tions of the SSA presented in sections 2.2 and 2.3, and incorporates the compartmentali-
zation scheme from section 2.4. The compartment design is then extended to include
several different physically-based molecule partitioning schemes.

3.1. Measuring the Kinetics of Transcription Initiation in
Bacteria

To measure the kinetics of transcription, we follow a sequence of steps.

3.1.1. Experimental Setup

We use an in vivo single-mRNA tagging method in E. coli to detect, one molecule at a
time, when these molecules are produced from a target gene in live cells. This method
uses a fusion protein composed of MS2d, an RNA-binding capsid protein from the bac-
teriophage MS2, and the GFPmut3 fluorescent protein. In our measurements, the gene
coding for this protein is under the control of PtetA on a medium-copy number plasmid
and activated before the target gene, ensuring that there is no shortage of reporter pro-
teins for the target RNA. When co-expressed with a target RNA containing many bind-
ing sites for MS2d, this allows the individual target RNA molecules to be detected
shortly after being produced. The expression of the target RNA is controlled by the lar
promoter, also known as lac/ara-1, which was placed on a single-copy BAC plasmid
[10]. Individual transcription events can be detected from a time-series of images under

METHODS AND APPROACH 19

the microscope, and the behaviour of the system was shown to be similar to that of the
unlabelled system [13,41]. By detecting these events, it is possible to measure the time
intervals between consecutive productions of RNA molecules under the control of lar,
under various induction conditions [24,25].

The measurements were made at the Laboratory of Biosystem Dynamics, part of the
Computational Systems Biology Research Group in the Department of Signal Pro-
cessing, Tampere University of Technology. Cells for the experiments are grown in
Miller LB medium and supplemented with appropriate antibiotics according to the spe-
cific plasmids. They are kept overnight at 37°C with aeration, and diluted into fresh
medium and allowed to grow until the optical density reaches 0.5. Cells are then incu-
bated with 100 ng/ml of anhydrotetracycline (aTc, from IBA GmbH) to attain full in-
duction of the MS2d-GFP reporter. Approximately 60 min incubation allows sufficient
production for RNA detection. Precise amount of inducers, such as 0-0.1% of L-
arabinose (Sigma-Aldrich) and 0-1 mM of Isopropyl- -D-thiogalactopyranoside (IPTG,
Fermentas), are used to induce the target RNA. For complete activation of the ara sys-
tem in the conditions where arabinose and IPTG are added, cells are pre-incubated with
arabinose at the same time as aTc. These cells are grown and induced in the appropriate
temperature.

3.1.1.1 Time-lapse single-molecule fluorescence microscopy

The cells are imaged under a confocal microscope in a thermal chamber set to 37°C. For
imaging, a few l of culture are placed between a cover-slip and a slab of 1% agarose
containing LB along with the appropriate concentrations of inducers. When the reporter
and target RNA are co-expressed, MS2d-GFP binds to the target RNA, forming a bright
fluorescent spot. The RNA becomes visible during, or shortly after elongation [41]. Im-
ages of cells are captured from each slide every minute over two hours [13] using an
inverted confocal laser-scanning microscope, Nikon Eclipse (TE-2000-U, Nikon, Ja-
pan).

3.1.2. Image Analysis

The time series of images are analysed in several stages, here described according to the
order in which they are applied.

3.1.2.1 Drift correction

During the image acquisition process under the confocal microscope, for various rea-
sons such as temperature changes, the objective or table tends to drift slightly in the x
and/or y axes. As a result the same cells in adjacent frames are at slightly different posi-
tions, complicating the tracking of cells over time.

We eliminate this effect by using the cross correlation between consecutive frames
to find the number of shifted pixels along the both axes. Since this process finds an in-
teger amount of pixels, round- off errors can accumulate. This error can be corrected for

METHODS AND APPROACH 20

by comparing each frame with several preceding frames and taking the average shift.
Once this process has been repeated for all the frames in the time series, the maximum
area that remains common to all the frames is computed. All frames are then cropped to
that area, considering the amount of drift that has occurred from the start. This pre-
processing step allows future steps in the analysis pipeline to ignore the effect caused by
the drift, making cell tracking over time easier.

3.1.2.2 Cell Detection

The first of the drift-corrected images is manually masked. During this process, the re-
gion that each cell occupies during the time series is painted a solid, unique colour. The
following automated steps use the colour information to identify the cell region. The
masking can be performed using graphical tools such as Paint.NET or GIMP. To ac-
count for cell division, masks are also created at each time-point a division occurs.

Once the masks are painted, a method based on Principal Component Analysis
(PCA) is used to compute the dimensions and orientation of the cells using the pixel in-
tensities within the masked regions of each cell. PCA is a statistical procedure to identi-
fy the axes of greatest variance in a multidimensional probability distribution. Using the
intensity distribution as a probability distribution within each masked region, we obtain
the principal components using PCA. The first principal component is taken to be the
major axis while the second is taken to be the minor axis of the ellipse that represents
the cell. The area of this ellipse is taken to be the cell area.

Other relevant data related of the cell to be used in a later stage of the analysis such
as the mean cell intensity is also computed. This process is repeated for all cells in all
images of the time-series. Cell lineages are reconstructed by assigning the cell that is
closest to a divided cell in the previous frame as that cell’s parent.

3.1.2.3 Spot Detection

After detecting the cells, we detect tagged RNA molecules (MS2d-GFP-RNA complex-
es) in each cell. We segment the MS2d-GFP-RNA spots with the kernel density estima-
tion method (KDE) for spot detection proposed in [57]. The kernel density estimation,
also known as Parzen window, estimates the probability density function over the image
from local information. The method processes an image f by filtering it with a desired
kernel as follows [57]:

(,) (,)

1 (,) (,)ˆ (,)
((,)) k l C i j

f i j f k lf i j K
card C i j h h

 (11)

where h is the smoothing parameter or bandwidth, (k, l) represents pixel location inside
the kernel, card is the cardinality of the set, and K(u) is the kernel. We use a Gaussian
kernel following the implementation in [58].

KDE classifies each pixel inside the cell as either from a spot (foreground) or from
the cell region (background) based on its estimated density function. The classification
is done by finding a local minimum point which is treated as the cut-off threshold be-

METHODS AND APPROACH 21

tween background and foreground. The MS2d-GFP-RNA spots are thus segmented
from the kernel density estimated image, highlighting the spots.

Background-corrected spot intensities are then calculated by subtracting the ex-
pected intensity from the cell background from the total intensity in the spot region.
These background-corrected intensities are summed for each cell to produce a time-
series of total spot intensities. The image analysis process is illustrated in Figure 3. A B

In
te

ns
ity

 (a
u)

Figure 3: A raw grayscale image (left) taken by confocal microscopy. MS2d-GFP RNA
spots are visible. Same image (right) is shown after analysis. Cells are seen as grey el-
lipses and segmented spots are seen in white.

3.1.3. Jump Detection

As described below, one of our aims is to determine intervals between transcription
events (i.e. mRNA productions). We make use of the fact that, during the course of the
measurements, target RNA molecules, once produced, are “immortal”. Namely, once
tagged by the MS2d-GFP proteins, these target RNAs do not degrade and thus, we can
assume that the number of target RNA molecules cannot decrease during a measure-
ment.

Making use of this safe assumption, new RNA molecules are identified by fitting
the time-series of background-corrected spot intensities to a monotone piecewise-
constant function by least-squares [24]. In this procedure, the best-fitting curve for a
given intensity time series is found by minimizing the sum of the squared difference be-
tween the measured curve and the fit curve, with the constraint that the number of spots
cannot be greater than the number of mRNAs within the cell. The F-test is used to de-
termine the number of terms in the piecewise function. The F-test requires that a higher
order curve ts signi cantly better than others to justify its usage. That means we re-
peatedly reject lower order curves in favour of higher order curves with a p-value
threshold 0.01. This process is illustrated in Figure 4.

METHODS AND APPROACH 22

0 m 60 m 120 m

0 20 40 60 80 100 120 140
0

5

10

15

Time (m)

In
te

ns
ity

 (a
u)

C

Measured
Fit

Figure 4: Example time-series of a cell over two hours (top). Corresponding measured
intensity time series and the intensity function fit by least squares (bottom).

Jumps in the fit function are expected to correspond to the appearances of new RNA
molecules. From these appearance times, we calculate time intervals between consecu-
tive mRNA production events in each cell. Here, we restrict ourselves to only consider
intervals entirely contained a cell’s lifetime (i.e, we do not consider an interval if a cell
division takes place between the two transcription events). Figure 4 shows spot intensi-
ties in a cell up to 75 minutes (at this point, the cell divides). Following division, cells
are still tracked, along with mRNA appearances within them. The plot for intensities of
the two daughter cells is shown after 75 minutes. The figure shows two intervals in the
parent cell, the first lasting 14 minutes and the second lasting 24 minutes. Using this
procedure, the time interval distribution between productions of consecutive RNA mol-
ecules for each cell in the time-series can be computed.

3.1.4. Step Inference

We are interested in characterizing the durations of each of the sequential steps during
transcription initiation. However, the time between visible production events is affected
by another process: transcription elongation. We note that the mean elongation time
does not affect the distributions, but a large variance in elongation can increase the vari-
ance of the distribution. Since transcription elongation takes a relatively short time
compared to initiation [41], and has relatively low variance [59] when not affected by,
e.g. sequence-dependent pause sites [5], we assume that the measured intervals between
the productions of consecutive RNA molecules are not significantly affected by the
elongation process. We thus consider the distribution of time intervals obtained as the
duration of the transcription initiation process.

Furthermore, we investigate to find the number and durations of the sequential ele-
mentary steps in initiation [9-12,38]. To do this, we infer the properties of the steps by
fitting the distribution of intervals between consecutive production events to a multi-
step model, where each step is exponentially-distributed, as in [25]. For a given number

METHODS AND APPROACH 23

of steps d, the measured distribution is fit in the maximum likelihood sense to the prob-
ability density function of the sum of d exponential variables with different means. For
statistically independent d steps with parameters = [1, 2... d] inferred from N time
intervals, the log-likelihood is:

N

k
kd tL

1
;log (12)

where kt are the measured intervals for k = 1 … N and d is the probability density
function for a sum of d exponential variables with means .

The probability density function for the sum can be calculated using the convolution
of the probability density functions of the individual exponential random variables. The
density functions for d = 1 …3 are [25]:

1

1/

11 ; et
x

k

12

/

21

/

212

21

,; eet
xx

k

))(())(())((
,,;

2313

/

3212

/

3121

/

3212
3

3
2

2
1

1 eeet
xxx

k

The number of steps is then selected using a likelihood ratio test between a d and a

d+1 step model, rejecting a lower-order model in favour of a higher-order model with p-
value threshold 0.01. The reliability of this method in distinguishing the duration of
each step has been verified in [25]. The process of RNA production is thus considered
to be composed of several steps with durations whose expected mean and standard de-
viations are given by = [1, 2... d].

To assess the robustness of the inference procedure for an inferred set of mean step
durations, we compute the standard deviation of the step durations inferred from time
intervals that are sampled from the distribution of time intervals prescribed by the in-
ferred model [60]. That is, for an inferred model with d steps, N simulated time intervals
are sampled by summing d exponentially distributed variables with the same means as
the inferred model, where N is the number of intervals obtained from the measurements.
The inference process is then applied to this sampled distribution, and the standard de-
viations of each of the i longest durations are calculated, i.e., the variance of the shortest
step is calculated from the distribution of the shortest inferred steps.

METHODS AND APPROACH 24

3.2. Assessing the kinetics of partitioning of unwanted
protein aggregates

To assess the kinetics of partitioning of unwanted protein aggregates, we use the same
method of tagging as in measuring the kinetics of initiation. Since every RNA molecule
produced by the cells becomes bound by a large amount of MS2d-GFP proteins, the
spatial dynamics of the complex likely differs from that of the unbound RNA [61]. The
MS2d-GFP-RNA complexes can be tracked for several hours in live cells due to the
substantially extended life time of the aggregate [41] allowing the observation of how
these aggregates are partitioned in cell division [44].

We take two different measurements here. First, similar to the measurements for the
initiation kinetics, we take a time series recording of individual cells. Images were taken
approximately 7 min after induction by IPTG (67 minutes after aTc and arabinose), one
every minute, over a period of approximately 2 hours. These time series recordings will
be used to assess how the segregation of aggregates works, one molecule at a time. Se-
cond, we image populations of cells approximately 1 hour after induction by IPTG us-
ing a confocal microscope. We will use these images to examine the positions of the
aggregates of many cells at once at a specific point in time.

3.2.1. Detection of cells and quantification of aggregates

In “population” images, we detect cells using a fully-automatic method from the raw
images [62]. This method divides a grayscale image in three classes: background, cell
border and cell region. It then exploits an iterative cell segmentation process that identi-
fies and segments clumped cells based on size and edge information. The cell detection
performance can degrade in regions where several cells are clumped together. This can
be avoided by applying a threshold based on cell size and discarding the cells whose
size goes beyond the threshold. Once the cells and their attributes have been identified,
the MS2d-GFP-RNA spots are detected using KDE [57] as described in section 3.1.2.3.

Quantifying individual RNA molecules is not trivial since MS2d-GFP-RNA com-
plexes can be co-localized [13]. The number of GFP molecules attached to an RNA
molecule at any given moment can vary from 40 to 100 (70 on average) [41]. However,
in general, the first peak of the distribution of intensities of many spots from cells on the
same slide corresponds to individual MS2d-GFP-RNA complexes [13]. From that, the
intensity of a single MS2d-GFP-RNA complex is obtained. Subsequent peaks in the dis-
tribution of intensities correspond to spots consisting of multiple MS2d-GFP-RNA
complexes. The number of MS2d-GFP-RNA complexes in a spot is then estimated by
normalizing the intensity of the spot by the intensity of a single MS2d-GFP-RNA com-
plex [13].

METHODS AND APPROACH 25

3.2.2. Expected difference in number of aggregates between poles

We use | N|, the absolute difference between the number of MS2d-GFP-RNA com-
plexes detected in each pole of the cell, as a measure of the degree of bias of the parti-
tioning distribution. We assume that the partitioning of the MS2d-GFP-RNA complexes
between the two daughter cells follows the preferential partitioning scheme described in
section 3.3.3. This partitioning distribution follows a biased binomial distribution with
bias p. The expected | N| for a given total number (N) of MS2d-GFP-RNA complexes
in a cell can be calculated as follows:

N

k

kNk
N pp

k
N

NkpNE
0

)1(2),((13)

We determine the bias of the partitioning distribution by finding the p such that E| N|
matches the measured mean | N| for all N.

3.3. Simulation Approach

Our simulation approach is based upon using a combination of the NRM, PDM and the
delayed SSA to efficiently simulate the dynamic compartments described in [22], in-
cluding delayed events. The overall simulation is driven by the NRM, since it is an ex-
tremely flexible discrete event simulation which can incorporate other simulation algo-
rithms, termed sub-simulations. For example, the reaction system within each compart-
ment is represented by its own NRM priority queue, which publishes a “next firing
time” to the overall NRM. The indexed priority queue in the overall NRM provides the
flexibility needed to add and remove entire sub-simulations (i.e. compartments) at
runtime.

The main simulation loop consists of the following steps:
1. Selection: The event and the time of its occurrence is determined. This step runs

in constant time since the next compartment in which an event occurs is stored at
the front of the indexed priority queue, and the next event to occur in that com-
partment is stored at the front of its indexed priority queue.

2. Execution: The event is performed, moving time forward and modifying the
state of the simulation according to the type of the event that occurred. Reaction
propensities that depend on the changed state are flagged as dirty.

3. Update: The dirty propensities and putative reaction times are recalculated and
the changes are propagated back up the data structures. This step takes O(logS
U(S)), where S is the number of sub-simulations in the system and U(S) is the
mean time required to update the dirty sub-simulations.

The runtime considerations of this simulation loop thus depend solely on the time
complexity of the execution and the update step for each of the possible sub-
simulations.

METHODS AND APPROACH 26

3.3.1. Compartment Representation

Compartments contain a subset of the reactants in a simulation, which interact different-
ly with the rest of the system, often only reacting with other molecules in the same
compartment. That is, reactant in compartment P will react with other molecules in P,
but not with reactants in compartment Q, including other molecules. Since each com-
partment contains a set of molecules, each one will be assigned its own state vector.

To define what reactions are to be created when a given compartment is created, we
introduce the notion of the compartment type. Every compartment is of a specific type,
which contains a certain set of molecular species. We denote a molecular species that
is contained in a compartment of type P as @P. Reactions in the model are defined as
occurring within or between compartment types. A separate instance of each reaction
occurring in type P will be created in each compartment of type P.

The compartmentalized systems we would like to simulate are naturally represented
as a hierarchy of compartments. For example, we could run a detailed compartmental-
ized model of gene expression [40] within a dynamic population of cells. Compartments
are therefore hierarchy organized, such that higher-level compartments contain lower-
level compartments. Compartment types are similarly organized, creating a compart-
ment type hierarchy. Inter-compartment reactions are allowed occur between compart-
ments and their containing compartments. For the present simulation, direct inter-
compartment reactions between compartments at the same level of the hierarchy are
disallowed. The following sections detail the considerations made when simulating in-
tra-compartment and inter-compartment reactions.

3.3.1.1 Intra-compartment Reactions

The reactions occurring within a compartment are intra-compartment reactions. Each
compartment contains its own NRM priority queue, containing all the reactions that can
occur within that compartment, and which publishes a “next firing time” to the overall
NRM. The execution step of the reaction only needs to move the simulation time for-
ward and modify the populations of the molecules that the reaction changes, and takes
O(1) time. The update step, however, takes O(RlogM) time where M is number of reac-
tions in the priority queue of that compartment and R is the number of those reactions
whose propensities must be updated. We assume that in most cases, R does not grow
with M (i.e. the reaction dependency graph is sparse), thus we do not take precautions
against a dense dependency graph.

3.3.1.2 Inter-compartment Reactions

The reactions that span between the compartments are inter-compartment reactions.
Since these are more complicated than intra-compartment reactions, we impose the re-
striction that these reactions may only span vertically across the compartment hierarchy
(between parents and children), but not horizontally (between siblings). Therefore, a

METHODS AND APPROACH 27

child compartment can only affect a sibling indirectly by first changing the parent com-
partment.

To simulate a system with these reactions, we need to compute the propensities of
all such reactions occurring in it. For this, we introduce the notion that a particular ver-
tical reaction ‘occurs’ in the lowest level compartment in which it has a reactant or
product. The propensities of vertical reactions are then calculated from the possible
combinations of reactants in the compartment the reaction occurs in, and its containing
compartments. This implies that there is a separate reaction for each lowest-level com-
partment that a vertical reaction reacts in. For example, if we consider a system with a
compartment Q within another compartment P, the propensity a that a molecule ‘a’ in
P will react with a molecule ‘b’ in Q is given as.

cXXa ba @Q@P
One straightforward way to implement vertical reactions would be to include puta-

tive reaction times for these reactions in the NRM simulation of the intra-compartment
reactions that can occur in each of the compartments. The NRM running in each com-
partment will then select these reactions to occur with the correct timings. Since multi-
ple reaction propensities in sub-compartments (child compartments in hierarchy) de-
pend on a single number (the population of a molecule in the sub-compartments’ com-
mon super-compartment), any change in the population of the molecule in the super-
compartment will cause the NRM update logic to be called once for each sub-
compartment. This will cause the update step to take O(C log M) time, an unacceptable
linear scaling on the number of compartments C.

To avoid this linear scaling with the number of compartments, we factor out the
population of the molecule in the super-compartment when computing the propensity of
a reaction. The idea is similar to that of the PDM (described in section 2.3.5). Here, the
vertical reaction occurring between the parent and the child compartments are consid-
ered as a separate sub-simulation of the parent compartment’s NRM. This sub-
simulation has its own time that passes as Xsuperdt, where Xsuper is the population of the
molecule in the parent compartment. For a given reaction time in the simulation, the re-
action with the earliest tentative firing time remains at the front of the priority queue of
the sub-simulation and can be retrieved in a constant time. Any change in the population
of the molecule in the parent compartment (Xsuper) then only requires the next firing
time of the sub-simulation to be updated. The update of the firing time of any reaction
within the sub-simulation can then be done in O(logC) time. The overall update time is
then O(logC+logM), which is significant improvement over the previous approach.

3.3.2. Delayed Reactions

The delayed products of a reaction are inserted into a waitlist and are retrieved and rein-
serted in to the simulation when the actual simulation time crosses the delayed time. A
separate wait list is created for each compartment, and is inserted as a sub-simulation of

METHODS AND APPROACH 28

the global NRM. The wait list itself is priority queue of delayed species. Insertions and
removals from the queue take O(logW), where W is the total number of molecules on
the wait list of a given compartment. Since W is expected to grow at most linearly with
M, insertions and removals from the heap can be considered to take O(logM) time. The
Execution step of the wait list sub-simulation then takes O(1) time since the next wait
list event is readily available at the front of the priority queue, and the Update step takes
O(logM) time. During another sub-simulation’s execution step (e.g. a reaction in anoth-
er compartment), elements may be added to the wait list of. This therefore imposes a
minimum expected runtime bound on the execution step of (logM) for those simula-
tions as well, provided the number of elements added per step is constant.

The wait list for each compartment is also beneficial during the compartment de-
struction. When modelling a dynamic population of cells, the construction and destruc-
tion of the compartments can be a regular event. Since the wait list exists are distributed
to the compartments, the compartments can be destructed without any global dependen-
cies of delayed molecules within it.

3.3.3. Compartment Division and Molecule Partitioning

The division of cells is modelled by the construction of compartments during the simu-
lation. When a division occurs, the original compartment (the parent) remains in the
simulation as one of the daughter compartments, while a new compartment is created in
the system for the other daughter. This is handled efficiently using the NRM to add and
remove the compartment’s reactions from the system.

The division of a cell also requires the partitioning of molecules within it to the
newly created cells. The physical mechanisms behind the partitioning may differ be-
tween molecule species. Thus, upon division, we execute a “mock partitioning process”
for each divided species describing the partitioning statistics. Several partitioning
schemes and their mock processes have been described and their statistical properties
examined in [7]. We implement all of these processes, as well as some additional ones.
These processes are divided into three broad groups [7].

Independent Partitioning. This is a simple partitioning distribution where each
partitioned molecule has an independent probability of ending up in either of the daugh-
ter cells. This type of independence can be realized by having a well-mixed cytoplasm,
by having immobile molecules independently appear in either cell half, or by randomly
picking the molecules and moving those to either cell half. This results in a partitioning
scheme that is unbiased and the molecules after partitioning are distributed binomially.

Disordered Partitioning. In disordered partitioning, the variation in the partitioning
system or the intracellular environment randomizes population levels between daughter
cells more than independent partitioning. The following paragraphs describe several
disordered partitioning schemes.

METHODS AND APPROACH 29

If cells divide such that the daughter cells do not have the same volume, we assume
that the larger daughter is more likely to inherit more molecules than the smaller one.
To implement this, we model the size asymmetry with a Beta distribution. The mole-
cules are then segregated binomially depending upon the ratio of the daughter cell sizes.
This partitioning results in significant differences in the daughter cells, and is referred to
as random size partitioning.

If certain components or molecules in the cell form or exist in clusters, and the clus-
ters of these components are divided independently during division, this will result in
greater variance from division. For example, protein molecules or unwanted waste in
bacteria are found aggregate and unevenly partition during division [14,63]. To model
their partitioning during division, we first group the molecules into N clusters and then
independently segregate the clusters into the daughter cells. This partitioning scheme is
referred to as clustered partitioning.

Some molecules in the cell have been observed to move preferentially towards one
of the cell poles. For example protein aggregates preferentially move towards the older
pole [14]. This will result in a scheme where most of the molecules will end up in one
of the daughter cells. This can be implemented by a biased binomial partitioning of the
molecules such that the parent compartment likely retains more molecules than the new-
ly formed compartment. After few generations this preferential partitioning scheme will
result in older cells with very large number of molecules.

The partitioning scheme which would introduce the most variance possible during
division is if all molecules are always partitioned into one of the daughter cells. We im-
plement this by randomly selecting one of the daughter cell and putting all the mole-
cules to it. We refer to this scheme as all or nothing.

Ordered Partitioning. In ordered partitioning, mechanisms in the cell interact di-
rectly or indirectly with each other to create a more even distribution of the molecules
between daughter cells during division. The variance in partitioning is thus expected to
be lower than independent partitioning. These mechanisms may be used by a cell as in-
ternal control mechanisms to make the partitioning more evenly distributed, or to com-
pensate for disordered mechanisms.

With volume exclusion partitioning, cells can reduce partitioning errors passively if
the segregating components occupy sufficiently large volume. A large amount of such
molecules in one daughter will ‘push’ some of them into the other daughter prior to di-
vision, enforcing a more even partitioning. To implement this partitioning, we iterative-
ly assign each molecule to the daughter cells based on the volume available in the
daughter cells. Each time a molecule is assigned, its volume is subtracted from the
available volume in the daughter cell. Care must be taken by the modeler to ensure that,
e.g., the partitioned molecules do not occupy more space than the total volume of the
daughter cell.

The variance can also be lowered if the molecules within a cell can bind to spindles,
such as during mitosis in a eukaryotic cell, resulting in a spindle binding site partition-

METHODS AND APPROACH 30

ing scheme. Each daughter cell will inherit the molecules that their spindles manage to
pull into that cell during division. The implementation of this is very similar to that of
volume exclusion. Here, we assign the molecules to the binding sites available in the
daughter cells rather than available volume. The unbound molecules are then inde-
pendently partitioned between the daughter cells.

In a pair formation partitioning scheme, molecules form pairs prior to division.
When the cell divides, each of the daughter cells receives one of the molecules of the
pair. This strategy reduces the partitioning error significantly. We implement this by
probabilistically forming pairs of molecules when the division occurs. The pairs are
then split with a certain probability, with one molecule of each successfully split pair
going to one of the daughter compartment. The molecules that failed to make pairs and
the pairs that fail to split are then partitioned independently to the daughter cells. Inter-
estingly, if many pairs fail to split, this can lead to disordered partitioning as well, as a
special case of clustered partitioning.

At the extreme end of ordered partitioning is perfect partitioning, each daughter cell
gets exactly half of the molecules in the parent cell. It can be implemented by dividing
the molecules into exactly half and then putting them to the daughter compartments.

Figure 5: Different partitioning schemes. (A) Random size (B) Clustered (C) Preferen-
tial (D) All or Nothing (E) Volume Exclusion (F) Spindle Binding site (G) Pair for-
mation (H) Perfect

SIMULATOR IMPLEMENTATION 31

4. SIMULATOR IMPLEMENTATION

We would like to construct a stochastic simulator, which we call SGNS2, which is easily
extendable to incorporate new model features. At the heart of the simulation, therefore,
we would like to have a very general structure which can accommodate new features.
We are using the NRM as the overall simulation algorithm, which can be considered as
a special case of a generic discrete event simulation. At the core of the simulator, there-
fore, we have implemented a general discrete event simulation, which can be extended
to include non-SSA simulations if required in the future. The NRM and the associated
structures described above are then implemented on top of the discrete event simulation.
The simulator architecture is divided into five high-level modules, shown in Figure 6.

Figure 6: Abstract architecture of SGNS2.

The five modules perform the following functions:
1. Input Parser: This module consists of classes that read and recognize the SGNS

file format which describes the model to be simulated.
2. Initialization: The input read from the parser is interpreted by the classes in this

module to construct the internal representation of the model. These classes also
initialize the simulation with the conditions and parameters that are input.

3. System Model: This module contains the classes used to internally represent the
model to be simulated.

4. Simulation Runtime: The classes in this module are responsible for handling the
runtime components of the simulation.

5. Discrete Event simulation: This module implements a generic discrete event
simulation used by the simulation runtime.

SIMULATOR IMPLEMENTATION 32

Figure 7 shows a detailed class diagram of the simulator implementation. All clas-
ses in each of the five modules and their relationships are shown.

Figure 7: Class diagram of the simulator implementation

SIMULATOR IMPLEMENTATION 33

4.1. Input Parser

The parser module contains parsing functions to read the SGNS reaction file syntax and
performs basic syntax checking. It uses the external “Lua” [64] library to provide a
scripting environment to the user when constructing the reaction files. The ParseLis-
tener class acts as the parser-loader interface.

4.2. Initialization

The SimulationLoader class is responsible for interpreting the parsed input. From
the input, it constructs the internal data structures representing the reaction model, stores
the initial conditions for the simulations to be performed, as well as the overall simula-
tion parameters (start and end time, sampling interval, output file and format, etc…).

SimulationLoader uses a flexible initiation command class (init::Command)
so that new features of the simulation can be easily added. These commands perform
tasks such as creating compartments, setting molecular populations, and filling the wait
list. During simulation initialization, the class creates a new SimulationInstance,
and executes all the initialization commands, which will set up the simulation to the
starting configuration. This two-step initialization scheme is in place so that multiple
simulations may be initialized and executed concurrently with a single call to the simu-
lator.

4.3. System Model

The ReactionTemplate class in this module represents a generic reaction. It stores its
stochastic constant and a list of reactants and products. The Reactant class represents a
reactant in a reaction and stores the stoichiometry, the species in the containing com-
partment and rate function for the reactant. The rate function defines how the population
of molecular species is incorporated into the propensity of the reaction. The Product
class represents a product in a reaction and stores its stoichiometry, species in the con-
taining compartment, and delay distribution. ReactionTemplateStoich objects are
inserted into ReactionInstances, and provide the connection between the System
Model module and the Simulation Runtime module. ReactionBankTemplate con-
tains sets of ReactionTemplates which can be instantiated within or between com-
partments.

The class CompartmentType manages the species layout within a compartment
type as well as the ReactionBankTemplate’s to be instantiated within every com-
partment of that type and between parent and child compartments. It additionally stores
the type name and its relation to other types. A special compartment type called Env is
automatically created when the simulator is initialized, which represents the environ-
ment. All compartment types are contained in Env, either directly or indirectly, making
it the root of the compartment type hierarchy. Additionally, this compartment type is the

SIMULATOR IMPLEMENTATION 34

default location of all reactants and reaction to occur. A single compartment of type Env
always exists in the simulation, and new Env compartments cannot be instantiated or
destroyed at runtime.

4.4. Simulation Runtime

The SimulationInstance class is the main class that is responsible for actual simu-
lation. It contains the main NRM priority queue containing the high-level simulation
events (compartment sub-simulations and wait list sub-simulations). Besides this queue,
it contains an auxiliary queue to support actions such as sampling, saving, and others
during the simulation. This separation of simulation events and supporting events en-
sures that identical simulations produce identical results, independent of the sampling
and saving frequencies.

The ReactionInstance class is an abstract base class describing the basic oper-
ations that all reactions can perform. Besides tracking its next occurrence time (per-
formed in the Event base class), this class contains the required functionality to listen
to changes in reactant populations in Compartment’s.

The ReactionStoichInstance class is an implementation of ReactionIn-
stance. It contains a Stoichiometry object which determines how the propensity of a
reaction is calculated and what happens when the reaction is executed. The next reaction
time is calculated here using the NRM generation and update formulae.

UmbrellaReactionInstance is the class responsible for the PDM-like factoring
scheme described in section 3.3.1.2. It manages the next reaction firing time for a group
of sub-reactions, which all have a common factor described by a Stoichiometry object.
This class manages its own NRM priority queue (since it inherits from EventQueue) in
which the sub-compartment’s reactions are placed. This class is also insertable into the
overall simulation NRM queue, or another UmbrellaReactionInstance, since it
inherits from ReactionInstance.

The Compartment class represents a compartment. During the simulation, every
compartment contains an array of all contained species populations. The layout of the
species populations in a given compartment’s state vector depends on the type of that
compartment. This ensures that space is not allocated for species that do not exist in a
given compartment. Reaction updates are performed when the population of a molecular
species changes. For this, a dependency graph giving which ReactionInstance’s to
update when a species changes is stored the in each compartment. Each compartment
also contains a waitlist, which is implemented in the WaitList class with a binary
heap-based priority queue, to store delayed molecules to be released in that compart-
ment. ReleaseEvent is a class within the waitlist that holds the molecules that are to
be released from the waitlist. Compartment is an implementation of UmbrellaReac-
tionInstance, allowing it to contain the reactions which occur within it, simplifying
the compartment construction and destruction operations.

SIMULATOR IMPLEMENTATION 35

Compartment alone does not contain compartment hierarchy or compartment type
information so that the simulation can be extended in the future. Instead, this is the job
of the specialized class HierCompartment. This class incorporates the idea of Com-
partmentType’s, and is responsible for managing the compartment’s Reaction-
BankInstance’s.

The RuntimeDistribution class is an abstract base class of several classes
which contain distribution functions which can be called to sample from several differ-
ent delay distributions for the products in a reaction. This class stores two flexible pa-
rameters that can be used as parameters for different distribution functions such as
Gaussian, exponential, and gamma. The distribution samplers are provided with access
to the simulation’s random number generator through DistributionContext struct.
This struct provides the link between the low-level distributions and the higher-level
SimulationInstance. Similarly, RateFunction is an abstract base class for classes
which contain a calculation function that determines the effects that a reactant has on
the propensity of its reaction, and is used to implement the propensity functions in sec-
tion 2.2. There are two multi-purpose parameters to be used by the different rate func-
tions.

The SplitFunction class behaves similar to the RateFunction and
RuntimeDistribution classes. It is used to model the partitioning of molecular spe-
cies that occurs during specific reactions (e.g. cell division). The various subclasses im-
plement partitioning functions that correspond to the partitioning schemes. There are
two parameters to define the distribution followed by the partitioning function and there
are two additional flags. The first one is to identify if the partition is biased and the se-
cond one identifies if the partition is virtual. The virtual flag determines if the molecules
get removed from the parent compartment or not.

4.5. Discrete Event Simulation

The Event class is a base class for all simulation events. It stores the time at which the
event is to occur, and stores its index in its containing EventQueue. EventQueue im-
plements the indexed priority queue of the NRM using a binary heap. EventQueue also
stores the ‘current time’ of the simulation ‘underneath’ it. This is used to have different
parts of the simulation run at different speeds and therefore exist at different times,
which is necessary to implement the propensity factorization scheme described in sec-
tion 3.3.1.2. EventStream and EventStreamQueue are specializations of Event and
EventQueue for events which recur (e.g. reactions).

4.6. Using the Simulator

To use the simulator, the user creates an input reaction file in the SGNS format. The re-
action file is often divided into four main parts: global simulation parameters, reaction
parameters, initial populations, and reactions. Global simulation parameters define the

SIMULATOR IMPLEMENTATION 36

settings of the simulation and are represented by keywords such as stop_time,
readout_interval, show/hide options, and output_file, among others. Reaction parame-
ters are those that appear in the reactions’ stochastic constants. These are enclosed with-
in the keyword parameter using curly brackets. The next part of the input reaction file
defines the initial populations of the species in the system to be simulated. The molecu-
lar species are initialized and are enclosed within keyword population. The reactions
that drive the simulations are enclosed within reaction keyword. A complete example
reaction file is shown in Figure 8.

Figure 8: An example reaction file (left). A command line run of the simulation (right).
The time intervals (Time) along with number of SSA steps (Step Delta) occurred during
each of the intervals are output during the simulation. The model and performance sta-
tistics are shown at the end of simulation.

 The input file can be written in any text editor such as Notepad or WordPad. We
follow the convention that the reaction files have the extension ‘.g’. An example run for
a reaction file is also shown in Figure 8.

RESULTS AND DISCUSSION 37

5. RESULTS AND DISCUSSION

This thesis focuses to construct a realistic model of stochastic processes that lead to cell-
to-cell diversity. To model these processes realistically, we need measurements of these
process so that the models could mimic the actual process with accuracy. In the previ-
ous sections, we described experimental and statistical methods for the measurements of
transcription initiation and bias in segregation of the protein aggregates. We now pre-
sent results regarding the initiation kinetics of a promoter, from in vivo measurements
of E. coli, one event at a time. Following that, we also present measurements of segre-
gation kinetics of protein aggregates in live E. coli, one aggregate at a time. These
measurements are then combined into a model that mimics the processes in a realistic
way.

In previous sections, we also described our approach and its implementation for the
simulator that would simulate such models. We use this simulator to simulate the mod-
els that we constructed from measurements. Then, we analyse the results of these mod-
els to characterize behaviour of cellular systems. Also, we test the efficiency of the sim-
ulator when compared to other contemporary simulator.

5.1. Kinetics of Transcription Initiation of the lar Promoter

To accurately model gene expression, we must have measurements of the distributions
of time intervals between transcription events, so that the model can accurately reflect
the stochasticity of this process. Further, this must be measured in several different in-
duction conditions so that the repression and induction kinetics can be mimicked. We
therefore measured the in vivo time intervals between transcript production events under
five different induction conditions using the MS2d-GFP system. The results are shown
in Table 1, including the mean transcript production rate and statistics on the time inter-
vals between consecutive transcription events in individual cells.

Interestingly, the normalized variance of the time interval distribution is always less
than 1. This is significant because if the process were Poissonian, i.e. events occurring
randomly in time, this value would be 1 which is the normalized variance of the expo-
nential distribution. This implies that transcript production from the lar promoter is less
random than Poissonian, or sub-Poissonian. The change in normalized variance as in-
duction is changed implies that the shape of the distribution is also changing. The distri-
butions in three of these conditions are shown in Figure 9. As expected, these distribu-
tions look different from exponential (seen in the “1-step fit”).

RESULTS AND DISCUSSION 38

Table 1: Cells were induced by IPTG and L-arabinose as described in section 3.1.1.
The mean number of RNA molecules produced by live cells per hour is shown for each
condition (Mean RNA/h). The mean (), standard deviation () and normalized variance

2 2) of the distribution of time intervals between subsequent production events in sin-
gle cells are also shown. N denotes the number of such intervals observed in the exper-
iments. In all cases, the distribution of these intervals was well-fit by a two exponential-
ly-distributed step model with the means shown in the last two columns.

IPTG
(mM)

arabinose
(%)

Mean
RNA/h N

Interval
 (s)

Interval
 (s) 2/ 2

Durations of
steps (s)

0 0.1 0.3 108 1368 1128 0.68 (1122, 246)
0.1 0.1 1.0 71 1300 989 0.58 (976, 325)
1 0.1 1.6 343 965 698 0.52 (574, 391)
1 0.01 1.1 185 1483 819 0.30 (741, 741)
1 0 0.7 205 1587 1076 0.46 (793, 793)

0
2
4
6
8

x 10
-4

P
ro

ba
bi

lit
y

(0, 0.1)

0
2
4
6
8

x 10
-4

P
ro

ba
bi

lit
y

(1, 0.1)

0 1000 2000 3000 4000 5000 6000
0
2
4
6
8

x 10
-4

Time Between Productions (s)

P
ro

ba
bi

lit
y

(1, 0)

Experimental data
1-step fit
2-step fit
3-step fit

Figure 9: Distributions of intervals between transcription events (gray bars) when in-
duced by 0.1% arabinose (top), 1 mM IPTG (bottom), and both (middle). The best-fit
models with one (dotted line), two (solid line) and three (dashed line) exponentially-
distributed steps in initiation are shown.

The observed intervals between the transcript production events were then used to
infer the number and mean durations of the sequential steps in initiation (section 3.1.4).
The result of the inference is shown in Table 1 as well as in Figure 10. In all conditions,
the likelihood ratio test (section 3.1.4) indicates that the interval distributions are better-
fit by two exponentially-distributed sequential steps than one. A three-step model does
not improve the fit significantly to reject the two-step model. This implies that we can
accurately model the initiation kinetics with two exponentially-distributed steps. The
error bars in the figure correspond to the variation in the inference method. This is im-
portant to determine if the changes in the durations of the steps are significant.

In Figure 10, as induction by IPTG is decreased, one step appears to become longer
while the other does not change significantly. On the other hand, when decreasing in-
duction by arabinose, at least one step increases in duration and the two steps become

RESULTS AND DISCUSSION 39

similar in duration. Thus, we can conclude that IPTG and arabinose induce Plac/ara-1 by
different mechanisms. This interaction could then be modelled by modulating the rates
of the appropriate steps according to the inference.

(0, 0.1) (0.1, 0.1) (1, 0.1) (1, 0.01) (1, 0)
0

200

400

600

800

1000

1200

1400

Induction conditions (mM IPTG, % Arabinose)

M
ea

n
S

te
p

D
ur

at
io

n
(s

)

Figure 10: Mean durations of the steps for each condition (circles). The standard devi-
ations of the step duration inference for the same inferred means and the same number
of samples are also shown.

Here, the effects of IPTG and arabinose on the in vivo kinetics of Plac/ara-1 were
characterized. The model of two rate-limiting steps fit the data well in all conditions,
though the durations of the steps vary widely between the conditions, and can therefore
be used in a stochastic simulation of this process to drive initiation. Interestingly, our
observations also indicate that the regulation of the sequential steps of Plac/ara-1 in a
graded and combined fashion permits the mean and fluctuations in RNA numbers to be
tuned independently, since the variability of the interval distribution between transcrip-
tion events will, in part, determine the fluctuations in RNA numbers.

5.2. Kinetics of Biased Partitioning of Protein Aggregates

To create an accurate model of aggregate partitioning during division, we observed the
behaviour of individual aggregates in single cells. We used the same system as de-
scribed above, since once the RNA has been bound by many MS2d-GFP’s, it appears to
be recognized by the cell as a protein aggregate [44]. Specifically, we imaged partially-
induced (0.1 mM IPTG and 0.01% arabinose) cells under the microscope over a two
hour period and observed the spatial dynamics of the produced aggregates.

First, we studied the location where aggregates first appear in the cell after being
transcribed. By observing over 50 cells by eye, we found that the aggregates first appear
near the cell centre, consistent with expected localization of the plasmid carrying the
target RNA, as in [65]. Further, we measured the brightness of the aggregates appearing
in the mid-cell region, and found it to be consistent with those aggregates consisting of a
single tagged target RNA molecule each, as in [41].

RESULTS AND DISCUSSION 40

Tracking the movement of newly produced aggregates, we found that all but 5% of
them travelled to one of the poles during the observation period. Once an aggregate
reaches a cell pole, it was observed that it tends to remain at the poles (except a few
brief incursions to the mid-cell regions). Both of these observations are in agreement
with observations in [41]. Further, even when only one aggregate was present in the
cell, it travelled to and remained at a pole most of the time, which implies that this dy-
namics is not due to interactions between aggregates. Figure 11 shows a typical se-
quence of images which exemplifies the observed spatial dynamics of aggregates.

Figure 11: Sequences of images of a cell with MS2d-GFP-tagged RNA molecules. The
arrows point to an RNA spot (bright green spot) as it is formed in the mid-cell region,
and moves from there to a pole.

Next, we recorded the time at which individual aggregates were produced, as well
as the pole to which they moved. The mean time between productions of consecutive
aggregates is approximately 2000 seconds as these cells are only subject to half the
maximum induction. The time to reach a pole was found to be much smaller than the
mean interval between production events, indicating that newly created aggregates
reach a pole prior to the creation of the next aggregate. Finally, a majority of the aggre-
gates were observed travelling to the same pole in the cell. The fact that the time inter-
val between transcription events is much larger than the time each aggregate takes to,
independently, reach a pole indicates that the accumulation of the aggregates at the cell
poles is not the result of aggregation with other aggregates. This is further supported by
the fact about movement of lone tagged RNA in the cell towards the pole.

We then investigate the presence of the observed bias in the choice of pole. In Fig-
ure 12, the progression in time of the mean difference between the numbers of aggre-
gates in each pole of each cell (denoted by | N|), summed over all cells for each time
point is shown. For comparison, it is also shown how this quantity would vary over
time, assuming binomial unbiased partitioning of aggregates by the two poles (p = 0.5),
a totally biased partitioning (p = 1.0), and finally a partitioning that follows a binomial
distribution with p = 0.85 towards one of the poles, which was found to fit the meas-
urements well. In all analytical estimations, we assume the same total number of aggre-
gates as those detected in the measurements at each moment in time.

77606022 6740

RESULTS AND DISCUSSION 41

Figure 12: Difference over time between numbers of aggregates in each pole (| N|)
averaged over 50 cells, each of which produced at least 1 spot during the observation
period.

We next investigate the effects of this process at the population level. From images
of a population of 367 cells, 60 minutes after induction, we detected aggregate locations
within cells using the methods from section 3.2.1. Figure 13 shows the distribution of
the distances of all detected aggregates from the centre of the cells, normalized by half
of the cell length. The distribution is bimodal with a strong peak centred at 0.8, showing
that most aggregates are located at the poles. A small “peak” exists at the mid-cell re-
gion, likely due to the partially-formed target RNA molecules visible while being tran-
scribed and anchored to the plasmid [41]. This spatial distribution is striking similar to
the one reported in [14], where the authors described the biased segregation of protein
aggregates as a waste disposal mechanism. Further, the distribution is consistent with
the spatial dynamics described above.

Figure 13: Distribution of the distances of MS2d-GFP-RNA spots to the center of the
cells, normalized by half of the cell length

The mean difference in aggregate numbers between poles in the population, 60
minutes after induction as a function of the number of aggregates in each cell (N) is

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

M
ea

n
|

N
|

p = 0.5
p = 0.85
p = 1.0
Experimental

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Normalized distance from cell center

N
o.

 o
f s

po
ts

RESULTS AND DISCUSSION 42

shown in Figure 14. The expected value of | N| as a function of N, assuming binomial
partitioning of aggregates by the two poles, with a bias of 0.5, 0.85 and 1.0 is also
shown for comparison. The results are in agreement with the temporal measurements
since, again, a good fit is obtained with a highly biased binomial partitioning (p = 0.85).
The results also show that the bias is independent of the number of aggregates in a cell,
as would be expected if the bias results from asymmetric segregation of aggregates.

Figure 14: Mean difference between the total number of aggregates in each pole of in-
dividual cells (| N|) (solid black line) as a function of the total number of aggregates
in the cell (N). Errors bars show the standard deviation. The expected | N| assuming
an unbiased binomial partitioning (p = 0.5, dashed line), a biased binomial partitioning
(p = 0.85, solid gray line), and a totally biased partitioning (p = 1.0, dotted line) are
shown for comparison.

The MS2d-GFP tagging method was used to observe the kinetics of the protein ag-
gregate disposal mechanism at the single event level as it allows observing individual
tagged RNA molecules. Since MS2d-GFP-RNA complexes are not native to E. coli, it
may be that the cell recognizes them as an undesirable substance and results in the be-
haviour as observed in [14]. Also, since the aggregates are segregated independently
and probabilistically, this process can therefore be modelled by binomially partitioning
of aggregates in the cells upon division, using a bias of p = 0.85.

5.3. Model of Cell-to-Cell Diversity in RNA Numbers

Using the results from section 5.1 of the promoter initiation dynamics of Plar, and the
partitioning schemes from section 5.2, we next build a realistic model of gene expres-
sion in a dynamic cell population. The model is based upon the modelling strategy put
forward in [66]. The reactions involved in the model are:

0 2 4 6 8 10
0

2

4

6

8

10

N

|
N

|

p = 0.5
p = 0.85
p = 1.0
Experimental

RESULTS AND DISCUSSION 43

ProC cck Pro·RNAPC (14)

Pro·RNAPC ock ProC + RBSC (15)

 RBSC transk RBSC + PC(normal: p , p) (16)

RBSC rbsdk _ (17)

PC pdk _ (18)

 growthk
 lC (19)

indpart:lC + part:RBSC + part:PC dividek NewCell + :lC + : RBSC + :PC + ProC (20)

Reactions (14) and (15) model transcription initiation, and correspond to the two

exponential steps observed in Table 1. Together, these reactions fully account for the
distribution observed in Figure 9. Initially, we build this model assuming the full induc-
tion case in Table 1, though the model is easily adapted to other induction conditions.
Reaction (14) models the closed complex formation, where an RNA polymerase binds
to the promoter, represented as ProC, and forms Pro·RNAPC. We can freely choose one
of the two inferred rates in Table 1 as the rate of this reaction since it does not affect the
result of our model. This Pro·RNAPC then completes the transcription initiation process,
releasing the promoter along with a Ribosome Binding Site (RBS) in the compartment,
as shown in Reaction (15). For this reaction, the inferred rate that was not selected for
the closed complex is chosen. The completion of transcription initiation is followed by
translation, here modelled by Reaction (16) whereby proteins (PC) are synthesized. The
release of proteins is delayed to model protein elongation and folding, and is modelled
by a normal distribution with mean p and a standard deviation of p . The lifetimes of
the RNA molecules and the proteins are controlled by reactions (17) and (18), respec-
tively. As the mRNA and protein have a certain life span, these reactions are important
while modeling these systems.

Reaction (19) models the growth of the cell, by continually incrementing lC, which
represents the cell’s length. When the cell has reached twice its original size (lC 2000),
the division reaction (20) is allowed to occur. The time between divisions is tuned by
modifying kgrowth such that it matches the division time observed in the experiments of
Figure 4. Every time a division reaction occurs, a new compartment is created and the
contents of the parent compartment are transferred to the new compartment according to
the partitioning scheme selected. In reaction (20), ‘part’ refers to an arbitrary partition-
ing scheme for the proteins PC and RBS’s RBSC whereas it is independently partitions
the length lC (represented as 'indpart’). In the products side of the reaction, NewCell cre-
ates a new compartment due to division. The symbol ‘:’ represents the partitioned mole-
cules that need to be placed in the new compartment. For example, :lC is the partitioned
cell length that is assigned to the newly created compartment. This division reaction
therefore results in a new compartment will receive either all or none of the proteins and

RESULTS AND DISCUSSION 44

RBSs in contrast to the length which it is likely to get halved. It also needs to be men-
tioned that these splits do not affect the reaction’s propensity.

Realistic parameter values for the reactions above are given in Table 2, along with
references.

Table 2: Parameters for the gene expression and cell growth model. All rates are in s-1.

Parameter Value Source

growthk 1/45 From observed cell division
time, as shown in Figure 4.

cck 1/574 One of the inferred rate limiting
steps of fully induced (1, 0.1)
case, from Table 1.

ock 1/391 One of the inferred rate limiting
steps of fully induced (1, 0.1)
case, from Table 1.

transk 1/3 [40]

dividek 1 Once growthk reaches division

point, division follows.

 p 7 minutes [67]

p 5 [40]

d_rbsk 0.011 [40]

d_pk 0.00003968 [40]

To demonstrate how the model may be used to study cell-to-cell diversity with dif-

ferent partitioning schemes, we now simulate the model under several conditions with
the simulator constructed previously. Figure 15 shows the time-series of protein levels
from two such simulations that start with a single cell at the beginning. The protein level
shows a somewhat high variance for the independent partitioning scheme. In the case of
the random size partitioning scheme, however, where the cells at the end can contain
almost any number of proteins. This produced much larger variance in protein numbers.
In bacteria, as protein numbers follow the RNA numbers [19,28] and the phenotype de-
pends on RNA[27], the cells at the end of the series for random size partitioning are
thus expected to be more phenotypically diverse than for independent partitioning.

To investigate the effects of different partitioning schemes, we simulated the protein
levels in cells that divide the proteins with different schemes, and measured the distribu-
tion of protein levels across the population after 1000 minutes of simulation. The results
are shown in Figure 16. In this case, the stochasticity of transcription and translation
causes the distributions to be similar for the ordered and independent partitioning
schemes. With disordered partitioning, the distribution changes shape, becoming more

RESULTS AND DISCUSSION 45

and more variable. The extreme case of the ‘all or nothing’ partitioning results in an al-
most geometric distribution.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

Time (minutes)

P
ro

te
in

 L
ev

el

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Time (minutes)

P
ro

te
in

 L
ev

el

Figure 15: Time-series showing protein level of a single cell (black solid line) and its
daughter cells (dotted lines) with independent partitioning in division (left) which re-
sults in less variance in protein level among all cells and random-sized partitioning in
division (right) with the size ratio following a Beta distribution with parameters = 2
and = 2, which results in increased variance in protein levels among all cells.

Figure 16: Distribution of protein levels with different partitioning schemes at t = 1000
minutes. Partitioning schemes with variance lower than or equal to unbiased binomial
distribution (includes ordered and independent partitioning)(top). Partitioning schemes
with variance higher than binomial distribution (disordered partitioning)(bottom).

0 200 400 600 800
0

0.05

0.1

Perfect

Protein level

P
ro

ba
bi

lit
y

0 200 400 600 800
0

0.05

0.1

Independent

Protein level

P
ro

ba
bi

lit
y

0 200 400 600 800
0

0.05

0.1

Pair

Protein level

P
ro

ba
bi

lit
y

0 200 400 600 800
0

0.05

0.1

0.15
Random Size

Protein level

P
ro

ba
bi

lit
y

0 200 400 600 800
0

0.05

0.1

0.15
Preferential

Protein level

P
ro

ba
bi

lit
y

0 200 400 600 800
0

0.05

0.1

0.15
All or Nothing

Protein level

P
ro

ba
bi

lit
y

RESULTS AND DISCUSSION 46

Figure 17: Variance for partitioning schemes of Figure 16. Schemes 1, 2, 3 are perfect,
independent and pair partitioning, respectively and have low variance. Schemes 4, 5, 6
are random size, preferential and all or nothing partitioning, respectively and have an
increased variance.

Since all distributions of protein numbers in Figure 16 have the same mean, we use
the variance as a measure of the variability of protein levels, shown in Figure 17. The
distribution of protein levels for independent and ordered partitioning (Perfect and Pair
partitioning) are found to have very similar, low variance. It can thus be concluded that
the division involving such schemes result to individuals with a low variance in protein
numbers and therefore results in generation with a more or less similar phenotype.

The distributions of protein levels for disordered segregation are remarkably differ-
ent. The variance increases for the random sized and preferential partitioning and has
the highest value for the all or nothing partitioning scheme. Disordered partitioning can
clearly introduce a large amount of variance beyond the variance of gene expression.

By coupling gene expression models as the one described here with regulatory in-
teractions, as in [66], gene regulatory networks can be constructed and simulated with
the same tools as used here. In future studies, it would be interesting to observe what
effects, if any, the different partitioning schemes have on the dynamics of genetic cir-
cuits. For example, disordered partitioning is expected to ‘destabilize’ the noisy attrac-
tors of genetic switches [68], and may affect the robustness of the periodicity of genetic
clocks as well.

5.4. Simulating Ageing Processes in Cell Populations

We now construct a model to simulate the ageing process in E. coli, as a result of the
biased aggregation of unwanted substances by the cell poles [15]. We use the measure-
ments above (section 5.2) to set the bias by which aggregates tend to move towards the
older pole in our model. For simplicity, we only mimic the aggregation and division,
and ignore other cellular processes. The reactions composing this model are:

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3
x 104

Partitioning Schemes

V
ar

ia
nc

e
in

 P
ro

te
in

 L
ev

el

RESULTS AND DISCUSSION 47

 aggregatek
 AggregateC (21)

*AggregateC (invhill) growthk lC (22)

indpart:lC + preferential(pbias):AggregateC dividek NewCell + :lC + AggregateC (23)

The aggregate generation is represented by reaction (21). Reaction (22) represents
the growth of the cell, which is affected by the amount of aggregates in the cell (due to
‘invhill’ function). As the aggregates slow down the increase in length they affect also
the division time. Cell division is modelled in reaction (23). Following its birth, once
the length of the cell doubles, it divides, preferentially partitioning the aggregates, caus-
ing the ‘newer’ daughter to likely receive fewer aggregates. The parameters in this
model are shown in Table 3.

Table 3: Parameters for the cell ageing model.

Parameter Value Source

growthk 1/45 From observed cell division time,
as shown in Figure 4.

aggregatek 0.0019 Chosen arbitrarily to fit plot in [15]

dividek 1 Once growthk reaches division point,

division occurs quickly.
pbias

0.15 Older cells give away (1-0.85) of
the total molecules as measured in
section 5.2

We simulate the model to study how aggregates affect a cell’s growth rate and

thereby its division time. As described in [15], the cells with older poles show a de-
creased growth rate, which results in a decreased offspring production, and an increased
incidence of death. We use the model to replicate findings in [15]. We plot the division
time of each cell for nine generations and show its lineage in Figure 18. We note that
this plot is strikingly similar to the one in [15], though mirrored, since we plot division
time rather than growth rate.

The effect of aggregates in the cells with older poles is seen in Figure 18. The far
right cell, which is the oldest parent, has a higher division time and does lead to a ninth
generation offspring in our simulation time. It is also evident that the cells getting new
poles divide in similar times. We can therefore conclude that this model mimics the age-
ing process reported in [15].

RESULTS AND DISCUSSION 48

Figure 18: Plot showing the division times of a lineage of cells starting from a single
parent. Cells with older poles (vertical solid black line) are always on the right side of
the cells with new poles (vertical dotted grey line) after division. The first division time
(horizontal solid black line) for each generation is also shown.

Further, by adding reactions associated with other cellular processes to this model,
we can further characterize the behaviour of the cell. Also, it would be interesting to see
the combination of this model with the gene expression model.

5.5. Simulator Performance

We have built a simulator that is capable of simulating the previously described stochas-
tic models of gene expression and of ageing. Here, we analyse the efficiency of our im-
plementation of the simulator. We investigate the performance of our simulator when
compared to Infobiotics Workbench [69], which is, to our knowledge, the only other
simulator which supports the same kind of compartment scheme as we do. The work-
bench is a multi-compartmental stochastic simulator based on the SSA for multi-cellular
systems. Although it has a user friendly front-end that allows modelling a system, ana-
lysing and visualising the results, we use only its core simulator (mcss) to avoid any
complexity brought up by the communication of friendly user interface and actual simu-
lation. In addition, we compare our NRM-based simulator against an implementation of
SGNS2 using the LDM.

First, we compare performance using a simple gene expression model for a single
cell without growth and division, but with auto-regulation. This simple model has six
reactions for each gene which also includes reactions for degradation and binding of the
protein product to the promoter. The model is constructed separately in SGNS format

RESULTS AND DISCUSSION 49

and for Infobiotics workbench. To verify that the models built for these simulators are
equivalent, in Figure 19 we show the output of the simulation performed by both simu-
lators. The output behaviour of the model with the two simulators is indistinguishable.

0

20

40

60

80

100

120

140

160

180

200

1 101 201 301 401 501 601 701 801 901 1001

protein1

protein2

Figure 19: Time-series of protein levels using models with 2 genes. Model was simulat-
ed using SGNS2 (left). The same model was simulated using Infobiotics Workbench
(right).

To test the performance of the simulators, we simulated models with differing num-
bers of self-repressing genes, and measured the amount of time required to complete the
simulation. Increases in the number of genes increase the number of reactions in the
simulation. Results are shown in Figure 20. For the first few increases in gene count,
the performance for each of these simulators seems similar. However, when the number
of genes exceeds five, there is a remarkable difference in the performance curves of
SGNS2 and Infobiotics. The time complexity of Infobiotics increases in an apparently
quadratic manner with the number of reactions, and is clearly not as efficient as SGNS2
for large systems, e.g. more than 100 reactions. To model even moderate systems in de-
tail, we must consider more reactions than this. We were unable to run Infobiotics
Workbench when number of reactions exceeded 1800, while this test successfully com-
pleted for SGNS2 in 4.16 seconds.

Interestingly, there is no significant difference in performance between the two
SGNS implementations for number of reactions up to 300. We therefore simulated the
model with up to 1500 reactions with the LDM and NRM implementations of SGNS2.
Figure 20 also shows the comparison between these two implementations. It is clear
from this figure that for a system with many reactions, the implementation with NRM is
slightly more efficient than the one with LDM, thought they both scale equally well.
This justifies our selection of NRM for the implementation of the simulator, which is, in
addition, a very flexible discrete event simulation.

RESULTS AND DISCUSSION 50

Figure 20: Comparison of performance of NRM based SGNS2, LDM based SGNS2 and
Infobiotics Workbench (left). The time complexity of the Infobiotics workbench looks
like O(N2), where N is number of reactions. Both the SGNS performs significantly better
than Infobiotics. Comparison of performance of NRM based SGNS2 and LDM based
SGNS2 with an increased number of reactions (right).

We are further interested in comparing with Infobiotics Workbench from the com-
partments perspective. For this, we create compartments which hold the reactions of the
self-repressing gene model. We tested the performance of the simulators by increasing
the number of compartments instead of the number of reactions. The results are shown
in Figure 21. We observe a slightly different scaling than our previous test. The time
complexity of all the simulators appears to grow as O(NlogN), N being the number of
compartments. However, differences in performance still remain. As in case of the
number of reactions, NRM based SGNS2 performs the best among the three. Although
the scaling based on number of compartments is improved for Infobiotics Workbench,
the constant remains large compared to SGNS2.

Figure 21: Comparison of performance of NRM based SGNS2, LDM based SGNS2 and
Infobiotics Workbench based on increasing number of compartments (N). The time
complexity of all the simulators look like O(NlogN) although the NRM based SGNS2
perform significantly better.

Therefore, the implementation of NRM based SGNS2 can be considered as an effi-
cient implementation of the SSA with the feature of dynamic compartments and various
partitioning mechanisms. Infobiotics Workbench had been found to perform better than
most of the current simulators [70]. As the performance of SGNS2 is better than it, we
can consider SGNS2 to be better than others as well.

30 60 90 120 150 180 210 240 270 300
0

2

4

6

8

10

12

of Reactions

Ti
m

e
(s

)

SGNS2 (NRM)
SGNS2 (LDM)
Infobiotics Workbench

0 300 600 900 1200 1500
0

1

2

3

4

5

6

of Reactions

Ti
m

e
(s

)

SGNS2 (NRM)
SGNS2 (LDM)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

of compartments

Ti
m

e
(s

)

SGNS2 (NRM)
SGNS2 (LDM)
Infobiotics Workbench

CONCLUSION 51

6. CONCLUSION

In this thesis, we have proposed a novel simulator for realistic models of gene expres-
sion and of stochastic partitioning of molecules in a dynamic population of dividing
cells. For this, we have made measurements to obtain realistic parameter values for the
models.

Specifically, we first measured the distribution of time intervals between production
events of a promoter in live E. coli cells. From these distributions, we then inferred the
number and mean durations of the sequential steps in initiation. We used these to derive
realistic parameter values for a model of gene expression. The measurements further
inform on the variability of the intervals between transcript productions in all induction
ranges. With this data, the models can be extended to incorporate regulation accurately.
In the future, similar investigations for different promoters are required to determine
realistic ranges of parameters values. Also, some of the parameters will need to be vali-
dated using an independent method as it might be that the MS2 system perturbs the nat-
ural system in an unknown fashion. Unfortunately there are yet no such independent
methods available regarding time intervals between transcription events.

A different measurement was performed to characterize the kinetics of segregation
of protein aggregates in E. coli. We observed that the aggregates segregate to the cell
poles by a mechanism that acts independently on individual aggregates. Further, we ob-
served that the choice of pole is probabilistic and biased. The partitioning distribution
was found to be well-fit by a binomial distribution with a bias of p = 0.85. Altogether,
this implies that the process can be modelled with a preferential partitioning scheme.
Since the accumulation of protein aggregates has been linked to ageing in these organ-
isms, we used this to construct a model of cell ageing. While many features were ex-
tracted from these measurements, some questions remain unanswered about the segre-
gation mechanism which would be needed to construct a more complete model. For ex-
ample, it would be of great interest to determine whether the bias is similar or not for all
unwanted molecules. This could be tested by observing the segregation of different flu-
orescently tagged proteins, such as tsr-Venus [35].

When developing the models of gene expression and aggregate segregation using
the parameters that were measured experimentally, we found that this could not be
achieved with existing simulators. For example, we found that it is necessary for the
simulator to differentiate between physically identical molecules such as two identical
RNA molecules. In short, the algorithms need to account for spatial location. To cope
with this without losing the ability to model stochasticity accurately, we introduced the

CONCLUSION 52

concept of dynamic compartments. Similarly, to model partitioning of cellular compo-
nents (e.g. molecules) in cell division and their effects in cell to cell diversity, we intro-
duced the concept of partitioning schemes during cell division. We implemented and
simulated various partitioning schemes and studied their effect on cell-to-cell diversity
in RNA and protein numbers.

When developing the simulator and its several features, we emphasized efficiency.
With that aim, the simulator uses the NRM along with the delayed SSA and PDM. The
simulator was shown to perform more efficiently than a contemporary simulator with
similar aims, Infobiotics Workbench. Additionally, as shown, the simulator is scalable
and multi-purposed. Regarding the latter, we note that it can be used, as is, to model
more complex systems than those used as test-cases. Regarding the former feature, we
showed that the simulator is capable of simulating models that range from single ex-
pression in a bacterium to model a dynamic population of cells with subcellular com-
partments. To allow scalability and multi-usability the simulator was implemented using
template classes which support modelling different kinds of events.

At present, the main limitation of this simulator is that it does not support horizontal
reactions between the compartments. An initial implementation of these kinds of reac-
tions could be done by assuming that they can occur between all pairs of sibling com-
partments. This would result in a C2 amount of reaction instances to keep updated. An-
other limitation of the present simulator is that elements on the wait list are not parti-
tioned during division. Thus, if a protein takes a very long time to fold, for example, this
will effectively introduce a bias in protein production towards the parent compartment.
To solve this, the wait list would have to be scoured for the partitioning molecule during
division, an O(W) operation, where W is the number of delayed events in the wait list.
We leave these to a future implementation.

Also, the efficiency of the simulator can be improved further. If the simulation is
divided into a Markovian part (i.e. pure SSA), and a non-Markovian part (i.e. delayed
reactions), we can then simulate the Markovian part with the SSA-CR, while the de-
layed parts follow the current implementation. This would reduce many of the logarith-
mic steps in the simulation to constant-time operations. Another improvement from the
usability and extendibility point of view would be to implement a generic partitioning
function using a Lua call-back, rather than hard-coded functions, allowing the user to
introduce any partitioning function that can be expressed in Lua.

The simulator developed in this thesis can now be used to investigate, in general,
various processes, ranging from viral infections of cell populations to cell-to-cell pheno-
typic diversity resulting from both the stochasticity of the dynamics of genetic circuits
as well as the partitioning schemes of molecules in cell division. The models that can be
implemented can be used both to predict as well as to interpret results from measure-
ments, thus providing a framework to investigate these key questions regarding cell
longevity and adaptability to unpredictable environments.

 53

REFERENCES

[1] A. Arkin, J. Ross, and H.H. Mcadams, “Stochastic Kinetic Analysis of Develop-
mental Pathway Bifurcation in Phage lambda-Infected Escherichia coli Cells,”
Genetics, vol. 149, 1998, pp. 1633-1648.

[2] H.H. Chang, M. Hemberg, M. Barahona, D.E. Ingber, and S. Huang, “Transcrip-
tome-wide noise controls lineage choice in mammalian progenitor cells,” Nature,
vol. 453, 2008, pp. 4-8.

[3] H. Maamar, A. Raj, and D. Dubnau, “Noise in Gene Expression Determines Cell
Fate in Bacillus subtilis,” Science, vol. 526, 2008.

[4] G.M. Süel and M.B. Elowitz, “Tunability and Noise Dependence in Differentia-
tion Dynamics,” Science, vol. 315, 2008.

[5] K.M. Herbert, A.L. Porta, B.J. Wong, R.A. Mooney, K. C, R. Landick, and S.M.
Block, “Sequence-Resolved Detection of Pausing by Single RNA Polymerase
Molecules,” Cell, vol. 125, 2006, pp. 1083-1094.

[6] K.F. Murphy and J.J. Collins, “Combinatorial promoter design for engineering
noisy gene expression,” PNAS, vol. 104, 2007, pp. 12726-12731.

[7] D. Huh and J. Paulsson, “Random partitioning of molecules at cell division,”
PNAS, vol. 108, 2011, pp. 15004-15009.

[8] A.S. Ribeiro, “Dynamics and evolution of stochastic bistable gene networks with
sensing in fluctuating environments,” Physical Review E, vol. 78, 2008, pp. 1-9.

[9] R. Mcclure, “Mechanism and Control of Transcription Initiation in Prokaryotes,”
Annual Reviews Biochemistry, vol. 54, 1985, pp. 171-204.

[10] R. Lutz, T. Lozinski, T. Ellinger, and H. Bujard, “Dissecting the functional pro-
gram of Escherichia coli promoters : the combined mode of action of Lac re-
pressor and AraC activator,” Nucleic Acids Research, vol. 29, 2001, pp. 3873-
3881.

[11] D. Kennel and H. Riezman, “Transcription and translation initiation frequencies
of the Escherichia coli lac operon,” Journal of Molecular Biology, vol. 14, 1977,
pp. 1-21.

[12] H. Buc and W.R. Mccluret, “Kinetics of Open Complex Formation between
Escherichia coli R N A Polymerase and the lac UV5 Promoter . Evidence for a
Sequential Mechanism Involving Three Stepst,” Biochemistry, vol. 24, 1985, pp.
326-328.

[13] I. Golding, J. Paulsson, S.M. Zawilski, and E.C. Cox, “Real-Time Kinetics of
Gene Activity in Individual Bacteria,” Cell, vol. 123, 2005, pp. 1025-1036.

 54

[14] A.B. Lindner, R. Madden, A. Demarez, and E.J. Stewart, “Asymmetric segrega-
tion of protein aggregates is associated with cellular aging and rejuvenation,”
PNAS, vol. 105, 2008.

[15] E.J. Stewart, R. Madden, and G. Paul, “Aging and Death in an Organism That
Reproduces by Morphologically Symmetric Division,” PLOS Biology, vol. 3,
2005.

[16] R. Zhu, A.S. Ribeiro, D. Salahub, and S.A. Kauffman, “Studying genetic regula-
tory networks at the molecular level : Delayed reaction stochastic models,” Jour-
nal of Theoretical Biology, vol. 246, 2007, pp. 725-745.

[17] M.R. Roussel and R. Zhu, “Stochastic Kinetics Description of a Simple Tran-
scription Model,” Bulletin of Mathematical Biology, vol. 68, 2006, pp. 1681-
1713.

[18] A.S. Ribeiro, “Stochastic and delayed stochastic models of gene expression and
regulation,” Mathematical Biosciences, vol. 223, 2010, pp. 1-11.

[19] M. Kærn, T.C. Elston, W.J. Blake, and J.J. Collins, “Stochasticity in Gene Ex-
pression: from Theories to Phenotypes,” Nature Reviews, vol. 6, 2005, pp. 451-
464.

[20] D.T. Gillesple, “A General Method for Numerically Simulating the Stochastic
Time Evolution of Coupled Chemical Reactions,” Journal of Computational
Physics, vol. 434, 1976, pp. 403-434.

[21] M.R. Roussel and R. Zhu, “Validation of an algorithm for delay stochastic simu-
lation of transcription and translation in prokaryotic gene expression,” Physical
Biology, vol. 3, 2006, pp. 274-284.

[22] A. Spicher, O. Michel, M. Cieslak, J.-louis Giavitto, and P. Prusinkiewicz, “Sto-
chastic P systems and the simulation of biochemical processes with dynamic
compartments,” Biosystems, vol. 91, 2008, pp. 458-472.

[23] A.S. Ribeiro and J. Lloyd-price, “SGN Sim , a Stochastic Genetic Networks
Simulator,” Bioinformatics, vol. 23, 2007, pp. 777-779.

[24] M. Kandhavelu, A. Häkkinen, O. Yli-Harja, and A.S. Ribeiro, “Single-molecule
dynamics of transcription of the lar promoter,” Physical Biology, vol. 9, 2012.

[25] M. Kandhavelu, H. Mannerström, A. Gupta, A. Häkkinen, J. Lloyd-price, O. Yli-
Harja, and A.S. Ribeiro, “In vivo kinetics of transcription initiation of the lar
promoter in Escherichia coli . Evidence for a sequential mechanism with two
rate-limiting steps,” BMC Systems Biology, vol. 5, 2011, p. 149.

[26] Y. Taniguchi, P.J. Choi, G.-wei Li, H. Chen, M. Babu, J. Hearn, A. Emili, and
X.S. Xie, “Quantifying E. coli Proteome and Transcriptome with Single-
Molecule Sensitivity in Single Cells,” Science, vol. 329, 2010.

 55

[27] P.J. Choi, L. Cai, and X.S. Xie, “A Stochastic Single-Molecule Event Triggers
Phenotype Switching of a Bacterial Cell,” Science, vol. 4142, 2008, pp. 442-446.

[28] J.A. Bernstein, A.B. Khodursky, P.-hsun Lin, S. Lin-chao, and S.N. Cohen,
“Global analysis of mRNA decay and abundance in Escherichia coli at single-
gene resolution using two-color fluorescent DNA microarrays,” PNAS, vol. 99,
2002, pp. 9697-9702.

[29] J.M. Pedraza and J. Paulsson, “Effects of Molecular Memory and Bursting on
Fluctuations in Gene Expression,” Science, vol. 319, 2008.

[30] T. Rajala, A. Häkkinen, S. Healy, O. Yli-Harja, and A.S. Ribeiro, “Effects of
Transcriptional Pausing on Gene Expression Dynamics,” PLoS Computational
Biology, vol. 6, 2010, pp. 29-30.

[31] M.A. Sorensen, C.G. Kurland, and S. Pedersen, “Codon Usage Determines
Translation Escherichia coli Rate in,” Journal of Molecular Biology, vol. 207,
1989, pp. 365-377.

[32] O. Yarchuk, J. Guillerez, and M. Dreyfus, “Interdependence of Translation ,
Transcription Degradation in the ZacZ Gene and mRNA,” Journal of Molecular
Biology, vol. 226, 1992, pp. 581-596.

[33] D. Fusco, N. Accornero, B. Lavoie, S.M. Shenoy, J.-marie Blanchard, R.H. Sing-
er, and E. Bertrand, “Single mRNA Molecules Demonstrate Probabilistic Move-
ment in Living Mammalian Cells,” Current Biology, vol. 13, 2003, pp. 161-167.

[34] J. Paulsson, “Summing up the noise in gene networks,” Nature, vol. 427, 2004,
pp. 415-418.

[35] J. Yu and X.S. Xie, “Probing Gene Expression in Live Cells, One Protein Mole-
cule at a Time,” Science, vol. 1600, 2007.

[36] D.F. Browning, S.J.W. Busby, and C.S.J.W. B, “The regulation of Bacterial
Transcription Initiation,” Nature Reviews, vol. 2, 2004, pp. 1-9.

[37] R.M. Saecker, M.T.R. Jr, and P. L, “Mechanism of Bacterial Transcription Initia-
tion : Promoter Binding , Isomerization to Initiation-Competent Open Complexes
, and Initiation of RNA Synthesis,” Journal of Molecular Biology, 2011, pp. 1-
18.

[38] R. Lutz and H. Bujard, “Independent and tight regulation of transcriptional units
in Escherichia coli via the LacR / O , the TetR / O and AraC / I 1 -I 2 regulatory
elements,” Nucleic Acids Research, vol. 25, 1997, pp. 1203-1210.

[39] J. Peccoud and B. Ycart, “Markovian Modelling of Gene Product Synthesis,”
Theoretical Population Biology, vol. 48, 1995, pp. 222-234.

 56

[40] J. Mäkelä, J. Lloyd-price, O. Yli-Harja, and A.S. Ribeiro, “Stochastic sequence-
level model of coupled transcription and translation in prokaryotes,” BMC Bioin-
formatics, vol. 12, 2011, p. 121.

[41] I. Golding and E.C. Cox, “RNA dynamics in live Escherichia coli cells,” PNAS,
vol. 101, 2004, pp. 11310-11315.

[42] M. Lehnik-Habrink, H. Pförtner, L. Rempeters, N. Pietack, C. Herzberg, and J.
Stülke, “The RNA degradosome in Bacillus subtilis : identification of CshA as
the major RNA helicase in the multiprotein complex,” Molecular Microbiology,
vol. 77, 2010, pp. 958-971.

[43] D. Huh and J. Paulsson, “Non-genetic heterogeneity from stochastic partitioning
at cell division,” Nature Genetics, vol. 43, 2011.

[44] J. Lloyd-Price, M. Lehtivaara, M. Kandhavelu, S. Chowdhury, A.-B. Muthuk-
rishnan, O. Yli-Harja, and A.S. Ribeiro, “Probabilistic RNA partitioning gener-
ates transient increases in the normalized variance of RNA numbers in synchro-
nized populations of Escherichia coli,” Molecular Biosystems, vol. 8, 2012, pp.
565-571.

[45] D.A. McQuarrie, “Stochastic Approach to Chemical Kinetics,” J. Appl. Probabil-
ity, vol. 4, 1967, p. 413.

[46] D.T. Gillespie, “Stochastic Simulation of Chemical Kinetics,” Annual Review of
Physical Chemistry, vol. 58, 2007, pp. 35-55.

[47] D.T. Gillesple, “Exact Stochastic Simulation of Coupled Chemical Reactions,”
Journal of Physical Chemistry, vol. 81, 1977, pp. 2340-2361.

[48] D.T. Gillesple, “A rigorous derivation of the chemical master equation,” Physica
A, vol. 188, 1992, pp. 404-425.

[49] M.A. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels,” Journal of Physical Chemis-
try, vol. 104, 2000, pp. 1876-1889.

[50] Y. Cao, H. Li, L. Petzold, and J. Bruck, “Efficient formulation of the stochastic
simulation algorithm for chemically reacting systems,” Journal of Chemical
Physics, vol. 121, 2004.

[51] J.M. Mccollum, G.D. Peterson, C.D. Cox, M.L. Simpson, and N.F. Samatova,
“The sorting direct method for stochastic simulation of biochemical systems with
varying reaction execution behavior,” Computational Biology and Chemistry,
vol. 30, 2006, pp. 39-49.

[52] H. Li and L. Petzold, “Logarithmic Direct Method for Discrete Stochastic Simu-
lation of Chemically Reacting Systems,” 2006, pp. 1-11.

 57

[53] R. Ramaswamy, N. González-segredo, and I.F. Sbalzarini, “A new class of high-
ly efficient exact stochastic simulation algorithms for chemical reaction net-
works,” Journal of Chemical Physics, vol. 130, 2009.

[54] K.R. Schneider and T. Wilhelm, “Model reduction by extended quasi-steady-
state,” Journal of Mathematical Biology, vol. 40, 2000, pp. 443-450.

[55] R.W. Hockney and J. it’ Eastwood, Computer Simulation Using Particles, 1988.

[56] A. Slepoy, A.P. Thompson, and S.J. Plimpton, “A constant-time kinetic Monte
Carlo algorithm for simulation of large biochemical reaction networks,” Journal
of Chemical Physics, vol. 128, 2008, pp. 1-8.

[57] T.-been Chen, H.H.-shing Lu, Y.-shien Lee, and H.-jen Lan, “Segmentation of
cDNA microarray images by kernel density estimation,” Journal of Biomedical
Informatics, vol. 41, 2008, pp. 1021-1027.

[58] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recog-
nition, 1996.

[59] K. Adelman, A.L. Porta, T.J. Santangelo, J.T. Lis, J.W. Roberts, and M.D. Wang,
“Single molecule analysis of RNA polymerase elongation reveals uniform kinetic
behavior,” PNAS, vol. 99, 2002.

[60] M. Kandhavelu, J. Lloyd-price, A. Gupta, A.-B. Muthukrishnan, O. Yli-Harja,
and A.S. Ribeiro, “Regulation of mean and noise of the in vivo kinetics of tran-
scription under the control of the lac/ara-1 promoter,” BMC Molecular Biology,
2012, p. Submitted.

[61] P.M. Llopis, A.F. Jackson, O. Sliusarenko, I. Surovtsev, J. Heinritz, T. Emonet,
and C. Jacobs-wagner, “Spatial organization of the flow of genetic information in
bacteria,” Nature, vol. 466, 2010, pp. 77-81.

[62] Q. Wang, J. Niemi, C.-meng Tan, L. You, and M. West, “Image segmentation
and dynamic lineage analysis in single-cell fluorescence microscopy,” 2009, pp.
1-16.

[63] R. Rosen, D. Biran, E. Gur, and E.Z. Ron, “Protein aggregation in Escherichia
coli : role of proteases,” FEMS Microbiology Letters, vol. 207, 2002, pp. 9-12.

[64] R. Ierusalimschy and W. Celes, The Evolution of Lua.

[65] G.S. Gordon, D. Sitnikov, C.D. Webb, A. Teleman, A. Straight, R. Losick, A.W.
Murray, and A. Wright, “Chromosome and Low Copy Plasmid Segregation in E .
coli : Visual Evidence for Distinct Mechanisms,” Cell, vol. 90, 1997, pp. 1113-
1121.

[66] A. Ribeiro, R.U.I. Zhu, and S.A. Kauffman, “A General Modeling Strategy for
Gene Regulatory Networks with Stochastic Dynamics,” Journal of Computation-
al Biology, vol. 13, 2006, pp. 1630-1639.

 58

[67] B.P. Cormack, R.H. Valdivia, and S. Falkow, “FACS-optimized mutants of the
green fluorescent protein (GFP) (,” Gene, vol. 173, 1996, pp. 33-38.

[68] A.S. Ribeiro and S.A. Kauffman, “Noisy attractors and ergodic sets in models of
gene regulatory networks,” Journal of Theoretical Biology, vol. 247, 2007, pp.
743-755.

[69] J. Blakes, J. Twycross, F.J. Romero-campero, and N. Krasnogor, “The Infobiot-
ics Workbench : an integrated in silico modelling platform for Systems and Syn-
thetic Biology,” Bioinformatics, vol. 27, 2011, pp. 3323-3324.

[70] J. Twycross, M. Bennett, and N. Krasnogor, “A High-Performance Multicom-
partment Stochastic Simulator for Executable Biology.”

	ABSTRACT
	PREFACE
	1. INTRODUCTION
	2. BACKGROUND
	2.1. Stochastic Processes in Bacteria
	2.1.1. Initiation
	2.1.2. Elongation
	2.1.3. Degradation
	2.1.4. Partitioning and Ageing

	2.2. Chemical Master Equation
	2.3. Stochastic Simulation Algorithm
	2.3.1. Direct Method
	2.3.2. First Reaction Method
	2.3.3. Next Reaction Method
	2.3.4. Logarithmic Direct Method
	2.3.5. Partial-propensity Direct Method
	2.3.6. Constant-Time Direct Method
	2.3.7. Delayed Stochastic Simulation Algorithm

	2.4. Dynamic Compartments

	3. METHODS AND APPROACH
	3.1. Measuring the Kinetics of Transcription Initiation in Bacteria
	3.1.1. Experimental Setup
	3.1.1.1 Time-lapse single-molecule fluorescence microscopy

	3.1.2. Image Analysis
	3.1.2.1 Drift correction
	3.1.2.2 Cell Detection
	3.1.2.3 Spot Detection

	3.1.3. Jump Detection
	3.1.4. Step Inference

	3.2. Assessing the kinetics of partitioning of unwanted protein aggregates
	3.2.1. Detection of cells and quantification of aggregates
	3.2.2. Expected difference in number of aggregates between poles

	3.3. Simulation Approach
	3.3.1. Compartment Representation
	3.3.1.1 Intra-compartment Reactions
	3.3.1.2 Inter-compartment Reactions

	3.3.2. Delayed Reactions
	3.3.3. Compartment Division and Molecule Partitioning

	4. SIMULATOR IMPLEMENTATION
	4.1. Input Parser
	4.2. Initialization
	4.3. System Model
	4.4. Simulation Runtime
	4.5. Discrete Event Simulation
	4.6. Using the Simulator

	5. RESULTS AND DISCUSSION
	5.1. Kinetics of Transcription Initiation of the lar Promoter
	5.2. Kinetics of Biased Partitioning of Protein Aggregates
	5.3. Model of Cell-to-Cell Diversity in RNA Numbers
	5.4. Simulating Ageing Processes in Cell Populations
	5.5. Simulator Performance

	6. CONCLUSION
	REFERENCES

