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Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

SIMON RANJITH : Quaternions in Joukowski Transformation
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Major: Mathematics

Examiners: Prof.Sirkka-Liisa Erikkson and Jani Hirvonen (Ph.D)

Keywords: Conformal mapping, Quaternions, Joukoswki Transformation, Airfoils, Hyper-

monogenic

Conformal mappings have been exploited for a long time in a number of physical prob-

lems arising in aerodynamics, thermal equilibrium, electrostatics, fluid flow and so on.

These complex-valued functions are implemented with just a single complex variable

z. However, in this study, quaternions are introduced into a Joukowski transformation,

a conformal map used in the study of fluid flow around airfoils. Analysis is effected

so as to determine the properties of this transformation function and spheres of both

Euclidean and hyperbolic geometry are executed in this expedition.
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× Cross product

· Dot product

‖ . ‖ Euclidean norm

〈 , 〉 Inner product∫
Integral∫

σ
Integral over the region σ

∂/∂xi Partial derivative with respect to xi∑
Sum

α, β, γ, θ Polar or Inclination angles

ϕ, ψ Azimuth angles

ζ Center of an Euclidean sphere

ζ̂ Center of a hyperbolic sphere

λ Transformation parameter
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δkl Kronecker symbol

4 Laplace operator

4LB Laplace-Beltrami operator

C 2-dimensional vector space over field of real numbers

Cl0,m 2m-dimensional Clifford algebra over R
div Divergence of a vector field

dh Hyperbolic distance between any two points

D Dirac operator

ei Orthonormal basis of the Euclidean vector space

grad Gradient of a scalar field

H 4-dimensional algebra over field of real numbers

J(z) Joukowski transformation over field of complex numbers
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r Radius of an Euclidean sphere
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Chapter 1

Introduction

The term “Conformal mapping ” originated as a consequence of an elementary obser-

vation that the composition of two complex functions is also a complex function [17].

This operation is also interpreted as a complex change of variables and it is known to

preserve angles.

Conformal mappings are widely used in constructing solutions to problems that

arise in physical phenomena such as fluid flow, aerodynamics, thermal equilibrium

electrostatics and so on.

In our study, we shall examine Joukowski transformation, a conformal map used

in the study of fluid flow around airfoils and in pursuit quaternions, a 4-dimensional

hypercomplex system are introduced. They replace the complex variable z in the map-

ping function. Both Euclidean and hyperbolic spheres in 3-dimension are executed and

the generated shapes are analyzed. In simple words, we determine the properties of

this transformation function.

This report is structured in such a way that the next three chapters are considered

as preliminaries followed by results, analysis and then the conclusion. However, a short

description of each chapter is given below.

- Chapter 2 briefly describes airfoils. The reader is guided through an outline of

the nomenclature and characteristics of airfoils.

- Chapter 3 discusses quaternions and their basic properties. This helps the reader

to understand that quaternions form a type of algebra unlike any other. Further,

their applications are also pointed out.

- Chapter 4 reflects on conformal mappings. In particular, we shall analyze the

Joukowski transformation. A careful study is conducted on the mapping function

in 2-dimension and the generalized hypercomplex profile in Rm+1. Further, we

1



CHAPTER 1. INTRODUCTION 2

shall also introduce the Joukowski transformation function which depends on

quaternions.

- In Chapter 5, the transformations generated as a result of executing an Euclidean

sphere in our hypercomplex Joukowski function are exhibited.

- In Chapter 6, the results yielded by implementing a hyperbolic sphere into the

mapping function are discussed. Prior to that, a portrait of hyperbolic geometry

is given and we shall also elucidate the commonly used mathematical models

such as the Upper half space model, Unit ball model, Klein and the Hyperboloid

model. Finally, an examination is performed to know the whereabouts of the

non-Euclidean center in a hyperbolic sphere.

- Chapter 7 presents the Graphical User Interfaces(GUIs) that were designed to

visualize the Joukowski transformations. That is to say, their features and in-

structions on how to handle the tools are explained.

- In chapter 8, we discuss the generalized function theory for hypermonogenic func-

tions.

- Chapter 9 summarizes the results of the study and provides suggestions for future

work.



Chapter 2

Quaternions

The definitions, propositions and theorems in this chapter are referred from [13], [15],

[21] and [22].

2.1 Introduction

Quaternions form a 4-dimensional algebra with the basis elements 1, i, j, k and the

multiplication defined by

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

It was first conceived by the Irish Mathematician Sir William Rowan Hamilton

in 1843 as extended complex numbers. The novel feature of quaternions is the non-

commutative multiplication which is noticed above and this renders quaternions a dis-

tinct arithmetic from its real counterpart R4.

The general form of a quaternion is given by

q = t+ ix+ jy + kz

where t, x, y, z are real numbers. However, quaternions can be defined in several dif-

ferent, equivalent ways. They can be treated as quadruples of real numbers (t, x, y, z)

with suitable arithmetic operations. But these components naturally group themselves

into the real part, t, called the scalar, and the imaginary part, ix + jy + kz, referred

to as the pure quaternion or vector. Further, a pure quaternion can be identified with

a three-dimensional vector v. Thus a quaternion can also be written as (t, v), with

v = (x, y, z).

3



CHAPTER 2. QUATERNIONS 4

The algebra of quaternions is denoted by H (for Hamilton). The vector space C
is a subset of H. This is achieved by identifying every complex number t + ix with

t + ix + j.0 + k.0. Therefore the relation R ⊂ C ⊂ H is inferred. A quaternion q is

called reduced if z = 0.

2.2 Properties of Quaternions

Addition

The sum of two quaternions is given by

q1 + q2 = (t1, v1) + (t2, v2)

= (t1 + t2, v1 + v2). (2.1)

Multiplication

The quaternion multiplication can be expressed in terms of vector algebra : If

Re q1 = t1, Re q2 = t2, Im q1 = v1 and Im q2 = v2, then

q1q2 = (t1 + v1)(t2 + v2)

= t1t2 + t1v2 + t2v1 − v1 · v2 + v1 × v2. (2.2)

In particular, the product of pure quaternions q1 = v1, q2 = v2 is

v1v2 = −v1 · v2 + v1 × v2. (2.3)

where v1 · v2 is the dot product and v1 × v2 is the cross product between the vectors v1

and v2.

Remark

The product of two quaternions

q =


t1

x1

y1

z1

 p =


t2

x2

y2

z2


can also be written as a matrix product:

q ∗ p = Q(q) p =


t1 −x1 −y1 −z1
x1 t1 −z1 y1

y1 z1 t1 −x1
z1 −y1 x1 t1




t2

x2

y2

z2

 (2.4)
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or equivantely as

q ∗ p = Q(q) p =


t2 −x2 −y2 −z2
x2 t2 z2 −y2
y2 −z2 t2 x2

z2 y2 −x2 t2




t1

x1

y1

z1

 . (2.5)

Conjugate

The conjugate of the quaternion q = t+ ix+ jy + kz is defined as

q̄ = t− ix− jy − kz. (2.6)

Thus Re q =
1

2
(q + q̄) and Im q =

1

2
(q − q̄).

Modulus

The modulus of q is the real number |q| given by

|q|2 = t2 + x2 + y2 + z2, |q| = 0. (2.7)

Since t, x, y, z are real numbers, |q|2 = 0 if and only if t = x = y = z = 0, i.e.

|q|2 = 0⇐⇒ q = 0.

The quaternion conjugate and modulus are related to the complex conjugate and

modulus in a similar way.

Proposition 2.2.1 Let q, q1, and q2 be quaternions. Then

(i) qq̄ = q̄q = |q|2. (2.8)

(ii) q1q2 = q̄2q̄1. (2.9)

(iii) |q1q2| = |q1||q2|. (2.10)

proof

(i) If q = t+ v, then q̄ = t− v. Therefore by definition, the multiplication of

quaternions q and q̄ is given by

qq̄ = (t+ v)(t− v) = t2 + v · v = |q|2.

Similarly, we have

q̄q = (t− v)(t+ v) = t2 + v · v = |q|2.
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(ii) From (2.2), we get q1q2 = t1t2 − t1v2 − t2v1 − v1 · v2 − v1 × v2

q̄2q̄1 = (t2 − v2)(t1 − v1)
= t2t1 − t2v1 − t1v2 − v2 · v1 + v2 × v1

Since v2 · v1 = v1 · v2 and v2 × v1 = −v1 × v2, it is deduced that q̄2q̄1 = q1q2.

(iii) Since |q2|2 is real and commutative with q1,

|q1q2|2 = (q1q2)(q1q2) by (i)

= q1q2q̄2q̄1 by (ii)

= q1|q2|2q̄1 by (i)

= |q1|2|q2|2 by (i).

Inverse

The inverse of a non-zero quaternion q is given by

q−1 =
q̄

|q|2
. (2.11)

Then from (2.8) we see that

qq−1 = q−1q = 1. (2.12)

Hence the solutions of the systems ax = b and ya = b can be calculated as

x = a−1b =
āb

|a|2
, (2.13)

y = ba−1 =
bā

|a|2
. (2.14)

Unit Quaternion

A unit quaternion is a quaternion which has modulus 1. Any non-zero quaternion q

can be written as q = rs where r = |q| is a real number and s =
q

|q|
is a unit

quaternion.

A unit quaternion can also be defined as

s =

(
cos(θ/2)

u sin(θ/2)

)
, (2.15)

where θ is a rotation angle and u is a 3-dimensional unit vector.

Proposition 2.2.2 q2 = −1 if and only if q is a pure unit quaternion.
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Exponential

The exponential of a quaternion q = t+ ix+ jy + kz is

eq = et(cos v + I(q) sin v), (2.16)

with v =
√
x2 + y2 + z2 and

I(q) =
ix+ jy + kz√
x2 + y2 + z2

. (2.17)

In particular |eq| = eRe x.

Logarithm

The logarithm of a quaternion q = t+ ix+ jy + kz is

log(q) = log(|q|) + I arg q, (2.18)

where I = I(q) and

ϕ = arg q = arccos
t√

x2 + y2 + z2
. (2.19)

Power

The power of a quaternion is defined as

qk = |q|k(cos kϕ+ I(q) sin kϕ), k ∈ N. (2.20)

Theorem 2.2.3 (Polar decomposition) Any quaternion can be written as

q = rehv, (2.21)

where r and v are real with r ≥ 0, and h is a pure unit quaternion.

Matrix description of H

Any quaternion q ∈ H can be written of the form

q = (t+ ix)︸ ︷︷ ︸
u

+ (y + iz)︸ ︷︷ ︸
w

j = u+ wj, u = t+ ix, w = y + iz. (2.22)

We observe that for a complex number u = t+ ix

uj = jū. (2.23)
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Now the product of two quaternions q1 and q2 may be computed as

q1q2 = (u1 + w1j)(u2 + w2j)

= u1u2 + u1w2j + w1ju2 + w1jw2j

= u1u2 + u1w2j + w1ū2j + w1w̄2j
2

= u1u2 − w1w̄2 + (u1w2 + w1ū2)j. (2.24)

Thus by considering

H =

{(
u w

−w̄ ū

)
: u,w ∈ C

}
(2.25)

there exists an algebra isomorphism

F : H→ H : q = u+ wj →
(

u w

−w̄ ū

)
and the product yields(

u1 w1

−w̄1 ū1

)(
u2 w2

−w̄2 ū2

)
=

(
u1u2 − w1w̄2 u1w2 + w1ū2

−w̄1u2 − ū1w̄2 −w̄1w2 + ū1ū2

)
=

(
u1u2 − w1w̄2 u1w2 + w1ū2

−(u1w2 + w1ū2) (u1u2 − w1w̄2)

)
. (2.26)

It is concluded that H is associative, since the multiplication of matrices is associative.

Further the following properties are derived:

(i) det

(
u w

−w̄ ū

)
= uū+ ww̄ = |u|+ |w| = t2 + x2 + y2 + z2 = |q|2. (2.27)

(ii) trace

(
u w

−w̄ ū

)
= u+ ū = t+ ix+ t− ix = 2t. (2.28)

(iii) t =
1

2
trace

(
u w

−w̄ ū

)
= Re q. (2.29)

Theorem 2.2.4 (Rotation) The rotation of a vector r ∈ R3 through an angle θ,

around a unit vector u ∈ R3 can be computed as

r̊′ = s̊rs̄, (2.30)

where r̊ is the augmented original vector which is of the form

(
0

r

)
, r̊′ is the

augmented rotated vector and s is a unit quaternion as defined in (2.15).
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Inverse Rotation

The inverse operation is obtained by taking the conjugate of (2.30)

r̊ = s̄̊r′s. (2.31)

Theorem 2.2.5 (Conversion to direction cosine matrix) Rotations can be

equivalently represented in terms of direction cosine matrix C as follows:

r′ = Cr. (2.32)

A unit quaternion is transformed into an equivalent direction cosine matrix using the

following expression:

C =

 t2 + x2 − y2 − z2 2(xy − tz) 2(xz + ty)

2(xy + tz) t2 − x2 + y2 − z2 2(yz − tx)

2(xz − ty) 2(yz + tx) t2 − x2 − y2 + z2

 . (2.33)

2.3 Applications of Quaternions

Quaternions have been a revolution since their introduction to computer graphics at

SIGGRAPH (Special Interest Group on GRAPHics and Interactive Techniques) in 1985

and are used in several applications lately. The list includes computer graphics, physi-

cally based modeling, constraint systems, user interfaces and so on. For the most part,

they are used as coordinates for rotations and orientations.

Quaternions are distinctive as compared to any of its competitors. That is to say,

they are known to compete very well both with general co-ordinates such as matrices

and with other special co-ordinates such as Euler angles. This is because quaternion

implementation is found to be simpler, cheaper and better behaved [20].



Chapter 3

Airfoil

3.1 Introduction

The cross sectional shape of an airplane wing or blade (of a propeller, rotor or turbine)

or sail is called an Airfoil. Obviously airfoils are used in a wide range of physical

applications. Airfoil shapes were first developed by Horatio F.Phillips in 1884. He

carried out the first serious wind-tunnel experiments on airfoils. In 1902, the Wright

brothers unfolded relatively efficient airfoil shapes after conducting their own wind-

tunnel tests and this contributed to their first successful flight in 1903. However, these

airfoil designs were based on their particular requiremnts. In the early 1930s, the

National Advisory Committee for Aeronautics (NACA) - the forerunner of National

Aeronautics and Space Administration (NASA) - constructed several airfoil shapes

that are in use even today.

In order to know why these complicated (often) non-symmetric geometries are im-

plemented in real-life machines requires a proper understanding of their geometric def-

initions and it is briefly described in the next section.

3.2 Nomenclature

Consider the diagram in fig.3.1 that represents the shape of an airfoil geometrically.

The few common parameters used in the nomenclature of an airfoil are:

(i) Chord line - The straight line drawn from the leading edge to the trailing edge is

the chord line. The chord line cuts the airfoil into upper and lower surfaces and

is typically used to measure airfoil length.

(ii) Mean Camber line - A curve halfway between the upper and lower surfaces.

10
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Figure 3.1: Diagram of an airfoil

(iii) Camber - The maximum distance between the Mean Camber line and the chord

line is called the camber, which is the measurement of the curvature of an airfoil.

High camber means high curvature of the airfoil.

(iv) Thickness - The maximum distance between the upper and lower surface is the

thickness of an airfoil.

The above parameters play a key role in an aerodynamic performance and by varying

them a family of airfoil sections can be generated. Thus, airfoils can be of varying

combinations of thickness and camber depending on their use.

3.3 Classification

In general, the geometry of an airfoil can be classified into two types:

(i) Symmetric airfoil

(ii) Non-symmetric airfoil

If the camber line falls on top of the chord line, then the airfoil is symmetrical. As

a consequence, the upper surface is the mirror image of the lower surface about the

chord line. If the camber line lies either above (positive camber) or below (negative

camber) the chord line, then the airfoil is asymmetric and the upper surface is not a

mirror image of the lower surface.

However, the different airfoil shapes developed by NACA in the 1930s were identified

with a logical numbering system. As an example, the first family of airfoils was the

four digit series such as NACA 2412 airfoil [2]. The first digit refers to the maximum

camber that is 2% of the chord length in our example. The second digit is the location

of the maximum camber along the chord line from the leading edge. This denotes that

the maximum camber is located at 4/10 of the chord length from the leading edge.
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Finally, the last two digits describe the maximum thickness. In our case, it is 12% of

the chord length.

3.4 Why use an airfoil?

The objective of an airfoil is to obtain the necessary lift to sustain an airplane in the

air. Of course, a flat plate can perform a similar task. But the outcome is lift but with

excessive drag. In the 1800s, Sir George Cayley and Otto Lilienthal demonstrated that

curved surfaces generate more lift and less drag than flat surfaces [8]. Since then more

changes and improvements were made to a curved surface through experimentation and

this included the desirability of a rounded leading edge and a sharp trailing edge.



Chapter 4

Conformal Mapping

4.1 Introduction

Conformal mapping is a mathematical technique in which complicated geometries are

transformed into simpler geometries by a mapping function. It preserves the angles

and orientation of the original geometry [10]. In the field of fluid dynamics, conformal

mapping plays a significant role in modeling and analyzing the flow of fluid around

aircraft wings.

Let us start with an example to get an impression of how this technique works.

Consider a complex plane z as in Figure 4.1a. The co-ordinates in this plane are of the

form z = x+ iy . The vertical lines represent equipotential curves given by φ = x and

the horizontal lines represent the stream lines given by the function ψ = iy.

(a) z plane (b) w plane

Figure 4.1: An example of conformal mapping

It is seen that a simple uniform fluid flow is transformed from a complex plane z

13
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into a complex plane w through the function w =
√
z. The variables x and y in the z

plane are transformed to new variables u and v in the w plane. Though the shape of

the streamlines are changed, the angles between the set of curves remain perpendicular.

This is an essential feature of conformal mapping. In case of a complex function that

models a right circular cylinder in plane z, an appropriate transformation function can

be used to obtain airfoils in plane w. The most commonly used function in aerodynamics

applications is the Joukowski transformation. It was proposed by the Russian aero- and

hydro-dynamics researcher Nikolai Zhoukovski (Joukowski).

w(z) = z +
λ2

z
, (4.1)

where λ is the transformation parameter that determines the resulting shape of the

transformation function.

4.2 Joukoswki profile in 2-dimension

Consider a circle in the z plane described by the equation

z = reiθ, (4.2)

where r is the radius of the circle and θ ranges from 0 to 2π. Under the Joukowski

mapping,

w(z) = z +
λ2

z
= reiθ +

λ2

reiθ
.

(a) circle (b) flat plate

Figure 4.2: A circle of radius r = 1 and center at the origin in z plane is transformed

to a flat plate in the w plane of length 4r.

It follows that for λ = r, the mapping becomes

w(z) = r(eiθ + e−iθ) = 2r cos θ. (4.3)
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In this case, the Joukowski transformation maps a circle of radius r to a flat plate or

a straight line entirely on the real axis in the w plane from −2r to 2r. This is shown

in Figure 4.2b. On the other hand, for values of λ either larger or smaller than r, the

circle is mapped to an ellipse as shown in Figure 4.3.

w(z) = z +
λ2

z
= reiθ +

λ2

r
e−iθ =

(
r +

λ2

r

)
cos θ + i

(
r − λ2

r

)
sin θ. (4.4)

If x =

(
r +

λ2

r

)
cos θ and y =

(
r − λ2

r

)
sin θ, then this can be written as

x2(
r +

λ2

r

)2 +
y2(

r − λ2

r

)2 = 1 (4.5)

which is an equation of an ellipse.

(a) λ > r (b) λ < r

Figure 4.3: Ellipses of axes length 2c and 2d in the w plane.

The semi-axes of the ellipse are given by

c = r +
λ2

r
, d = r − λ2

r
. (4.6)

The shape of an airfoil is obtained by considering the circle in z plane with a center

that is offset from the origin. In this case the transformation parameter λ is given by

λ = r − |s|

where r is the radius and s is the co-ordinates of the center of the circle. If the center of

the circle is offset along the real axis x, a symmetrical airfoil is obtained. If the centre is

also offset on the y axis then the transformation results in a cambered airfoil. Thus the

x co-ordinate of the center determines the thickness and the y co-ordinate determines

the curvature of the transformed airfoil [10].
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(a) Symmetric airfoil (b) Cambered non-symmetric airfoil

Figure 4.4: Airfoils

4.3 Joukowski profile in Rm+1

Prior to briefing the hypercomplex analogues of the Joukowski transformation let us

review some of the elementary concepts of the geometric algebra.

Preliminaries

Let {e1, e2, . . . , em} be an orthonormal basis of the Euclidean vector space Rm with a

non-commutative product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . ,m, (4.7)

and δkl is the Kronecker delta. The set of elements {eA : A ⊂ {1, . . .m}} formed by

eA = eh1eh2 . . . ehr , 1 ≤ h1 ≤ . . . ≤ hr ≤ m, e∅ = e0 = 1,

form a basis of the 2m-dimensional Clifford algebra Cl0,m over R.

Let Rm+1 be embedded in Cl0,m by identifying an element (x0, x1 . . . , xm) ∈ Rm+1 with

x = x0 + x, where x = e1x1 + · · ·+ emxm.

x is called a para-vector which implies that it is comprised of an 0-vector + 1-vector.

The conjugate of x is x̄ = x0 − x and the norm |x| of x is given by

|x| :=
√
xx̄ =

√
x̄x =

(
m∑
k=0

x2k

)1/2

.

We consider Cl0,m- valued functions of the form

f(x) =
∑
A

fA(x)eA, fA(x) ∈ R
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as mappings

f : Ω ⊂ Rm+1 7−→ Cl0,m.

If f is a solution of the Cauchy-Riemann system Df = 0 (fD = 0) where

D =
∂

∂x0
+ ∂x for ∂x := e1

∂

∂x1
+ · · ·+ em

∂

∂xm
,

then f is called a left(right) monogenic function or left(right) holomorphic.

A generalized hypercomplex Joukowski transformation in Rm+1(m ≥ 1) presented in

[14] is given by

w(x) = w(x0 + x) =
m

m+ 1
(Pm(x)− Em(x)), (4.8)

where

- Pm(x) = x0 +
1

m
x, a left and right monogenic linear function with

hypercomplex derivative (Pm(x))′ ≡ 1, and

- Em(x) =
x̄

|x|m+1
, a fundamental solution of the corresponding Cauchy-Riemann

system.

Remark: The above transformation function is based on the following Joukowski

profile:

w̃ =
1

2

(
z − 1

z

)
, z = x0 + ix1 ∈ C\ {0} .

4.3.1 Profile in 3-dimension

Let us study the case where m = 2. The corresponding transformation deduced from

(4.8) is

w(x) = w(x0 + x) =
2

3
(P 2(x)− E2(x)). (4.9)

Consider the spherical co-ordinates

x0 = r sin ϕ, x1 = r cos ϕ cos θ, x2 = r cos ϕ sin θ, (4.10)

with r = |x| > 0, the radius of the sphere, −π ≤ θ ≤ π, and −π/2 ≤ ϕ ≤ π/2.

Let x = x0 + x = x0 + x1e1 + x2e2. Now the Joukowski transformation in R3 inferred

from (4.9) by implementing the above parameters, can be written in terms of

spherical co-ordinates

w0 =
2

3

(
r− 1

r2

)
sin ϕ, w1 =

2

3

(r
2

+
1

r2

)
cos ϕ cos θ, w2 =

2

3

(r
2

+
1

r2

)
cos ϕ sin θ.

(4.11)
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Further (4.11) can be formulated as

w2
0(

2

3

(
r − 1

r2

))2 +
w2

1(
2

3

(r
2

+
1

r2

))2 +
w2

2(
2

3

(r
2

+
1

r2

))2 = sin2 ϕ+ cos2 ϕ cos2 θ + cos2 ϕ sin2 θ

= sin2 ϕ+ cos2 ϕ (cos2 θ + sin2 θ)

= sin2 ϕ+ cos2 ϕ

= 1.

This is an equation of an ellipsoid in R3 with a =
2

3

(
r

2
+

1

r2

)
as the equatorial

radius and b =
2

3

(
r − 1

r2

)
as the polar radius. Thus, it can be said that

3-dimensional spheres are transformed into ellipsoids.

The geometrical transformations generated with radius r = |x| ≥ 1 are listed in the

following proposition.

Proposition 4.3.1 Consider the generalized Joukowski tansformation(4.9) in R3.

Then,

(i) The unit sphere r = |x| = 1 is mapped into w = cos ϕ (cos θ e1 + sin θ e2), i.e.,

the 2-folded S1, including its interior, in the hyperplane w0 = 0.

(ii) A sphere of radius r = |x| and 1 < r < 3
√

4 is mapped onto an oblate spheroid.

(iii) A sphere of radius |x| = 3
√

4 is mapped onto a sphere of radius
1
3
√

2
.

(iv) A sphere of radius |x| = r > 3
√

4 is mapped onto a prolate spheroid with

- equatorial radius a < 1 for spheres of radius 3
√

4 < r < 1 +
√

3;

- equatorial radius a = 1 for a sphere of radius r = 1 +
√

3;

- equatorial radius a > 1 for spheres of radius r > 1 +
√

3.

These geometries are observed by direct inspection of (4.11).

Proposition 4.3.2 Let r > 3
√

4, then the generalized Joukowski tansformation (4.9)

in R3 is orientation preserving and 4-quasiconformal.

Proof. Refer [14].
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Figure 4.5: 3D Airfoil - rear view

Figure 4.6: 3D Airfoil - side view

Besides, by considering the following co-ordinates

x0 = (1 + r) sin ϕ, x1 = −r + (1 + r) cos ϕ cos θ, x2 = (1 + r) cos ϕ sin θ, (4.12)

with r = |x| > 0, the radius of the sphere, −π ≤ θ ≤ π , and −π/2 ≤ ϕ ≤ π/2 and

substituting in (4.9) yields Joukowski airfoils. These airfoils are shown in Figure 4.5

and 4.6 respectively .

w =
2

3
(1 + r) sin ϕ

(
1− (r2 + (1 + r)2 − 2r(1 + r) cos ϕ cos θ)−3/2

)
e0

+
2

3
(−r + (1 + r) cos ϕ cos θ)

( 1

2
+ (r2 + (1 + r)2 − 2r(1 + r) cos ϕ cos θ)−3/2

)
e1

+
2

3
(1 + r) cos ϕ sin θ

( 1

2
+ (r2 + (1 + r)2 − 2r(1 + r) cos ϕ cos θ)−3/2

)
e2.

(4.13)



CHAPTER 4. CONFORMAL MAPPING 20

A slight adjustment in view of the above spherical co-ordinates

x0 = (1 + r) sin ϕ, x1 = (1 + r) cos ϕ cos θ, x2 = −r+ ((1 + r) cos ϕ sin θ, (4.14)

Figure 4.7: 3D Airfoil - top view

results in the following transformation which generates an airfoil as in Figure 4.7

w =
2

3
(1 + r) sin ϕ

(
1− (r2 + (1 + r)2 − 2r(1 + r) cos ϕ sin θ)−3/2

)
e0

+
2

3
(1 + r) cos ϕ cos θ

( 1

2
+ (r2 + (1 + r)2 − 2r(1 + r) cos ϕ sin θ)−3/2

)
e1

+
2

3
(−r + ((1 + r) cos ϕ sin θ)

( 1

2
+ (r2 + (1 + r)2 − 2r(1 + r) cos ϕ sin θ)−3/2

)
e2.

(4.15)

4.3.2 Replacing C with H

Conformal mappings rely entirely on complex numbers. By replacing the complex

number z = x+ iy with a hypercomplex number q = t+ ix+ jy+ kz in ((4.1)), we get

a mapping function defined by

w(q) = q +
λ2

q
. (4.16)

Here w(q) is a transformed hypercomplex plane in H. Since it is not feasible to map a

four-dimensional geometry, a reduced quaternion q = t+ ix+ jy is used instead. Thus

the shapes can be plotted in three dimensions.

Note [12]: H can be viewed as the Clifford algebra Cl0,2. By setting e1 = i, e2 = j, a

quaternion q can be read as follows:

q = x0 + x1e1 + x2e2 + x3e1e2.
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The reduced quaternions

q = x0 + x1e1 + x2e2

are the paravectors of Cl0,2.

The main entity of our study is the newly formulated hypercomplex-valued func-

tion (4.16) which depends on a single reduced quaternion and the geometries obtained

through this transformation. These are analyzed and explained in the following chap-

ters.



Chapter 5

Euclidean Geometry

5.1 Introduction

In this chapter, the mapping function is subjected to an Euclidean sphere and the

transformations are discussed.

Note: Euclidean geometry is deduced from the Euclid’s postulates and these are men-

tioned in chapter 6.

5.2 Joukoswki profile - Euclidean

Figure 5.1: An Euclidean sphere

To begin with, consider the following parametrization of an Euclidean sphere

x0 = r sin ψ cos θ, x1 = r sin ψ sin θ, x2 = r cos ψ, (5.1)

22
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where r > 0 is the radius of the sphere, 0 ≤ ψ ≤ π and 0 ≤ θ ≤ 2π.

It is to be noted that (x0, x1, x2) ∈ R3 represent the three components of a non-zero

reduced quaternion. Therefore geometrically, we have a sphere or a ball of reduced

quaternions.

The proposed Joukowski transformation in H is

w(q) = q +
λ2

q
. (5.2)

Let us consider the polar decomposition of any quaternion [21]

q = rehv, (5.3)

where r and v are real with r ≥ 0, and h is a pure unit quaternion. The expression

(5.3) can also be written as

q = re(ix+jy) v

= reivxejvy

= r (cos α + i sin α)(cos β + j sin β), (5.4)

where α = vx and β = vy.

Now by setting the value of the transformation parameter λ equal to r and substi-

tuting q in (5.2) yields

w(q) = r (cos α + i sin α)(cos β + j sin β) + r (cos α− i sin α)(cos β − j sin β)

= r (cos α cos β + j cos α sin β + i sin α cos β + k sin α sin β)

+ r (cos α cos β − j cos α sin β − i sin α cos β + k sin α sin β)

= 2r (cos α cos β + k sin α sin β). (5.5)

In this case, the transformation causes the Euclidean sphere to map onto a thin string.

This is seen in Figure 5.2. A closer look indicates that the geometry is ellipsoidal in

shape along the x0 axis.

For λ < r and λ > r, the spheres are transformed to spheroids just as in Figure 5.3.

The transformation is noticed to flow from a sphere to an oblate spheriod and then to

a thin string. But, as soon as the value of λ is greater than r, it reverts back to an

oblate spheriod and finally to a sphere.
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Figure 5.2: A thin string along x0 axis. The limits of x1 and x2 axes (image on the

right) are in 1e−10s.

Figure 5.3: Ellipsoid

The transformation for λ 6= r renders

w(q) = r (cos α + i sin α)(cos β + j sin β) +
λ2

r
(cos α− i sin α)(cos β − j sin β)

. . .

=

(
r +

λ2

r

)
cos α cos β + i

(
r − λ2

r

)
sin α cos β + j

(
r − λ2

r

)
cos α sin β

+ k

(
r +

λ2

r

)
sin α sin β. (5.6)

If x0 =

(
r +

λ2

r

)
cos α cos β, x1 =

(
r − λ2

r

)
sin α cos β, x2 =

(
r − λ2

r

)
cos α sin β

and x3 =

(
r +

λ2

r

)
sin α sin β, then this can be written as,
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x20(
r +

λ2

r

)2 +
x21(

r − λ2

r

)2 +
x22(

r − λ2

r

)2 +
x23(

r +
λ2

r

)2

= cos2 α cos2 β + sin2 α cos2 β

+ cos2 α sin2 β + sin2 α sin2 β

= cos2 α (cos2 β + sin2 β)

+ sin2 α (cos2 β + sin2 β)

= cos2 α + sin2 α = 1.

This is an equation of an ellipsoid in R4 with a =

(
r +

λ2

r

)
as the equatorial radius

and b =

(
r − λ2

r

)
as the polar radius.

Moreover it is to be noticed that just as in the 2-dimensional case of the Joukowski

profile, the shape of an airfoil is obtained if the center of the sphere is slightly offset

from the origin. The mapping function transforms the three dimensional spheres into

suitable airfoils. Here again the desired transformation parameter λ is calculated using

the equation

λ = r − |s|

where r is the radius and s is the co-ordinates of the center of the sphere.

Figure 5.4: Symmetric airfoil in 3-dimension

A symmetric airfoil results if the center is offset on the x0 axis. Besides if the center

of the sphere is also moved parallel to the x2 axis, a cambered non-symmetric airfoil is

generated. The pictures of these airfoils are shown in Figure 5.4 and 5.5.

The transformation even caters for airfoils with negative camber as shown in Figure

5.6. This is observed if the center is moved along the negative x2 axis.
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Figure 5.5: Cambered non-symmetric airfoil with positive camber

Figure 5.6: Cambered non-symmetric airfoil with negative camber



Chapter 6

Hyperbolic Geometry

6.1 Introduction

Hyperbolic geometry is a non-Euclidean geometry where the fifth axiom of the Euclid’s

postulates fails. The fifth axiom is also referred as the parallel postulate and it reads

as follows:

For any given line l and a point P not on it, there is exactly one line through P that

does not intersect l. As it can be imagined, on a hyperbolic plane or surface there are

infinitely many different lines that pass through P and do not intersect l.

This can be visualized on the very few hyperbolic models that have been constructed

so far. These models are designed within the Euclidean geometry that obeys the first

four axioms of the Euclid’s postulates:

1. A straight line may be drawn from any point to any other point.

2. The straight line may be extended to any length.

3. A circle of any radius may be described around any point as a center.

4. Any two right angles are equal.

The four commonly used models for the hyperbolic geometry are:

- The Upper half plane model

- The Unit ball model

- The Klein model and

- The hyperboloid model

These models are referred from [11] and are described below.

27
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6.2 Hyperbolic models

6.2.1 Upper half space model

The Upper half space model includes the Euclidean upper half plane as its hyperbolic

plane. It is traced out as follows :

R3
+ = {(x, y, t) ∈ R3 : t > 0}

with the hyperbolic metric induced by

ds2 =
dx2 + dy2 + dt2

t2
, l(σ) =

∫
σ

ds.

The geodesics are lines or portions of circles with their center on the boundary that

they are orthogonal to the Euclidean plane. Here it is referred as an XY plane.

Figure 6.1: Upper half space model

The hyperbolic distance between any two points P = (x, y, t) and Q = (x′, y′, t′) in

the XY plane is given by

dh(P,Q) = arcosh δ(P,Q), (6.1)

where

δ(P,Q) =
(x− x′)2 + (y − y′)2 + t2 + t′2

2tt′
. (6.2)

The angles are the same as the Euclidean angles and tangents are drawn to the lines

in order to calculate them.
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Figure 6.2: Unit ball model

6.2.2 Unit ball model

In the Unit ball model, the plane is the unit ball B = {x ∈ R3 | ‖x‖ < 1} and the

points are the Euclidean points. We consider the mapping

(x1, x2, x3) 7−→
(

2x1
x21 + x22 + (x3 − 1)2

,
2x2

x21 + x22 + (x3 − 1)2
,

1− x21 − x22 − x23
x21 + x22 + (x3 − 1)2

)
from the unit ball to the upper half space R3

+.

The hyperbolic metric in B is defined by

ds2 = 4
dx21 + dx22 + dx23
1− x21 − x22 − x23

.

The geodesics are portions of circles or straight lines intersecting the boundary at right

angles. As in the Upper half space model, the angles are the same as the Euclidean

angles.

6.2.3 Klein model

In the Klein model, the plane is the unit ball (i.e.) the interior of the Euclidean unit

sphere. The geodesics in this model are the straight line segments. Though this seems

similar to the Euclidean space there are differences. The hyperbolic distance between

any two points P = (x, y, t) and Q = (x′, y′, t′) is given by

arcosh

(
1− xx′ − yy′ − tt′√

(1− x2 − y2 − t2)(1− x′2 − y′2 − t′2)

)
. (6.3)

The angles in this model are the same as the corresponding Euclidean angles.
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Figure 6.3: Klein model

(a) Klein model (b) Unit ball model

(c) Upper half space model

Figure 6.4: An example of a regular pentagon in three hyperbolic models

6.2.4 Hyperboloid model

In the hyperboloid model, we consider the Minkowski metric in R4. Let x = (x1, x2, x3, x4).

〈x, x〉 = x24 − x23 − x22 − x21
〈x, x〉 = 0⇐⇒ x24 = x21 + x22 + x23

〈x, x〉 = 1⇐⇒ x24 − x23 − x22 − x21 = 1.

Let x4 > 0. By restricting the Minkowski metric to the tangent planes of the

hyperbola yields a positive definite quadratic form and this defines a Riemannian metric.
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A hyperbola provided with this metric is the Hyperboloid model. This model is also

referred as the Lorentz model.

6.3 Joukowski profile - Hyperbolic

In this section, we define a hyperbolic sphere in the Upper half space model and dis-

cuss the transformations obtained by implementing the hyperbolic ball in the mapping

function as in the 3 -dimensional Euclidean geometry.

Lemma 6.3.1 [11] A hyperbolic sphere with a hyperbolic center ζ = ξ + iη + jτ ∈ R3
+

and hyperbolic radius rh, i.e., the set of vectors{
z ∈ R3

+ | dh(z, ζ) = rh
}

(6.4)

can also be defined as follows{
z ∈ R3

+ |
|z − ζ|
|z − ζ̂|

= tanh

(
rh
2

)}
, (6.5)

where ζ̂ = ξ + iη − jτ .

Proof. We recall that the hyperbolic distance in the Upper half space model is dh(z, ζ) =

arcosh δ(z, ζ) where

δ(z, ζ) =
(x− ξ)2 + (y − η)2 + t2 + τ 2

2tτ
.

Consequently,

dh(z, ζ) = rh ⇐⇒ δ(z, ζ) = cosh rh = υ

and

(x− ξ)2 + (y − η)2 + t2 + τ 2 = υ2tτ. (*)

Therefore

|z − ζ|2 = (x− ξ)2 + (y − η)2 + (t− τ)2

= υ2tτ − 2tτ

= (υ − 1)2tτ.

|z − ζ̂|2 = (x− ξ)2 + (y − η)2 + (t+ τ)2

= υ2tτ + 2tτ

= (υ + 1)2tτ.
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=⇒ |z − ζ|
2

|z − ζ̂|2
=
υ − 1

υ + 1
=

cosh rh − 1

cosh rh + 1
= tanh2

(
rh
2

)
. (6.6)

We also notice that from (*)

(x− ξ)2 + (y − η)2 + t2 − 2υtτ + υ2τ 2︸ ︷︷ ︸
(t−υτ)2

= λ2τ 2 − τ 2

= (λ2 − 1) τ 2

= (cosh2 rh − 1) τ 2

By using the basic trigonometric identity cosh2 rh − 1 = sinh2 rh, we have

(x− ξ)2 + (y − η)2 + (t− τ cosh rh)
2 = (sinh2 rh) τ

2

= τ 2 sinh2 rh.

Thus summing up, a non-Euclidean sphere with non-Euclidean center ζ and non-

Euclidean radius rh is an Euclidean sphere with the Euclidean center

ζ̂ = ξ + iη + jτ cosh rh (6.7)

and Euclidean radius

r = τ sinh rh. (6.8)

Let us consider the following spherical co-ordinates of a hyperbolic sphere.

y0 = r sin ψ cos θ + ξ, y1 = r sin ψ sin θ + η, y2 = r cos ψ + τ cosh rh, (6.9)

where r is the Euclidean radius of the hyperbolic sphere, rh is the hyperbolic radius,

0 ≤ ψ ≤ π and 0 ≤ θ ≤ 2π. The co-ordinates (y0, y1, y2) ∈ R3 represent the three

components of a non-zero reduced quaternion of the form y0 + iy1 + jy2. Since Poincaré

upper half space is a Riemannian manifold (R3
+, g1) with the metric

g1 =
dy20 + dy21 + dy22

y22
, (6.10)

and

R3
+ =

{
(y0, y1, y2) ∈ R3 : y2 > 0

}
the third component y2 > 0.

The revised Joukowski transformation is given by

w(q) =
(
q − ζ̂

)
+

λ2(
q − ζ̂

) , (6.11)
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where ζ̂ is the center of the hyperbolic sphere.

Now by subjecting the sphere into the map yields similar cross-sectional shapes as

in the Euclidean cases. It is to be noticed as the value of y2 is increased the hyperbolic

distance between the points on the boundary and center of the sphere decreases and

vice versa. This is anticipated because if k > 0 in (6.10) then a geometry which is

similar to that of a hyperbolic space is generated and distances decrease as y2 increases

and vice versa [18].

Figure 6.5: A symmetric airfoil

Note [18]: In the expression (6.10)

- If k = 0, Euclidean geometry is obtained.

- If k < 0, we obtain a geometry with ‘infinte distances’ as y2 −→∞. But distances

‘tend to zero’ in the neighbourhood of y2.

The transformation function generates spheres by preserving the center of the hy-

perbolic sphere closer to the origin and increasing the Euclidean radius gradually.

Airfoils are visualized at certain locations of the hyperbolic sphere. A symmetric

airfoil is generated if the center of the sphere is moved parallel to the y2 axis. However

if the center is also moved parallel to the y1 axis, the airfoil gets tilted and its thickness



CHAPTER 6. HYPERBOLIC GEOMETRY 34

Figure 6.6: View of a symmetric airfoil tilted to an angle along Y and Z axes

- maximum distance between the upper and lower surface of the airfoil - gets reduced

(Figure 6.6).

Similar airfoil shapes are obtained if the center of the hyperbolic sphere is offset just

on the y1 axis. Certainly, the y2 co-ordinate takes the smallest positive real number here

and it remains unmoved. As a result there is no change in the radius of the hyperbolic

sphere. The parameter λ is calculated as follows for the above transformations:

λ = r − |s|

where r is the Euclidean radius of the hyperbolic sphere and s is the hyperbolic center.

However if λ is set equal to the Euclidean radius r and if the center is offset on the

y2 axis a non-cambered symmetric airfoil is generated anew.

6.4 Non-Euclidean center in a hyperbolic sphere

Undeniably it would be of interest to know where exactly the hyperbolic center is with

respect to the Euclidean and hyperbolic spheres and how it moves as y2 is varied.

Lemma 6.4.1 The hyperbolic sphere centered at

ζ̂ = ξ + iη + jτ cosh rh,

lies above the Euclidean center and the hyperbolic center is inside the Euclidean sphere.

Proof. The distance

|τen − τen cosh rh| = |τ − τ cosh rh|
= τ cosh rh − τ. (6.12)
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We show that (6.12) is less than the Euclidean radius. Indeed

τ(cosh rh − 1) < τ sinh rh

⇔ erh + e−rh

2
− 1 <

erh − e−rh

2

⇔ erh + e−rh − 2 < erh + e−rh

⇔ 2e−rh < 2

⇔ e−rh < 1.

This is true for rh > 0.

To illustrate the above lemma, a hyperbolic and an Euclidean sphere are sketched

with their respective centers.

Figure 6.7: The hyperbolic sphere lies with its lower half inside the Euclidean sphere.

The Non-Euclidean center(red) is located in the Euclidean sphere and above the Eu-

clidean center(blue).

The hyperbolic center defined by

ζ̂ = ξ + iη + jτ cosh rh,

is located above the Euclidean center and inside the Euclidean sphere as in Figure 6.7.

The lower half of the hyperbolic sphere is submerged inside the Euclidean sphere. We
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recall that the radius of a hyperbolic sphere decreases as the value of y2 is increased

and vice versa [18]. This is a particular case of the Poincare Upper half-space model

and is less surprising.

As y2 is increased, the hyperbolic sphere moves into the Euclidean sphere. As a

result the hyperbolic center is seen closer to the Euclidean center. This is plotted in

Figure 6.8.

However, by fixing y2 and increasing the Euclidean radius the hyperbolic radius

increases and the hyperbolic center moves further away from the Euclidean center but

rather remains within the premises of the Euclidean sphere. Thus, in both the cases,

the hyperbolic center is located inside and above the Euclidean center in the Euclidean

sphere as expected.

Figure 6.8: The hyperbolic sphere moves into the Euclidean sphere as the y2 co-ordinate

is increased.



Chapter 7

Generalities

In this chapter, we review the generalized function theory for the mapping f : Ω ⊂
R3 −→ H and it is referred from [6] and [12].

7.1 Hypermonogenic

7.1.1 M.Riesz system in R3

Let us recall the Cauchy-Riemann equations that characterizes the holomorphic func-

tions f = u+ iv

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

⇐⇒ ∂f

∂x
+ i

∂f

∂y
= 0

(
= 2

∂f

∂z̄

)

It is remarked that these equations naturally extend to R3. That is to say, for the

mapping f : Ω ⊂ R3 −→ H, Ω is an open subset in R3, the following operators are

introduced.

Dlf =
∂f

∂x
+ i

∂f

∂y
+ j

∂f

∂t
, (7.1)

Drf =
∂f

∂x
+
∂f

∂y
i+

∂f

∂t
j. (7.2)

The above operators are also called as the Dirac operators. Moreover, we have

Dlf = 0, (respectively Drf = 0).

The solutions f : Ω −→ Cl0,n, (Ω ⊂ Rn+1 open) of the above equations are called

left(right) monogenic functions.

37
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For functions f = u + iv + jw : Ω ⊂ R3 −→ R3, the preceding equations are

equivalent and lead to the following system:

∂u

∂x
− ∂v

∂y
− ∂w

∂t
= 0,

∂u

∂y
= −∂v

∂x
,
∂u

∂t
= −∂w

∂x
,
∂v

∂t
=
∂w

∂y

 (R)

It is referred as M.Riesz system.

By replacing f by g = f̄ , the system (R) is read as follows [12]:

div g = 0 (7.3)

rot g = 0. (7.4)

From (7.4), it is concluded that solutions of (R) are locally of the form

f =
∂h

∂x
− i ∂h

∂y
− j ∂h

∂t
.

Besides, by considering (7.3) the function h defined on some open set Ω ⊂ R3 is

harmonic, i.e. it satisfies the Laplace equation M h = 0.

Remark: The components u, v and w of an (R)-solution are all harmonic.

Definition 7.1.1 Let Ω ⊂ Rn+1 be open. A continuously differentiable function f :

Ω −→ Cl0,n is called (left) hypermonogenic, if Mnf(x) = 0 for any x ∈ Ω\{x |xn =

0}. Mn is the modified Dirac-Fueter operator which is defined as follows: For any

f : Ω\{x |xn = 0} −→ Cl0,n, Ω ⊂ Rn+1 is open,

Mnf(x) = Dlf(x) +
n− 1

xn
(Qn−1f)′(x).

7.1.2 Modified system in R3

The power of a reduced quaternion q = x+ iy+ jt is also a reduced quaternion. This is

noticed from the polar form of q. If q = r (cos ϕ+ i sinϕ+ j sinϕ sin θ) where r = |q|
and ϕ and θ are Euler angles, then

qn = rn (cos(nϕ) + i sin(nϕ) + j sin(nϕ) sinθ). (7.5)

This is a generalization of De Moivre’s identity.

In otherwords, q −→ qn maps R3 onto itself. But this mapping does not solve the

(R)-system and we have Dlf = 1 + i2 + j2 = −1 6= 0. Therefore, the M.Riesz system

is modified as follows:
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(i) The Euclidean metric i.e. ds2 = dx2 + dy2 + dt2 is replaced with the hyperbolic

metric

ds2 =
dx2 + dy2 + dt2

t2
(t > 0).

(ii) The function f = u+ iv + jw satisfies the modified system below.

t

(
∂u

∂x
− ∂v

∂y
− ∂w

∂t

)
+ w = 0

∂u

∂y
= −∂v

∂x
,
∂u

∂t
= −∂w

∂x
,
∂v

∂t
=
∂w

∂y
.

 (H)

The solutions f : Ω ⊂ R3 −→ H of (H ) are called (H )-solutions and are well defined on

any open set Ω ⊂ R3(not just on the open subsets of the Upper half space R3
+). Every

(H )-solution can be atleast locally represented as

f =
∂H

∂x
− i ∂H

∂y
− j ∂H

∂t
.

H is hyperbolic harmonic, i.e. it satisfies the Laplace-Beltrami equation associated with

the hyperbolic metric.

t4H − ∂H

∂t
= 0 (4 =

∂2

∂x2
+

∂2

∂y2
+
∂2

∂t2
). (*)

Remark: If f = u+ iv + jw is an (H)-solution, the components u and v are hyperbolic

harmonic. However, the third component w satisfies the following equation:

t24H − t∂H
∂t

+H = 0. (**)

Both the equations (*) and (**) are eigen functions of the Laplace-Beltrami operator

4LB associated with the above metric:

4LB = t2
(
4− 1

t

∂

∂t

)
.

Example of (*).

Consider H(z) = log |z|, the fundamental solution of (*) with respect to 0. Then

f(z) = grad (log |z|)

=

(
∂

∂x
− i ∂

∂y
− j ∂

∂t

)
(log |z|)
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We have log |z| = log |x+ iy + jt| = log(x2 + y2 + t2)1/2 and therefore

f(z) =
x

x2 + y2 + t2
− i y

x2 + y2 + t2
− j t

x2 + y2 + t2

=
x− iy − jt
x2 + y2 + t2

=
z̄

|z|2

=
z̄

zz̄

= z−1

is an (H )-solution. Notice that since f is an (H )-solution, so are the partial derivatives

∂f

∂x
,
∂f

∂y
.

With z 7−→ z−1, it follows that the mapping z 7−→ z−n(n ∈ N) is an (H )-solution. This

is because the following relation holds:

∂n(z−1)

∂xn
= (−1)nn!z−(n+1). (7.6)

We prove the above result by induction.

Let us consider the case n = 1 in equation (7.6) and note that the derivative of a

product of two functions is given by

∂

∂x
(fg) =

∂f

∂x
g + f

∂g

∂x
.

Hence

0 =
∂

∂x
(zz−1) =

∂z

∂x
z−1 + z

∂z−1

∂x
= z−1 + z

∂z−1

∂x
,

which implies

∂z−1

∂x
= (−1)z−2.

Let us assume the statement is true for any positive integer k, that is,

∂

∂x
(z−k) = (−k)z−(k+1).

Consequently, we have

(−k)z−(k+1) =
∂

∂x
(z−(k+1)z) =

∂z−(k+1)

∂x
z + z−(k+1) ∂z

∂x
=
∂z−(k+1)

∂x
z + z−(k+1).
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Therefore, it is inferred that

∂

∂x

(
z−(k+1)

)
= (−1)(k + 1)z−(k+1)z−1 = (−1)(k + 1)z−(k+2).

Thus by the principle of mathematical induction, the statement is true for all k ∈ N.

Since the equation also holds for n = 2, that is,

∂2

∂x2
(z−1) = − ∂

∂x
(z−2) = 2z−3,

we claim that
∂n

∂xn
(z−1) = (−1)nn!z−(n+1).

Assume that the equation holds for n = k. Then,

∂k

∂xk
(z−1) = (−1)kk!z−(k+1).

As a result, we deduce

∂k+1

∂xk+1
(z−1) = (−1)kk!

∂

∂x

(
z−(k+1)

)
= (−1)kk!(−1)(k + 1)z−(k+2)

= (−1)k+1(k + 1)!z−(k+2).

By the principle of mathematical induction, the statement is true for all positive integers

n ∈ N. Hence z−n is an (H )-solution for all n ∈ N.

Preliminaries

The involution ′ : H −→ H is an isomorphism defined by

q′ = x0 − x1e1 − x2e2 + x12e12

where x0, x1, x2, x12 ∈ R.

Some properties of involution are:

ze2 = e2z
′ = e2z̄, z ∈ C, (7.7)

q′e2 = e2q̂, q ∈ H. (7.8)

where q̂ = x0 + x1e1 − x2e2 − x12e12.

Let P : H −→ C and Q : H −→ C be the projecting operators defined by

P (z0 + z1e2) = z0,

Q(z0 + z1e2) = z1.
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Note that for any x ∈ H

P 2x = Px,

Q2x = 0,

P (Qx) = Qx,

Q(Px) = 0.

Lemma 7.1.2 If a, b ∈ H, then

P (ab) = PaPb−Qa(Qb)′,

Q(ab) = qQb+ (Qa)b′,

P (a′) = (Pa)′,

Q(a′) = −(Qa)′.

Lemma 7.1.3 If w ∈ H then

Qw =
e2w

′ − we2
2

,

Pw = −we2 + e2w
′

2
e2.

The modified Dirac operator is defined by

(Mkf)(x) = (Df)(x) +
k

x2
Q′f (7.9)

where D is the operator defined in (7.1). The operator M̄ is given by

(M̄kf)(x) = (D̄f)(x)− k

x2
Q′f. (7.10)

Now we have

Mkf + M̄kf = Df + D̄f = 2
∂f

∂x0
.

Definition 7.1.4 Let Ω be an open subset of R3. If f ∈ C2(Ω) and Mkf(x) = 0 for

any x ∈ Ω\{x |x2 = 0} then the function f is called k-hypermonogenic in Ω. If f is

paravector valued k-hypermonogenic in Ω, then f is called an Hk-solution. If a function

is 1-hypermonogenic, then it is just referred as hypermonogenic.

Lemma 7.1.5 Let Ω be an open subset of R3. If the components of a function f :

Ω −→ H are partially differentiable, then

P (Df) = D1(Pf)− ∂(Qf)′

∂x2
(7.11)

Q(Df) = D1(Qf) +
∂(Pf)′

∂x2
, (7.12)
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where

D1f =
∂f

∂x0
+ e1

∂f

∂x1
.

Proof. Let us decompose, f = Pf + (Qf)e2. Now

Df = D(Pf) +D((Qf)e2)

=
∂(Pf)

∂x0
+ e1

∂(Pf)

∂x1
+ e2

∂(Pf)

∂x2
+
∂((Qf)e2)

∂x0
+ e1

∂((Qf)e2)

∂x1
+ e2

∂((Qf)e2)

∂x2

= D1(Pf) + e2
∂(Pf)

∂x2
+D1((Qf)e2)−

∂(Qf)′

∂x2
using (7.7)

= D1(Pf)− ∂(Qf)′

∂x2
+

(
D1(Qf) +

∂(Pf)′

∂x2

)
e2.

Lemma 7.1.6 Let f : Ω −→ H be twice continuously differentiable on an open subset

Ω ⊂ R3. Then

M̄kMkf = MkM̄kf

= 4(Pf)− k

x2

∂Pf

∂x2
+

(
4(Qf)− k

x2

∂Qf

∂x2
+

k

x22Qf

)
e2

= 4f − k ∂f

x2∂x2
+ k

e2f
′e2 + f

2x22
,

where 4 is the Laplacian in R3.

By the preceding lemma 7.1.5,

QMkf = Q(Df) +
k

x2
Q(Q′f)

= D1(Qf) +
∂(P ′f)

∂x2
.

We calculate

M̄kMkf = D̄Df + k

(
D̄

(
Q′f

x2

)
−D

(
Q′f

x2

))
−
(
k

x2
Q′f

)2

= D̄Df + kD̄

(
Q′f

x2

)
− kQ′

(
Df

x2

)
= D̄Df + kD̄

(
Q′f

x2

)
− k

x2

(
(D1Qf)′ +

∂Pf

∂x2

)
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Since

D̄

(
Q′f

x2

)
=

∂

(
Q′f

x2

)
∂x0

− e1
∂

(
Q′f

x2

)
∂x1

− e2
∂

(
Q′f

x2

)
∂x2

=
1

x2

∂Q′f

∂x0
− 1

x2

2∑
i=1

ei
∂Q′f

∂xi
+ e2

Q′f

x22

=
(D2Qf)′

x2
+
Qf

x22
e2 −

1

x2

∂Qf

∂x2
e2,

we obtain

M̄kMkf = D̄Df + k

(
(D2Qf)′

x2
+
Qf

x22
e2 −

1

x2

∂Qf

∂x2
e2

)
− k

x2

(
(D1Qf)′ +

∂Pf

∂x2

)
= 4Pf − k

x2

∂Pf

∂x2
+

(
4Qf − k

x2

∂Qf

∂x2
+ k

Qf

x22

)
e2.

Thus we have

MkM̄kf = 4f − k ∂f

x2∂x2
+ k

Qfe2
x22

. (7.13)

By lemma 7.1.3 it is deduced that

MkM̄kf = 4f − k ∂f

x2∂x2
+ k

e2f
′e2 + f

2x22
.

Note that from the definitions Mk + M̄k = 2
∂f

∂x0
.

M2
kf +MkM̄kf = 2Mk

(
∂f

∂x0

)
= 2

∂Mkf

∂x0

= (Mk + M̄k)(Mkf)

= M2
kf + M̄kMkf.

which implies that MkM̄kf = M̄kMk.

Definition 7.1.7 Let f : Ω −→ H be twice continuously differentiable on an open

subset Ω ⊂ R3. If M̄kMkf = 0 for any x2 6= 0, then f is called k-hyperbolic harmonic.

If f is 1-hyperbolic harmonic, then f is called hyperbolic harmonic.

Corollary 7.1.8 Let f : Ω −→ H be a k-hypermonogenic function Ω ⊂ R3, then f is

real analytic.

Proposition 7.1.9 The function xm is hypermonogenic for all m ∈ Z.
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Lemma 7.1.10 An element x ∈ H is a paravector if and only if

2∑
i=0

eixei = −x′.

Theorem 7.1.11 Let Ω be an open subset of R3 and f : Ω −→ H be hypermonogenic.

The product f(x)x is hypermonogenic if and only if f is an H-solution.

Proof. Let us assume that f : Ω −→ H and f(x)x are hypermonogenic. Then

M1(fx) = (Dfx) +
Q′(fx)

x2

=

(
Df +

Q′f)

x2

)
x+ f ′ +

2∑
i=0

eifei

= (M1f)x+ f ′ +
2∑
i=0

eifei

Since we assume that f and f(x)x are monogenic (i.e). M1(fx) = 0, M1f = 0.

Therefore

0 = M1(fx) = f ′ +
2∑
i=0

eifei.

By lemma 7.1.10 f is paravector valued and by definition f is an H-solution. The

converse can be proved similarly.

Theorem 7.1.12 Let Ω be an open subset of R3 and F : Ω −→ H be hypermonogenic.

The product f(x) = F (x)x−1 is hypermonogenic in Ω\{0} if and only if it is paravector

valued.

Proof. Let us assume that F : Ω −→ H and f(x) = F (x)x−1 are hypermonogenic.

Since F (x) = (F (x)x−1)x, from theorem 7.1.11 (F (x)x−1) is paravector valued.

Conversely, assume that f is paravector valued and F is hypermonogenic. Then by

lemma 7.1.10,

0 = M1F = D(F ) +
Q′(F )

x2

= D(fx) +
Q′(fx)

x2

=

(
Df +

Q′f

x2

)
x+ f ′ +

2∑
j=0

ejfej

= (M1f)x+ f ′ +
2∑
j=0

ejfej

= (M1f)x.
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Therefore f is hypermonogenic.

Corollary 7.1.13 The function x−m is an H-solution.

Lemma 7.1.14 Let Ω be an open subset of R3 and f : Ω −→ H be k-hypermonogenic.

Then
∂f

∂xl
is hypermonogenic for l=0,1.

Proposition 7.1.15 Let Ω be an open subset of R3 and f : Ω −→ H be 1-hypermonogenic.

Then f is monogenic on Ω ∩ C.

Theorem 7.1.16 Let Ω be an open subset of R3 and f : Ω −→ H be a mapping with

continuous partial derivatives. Then the equation Mkf = 0 is equivalent with the system

of equations

D1(Pf)− ∂Q′f

∂x2
+ k

Q′f

x2
= 0, (7.14)

D1(Qf) +
∂P ′f

∂x2
= 0, (7.15)

where D1 =
∑1

i=0 ei
∂f

∂xi
.

The corresponding system for monogenic functions is the following.

Theorem 7.1.17 Let Ω be an open subset of R3 and f : Ω −→ H be a mapping with

continuous partial derivatives. Then the equation Df = 0 is equivalent with the system

of equations

D1(Pf)− ∂Q′f

∂x2
= 0, (7.16)

D1(Qf) +
∂P ′f

∂x2
= 0. (7.17)

Proposition 7.1.18 Let Ω be an open subset of R3. If f : Ω −→ H is an Hk-solution,

then
∂f

∂x0
= D̄(Re f) (7.18)

Lemma 7.1.19 If f : Ω −→ H is twice continuously differentiable, then

4(xf) = 2Df + x4f.

Lemma 7.1.20 If f : Ω −→ H is twice continuously differentiable, then

MkM̄k(xf) = 2Mkf + xMkM̄kf.
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Proof. From lemma 7.1.6, we have

MkM̄k(xf) = 4(xf)− k∂(xf)

x2∂x2
+ k

Q(xf)e2
x22

.

The product rule of Q leads to

Q(xf) = xQf + x2f
′.

Applying the lemma 7.1.19, we obtain

MkM̄kf(x) = 2(Dkf)(x) + x4f − k∂(xf)

x2∂x2
− ke2f

x2
+ k

Q(xf)e2
x22

+ k
f ′e2
x2

= 2(Mkf)(x) + xMkM̄kf − 2k
Q′f

x2
+ k

f ′e2 − e2f
x2

.

Thus the result holds by lemma 7.1.3.

Theorem 7.1.21 The set of hyperbolic harmonic functions is left and right complex

vector space.

Theorem 7.1.22 Let f : Ω −→ H be twice continuously differentiable. Then f is

k-hypermonogenic if and only if f and xf are k-hyperbolic harmonic functions.



Chapter 8

Interactive tools

Two interactive tools were designed using Matlab for this study.

- An user interface that aids in visualizing and understanding the transformation

of the spheres - Euclidean and hyperbolic.

- An user interface to locate the center of a hyperbolic sphere.

As the user varies the design conditions in the Graphical User Interface(GUI), the

corresponding geometry is sketched.

Figure 8.1: A Graphical User Interface to sketch the geometries of the mapping function

48
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The Graphical User Interface in figure 8.1 has the following features:

Geometry - A drop down list box that allows the user to select between the Euclidean

and hyperbolic sphere.

Euclidean Radius - A text box and slider that enables the user to enter the radius of

an Euclidean sphere. Its default value is set to 1.

Hyperbolic Radius - The hyperbolic radius is calculated for a hyperbolic ball based on

the Euclidean radius entered by the user and it is shown here.

Figure 8.2: An User Interface that shows the movement of the center in a hyperbolic

ball. The non-Euclidean center is shown using a ’red’ marker.

Center of the sphere - This panel allows the user to change the co-ordinates of an

Euclidean sphere. The input can be entered either using the text boxes or the sliders.

Note: Recall that the z co-ordinate for a hyperbolic sphere is strictly greater than 0 and

the center of a hyperbolic sphere is not the same as the centre of an Euclidean sphere.

- X value represents the x co-ordinate of a sphere.

- Y value represents the y co-ordinate of a sphere.
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- Z value represents the z co-ordinate of a sphere.

lamba - This is the transformation parameter λ calculated from the value of the radius

and the centre of a sphere.

Save Image - It is a push button to save the image of a geometric shape.

Reset - Another push button that allows the user to reset the parameters of the images

to their default values. In other words it resets a geometric shape to its default view.

3D Rotation - This feature enables the user to rotate an image to any orientation

using the mouse. By right-clicking on the image the context menu appears. This

includes the menu item Rotation options. After an option is selected from the

sub-menu, the image can be rotated by pressing and holding down the mouse button.

In addition, the context menu also includes the following items:

- Reset to Original Menu This resets the image to the default view.

- Go to xy view A view of the image along the Z axis.

- Go to xz view A view of the image along the Y axis.

- Go to yz view A view of the image along the X axis.

The Interactive tool in figure 8.2 plots the location of a non-Euclidean center in a

hyperbolic sphere and includes most of the features of user interface in figure 8.1.



Chapter 9

Conclusion

The present study was to determine the properties of a hypercomplex Joukowski trans-

formation. The shapes deduced from both the Euclidean and Non-Euclidean geometries

are intriguing. In comparison the mapping function for an Euclidean geometry does

have similarities with the 2-dimensional profile except for the case when the parameter

λ equals the radius of the sphere. Furthermore, the hyperbolic geometry renders a

different view altogether with shapes evolving from variations in the final co-ordinate

axis.

The highlight of the hypercomplex map is the airfoils in three dimensions. No

modifications are needed in the spherical co-ordinates to generate the airfoil shapes

which is unlike the profile in R3 (4.9). Besides this, cambered airfoils can also be

constructed using this hypercomplex function.

From an application standpoint, the question remains ‘ can these results address the

issues of real-life? ’ In simple words, to know if the airfoil shapes generated by using

quaternions can be used. It is known that systematic methods are employed in devel-

oping airfoils in the aviation sector. These techniques are tailor-made to meet certain

requirements and are not disclosed publicly. However, further experimental investiga-

tions to compare these methods including the proposed mapping function in this study

might provide some useful insights into these complicated geometries. Moreover, it is

an opportunity to find out if this method can be used as a replacement as well, thus

opening up future work.

Quaternions, until now have been considered to be less intricate. Now with their

appearance in a classic mathematical technique, they could even shed light on some of

the methods applied in the aviation world.

On second thoughts, the airfoils produced can be treated as streamlined objects and

not just as cross sectional shapes. This provokes more interesting questions and the

areas where they can be implemented. Probably the list could begin from the design
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of stream locomotives such as solar vehicles.

To conclude, the transformation functions (5.2) and (6.11) also find themselves as

hypermonogenic functions. Plus, these equations are noticed to route to a system (7.3)

that are commonly used in fluid flow or electrostatics.
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Appendix A

M-files

In this chapter, the source codes written using Matlab for this study are included. The

values used in the transformation functions (4.16) and (6.11) to plot the airfoils are

tabulated at the end.

A.1 Joukowski profile in 2-dimension

c l o s e a l l ;

c l e a r a l l ;

c l c ;

d i sp ( 'Centre o f the c i r c l e ' ) ;
c1 = input ( 'x coord ina te : ' ) ;
c2 = input ( 'y coord ina te : ' ) ;
b = input ( ' rad iu s o f the c i r c l e : ' ) ;

c = c1+1i∗c2 ;

ang le = l i n s p a c e (0 ,2∗ pi , 1000 ) ;

lambda = b − abs ( c ) ;

z = b ∗( cos ( ang le )+ 1i∗ s i n ( ang le ) ) + c ;

f i g u r e (1 )

p l o t ( r e a l ( z ) , imag ( z ) , 'LineWidth ' , 2 )
ax i s ([−3 3 −3 3 ] )

g r i d on

J = z + lambda ˆ2 ./ z ; % Joukowski Transformation

f i g u r e (2 )

p l o t ( r e a l ( J ) , imag ( J ) , 'LineWidth ' , 2 , ' Color ' , 'k ' )
g r i d on

ax i s ([−5 5 −3 3 ] )
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A.2 Joukowski profile in Rm+1

This program handles the case for m = 2 in (4.8) and three variations of the spherical

co-ordinates are used. Case I generates the shapes mentioned in the proposition 4.3.1

and case II and III yields airfoils in three dimensions.

%% CASE I

opengl neverselect ;

c l e a r a l l ;

c l o s e a l l ;

c l c ;

numfaces = 100 ;

phi = l i n s p a c e (0 ,2∗ pi , numfaces ) ;

theta = l i n s p a c e (0 , pi , numfaces ) ;

[ phi , theta ] = meshgrid ( phi , theta ) ;

d i sp ( 'Center /Or ig in o f the sphere ' ) ;
c1 = input ( 'X Coordinate : ' ) ;
c2 = input ( 'Y Coordinate : ' ) ;
c3 = input ( 'Z Coordinate : ' ) ;
r = input ( 'Radius o f the sphere : ' ) ;

x0 = r∗ s i n ( phi ) + c1 ;

x1 = r∗ cos ( phi ) .∗ cos ( theta ) + c2 ;

x2 = r∗ cos ( phi ) .∗ s i n ( theta ) + c3 ;

f i g u r e (1 )

s u r f c ( x1 , x2 , x0 ) ;

colormap bone

lightangle (0 , 60)

ax i s equal

% Joukowski hypercomplex p r o f i l e

w0 = 2/3∗(r−1/r ˆ2) ∗ s i n ( phi ) ;

w1 = 2/3∗( r/2+1/r ˆ2) ∗ cos ( phi ) .∗ cos ( theta ) ;

w2 = 2/3∗( r/2+1/r ˆ2) ∗ cos ( phi ) .∗ s i n ( theta ) ;

f i g u r e (2 )

s u r f c ( w0 , w2 , w1 ) ;

colormap bone

lightangle (0 , 60 )

ax i s equal

%% CASE I I

opengl neverselect ;

c l e a r a l l ;

c l o s e a l l ;

c l c ;

numfaces = 100 ;
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phi = l i n s p a c e (0 ,2∗ pi , numfaces ) ;

theta = l i n s p a c e (0 , pi , numfaces ) ;

[ phi , theta ] = meshgrid ( phi , theta ) ;

d i sp ( 'Center /Or ig in o f the sphere ' ) ;
c1 = input ( 'X Coordinate : ' ) ;
c2 = input ( 'Y Coordinate : ' ) ;
c3 = input ( 'Z Coordinate : ' ) ;
r = input ( 'Radius o f the sphere : ' ) ;

x0 = (1+r ) ∗ s i n ( phi ) + c1 ;

x1 = −r+(1+r ) ∗ cos ( phi ) .∗ cos ( theta ) + c2 ;

x2 = (1+r ) ∗ cos ( phi ) .∗ s i n ( theta ) + c3 ;

f i g u r e (1 )

s u r f c ( x1 , x2 , x0 ) ;

colormap bone

lightangle (0 , 60)

ax i s equal

v = ( rˆ2+(1+r ) ˆ2−2∗r∗(1+r ) ∗ cos ( phi ) .∗ cos ( theta ) ) .ˆ(−3/2) ;

% Joukowski hypercomplex p r o f i l e

w0 = 2/3∗x0 .∗ ( 1 − v ) ;

w1 = 2/3∗x1 . ∗ ( 0 . 5 + v ) ;

w2 = 2/3∗x2 . ∗ ( 0 . 5 + v ) ;

f i g u r e (2 )

s u r f c ( w0 , w2 , w1 ) ;

colormap bone

lightangle (0 , 60 )

ax i s equal

%% CASE I I I

opengl neverselect ;

c l e a r a l l ;

c l o s e a l l ;

c l c ;

numfaces = 100 ;

phi = l i n s p a c e (0 ,2∗ pi , numfaces ) ;

theta = l i n s p a c e (0 , pi , numfaces ) ;

[ phi , theta ] = meshgrid ( phi , theta ) ;

d i sp ( 'Center /Or ig in o f the sphere ' ) ;
c1 = input ( 'X Coordinate : ' ) ;
c2 = input ( 'Y Coordinate : ' ) ;
c3 = input ( 'Z Coordinate : ' ) ;
r = input ( 'Radius o f the sphere : ' ) ;

x0 = (1+r ) ∗ s i n ( phi )+ c1 ;

x1 = (1+r ) ∗ cos ( phi ) .∗ cos ( theta ) + c2 ;

x2 = −r+(1+r ) ∗ cos ( phi ) .∗ s i n ( theta ) + c3 ;
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f i g u r e (1 )

s u r f c ( x1 , x2 , x0 ) ;

colormap bone

lightangle (0 , 60)

ax i s equal

v = ( rˆ2+(1+r ) ˆ2−2∗r∗(1+r ) ∗ cos ( phi ) .∗ s i n ( theta ) ) .ˆ(−3/2) ;

% Joukowski hypercomplex p r o f i l e

w0 = 2/3∗x0 .∗ ( 1 − v ) ;

w1 = 2/3∗x1 . ∗ ( 0 . 5 + v ) ;

w2 = 2/3∗x2 . ∗ ( 0 . 5 + v ) ;

f i g u r e (2 )

s u r f c ( w0 , w2 , w1 ) ;

colormap bone

lightangle (0 , 60 )

ax i s equal

A.3 Joukowski profile - Euclidean

The program below plots the Joukowski transformations for an Euclidean sphere.

opengl neverselect ;

c l e a r a l l ;

c l o s e a l l ;

c l c ;

k = 1 ;

numfaces = 100 ;

d i sp ( ' Coordinates o f the sphere ' ) ;
c1 = input ( 'X coord inate : ' ) ;
c2 = input ( 'Y coord inate : ' ) ;
c3 = input ( 'Z coord inate : ' ) ;
r = input ( 'Radius o f the sphere : ' ) ;

phi = l i n s p a c e (0 , pi , numfaces ) ;

theta = l i n s p a c e (0 ,2∗ pi , numfaces ) ;

[ phi , theta ] = meshgrid ( phi , theta ) ;

x1 = r∗ s i n ( phi ) .∗ cos ( theta ) + c1 ;

x2 = r∗ s i n ( phi ) .∗ s i n ( theta ) + c2 ;

x3 = r∗ cos ( phi ) + c3 ;

subp lot ( 1 , 2 , 1 )

s u r f c ( x1 , x2 , x3 ) ;

colormap bone

material shiny

lightangle (0 , 60)
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ax i s equal

lambda = r−s q r t ( c1ˆ2+c2ˆ2+c3 ˆ2) ; % Transformation parameter

f o r i = 1 : l ength ( x1 )

f o r j = 1 : l ength ( x2 )

q (k , 1 ) = x1 (i , j ) ;

q (k , 2 ) = x2 (i , j ) ;

q (k , 3 ) = x3 (i , j ) ;

q (k , 4 ) = 10e−6;

% Joukowski t rans fo rmat ion

JTr = [ q (k , 1 ) q (k , 2 ) q (k , 3 ) q (k , 4 ) ]+lambda ˆ2 .∗ quatinv ( [ q (k , 1 ) q (k , 2 ) q (k , 3 ) ←↩
q (k , 4 ) ] ) ;

J (k , 1 ) = JTr (1 ) ;

J (k , 2 ) = JTr (2 ) ;

J (k , 3 ) = JTr (3 ) ;

k = k + 1 ;

end

end

p = 1 ;

f o r m = 1 : numfaces

f o r n = 1 : numfaces

JR (n , m ) = J (p , 1 ) ;

p = p + 1 ;

end

end

q = 1 ;

f o r m = 1 : numfaces

f o r n = 1 : numfaces

JIm1 (n , m ) = J (q , 2 ) ;

q = q + 1 ;

end

end

s = 1 ;

f o r m = 1 : numfaces

f o r n = 1 : numfaces

JIm2 (n , m ) = J (s , 3 ) ;

s = s + 1 ;

end

end

subplot ( 1 , 2 , 2 )

s u r f c ( JR , JIm1 , JIm2 ) ;

colormap bone

material shiny

lightangle (0 , 60)

ax i s equal
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A.4 Joukowski profile - Hyperbolic

This program sketches the Joukowski transformations for a hyperbolic sphere.

opengl neverselect ;

c l e a r a l l ;

c l o s e a l l ;

c l c ;

k = 1 ;

numfaces = 100 ;

phi = l i n s p a c e (0 , pi , numfaces ) ;

theta = l i n s p a c e (0 ,2∗ pi , numfaces ) ;

[ phi , theta ] = meshgrid ( phi , theta ) ;

d i sp ( ' Coordinates o f the sphere ' ) ;
c1 = input ( 'X coord inate : ' ) ;
c2 = input ( 'Y coord inate : ' ) ;
c3 = input ( 'Z coord inate (Z > 0) : ' ) ;

whi l e ( c3 <= 0)

c3 = input ( 'Z Coordinate (Z > 0) : ' ) ;
end

re = input ( ' Eucl idean rad iu s : ' ) ;

rh = as inh ( re/c3 ) ; % Hyperbol ic rad iu s

hc3 = c3∗ cosh ( rh ) ;

y1 = r∗ s i n ( phi ) .∗ cos ( theta ) − c1 ;

y2 = r∗ s i n ( phi ) .∗ s i n ( theta ) − c2 ;

y3 = r∗ cos ( phi )− hc3 ;

subp lot ( 1 , 2 , 1 )

s u r f c ( y1 , y2 , y3 ) ;

colormap summer

material shiny

lightangle (0 , 60 )

ax i s equal

lambda = r − s q r t ( c1ˆ2 + c2ˆ2 + hc3 ˆ2) ; % Transformation parameter

f o r i = 1 : l ength ( y1 )

f o r j = 1 : l ength ( y2 )

q (k , 1 ) = y1 (i , j ) ;

q (k , 2 ) = y2 (i , j ) ;

q (k , 3 ) = y3 (i , j ) ;

q (k , 4 ) = 10e−6;

% Joukowski Transformation

JTr = [ q (k , 1 ) q (k , 2 ) q (k , 3 ) q (k , 4 ) ]+ lambda ˆ2∗ quatinv ( [ q (k , 1 ) q (k , 2 ) q (k , 3 ) ←↩
q (k , 4 ) ] ) ;
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J (k , 1 ) = JTr (1 ) ;

J (k , 2 ) = JTr (2 ) ;

J (k , 3 ) = JTr (3 ) ;

k = k+1;

end

end

p = 1 ;

f o r m = 1 : numfaces

f o r n = 1 : numfaces

JR (n , m ) = J (p , 1 ) ;

p = p+1;

end

end

q = 1 ;

f o r m = 1 : numfaces

f o r n = 1 : numfaces

JIm1 (n , m ) = J (q , 2 ) ;

q = q+1;

end

end

s = 1 ;

f o r m = 1 : numfaces

f o r n = 1 : numfaces

JIm2 (n , m ) = J (s , 3 ) ;

s = s+1;

end

end

subplot ( 1 , 2 , 2 )

s u r f c ( JR , JIm1 , JIm2 ) ;

colormap summer

material shiny

lightangle (0 , 60 )

ax i s equal
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A.5 Non-Euclidean center

Below is the source code that plots the non-Euclidean center of a hyperbolic sphere. The

Euclidean sphere along with its center is also drawn.

c l e a r a l l ;

c l o s e a l l ;

c l c ;

numfaces = 100 ;

az = −13;
el = 6 ;

phi = l i n s p a c e (0 , pi , numfaces ) ;

theta = l i n s p a c e (0 ,2∗ pi , numfaces ) ;

[ phi , theta ] = meshgrid ( phi , theta ) ;

d i sp ( 'Co−o rd ina t e s o f the sphere ' ) ;
c1 = input ( 'X coord inate : ' ) ;
c2 = input ( 'Y coord inate : ' ) ;
c3 = input ( 'Z coord inate : ' ) ;
r = input ( ' Eucl idean rad iu s : ' ) ;

rh = as inh ( r/c3 ) ; % Hyperbol ic rad iu s

hc3 = c3∗ cosh ( rh ) ;

% Hyperbol ic sphere

x = r∗ s i n ( phi ) .∗ cos ( theta ) + c1 ;

y = r∗ s i n ( phi ) .∗ s i n ( theta ) + c2 ;

z = r∗ cos ( phi ) + hc3 ;

% Eucl idean sphere

ex = r∗ s i n ( phi ) .∗ cos ( theta ) + c1 ;

ey = r∗ s i n ( phi ) .∗ s i n ( theta ) + c2 ;

ez = r∗ cos ( phi ) + c3 ;

f i g u r e (1 )

s u r f (x , y , z ) ;

colormap white

alpha ( 0 . 4 )

hold on

scatter3 ( c1 , c2 , hc3 , ' ro ' , ' f i l l e d ' ) ; % Hyperbol ic c en t e r

hold on

s u r f ( ex , ey , ez ) ;

colormap white

alpha ( 0 . 4 )

hold on

scatter3 ( c1 , c2 , c3 , 'bo ' , ' f i l l e d ' ) ;
rotate3d on

ax i s equal

view ( az , el ) ;
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A.6 Test values

Table A.1: Euclidean sphere

Geometry Euclidean radius Parameter Euclidean centre

r λ x y z

Airfoil

Symmetric 1.35 1.05 0.3 0 0

Non-symmetric (positive camber) 1.3 0.983772 0.3 0 0.1

Non-symmetric (negative camber) 1.3 0.983772 0.3 0 -0.1

Table A.2: Hyperbolic sphere

Geometry Euclidean radius Parameter Euclidean centre

r rh λ x y z

Airfoil

Symmetric 1 0.362395 -1.88091 0 0 2.69993
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