

KRISTIAN HUHTANEN

APPLYING PRODUCT LINE APPROACH FOR A CONTROL

SYSTEM FAMILY

Master of Science Thesis

Examiner: Professor Kai Koskimies

Supervisor: M.Sc.(Tech.) Antti Jaatinen

Examiner and topic approved in the

Computing and Electrical Engineering

Department Council meeting

on 7
th

 December 2011

ii

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Signaalikäsittely ja tietoliikennetekniikan koulutusohjelma

HUHTANEN, KRISTIAN:

Tuotelinja-ajattelun soveltaminen ohjausjärjestelmätuoteperheeseen

Diplomityö, 87 sivua

Helmikuu 2012

Pääaine: Hajautetut ohjelmistot

Tarkastaja: professori Kai Koskimies

Avainsanat: ohjelmistotuotelinja, tuoterunkoarkkitehtuuri, variaatiot, tuoteperhe,

ohjausjärjestelmät

Diplomityö on tehty Metso Automation Oy:lle RESPO(Reliable and Safe Processes)

-projektin osana. RESPO on yksi kymmenestä EFFIMA(Energy and lifecycle efficient

machines)-tutkimushankkeen projekteista. EFFIMA on FIMECC(Finnish Metal and

Engineering Competence Cluster):n älykkäiden ratkaisujen tutkimusstrategian osa.

RESPO-projektin yhtenä tavoitteena on kehittää sovellusarkkitehtuurin muodostamisen

malleja ja suunnitteluperiaatteita. Työn tavoitteena on tutkia ohjelmistotuotelinja-

ajattelun soveltamista kivenmurskauslaitteiden ohjausjärjestelmiin.

Ohjausjärjestelmätuoteperheessä on tunnistettu ohjelmistokehitykselle tyypillisiä

ongelmakohtia sekä tuoteperheen heterogeenisyydessä että tuotteiden elinkaarten

hallinnassa. Tuoteperheen lisääntynyt heterogeenisyys ja erilaiset variaatiot rajoittavat

uudelleenkäyttöä sovelluksissa. Lisäksi ne kuluttavat ylimääräisiä resursseja tuotteiden

koko elinkaaren ajan.

Työssä etsitään tuotelinja-ajattelusta ratkaisuja tuoteperheen heterogeenisyyden ja

tuotteiden elinkaarten hallinnan ongelmiin. Työ keskittyy tuotelinjan kehityksen

alkuvaiheeseen. Työn tavoitteena on kattaa muun muassa tuotelinjan rajaus sekä

organisaatio-, prosessi- että liiketoimintanäkökulmia. Työssä mallinnetaan variaatioita

nykyisessä tuoteperheessä tutkimalla eri ohjausjärjestelmien vaatimuksia ja

ominaisuuksia. Näiden perusteella järjestelmien kehityssuuntaa ja tulevia tarpeita

estimoidaan. Lisäksi työssä mallinnetaan variaatioita nykyisessä tuoteperheessä, jotta

niitä voidaan hallita paremmin tulevaisuudessa. Tuoteperheen variaatioiden ja

vaatimusten perusteella luodaan alustava modernisoitu tuoterunkoarkkitehtuuri uuden

sukupolven tuoteperheelle.

Uuden arkkitehtuurin tavoitteina ovat: pienemmät kustannukset, lyhyempi kehitysaika,

vähentyneet virheet, strateginen uudelleenkäyttö ja helpottunut tuotehallinta. Näiden

tavoitteiden saavuttamiseksi työssä määritetään tuoterunkoarkkitehtuurin lisäksi myös

tuotelinja-ajattelusta mukailtu ohjelmistokehitysprosessi ja organisaatiojako. Työ

sisältää myös tuoterunkoarkkitehtuurin ja tuotelinjan arviointiosuudet, joiden

tarkoituksena on arvioida vahvuuksia ja heikkouksia valitusta lähestymistavasta.

iii

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Signal Processing and Communications Engineering

HUHTANEN, KRISTIAN: Applying Product Line Approach for a Control System

Family

Master of Science Thesis, 87 pages

February 2012

Major: Distributed software

Examiner: Professor Kai Koskimies

Keywords: product lines, product line architecture, variation management, product

family, control systems

This thesis was done for Metso Corporation as a part of RESPO project. RESPO is one

of the ten projects in EFFIMA (Energy and Life Cycle Efficient Machines) research

program. EFFIMA belongs to FIMECC’s (Finnish Metals and Engineering Competence

Cluster) Intelligent Solutions (IS) strategic research theme. The purpose of task 2 in

RESPO is to develop models and design principles into the development of software

architecture. The goal of this thesis is to study the possibilities of applying software

product line approach to rock crushing control system family.

Several software-related problems have been recognized with the control system family.

These include the long lifecycles and heterogeneity in the family. Another challenge is

to manage variations in the family. The uncontrolled variations and heterogeneity

prevent the effective reuse and increase the amount of extra work throughout the

product lifecycle.

The product line approach is applied to find solutions to the problems presented before.

The approach in this thesis concentrates in the early development phase of the product

line that includes addressing business, organizational, process and technological aspects.

The variations in the current product family are modelled by scoping the requirements

and the properties of control systems. The scoping is used to provide an understanding

of the development trend in the business segment and thus to estimate future

requirements. It is also used to provide better means for variation management in the

product family. The scoping process and the variation modelling are used to create

preliminary modernized product line architecture for next generation control systems.

Less development and maintenance costs, shorter time-to-market, less errors, increased

expandability, strategic reuse and easier product management are key incentives for the

new architecture approach. To achieve these, the organization and its processes must be

adapted and committed to the product line concept. In order to gain full benefits from

the approach, the strengths and the weaknesses of both architecture and the product line

itself need to be evaluated.

iv

PREFACE

This thesis was done as a part of RESPO project in EFFIMA research program for

Metso Corporation. I give my regards to my inspector professor Kai Koskimies and to

my instructor M.Sc.(Tech.) Antti Jaatinen. Mr Jaatinen is responsible of Metso

Corporation participation in RESPO project. I would like to thank Mikko Mäkinen for

making this thesis possible. I would also like to extend my gratitude to other personnel

in Metso Corporation for giving guidance and alternative viewpoints to the topic. In

addition I would like to give special thanks to my parents and brothers for given support

and encouragement.

On 9
th

 of January 2012, In Tampere, Finland

Kristian Huhtanen

v

TABLE OF CONTENTS

1 Introduction ... 10

2 Background ... 12

2.1 Software architecture .. 12

2.1.1 Overview .. 12

2.1.2 Architecture views and viewpoints .. 14

2.1.3 Design patterns .. 14

2.1.4 Features .. 15

2.1.5 Functionality and architecture ... 15

2.1.6 Architecture and quality attributes ... 16

2.1.7 Importance of software architecture .. 16

2.2 Variation in software systems ... 17

2.2.1 Variation management ... 17

2.2.2 Modelling variability ... 18

2.2.3 Variation visualization ... 20

2.2.4 Implementing variation .. 21

2.3 Software product lines... 22

2.3.1 Overview .. 23

2.3.2 Variation point ... 24

2.3.3 Product line management... 26

2.3.4 Domain engineering ... 27

2.3.5 Application engineering ... 27

2.3.6 From requirements to a product ... 27

2.3.7 Modelling commonality and variability in product lines................... 28

2.4 Initiating a product line ... 29

2.4.1 Approaching product line architecture .. 29

2.4.2 Business case analysis ... 30

2.4.3 Scoping .. 31

2.4.4 Product and feature planning ... 31

2.4.5 Product line architecture design process .. 31

2.4.6 Validation... 32

3 Starting point ... 34

3.1 Rock crushing automation... 34

3.2 Business .. 36

3.3 Organization .. 37

3.4 Process .. 37

3.5 Technology .. 39

3.5.1 Metso DNA .. 39

3.5.2 Developing tools .. 42

3.6 IC product family .. 43

3.6.1 Overview .. 44

vi

3.6.2 History ... 45

3.6.3 Hardware .. 45

3.6.4 Communication .. 46

3.6.5 Software ... 48

3.6.6 Example IC control systems .. 49

4 From individual products to a product line ... 54

4.1 Scoping .. 54

4.1.1 Common requirements ... 54

4.1.2 Product feature matrix and graph... 57

4.2 Business case analysis ... 61

4.3 Product and feature planning .. 62

4.4 Design of the product line architecture ... 63

4.5 Organization .. 66

4.6 Process .. 68

4.7 Best practices .. 70

5 Evaluation ... 71

5.1 Architecture assessment .. 71

5.1.1 Architectural design decisions ... 71

5.1.2 Modifiability .. 72

5.1.3 Scenario analysis.. 73

5.1.4 Results .. 77

5.2 Product line assessment... 79

5.2.1 Strengths .. 79

5.2.2 Weaknesses .. 79

5.2.3 Opportunities ... 80

5.2.4 Threats ... 80

6 Conclusion .. 81

References ... 83

vii

LIST OF FIGURES

Figure 1. Conceptual class diagram of a system. Adapted from [5]. 13

Figure 2. Variation in time. Adapted from [16]. .. 20

Figure 3. Methods to visualize variation in a system. Adapted from [17]. 21

Figure 4. Basic concepts of Software product line engineering. Adapted from [3]. 24

Figure 5. Key activities in software product line engineering. Adapted from [3]. 24

Figure 6. Variability planes. Adapted from [23]. ... 25

Figure 7. Early and late variability funnel with variability levels. Adapted from [15]. . 26

Figure 8. Software development with product lines. Adapted from [24]. 28

Figure 9. Alternative approaches into product line architecture development. Adapted

from [9, p. 167]. .. 30

Figure 10. Small open pit mine. [30]. .. 35

Figure 11. Controller tasks in rock crushing automation. Adapted from [31]. 36

Figure 12. General view of MIPA. Adapted from [30]. ... 37

Figure 13. Software development phases and deliverables. Adapted from [30]............ 38

Figure 14. Three activities in Metso Dynamic Network for Applications. Adapted from

[33]. ... 39

Figure 15. Metso DNA architecture. Adapted from [33]. .. 40

Figure 16. Metso DNA concepts. Adapted from [30]. ... 42

Figure 17. The automation level of IC control systems. .. 44

Figure 18. IC product family. ... 44

Figure 19. Hardware abstraction of a machine control system. Adapted from [31]. 46

Figure 20. Communication levels with IC control systems. .. 47

Figure 21. An abstract software structure of IC control system..................................... 48

Figure 22. The hardware of stationary cone crusher. Adapted from [30]. 49

Figure 23. The automation hardware of IC7000. Adapted from [30]. 50

Figure 24. The hardware of a portable jaw crusher. Adapted from [30]........................ 51

Figure 25. The automation hardware of IC10. Adapted from [30]. 51

Figure 26. The hardware of a stationary jaw crusher. Adapted from [30]. 52

Figure 27. The automation hardware of IC1000. Adapted from [30]. 53

Figure 28. Partial feature graph of current IC family. .. 59

Figure 29. IC product line overview. ... 63

Figure 30. IC product line architecture as a class diagram. ... 65

Figure 31. A structure design for an abstract unit controlled by IC. 66

Figure 32. The engineering unit hierarchy in IC product line. 67

Figure 33. Product line development applied to Metso needs. 69

viii

TERMS AND DEFINITIONS

Term Definition

ALP Alarm processing application server in

Metso DNA.

API Application Programming Interface.

Automation Use of control systems and information

technologies to reduce the need of human

participation in production.

BU Maintenance Server. Backup Server is

used to save current configuration and

packages of a Metso DNA application.

Control system Device or a set of devices to manage,

command, direct or regulate the behaviour

of other devices and systems.

DCS Distributed Control System. See control

system.

DIA Maintenance Server. Diagnostics Server is

used for debugging Metso DNA

applications.

DNA Operate Application Server. Operator Interface

Server is used for all user interaction.

EAS/EAC Engineering Server. EA Repository Server

/ Client are used to configure the control

system.

GUI Graphical User Interface to enable human

machine interaction.

HAL Hardware Abstraction Layer.

HCI Human Computer Interaction or Human

Computer Interface.

HMI Human Machine Interaction or Human

Machine Interface.

HSE Health, Safety and Environment.

IC Intelligent Controller, Control system

family at machine automation level.

IP Ingress Protection. Used to classify rugged

hardware.

Metso DNA Metso Dynamic Network for Applications.

DCS produced by Metso Inc.

PCS Application Server. Process Control

Server includes most of the business logic.

ix

SAAM Software Architecture Analysis Method.

SCADA Supervisory Control And Data

Acquisition.

SEI Software Engineering Institute, Carnegie

Mellon University.

SWOT Also known as SLOT-analysis. SWOT is a

strategic planning method used to evaluate

strengths, weaknesses, opportunities and

threats of an approach.

VP Variation point. Used to identify locations

in product line at which variation may

occur.

Variation space Variability existence of an artefact in

different shapes at the same time.

 10

1 INTRODUCTION

Organizations developing automation software systems face a great deal of challenges

today in both choosing a market segment and system domain. The systems are complex,

because of the integration of mechanical, electrical and software components. Typically

these systems are developed in small series ranging from a few to a few hundred units.

The lifecycle of machine hardware can be up to 30 or 40 years when the lifecycles of

automation hardware and software are up to 10 and 20 years at most. The fact of

automation hardware has shorter lifecycle than the software, generates challenges

especially in maintenance. Another characteristic is the high commonality between the

systems. This is due to the similar software requirements from different customers. [1.]

However, even though the requirements are similar the end products vary. There are at

least four reasons for the heterogeneity of end products. Firstly, all systems are created

by developers each having their own preferences and unique background. Secondly,

alternative solutions are enabled as technology advances. Thirdly, development tools

and process can never be introduced throughout a large organization instantly. Finally,

even though the requirements are similar, there is always need to product tailoring. This

is because no single solution serves the needs of every customer. [2.]

Another key issue in software development is the reuse of software. Especially when

developing similar software systems in series, the amount of overlapping work can be

reduced by reusing different assets. The reuse can be applied for example to

specifications, designs, implementation and testing. With a proper approach reusability

of documentation, architecture, components and tests can significantly reduce the costs,

time-to-market and quality of the end product.

History of reuse in software development begins in 1960s by reuse of subroutines. Only

a decade later the reuse of modules was first introduced. In 1980s objects and in 1990s

components were used to create applications. [3.] Recently an approach commonly

known as software product lines was introduced. The product lines combine business

strategy to the technical one striving for strategic reuse. In practice this means a planned

approach using reusable assets in software development.

 11

The product line approach copes with the problems introduced before by having

common core assets for all products within a family. The core assets are developed

separately from product development. In practice the skeleton of all applications is

created from same reusable assets. Thus the benefits of the reuse are gained and only a

small amount of customization is required to meet the demands of a customer.

The challenges of software development have also been recognized in Metso

Corporation. Metso is a global supplier of process industry machinery with automation

and after sales support. Rock crushing automation is one of many business sections in

Metso. The rock crushing automation aims to provide software solutions to the needs of

Mining and Construction (MAC), which is a business segment within Metso

organization. MAC provides whole and partial crushing plant solutions to both

underground and surface mines.

The goal of this thesis is to study the possibility of using a product line approach in a

control system family for the harsh environment of portable and stationary rock

crushing machines. This thesis addresses business, organizational, process and

technology aspects at the early phase of a product line designing. One of the key issues

in product lines is to manage and model the variance in systems in order to create a

basis for common product line architecture for future applications. This is done by

scoping the control system family and its requirements. Other aspects discussed in the

thesis, are the organization and the processes needed to provide means for better

communication between different stakeholders involved in software development.

The content of the thesis is divided into six chapters including introduction. Chapter 2

provides the background from software architecture, variations in software systems and

product line approach. Chapter 3 illustrates the domain of rock crushing automation.

This includes describing the different control systems, technology, processes and the

organization needed in development. Chapter 4 provides adaptation of product line

approach to the situation described in previous chapter. The adaptation includes among

others feature matrix of the family, a prototype of product line architecture and adjusted

software development process to support the product line approach. The chapter also

describes the situation from business and organizational viewpoints. Chapter 5 reviews

and evaluates the thesis and the rationality of provided results. Chapter 6 provides a

concluding summary for the thesis.

 12

2 BACKGROUND

Architecture is the core of a software system. It is used to provide an abstraction of the

structure and functionality of the system. Same architecture can be used to create

several systems. However, all systems created from the same architecture are not

necessarily alike. These variations need to be modelled and managed especially in

system families. Unmanaged variations reduce the effectiveness of software

development and maintenance. This chapter provides the basic principles of software

architecture, variation in software systems and concludes in the description of software

product line approach, which is used later on this thesis to address the common

problems in software development.

2.1 Software architecture

Software architecture is a documented description of the most relevant design decisions

made for a system. It enables the management of the system through its lifecycle. The

architecture has a significant effect on achieving the quality requirements set for the

system. Therefore many software developing approaches lean strongly on architecture

development.

2.1.1 Overview

Software architecture is used to provide a harsh abstraction of a system that satisfies

requirements set for the system. The software architecture has almost as many

definitions as people addressing it. Nevertheless almost all definitions include

components or elements, relations between them and a structure. One commonly used

definition from Len Bass states following [4]:

”The software architecture of a program or a computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements and the relationships among them.”

Four basic aspects can be derived from the definition:

1. Architecture defines software elements.

2. Systems can comprise more than one structure.

3. Every system with software has architecture.

4. Architecture includes the behaviour of the elements.

 13

Elements or components can be seen as basic building blocks of the system. The

architecture is needed to define relations between these components. Depending on a

viewpoint or an abstraction level, a component can be seen quite differently. This leads

into the second aspect, which states that a system can comprise more than one structure.

Especially in large software projects, the system can be divided into several structures,

or subsystems. The definition also states that every software system has architecture.

This means that a software system created without any particular planning has

architecture just as a software system developed with careful designing. The definition

leaves out evaluation, which is needed to determine the quality of the architecture. To

complete the definition, the behaviour of different component needs to be addressed so

that the components understand and can interact with each other. The behavioural

description of a component includes its functionality and interaction with other system

components. To enable interactions between components, the external visibility of each

component need to be described. A conceptual model of system architecture and its

relations to other aspects of software development is illustrated in Figure 1.

Figure 1. Conceptual class diagram of a system. Adapted from [5].

Every system has an architecture designed for a specific task into described

environment. These are the basis for any architectural description. The architectural

description includes also design decisions and their rationale. The design decisions are

connected to requirements from stakeholders having all their own viewpoints.

 14

2.1.2 Architecture views and viewpoints

A view is another important aspect in architectures. A view is used to represent a set of

architectural components and relations between them. The architecture can be

examined from several different viewpoints and each with different abstraction levels.

The viewpoint usually depends on the role of the stakeholder such as a basic user, an

architect, a developer, a manager or a support engineer. The viewpoints and their

usefulness for different stakeholders are presented in [4, p. 206]. Commonly used 4+1

approach presents five different views to analyze software systems [6].

 Use case view concentrates describing the system from an external viewpoint.

Relevant for the view is how the system interacts with its environment. This

viewpoint is most useful for a basic user, manager or support engineer.

 Logical view digs in a bit deeper into the architecture and includes static

software components, such as classes and interfaces, and the interaction between

them. The view puts stress on the internal functionality of the system. Therefore

it is most useful to software, design, test and support engineers.

 Process view takes into consideration the management and the interaction of

parallel processes and threads. The view puts weight on the performance,

scalability aspects of the system.

 Implementation view divides the system into physical parts such as files, which

are merged to form the system. The view is useful especially for administrators

and support engineers.

 Deployment view describes the distribution of the system. In this view different

hardware and software components and the connections between subsystems are

under evaluation.

2.1.3 Design patterns

A design pattern is commonly known as a proven and used design solution to a

particular problem. The use of design patterns has six significant benefits:

 Providing a solution to a common architecture or design problem

 Bringing forth and sharing the design knowledge within the organization

 Decreasing the effort needed for documenting the system

 Providing means to a higher level abstraction

 Working as building blocks of the system

 Uniting the terminology used by different developers and designers

An extensive description of different types of design patterns can be found in [7; 8].

 15

2.1.4 Features

Software systems are usually very complex. A complex system includes lots of

requirements and functionality. Specifying a system only with requirements and

functionality can be impractical. Thus the requirements are connected to the

functionalities that are grouped into features. The definition of a feature according to

Jan Bosch is [9]:

“a logical unit of functionality that is specified by a set of functional and quality

requirements”

Often different products in a same product family share same functional and quality

requirements to a certain point, but the rest are product-specific. This leads to situation,

where features need to be categorized in order to separate common features from

product-specific ones. Table 1 illustrates one possible categorizing for features.

Table 1. Feature types. Adapted from [10].

Feature type Meaning

Mandatory The feature must be included.

Optional The feature may be included as an independent complement.

Alternative The feature replaces another feature.

Mutually Inclusive Including the specific feature requires other features to be

included as well.

Mutually Exclusive Including the specific feature hinders the ability of including

related other features.

Features are the basis of several architecture modelling and analysis approaches. One of

these is widely used Feature-Oriented Domain Analysis (FODA) and an extension of it

is another known as Feature-Oriented Reuse Method (FORM). In the late 1990s

introduced FORM is a popular approach especially in academic circles. [11.]

2.1.5 Functionality and architecture

The functionality stands for the ability of a software system to accomplish its specified

tasks. In general this requires several software components working together. Therefore

the responsibilities and the interfaces of components need to be defined accurately.

Software architecture describes how the functionality is achieved in a system. This is

done by determining a structure in which functionality is allocated. For example, the

same functionality can be achieved through implementing a single module or several

modules. Generally dividing functionality into several modules is more effective

 16

considering software development and especially from a reuse viewpoint. Approaching

the same problem through the single module structure causes difficulties especially

when several developers are building a software system simultaneously. On the other

hand, dividing a system into too many structural components increases the amount of

management needed to support the development. Thus architecture decisions create

constraints for the system and for the organization. [4, p. 72.]

2.1.6 Architecture and quality attributes

In addition to functional requirements all software architectures need to address quality

aspects as well. The quality and the functional requirements commonly go hand in hand.

Thus designing and modifying architecture involves balancing between the two.

The quality attributes for architecture may include usability, modifiability and

performance aspects. Usability includes also non-architectural aspects such as user

interface (UI) designing. Modifiability is often the most important quality attribute for

the architecture, because the architecture needs to be evolvable and adaptable to future

system requirements. The performance is the most critical requirement especially in

systems with safety-related or real-time requirements. These systems include both

architectural and non-architectural quality requirements. For example, the basic

structure of a real-time system is an architectural decision, but the implementation of

specific algorithm is a non-architectural decision. [4, p. 73.]

2.1.7 Importance of software architecture

As discussed, architecture plays a key role in system designing. Architecture with its

description is a powerful tool to model the complexity of different software systems.

Architecture has three fundamentally important functions.

Firstly, it provides means to a better communication among stakeholders. Generally

each stakeholder has different point of view and concerns addressing the system. The

architecture description and models provides a common language among stakeholders.

Secondly, architecture contains the earliest design decisions. In most cases the

architecture addresses the very fundamentals of the system being developed. Early

decisions, heedless of the quality, set limits in the remaining software development

process. For example, weak structural design decisions can have a tremendous impact

on the implementation process. In addition the architecture can have an effect in

organizational structure. Architecture provides a top-level abstraction to a system and

thus can be used to divide workload between stakeholders. The simpler the architecture

is to understand the simpler it is to assign personnel to implement different system

components. Hence more accurate cost and time estimates can be achieved through well

documented architecture.

 17

Thirdly, as the architecture is an abstraction of a system being designed, it can be reused

later on. This gives significant benefits especially in organizations building several

similar products with small variations. Through the reuse of architecture and mastering

its design decisions, all the previously discussed advantages can be gained. This

explains the interest towards a software product line approach. The software product

line approach is a way to increase reuse of software components by using a common

core to create slightly different products in a product family. Better cost-efficiency and

shorter time-to-market is also achieved with product lines compared to more common

development methods. [4, p. 26.]

2.2 Variation in software systems

Software systems are based on requirements, which rarely describe exactly how the

system is to be done. Therefore the system can be developed for example based on

different hardware and softwar. This is the main reason for the existence of design

choices used to specify a system being created. The design choices are the origin for

variants, which specify differences in similar systems. Variation exists throughout a

product lifecycle in different forms or types. Different phases in the product lifecycle

are commonly known as variation levels. The variability of a software system is a

critical factor when designing reusable system components. Therefore variation

management is needed to handle dependencies and variations in software artefacts.

2.2.1 Variation management

One of the key activities in software engineering is to manage commonalities and

variations between products. According to Schmid this activity, variation management,

is defined as:

“Variability management encompasses the activities of explicitly representing

variability in software artefacts throughout the lifecycle, managing dependencies among

different variability, and supporting the instantiations of the variability.” [12.]

Variation management addresses different aspects of variability in software engineering.

This includes identifying, modelling, storing, changing and initiating variations

throughout the lifecycle of a product. Variations, variants and variation levels, and their

relations need to be managed. To harness the full potential from software development,

proper variation management methods are needed. Managing variations can further be

divided into key elements: consistency, scalability, traceability and visualization.

 18

Consistency stands for the standardization of processes meaning that variability is

handled in the same way on all variation levels and throughout product lifecycles.

Similar products may form product families in which products can be developed and

maintained with same resources and processes. The product families can expand or

shrink frequently, which means that the development methods need to be adapted to

new needs. This aspect is commonly known as scalability. Traceability is an important

factor when changes are to be done. The traceability needs to be supported both

horizontally and vertically. The horizontal traceability ensures that variations can be

traced within same stage of a product lifecycle. For example, changes designing

functionality for one feature may cause changes in another. The vertical traceability

means that variations can be traced from one lifecycle stage to another. Variations on

different levels and lifecycle stages are connected to each other by a path activated with

a design decision. These relations need to be mapped correctly in order to make

controlled changes possible. Need for proper variation visualization grows with the

complexity of the product. In complex systems several models and visualization

methods are needed in abstracting variability and its dependencies into a more

simplified form. [2; 13] In addition to visualization also effective processes are needed

to identify, define, trace and manage variability [14].

2.2.2 Modelling variability

Variation types

Variations in a product line can be categorized by their type and meaning [10]. These

are used to for example determine whether a specific feature is added or removed from

the system. Table 2 represents an example variation categorization for implementation

phase. This categorizing may also be applied, with small adjustments, to other phases of

software development.

Table 2. Variation types. Adapted from [10].

Variability type Meaning

Positive Feature is added.

Negative Feature is removed.

Optional Feature is included.

Alternative Feature is replaced.

Function Functional changes occur.

Behavioural Behavioural changes occur.

Platform / Environment Platform or environment changes.

 19

Another way to categorize variations is to split variations into external and internal

variability. This approach is more suitable for marketing or sales functions due to the

fact that it illustrates variations in a simplified form. For example, the external

variations may be visible or selectable to all stakeholders, including customers, whereas

the internal variations are hidden from all except the developers.

Levels of variability

Variability exists on different abstraction levels of system design. At product level

variability can be seen as variations in system architecture. At component level

variability addresses aspects such as, how to evolve and add new interfaces to a

component, so that the reusability of the component is increased. Additionally a

conventional component may consist of feature sets, which can vary on sub-component

level. Nevertheless most of the system variability takes place at code level because of

the implementation of functionalities varies depending on developers and their

preferences. [15.]

Variation in time and space

As said variation exist in many forms. Variation can exist in time and space. Variation

in time can be easily understood as different versions of an artefact or a product if

preferred. Configuration management is the practice to address problems regarding

variation in time. Variation in time is can be illustrated by dividing ordinary software

development into domain engineering and to application engineering. The amount of

variation behaves differently when developing a platform than an application on top of

it. These differences are illustrated in Figure 2.

 20

Figure 2. Variation in time. Adapted from [16].

Variation in space stands for artefacts existing in different shapes. In practice this means

that basic system assets or components can be used slight differently in different

products. For example, the behaviour of the component can change depending on

variations in the quality requirements of a system.

2.2.3 Variation visualization

As earlier emphasized the visualization of the variability is one of the key aspects in

variation management. Thereby proper representation methods are needed. Several

different notations for modelling have been introduced, but no standard has been

created. Many of the representation notations are feature-oriented and concentrate in

representation of all possible valid product configurations, which is the main task of the

variation visualization. Figure 3 illustrates three approaches in variability

representation.

 21

Figure 3. Methods to visualize variation in a system. Adapted from [17].

Different types of feature matrices and diagrams are a very common and effective way

to illustrate variability in simple cases, but as the complexity of a product grows so does

the amount of information needed to represent. Challenges in scalability are not the only

ones. In addition especially largely heterogeneous product families require a massive

amount of flexibility from visualization methods and tool support. Current recognized

weak spots with the tool support are [17; 18]:

 Support for domain specific adaptations

 Traceability modelling

 Extension mechanisms

 Support for evolution

 Multi-team modelling capabilities

 Integration with sales processes

2.2.4 Implementing variation

Implementation of variation consists of two essential steps. First variation needs to be

specified so that different variants, their behaviour and the method of implementation

are defined. The second step in the process is commonly known as realization. At this

step a realization mechanism is chosen for implementation of an artefact. There are

several mechanisms available depending on the environmental and the architectural

constraints of the system. Different mechanisms and their support for variability aspects

are illustrated in Table 3. [10.]

 22

Table 3. Variation implementation methods and use cases. Adapted from [10].

The idea of parameterization is to create components whose behaviour or functionality

can be configured by setting parameters. One specialization of parameterization

mechanism is dynamic parameterization, which stands for the run-time modification of

components. Parameterization is an effective way to enhance the reusability of

components and increase traceability between design decisions. Templates are models

created with generic code, which can be parameterized to accomplish a specified

behaviour. Extensions and inheritance are mechanisms used to increase attributes and

functionality of a reusable component to fulfil a set of requirements. [10; 15.]

2.3 Software product lines

Software product line is an approach to use a common architecture and asset base to

develop several similar products. The software product line is based on product line

architecture and several activities needed, for example, to manage variation points

throughout product lifecycle. The product line engineering includes three essential

activities: domain engineering, application engineering and product line management,

which are described more thoroughly in this chapter.

P
o
s
itiv

e

N
e
g
a
tiv

e

O
p
tio

n
a
l

A
lte

rn
a
tiv

e

M
u
ltio

p
tio

n
a
l

P
o
s
itiv

e

N
e
g
a
tiv

e

O
p
tio

n
a
l

A
lte

rn
a
tiv

e

M
u
ltio

p
tio

n
a
l

P
o
s
itiv

e

N
e
g
a
tiv

e

O
p
tio

n
a
l

A
lte

rn
a
tiv

e

M
u
ltio

p
tio

n
a
l

C
o
m

p
ile

L
in

k

R
u
n

P
o
s
tru

n

S
c
a
la

b
ility

T
ra

c
e
a
b
ility

S
o
C

Aspect-oriented programming

Conditional Compilation

Dynamic Class Loading

Dynamic Link Libraries

Inheritance

Overloading

Parameterization

Static Libraries

Possible

Difficult / Ineffective

Not possible

Interface Implementation Initialization OtherTiming

 23

2.3.1 Overview

Software product line engineering is a fairly new approach to increase the amount of

reuse in software engineering. The basis of the software product line is architecture,

which specifies commonalities as well as planned variability of different products in a

product family. The advantages of the approach are studied to be increased productivity,

time-to-market, customer satisfaction, better product quality and lower labour needs [1;

3; 19; 20; 21]. The approach fits well into organizations that have a need to produce

several similar products with slight variations. The definition of software product line or

software product family varies depending of the viewer. According to Clements and

Northrop software product line is following [3]:

“A software product line is a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way.”

Definition by Jan Bosch [9]:

“A software product line consists of product line architecture and a set of reusable

components that are designed for incorporation into the product line architecture. In

addition, the product line consists of the software products that are developed using the

mentioned reusable assets.”

Though there are slight differences between the two definitions, both recognize the

same concept. That is, in the product line there is a set of product specific assets and

reusable core assets, which are shared by different products. Core assets refer typically

to a reuse repository of a product line. This includes assets such as software

components, product line architecture, requirements, documentation, schedules, budgets

etc. In addition, there is a planned and managed way to use the assets to create products

fulfilling set requirements. The basic concepts of product line are illustrated in Figure 4.

 24

Figure 4. Basic concepts of Software product line engineering. Adapted from [3].

Another way to understand product line principles is through its activities. A product

line consists of three major activities illustrated in Figure 5.

Figure 5. Key activities in software product line engineering. Adapted from [3].

All key activities include decisions that have an effect on the product being developed.

The decisions and their effects need to be recognized and thus variation points are used.

2.3.2 Variation point

In software engineering design decisions are vital and need to be made when developing

a system. In product lines these decisions are modelled through variation points. A

variation point describes variability manifestation in development artefacts [22]. Each

decision point (DP) correlates a variation point (VP). Each variation point is at first

specified (VPs) and then later on realized (VPr). This conceptual approach enables

variation points to be scattered on different abstraction planes. These planes are

illustrated in Figure 6.

 25

Figure 6. Variability planes. Adapted from [23].

A decision point consists of information about the transformations, constraints and rules

of design decisions. These aspects are used to model the effects of selecting a certain

variation point and implementing it to the system. For example, selecting certain

features to a system defines its functionality and may create constraints in system design

or implementation. Rules withhold justification and rationale for choosing a specific

approach. The point in a product lifecycle at which, a particular variant for a variation

point is bound to the system is commonly known as binding time. The binding time

describes the moment when variation point is realized. After this moment changes are

no longer possible to the specified point. This drives architects and developers to delay

design decisions and thus creating more flexibility in the system development. The

effects of delaying decisions are illustrated in Figure 7.

 26

Figure 7. Early and late variability funnel with variability levels. Adapted from [15].

The amount of possible systems is significantly decreased if design decisions and thus

variation points are realized in early development phase. Delaying the design decision

and thus moving a specific variation point to another variation level enables more

possibilities in the following development phases [15]. However having a great deal of

flexibility increases the risk of rippling in the development. This is why sometimes the

narrow funnel approach is chosen to have a more control in the development process

and thus to avoid unmanaged variations in systems.

2.3.3 Product line management

As stated before, management is one of the key activities in product lines. Aspects in

need of management are:

 Market and product strategy

 Economical aspects

 Scope and constraints

 Evolution and direction

 Domain and application engineering

A lucid market and a product strategy determine the outlines of a product line context.

These require relevant context awareness, which can be achieved through collecting and

analyzing data from the environment of the system being designed. The economical

aspects include, among others, optimization of product line process so that production

and maintenance costs are minimized, and time-to-market is as short as possible. Also

product line scope and constraints need to be defined in order to control the size of a

product family. An ambiguous scope and constraints result not in product family, but in

random product population, which cannot be supported by a product line approach. A

well-defined product portfolio and a product road map are key elements limiting the

 27

scope and guiding the evolution of a product line. Domain and application engineering

need to work seamlessly. This requires common guidelines and instructions, for

example, to modelling, instantiation and derivation. In short the product line

management can be seen as a support activity for the domain and the application

engineering. [3, p. 45.]

2.3.4 Domain engineering

Domain engineering, also known as core asset development, is responsible to build and

maintain the very basis of the product line. The domain engineering includes analyzing

product and production constraints, and scoping for pre-existing assets. The analysis is

combined with different design patterns, frameworks and a production strategy to create

a production plan, a product line scope and core assets.

Product line scope is used to determine, which products and extensions are supported in

a product family. Core assets are basic components, which are used to build different

products. The core assets can also been as competitive advantages as implementation

and maintenance efficiency of different products is increased. A production plan is an

instruction to the correct way to derive products from the core assets. [24.]

2.3.5 Application engineering

The main activity of the application engineering, also known as product development, is

to create a product based on the core assets created in the domain engineering. In the

application engineering product requirements are analyzed to identify, which models

from the domain engineering are most suitable as core assets to the development of a

product. In practice all requirements cannot be covered by the core assets. Therefore

these individual product requirements need to be refined into features that are later

added to the derived core. The production plan from domain engineering is used to

ensure that the features are added correctly into the product skeleton and only valid

products are built. Because of the existence of product-specific requirements, the

product line scope is needed to hinder the amount of unwanted rippling in a product

family. [24.]

2.3.6 From requirements to a product

The main purpose of domain engineering is to develop reusable core assets, also known

as product line artefacts, which are to be utilized in application engineering when

deriving new products. The development needs to be managed and planned in order to

be as efficient as possible. Therefore different sub-processes within domain engineering

need to be specified and documented. These also need to be disclosed with different

parties involved in product line engineering processes. Different sub-processes are

illustrated in Figure 8.

 28

Figure 8. Software development with product lines. Adapted from [24].

Domain engineering involves domain analysis, design and implementation. The domain

analysis covers the requirements of the specific domain including new requirements

arising from application engineering. These requirements are processed into models,

which are taken into account in domain designing. One of the key activities in the

design phase is variability analysis, which includes requirement models being refined

into architecture models. The architecture models can further be used to derive basic

architecture for a product being created in application engineering.

Product derivation is the process of constructing products from product line artefacts

using variation points and variants. The derivation is used to create the end product by

combining core assets from domain engineering and product-specific functionality from

application engineering. Derivation process needs to be supported by decision models to

be effective. The process can be divided into two phases: initial phase, where initial

configuration is created based on models from the core assets, and iteration phase,

where the configuration is modified to match product specifications. [25.]

2.3.7 Modelling commonality and variability in product lines

Variations in product lines can be modelled similarly to ordinary software development

by using parameterization, information hiding, variation points or inheritance. Each one

of these has benefits and deficiencies. In most cases the amount of flexibility needed in

the system determines the modelling approach. [26.]

 29

As discussed variation occur in different forms. This creates the need for different

models to address each form of variation. Commonality and variability models are used

to model the core and the product-specific features in the system. Each model can

further be processed into structural, functional and behavioural models. These are used

to further unveil the type of the variation. [27.]

2.4 Initiating a product line

In addition to three major activities discussed before, product lines include a wide range

of other activities to be addressed. The Carnegie Mellon Software Engineering Institute

(SEI) has recognized a total of 29 different activities. These activities can be categorized

under software engineering, technical management and organizational management. [3.]

Clearly concentrating on all activities at once requires enormous amount of resources.

Therefore to reduce manageable aspects, a specific approach needs to be determined.

Additionally the scope for the activities needs to be narrowed down to a more

manageable one. This can be achieved through using practice patterns [3, p. 356].

However these are inefficient alone. Also proper motivation is needed to complete the

transition into the product line approach and to implement solid product line

architecture. Architecture definition process consists of sub processes: scoping, product

and feature planning, design of the product line architecture, component requirement

specification and validation. This section follows widely the content of [9].

2.4.1 Approaching product line architecture

Regardless of the approach, initiating a product line depends on the starting point. In all

approaches, significant effort is required from the organization adapting to product line

approach. Different approaches are illustrated in Figure 9. [9.]

 30

Figure 9. Alternative approaches into product line architecture development. Adapted

from [9, p. 167].

Two fundamental decisions concerning the situation need to be made in order to define

suitable approach for the product line. First, the scope of the product line needs to be

defined. This means deciding whether to develop components into the architecture

simultaneously, one by one, or parallel, side by side. Secondly, the decision considering

the basis of the product line needs to be attended. The product line can either be based

on existing products or built from scratch.

2.4.2 Business case analysis

The business case analysis is to determine the actual benefits of applying the specific

product line approach compared to a possible existing approach. Additionally the

benefits are always compared to the estimated cost caused by the change. A practical

approach to analyze the situation from a business viewpoint is to lean to three primary

driving forces: cost, time-to-market and personnel. [9.]

The costs include all expenses throughout product’s lifecycle. The time-to-market

measures time between the beginning of production process and the product release to

market. The personnel aspects include factors such as the relevant skills, which may

have significant effects to certain process decisions. For example some development

may be outsourced if skilled personnel are otherwise unavailable. In general, the

analysis should cover current situation, the predictions of future situations with the old

and the product line approach, and investments required to make the change possible.

The analysis should be clear presenting the benefits and the weaknesses of each

approach.

 31

2.4.3 Scoping

Scoping process is connected to the approach chosen for a product line and to the

business case analysis. In the end it determines what products and product features are

included in the product line. Pruning the products and the product features from all

possible candidates in the scope requires a systematic approach. This approach includes

establishing a feature matrix and a feature graph based on the products. However,

before establishing either of these, different features need to be identified from the

products. The features can be refined with the use of existing product documentation,

such as requirement, functional and architecture specification. The approach used in this

thesis is to skim through product requirements and other available documentation, and

to use these to establish the feature matrix and the feature graph.

The feature matrix includes all individual products within the scope and their features.

The matrix can yet be sorted and refined to illustrate commonalities and variations in

product family. The matrix does not include information about the dependencies

between features. Therefore the feature graph is needed to model the relations and

feature types.

2.4.4 Product and feature planning

As discussed before, one of the key quality attributes of the architecture is modifiability.

In product lines this shared core asset is under a constant change. This drives the

necessity of estimating and planning for future changes. The changes can be caused by

an old product reaching the end of its lifecycle or a new emerging product in need to be

added into the product line. All the activities: removing, adding and updating a feature

and its relation or a product; need to be planned properly in advance in order to have as

flexible architecture as possible.

The architecture, when designed properly, is long-lasting and evolvable. To achieve this

future analysis must be done by learning from the history of product family, road maps

and other resources. These provide some direction where to the product line is

developing and give clues what the future needs may be. These modification needs must

be taken into account when the architecture is being designed.

2.4.5 Product line architecture design process

Product line architecture represents the core of all product architectures in a product

family. The design of product line architecture consists of four key activities [9]:

 Deciding the approach.

 Defining the context.

 Identifying and defining of archetypes.

 Describing product instantiations.

 32

Firstly in product lines, the product line architecture is usually extended to establish

product architecture. The amount of extension needed depends on the approach, which

is used to create the product line architecture. In a maximalist approach the product line

architecture includes all possible features in the product family. These features can later

on be removed or configured to meet the product requirements. In this approach the

amount of extensions needed is minimal whereas in a minimalist approach the situation

is quite the opposite. The minimalist way is to include only the most static and essential

core features of the product family into the product line architecture. As a result of this

the amount of extensions is much higher than in the maximalist approach. On the other

hand the stability of the product line architecture created in the minimalist approach is

increased due to the fact that the changes in an individual product have an effect only on

the product architecture.

Secondly, the context of a product family can be very diverse. This can cause problems

in deciding, which context aspects are covered by the product line architecture. If the

context of product line architecture is selected in a minimalist way, the amount of reuse

is greatly decreased, due to the overhead caused by different products.

Thirdly, the fundamental core concepts of product line architecture are represented with

archetypes. The archetypes are commonly used for modelling the architecture and

describing product instantiations in a product line. The variations and commonalities

between products in the product line can be modelled with an efficient use of the

archetypes. The relations between different archetypes need also to be defined. An

instance of an archetype can be seen as a component in software architecture. To

simplify the product line architecture, overlapping among archetypes need to be

minimized.

Finally, product instantiation needs to be described in order to verify the validity of

selected archetypes and their dependencies. The product instantiation process can be

divided into two main activities: product specification and realization. The process is

described in a production plan. The production plan should provide answers, how to

build all products included in the product family. In addition the plan should both

restrict building non-valid and allow building valid new products. The validity of a

product stands for a possible combination of features.

2.4.6 Validation

The product line architecture describes the most significant design decisions in the

product line. The architecture design phase is a relatively early phase to point out

weaknesses and to make adjustments to the architecture. Later on weaknesses such as

lack of flexibility in architecture may result in significant costs in product development

and maintenance. This is why architecture evaluation is done before implementation.

 33

Software Architecture Analysis Method (SAAM) [28] is one of the evaluation methods

documented and used frequently in literature. SAAM concentrates in modifiability,

variability and achievement of functionality aspects in architecture. The main goal of

SAAM is to provide means to determine, how well the architecture serves needs of an

organization. The method consists of five essential steps [28]:

1. Characterizing a functional partitioning for the domain.

2. Mapping the functional partitioning onto the architecture’s structural

decomposition.

3. Choosing a set quality attributes for architecture assessment.

4. Choosing a set of concrete tasks to test desired quality attributes.

5. Evaluating the degree to which architecture provides support for each task.

SAAM approach is chosen for the architecture evaluation done later on in this thesis.

 34

3 STARTING POINT

The purpose for all automation systems is to reduce the need for human factors in a

specified process. This is done with the use of control systems and different information

technologies. Control systems are used to manage, command, direct or regulate the

behaviour of different devices or sub-systems. In industry environment the use of

automation applications is essential to relieve human labour from physically challenging

tasks to a more observatory ones. Rock crushing automation stands for the use of

control systems in heavy machinery situated in quarries, open pit mines and

underground facilities. In practice all hardware and software need to be slightly adjusted

to different use cases due to customer-specific requirements. These result in increased

amount of heterogeneity in control system family that needs to be coped [29]. The harsh

rock crushing environment has special needs to attend to. This chapter illustrates the

environment and basic principles of the rock crushing automation software. Also the

key business aspects as well as organization and processes behind software

development are illustrated. This chapter ends with the illustration of a few examples of

machine control systems.

3.1 Rock crushing automation

The amount and the level of automation in different industrial processes vary

significantly. For example nowadays a paper factory requires only a few actions from an

operator to work properly. In rock crushing and processing environment the level of

automation can be very low as only part of the process chain might be automated. The

rock crushing automation is perceived to be in an early phase moving from

mechanization to automation. The pace of automation development is much greater in

rock crushing automation than in other industrial applications. This is because several

other industrial applications have been coping with similar problems already and the

lessons learned need only to be adapted to the harsh environment of rock crushing

automation.

A crushing plant includes stationary, portable and mobile machines. A machine

consists of:

 Crushers

 Screens

 Conveyors

 35

The main task of a crusher is to crush input material, comminution, to reduce the size of

particles with different methods. However, the particle size distribution, grading, is

hardly ever desirable when using a single crusher. This is why several machines are

used together in a process to achieve a desirable output. Conveyors are used to move

material between different types of crushers and screens. The screens are used to

separate particles with different sizes and shapes to be moved to yet another machine or

stock piles. In addition there is a lot of other heavy machinery moving around the plant

site to feed material into the process chain and to move out the piled output material. A

small crushing site with different machines is illustrated in Figure 10.

Figure 10. Small open pit mine. [30].

A site consists of several units working together to process input material into desirable

outputs. Automation is needed to control and adjust material flow through the process

chain. Thus the automation can be separated to three different levels. A trivial approach

is to divide it into production control, plant automation and machine automation levels.

Several sites can be managed with applications at the production control level. The plant

level controllers, such as Supervisory Control and Data Acquisition (SCADA) system is

required to manage the different machines and to optimize whole process chain within a

site. Intelligent Controller (IC) is a product family for machine level controllers

providing required information to enable the use of SCADA and other upper level

systems. The tasks and different systems typically involved are illustrated in Figure 11.

 36

Figure 11. Controller tasks in rock crushing automation. Adapted from [31].

The key for success is interoperability between different systems. Thus the idea of

machine controllers having similar electrification and same connectivity to upper level

systems is highly admissible. Additionally the vision includes having similar

documentation and UIs in all systems. This contributes into better usability and easier

maintenance.

3.2 Business

The main business topics in Metso software development are to decrease time-to-

market, reduce the maintenance costs and to increase overall quality. Shorter

development schedules increase the amount of resources available to other on-going

tasks and projects. The maintenance of products is very expensive especially with

products having long lifecycles. This is why systems need to be as easy as possible to

maintain and to upgrade. The long product lifecycles also increases the risk of

technologies, such as specific hardware, becoming obsolete or otherwise unavailable.

Thus hardware and operating system independence are seen as key concerns. Also the

quality factors are important, because customer references are one of the key issues to

make a selling product. In most cases customers require solid proven solutions that need

to be as attractive as possible from their viewpoint. The customer-specific needs are best

served with an extensive selection of easily modifiable products.

 37

3.3 Organization

Organization creating new rock crushing automation software in Metso is distributed,

sometimes even in global scope. In some products the requirement specification for the

software is made on one continent with the customer, the designing and

implementations by different stakeholders on a second and testing and commissioning

on a third continent with the end-user. In addition hardware is usually provided by

several stakeholders. For example one provides machinery and other devices and

another provides necessary automation hardware for the software.

Diversity of different stakeholders involved creates challenges in management, which

need to be addressed in order to make software development as flexible and efficient as

possible. Product lines and product line architecture are tools, which can be used to

introduce guidelines, manage variations caused by human behaviour or predilections

and finally to gain stability and to standardize the development process.

One of the key concerns in global software development is how to manage and define

the responsibilities of different parties involved. In order to make development efficient

clear responsibilities and guidelines are required. Nevertheless the most important issue

in global development is the communication between parties. The responsibilities can

be defined only until a certain point, after which effective communication needs to be

initiated to solve possible uncertainties and other difficulties. Global software

engineering issues are discussed more in depth in [32].

3.4 Process

Process of creating and launching a new product into market consists of seven main

phases separated by gates from each other. The gates are used for steering and

managing the process and to give approval to proceed into the next phase. The seven

phases are illustrated in Figure 12.

Figure 12. General view of MIPA. Adapted from [30].

 38

First two phases are used to trim out unsuitable and refine suitable emerging ideas. Idea

management and the feasibility studies are vital for the success of the innovation

process. These phases include making preliminary analysis for the project scope, costs,

benefits, required resources and timetable. The analysis done properly saves enormous

amount of resources possibly lost in latter phases.

As illustrated in Figure 13, iterative software development process begins after

feasibility studies. Designing, implementation and testing are done in a cycle, so that

possible errors in specification, design or implementing phases can be fixed. Functional,

technical and HMI specifications are done in the design phase. In the implementation

phase more detailed designing is done concerning the structure of software and unit

testing. Implementation includes also programming the software, after which unit and

integration testing is done. After implementation phase comes testing phase, where

system testing is conducted. If significant problems arise during the system testing, the

iterative process moves back to design or implementing phase. Otherwise the software

meets the set requirements and is ready for productisation phase.

Figure 13. Software development phases and deliverables. Adapted from [30].

The productisation phase includes generally prototype testing with a pilot customer.

Pilot projects are vital in order to get references from a working system before entering

the market with a new product. The pilot projects also increase the overall quality of the

product about to be released. Also an important factor is getting feedback from the pilot

customer so that the product can be adjusted or modified to better meet customer needs.

After the pilot project a well documented, solid and proven product should be ready for

the launch and review phase. This phase includes inspecting the product, marketing and

releasing it to open market.

Several inefficiencies have been noted with current development process. The ratio of

reusing assets from previous projects and creating new ones is 30-70 with stationary

products and 50-50 with mobile products. Also the reused assets have been utilized

 39

optimistically resulting in errors for example in specifications. This is due to the

incompatibility of mobile crusher specifications to stationary solutions. Additionally the

effectiveness of the process significantly reduces if developers change. This way the

previous developers leave with all the know-how and lessons learned and the new ones

redo the same mistakes again. These are, among others, the motivation for constant

improving of the development processes.

3.5 Technology

Technology used to create new automation software into Metso DNA environment is a

mixture of understanding the basic principles of Metso DNA distributed control

network and the use of different tools for development and testing. Also the long history

of Metso DNA still has an effect on certain requirements in software development.

3.5.1 Metso DNA

Metso Dynamic Network for Applications, also known as Metso DNA, is an automation

and information platform including process control, optimization, quality and condition

monitoring. The platform consists of three essential activities illustrated in Figure 14.

Figure 14. Three activities in Metso Dynamic Network for Applications. Adapted from

[33].

User Interaction activity consists of tools designed to be used by different users or

communities to interact with the process. Automated Process makes sure that the

process and machines run automatically. Additionally its responsibilities include

reliable data acquisition, maintaining comprehensive information systems and

communications between different systems. Secured Life Cycle is to cope with all the

challenges related to long product lifecycles. Compatibility, especially with older

 40

systems, is seen as a key issue in Metso DNA. This is why backward compatibility of

Metso DNA extends all the way to first Damatic Classic created in the 1979. The

activity also provides tools for developing and maintaining Metso DNA platform.

Architecture

Metso DNA architecture is based on several concepts making sure of high availability,

easier maintenance, scalability, open standard communication and efficient engineering.

The fundamental idea of Metso DNA is to provide a single platform for all applications.

Hardware Abstraction Layer (HAL) is used to abstract various hardware to seem alike

for applications. Therefore applications are less hardware dependant and thus less

vulnerable for hardware changes. Metso DNA architecture is illustrated in Figure 15.

Figure 15. Metso DNA architecture. Adapted from [33].

Conventional Metso DNA based applications are required to be available at all times

and thus systems need to be fault tolerant. The high availability is achieved through

designing for redundancy, using common hardware components and implementing a

secure run-time environment. For example redundancies are taken into consideration

when choosing between different network topologies and designing process control

 41

hardware. The use of common hardware components simplifies support functions as

broken hardware can be replaced with identical hardware on site. Many of the

conventional applications also have real-time requirements. This is why in Metso DNA

there are slots for different applications. The slots are like sandboxes used to separate

applications from disturbing each other. Commonly real-time systems require different

tasks to be run in a specified order and within limited time frames. Metso DNA

environment is used also to scheduling applications so that the availability of the system

is ensured.

One platform to all applications simplifies also maintenance tasks. The easier

maintenance is achieved through a simple spare part concept and with several diagnostic

tools, which are designed for specific stakeholder needs. Having several diagnostic

tools, serve the needs and abilities of different roles in an effective way, but increase the

resources needed to maintain the tools. Basically the functionality of different

diagnostic tools could be united into one effective tool, but the usability might suffer

from this.

Metso DNA ranges from small machine automation applications to extensive pulp,

paper and power automation applications. The amount of operating stations, process

controllers, I/O-cards and other hardware can vary enormously in different systems.

Also the distances within a site have an effect especially in network designs. Scalability

of the system also addresses the needs to include new systems into an old one. Within

the industry this means for example establishing a quality control or an optimization

system to the existing process control system.

Communication and compatibility issues with other systems are also seen important as

customers typically have some own systems, which should be able to attach to the

Metso DNA. To make this connection as easy as possible the network supports several

verified communication standards. An abstract view of Metso DNA basic principles is

illustrated in Figure 16.

 42

Figure 16. Metso DNA concepts. Adapted from [30].

Metso DNA is composed from applications, activities and networks. An application is

composed from packages containing functions and function blocks. These packages are

loaded into components, which are installed to different nodes in a network.

3.5.2 Developing tools

As discussed before, one of the key activities in Metso DNA is to provide efficient tools

for engineering and maintenance purposes. Several tools are required to serve different

user needs to produce and maintain an application for Metso DNA environment.

The layout of a system is designed using Metso Engineering Network Designer. The

tool is used by a designer to illustrate all hardware, software and network aspects of a

system. Software is specified only at a license level and assigned to a specific hardware

in the system. The network designs provide an overview of the system and create basis

for cost estimates.

The functionality of software is created typically with Metso DNA Engineering

Function Block CAD. The tool has a graphical user interface (GUI) for creating

software with Function Block Language (FBL). The tool includes all symbols, menus

and commands that are needed to design, modify and to test an application. Most of

development is done by combining adaptation and parameterization into templates from

previous projects into a new one. After each project, reusable templates with potential

are stored into Template library for future use. Template library is a repository for

reusable assets in Metso. The templates can be created for different purposes. Low level

templates usually cover the functionality of a very simple device. Thus the

parameterization is simple and the reusability options are increased compared to a more

complex template. A more complex template is more difficult to design and to

implement, because of the amount of different parameters needed to make it as reusable

as possible. [34.]

 43

The essential parts of automation software are start and stop sequences. These

sequences make sure that the process is started and stopped in a safe way. This means

determining the order that each machine is started and stopped. Metso Engineering

Sequence CAD is a tool, which is used to define these sequences.

User interaction nowadays is seen as one of the most significant topics in software

development. Metso DNA Operate Graphics Designer is used to create the graphical

interface of an application. Views are composed of elements connected to function

blocks. Elements exist only for user interaction and for the visualization of the

information.

Metso DNA Explorer is core of Metso DNA engineering and maintenance. The tool is

used to configure all applications in the system. New applications are added to Metso

DNA network by first importing them with Explorer tool. Secondly imported packages

are moved to repository, a database, where all applications are stored. Thirdly and

finally, application packages are downloaded to specific servers. The configuration and

the update of an application are done by first retrieving application packages or at least

their parameters from the servers. The parameters define the functionality and the

behaviour of the application. Therefore it is essential to retrieve the parameters before

making changes to the application. The application can be downloaded back to the

servers, when parameter configuration is completed.

Several tools exist for software testing in the environment. FTest is used with Metso

DNA Engineering Function Block CAD in testing and simulating function blocks.

Debugger and WebDebugger are alternative means to gather diagnostic data from

function blocks.

3.6 IC product family

The purpose of an IC control system is to protect the user and the machine, ease the

utilization, the service and fault diagnostics of the machine. Additionally the system is

used to extend the lifetime of a product. All these are used to maximize the productivity

of a machine. The current IC product family consists of control systems with quite

similar functionality, but different implementation. Variations can be found in

hardware, platform and application levels. The functionalities of different applications

are very similar, but mainly the structure and the visualization of information have

significant differences caused by different hardware and platforms. The automation

level of IC family and its relations to upper and lower level systems are illustrated in

Figure 17.

 44

Figure 17. The automation level of IC control systems.

IC family provides machine control systems to stationary, portable and mobile

machines. All systems have different I/O unit amounts and types units to enable

machine control, but not all have upper level connections to plant level automation

systems, such as SCADA. Especially earlier even simple information exchange between

machines within a site was limited.

3.6.1 Overview

IC control systems are used for machine control and condition monitoring of different

devices in a machine. A simple machine is a composition of different devices, such as a

feeder, a crusher, an engine, a conveyor, several sensors, lubrication and hydraulic units.

Also several additional devices, such as a dust removal, water spraying and magnetic

separation units, can be integrated into the system. Different products in current IC

control system family are illustrated in Figure 18.

Figure 18. IC product family.

 45

IC family has a great deal of hardware and software variations. The hardware variations

can be explained by differences in environments. For example the ICx00 series for

mobile crushers are conventionally independent machines, which need to be able to

move frequently. Thus mobile machines must not have cablings and external electric

cabins as in stationary solutions. This results in more demanding hardware requirements

as all control modules and necessary cabling need to be attached on to the machine.

Other reasons for hardware and software variations between stationary solutions are

mostly because of product family history. Previously the Metso DNA platform was not

applied to the rock crushing applications. Thus platforms A and B with different

hardware composition were used to meet the requirements set for stationary and

portable machines.

3.6.2 History

The control systems for rock crushing machines have been developing on many fronts.

Usability issues such as a more user friendly UI and operating manual have been

required. The maintenance of machines is more and more seen as a necessity and thus

the latest demands are to add service views and other features to provide means for pre-

emptive maintenance. Also the machine safety regulations have been taken more

carefully than in early days.

Variability problems within IC product family have also been noted. Therefore the

documentation has been required to be more uniform and well-defined. However this

alone has not decreased the amount of uncontrolled variations in the product family.

This is why the stress has also been set on the structure and reusability of the software.

3.6.3 Hardware

The basic hardware of a machine controlled by IC can be abstracted into a controller,

local display unit and I/O units connected to sensors and actuators. The amount of

different hardware depends on the complexity and the size of the system. In large

factory systems the I/O unit count can be in thousands whereas Rock crushing

automation system typically consists of a few hundred I/O units. An abstraction of a

machine control system is illustrated in Figure 19.

 46

Figure 19. Hardware abstraction of a machine control system. Adapted from [31].

Actuators are used to modify the process output with different units within the system

whereas sensors are used to retrieve data from the units. Both are connected to I/O units

that mediate data through field buses to a controller. The controller or controllers

contain the logic and intelligence of the system. The controllers analyze the data from

sensors and make adjustments through actuators. Additionally controllers usually

provide connectivity to other devices, such as local displays needed to enable the human

computer interaction (HCI). The controller also provides the gateway to external

systems such as other machines and upper level control systems.

3.6.4 Communication

The communication links of an IC control system can be divided into three categories:

Upper, Peer and Lower level communication. The complexity of the communication

needed reduces when moving from the upper towards the lower level communication.

The different levels of communication are illustrated in Figure 20.

 47

Figure 20. Communication levels with IC control systems.

Upper level communication

The upper level communication interfaces of a machine can be very limited if the unit is

designed to run only independently. However the upper level control is needed to

optimize the whole process and to make the machines in a process chain to work

seamlessly. This is why the external interface for upper level control is becoming more

and more important. For example if the type and the characteristics of input material

vary in the process chain, particular crusher settings need to be adjusted to compensate

the change. This is done in order to produce as much as possible end product with

certain shape and size. The upper level control does not limit control devices to typical

personal computers (PC) used in operator room, but also extends to Personal Digital

Assistants (PDA).

Peer level communication

Interaction between machines is typically very simple. So far machines have only been

able to give run permissions and relay alarm messages to other machines in process

chain. Within the industry it is quite typical to have units from different providers in the

process chain. This diversity of units, the lack of communication standards and the lack

of interest adapting these create significant challenges in implementing proper

communication between the units. Thus the black-box is a conventional approach used

to define the interfaces of third party machines. This issue has a significant effect also

on plant level control as the optimization of the process becomes more difficult.

Lower level communication

Communication between a controller and the devices subjected is the most simple of all.

This is due to the fact that the measurement devices are not so sophisticated and

complex as other machines or plant level control systems. The controller is only able to

send command signals to actuators and receive measurements from sensors through the

field bus.

 48

3.6.5 Software

Typically the software of a machine control system consists of several key elements.

The structure can be modelled with the black-box approach to define only needed

interfaces and related functions or more thoroughly by modelling all significant

components of the system. A basic machine control system and its software components

are illustrated in Figure 21.

Figure 21. An abstract software structure of IC control system.

As seen the analysis of IC control system family reveals several logical components that

are used to provide the functionality for monitoring, alarming, device control,

messaging and the user interaction among others. The device control manages and

controls all submitted units. This includes establishing controlled start and stop

sequences. The monitoring is used to log events, warnings, alarms and unit states. The

alarms are handled by another component. The communication or the messaging

component is responsible for reliable and safe message delivery to upper, peer and

lower level systems.

Internal business logic is similar in most control systems. However functional and

behavioural changes are done with parameterization. Almost all functionality is defined

at compile time and only some run-time modifications are necessary. The run-time

modifications are mostly needed to change the behaviour of the system. For example if

one of the devices is removed, it needs to be taken in account in start and stop sequences

among others.

 49

3.6.6 Example IC control systems

This section provides a brief description of three different control systems. The control

systems are implemented using different hardware and based on different platforms

among other variations.

IC7000

IC7000 is a control system for a stationary cone crusher. IC7000 controls the operating

devices of the cone crusher, which include a hydraulic system, lubrication unit and

different types of sensors to monitor the characteristics of the machine. The components

of a crusher with IC7000 are illustrated in Figure 22.

Figure 22. The hardware of stationary cone crusher. Adapted from [30].

IC7000 is built on Platform A, which has been used in several other applications in

different industries. The software of the system is distributed between processing server

in a control cabin and a simple display unit. These are connected to I/O units by a field

bus solution. Different automation hardware components are illustrated in Figure 23.

 50

Figure 23. The automation hardware of IC7000. Adapted from [30].

Even though the software is somewhat distributed, the machine control is mainly

centralized to the processing unit. The display unit only provides visualization of the

data and the connections to upper levels. These include providing a HTTP server so that

the machine can be accessed from a plant level system.

The advantages of the product are well-known hardware and the provided HTTP server

access. The deficiencies are weak support for developing tools and environment,

difficulties the creation of a UI and the use of third-party hardware and software.

Modifications to the hardware and Platform A are difficult if not impossible to achieve

with the third-party provider. These factors create challenges in application

development.

IC10

IC10 development involves several parties. Functional and requirement specifications

are defined by Metso, but the software design and implementation is mostly done by a

subcontractor. Thus further development and maintenance of the system is more

complicated than in a system developed internally. IC10 controls the operating devices

of a jaw crusher that include a hydraulic unit, a feeder, a discharge conveyor and a jaw

crusher illustrated in Figure 24.

 51

Figure 24. The hardware of a portable jaw crusher. Adapted from [30].

IC10 software is distributed between HMI panel, Crusher Control Module (CCM), Main

Control Module (MCM), Feeder Control Module (FCM) and cOnveyor Control Module

(OCM). A system layout of IC10 is illustrated in Figure 25.

Figure 25. The automation hardware of IC10. Adapted from [30].

Control functions are distributed into four modules: CCM, MCM, FCM and OCM. The

HMI Panel provides interface to upper levels and enables local machine control. Even

though hardware used in the system is highly affordable, durable and proven, software

development and maintenance confronts significant challenges. IC10 is built on

Platform B, which is creates limitations in software development. A low level platform

with only few libraries and only limited data storing and processing capabilities increase

the amount of resources needed to develop the control system. Additionally the software

development and its maintenance can only be done with a subcontractor.

 52

The advantages of the product are well-tested, solid and well-known hardware. The

deficiencies include the use of third party hardware, poorly managed product lifecycle,

low level software platform and limited processing and storage abilities. The problems

with the lifecycle management and the platform are due to the fact that the interests of

the hardware provider do not extend into providing extensive software libraries and

lifecycle support.

IC1000

IC1000 is the first Metso DNA based control system in the product family. IC1000 is a

solution for same crusher types as IC10 with a benefit that subcontractors are no longer

needed in the software development or in maintenance. IC1000 controls the operating

devices of a jaw crusher, which include a hydraulic system, lubrication system, different

types of feeders, several conveyors, a scalping screen, a magnetic separator, water

spraying system and a bottom heater. A control centre conceals basically all intelligence

of the system. The core of the system is a small rail-mounted controller (ACN SR1) and

the I/O units, which provide the connections to actuators and sensors. A panel pc for

GUI is a typical addition to the system even though not a vital one. The system can be

controlled remotely from plant level or by using local control panel for the very basic

operations. The functional layout of IC1000 is illustrated in Figure 26.

Figure 26. The hardware of a stationary jaw crusher. Adapted from [30].

Software is distributed between the panel PC and the ACN SR1 so that latter contains

all of the essential components of the system. Thus the panel PC and GUI is not needed

to include at all times. The hardware and the distribution of automation software in

IC1000 are illustrated in Figure 27.

 53

Figure 27. The automation hardware of IC1000. Adapted from [30].

ACN SR1 has Metso DNA software, including process control server (PCS) and backup

server (BU) packages, running on a Linux operating system. IC1000 application is built

on top the Metso DNA that handles the basic communication within Metso DNA

network and the hardware abstraction for applications.

Software on the panel PC is built on a Windows operating system. The software

includes Metso DNA software for GUI (DNA Operate) and an alarm processing server

(ALP) packages. IC1000 application is built on top of Metso DNA similarly to ACN

SR1.

The advantages of the product are own hardware and tools, the ability to develop the

environment. The weaknesses are difficulties in creating the UI and increased hardware

requirements by Metso DNA.

 54

4 FROM INDIVIDUAL PRODUCTS TO A

PRODUCT LINE

This chapter is based on the structure of Chapter 4 in [9]. Firstly, a feature matrix of IC

product family is introduced. Secondly, the impacts of product line approach are

analyzed from a business view. In section 4.3 current and estimated future needs are

introduced and their potential impact into product family is briefly evaluated. After

these a version of the product line architecture is introduced. Then the organizational

and process changes needed to support the product line approach are explained. Finally

a few guidelines how to implement the change towards a product line approach is given.

4.1 Scoping

Scoping process to acquire requirements and features for product line architecture is

conducted by skimming through requirement and technical specification as well as UIs

and manuals of different systems. Recognized requirements and features are then

categorized according to possible variations. Finally these are visualized through a

feature matrix and a feature graph.

4.1.1 Common requirements

Main architecture principles from Metso DNA provide the basis of requirements for IC

family architecture. In addition several IC family specific requirements are recognized.

Human-machine interaction (HMI)

Human-machine interaction (HMI) or more commonly known as Human-computer

interaction (HCI) is one of the focus areas in the IC family. Usability issues with UIs

have been studied extensively to achieve intuitive, easy to learn and effective control

systems. These issues are promoted by “Same look and feel” -theme, which drives

similarity in control system UIs. A more detailed study regarding usability issues with

IC family is reported in [35].

 55

Performance

Price-performance ratio is one of the main drivers in IC development. Automation is

still seen as a nice addition on the machine, but is not expected to show in the price tag.

Thus the procurement of automation related hardware is done with as low costs as

possible, but still getting hardware that meets the set requirements. A high Ingress

Protection (IP) class is one of strict requirements for hardware because most of

environments include temperature changes, dust, vibrations, and moisture that could

harm the hardware and thus prevent the machine from working properly. Typical

requirements for hardware are operating temperature from -25°C to +60°C, vibration

resistant of 5G and IP65, which ensures product to be dust sealed and protected against

low pressure jets of water from all directions.

The aim for low costs has also an impact in software development. Hardware decisions

limit the choices in software development. Additionally software development should

consume as few resources as possible. To minimize the resource costs the architecture

and other reusable assets must be suitable and flexible for different projects. Other

concerns address availability, reliability and real time issues in control systems. These

are taken seriously especially when safety is a concern.

Configurability

IC family history suggests that most of the customers have specific needs or preferences

concerning the software or the hardware configuration. Usually software needs to be

configured at least in two phases: compilation and run-time. For compilation the basic

features for the software are chosen. These features can further be modified during run-

time to achieve required functionality. These adjustments can be seen as variations in

the software. Currently the behavioural adjustments are done mainly by

parameterization and the functional changes are the difficult ones to implement.

Different product configurations need to be supported in order to meet the customer

demands. The customizations in products continue also after the handover of a product.

This upraises more challenges especially in product and application lifecycle

managements (PLM and ALM).

Development

New prototypes of Metso DNA based control systems have been developed quickly

without significant problems. However the amount of reusable component used and

created is not seen to be sufficient. Even though Template library system is available

and designed for planned reuse of software components, it has not served its purpose so

far within the product family. A reason for this is that product specifications are done

without references to prior projects. This traceability problem has led to a situation

 56

where specifications and thus features vary even in very similar cases. Other difficulties

include UI designing and testing. Both of these consume a significant amount of time

from projects. In addition to time consumed, the testing has been troublesome because

of the fact that the automation software and machine hardware are tested first time

under the eyes of an end-customer. Proportions of hours spent in control system

development are illustrated in Table 4.

Table 4. An hour estimate of an IC software development project.

Task Percentage of total hours spent

Specification, design and implementation 34%

Visualization and localization 27%

Testing 22%

Corrective actions 16%

Significant amount of time is consumed by common development activities, but a lot is

also wasted in visualization and localization. The effort invested in visualization and

localization issues should rapidly decrease after the first project if these are done

properly. These aspects should be highly reusable from a project to another especially

when the “Same look and feel” theme is introduced. The amount of hours put in

corrective actions is also one of the key issues when optimizing software development.

One of the disturbing issues currently is insertion of ad hoc solutions into well-designed

and implemented software. Gradually, when enough ad hoc additions are done, the

well-designed software structure is lost. These emphasize the need for effective change

management. The change management is a managerial function to cope with different

modification needs and to reduce the amount of ad hoc solutions being implemented.

Maintainability

The importance of support functions in software engineering is commonly recognized.

However the role of the support stands out especially in products with a long lifecycle.

More and more updates are needed because of hardware changes, some new

functionality is required and others become obsolete and so forth. Even personnel

working with the product may move on and leave a gap in know-how. This is also the

case with IC software, which is required to last almost as long as the crushing machine.

Thus logical software structure and modifiability are key issues from a maintenance

perspective. The software must be configurable to new emerging technologies, such as

new types of actuators and sensors, which are under constant change. In short the

maintenance tasks of an IC control system is mainly creating sporadic bug fixes and

reacting to new technologies with add-ons.

 57

Health-Safety-Environment

Health-Safety-Environment (HSE) tripod is a key concern within the industry. The

safety and security issues require special attention when heavy machines are mixed with

a human factor. One of the main goals for IC family is to get site workers as far from

the machines as possible. Remote control for machines on site is a must have

characteristic of a system. Also the conditions of a site worker significantly improve

when moving from a dusty and noisy outdoor environment to a clean and silent control

room. There are also several standards and directives instructing how the machine

safety needs to be taken in account to avoid dangerous situations and to achieve

constant safe use of the machinery. An approach is to evaluate safety-related systems

according to IEC 61508 [36] standard and to classify them by Safety Integrity Level

(SIL). Also relevant is the mechanical engineering directive 2006/42/EC on machinery

when market scope includes Europe.

4.1.2 Product feature matrix and graph

The results of the scoping process are refined into a feature matrix illustrated in Table 5

and further to a feature graph illustrated in Figure 28. These illustrations are incomplete

due to the extent of control system hardware and software. Thus the amount of different

hardware and software aspects is reduced to the extent, which gives the base for

different architecture decisions later on in this chapter. The refining from documentation

into the feature matrix is done both at conceptual level and then more in depth analysis.

The feature matrix is created by first analyzing available documentation at conceptual

level and secondly analyzing the concepts and their context more in extensively.

The feature matrix however does not illustrate the variations within different concepts at

the table below such as hardware variations in display units and thus software variations

in GUIs. Also a significant amount of hidden variations are located in the machine

controls, which depend on the current machine configuration. Different types of

crushers require various sensors and actuators and thus trends, reports, alarms and other

features vary.

 58

Table 5. Partial feature matrix illustrating supported hardware and features by control

systems for different crusher types.

IC
1

0
0

0

(J
a

w
)

IC
2

0
0

0

(I
m

p
a

ct
)

IC
3

0
0

0

(I
m

p
a

ct
)

IC
5

0
0

0

(C
o

n
e)

IC
7

0
0

0

(C
o

n
e)

IC
1

0

 (
C

o
n

e)

IC
5

0

 (
C

o
n

e)

IC
7

0

 (
C

o
n

e)

Platform, Tools and Connectivity

Platform A

x x x

 Platform B

x x x

Metso DNA x x

 Atools for engineering

x x x

Btools for engineering

x x x

 Metso DNA engineering tools x x

 CAN/CANopen x x x x x x x x

Profibus

x x x

 CAN radio control

x x x

Upper level communication x x x x x x x

 Units and devices

 Display unit x x x x x x x x

Localization and general UI settings x x x x x x x x

Touch screen calibration

x x x

 Lubrication unit

x x x x

x x

Hydraulic unit (Manual/Automatic) x x x

x

 Winter mode(inc. Timer) x

x x

x x

Feeder control (on/off, Type A, Type B)

x x x

x x

Feeder control (Manual, Automatic) x x

x

 Feed heater x

x

 Conveyors (with control) x x

x

 Conveyors (only information)

x x x

x x

Belt scaling for conveyors x x x

x x x x

Water spray control x

 Magnetic separator control x x

x

 Crusher control

 Manual (local control box) x x x x x x x x

Auto (including PA control) x x x

x

 Local (GUI) x x x x x x x x

Crushing modes

 Cascade (throughput adjusted)

x

 Power (power level)

x

 Load (power and pressure levels)

x

x x

Setting

x

x x

Cavity level x

x

 Machine control

 Start / Stop sequences (configuration

dependant) x x x x x x x x

User levels x x x x x x x x

Diagnostics x x x x x x x x

Parameters x x x x x x x x

Alarms, events and warnings x x x x x x x x

Trends and reporting x x x x x x x x

Crusher type-specific

 Calibration , Settings, measurements x x x x x x x x

 59

A more in depth analysis based on Table 5 reveals the relations of different product

aspects and their variation types. The feature graph in Figure 28 illustrates these aspects

more thoroughly.

Figure 28. Partial feature graph of current IC family.

As shown in the graph, a machine consists of several units that all have sensors and

actuators to provide functionality. Currently the core of the machine is a crusher unit,

but also screens have increased their intelligence due time. This is why a machine is

defined to consist of at least a crusher or a screen and possible other more simple units.

A display unit is described as an optional device because of the fading need for local

control panel. This is due to the trend for having a plant level control and requirements

to optimize the whole process chain. Additionally UIs are reported to be troublesome to

implement because of localization, common look, primitive methods and other reasons.

The crusher must have some engine, lubrication and hydraulic unit. These units as well

as the crusher itself require some kind of control. In addition these controls commonly

have different modes or states. For example lubrication unit has winter mode to enable

its functionality even in cold conditions. Respectively the crusher has several different

 60

control modes to determine whether the machine is controller through local display

(Local), local control panel (Manual) or automated (Auto), for example remotely. The

control modes are used to enable only one control mode at a time and thus to achieve

safe usage for the crusher. Safety standards demand that a machine can be controlled

from one and only one control location at the time, but one must be able to stop the

machine from any possible control locations at all times. Operating modes define how

the crusher is run. For example Load mode tries to keep the crusher on maximum

capacity at all times where as Power mode changes the crusher settings in order to keep

the power consumption at a certain level. The crushers also have type-specific software,

because of the differences in hardware and basic principles. For example the crushing

principle of a primary jaw crusher differs significantly from a fine tertiary cone crusher.

Also calibrations, sensors and other characteristics vary. This is why a basic crusher

control is extended with add-ons.

As described before, a machine consisted of several units. This requires a general

management and control. This is why all machines have machine control, which is used

to provide the common functionality to different machines. Configuration management

is used to keep track of all connected units so that these are taken in account in start and

stop sequences among other features. Parameter settings are used to change the

behaviour of the machine and different units. For example an upper level control may

find the need to change the parameters according to a specific recipe. The recipes are

used to modify the settings on different machines in the process chain to achieve desired

end products. Alarm and event handling is needed to keep history log and to relay fault

information to upper levels. Respectively Diagnostics decrease the effort needed to find

the reason for the fault situation.

The machine also needs to be able to interact with other machines, actuators, sensors

and upper level systems. Thus Connection manager is established to handle the

communication with different levels. The requirement for better compatibility and

extensive interface emphasizes the importance of Connection manager. Better

connectivity and increased functionality through an interface also create a need for

proper authentication and user levels. Previously these have been implemented mainly

for local UIs to hide advanced settings and features, intended to support engineers, from

a basic user. With improved connectivity to upper levels, the users must be recognized

in order to ensure safe and secure working environment.

 61

4.2 Business case analysis

The change from current product portfolio into a product line based set involves several

business questions and compromises. The most significant drivers for the reformed

control system architecture design are simplicity and compatibility. Features that no

longer are seen as a must have are extracted from the product line architecture.

Additionally some features need to be integrated into the architecture in order to meet

estimated future needs.

The product line approach, in this thesis, is Metso DNA based though it could as well

be based on the two other platforms or even a whole new one. A more detailed study

needs to be performed to find out the customer preferences with different systems so

that the true impact of harmonizing product portfolio into one platform can be

evaluated. Choosing Metso DNA as a platform requires also work because most

customers have fear for new or unfamiliar technologies. Additionally customers demand

proven solutions. These two factors emphasize the importance of pilot customers so that

the proven solutions and new technologies can be introduced to the market area.

Need for proper process automation has been increasing within the industry. More and

more inquiries are made by customers to find out how to increase the efficiency of their

crushing sites. This includes both minimizing expenses and maximizing throughput. In

addition the process needs to be as predictable as possible, because downtimes are

unaffordable. In most cases the answer lies in process optimization, which requires

different machines to be working as one. The diversity of machine manufacturers within

a single site and the lack of communication standards increase the need for better

compatibility and connectivity of a single machine. The interfaces to other machines

and especially to plant level automation systems are needed to optimize the process.

Compatibility achieved through proper control system interfaces can become a cutting

edge over other products in the market area. This is because most customers have old

sites and are only interested in buying automation tailored into their current

configuration and possibly buying a few machines to replace the obsolete ones. At the

moment plant-size deliveries are concentrated mostly to developing economies. By

providing interoperable machines the sales and thus the amount of references are to

increase. The references can further be used to distinguish from competitors and thus

support the sales. However one must remember that upon the arrival of the

communication standards the cutting edge becomes slowly blunt as less and less

machines will require tailoring in order to be connected into an upper level system.

Vendor independence, or at least maximizing it, is another key issue in the business

scope. So far control systems are developed only partially within Metso. Outsourcing is

a trend, which has been overdone recently in many organizations. This has reduced the

overall effectiveness and profits of organizations. This business topic needs to taken in

 62

account, when deciding whether the product line approach is suitable for current

situation. The product line approach can be almost impossible to enforce in software

development when only requirement specifications and possibly integration testing is

done within the organization, especially, when stakeholders vary in every delivery. In

an ideal situation for product lines, all development activities are done in the same

organization to minimize the friction between stakeholders.

4.3 Product and feature planning

The first steps towards plant level automation systems have been taken. This

advancement causes some aspects to become obsolete and creates a need for others into

the architecture. Earlier control systems were designed to be as robust, reliable and

independent machine as possible. The requirements for a robust and reliable system

have stayed the same, but the overall environment has been under constant change.

Earlier the independency of a machine meant for example having a local display for

HMI and a database for each machine.

Local displays next to each machine become unnecessary when plant level control is

implemented. In some solutions local displays are extended from the machine to an

operator room. This includes having several small robust touch screens, one for each

machine, to enable process control. However in this case the operator is demanded to be

the mediator between machines. The problem is similar to everyday problem of having

several remote-control devices in the living room to enable the control of different

devices. This is far from automated process control. Fortunately nowadays a majority of

stationary and even most portable plants have some kind of centralized process control

system. This enables the possibility of moving most if not all of the machine data and its

visualization to the upper level, where UIs can be provided for example through light

web clients. This way a significant amount of work is reduced in control system

development and the “Same look and feel” UI principle can be enforced more

effectively. Additionally the hardware costs are cut down as there is no longer need for

a robust, high IP classed display and a PC for database next to each machine. Even in

the service purposes the display unit beside a machine can be replaced for example by a

tablet device.

Previously, data logging and alarm handling created a need for a local database. With a

plant level automation and centralized database there is no longer need for several local

databases. Each machine only needs some storage to buffer its data in case the

connections to an upper level system are offline. The centralized database approach also

simplifies the bigger picture as all data can be mined from a single location instead of

skimming through numerous machine control systems. This approach also creates a

basis for future maintenance applications that enable pre-emptive maintenance based on

mining data from all sites around the world.

 63

4.4 Design of the product line architecture

Product line scope is limited to stationary and portable machines. Thus mobile machines

are left out of the product line architecture. However if product line approach is seen

efficient in practice the mobile control systems may also be migrated into the product

line. Architecture for mobile crushers has been modelled from several viewpoints before

by Taavi Kytömäki [37], Ville Lehtinen [38] and Jukka Kaartinen [39]. Kytömäki

addressed the hardware aspects whereas Lehtinen and Kaartinen concentrated into the

software aspects of architecture. The research in mobile crushers also contributes in the

architecture of stationary and portable applications. The very basic view to the product

line design and its connections to other systems are illustrated in Figure 29.

Figure 29. IC product line overview.

The product line is based on the Metso DNA environment. The product line consists of

Crusher platform and application engineering units. Platform unit provides the core

assets to the application engineering unit that is needed to develop the actual control

system software. The figure above illustrates stationary ICx000 and portable ICx0

applications still separate, but in practice these can be quite similar. Previously, the

portable applications have been seen similar to the mobile case, due to the mobility

option of machines. Thus a more robust hardware has been used resulting in software

different from stationary solutions. The fact that portable units are relocated at most few

times a year, the lack of ability to move independently and the crushing site being quite

similar to stationary bring the portable machines closer to the stationary ones. Therefore

the portable machines can be seen also as stationary on wheels from a software

viewpoint. The figure above also enables the possibility of integrating the mobile

applications to the product line so that one day all crusher control systems could be

based on the same core assets.

 64

Logical view

The new proposal for architecture includes only machine management and none of

visualization aspects as discussed before. The common components of all IC control

systems include the communication, diagnostics, machine controls, unit management

and data logging. The future needs for more open interface emphasizes the importance

and complexity of CommunicationManager, which is responsible for user management

and authentication, protocols and providing an extensive interface to upper level

controls. The importance of CommunicationManager increases as more and more

machines are required to be accessed remotely and connected to public network such as

Internet. Therefore the need for proper security is emphasized as machines become

more vulnerable against malicious software.

Local display unit and all related software are excluded from the design due to the fact

that GUI software can be created to access IC through CommunicationManager.

AlarmEventHandler is still relevant component for data logging and handling different

events. Some events and alarms are handled internally and others are mediated to plant

level controls. LogManager is subjected to AlarmEventHandler and used to store all

relevant data into database. Database capacity of a single machine is somewhat limited

and thus the database is required to be synced with the upper level system periodically.

The database operations can be done with AlarmEventHandler and LogManager

components. MachineController component is the core of all functionality. It is

responsible providing the external functionality to upper level systems and internal

functionality such as the safety features, which are not be dismissed.

Additionally the architecture has three somewhat optional components.

ProcessOptimizer is a new addition to the architecture. It is responsible for adjusting

different units to work according to recipes provided by RecipeManager. The recipes

are commonly used to optimize a plant to produce desired products, but the fact that a

large and complex portable machine can include for example a feeder, primary and

secondary crusher, a screen and several conveyors, creates the demand for recipes. The

third optional component is AbstractUnit. AbstractUnit is marked as optional because of

the variability it withholds. The logical view to IC product line architecture is illustrated

in Figure 30.

 65

Figure 30. IC product line architecture as a class diagram.

IC control system is designed to manage a machine consisting of different units, which

all have different types of actuators, sensors and other aspects. AbstractUnit is based on

the principle of that every unit has some basic UnitControl, State, SensorManager and

ActuatorManager. Additionally the unit has some greater functionality, which is derived

from the basic functionality of AbstractUnit. AbstractUnit is illustrated in Figure 31.

 66

Figure 31. A structure design for an abstract unit controlled by IC.

SensorManager and ActuatorManager are responsible for controlling and managing

different types of sensors. These provide an abstraction for UnitControl. Actual

AbstractUnit is alternatively a feeder, a screen, a conveyor or some type of crusher. All

of these have variations in UnitControl and some have more or less complicated states.

The figure above does not illustrate the different units extensively, but gives basic

principles for harvesting the similarities between units to different abstractions.

4.5 Organization

From an organizational viewpoint software architecture should provide better means for

communication among stakeholders. Typical problems, such as mistakes in the

requirement specification phase, can be avoided if the stakeholders share the same

language. In product families, sharing the same language is vital to avoid rippling effect,

which ends up creating un-controlled variations within the product family. For example

when product line architecture is not established properly, sales may agree into

customer demands that are out from product line scope and thus troublesome to

implement. This may result in the sale being unprofitable or worse.

 67

Bringing variations under control is a key issue in optimizing organizational efficiency.

In addition of making development ineffective, uncontrolled variations end up leeching

extra resources from support functions. Implementation of fixes, updates and other

maintenance tasks require significantly more expertise when working with several tool

sets, platforms and thus slightly different applications. However for product

maintenance, the biggest challenge is how to manage all of the applications that are

specified, designed and implemented uniquely. To reduce the variations and the rippling

in development, the product line approach provides product line architecture and thus

more defined development process and lucid responsibilities between different

stakeholders. Another incentive for having common software architecture is establishing

easier governance and thus steering organization in making the right things correctly.

Different organizational units and their tasks in the product line approach are illustrated

in Figure 32.

Figure 32. The engineering unit hierarchy in IC product line.

The organizational changes towards the product line involving domain and application

units are not overwhelming because of the organization being somewhat familiar with

basic product line principles. The product lines are known from a general business

viewpoint, not especially from a software development viewpoint. The development of

Metso DNA platform has been subjected to a single business unit and thus

responsibilities of the domain engineering units are known. The application engineering

unit concept is more undefined due to the fact that applications have been developed

mainly in separate projects without proper guidelines and core assets. On the other hand

the organization currently consists of product managers and teams each having

responsibility over certain products. This gives a good starting point for establishing

different Crusher application engineering units. The biggest organizational challenge is

 68

to establish Crusher platform engineering unit responsible for crusher core asset

development. The unit is also needed to enable proper communication between different

stakeholders in organizational hierarchy. The communication problems have also been

noted previously and tried to be met with weekly progress meetings and more active

cooperation with the customer.

Introducing and training new personnel to the field of Rock crushing automation is a

long term project and thus requires commitment. The long training period has both

advantages and disadvantages. The amount of know-how and experiences from

different projects increase the work efficiency later on. The downside is that the know-

how and experiences from different projects is highly personified. This is why special

attention needs to be addressed to the openness of work environment so that the amount

of shared hidden knowledge is increased and distributed throughout the organization.

4.6 Process

A project-oriented process is reported [9] not to be an ideal for product line concept.

Common problems include limitations in time and other resources in the creation of

reusable assets. This is why a product line usually has separate business units for

creating reusable core assets and derived products. Having a unit for creating reusable

assets for the product family increases the overall quality of products. The use of

familiar assets increases the predictability of a project and thus contributes to easier and

more accurate time-estimates. These are linked to project risk management aspects.

Instead of creating specific components and hoping them to be reusable in other cases,

the components are planned and implemented for a more general use. This includes

more thorough testing among others.

Another benefit is having the same tools for designing, implementing, testing and

maintenance. Having one set instead of three, one for each platform, also significantly

reduces the competences required from new recruits. Simplification of the processes

creates also a common ground and more lucid responsibilities among stakeholders. Thus

the commitment of developing a product into product family scope is improved. This

way the products are not only similar in functionality, but also in structure and

technology. Having a clear perspective and ground rules for creating an application for

the product family is vital especially in global software development. However

choosing only single development route increases the risks and decreases the flexibility

of implementing an application. The threshold of moving from one design and

implementation method to another becomes much greater. A proposal for Metso

development process adapted to product line approach is illustrated in Figure 33.

 69

Figure 33. Product line development applied to Metso needs.

Separate domain and application engineering units reduce also the amount of

overlapping work in documentation and testing. In a product line approach core assets

are documented and tested and thus only the extensions in derived end products need

product-specific tests and documentation. The amount of overlapping work also reduces

as new product requirements are evaluated and added into core assets, if perceived

beneficially to other products as well, instead of implementing into each application

separately. The change management process must be efficient to gain maximum use

from ideas emerging from the application engineering. Suitable ideas can later on be

merged into family assets.

Possible downsides in the product line approach are increased costs for implementing

the change, a braced development process and increased management. The increased

costs are consequences of building the common core for the product family, establishing

needed business units and the guidelines for the development process. Even though

product line initial cost may be greater in the product line, the cost of developing several

similar products from common core assets is drastically lower. The need for increased

management and thus more formal approach developing software is required to reduce

the rippling effect within product family.

 70

4.7 Best practices

Implementing a product line approach to a product family is no trivial task. Thus several

studies [20; 40; 41] have been done in order to find out the key success factors for

implementing the change. Different guidelines for implementing the change are listed

below.

 Plan the product line implementation effort to achieve immediate benefits.

 Establish clear business goals and incentives.

 Improve risk management through constant progress measuring.

 Product managers for different products using the product line architecture

should synchronize their individual needs.

 Define roles, responsibilities and ways to share technology assets.

 Perform the change to product lines through incremental transitions.

 Ensure seamless communication between technology core team and

implementation team.

 Use tool support for more thorough dependency analysis.

 Use architecture documentation to improve architectural integrity and

consistency.

 Carefully define variation points and realization mechanisms.

 Use the described method iteratively to handle software evolution.

 Early product line applications should have robust UIs and functionality.

Effective product line is based on a solid architecture.

The importance of incremental transitions in implementation of a product line concept

must not be understated. Even though the product line ideology can be integrated into

the organization rapidly, the transition can consume even several years [21].

 71

5 EVALUATION

The evaluation of this thesis consists of architecture and product line analysis. The

architecture and its modifiability are evaluated with Software architecture analysis

method (SAAM), which was presented in section 2.4.6. The scenarios used in the

architecture evaluation are based on architecture analysis done for mobile crusher

control system in [39]. After architecture analysis, a Strength, Weaknesses,

Opportunities and Threats (SWOT) -analysis [42] is applied to the product line

approach.

5.1 Architecture assessment

This section consists of four parts. Firstly, the design decisions regarding product line

architecture are listed. Secondly, the quality of the architecture is evaluated through its

modifiability. This is done by testing the architecture against several scenarios. Thirdly,

all scenarios are analyzed to find out how the architecture copes with different

problems. Finally, a few significant scenarios are analyzed more in depth and final

assessment is given.

5.1.1 Architectural design decisions

Functional partitioning involves first two steps from SAAM. The purpose of the steps is

to identify relevant functionalities and their relations to design decisions from

architecture. These need to be presented so that architecture can be evaluated more

thoroughly. Key architectural decisions are listed below.

 A machine consists of different units.

 A unit consists of an alternative device (feeder, crusher, conveyor etc.), actuators

and sensors.

 Each unit and machine has state and some level of control.

 Machine controlled by a single class.

 Same abstract class used for each unit having control, state, sensors and

actuators.

 Same abstract class used for different types of actuators and sensors.

 Same abstract class used for different control modes and logs.

 Abstract units managed by a single class.

 Machine API, peer and upper level communication managed with single class.

 Authentication and user management moved closer to the API.

 Alarms handled both at the unit and machine level.

 72

5.1.2 Modifiability

Most architectures are evaluated based on modifiability attributes. The attributes

illustrate, how the architecture reacts if some part is changed, removed or replaced, or a

whole new addition is implemented. A quality tree is used to manage and to evaluate the

importance of different scenarios. In addition difficulties to implement the change

specified in each scenario is evaluated. The quality tree used in this thesis is presented

in Table 6.

Table 6. Architecture modifiability scenarios.

 Scenario Importance Difficulty level

Add 1. Adding new alarm. H M

2. Adding new functionality (control). H L

3. Adding new hardware (new unit type). H M

4. Adding new sensor to control process. H M

5. Adding new product (mobile crusher). M H

6. Adding new interface to upper levels. L M

7. Adding GUI. L H

Change 8. Changing embedded computers to PC

hardware.

M H

9. Changing the functionality how to react

to an alarm.

H M

10. Changing the functionality of a control. M M

11. Changing the unit order in start and

stop sequences.

H L

Replace 12. Replacing peer and upper level

communication methods with wireless

technologies.

M M

13. Replacing a crusher type. M H

14. Replacing an actuator type. M L

The scenarios are grouped into three categories: add, change and replace. The

importance and difficulty level of each scenario is assessed to low (L), medium (M) or

high (H). The scenarios and their importance estimates are based on work done earlier

by Kaartinen and his co-workers in [39]. Few scenarios are modified to evaluate the

functionalities of presented product line architecture more accurately.

 73

5.1.3 Scenario analysis

Scenario analysis includes all scenarios described in the Table 6. Stimulus and response

are described for each scenario. In addition architecture decisions and challenges

regarding the scenario are listed. At the end of each evaluation, the difficulty of the

scenario is evaluated based on the architecture decisions and estimated challenges. A

more detailed analysis regarding scenarios is listed below in tables.

Scenario 1. Adding new alarm.

Stimulus Need for a new alarm.

Response New alarm increases the safety of the machine usage.

Architecture

Decisions

 A single class is used to handle events and alarms on machine

level.

 Units are responsible of notifying machine control.

Challenges Alarm hierarchy between needs to be defined (plant-machine-

unit)

Importance High Difficulty Medium

Scenario 2. Adding new functionality (control).

Stimulus Need for a new machine control mode.

Response New alarm increases the safety of the machine usage.

Architecture

Decisions

 Control modes are based on abstract class.

 Machine control modes are separate from user management.

Challenges None seen.

Importance High Difficulty Low

Scenario 3. Adding new hardware (new unit type).

Stimulus New unit type needed to increase functionality of a machine.

Response Increased machine functionality.

Architecture

Decisions

 Abstract class used to model different units.

 One class to manage all units in a machine.

Challenges May create changes also in sensors and actuators.

Importance High Difficulty Medium

 74

Scenario 4. Adding new sensor to control process.

Stimulus Need for a new sensor type.

Response New sensor type provides more accurate measurements.

Architecture

Decisions

 Abstract class used to model different sensors.

 One class to manage all sensors in a machine.

Challenges May create a need for changes in unit functionality.

 A sensor is subjected to a single unit.

Importance High Difficulty Medium

Scenario 5. Adding new product (mobile crusher).

Stimulus Need for a new machine type.

Response Mobile crushers are included into product line.

Architecture

Decisions

 Machine consists of different units.

 Modularity of machine software is enforced.

 Architecture designed for specific product scope (portable and

stationary crushers).

Challenges Tracks need to be implemented as a new unit.

 Changes into machine API to enable track drive control.

Importance Medium Difficulty High

Scenario 6. Adding new interface to upper levels.

Stimulus Need for a new interface type.

Response New interface enables the machine to be accessed more efficiently.

Architecture

Decisions

 A single class is used to handle communications.

 User management and authentication used to prevent misuse.

 Interfaces in the product family need to be standardized.

Challenges Adding a whole new interface is seen as a drawback.

Importance Low Difficulty Medium

Scenario 7. Adding GUI.

Stimulus Need for a local GUI.

Response Local UI makes troubleshooting easier.

Architecture

Decisions

 Local GUI was seen as obsolete feature.

 UIs should be developed separately from machine.

 UIs access machine data through proper API.

Challenges Localization and graphics.

 User interaction with display unit.

Importance Low Difficulty High

 75

Scenario 8. Changing embedded computers to PC hardware.

Stimulus PC hardware is seen as more efficient way to operate.

Response Machine applications are moved to PC hardware with Metso DNA.

Architecture

Decisions

 Metso DNA HAL increases hardware independence.

Challenges Metso DNA has limited support to different platforms.

Importance Medium Difficulty High

Scenario 9. Changing the functionality how to react to an alarm.

Stimulus An alarm is seen less or more essential than before.

Response New alarm increases the safety of the machine usage.

Architecture

Decisions

 Single class to handle alarm handling at machine level.

 Alarms handled also in unit level.

Challenges Changes possibly in unit and machine level in alarm handling.

 Alarm hierarchy between needs to be defined (plant-machine-

unit).

Importance High Difficulty Medium

Scenario 10. Changing the functionality of a control.

Stimulus New safety regulations require changes in operating.

Response Machine control is modified to meet the regulations.

Architecture

Decisions

 A machine is controlled by a single class.

 An abstract class is used to model control modes.

Challenges Dramatic changes, such as changes in basic machine operating

rules, may considerably increase the difficulty of the scenario.

Importance Medium Difficulty Medium

Scenario 11. Changing the unit order in start and stop sequences.

Stimulus The start conditions of a unit have changed.

Response The start and stop sequences have been altered to meet the current

configuration.

Architecture

Decisions

 A single class is used to start and stop sequences.

 Units are managed by a single class that has the knowledge of

ones relations to others.

Challenges None seen.

Importance High Difficulty Low

 76

Scenario 12. Replacing peer and upper level communication methods with

wireless technologies.

Stimulus Wireless communications are seen more beneficial as the maturity of

the technology increases.

Response Wireless communication methods are created as an alternative way of

communicating.

Architecture

Decisions

 A single class is used to handle basic communications.

 Metso DNA platform is responsible for enabling

communications within a site.

 The homogeneity of machine API’s in product family need to

be increased.

Challenges The lack of communication standards increases the difficulties

in machine communications.

 Underground facilities are challenging for wireless

applications.

Importance Medium Difficulty Medium

Scenario 13. Replacing a crusher type.

Stimulus A crusher type is seen as obsolete and needs to be replaced.

Response The old crusher type is replaced with a new one.

Architecture

Decisions

 Crushers are based on an abstract base class.

 Units are responsible of notifying machine control.

Challenges Abstract base class may be too limited.

 The new crusher need to be operated differently from the

previous ones.

Importance Medium Difficulty High

Scenario 14. Replacing an actuator type.

Stimulus An actuator has become obsolete.

Response New actuator type is used to get more precise unit control.

Architecture

Decisions

 Actuators are managed by a single class.

 Actuators are based on an abstract base class.

Challenges None seen.

Importance Medium Difficulty Low

 77

5.1.4 Results

A more detailed analysis consists of four most relevant scenarios. The scenarios were

chosen based on their importance, difficulty and estimated probability to happen. The

class diagrams for the architecture can be found in Figures 33 and 34 at pages 61 and

62.

3. Adding new hardware (new unit type)

The addition of a new unit type is simple to the architecture as long as the unit consists

of sensors and actuators. The functionality of the unit should also be similar to existing

unit types. If not, the unit may not be suitable for the product line or at least a significant

amount of work is needed especially in UnitControl class. The class is responsible for

basic functionality and protective functions needed for each unit and thus probably the

most vulnerable to changes. Modifications in UnitControl reflect also in UnitManager

as the unit probably has more advanced capabilities compared to predecessors.

Commonly new unit types are introduced together with new actuators and sensors. Thus

the modifications required in implementation do not limit only to the new unit type, but

also reflect to other parts of the architecture. In the end, the modifications are mostly

bound to AbstractUnit class.

5. Adding new product (mobile crusher)

The product line architecture is designed to the needs of stationary and portable

solutions due to their similarity in application environments and hardware solutions.

Mobile crushers were intentionally left out from the scope. Mobile crushers and their

architectures [39] are similar to the product line architecture in many parts. The most

significant difference is that the mobile crushers need to be able move with a remote

control or with use of local control panel. Also the environment of mobile crushers

differs from stationary and portable sites as plant level automation is seldom used. This

emphasizes the need for GUI that was left out from the product line architecture.

However the GUI for the machine control can be created through proper API’s so that

an attached display unit is not required. Before implementing the product line, the

architecture should be evaluated against the needs of mobile crushers so that in future

they can be added to the family.

9. Changing the functionality how to react to an alarm

Alarms are handled in both unit and machine level. The functional changes may limit on

to unit level or to machine level depending on their extensiveness. For example, some

alarms may be handled automatically with adjustments without any notification to the

user. At the machine level alarms usually have a more significant effect concerning the

 78

functionality of several units and thus both actions and acknowledgement is required

from a user. In any case the modifications limit in few classes, which are used to handle

alarms and events, and to API used to mediate alarms to the user.

13. Replacing a crusher type

The hardware of crushers is developing constantly. Frequently a crusher type is

evaluated to be obsolete and a follower is introduced. This seems similar case as adding

a new hardware, but is somewhat different. The obsolete models are still in use around

the world and thus require maintenance or to be updated until the end of their lifecycles.

Overall the replacement of a crusher type is a rare incident and usually the basic

operating principles and functionality of crushers stay the same. Therefore a more likely

scenario is that the crusher type is updated or modified. For example, new technologies

enable more accurate measurements and adjustments.

Risks

The architecture is designed to environments, where object-oriented or similar

component-based development is possible. However this is not always possible and

especially concepts like inheritance are unavailable in more primitive implementation

languages. However in FBL this can be achieved through specialization, which is a

close match. Another architecture related risk is its inadequacy to meet all needs of the

product family. The architecture design was done by one individual with only some

previous knowledge from the rock crushing environment. This is why the presented

architecture needs to be evaluated and developed iteratively with a larger forum.

The product line architecture provides only a limited solution to interoperability and

communication issues of the machines, because the problem is how to connect all

machines to a plant level system. Providing a similar API for each machine within

product family does not give significant results especially in the short term as sites are

still expected to consist of previous solutions from Metso and competitors. However

implementing plant level automation systems will be somewhat easier as the

heterogeneity of machine API’s is reduced. The effort invested into creating similar

API’s may not pay back in the long run as the entry of communication standards are to

be expected. The opposition of the standards is likely to be greater if every solution

provider has invested resources to create its own standard. This is why at least the major

providers should invest in creation of a common machine API. The argument is

supported also by the fact that a customer sees and buys machine, plant and upper level

solutions. The customer is not interested in the solution details such as how the

communication is implemented. Competition in the market area has been concentrated

in the machine hardware and is expected to move more and more to the plant and other

upper level solutions making investments into machine control systems less inviting.

 79

5.2 Product line assessment

The product line approach presented is compared to the conventional development

method used in Metso. The product line approach is based on common reusable assets

that can be used to uniform both the family products and the product development. The

current project-oriented method has not given enough support for reuse and thus has

created unmanageable amount of product variations.

5.2.1 Strengths

The product line approach has four significant benefits. Firstly, product development is

simplified and more uniform. In project-oriented development, products have been

developed uniquely. Therefore both tasks and responsibilities must have been defined

with each project again. This has created difficulties also in communication between

stakeholders. In a product line approach tasks and responsibilities are pre-determined

and thus more lucid responsibilities are gained.

Secondly, the use of reusable family assets reduces the work needed to be done to each

product. This is because the common core can be derived from the family assets and

only a small amount of tailoring is needed to create a new product. Thirdly, the use of

product line architecture and reusable components also reduces the amount of

overlapping work done with different products. In a project-oriented development this

has been a problem as products have been isolated from others.

Finally, the decision of using a same platform for each product in the family simplifies

development and maintenance tasks. Same tools can be used to create and maintain all

products. This simplifies the tasks and reduces the amount of know-how required from a

developer or a maintenance worker.

5.2.2 Weaknesses

A product line cannot be established instantly. The product lines require time and other

resources, but most of all commitment. In Metso case the product line can be based on

the latest Metso DNA based control systems and thus the architecture can be developed

iteratively by abstracting software components into family assets one by one.

Nevertheless the resources needed to create the family asset base and establishing a new

development method within the organization is challenging. The product line approach

can also be seen negatively from a developer point of view as one simply can no more

implement different products with ad hoc principles as all products should also

contribute to the product line.

 80

5.2.3 Opportunities

At its best, product lines provide a workmanlike and effective product development.

The product lines can also create a basis for better lifecycle management as products are

no longer different from each other. This makes different support activities easier as

products can be updated, replaced and modernized similarly. However one must

remember that the products already around the world will still be a burden for decades.

A workmanlike approach can be achieved with product lines through using the same

tools and one standardized development process throughout the organization. This

contributes also to the orientation of new employees. Standardized processes are easier

to learn and the productivity of the new employee is increased. The productivity is also

increased with the use of core assets as the hidden knowledge from different developers

is concretized into components and other solutions. In a project-oriented development

these are much harder to attain.

5.2.4 Threats

Every action has a reaction. This can also be witnessed when establishing the product

line approach. The common opposition towards the change is most likely to be seen

when product lines are introduced. The resistance can be minimized if the product line

is designed and finalized by a larger forum. Lack of commitment also slows down the

establishment of product line approach. This is why the key persons in the organization

must be convinced from the benefits. If not, the product line may be introduced only to

a part of the organization and thus the greater benefits will be harder to achieve.

One of the most significant risks addresses the environmental concerns of a product

line. Commonly product lines are suitable to stable environment that evolves with an

even pace. However rapid and radical changes in environment diminish the benefits

gained from the reuse. This is because characteristics of an unstable environment

include lots of new requirements, which create a need for whole new solutions.

Therefore a successful establishing of the product line requires suitable environment.

 81

6 CONCLUSION

The harsh environment of rock crushing control systems is challenging both software

and hardware. The hardware is required to be robust and reliable to enable the use of

automation with heavy machinery. From a software viewpoint the control systems are

quite simple. Hardware variations do not seem to affect the functionality of the software

even though variations do exist especially in implementation methods. Requirements for

each control system in a control system family are very similar even though some

variations exist due to development history. However the use of and ineffective

software engineering and different hardware has created unnecessary variations in the

family. The unmanaged variations have reduced cost-effectiveness, reusability,

maintainability and increased time-to-market in the family.

Product lines combined with proper variation management is a one way to cope with the

presented problems and may even extend to other substantial benefits throughout

products lifecycles. Studies [20; 43] have proven that the use product lines can increase

quality and productivity in product families. However the increased productivity alone

may not have an effect on time-to-market. To reduce time-to-market, the critical path in

product development needs to be shorter in time. Product lines emphasize strategic

reuse, which is a way to have the desired effect. Easier maintainability can be achieved

through deriving all products from the same product line architecture and using

common core assets. Initial costs for product line approach may seem high as the

common reusable asset base needs to be built and both organizational and process

modifications need to be executed. However the benefits in the long run are worth

pursuing, because in time the amount of reuse significantly increases as the core assets

become more advanced. Especially in Metso the amount of hidden knowledge and

expertise in different areas need to be harnessed in order to achieve stability and

continuity for the organization. With a proper product line approach these can be stored

into the core assets and thus the productivity of a new developer is increased more

rapidly and known mistakes are avoided.

The product line approach in this thesis was designed into Metso environment. The

environment had certain limitations such as building the product line on Metso DNA

platform and with project-oriented processes. Designed product line is far from

complete and thus requires more detailed planning of different aspects. The product line

can be used as a starting point for product line evolution. The product line architecture

was developed through scoping available documentation and features from

 82

implemented control systems. These revealed both up-to-date and obsolete features. The

features becoming obsolete are due to the environmental changes, which are inevitable

as technology progresses. Nevertheless both up-to-date and obsolete features can be

used to estimate future requirements for the software and thus both are important. The

design of architecture involved stripping all unnecessary features, taking in account the

variations with different control systems and estimating future needs.

Organizational modifications, which were required for the product line approach,

included three different hierarchy levels. At the highest level, a domain engineering unit

is responsible for the development of Metso DNA platform. Crusher Platform

Engineering Unit is designed to be responsible for the development of core assets for

the use of Crusher Application Engineering Units. The responsibilities also include

harmonizing the family to be suitable for Metso DNA. Crusher Application Engineering

Units are responsible for developing actual products by customizing the derived core

assets to customer-specific demands. The product line is a hybrid of ordinary product

line and Metso project-oriented gate-based development processes. The tasks of domain

engineering are unchanged, but the application engineering tasks are adapted to a

process more familiar in Metso. This enables a more gentle approach to the product line.

Product line was evaluated with SAAM and SWOT-analysis. According to the

evaluation the architecture may be feasible, but that might not be sufficient for

implementation. Therefore more iterations, viewpoints and studies are required in order

to define the final product line composition. For example, the chosen Metso DNA

platform may not be an ideal approach from a customer viewpoint. A market study

should be conducted first to find out, which of platforms and the applications are the

ones most preferred by customers. It may be that none of the current platforms serve the

environment requirements and thus a new one should be developed for the control

systems. Nevertheless the platform and applications have the same requirements and

features that were scoped in this thesis.

Another important issue is to develop needed core assets and a production plan. This

way application development is able both to exploit the core assets and to create more

reusable assets for the product line. The approach applying the product line should be

made iteratively to minimize the risks involved. The risks of failure are greater when the

production line evolution includes several products parallel. Other tasks parallel with

the evolution are testing [44; 45] and optimization of the product line [46]. Proper

testing contributes also to the optimization of the product line as the weak links are

found out. The process must be optimized in order to gain the reported benefits from the

product line approach. However the process alone will not enable the benefits and thus

the focus must also be set on core assets. For example all components must be evaluated

and this requires proper metrics and methods [47]. Applying the product line approach

into organization culture is a long term project, which requires commitment above all.

 83

REFERENCES

[1] Eriksson Magnus, An Approach to Software Product Line Use Case

Modeling, Licentiate Thesis, Department of Computing Science, Umeå

University, 2006.

[2] Reiser Mark-Oliver, Tavakoli Ramin, Weber Matthias, Unified Feature

Modeling as a Basis for Managing Complex System Families, First

International Workshop on Variability Modeling of Software-intensive

Systems, 2007, pp. 79-86.

[3] Clements Paul, Northrop Linda, Software Product Lines: Practices and

Patterns, Addison-Wesley, 2001, ISBN 0-201-70332-7.

[4] Bass Len, Clements Paul, Kazman Rick, Software Architecture in

Practice Second Edition, Addison-Wesley, 2007, ISBN 0-321-15495-9.

[5] ANSI/IEEE 1471-2000, Recommended Practice for Architecture

Description of Software-Intensive Systems, Institute of Electrical and

Electronics Engineers, 2000.

[6] Kruchten Philippe B., The 4+1 View Model of Architecture, IEEE

Software, 1995, Volume 12, Issue 6, pp. 42-50.

[7] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John, Design

Patterns – Elements of Reusable Object-Oriented Software, Addison-

Wesley, 2000, ISBN 0-201-63361-2.

[8] Eloranta Veli-Pekka, Koskinen Johannes, Leppänen Marko, Reijonen

Ville, A Pattern Language for Distributed Machine Control Systems,

Tampere University of Technology, Department of Software Systems

Report 9, 2010, ISBN: 978-952-15-2319-9.

[9] Bosch Jan, Design & Use of Software Architectures: Adopting and

evolving a product-line approach, Addison-Wesley, 2000, ISBN 0-201-

67494-7.

[10] Anastasopoulos Michalis, Gacek Cristina, Implementing product line

variability, Proceedings of SSR’01, pp. 109-117, 2001.

 84

[11] Matinlassi Mari, Comparison of Software Product Line Architecture

Design Methods: COPA, FAST, FORM, KobrA and QADA,

Proceedings of the 26
th

 International Conference on Software

Engineering, 2004.

[12] Schmid Klaus, John Isabel, A customizable approach to full lifecycle

variability management, Science of Computer Programming, 2004.

[13] Berg Kathrin, Bishop Judith, Muthig Dirk, Tracing software product line

variability: from problem to solution space, SAICSIT ’05, 2005.

[14] Alves de Oliveira Junior Edson, Gimenes Itana M. S., Huzita Elisa

Hatsue Moriya, A Variability Management Process for Software Product

Lines, CASCON ’05, 2005.

[15] Svahnberg Mikael, Variability in Evolving Software Product Lines,

Licentiate Thesis, Department of Software Engineering and Computer

Sciences, Blekinge Institute of Technology, 2000, ISBN 91-631-0265-X.

[16] Bosch Jan, Florijn Gert, Greefhorst Danny, Kuusela Juha, Obbink J.

Henk, Pohl Klaus, Variability Issues in Software Product Lines, Lecture

Notes in Computer Science, 2002, pp. 303-338.

[17] Nestor Daren, O’Malley Luke, Quigley Aaron, Sikora Ernst, Thiel

Steffen, Visualisation of Variability in Software Product Line

Engineering, First International Workshop on Variability Modeling of

Software-intensive Systems, 2007, pp. 71-78.

[18] Dhungana Deepak, Grünbacher Paul, Rabiser Rick, DecisionKing: A

Flexible and Extensive Tool for Integrated Variability Modeling, First

International Workshop on Variability Modeling of Software-intensive

Systems, 2007, pp. 119-127.

[19] Belategi Lorea, Sagardui Goiuria, Etxeberria Leire, Variability

Management in Embedded Product Line Analysis, Second International

Conference on Advances in System Testing and Validation Lifecycle,

2010.

[20] Cohen Sholom, Dunn Ed, Soule Albert, Successful Product Line

Development and Sustainment: A DoD Case Study, Carnegie Mellon

Software Engineering Institute, 2002.

 85

[21] Brownsword Linda, Clements Paul, A case study in successful product

line development, 1996, Technical Report CMU/SEI-96-TR-016 ESC-

TR-96-016.

[22] John Isabel, Lee Jaejoon, Muthig Dirk, Separation of Variability

Dimension and Development Dimension, First International Workshop

on Variability Modeling of Software-intensive Systems, 2007, pp. 45-49.

[23] Salicki Serge, Farcet Nicolas, Expression and Usage of the Variability in

the Software Product Lines, Lecture Notes in Computer Science, 2002,

pp. 173-210.

[24] Van der Linden Frank, Software Product Families in Europe: The Esaps

and Café Projects, IEEE Software, vol. 19, no. 4, pp. 41-49, 2002.

[25] Deelstra Sybren, Sinnema Marco, Bosch Jan, Experiences in Software

Product Families: Problems and Issues During Product Derivation, SPLC

2004, pp. 165-182.

[26] Webber Diana L., Gomaa Hassan, Modeling variability in software

product lines with the variation point model, Science of Computer

Programming, 2004, vol. 53, iss.3, pp. 305-331.

[27] Kim Youngbong, Moon Miyeong, Yeom Keunhyuk, An Aspect-oriented

Approach for Representing Variability in Product Line Architecture,

First International Workshop on Variability Modeling of Software-

intensive Systems, 2007, pp. 41-42.

[28] Kazman Rick, Bass Len, Abowd Gregoyry, Webb Mike, SAAM: A

Method for Analyzing the Properties of Software Architectures,

Proceedings of the 16
th

 international conference on software engineering,

1994, ISBN: 0-8186-5855-X.

[29] Reiser Mark-Oliver, Tavakoli Ramin, Weber Matthias, Unified Feature

Modeling as a Basis for Managing Complex System Families, First

International Workshop on Variability Modeling of Software-intensive

Systems, 2007, pp. 79-86.

[30] Metso Inc. internal sources.

 86

[31] Jaatinen Antti, Lehtinen Ville, Yli-Paunu Pekka, Lehtonen Aleksi,

Petteri Kylliäinen, Flink Nina, Aro Petri, Mäkinen Mikko, EFFIMA /

RESPO Report of Task 1: Concepts of a modular control system

architecture, 2011, Metso Inc. and Cargotec Inc.

[32] Välimäki Antti, Pattern Language for Project Management in Global

Software Development, 2011, Department of Software Systems,

Tampere University of Technology, ISBN: 978-952-15-2581-0.

[33] Metso Corporation. [WWW]. Referenced at 11/2011. Available at:

http://www.metso.com.

[34] Karaila Mika, Domain-specific Template-based Visual Language and

Tools for Automation Industry, Tampere University of Technology

Publication 938, 2010, ISBN 978-952-15-2481-3.

[35] Flink Nina, Operator Needs for Mobile Crushing Plant Control System,

2010, Master’s Degree Programme in Information Technology, Tampere

University of Technology.

[36] International Electrotechnical Commission. IEC 61508 standard.

[WWW]. Referenced at 11/2011. Available at: http://www.iec.ch/-

functionalsafety/.

[37] Kytömäki Taavi, Automation Hardware Architecture on Mobile Crusher

Plant, 2007, Master’s Degree Programme in Automation Technology,

Tampere University of Technology. Available in Finnish.

[38] Lehtinen Ville, Software Architecture for Mobile crushing and screening

machines, 2008, Master’s Degree Programme in Automation

Technology, Tampere University of Technology.

[39] Kaartinen Jukka, Software Architecture for mobile stone crusher product

family, 2006, Master’s Degree Programme in Information Technology,

Tampere University of Technology.

[40] Breivold Hongyu Pei, Larsson Stig, Land Rikard, Migrating Industrial

Systems towards Software Product Lines: Experiences and Observations

through Case Studies, 34
th

 Euromicro Conference on Software

Engineering and Advanced Applications, 2008.

 87

[41] Jaaksi Ari, Developing Mobile Browsers in a Product Line, IEEE

Software, 2002, vol. 19, pp. 73-80.

[42] Pahl Nadine, Richter Anne, SWOT Analysis - Idea, Methology And A

Practical Approach, GRIN Verlag, 2009, ISBN: 978-3-640-30303-8.

[43] Lim Wayne C., Effects of Reuse on Quality, Productivity, and

Economics, IEEE Software, 1994, vol. 11, no. 5, pp. 23-30.

[44] McGregor John D., Testing a software product line, Lecture Notes in

Computer Science, 2010, vol. 6153, pp. 104-140.

[45] Pohl Klaus, Metzger Andreas, Software product line testing - Exploring

principles and potential solutions, Communications of the ACM, 2006.

[46] Loesch Felix, Ploedereder Erhard, Optimization of Variability in

Software Product Lines, IEEE 11
th

 International Software Product Line

Conference, 2007.

[47] Faust D., Verhoef C., Software product line migration and deployment,

Software: Practice and Experience, 2003, Volume 33, Issue 10, pp. 933-

955.

