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ABSTRACT
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Master‘s Degree Programme in Signal Processing
CAKIR, EMRE: Multilabel Sound Event Classification with Neural Networks
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October 2014
Major: Signal Processing
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There are multiple sound events simultaneously occuring in a real-life audio
recording collected e.g. at a busy street in rush hour. The events may include
traffic noise, sound of rain, people talking etc. The humans are amazingly good at
distinguishing these individual events, but as of yet, there is not any machine that
can detect these events with (even close to) human accuracy. Polyphonic nature of
the environmental audio recordings makes it hard to detect single sound events when
many events are overlapping. With the gigantic audio database and state-of-the-art
machine learning methods of the digital age, this is bound to change.

In this thesis, we use frequency-domain features to represent the audio input
and multilabel deep neural networks (DNN) to detect multiple, simultaneous sound
events in a real-life recording. We extract frequency-domain features from these
recordings in short time frames. DNNs are artificial neural networks (ANN) with
two or more hidden layers and they are especially good at modeling highly nonlinear
relations and finding intermediate representations between system input and output.
This is exactly the case in real-life sound event detection. Every feature extract is
used as a training example and we train the neural network with these examples.

For the evaluation of this work, we focus on the performance of different topologies
of DNNs used in this task. There are a large number of hyper parameters that define
the structure of a DNN, such as the number of neurons in a layer, the learning rate
used during learning, number of the hidden layers etc. The effects of each of these
parameters are investigated in detail. A detection accuracy of 66.5% is achieved,
which outperforms the state-of-the-art method by a large margin.
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1. INTRODUCTION

The last decades of humanity witnessed a fast change of daily lifestyle with the
introduction of computers in our lives. When we first encountered with the com-
puters, most of us thought that they are too complex, too bulky and they will not
be great use for people except scientists. With the help of the rapid developments
in electronics, computers got smaller and easier to use. Consequently, they started
to become a major factor in our day-to-day lives.

The more people get used to the computers, the more they started asking from
them. The unnatural bond between humans and an electronic device shrinked swiftly
in recent years. The people of the 21st century are comfortable with carrying elec-
tronic gadgets with them anywhere they go to. Nowadays, we expect computers
to help us understand the world around us and be aware of what is going on. We
want electronic devices that can percept the physical context and assist their users
in certain tasks, without any guidance. For this reason, context-aware devices have
been a popular research area among the machine learning scientists. Some of the
applications such as navigation assistance already take part in our daily lives, but
they provide only limited context-awareness.

In fact, designing context-aware devices is easier said than done. Human beings
always combine visual and audio information for perception of surroundings, but
this is not still the case for machine learning systems. Nowadays, the vast majority
of these devices are solely based on processing visual information. Although it is
possible to obtain precise, accurate details of the surroundings from the image data,
physical challenges exist. For the applications such as camera based indoor robot
navigation [1], even a little loss of sight would cause serious problems.

On the other hand, audio information can provide additional awareness to these
systems. One of the senses that we use most while interacting with the world is
hearing. However, computers still fail badly, compared to humans, when it comes to
interpreting and assigning meanings to the sounds. With the increase of available
audio data and processing power, a new path opened for research and improvement
for the scientists. Consequently, it led to dawn of a new branch of computer science,
namely audio information retrieval.

Audio information retrieval is a very popular research area in recent years and
it has many sub-branches, such as music information retrieval (MIR), automatic
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speech recognition (ASR) and sound event detection (SED). Some of the MIR ap-
plications can be listed as musical instrument recognition [2; 3], automatic music
transcription [4; 5] and musical genre classification [6; 7]. In [8], ASR is defined
as the independent, computer-driven transcription of spoken language into readable
text in real time. The research on ASR is mainly focused on improving the vocab-
ulary size, noise robustness, speaker independence and continuous speech recogni-
tion [9; 10; 11]. SED systems take part in many applications such as audio based
multimedia surveillance [12], audio keywords for video [13] and event detection in
real-life recordings [14].

In this thesis, we tackle the area of real-life sound event detection in multi-
label recordings by using artificial neural networks (ANN). The interpretation of
the concept of sound event are various in the literature. As in [15], sound events
may result from the ambient sounds in nature, such as wind on trees, sound of rain
or insects chirping. In [16], sound events are interpreted as all the events in audio
which are not based solely on music or speech signals. In our work, we use the second
approach and deal with ambient nature sounds among music and speech signals all
together.

Getting good results from a recognition system is fundamentally based on the
selection of relevant features and the suitable classifier. In other areas of audio
information retrieval other than multi-label SED, there are some traditional fea-
tures and methods that have been used in ASR for a long time. These include
e.g. mel-frequency cepstral coefficients (MFCC) [17], linear predictive cepstral co-
efficients (LPCC) [18] and log-frequency power coefficients (LPFC) [19] as features
and Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM) for data
modeling. Real-life sound recordings typically have multiple sound events occuring
simultaneously and it is hard to discriminate these individual sound events from the
mixture signal. Therefore, this research area was not able to develop as fast as its
other counterparts such as speech recognition, musical genre classification etc. The
main problem in the recognition of real-life sound events is that traditional features
and classification methods do not give as satisfactory results as other applications.
We believe the reason is that these features and methods are not able to efficiently
reflect the different temporal and spectral characteristics of the events occuring at
the same time. For example, the MFCCs extracted from a mixture signal with over-
lapping sound events are not equal to the sum of the MFCCs of individual sound
events.

Our motivation to tackle this problem comes from the yet unsatisfactory results
in this intriguing topic. With the selection of correct features and by using the recent
improvements in the machine learning such as deep neural networks, we believe that
high accuracy event detection is possible in real-life recordings.
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The thesis is organized as follows. Section 2 presents the theoretical background
on audio features used in SED and artificial neural networks. Section 3 explains the
methodology including preprocessing, feature extraction, neural network training
and testing algorithms and a post-processing method. Section 4 reveals the evalu-
ation details and results of several simulations. Finally, discussions on the results
and suggestions for future research areas are pointed out in Section 5.
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2. BACKGROUND

In order to understand the implemented system thouroughly, this section provides
background information and literature review on topics such as sound event detec-
tion, audio features and artificial neural networks.

2.1 Sound Event Detection

The goal of SED systems is to recognize a sound event resulting from an individual
sound source in a continuous audio signal. The main concern of the detection is to
correctly recognize an event in a given extract of the recording. The exact location,
i.e., the start and end time of the event has a secondary importance, so the detection
systems often have rather coarse time resolution. This is where SEDs differ from
other audio based recognition systems such as speech and music recognition.

Previous SED research has typically been carried out for isolated sound events [20].
In each recording, there is a single sound event and the SED is trained to detect the
event in a given time period. An SED system with a single output for each time
instance is called monophonic SED. However in this thesis, SED is carried out in
recordings collected from real-life environments. These environments have different
acoustic characteristics due to the presence of human or nature activities. There
are multiple overlapping sound events, therefore the detection of individual events is
more challenging than in isolated recordings. An SED system that is able to detect
multiple events in the same instnace is called a polyphonic SED system. Figure 2.1
illustrates the polyphonic nature of sound events in realistic environments.

SED systems first create a mid-level representation of the audio waveform in a
recording. This process is called feature extraction. It is crucial to select the correct
features to extract from an audio signal, because irrelevant features might cause a
loss of valuable information and that would make the detection harder. Many events
resulting from the nature, such as wind and rain sounds, have strong temporal
domain signatures. Therefore, it is somehow necessary to extract the temporal
domain information as well as spectral domain information in environmental sound
recordings.
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signal horn signal horn

wind on trees wind on trees

motorbike motorbike motorbike

time(t)

frame t

Figure 2.1: Overlapping sound events in a recording from a realistic environment.
Frame t represents the short time frame from the recording where only signal horn
and motorbike events are present.

2.2 Audio Features

Detection of audio events requires a good representation of input, as with most pat-
tern recognition tasks. Using raw amplitude values of the audio signals for detection
is a rare situation and most likely an unsuccessful method. Extracting noise robust,
informative features from the sound recording can be seen as a good initialization
and a first step forward.

Audio features for environmental sounds are especially important, when the sound
is recorded in a real-life auditory scene. Multiple sound events with diverse char-
acteristics are most likely occur simultaneously and some events might behave as
noise for other events, making it harder for detection. Speech and music signals have
harmonic structure, unlike environmental sounds, which are unstructured. There-
fore, the traditional features that work succesfully in speech and music recognition
systems might fail in environmental sound event detection. Several features from
different domains have been experimented to characterize audio events. We briefly
review common features used in SED, although not all of these are used in the
implementation stage.

2.2.1 Time Domain Features

Time domain representation of a signal describes the changes in the signal with
respect to time. In the case of audio signals, time-domain representations usually
give little information, because audio signals are highly stochastic and additive noise
can mask the individual sources in the sound. Some of the mostly used time domain
features are as follows.
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Zero-Crossing Rate Zero crossing rate (ZCR) is the rate of change of a signal
from positive to negative. It can be seen as a simple measure of the frequency content
of a signal and it is often calculated in short time windows. ZCR is calculated as

ZCR =
1

2N

N∑
i=1

|sgn(ui − ui−1)| (2.1)

where ui is the discrete time input, i = [1, 2..., N ], N is the number of samples from
the input and sgn(·) is defined as

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

(2.2)

Short-time energy Short-time energy gives the information of amplitude varia-
tion over time in short frame and it is calculated as

Ek =
1

K

N∑
i=1

|uiwk−i|2 (2.3)

where u is the discrete time input, k is the time index of the frame and w is the
window of length N .

2.2.2 Frequency Domain Features

Frequency domain analysis illustrates how large portion of the input signal is found
inside certain frequency bands over a range of frequencies. Time domain represen-
tation of a signal can be converted to frequency domain by using transforms. One of
the most widely used transforms is called the discrete Fourier transform (DFT). The
Fourier transform assumes stationary sinusoid signals in time domain. As for the
audio signals, they are almost never stationary, always varying with time. Therefore,
the DFT is taken in short time windows of length 10-100 ms by assuming the audio
signal is stationary in that time interval. After taking the DFT of the window, there
are several ways to proceed and extract frequency domain information.

Mel-band Energy The mel scale is a perceptual pitch scale that is designed so
that the frequency distance between each band is perceptually equal for the listeners.
The human auditory system is more sensitive to the frequency variations in low
values than high values. Therefore, the frequency distances between consecutive mel
bands in high frequencies is quite high compared to low frequency values. Frequency
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f in Hertz is converted to m mel by using the formula

m = 2595 log10(1 +
f

700
) (2.4)

where mel is the unit of pitch.
The mel-band energies of an audio signal are calculated as follows. After taking

the DFT of each short time window, power spectrum is obtained by taking the square
of the absolute value of the complex DFT. Then, mel-scale filter bank outputs are
obtained by mapping the power spectrum onto the mel scale. Typically, filterbanks
of 20 to 40 filters are applied to cover the whole frequency range. The process is
illustrated in Figure 2.2.

Discrete Fourier

Transform
|.|^2 Mel filterbank Mel-band energies

Short-time 

window input

Figure 2.2: Mel-band energy extraction.

Mel-frequency Cepstral Coefficients Mel-frequency cepstral coefficients (MFCCs)
are widely used features in speech, music and audio event recognition. They provide
decorrelated features that work especially well in single-source environments.

MFCCs are calculated by taking the logarithm of mel-band energies and applying
the discrete cosine transform (DCT). The motivation for taking the logarithm comes
from human hearing. We do not perceive the loudness in the audio in a linear scale.
When the amount of energy in an audio signal is doubled, the perceived loudness
is not doubled. The logarithm operation makes the features more close to human
perception. Log-filterbank energies are quite correlated, because the filterbanks are
overlapping. To overcome this, the DCT is applied and typically the first 12 to 26
coefficients. This way, we keep the first coefficients that give the most information
about the spectral shape. The first coefficient is discarded, because it basically gives
the total log energy of the frame and does not give information about the spectral
shape. The MFCC extraction process is illustrated in Figure 2.3.

Mel-band energies Log Discrete Cosine Transform
Mel-frequency 

Cepstral Coefficients

Figure 2.3: MFCC extraction.

For sound signals it is beneficial to have the information on how the features
change with respect to time. MFCCs alone give the power spectral envelope for a
single frame. To model the dynamics of the MFCCs, delta (differential) coefficients
are calculated as
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dt =

N∑
n=1

n(ct+n − ct−n)

2
N∑
n=1

n2

(2.5)

where dt is the delta coefficient vector of length N for frame t and ct is the MFCC
vector for frame t. In some applications, delta-delta coefficients were found helpful
as well.

Linear Predictive Cepstral Coefficients Linear Prediction Coding (LPC) is
another common way to obtain spectral information. The signal u is predicted by a
linear combination of its past values as

un ≈
p∑
i=1

aiun−i (2.6)

where ai are the linear predictor coefficients and p is the LPC order. The coeffi-
cients are determined by minimizing the residual error energy using Levinson-Durbin
recursion [21].

Linear predictor coefficients are often not used as features, but they are converted
to linear predictor cepstral coefficients (LPCC). LPCCs are calculated recursively
from LPCs. Unlike MFCCs, LPCCs do not relate with perceptual frequency scale.

Log-frequency Power Coefficients Log-frequency power coefficients (LFPC)
are calculated in a similar fashion with Mel-band energies. The only difference is
that the bandpass filters are not on the mel scale [19]. LFPCs characterize the
distribution of the spectral energy across the sound input range of frequency.

2.2.3 Time-Frequency Domain Features

Conventional frame-based methods are sometimes inefficient for audio event detec-
tion, when the audio is a mixture of sounds from multiple sources. Studies [22]
show that human brain does not possibly use the frame-based approach, but it
rather recognizes the features that are local and uncoupled in the frequency do-
main. Motivated by this fact, local spectrogram features (LSF) can be extracted
from the region around the keypoints in the spectrogram [23]. Keypoints are selected
to be at the discriminative sparse peaks occuring in a spectrogram so that sound
events can be modeled with LSF clusters and their occurences in the spectrogram.
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2.3 Artificial Neural Networks

An artificial neural network (ANN) is a pattern recognition method that is inspired
by how the human brain processes information. In literature, ANN is defined as
"massively parallel interconnected networks of simple (usually adaptive) elements
and their hierarchical organizations which are intended to interact with the objects
of the real world in the same way as biological nervous systems do" [24; 25]. Human
brain is believed to be composed of billions of interconnected neurons of many layers.
These neurons are specialized on learning information. For this reason, humans are
magnificently good at interpreting the world that they see. Handwriting recognition
is a simple example on the task. Tuned by different handwritings through many
years, an average human brain is capable of understanding the handwritings of dif-
ferent people easily. When it comes to implementing this with a computer program,
a reasonable approach would be to model the letters and characters. However, it is
easier said than done. The reason is that the variations in handwritings of different
people makes it really hard to find accurate models. This causes to a significantly
lower success rate for computers than humans.

ANNs approach this problem in a similar way with human brain. It designates
each letter (or, in general, training instance) as input, sets up an input layer, an
output layer and (optional) hidden layer(s) of artificial neurons and starts to tune
the network with each training instance. A cost function is selected to determine
the error between the desired output and the estimated output. The task of training
is to minimize this cost function iteratively. An ANN prototype is given in Figure
2.4.

The invention of ANN approach in pattern recognition dates back to 1940’s. This
may sound surprising due to the fact that significant improvement and research in
the area is done in recent years. Actually, the idea was present way before the
advent of computers. In 1943, the first artificial neuron was produced by the neuro-
physiologist Warren McCulloch and the logician Walter Pits [26]. They modeled a
simple neural network using electrical circuits. With the advance of computers, the
first hypothetical neural network was developed in 1950’s. Perceptron was created
by Frank Rosenblatt in 1958 [27] and backpropagation algorithm was found by Paul
Verbos in 1975 [28], both of which are explained below in detail.

The reality is ANN dropped out of favor during 1970’s. Although initially pro-
ducing good results and giving huge promises, the computational requirements for
ANN learning were found to be unreasonable considering the computer technology
of the time. Moreover, the training data required to train an ANN properly was
usually not available at that time. Another problem was that the initial values of
network parameters affected the convergence duration a lot and there was not a
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rule of thumb on how to perform initialization. Consequently, the funding on the
field was decreased, other pattern recognition methods came onto stage and ANN
research slowed down.

In 2000’s, the research interest in the area is restored due to improvements in
computational technology and the invention of new learning algorithms. The poor
initialization problem is tackled successfully by the introduction a learning algorithm
for Deep Belief Networks (DBN) in 2006 [29]. DBN uses unsupervised pre-training
to initialize the network parameters. Nowadays, ANNs with multiple layers are
trained with vast amount of training data and state-of-the-art results are obtained
in many pattern recognition tasks. With the new inventions such as the rectified
linear unit [30] and dropout [31] that reach same accuracy in a purely supervised
manner, the unsupervised approach has become obsolete and the new trend is to-
wards supervised learning.

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.4: Symbolic representation of the ANN topology.

2.3.1 Neuron

Artificial neuron (interchangeably called as unit or node) is the basic element of
the ANNs. Biological neurons transmit information (stimulus) between each other
via the synapses. Depending on the amount of stimuli entering a neuron, it can
either fire or not fire. ANNs try to model this phenomenon by weighing the inputs
(stimuli) to an artificial neuron between the connections (synapses) of the neurons.
Each neuron, except the ones in the input layer, receives inputs from previous layer
of neurons and produces an output for the following layer of neurons. Each input is
weighted by the corresponding weight parameter and resulting products are added
up. Then, depending on a certain function, the artificial neuron produces an output.
This function is called activation function. The artificial neurons mainly differ in
their activation functions.
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Activation
function

y
∑

w2x2

...
...

wnxn

w1x1

b1

inputs weights

Figure 2.5: A single perceptron.

Perceptron Developed in 1958 by Frank Rosenblatt, perceptron used to be one
of the most commonly used types of artificial neurons. A perceptron takes several
inputs xi, calculates the weighted sum of these inputs with weights wi and gives an
output y depending on a bias b.

Note that letters with bold characters (e.g. x) represent vectors and the index
i for xi represents the ith element of x vector. Capital, bold characters (e.g. W)
represent matrices. This notation will be used throughout the thesis.

The output y of a perceptron is calculated as

y(x) =


1,

n∑
i=1

wixi + b > 0

0,
n∑
i=1

wixi + b ≤ 0
(2.7)

where n is the number of inputs to the perceptron. Figure 2.5 illustrates the per-
ceptron structure.

As explained, the perceptron uses a step function as the activation function.
Although the step function is simple and intuitive, it may cause unstable behaviour.
Suppose we want to update the weights so that a small change in the weight leads to
a corresponding small change in the output, hopefully in the direction of the desired
output. Unfortunately, this is not possible with the step function, because it only
gives a discrete output. Therefore, updating the weights and biases during learning
process is more effectively done with differentiable activation functions.

Sigmoid Neuron Sigmoid neuron is a very popular type of artificial neuron that
uses sigmoid activation function σ. The output of the logistic sigmoid function is
defined by

σ(z) =
1

1 + e−z
(2.8)
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When logistic sigmoid function is used to determine the output of the neuron, we
end up with

y(x) =
1

1 + e−z(x)

=
1

1 + exp(
n∑
i=1

wixi + b)

(2.9)

where z(x) =
n∑
i=1

wixi + b.

Sigmoid neuron output has the same upper and lower bound with perceptron
output, namely 1 and 0. When z is very large and positive, e−z → 0 and σ(z) ≈ 1.
When z is very negative, e−z →∞ and σ(z) ≈ 0. The shape of the logistic sigmoid
function is given in Figure 2.6.

−10 −8 −6 −4 −2 2 4 6 8 10

0.2

0.4

0.6

0.8

1

x

y
f(x) = 1

1+e−x

Figure 2.6: Sigmoid function.

As seen in Figure 2.6, sigmoid function is a smoothed version of a step function.
This is certainly beneficial due to the fact that the function is continuously differ-
entiable. It can be used to make small changes with the weights and biases to get
small changes in the neuron output.

Rectified Linear Unit Rectified linear units (ReLU) have the activation function

f(z) = max(0, z) (2.10)

where z is the weighted sum of the inputs to the ReLU. This activation function
has closer characteristics to biological neurons, because rectifier activation function
allows truly sparse representations, which is also the case for biological neurons [32].
ReLU outputs are not bounded from above. A single unit with max(0, x) nonlinear-
ity can be viewed as an approximation to a set of replicated binary units with tied
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weights and shifted biases [30]. This can be mathematically expressed as

∞∑
i=1

σ(z − i+ 0.5) ≈ log (1 + ez). (2.11)

The activation function log (1 + ez) is called softplus and it is the smoothed version
of the rectifier. The shapes of rectifier and softplus functions are presented in Figure
2.7.
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Figure 2.7: Rectifier and Softplus functions.

Maxout Neuron Maxout neurons are one of the newest type of neurons that can
be seen as a modified version of the ReLUs [33]. Given an input vector x with length
N , the output for maxout neuron h is given as

h(x) = max
j∈[1,k]

zj(x) (2.12)

where k is the number of affine feature maps (i.e. maxout pieces), zj = xTwj + bj

is the weighted sum of the inputs to h with weights wj and bias b.
Unlike the other activation functions with 1-D weight vectors with length N for

each neuron, the weight matrix W for the maxout neuron can be thought as having
size k×N . In the same fashion, the bias b for a maxout neuron is not a single value,
but a vector with length k. Hidden units with maxout functions at each layer are
divided into non-overlapping pieces and each piece generates a single activation via
the max pooling operation. Finally, the largest weighted sum is given as activation
output. Maxout activation function is simply equal to a ReLU function when a 0
is added to the the weighted sum set and the number of maxout pieces is set to 1.
Maxout and ReLU are able to avoid the vanishing gradient problem thus allowing
deeper NN topologies. The max pooling process is illustrated in Figure 2.8.

Maxout function can approximate an arbitrary convex function in a piecewise
linear way [33]. It generates different activation functions for each neuron and it
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Figure 2.8: Maxout activation function with N = 3 feature mappings.

also learns the relationship between neurons in a single hidden layer. Unlike other
activation functions, it is not bounded from above (i.e. no saturation problem) and
it is locally linear at most points. Maxout networks usually work effectively without
much pre-training, if any.

2.3.2 Layer

ANN layers are composed of artificial neurons grouped together. The neurons in
each layer are connected with the neurons in the previous and next layer, i.e., they
get their inputs from the previous layer of neuron outputs and give their output to
the next layer of neurons. Depending on their functionality, there are three different
kind of neurons:

Input Layer Input layer is the first encounter of a training example x with the
ANN. The neurons of the input layer is passive, i.e. they do not modify the data.
Their sole function is to duplicate the value to their multiple outputs. In terms of
weights, biases and activation function, the input layer can be seen as having w = 0,
b = x and f(x) = x activation function.

Hidden Layer Hidden layers are the layers between input and output layer that
are supposed to find different representations for the training examples. The term
hidden just means "not an input or an output". Some ANNs have a single hidden
layer and some have two or more hidden layers (also called the deep neural networks).
The design of the hidden layers (number of neurons, activation functions etc.) take
a huge part in the learning process, because they determine the complexity of the
system. The usual way of determining the correct design is by doing grid search
over hidden layer parameters.

Output Layer As it is evident from the name, output layer consists of neurons
that give the posterior probabilities of the output of a training example in a detection
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task. The number of neurons is equal to the number of possible outcomes of the
example. Since the outputs are probabilities, they are in the range [0, 1]. For a
detection system, these outputs can be thresholded to give binary outputs, i.e.,
"detected or not".

2.3.3 Learning Methods

The term learning for the ANN means that by processing training examples, the
ANN output gets closer and closer to the desired output. This idea takes its roots
from the human brain’s learning, which uses the method of learning by example.
The knowledge on how the brain learns is still in its infancy, but we do have a basic
understanding of the process. It is believed that during the learning process, brain’s
neural structure is altered, increasing or decreasing the strength of its synaptic con-
nections depending on their activity. ANN learning mimics this process by updating
its weights and biases with each example. There are three different ways of learning
used in ANNs: supervised, semi-supervised and unsupervised.

Supervised learning method is used when each training instance is associated with
a set of labels. The network is provided with the desired output for the given input.
For each instance it compares the desired output with estimated output and a cost
value is determined. The network modifies the weights and biases according to a
learning algorithm so that the cost value is minimized. The widely used learning
algorithm for supervised ANNs, namely gradient descent algorithm, will be explained
in detail in Section 3.3.1.

Semi-supervised learning systems often use a small amount of labeled data and
a huge amount of unlabeled data [34]. It is particularly useful when the need for
labels during the training is critical and the amount of testing data is huge.

In unsupervised learning, the labels for the training data are not available to the
network. The ANN determines the cost solely from the estimated outputs. It tries to
learn the similarities between the inputs and represent them in a more efficient way.
Human visual system is believed to operate in such fashion. Although unsupervised
learning is biologically more plausible, it is harder to find efficient cost functions
and model the network in real-world problems. Besides, the number of possible
outcomes is unknown and the performance is often poor when the training dataset
is small. Unsupervised learning methods are widely used in clustering and mixture
modeling.

2.3.4 Universal Approximation Theorem for ANNs

ANNs are universal approximators, i.e., any continuous function can be approxi-
mately represented by ANNs with sufficient amount of complexity. The universal
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approximation theorem for ANNs with a sigmoidal activation function was proved
by Cybenko [35] and Hornik et al. [36]. Let IN represent the N-dimensional unit
cube which contains all possible input examples x where xi ∈ [0, 1], i = 1,2,...N .
Let C(IN) represent the space of continuous functions on IN . Let σ(·) be a contin-
uous, monotonically increasing, bounded function (e.g. logistic sigmoid). The finite
weighted sum y is defined as

yk(x,w) =
∑
i

αkiσ(
N∑
j=1

wijxj + bj) (2.13)

where α, b are real constants and W is the real-valued weight matrix. The weighted
sums in the form y are dense in C(IN), meaning that given any f ∈ C(IN) and
ε > 0, there is a sum y that satisfies |y(x,w)− f(x)| < ε for all x ∈ IN . This shows
that there always exists an ANN with a single hidden layer that can approximate
an arbitrary, continuous, nonlinear, multidimensional function f with any rate of
target accuracy.

2.3.5 Types of ANN

ANNs can be categorized into several groups depending on their topologies and
learning algorithms. The type of ANN can significantly affect the performance in
certain tasks. Due to the recent popularity of the topic, several types of ANN ideas
have been developed and the most widely used types will be covered in this thesis.

Feed-Forward Neural Network Feed-forward neural networks (FFNNs) are one
of the most common NN topologies. They consist of neurons arranged in layers, first
layer taking the input and last layer producing the output. The layers in between do
not produce any output to outside, therefore they are hidden layers. The information
propagates forward from the input layer to the output layer via neuron connections.

FFNNs may have fully connected structure. In fully connected ANNs, each neu-
ron in a layer is connected with each of the neurons in the previous and next layer.
Non fully connected ANNs can be thought as having zero weights for certain connec-
tions. The symbolic representation in Figure 2.4 is an example of a fully connected
feed-forward neural network.

Supervised learning is used in FFNNs. Each training example x is associated with
a target y and the main goal is to minimize the error ε(y, ŷ) between the target y
and the FFNN estimate output ŷ. FFNNs are widely used in classification tasks.

Radial Basis Function Network Radial basis function (RBF) networks use
a similar approach with K-nearest neighbour classifiers [37]. Data centroids are
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selected so that they sample the input domain suitably. Euclidian distance is cal-
culated between the inputs and data centers. The distance value is given as input
to a nonlinear function φ, the type of which is presumably not essential for the
performance but usually selected as Gaussian [38]. The weights λ are updated with
this output in the way that the further the neuron is from the data center, the less
influence it has, so the corresponding connection weights are reduced. The output
f(x) is calculated as

f(x) = λ0 +
Nc∑
i=1

λiφ(||x− ci||) (2.14)

where || · || represents the Euclidian norm, ci are the data centers and Nc is the
number of data centers.

Recurrent Neural Network Recurrent neural networks (RNNs) allow their neu-
rons to share their outputs with previous layer neurons, creating feedback cycles.
This depicts that an RNN may sustain the temporal activations even in the absence
of input [39]. Therefore, RNNs are dynamical systems with dynamical memory,
while feed-forward networks are functions [40]. This brings an advantage to RNNs
on modeling human brain activations. However, the complexity of RNN structures
due to feedbacks make them less favourable in most cases over FFNNs. RNNs are
mainly used in computational neuroscience, machine learning and nonlinear signal
processing applications. An example of the RNN topology is illustrated in Figure
2.9.

Input #1

Input #2

Input #3

Input #4

Output

Figure 2.9: Recurrent neural network.

Self-Organizing Map Self-organizing map (SOM) [41] is a type of ANN that
uses unsupervised learning to tune the neurons and weights. Also called Kohonen
map after its inventor, SOMs are used to convert high-dimensional inputs to low-
dimensional (mostly two-dimensional) discrete maps. They are particularly useful
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in clustering applications.
SOMs are fully-connected feed-forward networks without any hidden layers. De-

pending on the inputs and weights, the score for each output neuron is calculated
and the scoring function is often chosen as Euclidian distance

D(wj, xn) =

√√√√ N∑
i=1

(wij − xni)2 (2.15)

where D(w, x) is the distance, wij is the weight for output neuron j, i=1,2,...N and x
is the N-dimensional input vector. The output neuron with the best score (minimum
distance) is designated as the winning neuron for that training instance. By taking
the winning neuron as the center, output neighbourhood is determined according
to distances and pre-selected neighbourhood size. Finally, weights of the neurons in
the neighbourhood are updated by

ŵij = wij + η(xni − wij) (2.16)

where ŵij is the updated weight, n is the input neuron index and η is the learning
rate. The learning rate and the neighborhood size are selected to be decreasing for
convergence.

2.3.6 Advantages as a Classifier

Neural networks are distributed models. Connection weights and neuron biases
produce the overall input-output response of the system. Each neuron makes up
a basic part of highly complex structure. For a certain input, some neurons are
switched on and some are off. Learning how to give responses to different stimuli
enables ANNs to represent a nonlinear input-output mapping.

Neural networks can be trained to represent a wide range of pattern recognition
tasks. Once the network is trained, the weighted connections extract the information
from the raw input. Different combinations of connection weights give different
responses for each input, making the neural network able to represent a diverse
range of mapping problems.

Neural networks do not require any high level representations of the input. Due
to their ability to represent complex input-output relations, there is no need to
preprocess the ANN input with complex transformations. ANNs also do not require
the input and output to have similar characteristics. To illustrate, the input of the
ANN can be the energies in different frequency bands of an audio signal and the
output can be given as different activity indicators of sound events.
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2.3.7 Disadvantages as a Classifier

The number of neurons needed to approximate a function is not known beforehand
and it mostly reduces to a trial-and-error procedure. Inadequate number of hidden
neurons may cause insufficient complexity for representing the input-output rela-
tionships. On the other hand, using too many hidden neurons may cause the ANN
to specifically work well on a certain training dataset and fail for generalization on
other training examples. This famous phenomenon is called overfitting.

The number of hidden layers to be used in an ANN is not a known variable for
the most cases. Intuitively, each layer of hidden neurons is expected to capture a
different level of complexity in the input and multiple hidden layers might be needed
for certain tasks. However, ANNs with multiple hidden layers tend to get stuck in
local minima [42].

2.3.8 Deep Neural Networks

DNNs are ANNs with two or (most likely) more hidden layers [29; 43]. An ANN
with a single hidden layer is the universal approximator. However, it sometimes does
not perform sufficiently on some complex tasks, where the training data is scarce or
the input simply does not have enough features. The aim of using multiple hidden
layers is to find more abstract features in the higher levels, defined in terms of lower-
level features [43]. These high-level, abstract features would help to separate the
independent distributions in the training data.

Shallow network architectures, ANNs with one or two hidden layers, typically
require a huge amount of neurons to find a good representation of their inputs.
When the number of neurons is increased, the number of network parameters such
as weights and biases consequently increase, causing a burdensome computational
power requirement. Recent experiments show that a large amount of functions with
many variables cannot be efficiently represented with a shallow architecture [44; 45].

Another inspiration to use deep architectures simply comes from the brain. Mea-
surements have been made to find the distance and time a nerve signal travels in
the body to transmit visual information. The results show that even for a basic vi-
sual object recognition, approximately 10 layers of biological neurons are involved.
Simple tasks such as detection of edges in an object are associated with lower levels
and recognition of fine details and sub-objects are related with higher levels.

Humans intuitively divide the problem into several levels of execution. Architects
first design the low-level structure of the buildings and then insert the more complex
elements into the plan. Programmers divide their code into basic functions, which
are then merged to perform complex tasks. When someone starts learning to play
an instrument, (s)he first tries to play some notes and basic sentences. Only after
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long hours of training, (s)he can combine the knowledge and play some songs. These
are some of the motivations behind the deep learning. Deep architectures represent
concepts one at a level and in the end make a composition of lower level concepts
to get the final representation.

The developments in computational technology paved the path for deep architec-
tures. Training ANNs with multiple hidden layers was computationally burdensome
due to the amount of ANN parameters involved. With the advent of parallel com-
puting technologies, this burden is relatively eased. Very complex networks with
10-15 hidden layers still require a vast amount of computational power.

Despite the obvious benefits, designing deep architectures is easier said than
done. The backpropagation algorithm works well for shallow architectures, but in
deep architectures it may be problematic. Experiments showed that the training
often gets stuck in a local minimum of cost function for deep networks, whereas
better performance could be obtained if the global minimum was reached.

Initialization of the deep neural networks proved to have a crucial part in the
performance of the deep networks. Typically, the network is initialized by assign-
ing small random weights and biases for all neurons. Poor initialization increases
the amount of training time drastically to converge to a satisfactory accuracy. The
introduction of a new learning algorithm for deep belief nets (DBN) solved the ini-
tialization problem very efficiently [29]. The training method is as follows. First,
the layers are trained greedily, one-by-one and in unsupervised manner. This leads
to obtaining fairly good parameters in a fast manner and good initialization. DBNs
can be used as stand-alone, unsupervised method or can be combined with super-
vised fine-tuning of the network parameters. DBNs were a huge breakthrough and
obtained state-of-the-art results in several pattern recognition benchmarks. Thus, it
once more attracted the attention of machine learning scientists into ANNs. DNNs
were successfully used to obtain state-of-the-art results in classification tasks in im-
age [46] and speech recognition [9]. With the advancements in parallel computing
and inventions of new algorithms such as maxout [33] and dropout [31], unsupervised
pre-training is even discarded and yet comparable results are achieved.
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2.4 Previous work on Sound Event Detection

Since the dawn of pattern recognition and machine learning, environmental sound
event recognition did not attract as much interest as its companions such as speech
and music recognition. When the literature on the topic is examined, it needs hard
work to find systems which use only audio data for classification. Due to the reasons
such as polyphonic nature of environmental sounds, working on them apparently
seemed challenging for researchers. The recognition rates were decreasing rapidly
when the number of classes were increased to realistic values, making these systems
impractical. Previous research on this area is related to areas such as audio-based
context and scene recognition [47; 48] and audio-based events detection for sports
video [49; 50].

Despite the scarcity of research in the area, several different methods have been
proposed for audio representation and event detection in realistic environments. The
traditional method for speech and music recognition has been using MFCCs as audio
features and GMM-HMM for modeling these features. This has been implemented
in environmental SED as well [14; 52], however the results were not satisfactory.
Therefore, the search for new approaches in feature set and classification method
has started. For preprocessing; methods such as wavelet transform [53], matching
pursuit (MP) [15] and non-negative matrix factorization (NMF) [51] have been pro-
posed. Time-domain features such as short-time zero crossing rate and short-time
energy have been experimented in [15]. Other than GMMs, alternative classifiers
such as K-nearest neighbor (KNN) [15], support vector machines (SVM) [53], Gaus-
sian process [53] and Deep Neural Networks (DNN) [20; 57] were proposed in this
particular task.

2.4.1 MFCC Based Methods

In [14], the task was to recognize and locate audio events in polyphonic long record-
ings collected from everyday environments. The recordings were annotated with
61 different audio event classes and MFCCs, delta-MFCCs and delta-delta-MFCCs
were used as features. The experiments were conducted in both isolated events clas-
sification and polyphonic event detection. For the classification of isolated events;
three-state, left-to-right fully connected HMMs were trained for each audio event
class using the Expectation-Maximization (EM) algorithm. The likelihood for each
observation sequence was found by Viterbi algorithm and the event corresponding
to the HMM giving the largest likelihood was selected as output. Based on the
simulations, a three-state left-to-right HMM with 4 to 16 Gaussians per state was
a good choice with 52-54% recognition rate. For the event detection in continuous
sequences, HMMs for each class were connected to a network HMM with equal tran-
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sition probabilities for each model. The optimal sequence was decoded again using
Viterbi algorithm, assuming that the system will output the most prominent event
at a given segment of the polyphonic recording. The error rate for this system was
calculated as 84%. This proposed method is not capable of detecting multiple sound
events at a time, therefore it offers only limited usage in environments with large
number of possible sound events.

Previously mentioned work was improved by Heittola et al. by doing sound source
separation as a preprocessing step [54]. The recording was preprocessed using non-
negative matrix factorization [51] and divided into four different tracks. The feature
set and HMM modeling were implemented in a similar manner with [14] and the
sound recordings were the same as well. SED was performed for each track with the
same annotations, assuming that the tracks which do not contain the relevant classes
will not show up as the output of the Viterbi algorithm. In order to prevent the
large number of short events occuring as Viterbi output, a cost value was introduced
between transitions. The accuracy inside 30 second blocks was calculated as 52%,
almost twice of the baseline system. This work offers a great leap forward over its
predecessor as it provides multi-label detection. However, the number of possible
events at a time is fixed, which is an undesired restriction for event detection in
realistic environments.

In [55], unsupervised sound source separation is used as a pre-processing stage to
detect overlapping sound events. MFCCs have been used as audio features and a
continuous density HMM with three state left to right topology have been used to
model conditional feature distributions. In this work it is assumed that the target
event is found in only one audio stream and the other streams contain overlapping
sound events. The stream containing the target event is found by two different
methods by using expectation maximization algorithm. First method is to find the
most prominent stream and the second method is to eliminate possible streams one
by one. Individual sound event models are trained with the obtained target stream.
This work is selected as the baseline in this thesis for the following reasons. It is
capable of doing polyphonic sound event detection on overlapping sound events, it
uses the same sound database as ours for training and testing, it uses the same accu-
racy metric (F1 score) in one-second blocks. The highest overall accuracy obtained
in this work is 44.9%.

A two-stage classification method for environmental sound events was proposed
in [52]. This method again used MFCCs as features and GMM as classifiers, but it
presented a novel idea for event classification. By following the idea that humans
rule out unlikely events when they already know the context, the system first imple-
mented context recognition. Then, based on the recognized context, a set of GMM
models for event classes were used in detection stage. In this work, event detection
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was done in two different approaches, one by determining the most prominent event
at a time (monophonic) and the other by using multiple Viterbi passes. Apart from
the event models, a universal background model (UBM) was also trained. In each
pass, the decoded path was marked and the system was prevented from selecting
the same event for the same time instance. Iteration stopped when all the time
instances were marked with the event corresponding to UBM. The accuracy metric
was f-measure and the accuracies were calculated block-wise: if an event was de-
tected in any frame within the time block and the event actually occured at some
point in that time block, it was regarded as correctly detected. The context recogni-
tion accuracies were 70.0% and 80.7% for 4-second and 20-second blocks. The SED
accuracies only slightly increased when the context recognition stage was included.
The authors claimed the reason for low increase might be due to error in context
recognition causing the selection of wrong set of events in the detection stage.

DNN methods have been applied in various pattern recognition tasks and auto-
matic sound event detection is one of them [58]. DBN with supervised fine-tuning
was used for isolated acoustic event classification in [57]. Isolated sound events in-
cluded environmental sounds such as birds singing, motorcycle, footsteps etc. After
normalization and windowing, Mel-band energies and MFCCs were extracted from
each frame. 120 most energetic frames from each sound event were used as input
for the DBN with 5 hidden layers. Classification accuracy of 64.6% was obtained,
which outperformed the GMM-HMM and shallow ANN methods.

2.4.2 Methods with Other Features

Apart from MFCCs, several other methods have been proposed for feature selection
and extraction. Chu et al. used MP algorithm to decompose the audio signal into
sets of basis vectors and then extracted the time-frequency domain features from
the decomposed signals [15]. Their starting poing was that MFCCs do not work
for environmental audio as well as they do for speech and music. They claimed the
reason was that the diverse content of environmental audio consists of many sound
sources with noise-like flat spectrum, preventing the audio to be modeled well by
MFCCs. MP algorithm iteratively found the best representation with minimum
residual energy, then extracted mean and standard deviaton features corresponding
to frequency and scale parameters. They used GMM and KNN as classifiers and
observed that GMM outperforms KNN in this task. When the time-frequency do-
main features were combined with MFCCs in feature set, it led to an increase of
recognition accuracy by 21.4% over using only MFCCs as features.

Wavelet based features are also used in environmental sound event detection
in [53]. First, wavelet packet decomposition trees of each audio signal are derived.
Then, the features such as spectral centroid, sparsity, node energy and spectral
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spread are extracted from the child nodes of the wavelet tree. The classifiers were
selected as SVM and Gaussian Process (GP). Experiments are conducted in three
different datasets. The first dataset consisted of individual sound events such as cat,
doorbell, knock etc. The second dataset consisted of the mixture of these isolated
sound events. The authors claim that the classifier struggles most when different
sound events start and end at the same time. The third dataset is a collection
of recordings from a natural environment with different species of birds singing
simultaneously. The highest accuracy in the third dataset is obtained as 37.5% by
using GP as classifier.



25

3. IMPLEMENTED SYSTEM

Environmental sound recordings are typically composed of overlapping sound events,
which appear and disappear at certain time periods of the recording. The goal of
the proposed system is to detect every sound event occuring at any instance of the
recordings.

3.1 System Overview

Multi-label sound event recognition can be treated as a multi-label classification
problem. The external input to the system is the sound recordings collected from
everyday auditory scenes. To represent the characteristics of the sound events, fre-
quency domain features are extracted in short time frames of data. Multi-label DNN
is trained with these features as inputs and class activity indicators of sound events
as target outputs. Posterior probabilities of sound events are obtained as DNN
outputs. During DNN training, the network parameters are updated to minimize a
cost function C, which is a function of the posterior probabilities and target outputs.
During testing, the posterior probabilities are thresholded and a binary detection
vector is obtained for training example. The illustration of the overall system can
be found in Figure 3.1.
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Figure 3.1: System overview.

3.2 Features

Audio features should offer good representation of the time-frequency characteristics
of the signal. There are several steps to extract the features from a sound recording.

3.2.1 Pre-processing

Audio recordings are collected in various environments and the conditions in each
environment typically differ from each other. The recorder may be too close to
the sound sources or there may be too many sound events present at the same
time. This would cause an amplitude range difference between recordings from each
context and consequently degrade the classification performance. Since we would
like to put more emphasis on the spectral characteristics of the recordings while
extracting features, we do a peak amplitude normalization as the first phase of the
preprocessing:

ŝk =
1

max
i∈[1,...,n]

|si|
sk (3.1)

where ŝ is the normalized signal, s is the raw signal, k ∈ [1, ..., n] and n is the
number of samples in the signal.

For the next phase of preprocessing, frame-blocking and windowing is conducted.
To obtain the spectral information from the sound data, the discrete Fourier trans-
form is taken to model the signals with sinusoids. Fourier transform assumes these
sinusoids to be stationary, whereas for the case of audio waves, they are varying
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through time. Therefore, it is necessary to first divide the signal into frames.
The natural companion of frame-blocking is windowing. When a signal is divided

into frames without windowing, there would be discontinuities at the boundaries,
which is undesirable. For this reason, a window function is selected and multiplied
by the whole signal to get smooth frames. In audio processing, the window function
is usually selected to be some soft window such as Hanning, Hamming, triangle
etc. For this work, Hamming window with 50 ms duration and 50% overlap is
used, as Hamming window works generally well with the discrete Fourier transform.
Hamming window w of length N is defined as

wn = 0.54− 0.46 cos(
2πn

N − 1
), (3.2)

where n = 1,2...N .

3.2.2 Feature Extraction

The goal of feature selection is to find a relevant feature set for the problem. By
choosing the correct features, the amount of training data required to come up with
a successful NN model can be significantly reduced. Consequently, the amount of
computation during the training is reduced, too. Better accuracy can be obtained
in less epochs by using only the relevant features.

In this thesis, experiments are conducted with frequency domain features such as
Mel-band energies, log Mel-band energies and MFCCs.

Mel-band Energy Mel-band energy for each short time frame is extracted as
explained in Section 2.2.2. The whole frequency range is mapped to 40 Mel bands
and the energies are calculated for each band. These 40 energy values form a single
instance vector x for the ANN.

As an alternative feature set, logarithm of the Mel-band energies are taken and
used as features in different experiments for comparison.

MFCC After calculating the log mel-band energies, DCT of the energies is taken.
16 MFCCs are obtained by excluding the first coefficient and retaining the next 16
coefficients. The extraction process is explained in detail in Section 2.2.2.

3.2.3 Concatenation

Sound events in realistic environments usually take at least few seconds and some of
the events have a noise-like, flat spectrum. Taking in mind that the time frames are
of only 50 ms duration, one certainly expects a correlation between feature vectors
extracted from consecutive time frames. This correlation information is prone to
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Figure 3.2: Concatenation of xt with its 2 adjacent frames on both sides to form vt.

assist in multi-label classification. Therefore, concatenation method is used on a
predetermined number of consecutive frames. The input frame xt is concatenated
with the frames before and after it to form concatenated input frame vt. Therefore,
vt = [xt−Nadj

, xt−Nadj+1
, ..., xt, xt+1, ..., xt+Nadj

]T . The number of concatenated frames
can be regarded as a parameter for the classification.

For every single frame, a new feature vector is obtained by this method. There-
fore, the number of training instances stay the same. After concatenation, the
resulting feature vector has a dimension of |v| = (2 × Nadj + 1) × Nf where Nadj is
the number of adjacent frames concatenated with the original frame and Nf is the
number of features extracted from the short time frame. The concatenation process
is illustrated in Figure 3.2.
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3.3 Multi-label Classification

Multi-label classification is the general form of multi-class classification. A finite
set of classes are given for multi-label classification. In multi-class classification, the
task is to associate each learning example with one of the labels, whereas in multi-
label classification, each example can be associated with multiple labels. Therefore,
if the size of the label set is N , multi-label classifier can associate an example with
2N different output vectors.

The first possible idea to solve a multi-label classification problem might be to de-
compose it into multiple single label multi-class classification problems. A network
can be trained for each possible class and the results can be combined to get mul-
tilabel classification results. However this method ignores the correlation between
the classes and therefore has weak expressive power [56]. Instead of this approach,
a multilabel DNN is used for multilabel classification purposes in this thesis.

The input vector for the NN is the (concatenated) feature vector obtained from
the recordings. The target output vector for the NN is determined by the manual
annotations. Each sound event is annotated with its start and end time in the
recordings. The temporal position of each input vector, i.e., at what instant the
features are extracted, is compared with the start and end times in the annotations.
The target output vector for an input vector is a binary vector with length equal
to the number of sound event classes. If a sound event is annotated as present for
the same time instance with the input vector, the corresponding sound event class
is marked with 1 in the target output vector. If a sound event class is marked with
0 in the target output vector, this means that sound event class does not appear at
the same instant with the input vector.

3.3.1 DNN Training

Fully-connected feed-forward ANNs with multiple hidden layers are used for multi-
label classification purposes in this thesis. Hidden layers are composed of maxout
neurons and output layer is composed of sigmoid neurons (explained in Section
2.3.1). In this section, the learning procedure starting from the introduction of a
training instance x until the update of the weights and biases will be explained.
The notation will be as follows. The layer indices will be denoted as l = 0, 1, 2...,M

for the ANN with M + 1 layers total. alj denotes the activation output of the jth

neuron in the lth layer. blj denotes the bias of the jth neuron in the lth layer. For
the weight between the kth neuron in the (l − 1)th layer and the jth neuron in the
lth layer, wljk will be used. The maxout activation function will be denoted as f(·)
and the sigmoid activation function will be denoted as σ(·).

To make the notation more compact with less indices, we define a weight matrix
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Wl whose entries are the weights between (l− 1)th and lth layer, i.e., its entries are
the weights wljk between the kth neuron in the (l − 1)th layer and the jth neuron
in the lth layer. We also define activation output vector for lth layer as al and bias
vector as bl.

As explained in Section 2.3.1, the input layer (l = 0) simply passes the input
x without any weighing operation, which gives a0 = [x1, x2, ..., xN ] where N is the
number of features in a single training instance x.

The hidden layer activation outputs alj are calculated as

alj = f(
∑
k

wljka
l−1
k + blj) (3.3)

or in the compact form

al = f(Wlal−1 + bl) (3.4)

where Wlal−1 is the application of weight matrix to the activation outputs and f(·)
is applied element-wise. Eventually, the activation outputs aM from the output layer
M is given as

aM = σ(WMaM−1 + bM) (3.5)

Until now, we fed a single training instance x all the way through the network and
obtained the output vector aM which is composed of the posterior probabilities for
each class. For x, the desired output y = y(x) is already given by the annotations.
We need to find a way to update the weights and biases of the network so that
aM approximates to y for all training inputs x. In order to quantify the distance
between the desired output y and the estimated output aM , a cost function C is is
selected as Kullback-Leibler (KL) divergence [61] and it is calculated as

KL(y||aM) =
N∑
i=1

yi ln yi − yi ln aMi

+(1− yi) ln (1− yi)− (1− yi) ln (1− aMi )

(3.6)

where N is the number of hidden neurons in the output layer. For binary y, as in
our case, some terms in Equation (3.6) drop out and the resulting KL divergence is

C(w, b) = KL(y||aM) =
N∑
i=1

−yi ln aMi − (1− yi) ln (1− aMi ). (3.7)

This cost function is also called cross-entropy cost function as the way it is referred
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in information theory.
The estimated posterior probabilities aM are in the range [0, 1] and the desired

outputs y are either 0 or 1, therefore C(w, b) is non-negative. Moreover, when y and
aM values are closer to each other, then the cost function C is closer to zero. The
objective of the training is to make C(w, b) as close as possible to zero. In order
to do that, a set of weights w and biases b should be found which makes the cost
minimum. This is done by updating them iteratively with their gradients. This
algorithm is called gradient descent algorithm.

The gradient vector ∇C is defined as

∇C ≡
(
∂C

∂v

)
(3.8)

where v represent all the weights and biases in the network. The change of C can
be given as

∆C ≈ ∇C ·∆v (3.9)

where ∆C represents the change in C and ∆v represents the change in v. According
to Equation 3.9, we can choose ∆v so that it would make ∆C negative. For this
reason, we choose

∆v = −η∇C (3.10)

where η is the learning rate of the system. Equation (3.10) gives ∆C ≈ −η||∇C||2,
∆C ≤ 0 and therefore C will decrease. The weights and biases will be updated as

ṽ = v + ∆v = v − η∇C (3.11)

where ṽ represents the updated weights and biases of the network. The learning
rate η should be selected carefully. Too large η would cause to a violation of ap-
proximation and ∆C > 0. Too small η would make the changes ∆v too small and
the convergence of the gradient descent will be slow. As far as our knowledge, there
is no certain rule of thumb on the value of η and the optimum value is often found
by grid search.

The updates on weights and biases in a single layer are given by Equation (3.11)
as

W̃ = W − η ∂C
∂W

(3.12)

b̃ = b− η∂C
∂b

. (3.13)

Recalling Equation (3.7), we need to calculate the KL-divergence over all training
instances to find the cost C. In order to compute the gradient ∇C, ∇Cx should
be computed individually for each instance and averaged, so that ∇C = 1

n

∑
x

∇Cx.
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When the number of training instances is very large, this process can be really
slow. An alternative way is to select m random training instances and calculate
the gradient ∇C over these m instances. This algoithm is called stochastic gradient
descent (SGD) algorithm. The group ofm training instances are calledmini-batches.
When m is selected large enough, this gives a good estimate of true gradient ∇C
and speeds up the process. Then, Equations (3.12) and (3.13) turn out to be

W̃ = W − η

m

∑
j

∂Cxj

∂W
(3.14)

b̃ = b− η

m

∑
j

∂Cxj

∂b
(3.15)

where xj denote a single training instance in the mini-batch. Until every training
instance is processed, random mini-batches are selected and weights and biases are
updated. The whole process is called an epoch. A new epoch is initiated right after
one is completed.

Backpropagation Algorithm The partial derivatives ∂C
∂W

and ∂C
∂b

of the cost
function with respect to all weights and biases of the network are computed by a
fast algorithm called backpropagation (BP) algorithm [28; 60]. BP algorithm is used
to feed the error backwards from the output layer to the first layer and update the
weights and biases accordingly.

BP algorithm is explained in four fundamental equations. Let us define the
weighted input of the jth neuron in the lth layer as

zlj =
∑
j

wlkja
l−1
j + blk

=
∑
j

wlkjf(zl−1j ) + blk.
(3.16)

where f(·) is the maxout function for hidden layers and sigmoid function for the
output layer. Let us define an intermediate variable elj to define the error in the jth

neuron in the lth layer. The cross-entropy cost function C(w, b) for a single training
instance is defined as C = −y log aM − (1− y) log(1− aM). The error elj is defined
as

elj =
∂C

∂zlj
(3.17)

and el notation will be used to denote the vector of errors in the lth layer. The error
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for the output layer M is then given as

eMj =
∂C

∂zMj
=
∑
k

∂C

∂aMk

∂aMk
∂zMj

(3.18)

by the chain rule. Recalling aMk = σ(zMk ) for the output layer with sigmoid activa-
tion, aMk only depends on zMk and ∂aMk

∂zMj
= 0 for j 6= k. Equation (3.18) then simplifies

to

eMj =
∂C

∂aMj

∂aMj
∂zMj

=
∂C

∂aMj
σ′(zMj ). (3.19)

where ∂C
∂aMj

= −yj(x)

aMj
− 1−yj(x)

aMj −1
from the definition of the cost function C.

The error in the output layer is now defined and we need to define the error
in each layer as the function of the error in the next layer. Again, starting from
elj = ∂C

∂zlj
and using the chain rule

elj =
∑
k

∂C

∂zlk+1

∂zlk+1

∂zlj
(3.20)

elj =
∑
k

∂zlk+1

∂zlj
el+1
k . (3.21)

Recalling Equation (3.16), we obtain

∂zlk+1

∂zlj
= wl+1

kj f
′(zlj) (3.22)

and substituting this into Equation (3.21), we get

elj =
∑
k

wl+1
kj e

l+1
k f ′(zlj) (3.23)

At this point, we know how to compute the error elj for each layer. Now, we will
define the partial derivatives ∂C

∂W
and ∂C

∂b
in terms of elj. Using the chain rule, the

partial derivative ∂C
∂wl

jk
can be defined as

∂C

∂wljk
=
∂C

∂zlj

∂zlj
∂wljk

(3.24)

Recalling Equation (3.16)
∂zlj
∂wljk

= al−1k (3.25)
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and substituting Equations 3.17 and 3.25 into 3.24, we obtain

∂C

∂wljk
= al−1k elj. (3.26)

Using the same approach as Equation (3.26), it can easily be proved that

∂C

∂blk
= elj. (3.27)

Equations 3.19, 3.23, 3.26 and 3.27 are the four fundamental equations of the BP
algorithm.

When the BP algorithm is combined with SGD algorithm, the only difference is
that the error ex,lj and weighted input zx,lj are computed as a vector over the whole
minibatch with size m and x = 0, 1, 2...,m− 1. The algorithm is repeated for a new
mini-batch until all the training instances are processed. When the epoch is finished,
a new epoch is initiated. Until the termination criterion is met, the DNN training
continues. The termination criterion is defined by the user as usually the maximum
number of epochs, a certain value of cost C or either one of these criteria is met. One
can predict that training the network for very high number of epochs would bring
high success. In fact, this only causes the weights and biases to adapt specifically
for the training data and not generalize. This phenomenon is famously known as
overfitting. Termination criteria are used to prevent overfitting. The pseudocode
for the DNN training algorithm is given in Algorithm 1.

Momentum Momentum is an optimization method that helps the network to
converge faster. Recalling Equation (3.11) in gradient descent algorithm, the weights
of the network are updated as

w̃ = w − η∇C (3.28)

where w̃ represents the updated weights, η is the learning rate and ∇C is the
gradient vector. When the gradients are small, the updates have only a little effect.
The process can be speeded up by introducing an additional momentum term to
Equation (3.11) resulting in

ṽ = µv − η∇C
w̃ = w + ṽ

(3.29)

where ṽ represents the velocity variables for each weight and µ is the momentum
coefficient. With consecutive updates in the right direction of gradient, the weights
will be modified by larger amounts and the network will converge faster. However,
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Algorithm 1 DNN training algorithm
1: random_initialize_weights;
2: random_initialize_biases;
3: epoch← 0;
4: processed_data← 0;
5: N ← total_number_of_training_instance;
6: m← mini− batch_size;
7: while Termination_Criterion == False do
8: x← rand(m,N); . Select m training inputs with indices from [1,...,N]
9: ax,0 ← Training_Data[x]; . Input a mini-batch of training input to DNN

10: for l := 1 to M − 1 do . Total number of layers is M , indexed with
l = 0, 1, ...,M − 1

11: zx,l = wlax,l−1 + bl; . Feed the information forward
12: ax,l = f(zx,l); . Find the activation outputs
13: end for
14: ex,M = ∂Cx

∂ax,M
f ′(zx,M); . Error for the output layer

15: for l := M − 2 to 1 do
16: ex,l = wl+1ex,l+1f ′(zx,l); . Backpropagate the error
17: end for
18: for l := M − 1 to 1 do
19: wl ← wl − η

m

∑
x

ex,l(ax,l−1)T ; . Weight updates backwards

20: bl ← bl − η
m

∑
x

ex,l; . Bias updates backwards

21: end for
22: processed_data+ = m; . Increase the amount of processed data by m
23: Training_Data[x] = [·]; . Empty the processed mini-batch in training data
24: N− = m; . Decrease the amount of unprocessed data by m
25: if processed_data 6= total_number_of_training_instances then
26: goto 8; . There are still unprocessed training inputs, start over
27: else
28: epoch+ +; . Initiate new epoch and update the epoch number by

incrementing with 1
29: processed_data← 0;
30: end if
31: check_termination_criterion;
32: end while
33: Return [w;b];

there is also a possibility to overshoot the global minimum, i.e. where the conver-
gence should happen. Momentum coefficient µ value is selected between 0 and 1.
When µ = 0, the network is trained the same way in basic gradient descent algo-
rithm. The optimal value of µ is found by grid search. During the first few epochs,
the random initial values for weights and biases may create very large gradients, so
it makes practical to start with a low momentum coefficient like 0.5 for a number of
epochs and then increase the coefficient slowly later on [64].
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signal horn signal horn

wind on trees wind on trees

motorbike motorbike motorbike

time(t)

frame t

Figure 3.3: An example of overlapping sound events in a possibly realistic environ-
ment. Frame t represents the short time frame from the recording where only signal
horn and motorbike events are present.

3.3.2 DNN Testing

After supervised training of the network, test data is used to evaluate the accuracy
for the testing material. Test data does not include any examples that are also in
the training data, so the network does not encounter with testing examples before
they are tested. The weights and biases are not updated for any testing example.
Each example x is fed to the network and the posterior probabilities aM(x) are
obtained from the output layer. In order to obtain the detected events and compare
them with the desired outputs, a thresholding operation is necessary over posterior
probabilities. The detection estimate ŷ is obtained by

ŷi(x) =

1, aMi (x) ≥ 0.5

0, aMi (x) < 0.5
(3.30)

where i = 0, 1, ..., N − 1 and N is the number of possible outcomes for a training
example. The binary estimate ŷ is then evaluated against the binary, desired output
y for each testing example.This process is illustrated in Figures 2.1 and 3.1.

Table 3.1: Binary estimation process for frame t in Figure 3.3.

Class Posterior probabilities Binary estimates Target outputs
Wind on trees 0.9 1 1
Signal Horn 0.45 0 1
Motorbike 0.25 0 0
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3.3.3 Post-processing

Environmental sound events typically take at least a few seconds and the sound data
is processed in short time frames of 50 ms. Therefore, one expects that when a sound
event is first detected in a single frame, it is highly possible that it also appears in
at least a few of the following frames, too. In addition, if an event is detected for
10 consecutive frames, then not detected for 2 frames and again detected for 10
consecutive frames, this does not seem realistic, either. This case usually occurs
when the posterior probability of the event is very close to the binarizing threshold.
Our experiments with DNNs showed us that DNN outputs may sometimes result
with such noisy characteristics. In order to overcome this noise problem, sliding
window method is proposed in this thesis.

Sliding window method is based on a simple but very efficient idea. For each
sound event, the median of the binary output vector is found and the value is stored
in a new matrix at the position of the first frame in the window. Then, the window
is shifted one frame and the process is repeated until every test instance is used in a
window. The algorithm for the post-processing method is given in Algorithm 2 and
the process is illustrated with an example in Figure 3.4.
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Figure 3.4: Sliding window method.
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Algorithm 2 Sliding window algorithm
1: X ← test_output_matrix; . X is the matrix containing binary estimates for

each training instance
2: Y := X;
3: N ← total_number_of_training_instance;
4: C ← total_number_of_classes;
5: K ← number_of_frames_in_the_sliding_window;
6: for i:=1 to N-K do
7: window := X[:, i : i+K];
8: for j:=1 to C do
9: Y [j, i] = median(window[j, :]);

10: end for
11: end for
12: Return Y;

3.4 Division of Data

Supervised training models typically use two different datasets. One dataset is
reserved for training purposes and the other one is reserved for testing purposes.
Each dataset is composed of a huge amount of individual instances. Each instance
is represented by two vectors: feature vector and target vector. Feature vector
is composed of the features that are extracted from the specific instance. Target
vector defines the desired outcome for the same instance. During training, feature
vectors of the training instances are used as network input, whereas the target
vectors are used for calculating the error between the desired and predicted output.
During testing, the accuracy is calculated according to the chosen evaluation metric.
Training dataset and testing dataset are completely separate, i.e. there are no
instances that is used while both training and testing. This prevents the model to
test itself over an instance that it has already been encountered.

The topology and learning algorithm of a DNN is dependent on multiple param-
eters. Some of these parameters can be listed as number of hidden units, number of
hidden layers, learning rate, activation function, initial weight and bias values etc.
Other than these structural parameters, the termination criterion for the training
is another important parameter that determines the training procedure. Unfortu-
nately, there are only a few guidelines on how to set these parameters for efficient
learning. One usually has to conduct controlled experiments by fixing all the pa-
rameters except one and running experiments for several values of that parameter.

NN training is stopped when a certain termination criterion is met. This criterion
is checked at the end of every epoch. The common way of stopping a NN training
is to calculate the overall error for the model and see if it is decreasing anymore
compared to previous epochs. This can be executed over training data, but since
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the network will be trained for the same dataset in each epoch, the results may
be overly optimistic. In other words, the network parameters may adapt to that
specific training dataset and fail to generalize over unseen instances. This undesired
situation, namely overfitting, can be avoided by using a third dataset. This dataset
is called validation dataset. At the end of each epoch, validation dataset instances
are given as inputs to the network and the difference between the predicted and
desired outputs is calculated. If this value is less than or equal to a predetermined
target error value, or if it does not change in many consecutive epochs, then the
training is stopped. Validation instances differ from training dataset in the sense
that their target output vectors are not used in the SGD algorithm during training.
They also differ from testing dataset in the sense that the evaluation of the network
is not conducted over them.

The whole dataset is divided into non-overlapping training and testing datasets in
this thesis. There are 10-11 recordings from each context. 2-3 of these recordings are
used as testing dataset and 8-9 of them are used as training dataset. Five-fold cross
validation is performed on this database, i.e., 5 different combinations are made on
the selection of recordings so that each recording is used in a testing dataset at least
once. First fold is used to tune the parameters and the network is evaluated for the
other four folds. The final results are presented by taking the average of the results
for the last four folds.
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4. EVALUATION

4.1 Database

The sound database used in thesis is provided by Audio Research Team under Mul-
timedia Research Group in Tampere University of Technology [59]. The recordings
are collected from real-life auditory scenes. There are a total of 103 recordings in
the database and each of them are 10 to 30 minutes long. The total duration of
the recordings is 1133 minutes. The recording is performed as a binaural record-
ing, where the person responsible for recording wears in-ear microphones during the
recording. The recording equipment consists of a Soundman OKM II Klassik/Studio
A3 electret microphone and a Roland Edirol R-09 digital recorder. Recordings were
done using 44.1 kHz sampling rate and 24-bit resolution. In this thesis, we are us-
ing monophonic versions of the recordings, i.e., two channels are averaged to one
channel.

The recordings are collected from 10 different, real-life physical contexts: bas-
ketball match, beach, inside a public bus, inside a car, hallways, inside the office,
restaurant, grocery, street and a track and field stadium. Basketball and track and
field stadium contexts were selected as sports and leisure time scenes. Grocery and
restaurant are public space scenarios which are difficult to work on due to high noise
in realistic environment. Street, bus and car contexts were used to reflect the audio
atmosphere while travelling. Finally, hallways and office contexts represent typical
indoor work environments.

The annotation of the recordings is done manually by the same person. Each
event is annotated with its name, start and end time in each recording. Some of
the events occur multiple times in a single recording. The events are chosen to be
easily recognized by perception; i.e.; a person without any hearing impairment can
detect the same sequence of events by listening to the raw record. Some of the
events include brakes_squeak, cheering, referee whistle, cash_register, refrigerator
etc. Out of these events, the ones that occur 10 or more times in the database are
categorized as 60 distinct event classes and 1 class is labeled as unknown for less
frequent events. In each context, there are events annotated from 9 to 16 different
event classes. Some of the events can be found in multiple contexts and some of
the events are context specific; such as referee whistle and ball hitting floor. The
number of annotated events and the total length of recordings per each recording
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environment is given in Table 4.1. The number and duration of annotations for each
class are not distributed equally, as some classes such as speech are more frequent
than others, which is the normal case in a real-life environment. Event classes are
given in Table 4.2.

During pre-processing and feature extraction, MIRtoolbox was used [65] . Pylearn2
machine learning library was used for the NN implementation [66]. Its functionality
is based on Theano [67], therefore it allows us to use compile the codes by using
Graphics Processing Unit (GPU) for fast operation.

Table 4.1: Number of events annotated per context and total length (in minutes) of
recordings .

Context Number of annotated events Total Length
Basketball game 990 80
Beach 738 197
Inside a bus 1729 146
Inside a car 582 111
Office facility 1220 105
Hallway 822 100
Restaurant 780 96
Grocery shop 1797 88
Street 827 102
Track & field stadium 793 108
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Table 4.2: Event classes used in the evaluation database.

No. Event Class No. Event Class No. Event Class
1 ’applause’ 21 ’click’ 41 ’refrigerator’
2 ’background’ 22 ’coins_keys’ 42 ’road’
3 ’ball_hitting_floor’ 23 ’coughing’ 43 ’seatbelt’
4 ’beep’ 24 ’crowd_sigh’ 44 ’shoe_squeaks’
5 ’bicycle’ 25 ’crowd_walla’ 45 ’shopping_basket’
6 ’bird’ 26 ’dish_washer’ 46 ’shopping_cart’
7 ’brakes_squeak’ 27 ’dishes’ 47 ’sigh’
8 ’breathing_noises’ 28 ’dog_barking’ 48 ’signal_horn’
9 ’bus’ 29 ’door’ 49 ’sliding_door’
10 ’bus_door’ 30 ’engine_off’ 50 ’sneezing’
11 ’car’ 31 ’footsteps’ 51 ’speech’
12 ’car_door’ 32 ’keyboard’ 52 ’traffic’
13 ’car_engine_starts’ 33 ’laughter’ 53 ’turn_signal_noise’
14 ’cash_register’ 34 ’motor_noise’ 54 ’water_splashing’
15 ’cat_meaowing’ 35 ’motorbike’ 55 ’wheel_noise’
16 ’chair’ 36 ’mouse_scrolling’ 56 ’whistling’
17 ’cheering’ 37 ’music’ 57 ’wind_on_trees’
18 ’child’ 38 ’paper_movement’ 58 ’windscreen_wipers’
19 ’clapping’ 39 ’pressure_release’ 59 ’wrapping’
20 ’clearing_throat’ 40 ’referee_whistle’ 60 ’yelling’
61 ’unknown’

4.2 Evaluation Procedure

The detection accuracy of the proposed method is computed with F1 score, a widely
used metric in sound event detection systems [14; 62; 63]. Accuracy is calculated
inside non-overlapping one-second chunks of time frames and the final accuracy is
found by taking the average of the block accuracies. F1 score is a measurement of
the test accuracy in binary classification and it is calculated based on precision and
recall.

As the first stage of evaluation, the detection estimates for the testing examples
are divided into non-overlapping one-second chunks. Each testing example x is
composed of sound features extracted in 50 ms time frames with 25 ms overlap.
Therefore, 1000/(50− 25) = 40 consecutive time frames correspond to a one second
block in the recording. Every x is associated with a detection estimate vector ŷ as
explained in 3.3.2. The evaluation is done inside a 61x40 binary detection matrix
D, which is formed by combining 40 detection estimate vectors of length 61 (recall
61 is the number of event classes). In this matrix, the detected event classes in a
second of recording are represented by 1.

The second stage is the comparison of the target outputs with the detected out-
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puts. A binary target output vector y(x) with length 61 is present from the annota-
tions for each testing example x. By combining 40 target output vectors together in
the same fashion as detection estimate vectors, a target output matrix T is obtained.
The comparison between D and T is done so that

• An event class is regarded as correctly detected if it is detected in any of the
40 frames in D and it is also annotated in any of the 40 frames in T.

• An event class is regarded as wrongly detected if it is detected in any of the 40
frames in D but has no annotation for the same block in T.

• An event class is regarded as missed class if it is annotated in any of the 40
frames in T but not detected in any of the 40 frames in D.

The number of correctly detected event classes are obtained by counting the
correctly detected event classes in respond to the above explanation in the corre-
sponding block. The same is true for wrongly detected and missed event classes.
Precision inside the block is calculated as

precision =
#correctly_detected_event_classes

#correctly_or_wrongly_detected_event_classes
(4.1)

and recall inside the block is calculated as

recall =
#correctly_detected_event_classes

#correctly_detected_event_classes+ #missed_event_classes
. (4.2)

F1 score is calculated as the harmonic mean of these two parameters

F1 score =
2× precision× recall
precision + recall

. (4.3)

F1 score for each one-second block is calculated by this method. Context-wise F1
score is calculated by taking the mean of the F1 scores of the block which is found in
the recording of the corresponding context. Overall F1 score is obtained by taking
the mean of context-wise F1 scores.

Table 4.3: Detection matrix D

Class no. Frame 1 Frame 2 Frame 3 Frame 4 Frame 5
1 0 0 1 1 0
2 0 1 1 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 0 0 0 0 0
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Table 4.4: Target output matrix T

Class no. Frame 1 Frame 2 Frame 3 Frame 4 Frame 5
1 0 0 1 1 1
2 0 0 0 0 0
3 1 1 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1

The accuracy metrics are illustrated by an example. The block-wise comparison
procedure is explained over the small-scale detection and target output matrices on
Tables 4.3 and 4.4. Class 1 is regarded as correctly detected, because it is present
in D1,3, D1,4 and at the same time T1,3, T1,4 and T1,5. Class 2 is regarded as wrongly
detected, because it is present in D1,2, D1,3 but it is not present in T . Class 3 is
regarded as missed class, because it is not present in D, although it is present in T1,1,
T1,2 and T1,3. Class 4 is also regarded as correctly detected, because it is present in
D1,2 and at the same time T1,4. Finally, class 5 is regarded as missed class, because
it is not present in D, although it is present in T1,5. As a result, we have 2 correctly
detected classes, 1 wrongly detected class and 2 missed classes. This leads to 66.6%
precision, %50 recall and 57.1% F1 score, which is used as detection accuracy for
this specific block.

Block-wise F1 score metric is particularly useful in environmental sound event
detection. It emphasizes the detection of a particular event class in a certain time
block, rather than detecting the exact location inside the block [52]. Therefore, it
works well with applications that require rather coarse time resolution, which is the
case for environmental sound event detection.
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4.3 Results

4.3.1 Configuration

DNN parameters are selected over a huge number of controlled experiments in this
thesis. Among these experiments, the network setup with the highest overall accu-
racy is established by using the following parameters:

Table 4.5: Network parameter configuration for the model with highest accuracy.

Parameter Value
Feature Mel-band Energy

Number of concatenated frames 5
Number of hidden layers 2

Number of hidden neurons in each layer 800
Activation function for hidden layer neurons Maxout
Number of neurons used in maxout pooling 2
Activation function for output layer neurons Sigmoid

Learning rate 0.02
Initial weight and bias range (-0.001,0.001)

Experiments in the results section are done by using the configuration in Table
4.5 as base point. In each subsection, the mentioned parameter value is spanned
while keeping all the others fixed. This way, the observation of the effects of the
individual parameters is aimed.
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4.3.2 Effects of ANN Parameters

Effect of Frame Concatenation Frame concatenation is used to model the dy-
namic characteristics of the audio signal and to avoid missing the time information
completely. The number of concatenated frames is spanned between 0 to 17 while
keeping other parameters fixed as described in 4.3.1. The concatenation is done for
each frame and its adjacent frames on both sides, e.g., 7 concatenated frames set-
ting is implemented for each frame and its 3 adjacent frames on both sides in time
domain, as explained in 3.2.3. The results are given in Figure 4.1. The best per-
formance is observed with 5 concatenated frames. It offers 5% increase in accuracy
over the system without frame concatenation. Increasing the number of concate-
nated frames higher than 5 does not give any improvement in accuracy, although it
vastly increases the computational power requirements.
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Figure 4.1: The detection accuracy as a function of number of concatenated frames.
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Effect of Post-processing The post-processing method, namely sliding window,
is applied as explained in Section 3.3.3. The window size is selected as 10 time
frames, which spans 250 ms of audio data. The increase in accuracy for the post-
processed output is clear in Figure 4.2.

The improvement by the post-processing can be explained by the noise in the
posterior probabilities of the event classes, which is obtained from the output layer
of the network. There are some occasions when the posterior probability for a class
jumps significantly for a single frame compared to the frames before and after. This
is not realistic since environmental sound events rarely occur for only 25 ms and
disappear. If this noisy posterior probability exceeds the thresholded value, the
corresponding event class is marked as detected in the one-second time block, which
consists of 40 time frames. If the event class does not appear for that one-second
block in reality, this single detection basicly poisons the whole block of frames and
decreases the accuracy. Sliding window method helps to smooth these singularities
and provide a better detection performance.
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Figure 4.2: Context-wise detection accuracies (F1 score) for proposed system before
post-processing and after post-processing.
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Effect of the Number of Hidden Neurons The effect of the number of hidden
neurons in each hidden layer is investigated in Figure 4.3. In this thesis, two hidden
layers are used for ANN and the number of neurons are the same for both layers.

The network’s expressional power is highly dependent on the number of hid-
den neurons. Therefore, it is essential to have enough hidden neurons to represent
the nonlinearities of the system. However, when the number of hidden neurons is
increased to very high values, the number of weights and biases increase correspond-
ingly and huge computational power requirements are encountered. Another risk of
increasing the number of hidden neurons is that the weights and biases might adapt
to the training data and cause to overfitting, especially if the number of training
examples is not sufficient.
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Figure 4.3: The detection accuracy as a function of hidden neuron numbers in each
hidden layer.
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Effect of Activation Function In order to determine the effect of the hidden
unit activation function, a different DNN topology is experimented. Hidden layer
activation functions are replaced from maxout function to logistic sigmoid function
(see 2.3.1). As illustrated in Figure 4.4, the maxout function offers better accuracy
in every context and overall. During both experiments, the parameters such as
learning rate and the number of hidden neurons were selected the same. One may
find a better initial configuration for sigmoid neurons by doing grid search over these
parameters.
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Effect of Mini-batch Size Mini-batch size determines in what size of example
batches the gradients of the cost function will be computed and the ANN parameters
are updated (see SGD algorithm in Section 3.3.1). Using small-sized batches for cost
function calculation gives a good estimate of the true values of the cost. However,
when the mini-batch size is increased, the cost function estimated from the batches
are not close enough to the true values and it decreases the detection accuracy. Note
that there are around 2.1 million training examples extracted from the database.
Therefore when the mini-batch size is selected as 2500, the weights are updated
around 840 times in a single epoch. But still, it leads to a detection accuracy decrease
of 20% compared to a system with mini-batch size of 100. Another observation is
that when smaller mini-batch size is used, the system converges to an acceptable
accuracy in less epochs than when a bigger mini-batch size is used. This is due to
the fact that there are more weight updates in a single epoch for a small mini-batch
size. Experiments on the effect of mini-batch size is illustrated in Figure 4.5.
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Effect of Learning Rate Learning rate determines the size of the steps taken in
each weight and bias update. Too low learning rate is a reason for slow convergence.
Too high learning rate might result with overshooting the global minimum (see
3.3.1). As seen in Table 4.6, once a suitable range of learning rate is found, the
network manages to converge to a high accuracy model. Learning rate is highly
application-dependent, therefore a grid search over the possible values of it is usually
necessary for different datasets.

Learning Rate 0.005 0.01 0.02 0.05 0.1 0.5 1.0
Accuracy 61.3 64.9 66.5 65.2 64.5 64.5 65.6

Table 4.6: The detection accuracy as a function of learning rate.

Effect of the Number of Neurons in Maxout Pooling The effect of the
number of hidden neurons included in maxout pooling is experimented and the
results are given in Table 4.7. When the number of pieces is increased, the maxout
neuron learns the activation function with more expressive power, because there are
more breakpoints in the approximated activation function curve for each neuron.

Number of Pieces 2 3 4 5
Accuracy 65.6 65.8 66.0 66.2

Table 4.7: The detection accuracy as a function of number of maxout pieces.

Effect of Momentum Momentum coefficient µ is spanned between 0.3 to 0.8 and
the results are given in Figure 4.8. The overall detection accuracies are very close
to each other, however when µ is higher, the network converges in less epochs.

Momentum 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy 65.8 64.5 64.4 65.3 65.0 65.8

Termination epoch 91 102 92 92 79 79

Table 4.8: The detection accuracy as a function of number of momentum coefficient.
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4.3.3 Context-wise Results

After examining the effects of several ANN parameters on the detection accuracy,
the system configuration with highest accuracy is trained with three different feature
sets.

For the MFCC feature set, 17 static MFCCs are extracted from 50 ms frames of
audio data. The first MFCC is discarded since it gives the total log-energy of the
frame and it is not informative.

For the Mel-band energy feature set, the frequency range of the recordings is
divided to 40 Mel-bands and the energy inside each band is used as features. Another
feature set is created by taking the logarithm of these Mel-band energies.

Accuracy in One-second Blocks The overall detection accuracies are calculated
in one-second blocks for different features. The results are illustrated for each context
in Figure 4.6.

All three ANN methods with different feature sets offer a considerable increase
in accuracy over baseline method; which uses 16 MFCCs and their first and second
time derivatives as features, a continuous density HMM with three state left-to-
right topology for modeling feature distributions and GMM with 16 Gaussians to
model the probability density function of observations in each state. We believe
the success of ANN in this task is based on the high expressive power of ANNs
on highly nonlinear functions. The polyphonic nature of the environmental audio
makes it hard GMM-HMM systems to learn the correlations between sound event
classes, however ANN deals with this problem in a significantly successful way.

When MFCCs are used as features, the overall accuracy in one-second blocks is
61%, which outperforms the baseline method by 16%. MFCC performance is 4%
lower than Mel-band energy performance for this polyphonic environmental sound
database. As also mentioned in [15], it can be argued that MFCCs are not able to
capture the temporal domain signatures. These signatures are often seen in sound
events resulting from natural sound sources, such as wind on trees and rain sound.
When there are simultaneous sound events, these natural sound with broad flat
spectrum are hard to recognize by using MFCCs as features.
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Accuracy in Single Time Frames Another way of evaluating the detection
accuracy is to calculate the F1 score inside each single time frame and averaging these
values over the whole dataset. This brings the advantage of a higher time resolution
compared to one-second block evaluation, but a considerably lower (≈ 10%) decrease
in detection accuracy. It can be said that ANN method is much better at detecting
the sound events than locating them in the time domain. The results are illustrated
for each context in Figure 4.7.
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5. CONCLUSIONS

In this thesis, we tackled the area of multilabel sound event detection in realistic
environments. We proposed to use the spectral domain features such as MFCCs
and Mel-band energies for audio data representation. For multilabel classification,
ANNs with multiple hidden layers were proposed.

The experiments have been conducted on an audio database collected from real-
life contexts such as inside a bus, in an office, in a restaurant etc. Each recording
includes multiple overlapping sound events in almost all time instances, therefore
the task was to detect individual sound events from a mixture of sound signals.

In order to find the ANN parameters for highest accuracy, many experiments
have been conducted. The effect of several parameters on the detection accuracy
have been experimented and explained. F1 score in one-second block was chosen as
the evaluation metric during the tests. The highest overall accuracy is calculated
as 65%. A comparison was made with the baseline system, which uses GMM-HMM
classification method with MFCC features on the same database. We showed that
multilabel ANNs provide a significant increase in accuracy (20% increase) over this
baseline method.

From our experiments, we conclude that using Mel-band energies as audio features
gives a slightly higher accuracy compared to MFCCs, which are the traditional
features used in single label event detection and speech recognition. Our reasoning
on this is the sum of MFCCs of individual sound events is not equal to MFCCs
extracted from the mixture signal. We also conclude that multilabel classification
with ANNs provide better results compared to GMM-HMM methods due to its high
expressional power on nonlinear functions.

We noticed from the experiments that frame concatenation and sliding window
methods can be really beneficial in polyphonic SED systems. We also noticed that
the values of the learning parameters such as learning rate, mini-batch size and
momentum coefficient can have significant importance in ANN learning. Finding a
useful range of these parameters can significantly speed up the learning process and
result in better accuracy.

For the future work, the performance can be increased by implementing regular-
ization methods on ANN such as weight decay, L1-L2 penalties and dropout. We
observed that when the number of hidden layers is increased, the model suffers from
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overfitting. The ways of decreasing the overfitting for ANNs with more hidden layers
can be investigated in the future. The post-processing method can be improved as
well with the future research.
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